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2 " = , COMMUNICATIONS

Sue Abu-Hakima

" ® « " COMMUNICATIONS
Changes in Store

for Canadian Artificial Intelligence Magazine

Welcome to our final long format magazine issue. Due
to the amount of time required to put the long format
magazine together, the Executive has decided to move the
magazine to a shorter format. The new format will have
more timely information for our members as well as some of
the favourite long format information such as book reviews
and a short article on a research topic.

The change to the new format will also bring a new editor
for the magazine. Dan Fass of Simon Fraser University has
agreed to take on the responsibility of putting out the
shorter magazine. The production of Canadian Artificial
Intelligence will also move to SFU.

I would like to take this opportunity to thank
Arlene Merling for her tremendous efforts and dedication
over six years in putting out the magazine from Calgary.

On a personal note, I am moving on to other
responsibilities, namely my NRC spin-off company
AmikaNow! Corporation which will be bringing intelligent
software agent products into personalized workspaces for
people.

I have enjoyed being the editor of the magazine for the
last two years as well as co-editor with Peter Turney for two
years before that. I thank NRC for giving us the opportunity
to contribute to the Canadian artificial intelligence
community. I wish my successors the best of luck and hope
to continue to contribute to the Artificial Intelligence
community in other ways.

All the best,
Sue Abu-Hakima
suhayya@amikanow.com A

your full name
your e-mail address

Visit our Website
www.cscsi.sfu.ca

Canadian Artificial Intelligence is accessible on our website to
CSCSI/SCEIO members.

If you would like to try electronic access, please send an
e-mail message to fass@cs.sfu.ca, with the following information:

« a short user name (5-8 characters, for web access)

a password (5-8 characters, for web access), and

your CSCSI/SCEIO membership identification number,
located on the mailing label of the magazine.

Become a Member of CSCSI/SCEIO

For more details, see page 35.
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Special Issue: Logic and Artificial Intelligence

Ever since Aristotle treatises on syllogisms, the view
that logic formalizes the process of thinking and knowing
has been at the core of western intellectual thought. lIis
most ambitious apogee is the idea we owe to Liebniz, that
logic is a "universal language" into which all questions
can be formulated and that there are rules of logic that
provide the "calculus ratiocinator” with which all
questions, not just mathematical questions, could be settled.

It is not surprising that this ambitious logicist world-
view, should have failed so spectacularly. Starting with
Russell's paradoxes and going on through to Goedel's
incompleteness theorem, these failures seem not to have
deterred the advance of logic both as a science in its own
right and as a tool with which to formalize human thinking.
In particular, the discipline of artificial intelligence, indeed
the advent of computing itself, can be seen as the modern
day fruit of this logicist program. Concomitantly, a
variety of logics have flourished in the latter half of this
century: default logics, relevance logics. deontic logics,
modal logics, many-valued logics, linear logics and the
list goes on. Each one was devised in the ever elusive
attempt to formalize one aspect of the process of human
thinking and reasoning, be it “common sense reasoning,”
“reasoning about time™ or what have you.

In the realm of logics for computation, first and
second-order logics even rival even the lambda calculus
as a paradigm for reasoning about and for performing
computations. Not even the disappointments with the
"Sth Generation Computers” of the 1980s can detract
from the virtues of, for example, logic programming, in

fields such as computational linguistics, constraint
programming and deductive databases.

A comprehensive issue of Canadian Artificial
Intelligence on “Logic and Artificial Intelligence™ would
be next to impossible to publish; there are too many
research areas and too many researchers in the field,
even in Canada. Yet the papers in this issue cover a
small but representative sample of some of the more
important aspects of logic research as it applies to

- computing and Al. We have two survey articles and two
special-interest articles.

Urquhart’s survey article addresses the question of what
the lower bounds are to the length of proofs in the
propositional calculus. As he amply demonstrates,
establishing tight lower bounds is no trivial matter yet
essential to an understanding of the inherent limitations of
automated theorem proving. This topic is all the more
exciting because it contains many open problems in the
foundation of logic. The other survey article, by Fred
Popowich, brings us up to date on the applications of logic

André Vellino

for one of the most difficult of AI’s undertakings: natural
language processing. How is logic applied to define different
species of linguistic information — syntax, semantics and
pragmatics — and are how well does it fare at the task of
formalizing their interrelationships?

The two special-interest papers on non-monotonic logics
contrast quite nicely both with each other and with the
survey papers. With Charles Morgan’s contribution, we
are immersed in the ever-raging debate between those
who argue that non-monotonic logic is a poor way of
glossing over essentially statistical assumptions and those
who argue that new non-monotonic inference can only
be captured by a “logic™ for non-monotonic connectives.
These positions are articles of faith on both sides, and if
nothing else, Morgan’s “Proof™ is sure to enrage someone
(Ray Reiter, perhaps?). Who ever said that logic wasn’t
polemical?

Dahl and Tarau offer a no less novel report on their
implementation of intuitionistic primitives in a logic-
programming language and demonstrate their unexpected
usefulness in assumption grammars. Assumption grammars,
they claim, have more expressive power than other logic
grammars because they permit the specification of rewriting
transformations using only intuitionistic and (affine) linear
assumption. They show how such a grammar can be used
within a Prolog framework and illustrate its application
with convincing examples.

As the articles in this issue illustrate, logic as a
paradigm for doing Al is still alive and well. It is clear
that logic still has, and will continue to have, a significant
place as one of an array of conceptual frameworks with
which to realize the goal of a thinking machine, even if it
is no longer the universal language Liebniz had hoped it
would be.

A

André Vellino is a research scientist at Nortel
Technology, currently on secondment to the National
Research Council. He has contributed to research in
automated theorem proving, constraint logic
programming and intelligent agents. He obtained his
Ph.D. in logic at the University of Toronto in 1989 and
is adjunct researcher professor in Cognitive Science at
Carleton University.
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Fred Popowich

=% " = _ FEATURE ARTICLES
="=".= GROS TITRES

Logic Based Formalisms for Natural Language

Introduction

Nous décrivons dans cet article I'évolution de la recherche
sur l'utilisation, dans le traitement du langage naturel, de la
logique non seulement pour représenter la sémantique ou le
sens des expressions, mais aussi pour en représenter la
structure, la syntaxe. On y décrit comment divers formalismes
basés sur la logique ont évolué de fagon i pouvoir spécifier
et traiter de l'information linguistique, permettant ainsi
d'exprimer différents types d'information linguistique
(syntaxique, sémantique ou pragmatique) et aussi d'exprimer
les dépendances entre ces types avec plus de concision.

Introduction

In the beginning there was logic. And it became the foundation
of meaning representation for a great deal of natural language
processing research. However, this article is not about
different logics used to (attempt) to represent the meanings
of natural language expressions, it is not about the
shortcomings of various logics nor is it about their various
strengths; McCawley (1981) has already described Everything
that Linguists have Always Wanted to Know about Logic but
Were Ashamed to Ask. Instead, it is an article about the
evolution of natural language processing research to use
logic for not only representing the semantics or meaning of
expressions, but also for the structure or syntax of expressions.
It describes how different logic based formalisms have
evolved to allow the specification and processing of linguistic
information, allowing one to express different types of
linguistic information (be it syntactic, semantic or pragmatic,
etc.) and to express dependencies between these difterent
types of information more concisely.

Since the early work of Chomsky (1957), we have become
familiar with the use of rewrite grammars, like context-free
grammars or even transformational grammars, for describing
the structure of natural language expressions.
For example, the context-free grammar rule

sentence —> noun_phrase, verb_phrase (1)
describes a sentence as being composed of two

constructions, the noun_phrase and the verb_phrase, which
have their own respective definitions, say:

noun_phrase —> proper_noun (2)
proper_noun —> John 3)
verb_phrase —> verb 4)
verb _> walks 5)

Thus, we have rules for describing the structure of the
sentence John walks. For future reference, we will refer to
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the above set of rules as part of our grammar G1. In our rules,
the terminal symbols are italicized while the nonterminal
symbols are not.

One can use grammar rules much like these to describe the
syntax of natural language, and then associate a semantic
rule with each grammar rule (Dowty, Wall and Peters 1981).
The semantic rules allow logic formulae to be associated
with each syntactic constituent in a sentence. This same
approach was adopted, and expanded upon, within a linguistic
theory called Generalized Phrase Structure Grammar (Gazdar,
Klein, Pullum and Sag 1985). For the grammar rules from
G1, we would effectively associate the following logic
equations with each of the grammar rules, where for a
nonterminal symbol X, the notation X' is used to refer to the
logic expression associated with X.

sentence —> noun_phrase, verb_phrase
sentence’ = noun_phrase'(verb_phrase”) (6)

noun_phrase —> proper_noun
noun_phrase' = proper_noun' (7)

proper_noun —> John
proper_noun'= AP.P(j) (8)

verb_phrase —> verb
verb_phrase’ = verb' (9)

verb —> walks
verb'= Ax.walk(x) (10)

Using these rules, the analysis of the sentence John walks
would result in the following syntactic and semantic
constituents, where we get walk(j) from applying the function
AP.P(j) to its argument Ax.walk(x). That is

AP.P() Ax.walk(x)) = Ax.walk(x)(j) = walkG)(11)

__sentence
o wak() A
noun_phrase verb_phrase
P{(i) x.walk(x)
proper_noun verb*
P.P(j) x.walk(x)
John walks



When exploring the usefulness of grammars like G1, one
quickly becomes aware of the limitations and the need for
finer grained distinctions in the linguistic knowledge.
Indeed, once we introduce another form of the verb, a
pronoun, and a generic common noun into the simple
grammar to allow for coverage of sentences like People
walk and Everyone walks, by naively introducing rules
like:

noun_phrase —> generic_noun
noun_phrase' = generic_noun' (12)

noun_phrase —> pronoun
noun_phrase' = pronoun' (13)

generic_noun —> People
generic_noun' = AP.=Vx.(person(x)—> P(x))) (14)

pronoun —> Everyone
pronoun' = AP.(Vx.P(x)) (15)

verb —> walk
verb' = Ax.walk(x) (16)

we also get analyses for the undesired ungrammatical
sentences: People walks and John walk.

As an aside, grammar engineers, who develope large
grammars constantly run into subtle variations of this same
problem; the expansion of coverage can result in undesired
side effects. In this simple example, the problem is that finer
grained distinctions need to be made between different types
of noun phrases and verb phrases. For instance, a noun
phrase for People needs to state that it corresponds to a
third person plural form, while John is third person singular.
This information needs to be shared between the proper
noun (or pronoun) and the noun phrase constituent. Similarly,
we need to distinguish between the third person singular
form of the present tense of the verb, walks, and the form
associated with all other persons and numbers in the present
tense, walk. Generalizations like these are easy to express if
we replace our atomic grammar symbols like noun_phrase
with parameterized versions like noun_phrase(X), where the
single argument could in this case be representing the person
information as described above. What we are effectively
doing is allowing logical terms, containing predicates,
constants and/or variables, to appear as grammar symbols.
The result is a more powerful formalism for describing the
syntax of natural language: definite clause grammars (DCGs)
(Pereira and Warren 1980), probably the most familiar example
of what are known as logic grammars.

The popularity of DCGs is undoubtably related to their
close relationship to the Prolog programming language. It
is straight forward to convert a DCG into Prolog clauses,
and many implementations of Prolog perform this
conversion automatically. This allows students and
researchers to quickly develop simple grammars for use in

prototype artificial intelligent applications. The various
argument positions in a term can be used for a wide range
of linguistic information, and arguments are frequently
used to constrain semantic information as well, thus
providing an even closer link between syntactic and
semantic information. The following example illustrates
how some agreement and semantic information might be
incorporated into a grammar related to Gl, based on an
approach introduced in Pereira and Shieber (1987) for
processing natural language with Prolog, where lambda
abstraction and function application can be simulated with
unification. Note that X"walk(X) is equivalent
torx.walk(x), and (j*S)"S is equivalent to AP.P(j): Prolog
does not allow expressions of the form P(x) where X is a
variable.

sentence(S) —> noun_phrase(Person,X"S),
verb_phrase(Person,X) (17)

noun_phrase(Person,Semantics) —>
proper_noun(Person,Semantics) (18)

verb_phrase(Person,Semantics) —>
verb(Person,Semantics) (19)

proper_noun(third,(j*S)*S) —> John (20)
verb(third, X"walk(X)) —> walks (21)

The limitations of DCGs become apparent when dealing

with larger grammars though. Many people have noted
(see for instance Covington 1994) that it can be difficult
to maintain DCGs in which the terms used as grammar
symbols contain a large number of arguments. Not only
does one have to remember which position corresponds to
which, but one also has to have place holders for all the
teatures which are not relevant. Moreover, it would be
nice to have rules like

verb(~third) —> walk(22)

and have this be consistent with a first person pronoun.

Instead of having a logical term as a grammar symbol, it
is possible to instead have a feature structure as a grammar
symbol. Just as terms can be related through unification as
is done in DCGs, so can features structures. This is the
approach adopted by PATR-II and related formalisms, as
described in (Shieber 1986). One can even marry these
two approaches, and have a feature structure appear as an
argument in a definite clause style grammar, as summarized
in (Covington 1994).

But, what is a feature structure? People from a computer
programming background can view it as a record, a
collection of different feature names, each of which has a
value. This value may be primitive (or atomic), or may be

Canadian Artificial Intelligence Autumn 1998/ 5



another record (feature structure). In addition, values may
be shared: the value of one feature can be token identical to
the value of another record. The real power of feature
structures, however, lies with the unification operation
which is applied to them. The unification of two feature
structures is essentially just the union of their compatible
information. If the two feature structures contain
incompatible information, then their unification fails.
Unification failure plays the fundamental role in preventing
the construction of inappropriate constituents. Formal
aspects of feature structures are discussed in Johnson's
(1988) Attribute-Value Logic and the Theory of Grammar.

So, our DCG given earlier could also be presented in the
following manner, where we associated feature structures
with each atomic grammar symbol, where the sharing of
values within a rule is represented through common numeric
indices enclosed in vertical bars or boxes.

(23)

PER [1] . i
r = |PER |1
' 11 NP v
|SEM 13/ M LAMBDA [2] EBM!N
BODY 3|
np |PER 1] PN{%BRII%
SEM 2| SEM 2| (24)
vp|PER i PER |1}
SEM 2| SEM 12| 25)
PER third
"N LAMBDA j John
LAMBDA |
SEM 1] (26)
PER third
; LAMBDA__ x walks
SEM | .v |PRED walk
|ARG1 x
27

The semantic structure of the form XAS from our DCG
example is represented as a feature structure itself, where
X is considered to be the LAMBDA and S is consider to be
the BODY of the lambda expression. Similarly, a predicate
and its argument, such as walk(x). is also represented as a
feature structure. Although for the simple example we have
been looking at, the DCG notation is more concise, once
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atom [ ]

ﬁrst[ ]

we are dealing with greater amounts of information and more
intricate dependencies the feature structure notation is
preferable. There are also several standard non-graphic forms
of the feature structure notation that could be used.

Additional descriptive power can be obtained by using
typed feature structures as opposed to the untyped feature
structures that we have just described. Detailed formal
definitions related to typed feature structures and associated
operations can be found in Carpenter's (1992) The Logic of
Typed Feature Structures.

For our needs, we can think of a typed feature structure as
an untyped feature structure, except that it also has associated
with it a type from a type hierarchy. Unification of two
typed feature structures work much like untyped feature
structure unification, except that the two feature structures
being unified must not be from incompatible parts of the
hierarchy: one feature structure must be a subtype of the
other (they can be of the same type). What's more, we allow
a type to have more than one immediate supertype: we have
a multiple inheritance hierarchy.

With respect to our simple grammar we introduced
showing the use of feature structures, we could introduce
the following type definitions for our different types of
semantic and person information. Note that each feature

emancisl ]

PRED

BODY semamtics

pers [ ]
/ T~

nonhid[ ] thid [ ]

second [ ]

atom

[LA MBDA sem amtcs] ARG semantic
lambda predicate ARG2 semantic



structure is preceded by a type name. The values of the
individual features in a feature structure are also restricted
to being of a specific type, as reflected by the appearance
of the type name as the value of a feature.

Developing typed feature structures to encode linguistic
information shares much in common with object oriented
design and object oriented programming. A given typed
feature structure inherits features, and values for its features
from its supertypes. Thus certain pieces of linguistic
information need only be specified in one location to be ‘felt'
in a wide range of locations. So any subtypes of predicate
from the above hierarchy would have all the features shown
above, plus any others introduced in the subtype. The types

CATEGORY verb
PERSON notthird
LAMBDA x walk
SEMANTICS BODY PRED walk]
lambda predicae ARGL X ] (28)

of semantics and predicate are unifiable, but those of
predicate and lambda are not. Using the above type
hierarchy, one could have a grammar rule like the following,
if we assume that x and walk are subtypes of atom.

Similarly, just as there was a close relationship between
DCGs and a programming environment, specifically Prolog,
there is a close relationship between typed feature structures
and programming environments, notably ALE (Carpenter
and Penn 1994) and LIFE (Ait-Kaci 1993).

Feature structures play an important role in many
contemporary linguistic and computational linguistic theories.
The logic-based formalisms that we have discussed here can
be used to provide implementations of formalisms like GPSG
and Head-Driven Phrase Structure Grammar (HPSG) (Pollard
and Sag, 1994), one of the most popular contemporary
linguistic formalisms. This formalism is the basis of large
scale applications in the area of natural language processing.
Readers interesting in obtaining more information about HPSG

- and related linguistic formalisms, along with information
about applications and tools should visit
http://ling.ohio-state.edu/HPSG/Hpsg.htmil(29)

So. what have we seen. We have seen how logic based
formalisms can be used to describe linguistic information,
and we have seen the increase in sophistication in the way
that knowledge can be described and used by these
formalisms. Computational tools are also widely available
so that these formalisms can be used as the basis of applied
and theoretical research. Indeed, there are a range of grammar
developpment systems available for logic based grammars
that make the development and maintenance of large amounts

of linguistic information possible.
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The Complexity of Propositional Proofs *

Alasdair Urquhart

Résumé

LA COMPLEXITE DES PREUVES PROPOSITIONNELLES
Le calcul propositionnel classique a, aux yeux des logiciens, la réputation non méritée d’étre essentiellement
triviale. J’espere convaincre le lecteur qu’il présente au contraire quelques-uns des problemes les plus difficiles
et les plus intéressants de la logique moderne. Cet article fait un survol du domaine et de quelques-unes des
techniques avec lesquelles on a pu réduire avec succes la complexité des preuves.

1 Introduction

The classical propositional calculus has an undeserved
reputation among logicians as being essentially trivial.
I hope to convince the reader that it presents some of
the most challenging and intriguing problems in mod-
ern logic.

Although the problem of the complexity of propo-
sitional proofs is very natural, it has been investigated
svstematically only since the late 1960s. Interest in
the problem arose from two fields connected with com-
puters, automated theorem proving and computational
complexity theory. The earliest paper in the subject
is a ground-breaking article by Tseitin [25]. the pub-
lished version of a talk given in 1966 at a Leningrad
seminar. In the three decades since that talk. substan-
tial progress has been made in determining the rela-
tive complexity of proof systems, and in proving strong
lower bounds for some restricted proof systems. How-
ever, major problems remain to challenge researchers.

The present paper provides a survey of the field, and
of some of the techniques that have proved successful
in deriving lower bounds on the complexity of proofs.
A major area not covered here is the proof theory of
bounded arithmetic and its relation to the complexity
of propositional proofs. The reader is referred to the
book by Buss [1] for background in bounded arithmetic.
The recent book by Krajicek [16] also gives a good in-
troduction to bounded arithmetic, as well as covering
most of the basic results in complexity of propositional
proofs.

2 Proof systems and simulation

The literature of mathematical logic contains a very
wide variety of proof systems. To compare their effi-
ciency, we need a general definition of a proof system.
In this section, we give such a definition, together with
another that formalizes the relation holding between
two proof systems when one can simulate the other ef-
ficiently. The definitions are adapted from Cook and
Reckhow [5)].

Let ¥ be a finite alphabet; we write £* for the set of
all finite strings over &. A language is defined as a sub-
set of ©*. that is, a set of strings over a fixed alphabet
¥. The length of a string x is written as |z|.

Definition 2.1 If £, and Zo are finite alphabets. a
function f from X} into T3 is in L if it can be computed
by a deterministic Turing machine in time bounded by
a polynomial in the length of the input.

The class £ of polynomial-time computable func-
tions is a way of making precise the vague notion of
“feasibly computable function”.

Definition 2.2 If L C T*. a proof system for L is
a function f : £} — L for some alphabet ¥,. where
f € L and f is onto. A proof system f is polynomi-
ally bounded if there is a polynomial p(n) such that for
all y € L. there is an © € X7 such that y = f(z) and
lz} < p(lyl)-

The intention of this definition is that f(z) = y is
to hold if z is a proof of y. The crucial property of a
proof system as defined above is that, given an alleged
proof, there is a feasible method for checking whether
or not it really is a proof. and if so, of what it is a proof.
A standard axiomatic proof system for the tautologies.

*This paper is a condensed version of a paper [29] of the same title published in the Bulletin of Symbolic Logic. This article is

copyrighted by the Association for Symbolic Logic. All rights reserved

1. This reproduction is by special permission for this publication

only. All the detailed proofs in this version of the paper have been omitted as well as sections 7 on Frege Systems, section 8 on Extended

Frege Systems and section 9 on Open Problems.

tThe author gratefully acknowledges the support of the National Sciences and Engineering Research Council of Canada.
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for example, can be brought under the definition by as-
sociating the following function f with the proof system
F: if a string of symbols o is a legitimate proof in F of
a formula A, then let f(o) = A; if it is not a proof in F
then let f(o) = T, where T is some standard tautology,
say PV —P,.

Let us recall here some of the basic definitions in
computational complexity theory (for details the reader
is referred to [11, 14, 18]). A set of strings is in the
class P (NP) if it is recognized by a deterministic
(non-deterministic) Turing machine in time polynomial
in the length of the input. A set of strings is in the
class co-N'P if it is the complement of a language in
NP. In more logical terms, a set S of strings is in
P if its characteristic function is in £, while it is in
NP if the condition y € S can be expressed in the
form (3z)(|z| < p(ly|) A R(z,y)), where p is a polyno-
mial, and R is a polynomial-time computable relation.
Thus P is the polynomial-time analogue of the recur-
sive sets, while NP corresponds to the recursively enu-
merable sets. Thus the basic question P =?NP is the
polynomial-time analogue of the halting problem.

The importance of our main question for theoreti-
cal computer science lies in the following result of Cook
and Reckhow [5].

Theorem 2.1 NP = co-NP if and only if there is a
polynomially-bounded proof system for the classical tau-
tologies.

This equivalence result underlines the verv far-
reaching nature of the widely believed conjecture NP £
co-N'P. The conjecture implies that even ZFC. to-
gether with any true axioms of infinity that are thought
desirable (provided that they have a sufficiently simple
syntactic form) is not a polynomially-bounded proof
system for the classical tautologies (where we take a
proof of TAUT("A™) as a proof of the tautology A).

We can say nothing of interest about the complexity
of such powerful proof systems as the above (in effect.
the strongest we can imagine). We can. however, order
proof svstems in terms of complexity. and prove some
non-trivial separation results for systems low down in
the hierarchy.

Definition 2.3 If f; : ¥ — L and fo : 3 — L
are proof systems for L, then fy p-simulates f; pro-
vided that there is a polynomial-time computable func-
tion g : ] — X5 such that fo(g(z)) = fi(x) for all
z.

Thus g is a feasible translation function that trans-
lates proofs in f; into proofs in fy. We have assumed
in the above definition that the language of both proof
systems is the same. Reckhow’s thesis 19, §5.1.2] con-
tains a more general definition of p-simulation that
eliminates this restriction. It is easy to see that the p-
simulation relation is reflexive and transitive, and also

that the following theorem can be proved from the def-
initions.

Theorem 2.2 If a proof system fs for L p-simulates
a polynomially bounded proof system f,. then fa is also
polynomially bounded.

The intersection of the p-simulation relation and its
converse is an equivalence relation; thus we can seg-
regate classes of proof systems into equivalence classes
within which the systems are “equally efficient up to a
polynomial”.

3 A map of proof systems

Since the complexity class P is closed under comple-
mentation. it follows that if P = NP then NP =
co-N'P. This suggests that we might attack the prob-
lem P =?N'P by trying to prove that NP # co-NP;
by Theorem 2.1, this is the same as trying to show that
there is no polynomially-bounded proof system for the
classical tautologies. This line of research was first sug-
gested in papers by Cook and Reckhow [4. 5]. At the
moment. the goal of settling the question NP # co-N'P
seems rather distant. However, progress has been made
in classifying the relative complexity of well known
proof systems, and in proving lower bounds for re-
stricted systems. An attractive feature of the research
programime is that we can hope to approach the goal
step by step. developing ideas and techniques for sim-
pler svstems first.

The diagram in Figure 1 is a map showing the rel-
ative efficiency of various systems. The boxes in the
diagram indicate equivalence classes of proof svstems
under the svinmetric closure of the p-simulation rela-
tion. Systems below the dotted line have been shown
to be not polynomially bounded. while no such lower
bounds are known for those that lie above the line.
Hence, the dotted line represents the current frontier
of research on the main problem. Although svstems
below the line are no longer candidates for the role of a
polynomially bounded proof svstem, there are still some
interesting open problems concerning the relative com-
plexity of such systems. Questions of this sort. although
not directly related to such problems as NP =?co-NP,
have some relevance to the more practical problem of
constructing efficient automatic theorem provers. Al-
though the more powerful svstems above the dotted
line are the current focus of interest in the complex
of questions surrounding the NP =?¢0-A'P problem,
the systems below allow simple and easilv mechanized
search strategies. and so are still of considerable interest
in automated theorem proving.

An arrow from one box to the other in the diagram
indicates that any proof system in the first box can p-
simulate any system in the second box. In the case of
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cut-free Gentzen systems, this simulation must be un-
derstood as referring to a particular language on which
both systems are based. An arrow with a slash through
it indicates that no p-simulation is possible between any
two systems in the classes in question. If a simulation
is possible in the reverse direction, then we can say that
systems in one class are strictly more powerful than sys-
tems in the other (up to a polynomial). The diagram
shows that all such questions of relative strength have
been settled for systems below the dotted line, with the
exception of the case of the relative complexity of reso-
lution and cut-free Gentzen systems where connectives
other than the biconditional and negation are involved.

The diagram shows only a selection from the wide
variety of proof systems that have been considered in
the literature of logic, automatic theorem proving and
combinatorics. A more detailed diagram, showing a
wider selection of proof systems, though not reflecting
work after 1976, is to be found in Reckhow [19)].

Before proceeding to consider particular proof sys-
tems, let us fix our notation. We assume an infinite
supply of propositional variables and their negations; a
variable or its negation is a literal. We say that a vari-
able P and its negation ~P are complements of each
other; we write the complement of a literal [ as . A
finite set of literals is a clause; it is to be interpreted
as the disjunction of the literals contained in it. A set
of clauses is to be interpreted as their conjunction. A
clause mentions a literal [ if either { or [ is in the clause.
The length of a clause is the number of literals in it. We
shall sometimes write a clause by juxtaposing the liter-
als in it.

An assignment is an assignment of truth-values to
a set of propositional variables; some variables may re-
main unset under an assignment. If ¥ is a set of clauses.
and ¢ an assignment, then we write X[ ¢ for the set
of clauses that results from ¥ by replacing variables
by their values under ¢ and making obvious simplifica-
tions. That is to say, if a clause in £ contains a literal
made true by ¢, then it is removed from the set, while
if a literal in a clause is falsified by ¢ then it is removed
from the clause. The notation [l := 1] denotes the as-
signment that sets the literal [ to 1 and is otherwise
undefined. similarly for [ := 0].

It is useful to fix terminology relating to graphs and
trees here. A graph consists of a finite set of vertices. a
finite set of edges and an incidence relation so that every
edge is incident with exactly two distinct vertices (the
endpoints of the edge). That is to say, the graphs con-
sidered here can contain multiple edges, but not loops:
a graph is simple if it has at most one edge between any
two vertices. Trees should be visualized as genealogical
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trees, with the root at the top; the nodes immediately
below a given node in a tree are its children. The depth
of a tree T, written Depth(T), is the maximum length
of a branch in T'.

Derivations in a proof system can be represented ei-
ther as trees, or as sequences of steps (where a step
could be a formula or a sequent). It is normal in
the proof-theoretic literature to represent derivations
as trees. It is clear, though, that this representation is
inefficient, since a step must be repeated every time it is
used. If S is a proof system, we denote the correspond-
ing proof system in which derivations are represented as
trees by Stree, reserving the notation S for the system
in which derivations are represented as sequences.

4 Analytic Tableaux

The method of analytic tableaux, or truth trees, is em-
ployed in many introductory texts; it is given a par-
ticularly elegant formulation in Smullyan’s monograph
[23]). Here we shall only consider the simple form of the
method where all formulas are clauses. If ¥ is a con-
tradictory set of clauses, then a tableau for ¥ is a tree
in which the interior nodes are associated with clauses
from X: if a node is associated with a given clause, then
the children of that node are labeled with the literals in
the clause. Note that the node associated with a clause
is not labeled with that clause itself, so that the root of
the tree remains unlabeled. A tableau for ¥ is a refu-
tation of ¥ if every branch in the tableau is closed (i.e.
contains a literal and its negation). We define the size
of a tableau refutation as the number of interior nodes
in the tableau (this measure of complexity, omitting the
leaves of the tree, is convenient for inductive proofs). If
¥ is a set of clauses, then t(X) is defined to be the min-
imum size of a tableau refutation of ¥. Because of the
simple structure of tableau refutations, it is possible to
prove exact lower bounds on their complexity.

A truth table for a formula with n variables, repre-
sented as a vector of 0’s and 1’s, has length 2™, so that
the truth table method is inefficient for large values of n.
Of course, we are only considering asymptotic complex-
ity measures here. In practice, the truth table method
may be quite efficient for formulas containing a small
number of variables. given a reasonably sophisticated
implementation. It is easy, however, to find contradic-
tory sets of clauses containing n variables that can be
refuted quickly by elementary proof methods, for exam-
ple the sets A, containing all the variables Py,....P,
together with the formula ~P; V...V ~P,. The set A,
has a tableau refutation of size n + 1.
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~prs

~pr~s

Figure 2: 3(T) = {pq, p~q, ~prs, ~pr~s,~p~r}

Somewhat surprisingly, there are cases where truth
tables are more efficient than analytic tableaux. This
fact was first observed by Marcello D’Agostino, who
proved the next result [6]; he noted that truth tables
are more efficient than analytic tableaux in the case of
the set of all clauses of length n in n variables.

Theorem 4.1 The analytic tableau proof system can-
not p-simulate the method of truth tables.

Although analytic tableaux work well on simple ex-
amples, there are cases where any tableau refutation
necessarily contains a great deal of repetition. This is
shown by a set of examples due to Cook [3]. Cook's
construction associates a set of clauses with a labeled
binary tree as follows. Let T be a binary tree in which
the interior nodes are labeled with distinct variables.
We associate a set of clauses £(T") with T. in such a
way that each branch b in £(T) has a clause Cy € X(T)
associated with it. The variables in Cp are those label-
ing the nodes in b; if P is such a variable. then P is
included in C, if b branches to the left below the node
labeled with P. otherwise C} contains ~P. Figure 2
shows a simple example.

Cook’s clauses are the sets of clauses ¥, = 2(T},)
associated with the complete binary tree T), of depth n.
To include the case where n = 0, we take Ty to consist
of a single node, counted as an interior node; the set of
clauses £(Tp) is {A}, where A is the empty clause.

If one of the variables in £(T') is set to 0 or 1, then
the resulting simplified set of clauses is also of the form
£(T") for some binary tree T”. Let [ be a literal in (T,
and P the variable in [. Define T'[ {{ := 1] to be the tree
resulting from T by replacing the subtree whose root is
labeled with P by either its immediate left or right sub-
tree, depending on whether { is negated or not. Then
it is easy to see that S(T)[ [l := 1] = &(TI [l := 1}).
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Theorem 4.2 1. The clauses ¥, satisfy the re-
cursion equations: tH(Zp) = 1. t(Zp41)
HZn)-[t(Zn) + 1]:

2. There is a constant ¢, where 0.67618 < ¢ <
0.67819, such that for all n. t(X,) = |2°*"|.

The preceding theorem is due to Cook; a version of
it appeared without proof in [4]. Cook’s original un-
published proof [3] contains a gap; the proof found in
[29] is joint work of Cook and the present author. Mur-

1
for

ray and Rosenthal [17] prove a lower bound of 22"
the size of analytic tableau refutations of %,,.

Theorem 4.2 has some significance for automated
theorem proving based on simple tableau methods. The
set L contains only 64 clauses of length 6, but the mini-
mal tableau refutation for 2¢ has 10.650,056,950,806 in-
terior nodes. This shows that any practical implemen-
tation of the tableau method must incorporate routines
to eliminate repetition in tableau construction (for de-
tails of such an improved tableau procedure, see Vellino
[30)).

5 Resolution

The resolution rule is a simple form of the familiar cut
rule. If Al and Bl are clauses, then the clause AB may
be inferred by the resolution rule, resolving on the lit-
eral [. A resolution refutation of a set of clauses L is
a derivation of the empty clause from ¥, using the res-
olution rule. Refutations can be represented as trees
or as sequences of clauses; the worst case complexity
differs considerably depending on the representation.
We shall distinguish between the two by describing the
first system as “tree resolution,” the second simply as
“resolution.”



Although resolution operates only on clauses, it can
be converted into a general purpose theorem prover for
tautologies by employing an efficient method of conver-
sion to conjunctive normal form, first used by Tseitin
[25]. Let A be a formula containing various binary con-
nectives such as — and =; associate a literal with each
subformula of A so that the literal associated with a
subformula ~B is the complement of the literal associ-
ated with B. If the subformula is a propositional vari-
able, then the associated literal is simply the variable
itself. We write lg for the literal associated with the
subformula B. If B is a subformula having the form
C o D, where o is a binary connective, then CI(B) is
the set of clauses making up the conjunctive normal
form of ig = (I¢ o lp). For example, if B has the form
(C = D), then CI(B) is the set of clauses

{lglclp, lglclp, lglclp, lglcip }.

The set of clauses Def(A) is defined as the union of all
Cl(B). where B is a compound subformula of A.

If Ais a tautology, then the set Def(A)U{l4} is con-
tradictory. Thus we define a proof of A in the resolution
system to be a proof of A from Def(A)U{l4}. Such a
proof of A we shall refer to as a proof by resolution with
limited extension for the set of connectives (other than
~) occurring in A. In particular, we shall discuss below
the svstem of resolution with limited extension for the
biconditional; we refer to this system as Res(=). Note
that the size of the set of clauses Def(A)U{l4} is linear
in the size of A. whereas the same is not true for the
conjunctive normal form of ~A itself (the conjunctive
normal form of P, = P, = ... = P, has size 20(”)).

The size of a tree resolution proof is defined as the
number of leaves in the tree; if ¥ is a contradictory set
of clauses, then tr(X) is defined as the minimal size of
a tree resolution refutation of ¥. We shall refer to the
clauses at the leaves of a tree resolution derivation as
the “input clauses” of the derivation.

Theorem 5.1 1. Tree resolution p-simulates the
method of analytic tableaux.

2. The method of analytic tableauzr cannot p-
simulate tree resolution.

A sequence of clauses Cp,...,Cy in a resolution
derivation is an irregularity if each Cj, i < k. is a pre-
miss for C; 4. and there is a literal [ that appears in C,
and Cj, but does not appear in any clause C;, where
1 < 7 < k. That is to say, the literal [ is removed by
resolution from C;, and is then later re-introduced in
a clause depending on Cy. A derivation is regular if it
contains no irregularity.

It can be shown that a tree resolution refutation
of minimal size is regular. However, corresponding
lemma for resolution fails. Andreas Goerdt (12| shows

that there is an infinite sequence of contradictory sets
of clauses having polynomial-size resolution refutations
for which the size of any regular resolution refutation
grows faster than any fixed polynomial. Goerdt’s ex-
amples are modified versions of the pigeonhole clauses
described in Section 7 of [29].

Regular tree resolution is closely related to the
method of semantic trees introduced by Robinson [20]
and Kowalski and Hayes [15]. A semantic tree is a bi-
nary tree in which the nodes have assignments associ-
ated with them. The assignment associated with the
root is empty. If ¢ is an assignment associated with an
interior node in the tree then the assignments associ-
ated with the children of the node are the assignments
¢ and ¢2 extending ¢ with ¢;(P) = 0 and ¢»(P) = 1,
where P is a variable not in the domain of ¢. A se-
mantic tree T is a refutation of a set of clauses ¥ if the
variables assigned values in T all belong to ¥ and each
of the assignments at the leaves of T falsify a clause in
X

We can rewrite a regular tree resolution refutation
of a set of clauses as a semantic tree by the following
technique. First, associate the empty assignment with
the root. Second, if AV B is a clause in the tree derived
by resolution from AV P and BV~ P, and ¢ is associated
with the conclusion of the inference, then we associate
with the premisses the extensions of ¢ obtained by set-
ting P to 0 and 1 respectively. Conversely, a semantic
tree refutation of minimal size can be converted into a
resolution refutation by associating with a leaf a clause
falsified at that leaf. and then performing resolutions
by resolving on the literals labeling the edges.

Regular refutations of a special kind are produced
by the Dawvis-Putnam procedure. Given a set of ¥ of
input clauses. this procedure involves choosing a vari-
able and then forming all possible non-tautologous re-
solvents from ¥ that result from eliminating the cho-
sen variable. This procedure is repeated until the
empty clause is produced or no more resolvents can be
formed (in which case the input set must be satisfiable).
Clearly the refutation produced depends uniquely on
the order of elimination adopted. The name of the pro-
cedure derives from a well known paper by Davis and
Putnam on automated theorem proving [8|.

The phrase “Davis-Putnam procedure” is unfortu-
nately ambiguous. since in the literature of automated
theorem proving, it refers to a decision procedure for
satisfiability involving the recursive construction of a
semantic tree. The confusion stems from the fact that
during the implementation of the algorithm described
in [8], Davis, Logemamn and Loveland (7] replaced the
original method by this second one, mainly for reasons
of space efficiencv. In the present article, the phrase
“Davis-Putnamn procedure” refers to the restricted ver-
sion of the resolution proof procedure where the refuta-
tions are produced by the first method described above.
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In the remainder of this section, the lower bounds
proved for various forms of resolution are given for the
graph-based examples introduced by Tseitin [25]. This
paper of Tseitin is a landmark as the first to give non-
trivial lower bounds for propositional proofs; although
it pre-dates the first papers on A'P-completeness, the
distinction between polynomial and exponential growth
of proofs is already clear in it.

If G is a graph, then a labeling G' of G is an as-
signment of literals to the edges of G, so that distinct
edges are assigned literals that are distinct and not
complements of each other, together with an assign-
ment Charge(z) € {0,1} to each of the vertices = in
G. If G' is a labeled graph, and z a vertex in G’,
and li,...,l the literals labeling the edges attached
to z, then Clauses(z) is the set of clauses equivalent to
the conjunctive normal form of the modulo 2 equation
l{®...®l; = Charge(z). That is to say, a clause C in
Clauses(z) contains the literals [y, ..., lx, and the parity
of the number of complemented literals in {{1,...,}
in C is opposite to that of Charge(z). The set of clauses
Clauses(G’) is the union of all the sets Clauses(z), for
x a vertex in G. Let us write Charge(G’) for the sumn
modulo 2 of the charges on the vertices of G'; a la-
beling G’ of G is even or odd depending on whether
Charge(G’) is 0 or 1.

For the remainder of this section, we assume that
G' is a graph with an odd labeling; we identifv an edge
with the literal labeling it. The proof of the preced-
ing lemma shows that any two sets of clauses asso-
ciated with an odd labeling of a connected graph G
are logically isomorphic. so we shall sometimes write
Clauses(G) to represent any such set.

Let G’ be a labeled graph, and  an edge in G'. De-
fine G'[ [l := 0] to be the labeled graph resulting from
G’ by deleting I. and G'[ [l := 1] the labeled graph re-
sulting from G’ by deleting ! and complementing the
charges on the vertices incident with /.

Regular resolution refutations of sets of clauses
based on graphs can be visualized in terms of joining to-
gether connected subgraphs. and we can compute the
complexity function tr(Clauses(G)) directly from the
graph G. Thus, the problem of proving lower bounds
for tree resolution can be reduced to that of finding
graphs that require large deletion trees. The next re-
sult is due in its essentials to Tseitin [25].

Theorem 5.2 Tree resolution cannot p-simulate the
Davis- Putnam procedure.

By considering a different sequence of graphs, we
can find a family of clauses for which the smallest reso-
lution refutations are exponentially big. The basic idea
of the lower bound proof given below, from Urquhart
(26], is due to Armin Haken [13], who introduced an in-
genious “bottle-neck” counting argument to prove the
corresponding result for the pigeonhole clauses. The
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sequence of graphs G,,, in the next theorem is chosen
in such a way that Clauses(G,,) contains at most 128n
clauses of length 7, where n = m?.

Theorem 5.3 There is a constant ¢ > 1 such that
for sufficiently large m any resolution refutation of
Clauses(Gr,) contains ¢ distinct clauses.

Chvétal and Szemerédi, in a far reaching general-
ization of the preceding theorem, proved a lower bound
for sets of randomly chosen clauses, by showing that
sets of random clauses satisfy appropriately generalized
forms of these properties. Define the random family of
m clauses of length k over n variables to consist of a
random sample of size m chosen with replacement from
the set of all clauses of length & with variables chosen
from a set of n variables. Chvétal and Szemerédi (2]
prove the following result.

Theorem 5.4 For every choice of positive integers
n,c, k such that k > 3 and 2=k > 0.7, there is a posi-
tive number € such that, with probability tending to one
as n tends to infinity, the random family of cn clauses
of size k over n variables is unsatisfiable and its reso-
lution complerity is at least (14 €)™.

6 Cut-free Gentzen systems

Cut-free Gentzen systems have proved popular in work
on automated deduction, since they allow simple search
strategies in constructing derivations. In the present
section. we consider a sequent calculus G based on the
biconditional as the only connective. A sequent has the
form T+ A, where T and A are sequences of formulas.
The axioms of G are sequents of the form A+ A. The
rules of inference of G are as follows:

I'.A,B.ThLFA AL A B, Ay '
.B,AT2FA TFALB.AA, (Permutation)
AATEFA F'FAAA _
ATFA TFA A (Contraction)
r=A o
FOrAz (Thinning)
LA BFA T+HAAB (=h)
T,(A=B)F A =
LA-AB TBEAA
I'A.(A=B) =

An alternative formulation of G is possible in which
the axioms are sequents of the form I'; A F A, A. and
the thinning rule is omitted. We denote this alterna-
tive formulation by G’. It is the version adopted by
Smullyan [23, pp. 105-106}, and is usually employed in
automatic theorem provers; the system of Wang [31] is



of this type. The Leningrad group headed by Shanin in
their work on computer search for natural logical proofs
[21] used a formulation of the second type for the proof
search, but then transformed the resulting derivations
into simplified derivations in a system of the first type
by a pruning procedure.

It is natural to use a system of the second type in
a computer search. because if the usual ‘bottom-up’
search procedure is employed, the thinning rule can
(when employed in reverse) result in potentially use-
ful information being discarded. However, as we show
below, the two formulations are quite distinct from the
point of view of worst case complexity. There are cer-
tain sequents for which short proofs can be found only
by employing the thinning rule.

Derivations in G have the subformula property, that
is, any formula occurring in the derivation must occur
as a subformula in the conclusion of the derivation. In
fact, an analysis of derivations in G shows that occur-
rences of formulas in the derivation can be identified
with occurrences of formulas in the conclusion. This
can be seen by tracing occurrences of formulas step by
step up the derivation from the conclusion. Thus in an
application of (F=), for example, the displayed occur-
rences of A in the premisses are to be identified with
the displaved occurrence of A in the conclusion of the
inference. Similarly, in an application of Contraction.
both occurrences of the displaved formula A in the pre-
miss are to be identified with the occurrence of A in the
conclusion. This identification of occurrences will be
used subsequently to prove lower bounds for the proof
svstems.

The Cut rule

rAFA TFAA
kA

is not necessaryv for completeness. but in some cases re-
sults in much shorter derivations. The formula A in the
Cut rule is said to be the cut formula. The subformula
property fails for derivations in the system G + Cut
that results by adding the Cut rule to G. However. the
property is preserved if we restrict the Cut rule appro-
priately. We shall say that a derivation of a sequent
['F A is a derivation in G with the analytic Cut rule if
the derivation belongs to G + Cut. and all cut formulas
are subformulas of formulas in the conclusion I' - A.
We shall now prove some results from [28] that set-
tle the relative complexity of resolution and cut-free
Gentzen systems. at least for the case of tautologies in-
volving the biconditional. As in the case of tree resolu-
tion, we define the complexity of a derivation in Gr;ce

(Cut)

to be the number of leaves in the derivation (that is.
the number of occurrences of axioms). The simulation
in the following theorem is due to Tseitin [25].

Theorem 6.1 The system Res(=)rree p-simulates
GTree-

We now define the sequence of biconditional tau-
tologies that form the basis of the lower bounds in this

-section. For any n > 0, let U,, be the formula

P,=P, 1,=...=P=P,=P,_1=...=P,

where we are omitting parentheses according to the
convention of association to the right; for example,
A = B = (C abbreviates (A = (B = C)). All the
variables in U, occur exactly twice. so that U, is a tau-
tology. To distinguish between two occurrences of the
same variable Pj. we shall write the first occurrence as
Pj}. the second occurrence as PZ. The subformula of
U, beginning with the subformula occurrence P} will
be denoted by U}. Thus U contains k occurrences of
variables. while U}! contains n + k occurrences: in par-
ticular, U,ll =U,.

IfT F A is a sequent. we use the term O-assignment
to refer to an assignment of truth-values {0,1} to the
occurrences of the variables in I' - A. An O-assignment
is extended to all the occurrences of subformulas in the
sequent by the usual truth table method. The entire
sequent takes the value 0 under an O-assignment if all
occurrences of formulas in I' take the value 1. and all
the occurrences of formulas in A the value 0. It is essen-
tial to the notion of O-assignment that distinct truth
values can be assigned to different occurrences of the
same variable. In particular, by choosing an appropri-
ate O-assignment. it is possible to falsify a tautological
sequent. If D is a cut-free derivation of a sequent ' - A,
then any O-assignment for I' - A can be extended to all
the sequents in D: this is possible because of the iden-
tification noted earlier between occurrences of formulas
in the conclusion and occurrences of formulas in D. A
given occurrence of a subformula in the conclusion can
correspond to multiple occurrences in a sequent car-
lier in the derivation: the form of the rules, however.
guarantees that all of these occurrences have the same
value as the occurrence in the conclusion. The notion of
O-assignment was used earlier in a somewhat different
form in [27] to prove an exponential lower bound for
cut-free Gentzen systems. An exponential lower bound
for the tree version of a cut-free Gentzen system was
proved earlier by Statman [24].
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Figure 3: The labeled graph G5

The formula U,, has 22* O-assignments associated
with it. We are interested only in certain of these. We
shall call an O-assignment to U,, critical if there is ex-
actly one variable in U, whose occurrences in U, are
assigned different values. If this variable is Py, then we
say that the O-assignment in question is k-critical. All
critical O-assignments falsify the formula Uy,; a criti-
cal O-assignment is uniquely determined by k, and the
values the O-assignment gives to the occurrences P!,
for 1 < i < n. so that there are n - 2™ distinct crit-
ical O-assignments for the sequent U,. It is possible
to show that distinct O-assignments correspond to dis-
tinct branches in a proof of U,, in the system Gpree;
this gives us the next theorem.

Theorem 6.2 The minimal complezity of a derivation
of U,, in the system Grree is n-2".

We now show that there are relatively short proofs
of U, in the resolution system. To describe the proofs,
it is useful to give a graphical representation of these
tautologies. The sets of clauses derived from the se-
quence of formulas U,, will be represented in the form
Clauses(G,,), for a sequence of graphs G,.

The graph G, associated with the formula U, is
a planar graph that we describe by giving the co-
ordinates of its nodes. G, has as its nodes the set of
points {(7,1) : 0 <i < n}uU{(3,0): 1 < i <n-—1}. The
following nodes are joined in Gp,: (i,1) to (i+1,1), (.0)
to both (4,1) and (i+1.0), (n, 1) to both (n —1,0) and
(1.0). The graph may be described as a ladder with
a few extra attachments. The labels attached to G,
are as follows. The vertical lines, and the line joining
(n.1) to (n — 1,0) are labeled with the variables P, to
P, from left to right. The horizontal lines joining the
points with y co-ordinate 1 are labeled with the vari-
ables Q) to @} from left to right: the horizontal lines
joining points with y co-ordinate 0 are labeled with the
variables Q2 | to Q3 from left to right. The line join-
ing (n,1) to (1.0) is labeled with the variable Q%. The

16 / Intelligence Artificielle au Canada automne 1998

node (0, 1) is labeled with 0; all other nodes are labeled
1. The accompanying figure shows the labeled graph
corresponding to Us. A node is shown filled in only if
it is labeled with 0.

The set of clauses Def(Uy,) U {~QL}, where the
variable Q% is correlated with the subformula Uf, is
identical with Clauses(G,). The graphs G, are similar
to examples used by Galil ([10, Fig. 3.2.4]) to show
that the Davis-Putnam procedure is very sensitive to
the order of elimination adopted in forming resolvents;
with one order of elimination. ladder-like graphs result
in exponential-size refutations, while a different order
gives rise to linear-size refutations.

Theorem 6.3 The tautologies U,
Res(=)7ree of complezity O(n?).

have proofs in

Corollary 6.1 The system Grree cannot p-simulate
Res(=)rree-

In contrast to the foregoing results, if derivations
are presented in linear form. then resolution and cut-
free Gentzen systems are equally powerful systems (up
to a polvnomial) when pure biconditional tautologies
are considered.

Theorem 6.4 Each of the following systems can p-
simulate any of the others: G. G + analytic Cut,
Res(=).

This somewhat unexpected simulation result de-
pends on the special features of the inference rules for
= in G. It extends easily to include negation, but does
not appear to extend to conjunction and disjunction,
Whether the simulation result holds when the cut-free
Gentzen system includes these connectives is open.

We now sketch a result mentioned earlier, that the
addition of the Thinning rule results in an exponential
shortening of derivations in some cases.



Theorem 6.5 A derivation of U, in the system G’
must contain at least n.2"™ distinct sequents.

Techniques similar to those used in the lower bound
for resolution can be used to proved exponential lower
bounds for cut-free Gentzen systems. The following re-
sult is proved in Urquhart [27].

Theorem 6.6 There is a sequence F,, of biconditional
tautologies, where each formula has length O(n?), but
the shortest proof of F, in G contains at least 2™/16
distinct sequents.

This result can be improved to a lower bound exponen-
tial in the size of a family of biconditional tautologies
based on expander graphs by adapting the proof of The-
orem 5.3.

We conclude this section with the observation that
a cut-free Gentzen system for a given set of connec-
tives and the corresponding analytic tableau system are
p-equivalent. This can be seen most easily by using
the form of Gentzen system where the thinning rule is
omitted. Then (as Dowd [9] first observed) there is a
straightforward and efficient translation procedure be-
tween the two systems; the details are to be found in
Smullyan’s book [23, Ch. XI|. The proof of equivalence
is completed by showing that (in contrast to the case
where proofs are represented as sequences) the system
without thinning can simulate the system with the thin-
ning rule in an efficient way.

7 Acknowledgments

The author wishes to thank Paul Beame, Andreas
Blass, Samuel R. Buss. Stephen A. Cook. Jan Krajicek.
Toniann Pitassi. Richard Shore, Charles Silver and the
referee for helpful comments. and for pointing out er-
rors and omissions in earlier versions of this survey.

References

[1] Samuel R. Buss. Bounded Arithmetic. Bibliopolis.
Naples. 1986.

[2] Vasek Chvital and Endre Szemerédi. Manyv hard
examples for resolution. Journal of the Association
for Computing Machinery, 35:759-768, 1988.

[3] Stephen A. Cook. An exponential example for an-
alytic tableaux. Manuscript. 1973.

(4] Stephen A. Cook and Robert A. Reckhow. On the
lengths of proofs in the propositional calculus. In
Proceedings of the Sizth Annual ACM Symposium
on the Theory of Computing, 1974. See also cor-
rections for above in SIGACT News, Vol. 6 (1974),
pp. 15-22.

[5]

(6]

[7]

(8)

(9]

[10)

[11]

[12)

(13]

(4]

16|

[17]

(18]

Stephen A. Cook and Robert A. Reckhow. The
relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36-50. 1979.

Marcello D’Agostino. Are tableaux an improve-
ment on truth-tables? Journal of Logic, Language
and Information, 1:235-252, 1992.

Martin Davis, G. Logemann. and D. Loveland. A
machine program for theorem proving. Communi-
cations of the Association for Computing Machin-
ery, 5:394-397, 1962. Reprinted in [22], Vol. 1, pp.
267-270.

Martin Davis and Hilary Putham. A computing
procedure for quantification theory. Journal of the
Association for Computing Machinery, 7:201-215.
1960. Reprinted in [22], Vol. 1, pp. 125-139.

Martin Dowd. Model-theoretic aspects of P #
NP. Unpublished MS, 1985.

Zvi Galil. On the complexity of regular resolu-
tion and the Davis-Putnam procedure. Theoretical
Computer Science, 4:23-46. 1977.

Michael R. Garey and David S. Johnson. Comput-
ers and Intractability. A Guide to the Theory of
NP-completeness. W.H. Freeman. 1979.

Andreas Goerdt. Comparing the complexity of reg-
ular and unrestricted resolution. In Proceedings
of the 14th German Workshop on A.I Informatik
Fachberichte 251, 1990.

Armin Haken. The intractability of resolution.
Theoretical Computer Science. 39:297-308, 1985.

John E. Hopcroft and Jeffrey D. Ullman. Introduc-
tion to Automate Theory, Languages and Compu-
tation. Addison-Wesley. 1979.

R. Kowalski and P. J. Haves. Semantic trees in au-
tomatic theorem-proving. In Meltzer and Michie.
editors. Machine Intelligence Vol. 4. pages 87-101.
Edinburgh U. Press, Edinburgh. 1969.

Jan Krajicek. Bounded Arithmetic, Propositional
Logic and Complexity Theory. Cambridge Univer-
sity Press. 1996.

Neil V. Murray and Erik Rosenthal. On the com-
putational intractability of analytic tableau meth-
ods. Bulletin of the IGPL. Volume 2. Number
2:205-228. September 1994.

Christos H. Papadimitriou. Computational Com-
plezity. Addison-Wesley, 1994.

Canadian Artificial Intelligence Autumn 1998/ 17



[19]

[20]

[21]

[22]

23]

[24]

Robert Reckhow. On the lengths of proofs in the
propositional calculus. PhD thesis, University of
Toronto, 1976.

J. A. Robinson. The generalized resolution prin-
ciple. In Dale and Michie, editors, Machine In-
telligence, Vol. 3, pages 77-94. American Elsevier,
New York, 1968. Reprinted in [22], Vol. 2, pp.
135-151.

N.A. Shanin, G.V. Davydov, S. Y. Maslov. G.E.
Mints, V.P. Orevkov, and A.O. Slisenko. An al-
gorithm for a machine search of a natural logical
deduction in a propositional calculus. Izdat. Nauka,
Moscow, 1965. Reprinted in [22].

Jorg Siekmann and Graham Wrightson, editors.
Automation of Reasoning. Springer-Verlag, New
York, 1983.

Raymond M. Smullyan. First-order Logic.
Springer-Verlag, New York, 1968. Reprinted by
Dover, New York, 1995.

Richard Statman. Bounds for proof-search and
speed-up in the predicate calculus. Annals of
mathematical logic, 15:225-287, 1978.

G.S. Tseitin. On the complexity of derivation in
propositional calculus. In A. O. Slisenko. editor,

[26)

(27]

(28]

29]

(30]

31}

Studies in Constructive Mathematics and Mathe-
matical Logic, Part 2, pages 115-125. Consultants
Bureau, New York, 1970. Reprinted in [22], Vol.
2, pp. 466-483.

Alasdair Urquhart. Hard examples for resolution.
Journal of the Association for Computing Machin-
ery, 34:209-219, 1987.

Alasdair Urquhart. The complexity of Gentzen
systems for propositional logic. Theoretical Com-
puter Science, 66:87-97, 1989.

Alasdair Urquhart. The relative complexity of res-
olution and cut-free Gentzen systems. Annals of
mathematics and artificial intelligence, 6:157-168,
1992.

Alasdair Urquhart. The complexity of proposi-
tional proofs. The Bulletin of Symbolic Logic.
1:425-467, 1995.

André Vellino. The relative complexity of sl-
resolution and analytic tableau. Studia Logica,
52:323-337, 1993.

Hao Wang. Towards mechanical mathematics.
IBM Journal for Research and Development, 4:2
22, 1960. Reprinted in [22], Vol. 1, pp. 244-264.A

18/ Intelligence Artificielle au Canada automne1998

Alasdair Urquhart (born 1945 Scotland) was educated
at the Universities of Edinburgh (MA, 1967) and
Pittsburgh (Ph.D., 1974). His research interests are in
the areas of non-classical logics. history of logic. and
computational complexity theory. He is an editor of the
series Lecture Notes in Logic (Springer) and Trends in
Logic (Kluwer), and has served as a member of the
Council of the Association for Symbolic Logic.



Non-Monotonic Logic is Impossible

Résumé

Il arrive quelquefois que l'on tire une conclusion d'un
ensemble de prémisses, et qu'on la rejette plus tard a la suite
d'information additionnelle. C'est ce que l'on appelle la
logique non-monotone, et la plus grande partie de notre
raisonnement de sens commun semble étre de ce type. A
I'opposé, les systemes formels développés par les
logiciens classiques sont monotones; si une conclusion
découle légitimement d'un ensemble de prémisses, la
méme conclusion découlera légitimement de ces
prémisses, quelles que soient les autres prémisses qu'on
leur a ajoutées. Beaucoup d'efforts de recherche ont été
consacrés a tenter de formuler la logique non-monotone.
Nous présentons dans cet article une preuve formelle
que la logique non-monotone est impossible. Nous
discutons ensuite quelques conséquences de cette preuve
pour la recherche dans ce domaine.

Abstract

Sometimes we draw a conclusion from a set of premises,
but when we subsequently get additional information we
reject that conclusion. Arguments such that it is possible we
may reject the conclusion when given additional premises
are said to be non-monotonic. Much of our common sense
reasoning seems to be of this sort. By contrast, formal
systems developed by classical logicians are monotonic;
that is. if a conclusion follows legitimately from a set of
premises, then the same conclusion legitimately follows
from those premises augmented with any other premises at
all. Much research has been devoted to attempts to formulate
non-monotonic logics. After some motivational material,
we give a formal proof that non-monotonic logic is
impossible. We then discuss some consequences for research
in this area.

Iintroduction

Most of our ordinary, commonsense reasoning about
_everyday matters is tentative at best, our conclusions being
subject to revision in the light of new information. It will be
instructive to consider a slightly revised version of a now
classic example.

Tilly is an animal.
So Tilly cannot fly.
But Tilly is a bird.
So Tilly can fly.
Tilly is a penguin.
So Tilly cannot fly.

FPrEr@>

Charles Morgan

In this sequence, B’s conclusion concerning the ability of
Tilly to fly flips back and forth as A supplies more specific
information about Tilly. Sometimes the very names of
individuals give hints about their properties that can influence
the conclusions we draw. Using “Tweety” instead of “Tilly™
would make us more likely to attribute flying ability on the
basis of knowing only animality, while using “Rover” would
make us less likely to make such an attribution. Simply put,
“Tweety” is a name we typically associate with a small
(usually cartoon character) bird which can fly, while “Rover”
is a name we typically associate with some large (usually
fictional) dog which cannot fly.

At least part of the goal of artificial intelligence (AI)
research is to design systems that can reason in much the
same way that humans do. Historically speaking, one of the
primary tools of Al research has been formal logic. But
formal logics of the sort usually encountered do not seem
well suited to the analysis of commonsense reasoning of the
kind illustrated by our example. In the phraseology common
in the literature, the usual formal logics are “monotonic™.
Let us use the notation 't A to indicate that using the
resources of logic L (classical, many-valued, modal.
whatever), sentence A may be legitimately inferred from the
set of assumptions [' . To say that logic L is monotonic
means that: if I't A, then I" U Ar A, for all assumption sets
A. In ordinary parlance, if it is legitimate to conclude A
from the assumptions in ", then no additional assumptions
added to I' can make it illegitimate to conclude A.

Ordinary reasoning seems to be undeniably non-
monotonic in character. There is nothing peculiar about the
example with which we began. Such examples may be
enumerated ad infinitum from virtually every area of our
lives. We constantly revise our conclusions in light of
additional information. Indeed, in most contexts one who
refuses to revise beliefs in the light of new information can
justly be charged with being irrational. If our usual formal
logics cannot capture this non-monotonic aspect of our
reasoning, then it seems obvious that we need to develop a
new logic that can, i.e., we need a non-monotonic logic. In
recent years a great deal of research in Al has been devoted
to the task of developing non-monotonic logics.

As reasonable a task as it may seem in light of our
discussion, the attempt to develop a non-monotonic logic is
fundamentally misguided. To put it bluntly, non-monotonic
logic is impossible. In the following sections, we will give
an intuitive motivation for a simple formal framework, and
then within that framework we will give a simple proof of
this rather shocking sounding claim; finally we will use the
proof to draw some instructive lessons.
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Intuitive Motivation

Much of the activity of biological organisms revolves
around three important goals: (1) energy acquisition, (2)
reproduction, and (3) death avoidance. For simple
organisms, like a paramecium, food is plentiful and
randomly distributed, enemies are randomly distributed,
and reproductive activities are randomly distributed. In
such cases, a purely random strategy requiring virtually no
computation is very effective. More complicated organisms
are able to exploit more complex environments in which
food is scarce and not randomly distributed, enemies are
often plentiful and not randomly distributed, and
reproductive opportunities are rare and not randomly
distributed. In order to be able to survive and thrive in a
highly non-random environment, an organism must develop
strategies for anticipating important aspects of that
environment.

In order to be useful, predictive abilities must satisfy a
number or criteria. First, predictions must be made
sufficiently in advance of an event to allow the organism to
act on the prediction. For example, if the predictions of a
predator concerning the location of its prey take so long to
make that the prey has left the predicted location, then the
predator is going to get very hungry. Second. predictions
must concern matters for which the organism possesses a
behavioral repertoire. For example, it will do a lion no
good at all to recognize that if it could fly then it would be
better able to locate its prey. Thirdly, the time and energy
costs of the prediction must not on average exceed the
utility of the prediction. Predictions do not have to be
correct or lead to success every single time. When rushing
its prey, if a lion consistently badly misjudges the path that
it and the prey will take, then it will be unsuccessful in
killing the prey, and will simply use up more energy. On
the other hand, the lion need not be accurate to within an
angstrom; even if the lion’s lunge is out by a few centimetres,
it will still be successtul.

As the number of behavioral strategies and the predictive
capacity of an organism increase, the greater the diversity
of environments it can exploit. But an increase in behavioral
and predictive capacity yields an increase in the logical
state space complexity, and hence the physical
computational machinery must be more complex. However.
the more complex the computational machinery, the greater
are its energy requirements. Devices which can store
information in the environment and systematically recover
that information as needed will in general have an advantage
over devices not so endowed, for at least two reasons: first,
such devices will require fewer internal states for memory:
and second, such devices often have superior computational
ability. For example, we may think of a Turing machine as
just a finite state machine “‘brain” in control of a read/write
head, storing information in and recovering information
from its environment. There are many functions that are
Turing computable but not tinite state machine computable.
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But even if we consider just finite input/output sequences,
it will often be possible to design a smaller Turing machine
to carry out the required computations than to devise a
massive finite state machine implementing the look-up table.

So, it follows that organisms with the ability to exploit
very diverse environments need computationally efficient
languages that can be used to model the environment and to
predict future events. In general, time and energy efficiency
prohibit totally accurate models and totally accurate
predictions. The important conclusion of these rather
mundane observations is just this: the human use of natural
languages is based, at least in part, on their utility for
modelling and predicting aspects of the environment under
conditions of uncertainty.

Formal Preliminaries

Part of the task of logic is to identify the logical
components of natural languages and clearly distinguish
them from the non-logical components. Logicians then
attempt to construct formal languages reflecting the essential
logical components: they then use such constructs to
formulate inferential regularities. There is often much debate
about these logical components and how they operate, and
such debates lead to the formulation of alternative logics,
intuitionism and the many flavours of modal logic being
just a few examples.

We do not wish to beg any important logical questions
here, so we will not concentrate on any particular formal
language or class ot such languages. In order to be completely
general, we simply assume that our formal language consists
of some non-empty set of sentences:

o[)= {El, Ez, ...}

We use the language to model our world and to make
inferences about it. Our model of the world, our set of
beliefs about the world, changes from time to time; but it is
not the evolution of belief that is of interest at the moment.
An instantaneous snapshot of our beliefs constitutes a model
under uncertainty of the world. What are the properties of
such a belief structure?

Perhaps the most rigorous theory of belief structures
expressed in formal languages is classical probability theory.
But there are many questionable aspects of probability theory.
For example, it is unreasonable to expect real people to be
able to linearly order all possible beliefs, much less be able
to assign precise numerical values to them. Further, the
principles of classical probability are generally expressed in
terms of the connectives of classical logic, e.g., conjunction,
disjunction, and negation. What are we to say about languages
which are lacking these specific logical particles or have
others?

Again, to avoid begging any important questions, we will
make minimal assumptions about belief structures. We will
not assume any particular set of “belief values.” We will not



assume beliefs can be linearly ordered, nor even that all
beliefs are comparable. We will only assume that a belief
structure is some quasi-ordering relation on sets of sentences
of the language. Formally, we define a simple belief
structure to be a binary relation LE, relating sets of
sentences, that is both reflexive and transitive:

B.0 Field definition: LE < PL0) x P(L)
B.1 Reflexivity: TLE T
B.2 Transitivity: TLE I"and I"LE " => I'LE I

Intuitively, we think of a set of sentences as a theory
about the world in the ordinary sense; which is to say that
sets are treated in a conjunctive way. For example, we think
of the set {A, B} as asserting both that A and that B.
However, we do not assume that there is any conjunctive
connective in the formal language, and we allow sets to be
infinitely big. We may think of a simple belief structure as
representing something like “degrees of belief” in various
sets of sentences. “I am at least as sure of this as I am of
that.”” So a simple belief structure can be thought of as a
very general model of the world under uncertainty.

Our intuitive characterization of belief structures leads to
another constraint in addition to reflexivity and transitivity.
We call the constraint the “subset principle”, and simply
put, it says that it I makes no more claims about the universe
than A, then T is at least as likely as A. The principle is
expressed formally as follows:

B.3 Subset principle: If 'c A,thenALET.

This principle is easily justified on relative frequency
grounds. If we regard a set of sentences as a theory about the
universe, then each set of sentences will be compatible with
some possible universes (universe designs, if you prefer)
and incompatible with others. If theory I is a subset of
theory A, then the set of alternative universes (universe
designs) compatible with I" will be a superset of those
compatible with A.

We now turn our attention to the notion of logic. As
observed earlier, one of the roles of logic is to formulate
inferential regularities. For example, in standard classical
logic, we are told that from A > B and A, it is legitimate to
conclude B (where “2™ is the usual material conditional).
So in terms of belief structures, classical logic would tell us
that all belief structures must satisfy the following:

{A DB, A} LE {B}

Again, we do not wish to prejudge any issues concerning
the nature of permissable logics. We will adopt the very
general view that a logic is any prescription for what is
to count as a rational belief structure. From this point of

view, a logic L is just any set of belief structures:
L ={LE{, LE,, ..}

Different logics will pick out different belief structures. For
example, classical logic will correspond to a different set of
belief structures than intuitionistic logic. From the point of
view of any particular logic L, all and only those belief
structures in L are rational.

Finally, we turn our attention to the notion of logical
entailment. Logical entailment is a relation between a set of
premises and a conclusion; we write ['r, X. Typically logical
entailment relations are based on iterated applications of
formalized inference rules, and the inference rules are
formulated in terms of the logical particles of the language.
Once again, we do not wish to beg any important questions
here, so we will make only minimal assumptions about the
entailment relation.

Obviously the entailment relation for different logics will
be different. But once a logic is chosen, the entailment
relation is fixed. Whatever its other characteristics, logical
entailment is not a matter of psychology; logicians are not
attempting to determine psychological associations
individuals may make between sentences. So logical
entailment does not depend on the characteristics of any
single belief structure. Rather, logical entailment under logic
L must be based on some universal properties of all rational
beliet structures permitted by logic L.

This dependence on only universal properties is expressed
by two relationships between the set of rational belief
structures and the entailment relation. These relationships
between the set of rational belief structures and the entailment
relation are usually spoken of as properties of logical
entailment.

The first property is called soundness: If I logically
entails A, then it is always rational to have at least as much
confidence in A as in I'. Briefly we sometimes express this
idea by the claim that logical entailment should not lead us
astray. Formally, we can express the soundness property as
follows:

)] Soundness: If F»—LA, then I" LE { A} for all
rational belief structures LE € L.

The second property is called completeness: If no
matter what our beliet structure, it is always rational to
have at least as much confidence in A as in ?, then ?
logically entails A. Briefly we sometimes express this
idea by saying that we want our entailment relation to be
strong enough to capture any argument which is
sanctioned by every rational belief structure. Formally,
we can express the completeness property as follows:

2) Completeness: If 'LE {A} for all rational belief
structures LE € L, then F"L A.
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In formal terms familiar to most logicians, the entailment
relation corresponds to the formal proof theory of the logic,
while the belief structures correspond to the formal
semantics. But nothing of any import turns on these labels.
What is important is that they are well rooted in our intuitive
understanding of the reasoning process. With this simple
framework, we are now in a position to consider the possibility
of developing a non-monotonic logic.

Non-Monotonic Logic Is impossible

To this point, we have been extremely general. We have
imposed no restrictions on our formal language. It could
contain any logical particles whatever, or perhaps even
none at all. Our characterization of belief structures was
extremely general, requiring neither linear ordering, nor
even pairwise comparability. Our only requirements were
those of quasi-ordering and the most minimal adherence to
relative frequency concerns. We have imposed no restrictions
on the kinds of logic under consideration, nor on the types
of inference rules (if any) that are sanctioned by the logic.
We required only that the logic and rational belief structures
should be related in such a way that (1) logical entailment
should never lead us astray by violating the ordering imposed
by any rational belief structure, and (2) logical entailment
should be strong enough to capture any argument sanctioned
by all rational belief structures. In spite of our generality, it
is now possible to prove that logical entailment is monotonic.

Theorem: Logical entailment is monotonic;
that is: it '+ A, then TUArA.
Proof: LTLA given
2. TLE {A}forallLE€ L 1, soundness
3. TUALE forall LEE L. subset principle
4. TUALE forall LEE L.
5. TUA A

2.3, transivity
4, completeness

What the heck is going on? We do reason non-
monotonically, and it does seem to be rational. We know
(see[5]) that probability theory can be used as a formal
semantics for just about any logic. Further, probability
theory has non-monotonic aspects; we can certainlyhave
Pr(A, I') very high but Pr(A, T W A ) very low. And we think
probability theory is related to rational belief. Surely we
should be able to define an entailment relation that is non-
monotonic by using probability theory.

In brief, the answer is that we cannot. Although individual
conditional probability distributions are non-monotonic in
the way indicated, we can still prove the same theorem
concerning any entailment relation based on universal
properties ot conditional probability distributions. Although
not completely general in all respects, the main thrust of the
proof may be found in [6].

So, non-monotonic “algebras™ cannot correspond to
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logical entailment based on rational belief. No matter how
you formulate it, if logical entailment is to correspond to
universal principles of rational belief, then logical
entailment is monotonic. In brief, non-monotonic logic
is impossible.

There is a very large and growing literature on the topic
of non-monotonic logic, and much research is concentrated
on the development of non-monotonic inference systems.
We cannot possibly review that literature here. However,
the interested reader will find [1] and [9] to be good starting
points for summaries and references to the main streams in
the literature. In light of the impossibility theorem, much of
the research seems to be misguided. We will now try to
extract a few lessons from the theorem in order to shed
some light on various trends in the field, but we will avoid
commenting on particular research programs.

Some Important Lessons

There are a number of important lessons to be drawn
from our impossibility theorem. Perhaps the first lesson is
that we cannot account for non-monotonic inference by
simply introducing new connectives into the language and
formulating new formal rules concerning those connectives.
The proof of the impossibility theorem does not in any way
depend on the connectives in the language nor on the sort of
inference rules used. Thus non-classical logics incorporating
new conditionals or modal operators are just as subject to
the theorem as classical logic. There may be other reasons
to look at variations on, or deviations from, the formal
structures of classical logic (e.g., the introduction of epistemic
operators), but changes in formal logic cannot be justified
by claims that the resulting system yields an entailment
relation that is non-monotonic. Any such system must fail
to accord with rational belief, or it must have a monotonic
entailment relation.

The second lesson is that we must distinguish between
non-monotonic inference and non-monotonic logic. Because
the term “‘logic™ is used in such a loose way, it is easy to slip
from an informal use to a more formal use, without being
explicitly aware of the shitt.

For example, in a very loose sense, we use “logical’” to
mean “reasonable.” So to ask for the logic behind someone’s
action is to ask for information that would make that action
appear rational to us; we want to see that given another’s
motivations and beliefs, we might do the same thing. In this
sense, there certainly is a logic to most cases of non-
monotonic inference; we can see that in some circumstances,
when given more information, changing your conclusion is
rational. However, we should not conclude from this trivial
observation that there is some formal system, with different
inference rules and/or connectives from standard logic, that
must be used to account for such inferences. For purposes of
illustration, we will brietly describe two approaches to non-
monotonic inference systems that can be developed using
just the principles of classical logic.



In many cases, non-monotonic reasoning is based on
simple statistical information derived from past experience.
Our first system is based on the calculation of conditional
probability by means of relative frequency based on past
experience. It then relies on the rule that if Pr(A, I') > .5 then
it is reasonable, given I, to act as if A is the case.

Much of so-called common sense reasoning is concerned
with predicting simple, classificatory properties of specific
individual items, such as humans, cars, or chairs. In general,
we use our past experiences of such items as a guide to our
expectations concerning the item in question. This process
is relatively easy to model with standard conditional
probability theory, using the approach pioneered by Carnap
in [2]. Suppose our language contains individual constants,
predicates of arbitrary degree (monadic, dyadic, etc.), and
the standard connectives from classical logic, but no
quantifiers. Since our experience is finite, we assume we
have a finite set of background information ¥, about only a
finite number of individuals:

I= {al,a2, an}

Suppose we are given information I'(b) about some new
individual b, and we want to know whether or not to conclude
E(b). The set I'(b) contains sentences from the language
concemning b and perhaps any of the other individuals in L
The sentence E(b) can be any complex sentence concerning
b and perhaps also members of I. For the purposes of the
inference, we may adopt the “‘closed world™ hypothesis, and
act as if the only items in the universe are those in I. We
restrict our attention to those items X in I for which I'(x) is
true. as determined by Y. . If there are no such items or it 50%
or fewer have E(x), then we cannot draw the conclusion. If
more than 50% of such items have E(x), then we conclude
E(b).

This simple scheme has some similarity to circumscription,
and is applicable to many of the problems for which
circumscription was designed. However, this scheme is
finitary, easy to implement, and computationally tractable.
It does not require any new logic and accords well with how
people actually reason in such cases; in fact, it is a general
version of reasoning by analogy. It is obviously non-
monotonic, since Pr(E(x), ['(x)) may be greater or less than
- Pr(E(x), I'x) ¢ U A(x)); and as we gain more experience, i.e.,
as the sets X and I grow, the probability distribution Pr
itself may change. Without going into great detail, it is easy
to see how our earlier example about Tilly, animals, birds,
penguins, and tlying could be handled with this technique.
If in our past experience, most animals do not tly, most birds
do fly, and most penguins do not fly, then our simple
scheme will draw the right conclusions each time.

There is a very obvious lesson which this technique serves
nicely to illustrate. The lesson is the importance of the
concept of ““acting as if””. No one seriously assumes that they
have had experience with every object in the universe, and

it would be pernicious to suggest that the closed world
assumption commits one to that view. Rather, we act as if
that assumption were correct, even though we know it is not.
Scientific practice is full of such artificial abstractions, such
as the ideal gas laws. The point is that when we must *“‘get
around” in the world, we frequently act as if A is true, even
when we know it isn’t. In conditions of uncertainty, adopting
hypotheses and making inferences are more akin to “acting
as if”’ rather than “asserting the truth of”". Nor is “acting as if™
simply a matter of high probability. No one claims that A
must be true just because it has a high probability. Indeed, it
may well be that in some instances we would be irrational to
act as if A is the case, even when A does have high
probability; for instance, if there are terrible consequences
of acting on A when it is false, then we should be very
cautious. In short, utilities as well as probabilities must be
brought to bear. Such subtleties are beyond the scope of this
discussion.

There are some obvious difficulties with the technique.
As sketched, it does not really specify how one is to handle
counter-factuals, i.e., situations in which TI'(x) contradicts
2. Nor does it specify how to deal with “missing information™,
i.e., cases in which neither P nor - P is in ¥, but the value of
P is needed for the computation. But these are minor technical
problems which we cannot discuss here because of space
limitations. A more fundamental difficulty is that the scheme
is limited to rather simple languages; there are a great many
examples which essentially involve quantifiers. One solution
is to emphasize the closed world assumption, and assume all
quantifiers range over just the individuals mentioned in ¥.
This approach works for a great many cases, but not all. For
example, Y, may in fact commit us to an infinite universe, so
all finite expansions will be inconsistent. Again, space
limitations prohibit a detailed consideration of such matters.
(I do not wish to suggest that this approach is the only way
of utilizing probability in a non-monotonic inferencing
system; for a very good alternative, see [3].)

The astute reader may at this point suggest that we just
develop a formal language in which we incorporate a special
conditional corresponding to the conditional of conditional
probability theory. Brietly put, it is impossible to do so. It is
demonstrable that any such conditional fails to be monotonic
or violates principles of classical probability, or both. See
[4] and [8].

We now turn to our second proposal for a non-monotonic
inference system. A little bit of empirical research in the
psychology of human reasoning (indeed, a little bit of self-
reflection) suggests that we often adopt unstated background
assumptions to fill in gaps in our knowledge. These “default”™
assumptions are abandoned or changed in light of new
information, and such changes in the “default” assumptions
lead to changes in the conclusions we draw. Non-monotonic
inferences are often the result of alterations in our background
beliefs: “Gee, I guess I was mistaken about that...” In many
cases, the background beliefs under which we are operating
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are not explicitly stated, and frequently they are not even
consciously entertained. Default logic is an area of very
active research in AL

The fact that humans do reason this way is an empirical,
rather than a logical fact. Which default assumptions people
actually adopt in various situations is a matter for empirical,
rather than logical, investigation. Abstract logical and
mathematical research alone will not yield systems that
reflect human reasoning in a majority of real situations.
How do we get those background beliefs? How are they
revised? These are very good questions concerning belief
acquisition and revision, but these questions do not have an
immediate impact on formal logic. They certainly will have
an impact on inference construed as a human activity and on
our attempts to use computers to model that activity.

As a human activity or process, non-monotonic inferences
based on defaults occur with classical logic and classical
connectives all the time. Classical logic does not represent
the evolution of background assumptions. At best it represents
a static, snapshot-like, relation between premises and
conclusions. Making inferences and drawing conclusions
are human activities. Reasoning in a non-monotonic way
does not necessarily require a formal logic that differs from
classical principles. When we change our background beliefs,
the justified conclusions are likely to change, and this fact is
independent of the formal logic.

Once again, no new logic is required in order for us to
construct models of default reasoning. Indeed, there are
simple models of such processes for virtually any monotonic
logic. One such technique is derived from that used to
construct so-called canonical probability distributions in
[7], and we will briefly outline the process here.

As before, we will use 1. to represent an arbitrary logical
entailment relation. We will say that a set I is L-consistent
(consistent with respect to logic L) it and only if there is at
least one sentence A such that it is not the case that I' A.
Now, let us assume to be given some (preference) ordered set
of sentences (potential background assumptions):

S={HI,H2,...]

We will use the notation A = > S E as shorthand for the
English claim: It is rational to infer E from A, given logic L
and the ordered set S of potential background assumption.
First, we will use the specified premise set A and the ordered
hypothesis set S to determine an expanded premise set
AL,S' We make the following definitions:

A = A

0
Aj+ 1 = AjU{H;+ 1},if AjU{H;+1}
is L-consistent = A;, otherwise

AL,S = U4
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A=>p gEifandonlyif A s E

The set AL,S is just A augmented by the largest number
of auxiliary hypotheses, considered in the specified
order, that can be consistently added. Carefully note that
there is no requirement that S itself be consistent. Even if
S is inconsistent taken as a whole, individual members of
S may well be consistent with A . Of course if A is not
consistent, then A S will just be A .

So, the definition says that it is legitimate to infer E
from A just in case E is logically entailed by A augmented
by hypotheses that may be consistently added, in order,
from the set S of potential background assumption. The
relation “= >y ¢” will be non-monotonic, since A VA’
may very well produce a very different augmented premise
set than that produced by A alone.

As a simple example, we return to the one from the
introduction concerning animals, birds, penguins, and flying.
First, we specify the ordered set of potential background
assumptions, using the obvious notation:

S = {(xX)(Px A Bx A Ax) D ~ Fx), (X)((BxAAXx) € Fx), (x)(Ax
o ~Fx)}

Note that in our example, the hypotheses are simple universal
conditionals, and they are ordered by the decreasing
specificity of the antecedents.

{At}LS ={At]US

{At, Bt}L s= {At, Bt} U {(x)((Px A Bx A AX) D~ Fx),
(X)((Bx A AX) D ~Fx)}

{At,Bt,Pt)] ¢ = {At. Bt, Pt} U {(x)((Px A Bx A Ax)
> ~Fx)} ’

When told only that Tilly is an animal, we conclude that
Tilly cannot fly. When told in addition that Tilly is a bird.
we revise our conclusion and say that Tilly can fly. And
finally when it is turther revealed that Tilly is a penguin, we
conclude that Tilly cannot fly.

Many researchers feel uncomfortable with any analysis
which employs notions of consistency and inconsistency,
since consistency is undecidable for first-order logic. There
are a number of things to say in response to such a criticism.
First note that the entailment relation for first-order logic is
undecidable, but we still want to employ it in our models of
reasoning. Further, most humans have great difficulty
reasoning with full first-order logic. In addition, there are
many well-known cases for which the decision problem is
solvable; for example, the logic of monadic predicates is
decidable. So if we only want to model human reasoning, it
is probably sutficient to rely on notions of consistency and
entailment relative to some resource limited computational
process.



We have briefly examined two quite general examples of
how non-monotonic inference systems may be based on
standard monotonic logic. Although the two systems are
very different, we have shown how both of these systems
may be used to handle the same sequence of simple
inferences about Tilly. So an additional lesson is that there
may be many non-equivalent inferential systems which
would handle any given set of examples. In short, even if
we could settle on one standard monotonic logic, it may be
the case that there is no single “correct” non-monotonic
system. The situation is analogous to what we find in
automated theorem proving. There are many ATP systems
for first-order logic. For certain kinds of problems, one
approach works well, whereas for other problems, a different
approach is needed.

There is one more lesson we should draw from these
inference systems, and that concerns empirical content.
One might suppose that each of these systems determines
some sort of relationship between premise sets and
conclusions that we might be tempted to think of as a non-
monotonic entailment relation. How is it that these examples
avoid the impossibility proof? The answer is that these
systems abandon the soundness principle. The violation of
soundness is easy to see when considering conditional
probability. Essentially, we want to conclude A from I
when Pr(A, I') > .5. For a particular probability distribution,
we may well have Pr(A, T > .5, but at the same time in many
cases there will be other distributions such that Pr’(A,
') < .5. Further just because Pr(A, I') > .5, it does not follow
that Pr( ') < Pr(A), where these latter values are properly
defined on the basis of conditional distributions. Further,
given the proper definitions, Pr( ', ') = |, no matter what
the value of Pr(A, I'). So there is no reasonable way in which
soundness may be construed to be satisfied by the rule:
draw conclusions whose probability, given the premises, is
greater than .5.

The abandonment of soundness by non-monotonic
inference systems emphasizes the fact that non-monotonic
inference is just a fancy name for the process historically
known as induction. In non-monotonic inference, the
“conclusion” goes beyond what is sanctioned by the
premises. Indeed, introductory students are often taught
that if additional premises could be adduced that would
change the degree of support a given set of premises provide
for the conclusion, then the original argument is inductive
in character. That is, non-monotonicity is the mark of
induction.

In formal terms, non-monotonic inferences are model
specific. In other words, in order to know which inferences
are acceptable, we must know details concerning the model.
Thus non-monotonic inference systems inescapably contain
empirical information; they are not content neutral. We
cannot construct non-monotonic inference systems without
building in empirical assumptions about how our world
works. Any system that is truly non-monotonic necessarily

has some empirical assumptions built into it, over and
above the premises of any specific argument. It would be
better if researchers in the area realized this fact and tried to
be more explicit about the empirical assumptions behind
their systems.
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From Assumptions to Meaning *

Veronica Dahl and Paul Tarau

Abstract

LES ASSOMPTIONS
Les linguistes et les logiciens ont mis au jour les multiples facettes du role des assomptions dans les communi-
cations humaines, et ont développé une quantité de fagons de mener un raisonnement basé sur les assomptions.
Dans cet article, nous décrivons les extensions & BinProlog qui permettent la conception d’outils puissants de
traitement du langage naturel pour un raisonnement basé sur des assomptions intuititionistes et linéaires.

1 Introduction

In human communication, assumptions play a central
role. Linguists and logicians have uncovered their many
facets. For instance, the assumption of a looking glass’
existence and unicity in “The looking glass is turning
into a mist now” is called a presupposition; the assump-
tion that a polite request, rather than a literal question,
will be “heard” in “Can you open the door?” is an im-
plicature.

Much of AI work is also concerned with the study
of assumptions in one form or another: abductive rea-
soning “infers” (assumes) p from ¢ given that p = ¢;
uncertain information with high probability is used (as-
sumed) in some frameworks, and so on. Recently, sys-
tems for hypothetical reasoning that extend the capa-
bilities of deductive databases have been studied e.g
[4] and in the area of logic programming, assumptions
have also been widely used. most notably for default
reasoning (e.g. negation as failure).

Independently, work on intuitionistic logic and,
more recently. linear logic [12] has provided formally
characterized embodiments of assumptions which have
been influential on logic programming and logic gram-
mars [15, 16, 14]. The result is not only a better
understanding' of their proof-theoretical characteris-
tics, but also a growing awareness on the practical bene-
fits of integrating them in conventional Prolog systems.

Such a state of affairs, coupled with our desire to de-
sign powerful tools to deal with the complex reasoning
problems which arise in natural language processing,
led us to endow BinProlog [19] with intuitionistic and
linear assumptions scoped over the current continua-
tion. Their use for logic grammars motivated in turn
a variant of Extended DCGs (22] that handles multi-
ple streamns invisibly without the need of preprocessing.
Surprisingly, the outcome went beyond the intended ap-

plication domain. A unified approach to handle back-
trackable state information in non-deterministic logic
languages, based on a simplified form of linear affine and
intuitionistic implication (assumptions) has emerged.

Using this approach, we can draw meaning from
discourse by making assumptions that are backtracked
upon when and if they prove wrong, until only appropri-
ate assumptions persist. Three natural language uses of
Assumption Grammars have been examined: free word
order, anaphora and coordination. We have also shown
two results which were surprising to us, namely: a)
Assumption grammars allow a direct and efficient im-
plementation of link grammars— a context-free like for-
malism developed independently from logic grammars;
and b) they offer the flexibility of switching between
data-driven or goal-driven reasoning, at no overhead in
terms of either syntax or implementation. We have also
shown Datalog grammars {7, 2, 6] to be an instance of
Assumption Grammars. Given space limitations, here
we shall only describe our hypothetical reasoning tools,
and exemplify their use for gleaning implicit meaning
from coordinated sentences (i.e., sentences with “and”,
“or”, “but”, etc.).

2 Assumption Grammars

Assumption Grammars are basically like definite clause
grammars, except that they can handle multiple ac-
cumulators invisibly, and that they possess linear and
intuitionistic implications scoped over the current con-
tinuation.

Intuitionistic assumption (*/1) temporarily adds a
clause that can be used an indefinite number of times
in subsequent proofs. Linear assumption (+/1) adds a
clause that may be used at most once in subsequent
proofs (as in affine linear logic, rather than in Girard’s
original framework where linear assumptions should be

*This extended abstract is based on research first reported in two conference papers {21] and [9]. A full version has been submitted

for publication.

1 For instance the presence of uniform proofs (17]) indicate that a formalism is likely to be computationally interesting.
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used ezactly once). A builtin predicate (-/1) was intro-
duced to allow for the removal of either intuitionistic or
linear assumptions.

Both types of assumption have scoped versions and,
unlike assert/1, vanish upon backtracking. We can
see them respectively as linear affine and intuitionistic
implication scoped over the current AND-continuation,
i.e. having their assumptions available in future com-
putations on the same resolution branch.

For instance, *a(13), a(X),a(Y) succeeds,
whereas +a(13), a(X),a(Y) will fail. Note however
that *a(13), *a(12),a(X) will succeed with X=12 and
X=13 as answers, while its non-affine counterpart a(13)
-0 a(12) -o a(X) as implemented in Lolli or Lygon,
would fail?.

As an example of a scoped version of assump-
tions, the intuitionistic implications Clause=>Goal and
[File]=>Goal make Clause or respectively the set of
clauses found in File, available only during the proof
of Goal. For instance, a(13) => (a(X),a(Y)) will suc-
ceed.

3 Timeless Assumptions

These simple first builtins proved excellent for clean
and efficient solutions to interesting computational lin-
guistics problems, such as free word order, sentence co-
ordination and many cases of anaphora [18, 8, 9].

For instance, for handling anaphoric reference (in
which a given noun phrase in a discourse is referred
to in another sentence, e.g. through a pronoun), all
we have to do is assume each noun phrase parsed as a
potential referent of some pronoun that might appear
later, and let pronouns consume those assumed noun
phrases which agree in gender, number, etc., backtrack-
ing if necessary.

However, we ran into problems when trying to de-
scribe backwards anaphora (as in “Near her, Alice saw
a Bread-and-butter-fly”, where the referent Alice ap-
pears after the pronoun her that refers to it), or in some
cases of coordination where again, potential referents
need to be consumed before they have been assumed
(as in “Tweedledum proposed and Tweedledee agreed
to a battle”, in which the missing object of “proposed”
needs to be consumed from an assumed potential ref-
erent before this referent (“a battle”) has had a chance
of being assumed.

These problems motivated an alternative kind of as-
sumption, which we named “timeless”, or = for short

A timeless assumption is consumed if made, and if
not yet made, consumption blocks until a matching as-
sumption shows up.

Timeless assumptions not only elegantly solved the
problems of backward reference that motivated them

2The linear implication is denoted -o in Lolli.

[9], but also proved to be a beautiful basis for coordinat-
ing agent programming in virtual worlds, with synchro-
nization information built in the “container objects”
and allowing more flexible wait/notify negotiations be-
tween consumer/producer agent compontents, as well
as inheritance and agent component reuse [20].

Further investigation of timeless assumptions in the
context of knowledge-based systems [9] uncovered the
need for subtly different types of timeless assumptions
than the ones described here.

4 A sample grammar

Coordination (grammatical construction with the con-
junctions “and”, “or”, “but”) has long been one of the
most difficult natural language phenomena to handle,
because it can involve such a wide range of grammat-
ical constituents (or non-constituent fragments), and
ellipsis (or reduction) can occur in the items conjoined.
In most grammatical frameworks, the grammar writer
desiring to handle coordination can get by reasonably
well by writing enough specific rules involving particu-
lar grammatical categories; but it appears that a proper
and general treatment must recognize coordination as
a “metagrammatical” construction, in the sense that
metarule, general system operations, or “second-pass”
operations such as transformations, are needed for its
formulation. Early attempts at such a general treat-
ment [23, 3] were inefficient due to combinatorial ex-
plosion. A logic grammar rendition of coordination
in terms of logic grammars [5] solved these inefficien-
cies through the addition of a semantic interpretation
component that produced a logical form from the out-
put of the parser and dealt with scoping problems for
coordination. We next exemplify a metagrammatical
treatment to coordination through AGs. Terminals are
preceded by ‘#’.

sent(and (51,82)):- s(81), +and, s(S2).
% conjunction of two sentences- assumes that
% there will be an "and" between them.

s(S):- name(K), verb(K,P,S), np(P).

np(P):- det(X,P1,P), noun(X,P1),
=(ref_np(P)).

% keep it as potential referent for a missing np
np(P) :- #and, -and,

% a conjunction appears where an np is

% expected: consume "and"

=-(ref_np(P)).
% consume an assumed (or to be assumed) np
% in lieu of the missing one

det(X,P,the(X,P)):- #the.
noun (X, cupboard(X)) :- #cupboard.
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name (tim) :- #tim.
name (anne) :- #anne.

verb(X,Y,built(X,Y)):- #built.
verb(X,Y,painted(X,Y)):- #painted.

For the sentence Tim built and Anne painted the
cupboard, for instance, we obtain the semantic repre-
sentation:

and (built (tim, the (X, cupboard(X)),
painted(ann, the (X, cupboard(X)))

which is just what we intend in this simplified example.
Subtler analyses can be implemented as in [10].

5 Conclusion and Related Work

Assumption Grammars, although theoretically no more
powerful than previous logic grammars, have more ex-
pressive power in that they permit the specification
of rewriting transformations involving components of
a string separated by arbitrary strings with the sole re-
source of intuitionistic and (affine) linear assumption
scoped over the current AND continuation.

Existing work on Linear Logic based Natural Lan-
guage processing [13, 1] is mostly at sentence level,
while ours covers text level constructs. This is made
easv by using hypothetical assumptions which range
over the current continuation, instead of locally scoped
implications.

The semantics of our constructs is an instance of
the sequent calculus based descriptions of Horn Clause
Logic and the more powerful uniform proof based sys-
tems of [14]. We can see AGs and accumulator pro-
cessing in general as an even more specific instance of
linear operations.

Compared to previous frameworks based on Lincar
(Intuitionistic) Logic, ours is portable and runs on top
of generic Prolog systems. This is a practical advantage
over systems like Lolli or AProlog.
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Book Reviews

On the Origin of Objects Brian Cantwell Smith, The
MIT Press, 420 pp.

Reviewed by
André Vellino
National Research Council, Ottawa

On the Origin of Objects is a seminal book. It challenges
us to rethink our entire world-view and revitalizes the
perennial questions of philosophy: what is knowledge?,
what is it knowledge of?, what is the nature of
consciousness?, what is meaning?, what is personal
identity?, how ought I to act?, what is politics?, what is
beautiful? It is also a courageous book: to address such
sweeping questions entails creative metaphysical
contemplations of a kind that will no doubt ruffle the
feathers of academic philosophers. Even though he does
not try to answer all these questions nor even tackle most
of them head-on, Smith offers the reader a fresh foundation
from which pluralistic solutions to those problems may be
fashioned.

Smith’s arguments are complex and demand the reader’s
careful attention. To understand the core of Smith’s book
the reader must follow an exacting journey through its
labyrinth of concepts, distinctions and arguments: it is
useless to go straight to the conclusion without first going
through the phases of problem “analysis™ and solution
“construction.” The book is also impossible to compress.
Any attempt to summarize or paraphrase even the general
thrust of the argument will inevitably do it some injustice
or other.

The starting point for Smith’s multi-threaded excursion
into a new metaphysics is not a new one for either Al or
cognitive science. The desire to provide a solid foundation
for a cognitivist computational theory of mind (the theory
that mind is computational in nature) has motivated many
a tome in recent years [1-5]. Smith’s take on the problem,
however, quickly leads into murkier philosophical waters
than his predecessors had dared to venture before. In trying
to break out of the mould of contemporary cognitive
science-—mind/body duality, representation schemas,
semantics of computation etc.—Smith attempts to re-orient
the reader to a new way of thinking about the questions.

The foundations of any field are either philosophical or
mathematical, and this one is certainly not mathematical.
Notwithstanding his disclaimer that this book is not
philosophical either, Smith might have considered another
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Future Computational Theory of Mind”, perhaps. Indeed,
this book is a sort of preamble to a much more detailed and
finely articulated 5-volume encyclopedic analysis of
computational theory which Smith promises us for the future.
We are left anticipating that the results will be to the
foundations of computing as Knuth’s trilogy was for the art
of computer programming, i.e., a tour de force.

The basic problem with which Smith is wrestling that if
we want to build software systems that are able to represent
and reason about the world in which they operate, we need
to understand both what is represented and the representation,
not to mention the process of reasoning and norms of
rationality. Yet the conventional model of unambiguous
“objects” that have “relations™ to one another and which
need only to be represented in some symbolic computer
language is a completely non-explanatory and inadequate
account of both the world and its representation in a
computer. Some new and foundational perspective is
required.

Like other philosophical system builders that propose new
metaphysical and epistemological foundations, Smith
believes this task is necessary because of the tailures of the
past. He is right, for example, in noting that there has been
some fuzzy thinking about semantics. The problem of
semantics isn’t solved by the proposition that computing is
symbol manipulation, he says, since symbol manipulation is
intentional (it is easy to guess where Smith stands on the
“Chinese room™ argument). Nor is the problem of
intentionality eliminated by equating computation with the
behaviour of finite-state automata. Indeed, it turns out that,
for Smith, intentionality isn’t reducible to anything.

Where then, does Smith stand on philosophical issues? In
terms of familiar categories, one could say that his
epistemology is that of a realist (in the sense that “there is a
world out there™ which our theories attempt to capture), that
his methodology is naturalist (in the sense that explanations
of all phenomena must be grounded in nature), and, although
he denies it, his metaphysics is largely that of a materialist
(in the sense that the furniture of our experience—and the
essence of computation—is a material/physical phenomenon).
But for many reasons with which it is easy to sympathize,
Smith distrusts these familiar categories and the sorts of
prejudices they conjure up. He wants his analysis to make
room for different ways of speaking and ditferent formalisms
(i.e. pluralism) and so he doesn’t side with any particular
camp. Instead he tries to position himself vis a vis well-
known theories (of truth, of semantics, of representation,
etc.).



What then do these philosophical theories have to do with
everyday objects like tables and chairs, or even with the
problem of how to represent them for a computer? What
Smith wants to do in his inquiry into “objects” is

“..[to find out what] is needed for a complete

picture of intentionality, semantics and ontology

..[for which one needs] to understand how a

conception of objects can arise on a substrate of

infinitely extensive fields of particularity”

[p. 191].
There are all sorts of things wrong with this clumsy
formulation, as Smith himself readily admits, and he
eventually offers us the notion of ‘“registration” to shed
some light on the matter. But to understand how our
conception of objects arises at all we first need to understand
the distinction between “particulars”™ and “individuals.”
Examples of particulars include the constitutive elements of
what we ordinarily call (physical) objects (the physical
cause of this patch of green/blue experience) but also events
(such as Diana’s accident) and processes (the writing of this
review). Contrast this with universals (e.g. the generic
concept “canoe’”) and abstract categories. The distinction
between particulars and individuals—and this is an important
one—is that individuality is what makes an object discrete
and separable from its background. An individual is
constituted of particulars, but what makes it an individual is
“... what allows us to sav of one object that it is one, or two
that they are two™ [p. 119].

One might well think that the science of physics would do
quite well as a foundational theory of particularity,
individuality and objecthood. After all, physics is the star
candidate for an explanatory theory of all there is, and
Smith has to explain why it is not enough. The argument,
which reads like a romp through 80 years of philosophy of
science—ranging from the ontological presuppositions of
classical and quantum mechanics to Popper’s * three worlds™
theory—concludes that physics has something to say about
particulars but is silent about individuals. One of the lessons
drawn from this foray into physics is the criterion of ultimate
concreteness:

No naturalisticallv palatable theorv of
intentionalitv—of mind, computation,
semantics, ontology, objectivitv—can
presume the identitv or existence of any
individual object whatsoever.
[p. 184, italics in the original]

It turns out that what distinguishes an individual from the
“rest of the world™ is something abstract and dependent on
the subject that is doing the abstraction. Hence the problem
of what “objects” are and how we “register”” them remains.

What, then, is “‘registration™? In brief, we “register” the
world (we take it to be a certain way, to be composed of
certain things) not because we conceive it to be this way or
even perceive it to be that way (as the 18th century British
Empiricists might have it) but because its being what it is

requires an intentional relation to a subject. For Smith, the
intentional nature of objects and their registration in our
minds will never be reduced, as an eliminative materialist
would have it, to some causal story about neurons firing in
some particular way as a result of stimuli of a certain kind.
Registration, it seems, is a primitive and irreducible
intentional relation between mind and object.

The modalities of what precisely counts as registration, by
whom and how it takes place, obliges Smith to sketch a
theory of causality. Here again, nothing is settled but a
metaphysical picture is painted that is plausible: the world is
neither entirely deterministic—a world of intertwined cogs
and gears—mnor is everything physically and causally
disconnected from everything else. Smith goes for the middle
ground, one that captures both the intuition that what I am
doing now is not terribly relevant or causally influential to
whether you are or are not currently drinking a glass of
water, and the intuition that my use of garlic as an ingredient
for the pasta sauce I cooked last night had a significant
influence on my guests’ enjoyment of the meal.

That bears on registration in the following way: an object
is registered by a subject not only by the causal link between
them (the “world™ impinging on the senses, for example),
but also by how it does not causally relate to the subject. In
particular, an object’s continued existence or movement in
space bears an intentional relation to the subject that has as
much to do with its causal relations to the subject as it does
to the causal disconnection between the subject and the
object.

In addition to a theory of causality, Smith needs a theory
of reference (and, therefore, Truth). For it must be possible
for me to register objects not only as present, here and now,
in my perceptual field, but also as enduring, “stable™ objects
that preserve their identity somehow. This process of
stabilization requires the ability to deal with indexicals
(such as this and now) which, in turn, demands a theory of
reference. To explain this process of object registration,
Smith spends chapter 7 (one of two on registration) speaking
of “s-regions™ and “o-regions” instead of the more vexed
“subjects’ and “objects™ and of the important (and, I take it,
intentional) “letting go™ of one by the other, as an essential
requirement for registration. I think Smith means that the
process of individuation that takes place in selecting a
“thing” from its environment and registering it as a thing (or
object) requires an (intentional) act of separation or
discrimination.

In any event, the registration of an object is no trivial
matter. Apart from the problem of context (“A teacup’s
exemplification of the property of being a teacup does not
inhere in its meager six ounces; it reaches back into British
society” [p. 269)), there is the question of how we register
higher-order cognitive objects like concepts and the process
of non-cognitive registration—that which we register simply
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as a consequence of being alive and derives from our
“encounter” with things. This means, that there must be an
equilibrium (a “middle distance™) between the degree to
which an object is causally connected with the subject and
the degree to which it is separate. Ditto with the extent to
which the subject’s concepts participate in the object’s
being what it is and the extent to which we are viscerally
“engaged” with the object.

The upshot of Smith’s analysis of registration is an
affirmation of what he calls “a philosophy of presence”. He
writes:

{Its metaphysical viewpoint is] a commitment to
One world, a world with no other, a world in which
both subjects and objects—we and the things we
interact with and think about and eat and build and
till and are made of and give away as presents—are
accorded appropriate place. ... that world is depicted
as one of cosmic and ultimately ineffable
particularity.... Neither formally rigid nor
nihilistically sloppy, the flux {of particulars] sustains
complex processes of registration: a form of
interaction, subsuming both representation and
ontology, in which “s-regions” or subjects stabilize
patches of the flux, in part through processes of
intervention, adjusting and building them and
beating them into shape, and also through patterns
of disconnection and long-distance coordination,
necessary in order to take the patch to be an object,
or more generally, to be something in and of the
world. [p. 347}

But this book is not merely a metaphysical treatise on the
philosophical foundations of computer science. Smith aims
to touch the reader on many other planes as well. He warns
us early on that:

The story to be told represents an attempt to unify
and therefore, with luck to help heal. the schism
between the academic-cum-intellectual-cum-
technological on the one hand, and the curious,
the erotic, the spiritual, the playful. the humane,
the moral. the artistic, the political and the sheerly
obstreperous on the other. [p. 94]

Although we get intimations about how this might be as
the narrative unfolds, it is only in the conclusion that Smith
explicitly sketches how a “philosophy of presence’ helps to
shed light on a wide range of issues: the representation
problem in AI (how does a neural net “register” a face?); the
realist/constructivist (instrumentalist) debate in philosophy
of science (how does a physicist register a neutrino?); the
Platonist/intuitionist/constructivist debate in mathematics
(how does a mathematician register a number?) etc.

One wonders whether the aesthetics of the book itself is
intended to achieve the goal of conveying the many-layered
implications of his theory at another “‘register’ in the reader’s
consciousness: the layout is original and creative, its structural
composition is exceptionally ergonomic and the style of
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prose is not always complex and philosophical. Smith often
tries to speak-easy and give us the gritty feeling for his
intuitions, a welcome break from the often strong academic-
cum-intellectual-cum-technological flavour of the remainder
of the text. Every other page has an instructive drawing of
some sort that illustrates a point and there are many sidebars
that take the place of stretched-out parenthetical remarks.
Near the end of the book, just as the reader is led into
Smith’s metaphysics and conclusion, there is an especially
beautiful picture of a canvas by Adam Lowe. It is as though
Smith thought that a contemplation of the art-piece by itself
could convey the ineffable intuition for his philosophy of
presence.

There is a lot to be grateful for in this book. It stimulates
not just the intellect but also the spirit and the imagination.
It offers a way to understand the stuff of objects and their
inextricable ties to mentality in a way that evenly balances
reason and logic with intuition and mystery. Perhaps its
greatest value is to have rekindled the possibility of
conversations about the ineffable, about the inter-relatedness
among all things and to have shown how completely relevant
these metaphysical discussions are to the science of
computing.

Further Reading

{1] Jerry Fodor, The Modularity of Mind, MIT Press 1983.

[2] Zenon Pylyshyn, Computation and Cognition, MIT
Press1984.

[3] John Haugeland, Artificial Intelligence: The Very Idea,
MIT Press 1985.

{4] Patricia Churchland, Neurophilosophy, MIT Press
1989.

[5] Daniel Dennett, Consciousness Explained, Boston:
Little, Brown 1991.

[6] John Searl, The Rediscovery of the Mind, MIT Press,
1992.

{71 David Chalmers,The Concious Mind, Oxford, 1996.



More on ECONOPHYSICS (the Physics of Money)

From our last lecture, you will recall the central principle:
(1) Time is Money.

We have all noted that if a rich person travels from home to
abigcity like Vancouver, New York, or Tokyo, for business,
they are able to make considerably more money than we
would if we made the same trip. This observation is
frequently phrased as “the rich get richer,” or “them that has,
gets.” Using “del d” for the distance travelled and “del $"
for the change in money, we have:

del d det d
(rich) <
del $ del §

2 (poor)

since del d is the same for both, but del $ (rich) >
del $ (poor).

Using (1), we can replace money by time in (2) to obtain:
del d del d

(rich) < ——(poor)
del t del t

©)]

But del d / del t is just velocity. Hence using v, for the
velocity of the rich v for the velocity of the poor. we have in
general:

) v.<v,

Now, for simplicity let us consider an isolated system of two
particles. one rich and one poor, orbiting about each other
under the influence of mutual gravitational attraction. Since
the system is isolated, linear momentum is conserved, which
gives:

5) mvr=myv,
where m represents mass.

So from (4) and (5) we know that in general:

(6) m >m,
In other words, the richer you are, the greater your effective
mass.

In this isolated system, the two particles orbit around their
common center of mass, each at a different radius r from the
center, but with the same period of rotation P. Their
centripetal forces must balance each other. The equation for

Charles Morgan

centripetal force in a circular orbit is just:

4pi**2mr
@) Fc=
P**2

" where we use “**” to indicate exponentiation. So, using (7)

and setting the centripetal force of the rich equal to the
centripetal force of the poor, we can rearrange terms to
obtain:

r m
r P

® =

r m
P

T

Then (6) and (8) together yield:

(&) r<r,

In other words, the radius of the orbit of the rich is smaller
than the radius of the orbit of the poor. The result in (9)
allows us to explain two common observations:

(A) The richer you are, the closer your orbits are to
the center of the action.
(B) The poor are always relegated to the periphery.

Before we end this lesson, we will use (6) to explain several
other observations. Suppose a third “test™ particle is
introduced into the system with arbitrary mass m. Taking
the gravitational constant to be G, the mutual gravitational
force between the particle of mass m and one of m’ is given
by:

Gmm’
(10) Fg=

d#*2

where d is the distance between the two particles. From this
equation we see that the force exerted on the new particle is
directly proportional to the mass of the influencing particle.
So the greater the mass of the influencing particle, the more
force it will exert on the test particle. By (6), the richer you
are, the greater your effective mass. Hence we have an
explanation of the following observation:

© At a fixed distance, the richer person always exerts
greater influence.

Now you know why the guy next to you in the pin stripe suit

and Gucci shoes always catches the eye of the waiter or the
cab driver before you do.
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Equation (10) also tells us that the force exerted on the test
particle by the influencing particle is inversely proportional
to the square of the distance, as well as directly proportional
to the mass of the influencing particle. Thus the more massive
the influencing particle, the further away it can bring to bear
a given unit of force. But again, by (6) we know that the
richer you are, the greater your effective mass, which explains
the following observation:

D) The richer a person is, the larger will be that
person’s sphere of influence.

It is now time to recall another great principle of
ECONOPHYSICS.

an Knowledge is Power.
In any physical system, the amount of work done is
just the product of the amount of power applied
times the time over which it is applied.

(12) Work = Power x Time

From (11) we can substitute Knowledge for Power and from
(1) we can substitute Money for Time to get:

(13) Work = Knowledge x Money
Solving (13) for Money, we get:
(14) Money = Work / Knowledge

So, as Knowledge increases, Money decreases, given the
same amount of Work. That is, Money is inversely related to
Knowledge. In fact, as Knowledge increases to infinity,
Money goes to 0, no matter what the value of Work. So the
principles of ECONOPHYSICS provide an answer to that
perennial question:

E) If you're so damn smart, why ain’t yourich? 4
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Organized in Cooperation with:
AAAI, ACM/SIGART, CSCSI, ECCAL, IEE, INNS, JSAI, SWT

IEA/AIE-99 continues the tradition of emphasizing applications of artificial intelligence and expert/knowledge-
based systems to engineering and industrial problems. Topics of interest include. but are not limited to:

Automated Problem Solving
Adaptive Control
CAD/CAM

Case-based Reasoning
Computer Vision
Connectionist Models
Data Mining

Distributed Al Architecture
Expert Systems

Fuzzy Logic

Genetic Algorithms
Heuristic Searching

Intelligent Agents
Intelligent Networks
Intelligent Database
Intelligent Interfaces
Intelligent Tutoring
KBS Methodologies
Knowledge Acquisition
Knowledge Discovery
Knowledge Representation
Machine Learning
Model-based Reasoning

Natural Language Processing
Neural Networks

Planning & Scheduling
Practical Applications
Reasoning Under Uncertainty
Robotics

Sensor Fusion

Spatial & Temporal Reasoning
Speech Recognition

System Integration Tools
Verification & Validation

Authors are invited to submit 1) a URL address containing a printable version of their paper: 2) a list of key words
(some sample topics are listed above); 3) no more than one page (by email) describing: a) the contribution. b) the
significance, and ¢) the results of the presented work: and 4) one hard copy of their paper to the Program Co-chair
at the address given below no later than October 31. 1998. Also, the conference will contain a series of special track
sessions. If an author desires to include hisfher paper in a special track. please indicate that as well. A list of special
tracks will be announced through the URL:
http://mason.gmu.edu/~iimam/ieaaieY9/ieaaieY9.htmi

Papers must be written in English, have up to 10 single-spaced pages. presenting the resuits of original research or
innovative practical applications relevant to the scope of the conference. Practical experiences with state-of-the-
art Al methodologies are also acceptable when they reflect lessons of unique value to the conference attendees.
Short works. up to 6 pages. to be presented in 10 minutes, may be submitted as SHORT PAPERS representing work
in progress or suggesting possible research directions. (Please. indicate “short paper™ in the submission letter in this
case). Submissions should be completed on the Internet and the URL addresses along with a hard copy should be
received by the Program Co-Chair by October 31. 1998. Notification of the review process will be made by January
22. 1999, and the final copies of papers will be due for inclusion in the conference proceedings by February 20.
1999. Referees will be asked to nominate papers for a Best Paper Prize to be announced at the conference. All
papers. but particularly those nominated for the Best Paper competition, will be automatically considered for a
place in the International Journal of Applied Intelligence. General conference information can be sought from the
General Chair at the following address.

Dr. Moonis Ali
General Chair of IEA/AIE-9Y

Dr. Ibrahim Imam
Program Co-Chair of IEA/AIE-99

Y.
G.

M.

Umeda, U. of Tokyo. Japan
Widmer, Austr. Resear. Instit.. Austria

Wooldridge, QMW. UK

Southwest Texas State University
Department of Computer Science
601 University Drive,
San Marcos TX 78666-4616 USA
Email: ma04@swt.edu

Thinking Machines Corporation
16 New England Executive Park
Burlington, MA 01803 USA
Email: ifi@think.com

Please keep me on the mailing list of the IEA/AIE-99. Complete and send to Dr. Ali at the above address

Name:

email: Telephone:

Address:

Fax:

Intend to submit a paper (y/n): [ 1]

Send me registration information (y/n): [ ]
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