Cpe
| Canadian Artificial
Intelligence

Intelligence Artificielle
au Canada

Autumn 1996 No. 40 automne 1996

An official publication of CSCSI, the Canadian Society for Computational Studies of Intelligence
Une publication officielle de la SCEIO, la Société canadienne pour I'étude de l'intelligence par ordinateur

Special Issue . S
Software Agents —
Edition speciale A
Agents Logiciels L

3
a
B
&
;
§

M

Cana ian

nce

|
Intelligence

patificielle

au Canacda

Autumn 1996 No. 40 automne 1996
Canada’s National Al magazine. Contents Contenu
Editors - Rédacteurs en Chef
Peter Turney and Sue Abu-Hakima Communications 2 Communications
Edgor ﬁmernus Rédacteur Emeritus
() asran . o
Mana’; Edi m Chef de Pupitre Feature Articles Gros Titres
Arl eneg/l . Nick Cercone —1996 CSCSI/SCEIO 4 Nick Cercone — Récipiendaire du prix de la SCEIO
Production Team . Equipe de production Distinguished Service Award Winner pour service exceptionnel pour I'année 1996
Arlene Merling, Greg Klymchuk, Carol Tubman Gord McCalla Gord McCalla
Acedemla Académiques
c ac;aim AlS s Stories Agents: From Theoretical Foundations 6 Les agents: des fondements théoriques aux
agaéc:: de s::::g:: d IAraIu Canada to Practical Applications applications pratiques
Peter Turney Jean-Francois Arcand and Sophie Pelletier Jean-Francois Arcand et Sophie Pelletier
PRECARN Update - Nouvelles de PRECARN
Harry Rogers The Agent Building Shell: 9 Le "Agent Building Shell”: un outil pour la
Bogfafewews Critiques de livres A Tool for Building Enterprise construction de systémes d' enterprise
me Hirs Multi-Agent Systems multi-agents
T’aﬂ;’na'l’)%gﬂeg%‘i‘;gft’%gﬂey' Norman Vinson Mihai Barbuceanu and Mark S. Fox Mihai Barbuceanu et Mark S. Fox
Advertising - Publicité
Arlene M%,h,,g Multi-agent Systems at Laval University 12 Les systtémes multi-agents A 'Université Laval
o o) . B. Chaib-draa B. Chaib-draa
Canadian Artificial Ingelligence is published three times a year by the Canadian
Society for Computauonal Studies of Intelligence (CSCSI). Inselligence Anificielle
f'.‘.m:: : p’:r“:l:;iena;nn (s' youes CP:J: i“:ﬁfwm Mﬂmm‘; Intelligent Agent Structures for the Internet 16 Structures d' agents intelligents pour I internet
Agreement No, 507032 Leslie L. Daigle and Sima Newell Leslie L. Daigle et Sima Newell
ISSN 08239339
qommmx sﬁo:;,l, :wr m.::.aaa or‘md v - Al Highly Autonomous Sensor Models 19 Modeles de capteurs hautement autonomes
' 1] €ni0e M) onn . .
'&.ﬁn the written permission of v editors, Prioted 'i'.'}"&dm"é;”inq-s Fernando Figueroa Fernando Figueroa
Rq_)loductions & Printing Lid. CaMdnmAmﬁnal !nfelligmt'u p\lw with the
of theis rs';;:':ve authers and are 5ot oty o of f‘m ”&"&f LALO: A New Agent Oriented 22 LALO: un nouveau langage de programmation
mﬂ‘"m""" "'&“iﬁ;‘f‘-"“‘i"" CIPS, the National Research Council or Programming Language and Environment orienté agent et un nouvel environnement
Copyright © 1996, Soc s pous I i e e i i, D. Gauvin, H. Marchal, C. Saldanha D. Gauvin, H. Marchal, et C. Saldanha
Tout droit réservé; Imllim antificielle au Canada ne doil‘&n Mw par
B B e e s The SIGMA Project: Market-Based Agents 25 Le projet SIGMA.: des agents basés sur le
gt pritfc vec S 3s On Crasel do Rechecho de F Abera .8 cplakons exprimtes for Intelligent Information Access marché pour I'acces intelligent a l'information
cetesdo s employeis, e SCEIO, de ' il au Comodt, 5 Grigoris J. Karkoulas Grigoris J. Karkoulas
e et pe s prieitelt Gietaks
du Canada, ou du Conseil de Recherche de 1* Alberta.
’ - Agent Researchin the 28 Recherche sur les agents dans le Groupe de
CSCSI Executive Cognitive Robotics Group robotique cognotive
. . Y. Lesperance, H.J. Levesque, F. Lin, Y. Lesperance, H.J. Levesque, F. Lin,
President - Président: ! ¢ g
Stan Matwin, Computer Science Dept., University of D. Marcu, R. Reiter, and R.B. Scherl D. Marcu, R. Reiter, et R.B. Scherl
Ottawa, Ottawa, ON K1N 6N5; stan@ csi.uottawa.ca
Past-President - Président Précédent: Distributed Agent Systems 31 Des systémes d'agents distribués pour la
Janice Glasgow, DfPL of 9°mP“““cg) If‘g?";"f"“ for Intelligent Manufacturing fabrication intelligente
Science, Queen’s U,, Kingston, 3N6; Douglas H. Norrie and Brian R. Gaines Douglas H. Norrie et Brian R. Gaines
janice @qucis.queensu.ca
Vice-President - Vice-Président: . .
Allan Jepson, Department of Computer Science, Personal Assistants fo_r the 34 Des assistants personnels pour le
University of Toronto, Toronto ON M5S 1A4; Office Professional professionnel de bureau
jepson@vis.utoronto.ca Cliff Grossner and T. Radhakrishnan Cliff Grossner et T. Radhakrishnan
Fred Popemich. Sehoal ot C Science, Si
ted Popowich, School of Computing Science, Simon How to Get (and Keep) 39 Comment recevoir (et conserver)
\ V. .
Fraser University, Bumaby BC VA 156; a Research Grant une subvention de recherche.

popowich@cs.sfu.ca

Treasurer - Trésorier:

Peter van Beek, Dept. of Computing Science, U of A,
Edmonton, AB T6G 2H1; vanbeek @cs.ualberta.ca

Editors - Rédacteurs en Chef

Peter Turney, Institute for Information Technology, NRC,
Ottawa, ON K1A OR6; peter @ai.iit.nrc.ca

Sue Abu-Hakima, Institute for Information Technology,
NRC, Ottawa, ON K1A 0R6; sue@ai iit.nrc.ca

Ian H. Witten
(Revised and updated by Janice 1. Glasgow)

lan H. Witten
(Révisé par Janice I. Glasgow)

PRECARN Update 47 Nouvelles de PRECARN

Book Reviews 47 Critiques de livres

Recycled / Recyclable

Canadian Artificial Intelligence Autumn 1996/ 1

=" = . COMMUNICATIONS
== ".= COMMUNICATIONS

Special Issue: Software agents

It is evident to me from reading a number of respected Al
publications and from attending various research and trade
conferences recently that there is a strong and growing
interest in software agents research and development in
Canada. The purpose of this special issue is to present a
broad view of some of the more interesting software agents
work currently being undertaken in Canadian universities
and government and industrial R&D organizations.

As the contributions in this issue illustrate, there is a fairly
wide range of definitions and perspectives concerning
software agents and software agent technology. This, in
part, can be attributed to the relatively young and dynamic
nature of the field. It is also, however, a testament to the
highly multidisciplinary nature of agents and to the
(consequent) broad range of application domains within
which software agents are starting to appear.

As a more or less emerging field, there has been an
uncomfortably large amount of hype associated with software
agents. In the mid to late 1980’s, much excitement ensued
from the belief that a number of Al techniques had matured
enough to warrant combining some of them inside integrated
reasoning architectures, or agents. Just as this initial
excitement started to wane in the early 1990’s, renewed
optimism grew with the emergence of the Internet and
World Wide Web (WWW) as potentially fertile environments
for developing and fielding agent-based applications. A
number of research and commercial applications of agent
technology have been witnessed to date, the most popular
being in the areas of resource discovery and information
filtering. While few, if any, of the commercial agent systems
available today exhibit much in the way of intelligence —
real or artificial — a number of them are proving popular
with users who, caught in the flood of available online
information, are seeking ever more advanced levels of
automated computer assistance to help cope with the resulting
complexity and volume of information processing.

Although the WWW features in a number of the papers in
this issue of Canadian Artificial Intelligence, several other

Innes A. Ferguson

interesting domains are addressed, ranging from personal
office assistance (meeting and calendar management,
telephone call processing) through robotic control to
intelligent manufacturing. In tackling these domains, the
various agent systems described herein put forward and
employ a number of novel and leading edge techniques for
representing knowledge, reasoning and planning, adapting
to different environments, and coordinating with muitiple
agents. A number of the papers also present principled
approaches to the architectural design, engineering, and
programming of software agents. What these papers
demonstrate, in fact, is that alongside the seemingly inevitable
hype (object-oriented programming was in a similar position
around a decade ago) there is also a considerable amount of
mature, well-founded research and development work already
taking place in software agents.

In addition to acknowledging the help of the magazine’s
editorial staff, I would like to thank all the contributors for
their support and commitment (and timeliness!) in helping
create this special issue. Finally, I hope the readership will
take advantage of the information — and pointers to further
information — included in this issue to add to and further
enhance Canada’s prominent position in this very current,
active, and exciting field. A

Innes Ferguson is a member of the Agent Team at Mitsubishi
Electric Europe, London, UK. His current work involves
designing and applying intelligent agent technology toward
advanced information publishing, discovery, and retrieval
tools for the Internet. He had previously held research
positions in artificial intelligence and software agents at
BNR and NRC, both in Ottawa, Ontario. He received a
Bachelor’s Degree in Computer Science from Edinburgh
University (Scotland) in 1985 and, while on a BNR
Postgraduate Scholarship, a Doctorate in Al (intelligent
agents) from Cambridge University (England) in 1992. He
can be reached at innes@dlib.com.

Communication from the Ex-Co-Editor

This is my last issue as co-editor of Canadian Artificial
Intelligence. My colleague and co-editor, Suhayya Abu-
Hakima, will be continuing on her own as the editor of the
magazine. I have enjoyed very much the challenges of my
two-year term as co-editor. Thanks to Suhayya for sharing
the duties and responsibilities of editorship with me; thanks
to Arlene Merling for managing the magazine and doing the
layout; thanks to Janice Glasgow, Stan Matwin, Mike Halasz,

2 / Intelligence Artificielle au Canada automne 1996

Peter Turney

and Innes Ferguson for their help with the special issues;
thanks to Greg Klymchuk for technical assistance; thanks to
Benoit Farley and Alain Désilets for translation; thanks to
Carol Tubman for help with proof-reading; and thanks to all
our authors and readers, who are, of course, the most
important part of the magazine. I leave my post confident
that the magazine continues in good hands. i

Announcing the New CSCSI/SCEIO Executive

As the new president of the CSCSI, I would like to introduce
myself and the new executive, and tell you some of the plans
that we have for the society for the next couple of years.
After having served as secretary of the society for the past
two years, I am looking forward to working for the society
as its president over the next two years. I will be working
with our vice president Renee Elio, our secretary Guy Minot,
our treasurer Howard Hamilton, and our past president Stan
Matwin. Suhayya (Sue) Abu-Hakima will now be the editor
of our magazine, and Arlene Merling will continue in her
role of managing editor.

Over the next couple of years, we would like to increase
the presence of the CSCSI in the artificial intelligence
committee. Here are a few ideas that have been discussed to
increase our local presence, our national and international
presence, and our electronic presence.

Increased Local Presence

We would like to explore the idea of having the CSCSI
sponsor local events at different locations throughout the
country. Such events could include an ‘evening of Al
lectures’ in cities that have several universities or businesses
with Al interests. One person from each institution could
speak on a ‘controversial’ topic, to be followed by a
discussion session. It would be a great way to encourage the
interaction of people and expose new Al students to a larger
community.

Another idea that has also been discussed is having a local
CSCSI contact at each institution. This person could help
the society make contacts with new students, and could help
coordinate local CSCSI activities.

Increased National and International Presence
Currently, the CSCSI holds an Al conference only every
second year. Although this conference does bring together
Al researchers from across Canada and around the world,
changes should be made to make this conference more
successful. Additionally, the CSCSI could make its presence
known by taking a more active role in the sponsorship or
organization of additional special topic international
workshops at different locations around the country.

Increased Electronic Presence
In the past, the CSCSI has relied almost entirely on its
magazine for communication with its members. Recently
we have started to take greater advantage of on-line
communication. Our magazine is now available
electronically, and there is other information available at the
CSCSI web site. We would like to expand our web site to be
a greater service to our members, and to raise the external
profile of our society. Additionally, we plan to establish
more direct contact with our members through the use of the
CSCSI e-mail list that is now being maintained by CIPS.

If you have any ideas concerning the activities of your
society, just let us know. Our e-mail boxes are always open!

Fred Popowich, President CSCSI

Associate Professor, School of Computing Science
Simon Fraser University

Email: popowich@cs.sfu.ca

A

CSCSI/SCEIO Executive
1996 - 1998

Fred Popowich, Simon Fraser University, President
Renee Elio, University of Alberta, Vice-President
Guy Mineau, Université Laval, Secretary
Howard Hamilton, University of Regina, Treasurer

Sue Abu-Hakima, National Research Council (NRC), Magazine Editor

Canadian Atrtificial Intelligence Autumn 1996/ 3

a"s".= GROS TITRES

E: "« _ FEATURE ARTICLES
|

Nick Cercone — 1996 CSCSI/SCEIO

Distinguished Service Award Winner

Gord McCalla

Gord McCalla souligne les contributions de Nick Cercone pendant les quinze derniéres années a la communauté de
Dintelligence artificielle, qui lui ont valu le prix de la SCEIO pour service exceptionnel en 1996.

Gord McCalla highlights Nick Cercone’s contributions to the Artificial Intelligence community over the last fifteen years
leading to conferment of the 1996 CSCSI/SCEIO Distinguished Service Award.

October, 1983. 6:00 a.m. It is a traditional West Coast fall
day. Grey, cool, and moist. And, Nick Cercone has an idea:
why not create a new artificial intelligence journal, to be
sponsored by the CSCSI/SCEIO? Nick and I are each on a
sabbatical leave, living next door to each other in Vancouver,
he the President of the CSCSI/SCEIO, and I the Vice-
President. By the time I arrive for our daily mid-morning
de-briefing, Nick has sketched out the idea on his ancient
(even then) North Star computer and printed out these
preliminary ruminations on his low quality (even then) dot
matrix printer. We spend the rest of the day discussing the
nature of the journal, putting together a potential editorial
board, and formulating a plan for interesting both the Al
community and potential publishers. Six months later, the
Computational Intelligence journal is a reality, co-edited by
Nick and me, the first explicitly international journal to be
published by the National Research Council of Canada
Journals, and the first new journal of any sort for NRCC in
thirteen years. Now published by Blackwell, it is in Volume
13 and continues to be a leading international journal in Al
Nick and I are still co-editors.

This is typical of Nick Cercone. Not only a source of great
ideas, but also plenty of follow-through to actually make
things happen. Creating a new Al journal was not the only
thing we did during our mutual sabbaticals in 1983-84.
Under the auspices of the CSCSI/SCEIO, we also spawned
the idea of a workshop entitled Theoretical Approaches to
Natural Language Understanding (TANLU) that was held
in Halifax in June of 1985. We produced a survey of Canadian
Al research that proved invaluable to many in Canada as the
Al boom (remember that?) hit full force (this report was
later adapted for publication in AAAI’s Al magazine), we
put together papers on Al in Canada for the 1984 CIPS and
1984 CSCSI/SCEIO conferences, and we attempted to inform
the Canadian Al community about the fledgling CIAR Al
and Robotics program. It was an active time for Al in
Canada, and Nick was actively involved in making things
happen.

And, this was just one year in Nick’s hectic life. His entire
career has been one where he has made things happen. Here

4 / Intelligence Artificielle au Canada automne 1996

is just a partial list of his service to Al and related areas over
the last 15 years: President of the CSCSI/SCEIO (1982-84);
President of the Canadian Society for Fifth Generation
Research (1985-90); Co-Chair of the Planning Committee
for the BC Advanced Systems Institute (ASI) in 1985 and
Member of the ASI Scientific Advisory Board (since 1986);
Member of the NSERC Interdisciplinary Grants Selection
Committee (1988-91) and the NSERC Collaborative Grants
Panel (since 1995); Leader in the IRIS Network of Centres
of Excellence project (since 1989); Member of the CANARIE
Board (since 1994); Member of the Canadian Genome
Assessment of Technology Management Board (since 1993);
Member of the National Research Council of Canada
Advisory Committee on Artificial Intelligence (1989-91);
President of the Canadian Association for Computer Science/
Association Informatique Canadienne (CACS/AIC), the
Council of Canadian Computer Science Chairs (1991-94);
Member of the Research Committee for the Centre for
Image and Sound Research (CISR) (1991-93) and Member
of the CISR Board of Directors (1989-93).

He has also served his discipline in a major way through
conference and journal activities. In addition to his co-
founding and continued co-editing of the Computational
Intelligence journal (noted above), he has served (and is
still serving) on five journal editorial boards. He was also
Program Chair of the 4th Biennial Conference of the CSCSI/
SCEIO (1982) and Program Co-Chair of the 7th Biennial
CSCSI/SCEIO Conference (1988); Program Chair of the
Theoretical Approaches to Natural Language Understanding
Workshop (TANLU) (1985); Program Chair of the 7th
International IEEE Conference on Data Engineering (1990)
and General Chair of the 8th such Data Engineering
conference (1991); Program Chair of the 3rd International
Computational Intelligence Conference (1990); Vice-Chair
of the 13th International Conference on Distributed Computer
Systems (1992); as well as serving on literally dozens of
programming committees over the years and refereeing
scores of scientific papers. He has always been active in
academic and university-related activities, most notably as
Chair of the Simon Fraser University Computing Science

Department (1981-85), of the Centre for Systems Science
at Simon Fraser University (1987-92), and Associate Vice-
President (Research) and Dean of Graduate Studies at the
University of Regina (since 1993). Through these offices,
he has had great influence on the direction of computer and
information science in Canada, with a special focus on
encouraging technology interactions between the university
and industrial sectors.

Nick is also a great traveler, giving talks and establishing
interactions with researchers throughout the world, with a
special emphasis on creating and maintaining
interconnections with researchers in Asia. Through these
travels, Nick has spread the word about his own, and other
Canadian Al research. I won’t go into any stories about
these trips, but next time you see Nick you might ask him
about his unorthodox return trip from India in 1987, or
about a certain large, blue kimono!

Any academic, of course, serves his discipline best through
his research and scholarly activities. Nick has had a stellar
research career, publishing some 150 scientific papers in
books, journals, and conferences. He has edited or co-
edited five books. His research contributions span several
areas, most notably natural language understanding,
knowledge-based systems, knowledge discovery in
databases, and computation in the humanities. He and his
research collaborators have snared many millions of dollars
in research funding over the years, through which several
generations of researchers and graduate students have been
funded. Nick’s research supervision and teaching have been
a source of inspiration to his students, and he continues to
actively pursue these teaching activities at both the graduate
and undergraduate levels even as he has taken on more and
more senior administrative roles.

Lest one think that this man is some kind of superman,
however, let me assure you that Nick sometimes displays
all the attributes expected of the normal academic boffin.
To illustrate, I would like to conclude with one more story.
The scene is November 1983. Nick and I are in Chicago to
attend the program committee meeting of the first
International IEEE Data Engineering Conference, traveling
on tickets arranged carefully by Nick some weeks in advance.
The PC meeting is being held in conjunction with a general
U.S. computer conference. We attend the opening night
reception for the conference and are surprised to find that
U.S. computer scientists apparently dress in black tie for
such occasions. Scruffy as we are, we nevertheless wander
through the reception, gulp down some wonderful smoked
salmon, circulate for a bit exchanging a few pleasantries,
before retiring fairly early. After all, we must be up bright
and early the next morning for the 8:30 a.m. start of the PC
meeting. The next morning dawns, cool, grey, and moist
(making us Vancouver-ites feel right at home), and we go
in search of the PC meeting. It is nowhere to be found. In a
semi-panic we take the desperate measure of actually looking
at the information we have been sent by the PC chair about
the PC meeting. We are in the right city, in the right hotel,

outside the right meeting room, at exactly the right time of
day. Unfortunately, it’s the wrong day! Yes, Nick’s famous
organizational skills have managed to get us to Chicago a
whole day early. And, the conference reception the night
before was, in fact, a meeting of the Illinois Bar Association!

Despite his occasional feet of clay, however, it is entirely
appropriate that Nick Cercone is the winner of this year’s
CSCSI/SCEIO Distinguished Service Award.
Congratulations, Nick, on a job superbly well done and an

award that has been thoroughly well earned. A

Gord McCalla is a Professor in the Department of Computer
Science at the University of Saskatchewan. He has been
involved in artificial intelligence (Al) research for over 25
years, with interests in natural language understanding,
knowledge representation, and dynamic planning. These
interests have been combined and expanded within the
general context of developing artificial intelligence
applications in education. In particular, he has worked on
systems to support learning of programming CLISP and
PL(C), has investigated basic issues in student modelling
and domain knowledge representation, and has been involved
in investigations into instructional planning, tutorial dialogue
and alternative instructional paradigms. Numerous papers,
invited presentations, and talks have come out of this
research, including two co-edited books. Additionally, he
has been active in the CSCSI/SCEIO, serving various
executive roles, including President and Vice-President. He
has served on program committees of numerous conferences
(including AAAI 1JCAI, and CSCSI), and has been program
chair of several conferences including Al 96 in Toronto, the
1992 International Conference on Intelligent Tutoring
Systems, and the 1995 International Conference on
Computers in Education held in Singapore (where he was
co-chair). He is a member (and former director) of the
Laboratory for Advanced Research in Intelligent Educational
Systems (ARIES) at the University of Saskatchewan. He is
currently involved in the Telelearning Network of Centres of
Excellence as the director of sub-project 6.2.4, working on
collaborative learning systems.

Ed. Note: A profile of Nick Cercone appeared in the Summer
1993 issue of Canadian Artificial Intelligence magazine
authored by Connie Bryson, a free-lance technical writer
based in Alberta.

Canadian Artificial Intelligence Autumn 1996/ §

Agents: From Theoretical

Foundations to Practical Applications

Jean-Francois Arcand and Sophie Pelletier

This research was supported by the Centre for Information Technology Innovation (CITI). Both authors are now with
Microcell Labs, 1250, boul Rene-Levesque Ouest, suite 400, Montreal (Quebec) Canada, H3B 4WB.

Résumé

Cet article porte sur la recherche sur les architectures multi-
agents basées sur la psychologie cognitive et les réseaux
neuronaux artificiels. Le point central de notre architecture
multi-agents 2 base cognitive est 1’adaptabilité. Les agents,
confrontés & des environnements dynamiques, doivent avoir
la capacité d’apprendre en généralisant les expériences
passées, pour pouvoir réagir intelligemment devant de
nouvelles situations. Cette expertise accumulée, de paire
avec la détermination dynamique du profil de I’'usager, permet
aux agents intelligents de rendre service efficacement a une
grande variété d’usagers dans une multitude de scénarios
divers.

Abstract

This paper presents research on multiagent architectures
based on cognitive psychology and artificial neural networks.
Adaptivity represents the central point of our Cognitive-
Based Multiagent Architecture. Agents faced with dynamic
environments must have the ability to learn by generalization
of prior experience in order to react intelligently to new
situations. This cumulated expertise, together with dynamic
user profiling, allows intelligent agents to serve efficiently a
wide range of scenarios and users.

Introduction

During the past few years, CITI's Performance Support
System (PSS) group has been exploring the tremendous
benefits that can be gained from using adaptive, intelligent,
and autonomous agents for intelligent user assistance. The
theoretical foundation for these situational agents combines
several areas of research: cognitive psychology, adaptive
knowledge representation techniques, agent and multi-agent
architectures, and economic market models. Central to all of
the agents implemented by the PSS group is their ability to
acquire long-term knowledge based on past experiences.
Just as contextual data and agents’ task definitions are
essential in mapping agents’ reactions to current situations,
long-term adaptive knowledge becomes essential when all
possible worlds cannot be specified a priori within the agent.
Agents faced with dynamic environments must have the
ability to learn from generalization of prior experience in
order to react intelligently to new situations. This cumulated
expertise, together with dynamic user profiling, allows
intelligent agents to efficiently serve a wide range of scenarios
and users. In this way, resource-constrained agents have

6 /Intelligence Artificielle au Canada automne 1996

more solid grounds for making better choices when
negotiating for resources. As well, agents with similar
expertise can enter into trainer-trainee types of relationships.

Mapping Agents to Cognitive
Psychology Concepts

An adaptive system must be designed to assist users in
their problem-solving task, not to complicate it. Since users’
knowledge about the system and skill level in interacting
with the interface change with experience, and since users
differ in their choice of problem-solving knowledge
representation, it is useful to envision an adaptive qualitative
model of the user’s problem-solving behavior. This allows
the overall task to be approached with realistic expectations
of what can be achieved. Clearly, cognitive psychology
issues play a major role in modeling the user. If the agent is
to adapt to an individual user, it must encompass information
about the user’s cognitive limitations or strengths as well as
the user’s perceptual strengths and weaknesses.

Cognitive Model

Current research suggests that embedded user models
would allow more intelligent and helpful human-computer
interaction. In the course of our research (Arcand, 1995),
several proposed cognitive models were analyzed and
Rasmussen’s model was viewed as the most appropriate
one for representing a cognitive model of the user in agents
(Rasmussen, 1983).

Rasmussen’s model is a cognitive modeling framework
focusing on real-time, multi-tasking domains, and has been
successfully applied and validated in several domains. The
model considers problem-solving to consist of three different
levels of behavior: skill-based, rule-based, and knowledge-
based. Skill-based behavior, the lowest level of behavior,
occurs at an unconscious level; most of our behavior is
skill-based. Actions such as moving the hand to pick
something up are skill-based. Rule-based behavior is an
intermediate level of behavior evident in familiar situations.
At this level, we are conscious of our thoughts and our
behavior is governed by stored rules. Knowledge-based
behavior is the highest level of behavior and is used in
unfamiliar situations, is goal-controlled and is typified by
functional reasoning. While these types of behavior have
fuzzy boundaries, they are very useful in describing the
range of behavior that must be included in any model that

attempts to account completely for human behavior.

Rasmussen’s model can also be thought of as a learning
or abstraction hierarchy. A human first encountering a
problem typically uses some kind of functional reasoning
(knowledge-based behavior) to draw analogies with what is
already known. Thus, the problem is dissected into smaller,
more familiar, problems the human already knows how to
solve (using skill-based behavior) by rules that have been
developed earlier (rule-based behavior). If the same problem
is seen frequently and is simple enough, eventually only
skill-based actions may be involved. In terms of Rasmussen’s
model, we are concerned with learning the rules and the
skills associated with particular behaviors.

Agent Modeling

On the basis of Rasmussen’s mode, a generic multi-agent
architecture has been developed which takes advantage of
the hierarchical distribution of knowledge. This architecture,
called the Cognition-Based Architecture (CBA), rests on
the interaction of three classes of agents: Junior Intelligent
Agents (JIA), Senior Intelligent Agents (SIA), and Facilitator
Agents (FA) (Arcand, 1996). The first two classes
encapsulate knowledge on how to support the user in
performing tasks; the last one is internal to the system and
facilitates communication among other agents and
optimization of the multi-agent world.

JIAs are specialized in domain specific know-how, and
represent the skill-based and rule-based levels. In an
intelligent user support environment, these agents have the
ability to take into account contextual information about the
user’s current work session. SIAs possess the knowledge-
based information relating to a user’s tasks, and consist of
expertise built up from a history of past interaction between
the user and the system. JIAs and SIAs are paired in order to
create a complete model of the user. This allows the system
to react on a contextual basis if possible, or to generalize
from its past experience if no model is known for the current
context.

Dividing the user model into two classes of agents results
in two major advantages: it diminishes the complexity of the
knowledge base as the latter is built in a modular fashion,
and it allows for the selection of the most appropriate
knowledge representation technique at every level. For
instance, if rule-based systems are appropriate for JIAs,
SIAs can request the use of techniques with a higher capacity
to generalize from known information, as well as to learn
and forget with time, thus implementing true adaptiveness
into the user support system. The technology of artificial
neural networks is one of the few that offers these required
characteristics.

Another benefit gained from splitting the user model
among collaborative agents is the possibility of having users
share their SIAs in order to build group knowledge and
benefit from each others’ usage of the system. Novice users’
JIAs could team up with experts’ SIAs to facilitate expertise
transfer. In essence, if the expertise of the best user can be

captured easily and economically and made available to
other users, significant economic benefits would accrue.
Another way to accomplish this expertise transfer is to have
SIAs support one another when one does not yet possess
sufficient knowledge. Relations between all agents of the
architecture must therefore be kept dynamic.

Such dynamism brings another dimension to the
architecture. In addition to the option to choose which agents
team up, agents can have the authority to punish and reward
their collaborators, and thus influence other agents in their
future collaboration decisions. We believe that such dynamic
economy driven agent teams will become part of the solution
for multi-agent worlds evolving on the Word Wide Web
(WWW). Agents tasked to complete searches and
transactions on the Web on behalf of users will be able to
team up with the best possible collaborators on the market
in order to maximize both their efficiency and effectiveness
in meeting their users’ requests.

Adaptive Knowledge Representation Techniques

One of the key issues in designing agents is to choose the
knowledge representation technique best suited to the agent’s
needs, particularly for truly adaptive agents as described in
the context of the Cognition-Based Architecture. Different
research projects with highly adaptive agents and their multi-
agent worlds lead us to explore different knowledge
representation techniques. However, distributed artificial
neural networks lie at the kernel of the designed adaptive
models. At CITI, we have successfully applied DANNs to
adaptive modeling in such diverse fields as information
filtering (Pelletier, 1996), human factors (Arcand, 1994)
(Ramstein, 1996), collaborative work (Arcand, 1994), etc.

Distributed Artificial Neural Networks (DANN) have been
developed to simulate human problem-solving resources
and mechanisms and have shown strong abilities in learning
and flexible knowledge processing (i.e., generalize
knowledge to novel situations). DANNSs are seen as super-
networks (distributed meaning shared and simplified),
comprised of a number of sub-networks, that can
communicate with each other. Such super-networks are
intended to facilitate the modeling of complex and
heterogeneous realities. The designer’s task is thus to divide
a complex problem into a series of simpler problems,
according to Rasmussen’s model, thus dividing the work
among the agents.

With the ability to learn from a series of training examples,
artificial neural network models provide the possibility of
extracting user characteristics and providing on-line help
depending on current user behavior. DANNS are extremely
fast; therefore adaptation could be offered on-line in real-
time. DANNs can be used to extract information such as
cognitive goals, strategies, command sequences, and
information needs. This can then be used to provide adaptive
advice to the user or to intelligently filter incoming
cooperative information.

Canadian Artificial Intelligence Autumn 1996/ 7

Conclusion

This article presented multiagent research using cognitive
psychology principles within a human-computer system. In
the framework of open multi-agent systems, free market
economy concepts allow systems to perform better by
eliminating agents whose credibility or utility are in doubt
and by improving the performance of remaining agents. We
believe that the use of cognitive psychology principles avoids
restricting knowledge representation to artificial intelligence
techniques by providing a framework for applying artificial
neural networks.

References

Arcand, J.F., (1994). An Artificial Neural Network for the
Ergonomic Evaluation of a Human-Computer Interface,
in Proceedings of IEEE Sixth International Conference on
Tools with Artificial Intelligence, November 6-9, New-
Orleans, LA. pp. 606-608.

Arcand, J.F., Chafetz, R., (1994). Using Markov Chains,
Adaptive Neural Networks and Evolutionary Programming
to Create an Intelligent Agent, Proceedings of International
Symposium on Artificial Neural Networks, December 15-
17, Tainan, Taiwan, pp. 526-536.

Arcand, J.F., Pelletier, S. (1995). A Framework for Creating
Societies of Agents, pp. 235-238 in Pearson, D.W., Steele,
N.C., and Albrecht (eds) Artificial Neural Nets and Genetic
Algorithms, Springer-Verlag, Vienna, New-York.

Arcand, J.F., Pelletier, S. (1996) Cognition Based Multiagent
Architecture in Intelligent Agents: Theories, Architectures
and Languages. Lecture Notes in Artificial Intelligence,
Volume II, Springer-Verlag, pp. 267-282.

Pelletier, S. Arcand, J.F, Velisarios, J. (1996). Stealth: A
Personal Digital Assistant for Information Filtering, in
Proceedings of the 1996 Practical Applications of
Intelligent Agents and Multi-Agents Conference, London,
April 22-24,

Ramstein, C., Arcand, J.F., Deveault, M. (1996). Adaptive
User Interface with Force Feedback, in Proceedings of
ACM Conference on Human Factors in Computing
Systems, CHI 96, April 14-18, Vancouver, Canada,
pp- 408-409.

Rasmussen, J. 1983. Skill, Rules, and Knowledge: Signals,
Signs, and Symbols, and Other Distinction in Human
Performance Models. IEEE Transactions on Systems, Man,

Cybernetics, Vol. SMC-13, May/June, 257-266. A

Jean-Francois Arcand is a mathematician working in the
field of human-computer interaction and artificial neural
networks. His research interests include information filtering,
adaptive interfaces, intelligent agents, and multi-agent
architectures. He has over twenty publications in books and
conference proceedings related to these fields. Since
September 1996, he is working at Microcell Labs, a research
and development organization dedicated to advancing the
state of the art in personal communication services (PCS).
Email: Jean-Francois.Arcand@Microcell.net

Sophie Pelletier holds a B.Sc. in Computer Sciences from
the University of Sherbrooke. She is presently completing a
M.Sc. in Computer Engineering at the Ecole Polytechnique
de Montréal on the subject of multi-agent architectures for
information retrieval in heterogenous data sources. She has
worked as a researcher for the Centre for Information
Technology Innovation (CITI) and is now part of the research
team at Microcell Labs in Montreal. Her research interests
include the design of open distributed multi-agent
architectures and of intelligent autonomous agents, as well
as mobile computing.

Email: Sophie-Julie.Pelletier@Microcell.net

Check out our Website!

Canadian Artificial Intelligence Magazine
Accessible to CSCSI/SCEIO members only

If you would like to try electronic access, please send an E-mail
message to peter@ai.iit.nrc.ca, with the following information:

(1) your full name
(2) your e-mail address
(3) a short user name (5-8 characters, for web access)
(4) a password (5-8 characters, for web access), and
(5) your CSCSI/SCEIO membership identification number, which can
be found on the mailing label of the magazine.

8 / Intelligence Artificielle au Canada automne 1996

The Agent Building Shell: A Tool
for Building Enterprise Multi-Agent Systems

Résumé

Le concept d’agent offre un niveau d’abstraction qui permet
de construire des systémes informatiques qui interagissent
globalement a travers des réseaux, reliant les gens, les
organismes et les machines sur une plate-forme virtuelle
unique. On appelle “agents” les entités informatiques qui
opérent & ce niveau. Les systémes a base d’agents sont
naturellement propices a4 la modélisation des entreprises
modernes, qu’on peut concevoir comme des réseaux
mondiaux de fournisseurs, d’usines, d’entrepdts, de centres
de distribution et de détaillants a travers lesquelles les
matires premi€res sont obtenues, transformées en produits,
livrées aux clients, traitées et améliorées. Du point de vue
pratique, tout systéme de soutien a la création de systémes a
base d’agents doit permettre la réutilisation de descriptions
de mécanismes de coordination, de composantes de systémes,
de services et de bases de connaissances. Sur cette base,
nous développons un outil pour la création d’agents qui
fournit des langages et des services réutilisables, évitant
ainsi aux développeurs de construire des systémes a base
d’agents a partir de zéro, et garantissant que les services
essentiels d’inter-opération, de communication et de
coopération seront toujours présents pour supporter les
applications.

Abstract

The agent view provides a level of abstraction at which we
construe computational systems that interoperate globally
across networks, linking people, organizations, and machines
on a single virtual platform. We call the computational
entities that can operate at this level agents. Agent systems
can naturally model modern enterprises, which are best seen
as world-wide networks of suppliers, factories, warehouses,
distribution centers, and retailers through which raw materials
are acquired, transformed into products, delivered to
customers, serviced, and enhanced. From the practical
standpoint, any support for building agent systems must
provide the ability to reuse descriptions of coordination
mechanisms, system components, services, and knowledge
bases. Based on this recognition, we are developing an
Agent Building Shell that provides reusable languages and
services for agent construction, relieving developers from
the effort of building agent systems from scratch, and
guaranteeing that essential interoperation, communication
and cooperation services will always be there to support
applications.

1. Motivation
The agent view provides a level of abstraction at which
we construe computational systems that interoperate globally

Mihai Barbuceanu and Mark S. Fox

across networks, linking people, organizations, and machines
on a single virtual platform. We call the computational
entities that can operate at this level agents. Agent systems
can naturally model modern enterprises, which are best seen
as world-wide networks of suppliers, factories, warehouses,
distribution centers, and retailers through which raw materials
are acquired, transformed into products, delivered to
customers, serviced, and enhanced. In order to operate
efficiently, enterprise functions must work in a coordinated
manner. But the dynamics of the enterprise and of the world
market make this difficult; exchange rates unpredictably go
up and down, customers change or cancel orders, materials
do not arrive on time, production facilities fail, workers are
ill, etc. causing deviations from plan. In many cases, these
events can not be dealt with locally, i.e., within the scope of
a single supply chain “agent,” requiring several agents to
coordinate in order to revise plans, schedules, or decisions.
In the manufacturing domain, the agility with which the
enterprise supply chain is managed at the tactical and
operational levels in order to enable timely dissemination of
information, accurate coordination of decisions, and
management of actions among people and systems, is what
ultimately determines the efficient achievement of enterprise
goals and the viability of the enterprise on the world market.

2. The Agent Building Shell

From the practical standpoint, any support for building
agent systems must provide the ability to reuse descriptions
of coordination mechanisms, system components, services,
and knowledge bases. Based on this recognition, we are
developing an Agent Building Shell [4, 2] that provides
reusable languages and services for agent construction,
relieving developers from the effort of building agent systems
from scratch and guaranteeing that essential interoperation,
communication, and cooperation services will always be
there to support applications. We have built a layered
architecture of the Agent Building Shell comprising:

The coordination language, providing services for defining
distributed agent configurations, managing communication,
defining and managing structured interactions amongst
agents, external software integration and in context
acquisition, and debugging of coordination knowledge. The
communication part is based on KQML [11], while the
coordination language [2, 3, 5] is a novel contribution of
this work.

The cooperative conflict management service, providing
a general model for reasoning about retraction in a multiagent
system. If an agent receives contradictory information from
other agents — for example p from Agentl, q from Agent2,

Canadian Artificial Intelligence Autumn 1996/ 9

the agent believing that p&q=> false — it applies this model
to retract beliefs supporting the contradiction and reinstall
consistency both locally and with its neighbors. The model
relies on the credibility of the information sources balanced
against the utility of the information, as measured, for
example, in terms of costs to be paid when undoing decisions
as a consequence of belief retraction. The model reinstates
agent-level consistency and, through negotiation with the
agents affected by the retracted beliefs, extends the consistent
state to surrounding agents. Also, the model stipulates the
kind of cooperative behavior that an agent must exhibit
towards other agents in the process of reestablishing a
consistent state [7, 2].

The cooperative information distribution services provide
permanently active information distribution services allowing
agents to stay informed about significant events without
having to explicitly demand other agents to provide this
information each and every time they need it. Agents
advertise their long-term topics of interest to the community.
Agents that can supply relevant information will do so
whenever the information is available and as long as the
interest persists. If previously sent information is later
invalidated, senders which are aware of that will behave
cooperatively by notifying receivers.

The ontology layer, consisting of the actual
conceptualizations agents maintain about their domain,
environment, and self. Some conceptualizations are shared
among agents to allow them to communicate in terms that
are semantically unified. The environment and self
representations use a shared organization ontology that
captures the structure of organizations, the roles, goals,
actions, empowerment, and responsibility of member agents
of the organization [10].

The knowledge management layer, providing support for
general purpose representation and inference. It is used to
represent an agent’s conceptualizations and beliefs about its
domain, operation environment, and its own capabilities. It
provides support for nonmonotonic reasoning and general
purpose deductive reasoning [8].

3. Coordination

We have built adomain independent coordination language
(COOL) that provides a conceptualization of the coordination
task in terms of structured “conversations” amongst agents.
The approach builds on the following assumptions: (i)
autonomous agents have plans that explicitly include
interactions with other agents; (ii) these plans are based on
limited assumptions about the possible actions/reactions of
the other agents; (iii) the plans may be incomplete and
inaccurate and the knowledge to extend them may become
available only during execution; (iv) agents are able to
extend and modify their plans during execution. COOL is
an agent planning and execution language that embeds these
principles. The most important construct employed by COOL
is that of a plan that explicitly represents interactions and
alternative courses of action, that may be incomplete or

10/ Intelligence Artificielle au Canada automne 1996

inaccurate and that is modifiable during execution. This
construct is called conversation-class, to emphasize the
importance of interactions in agent plans. When interacting,
agents instantiate their own conversation-classes, creating
actual conversations that maintain the execution status of
the plans described by the conversation-classes.
Conversation-classes consist of states, sets of conversation
rules managing the transitions amongst states, specifications
of control mechanisms for rule execution and others.
Conversation rules specify patterns of received messages
and agent internal conditions that, when satisfied, trigger a
transition to another state, send out messages, and execute
actions. Some rules are triggered automatically upon state
entry or exit. Others are triggered as specified timeouts
expire, allowing agents to operate in real time.

COOL provides a multiple conversation management
mechanism that allows agents to maintain a dynamically
constructed hierarchy of conversations and run them
simultaneously. Child conversations are created by parent
conversations, taking over some part of the interaction.
Child conversations may propagate upwards (to parents)
messages or situations they are not prepared to deal with.
Agents start in an initial conversation and, as messages are
received and actions done, new conversations are created
and added to the hierarchy. Some conversations can be put
on wait for others to reach a specified state and be resumed
when this happens. This allows agents to switch focus of
attention as imposed by dynamic events.

A challenging aspect when dealing with coordination
knowledge in a multi-agent environment stems from the
social nature of coordination knowledge coupled with the
logical, spatial and temporal distribution of agents.
Essentially, this limits the applicability of approaches based
on designing coordination structures in advance, off-line, on
the assumption of complete knowledge and totally predictable
interactions. Rather, we should view coordination knowledge
as dynamically emerging through the unpredictable
interactions of participants who necessarily have limited
knowledge and who are usually in the process of doing their
own work. This means that the coordination system must
leverage the ability of participants (agents) to dynamically
create and alter interaction structures on the fly and to build
up common interaction structures without being temporally
or spatially collocated.

In our system, we satisfy this requirement by allowing (i)
incremental modifications of the cooperation structures, e.g.,
by adding or modifying knowledge expressed in rules and
conversation objects, (ii) system operation with incompletely
specified coordination structures, in a manner allowing users
to dynamically intervene at appropriate times and take any
action they consider appropriate, and (iii) system operation
in a user controlled mode in which the user can inspect the
state of the interaction and take alternative actions not
necessarily represented in the system. This is achieved by
operating with incomplete rules. Whenever a conversation
encounters an incomplete rule, a special graphical interface

is popped up and the user is given the discretion to fill in any
piece of missing knowledge and make any decision about
the continuation of the conversation. Using structure editors,
users can create new COOL structures or modify existing
ones, incrementally improving the existing coordination
knowledge. As this intervention is always situated in the
actual execution context, knowledge acquisition/debugging/
extension is equally situated, thus more accurate and easier
to perform. By being able to operate with any amount of
incomplete knowledge, prototypes can be rapidly built,
demonstrated, and evaluated. Refinement can then follow as
above, shortening the time and cost of development.

4. Current Status and Future Directions

Currently, all layers have been implemented and
experimented with. The information distribution and conflict
management services are embodied in a generic Information
Agent that functions as an intelligent mediator in our
enterprise architecture [6]. The Information Agent makes
use of description logic knowledge management [8] to
intelligently solve subscriptions to information by proving
the subsumption of available information by topics of interest.
The conflict management model [7] is also implemented in
this context and makes use of extended truth-maintenance
algorithms to determine the impact of contradictory
information across the beliefs held by an agent. The
coordination system has been evaluated on several problems,
ranging from well-known test problems like n-queens to the
supply chain of our TOVE virtual enterprise [9] and to
supply chain coordination projects carried out in cooperation
with industry. In all situations, the coordination model and
the acquisition tool enabled us to quickly prototype the
system and build running versions demonstrating the required
behavior. Often, an initial (incomplete) version of the system
has been built in a few hours enabling us to immediately
demonstrate its functionality. We have built models
containing hundreds of conversation rules and tens of
conversation classes in one to two weeks. Moreover, we
have found the approach explainable to industrial engineers
interested in modeling manufacturing processes.

Our major priority at the moment continues to be gathering
empirical evidence for the adequacy of the approach to
industrial applications and for that matter we are jointly
working with several industries. Apart from that, we are
making our COOL agents accessible through the WWW
and improving the integration of all components of the
Agent Building Shell. Since our approach is in an essential
way managing workflow, we have started addressing
organizational workflow modeling and enactment as part of
our participation in the Globeman/IMS effort. Last but not
least, explaining the decisions and behavior of multi-agent
systems will become more and more important as we move
into more complex applications. Having explicit
representations of coordination mechanisms forms the basis
for providing such explanations and we are studying the
issue as part of another joint effort with industry.

5. References and Further Readings

1. http://www.ie.utoronto.ca/EIL/ABS-page/ABS-intro
contains many papers and examples about our agent
research.

2. M. Barbuceanu and M. S. Fox. Capturing and Modeling
Coordination Knowledge for Multi-Agent Systems. To
appear in the International Journal on Cooperative and
Intelligent Information Systems, 1996.

3. M. Barbuceanu and M. S. Fox. Coordinating Multiple
Agents in the Supply Chain. To appear in Proceedings
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, IEEE Press, 1996.

4. M. Barbuceanu and M.S.Fox. The Architecture of an
Agent Building Shell. In M. Wooldridge, J.P. Mueller,
M. Tambe (eds) Intelligent Agents I, Springer Verlag
Lecture Notes in Al, vol. 1037, March 1996.

5. M. Barbuceanu and M.S.Fox. COOL: A Language for
Describing Coordination in Multi-Agent Systems. In V.
Lesser (ed) Proceedings of First International Conference
on Multi-Agent Systems, MIT Press/AAAI Press, San
Francisco, 1995.

6. M. Barbuceanu and M.S.Fox. The Information Agent: An
Infrastructure for Collaboration in the Integrated
Enterprise. In S.M.Deen (editor) Cooperative Knowledge
Based Systems, DAKE Centre, 1994.

7. M. Barbuceanu and M.S.Fox. Conflict Management with
a Credibility/Deniability Model. In M. Klein and S.
Lander (Co-chairs) Models of Conflict Management for
Cooperative Problem Solving, Tech. Report WS-94-04,
AAAT Press.

8. M. Barbuceanu. Models: Toward Integrated Knowledge
Modeling Environments, Knowledge Acquisition, 5, pp.
245-304, 1993.

9. M. S. Fox. A Common-Sense Model of the Enterprise. In
Proceedings of Industrial Engineering Research
Conference, 1993.

10.M. S. Fox, M. Barbuceanu, and M. Gruninger. An
Organisation Ontology for Enterprise Modeling:
Preliminary Concepts for Linking Structure and Behavior.
In Proceedings of the Fourth Workshop on Enabling
Technologies, Infrastructure for Collaborative
Enterprises, IEEE Computer Society Press, 1995.

11.T. Finin, et al. Specification of the KQML Agent
Communication Language. The DARPA Knowledge
Sharing Initiative, External Interfaces Working Group,
1992. i

Mihai Barbuceanu holds a Ph.D. in computer science from

the Technical University of Bucharest and is currently a

Research Scientist in the Enterprise Integration Laboratory

at the University of Toronto. His current research focuses

on coordination and multi-agent systems. Previously, he
has done work in knowledge representation, description

(continued, page 15)

Canadian Artificial Intelligence Autumn 1996/ 11

Multi-agent Systems at Laval University

Résumé

Ceci est un bref compte rendu des recherches effectuées
actuellement sur les aspects mutiagents, au sein du
département d’informatique de I' Université Laval. Ce compte
rendu est divisén trois axes: 1) les architectures d’agents, 2)
les aspects théoriques portant sur le multiagent; 3) les
applications en cours ou envisagées. Pour ce qui est des
architectures d’agents, nous travaillons presentement sur
des modeles hiérarchiques du type de celui de Rasmussen,
c’est & dire une architecture qui fait ressortir les aspects
habiletés, régles et connaissances. Pour I’aspect théorique,
nous nous orientons vers la logique descriptive et I’algébre
des relations. En qui concerne les applications, nous portons
nos efforts sur le traffic routier, la gestion des bases
hétérogenes distribuées et le génie concurrent.

Abstract

In this short paper, we describe research in multiagent systems
(MAS) at Laval University. The research is divided into 1)
agent architectures, 2) theoretical aspects and, 3) applications.
In the context of agents, we are interested by the hierarchical
human model, particularly the skill, rule, knowledge (SRK)
model of Rasmussen. Our vision of theoretical aspects for
multiagent systems is based on descriptive logics and
relational algebra. Finally, in the context of applications, we
are working on urban traffic, cooperation between
heterogeneous distributed databases, and concurrent
engineering.

Introduction

In multiagent systems (MAS), the agents generally preexist
and are autonomous and typically heterogeneous. Research
in this context is concerned with coordinating intelligent
behaviors among a collection of autonomous agents, that is,
how these agents can coordinate their knowledge, goals,
skills, and plans jointly to take action and to solve problems.
More specifically, in this type of environment:
1) agents may be working toward a single global goal, or
toward separate individual goals that interact;
2) agents are generally self-motivated, autonomous, and
rational;
3) agents might share knowledge about tasks and partial
works;
4) agents must reason about the process of coordination
among them.

Thus, coordination is central to multiagent systems; without
it, any benefits of interaction are not possible and the behavior
of the group of agents can become anarchic. The concept of
coordination between agents is central to our work at Laval
University. In this short paper, we describe this work.

12 / Intelligence Artificielle au Canada automne 1996

B. Chaib-draa

Agent Architectures

To produce coordinating behaviors in MAS, most research
has concentrated on developing groups in which both control
and data are distributed. Distributed control means that
agents are autonomous (to some degree) in their actions.
Evidently, this autonomy can lead to uncoordinated activities
because of the uncertainty of each agent’s actions. In this
context, a number of coordination techniques have been
deployed. However, no technique investigated the relation
between uncertainty and the situation addressed by agents
since it is well known that the uncertainty decreases when
the degree of familiarity of the addressed situation increases.

Our work on agent architectures is a step towards
remedying this problem by providing a framework for
designing multiagent systems in which agents are capable
of coordinating their activities in routine, familiar, and
unfamiliar situations. In routine situations, generally, agents
have complete knowledge of their actions and interactions
and in these conditions, it would be possible to know exactly
what each agent is doing at the present moment and what it
is intending to do in the future. In this context, it would be
possible to avoid conflicting and redundant efforts; agents
could be perfectly coordinated and the effort of achieving
this state would not be prohibitively high.

Such complete knowledge about actual actions and
reactions is only feasible in routine situations. In real-world
domains, however, there are also familiar and unfamiliar
situations. In familiar situations, agents can also coordinate
their behaviors since individual acts are carried out under
expectations of future actions of other agents’ actions and
beliefs. In unfamiliar situations, however, the coordination
between agents is difficult to obtain and maintain because
agents need to be constantly informed of all developments
in order to elaborate their decisions. In fact, a complete
analysis to determine the detailed activities of each agent is
impractical in unfamiliar situations, and agents should have
the capability to reason about others in order to make
decisions.

Three kinds of interactions can be consequently studied in
multi-agent environments: interaction in routine situations,
interaction in familiar situations, and interactions in
unfamiliar situations. Evidently, the coordination is easier
to obtain and to maintain in routine than in unfamiliar
situations (familiar situations are intermediate).
Communications are also more requested in unfamiliar
situation than in routine situations.

The skills, rules, and knowledge-based (SRK) processing
proposed by Rasmussen (J. Rasmussen, “Information
Processing and Human-Machine Interaction: An approach
to Cognitive Engineering,” North Holland, 1986) reflects
differences in consistency of response and conscious control

of human behavior. Skill-based behavior refers to fully
automated activities such as tracking or guiding, rule-based
behavior to stereotyped actions such as test point checking
in troubleshooting electronic circuit, and knowledge-based
behavior to conscious activities involving problem solving
or decision-making.

In the SRK perspective, the skill-based level denotes
almost routine performances. At this level, agent performance
is governed by stored patterns of predefined procedures that
map directly from observation (i.e., perception) to an action.
The rule-based level represents more conscious behavior
when handling familiar situations. The rule-based behavior
is conventionally described by a set of heuristics, that is, by
a set of stocked rules. The knowledge-based level accounts
for unfamiliar situations for which know-how or rules are
not available. Indeed, for these situations, the control of
performance must move to a higher conceptual level, in
which behavior is controlled by goal and utility and more
generally by the reasoning about others.

These considerations have led us to adopt Rasmussen’s
conceptual model as a framework to develop an agent
architecture that evolves in a world inhabited by other agents.
This model is driven by the goal of combining the
complementary advantages of reactive, planning, and
decision-making systems in order to take into account
different situations which arise in multiagent environments:
routines, familiar, and unfamiliar situations. First, it needs
to be reactive to be able to quickly respond to changes in its
environment. Secondly, it should be capable to plan its
activities for a recognized task or goal. Finally, the model
must also allow reasoning about others since agents should
be capable of making decisions that take into account their
own intentions and also others’ intentions.

As previously noted, the coordination between agents is
generally more easy to obtain and to maintain in routine
than in unfamiliar situations. Indeed, when agents have
routine and familiar behaviors, these behaviors are generally
known by all agents. In this context, any agent has facilities
to coordinate its activities with other agents, and
communication is requested only when necessary. In order
to strengthen the levels relative to routines and familiar
situations, we have enriched each agent with social
regularities (for instance, coordinative rules, cooperative
rules, etc.) and social collectivities (e.g., roles, groups,
organizations, etc.) in the form of social laws. By doing this,
we assume that the agents adopt these social laws and each
agent obeys these laws and will be able to assume that all
others will as well.

Finally, we have demonstrated, on some scenarios of
urban traffic, the applicability of our approach based on
SRK model (see Applications).

Theoretical Aspects

Actually different formal tools are used to analyze and
synthesize our multi-agent systems. These formal tools are
based on (classic and non-classic) logics, game theory,

decision theory, and market mechanisms. Such tools should
be completed by the calculus of relations if we want to
represent and to reason about “social structure” in which
relations between agents is the relevant unit. In this respect,
we are developing a formal approach based on relational
algebra for the reasoning about crisp and fuzzy relations
between agents. The important elements of this approach
include 1) basic notions of relation algebra, 2) how to use
crisp relations in multi-agent systems, 3) how to use fuzzy
relations in multi-agent systems.

In this research, we have moved some steps towards a
formal theory of relations that characterize a “social structure”
between agents. Precisely, we have proposed a formalism
based on relation algebra for relationships between
components (essentially agents, tasks, and resources) of the
multi-agent systems. To achieve this, we have studied in
detail 1) the basic notions of this formalism, and 2) their use
in the context of multi-agent.

The most obvious consequence of using such formalism
is to allow each agent to reason about relations with a
“natural” tool which is the relation algebra. Such a reasoning
allows agents: (i) to manage inter-dependencies between
their activities in order to obtain and to maintain coordination
between them, (ii) to manage their meta-level information
exchange to decrease the overall communication flow.

Further efforts must be carried out in order to achieve a
complete example formalized with the relation algebra
approach.

Another theoretical aspect on which we are working is
reasoning about causal relations between agents’ goals and
activities in order to contribute to agents’ coordination. To
do this, we have investigated the issue of using cognitive
maps (CMs) for this reasoning. CMs are causal maps
represented as directed graphs in which nodes represent
problem construct (utilities, goals, or other concepts) and
edges or arrows represent dependencies or influences
between constructs. The distinguishing characteristic of a
CM is a focus on abstract causal relationships among
concepts, specifically on the directions, or signs (+, -, 0 for
instance) of causal dependency. At that time, we can explain
how CMs allow agents to derive decisions about which
goals to achieve or which areas of the graph (of goals) to
explore in order to contribute to coordination. In this research
area, we have also constructed a formal model for CMs with
precise semantics based on relation algebra. By defining
this semantics, we justify the classical intuitive inference
mechanisms, based on reasoning from cause to effect.

Finally, we are also working on a new formalism based on
descriptive logics for reasoning in multi-agent environments.
This work investigates language, as used in KL-ONE-type
knowledge representation systems, from an algebraic point
of view. Descriptive logics are based on two primitive
syntactic types, called concepts and roles, which are usually
interpreted in a “model” as sets and relations respectively.
We propose an algebraic rather than a model approach and
we show that descriptive logics can be naturally

Canadian Artificial Intelligence Autumn 1996/ 13

accommodated in algebras of sets interacting with relations.
As well, we use algebra as a formal tool for reasoning about
concepts interacting with roles in multi-agent environments.

Applications

Actually, three applications have been used to validate
our idea and concepts: urban traffic, a heterogeneous
distributed database system, and concurrent engineering.

Urban traffic

The architecture described in the Agent Architectures
section depicts a general model and can be adapted to a vast
number of fields. We implemented each component of the
architecture (in Common Lisp) while keeping in mind this
idea of generality. In order to validate this architecture in a
multi-agent environment, we have implemented some
scenarios from urban traffic, using our architecture.

As stated previously, there are three levels (S-R-K: skills,
rules, and knowledge) of cognitive control (for each agent)
in multiagent systems (MAS). These three levels can be
grouped together into two general categories. K is concerned
with analytical problem solving based on symbolic
representation, whereas S and R are concerned with
perception and action. S and R levels can be only activated
in routine and familiar situations because these low levels
require that agents know the perceptual features of the
environments and the knowledge relative to these situations.
The K level, on the other hand, is only activated in unfamiliar
situations. These considerations have been taken into account
in designing our agents.

With these agents, we have developed implementations
and experiments in urban traffic to verify our intuitions
about the distinction between the two modes of processing:
perceptual processing (S and R levels) and analytical problem
solving (K level). Perceptual processing is fast, effortless,
and is propitious for coordinated activities between agents,
whereas analytical problem solving is slow, laborious, and
can lead to conflicts between agents. To this end, we have
conducted a series of experimental studies on three policies
of the crossroads scenario. The policy 1 refers to a routine of
urban traffic. In this routine, agents’ activities are coordinated
by traffic lights. Policy 3 refers to an unfamiliar situation of
the crossroads scenario. In this situation, agents should rely
on social laws to make decisions because traffic lights are
off, and there is no policeman to coordinate their activities.
Finally, the policy 2 refers to a complex situation where
agents’ activities are coordinated by a policeman, that is by
a knowledgeable agent.

We examined for the cars three performance indices when
comparing the policies: communication, processing time for
each mode of reasoning (skills, rules and knowledge), and
task effectiveness. The effectiveness is specified by two
distinct parameters: errors and waiting time. For the
policeman who intervenes in the policy 2, we examined two
performance indices: communications and processing time
for each level of the agents’ cognitive control.

14 / Intelligence Artificielle au Canada automne 1996

As we had anticipated, our implementation and
experiments successfully demonstrated that perceptual
processing is fast, effortless, and is propitious for coordinated
activities between agents.

Heterogeneous Distributed Database System

Heterogeneous distributed database system (HDDBMS)
involves the interoperability of data sources with different
structure and different implementation across a network.
One approach to realize this type of integration is to build
interfaces between the different databases being integrated.
This approach works, for a particular case, at a specific
point in time. Another possibility that we are investigating
is the integration of information agents as front-ends of the
different databases. We think that such agents can be an
important tool for information-gathering and query-
answering for the existing databases as well the Web services.
We are working towards this integration using our agent
architecture (see Introduction) and the theoretical aspects
about relationships between agents.

Negotiation and Cooperation in Concurrent
Engineering

Actually, we are working on some examples from
concurrent engineering to validate our theoretical approaches
on relations between agents, tasks, and resources; causal
relations between agents’ goals intentions and utilities; and
reasoning on concepts and roles as specified by our
descriptive logic.

References

Chaib-draa, B., Desharnais, J., and Lizotte, S. A Relation
Graph Formalism for Relationships Between Agents. IEEE
Trans. on Knowledge and Data Engineering (submitted).

Chaib-draa, B. Formal Tools for the Multiagent Systems.
IEEE Trans. on Knowledge and Data Engineering
(submitted).

Hassane, F. and Chaib-draa, B. Evaluation of Different
Algorithms for Rule Allocation in Parallel Rule-Based
Systems. Revue d’Intelligence Artificielle (to appear).

Chaib-draa, B. Crisp and Fuzzy Causal Reasoning in
Multiagent systems. Decision Group & Negotiation
(submitted).

Chaib-draa, B. and Levesque, P. Hierarchical Model and
Communication By Signs, Signals and Symbols in
Multiagent Environments. Journal of Experimental and
Theoretic Artificial Intelligence (to appear).

Chaib-draa, B. Interaction Between Agents in Routine,
Familiar and Unfamiliar Situations. International Journal
of Intelligent & Cooperative Information Systems (to
appear).

Chaib-draa, B. Industrial Applications in Distributed Al
Communications of ACM, 38(11), 1995.

Zhang, L. and Chaib-draa, B. A Design Methodology For
Real-Time Systems to be Implemented on Multiprocessor
Target Machine. Journal of Systems and Software (to

appear).

Chaib-draa, B. Plans in Natural Language Dialogues.
Knowledge-Based Systems, 6(1), pp. 67-75, 1993.

Chaib-draa, B. Control and Communication in Distributed
Problem Solving. Revue de Liaison de la Recherche en
Informatique Cognitive des Organisations, 4(3 et 4) pp. 6-
15, 1992.

Chaib-draa, B., Moulin, B., Mandiau, R., and Millot, P.
Trends in Distributed Artificial Intelligence. Artificial
Intelligence Review, 6(1), pp. 35-66, 1992.

Chaib-draa, B., Libert, G., and Dergal, A., Temporal
Reasoning Models for Second Generation Expert Systems.
Revue de Liaison de la Recherche en Informatique
Cognitive des Organisations, 3(4) pp. 41-46, 1991.

Chaib-draa, B. and Millot, P. A Framework for Cooperative
Work: An Approach Based on the Intentionality. Artificial
Intelligence in Engineering, 5(4), pp. 199-205, 1990.

Chaib-draa, B. Distributed Artificial intelligence: An
Overview. Encyclopedia of Computer Science and
Technology, Kent, A. and Williams, J. (eds), 31 (suppl.
16), 1994.

Chaib-draa, B. and Vanderveken, D. On the Success and
Satisfaction of Speech Acts for Computational Agents.
Essays in Speech Act Theory, Vanderveken, D. and Kubo,
S. (eds), Benjamins Amsterdam, Philadelphia, (to appear).

Moulin, B. and Chaib-draa, B. A Review of Distributed Al.
Foundations of Distributed Artificial Intelligence, O’Hare,
G. and Jennings, N. (eds), Wiley Inter-Science, (to appear).

Brahim Chaib-draa is an associate professor of Computer
Science at Laval University. His research and teaching
Jocus on agents, multi-agent environments, speech acts and

computational discourse, and formal logics. He has published
papers on these aspects in journals and conferences. He
earmed a Ph.D. in distributed intelligent systems and has
held academic and industrial positions in France and in
Africa. Email: chaib@iad.ift.ulaval.ca

The The Agent Building Shell: A Tool for Building
Enterprise Multi-Agent Systems
Continued from page 11

logics, knowledge acquisition, generic problem-solving
models, design modeling, and others, creating problem
solving systems and languages and applying them to practical
problems. He can be contacted at the Enterprise Integration
Laboratory, University of Toronto, 4 Taddle Creek Road,
Rosebrugh Building, Toronto, Ontario, M5S 3G9

Email: mihai@ie.utoronto.ca

Mark Fox received his B.Sc. in Computer Science from the
University of Toronto in 1975 and his Ph.D. in Computer
Science from Carnegie Mellon University in 1983. In 1991,
Dr. Fox returned to the University of Toronto where he
received the NSERC Research Chair in Enterprise
Integration and was appointed Professor of Industrial
Engineering, Computer Science. and Management Science.
In 1992, he was appointed Director of the Collaborative
Program in Integrated Manufacturing. Dr. Fox was elected
a Fellow of American Association for Artificial Intelligence
in 1991, and a Joint Fellow of the Canadian Institute for
Advanced Research and PRECARN in 1992.

Contact: Tel: 416-929-4283, fax: 416-944-3276
Email:msf@novator.com, http://www.novator.com/novator/

intelligence.

to:

Editor, Canadian Artificial Intelligence
Institute for Information Technology
National Research Council Canada
M-50 Montreal Road
Ottawa, Ontario, Canada
K1A OR6 or — suhayya@ai.iit.nrc.ca

Graeme Hirst

Canadian Artificial Intelligence
Department of Computer Science
University of Toronto

Toronto, Ontario, Canada

MSS 1A4 or — gh@ai.toronto.edu

Submissions to Canadian Artificial Intelligence
Canadian Artificial Intelligence welcomes submissions on any matter related to artificial

Please send your contribution, electronic preferred, with an abstract, and a short bio

Sue Abu-Hakima, Institute for Information Technology

Telephone (613) 993-8564 Fax (613) 952-7151

Book reviews and candidate books to review should be sent to:

Canadian Artificial Intelligence Autumn 1996/ 15

Intelligent Agent Structures for the Internet

Résumé

Dans un environnement largement distribué d’informations
hétérogeénes et de calcul informatique tel que ’internet, un
logiciel basé sur des agents peut incorporer des principes
d’intelligence artificielle & deux niveaux: a l'intérieur
d’agents individuels, ou par la participation d’agents de
base dans un ensemble intelligent. Cet article décrit avec
plus de détails les concepts de construction de systtmes
d’information intelligents dans I’internet grice a I’ utilisation
de la technologie URA (Uniform Resource Agent), et
présente quelques travaux préliminaires pour décrire
effectivement les capacités des agents.

Abstract
In a widely distributed, heterogeneous information resource
and computing environment such as the Internet,agent
software can embody principles of artificial intelligence at
two levels — within individual agent objects, or through the
participation of basic agents in an intelligent collective.
This paper describes more fully the concepts of building
intelligent information systems in the Internet through the
use of the URA technology, and introduces some preliminary
work done on effectively describing agent capabilities.

Introduction

Work on a “Uniform Resource Agent” (URA) framework
has defined a virtual object structure in which to specify an
Internet information activity in terms of components for
specifying input requirements, target resources, experience
data, activity script, response filter script, as well as general
meta-data about the URA. A URA is a formalization of an
activity. These agent objects may range in level of
“intelligence,” depending on the scripting code used to carry
out the activity, as well as the use made of experience and
other environment information.

The standard URA object methods provide a mechanism
for a client (human, software, or other agent) to learn about
a particular URA it has never encountered before, and invoke
it, without having to know anything about how the URA
carries out its task. Thus, URAs become manageable “black
boxes” that can participate in intelligent collectives to carry
out Internet activities.

However, the ability to participate in collectives is less
than useful if a constructor cannot find relevant component
agent objects. That is, given a set of URAs, it is not trivial to
find the appropriate one to which a given task should be
delegated. As a starting point, it would seem that users with
similar backgrounds and interests should be able to share
their “hot lists” of Internet activities, and that once someone
has sifted through irrelevant information, another user with
a similar background should be spared the same task. An
intelligent system must therefore incorporate a way to store
information about the user, available agents, and

16 / Intelligence Artificielle au Canada automne 1936

Leslie L. Daigle and Sima Newell

correspondences between user needs and agent abilities.
Some preliminary work in this area is discussed below.

URAs and Intelligent Internet Behaviour

A URA, completely instantiated, embodies the necessary
skills to contact one or more (Internet) information resources
and combine the results in an answer to the URA client. So,
for example, someone who knows where all the net’s cool
music sites are might write a URA to search through them
and return pointers to music files. That URA then embodies
a certain set of skills — finding music files on the net — and
can perform that task for any client. The URA is a procedural
representation of some information resource knowledge.

A more complex URA might perform some post-
processing on the resuits returned from the information
resources — rather than simply returning hits from a search
(formatted one way or another), the URA could use the
information to reason about things (“There are no new
music files since you last checked,” etc).

Since URAs execute within the client’s computing resource
space (i.e., on their machine, or at some site that has been
provided for URAs), they are reflective of the client, not any
information service. A URA’s history is tied to its
involvement with a particular user, and that history
information can be used to allow the URA to “learn,” or
adapt its behaviour to the client’s preferences.

In principle (not yet in the prototypical implementations
that have been developed — see [4]), URAs can call on
other URAS to carry out their specialized tasks. This yields a
structure of agents working together to carry out a larger
conceptual task than any of the agents can handle themselves.
The URAs are building blocks for complex Internet
information activities.

The ability to construct such collectivities of activity is
increasingly important as the Internet information space
evolves. This space must permit the customization of views
of its content. Individual users must be able to tailor their
interactions with the Internet to support their work tasks. In
the same way that retrieving a file has become transparent to
users who click on a WWW link anchor, searching for
information must be supportable as a component part of a
composite task.

This can be supported in an interaction model that has
three primary components: an information need, an
information processing task or activity, and information
resources. That is, a client’s information need can be satisfied
by some processing task which will draw on specific
resources. In the current Internet environment, the bulk of
the processing associated with satisfying a particular need is
embedded in software applications (such as WWW
browsers), and these applications access information
resources directly through a fixed set of communications

protocol standards. The potential danger is that this puts a
barrier between clients and resources, because the language
of communication is generalized to support so many possible
applications that it cannot support any one deeply.

Rather than falling into this end-heavy distribution of
information activities, URAs can act as standardized
mechanisms for encapsulating client information processing
tasks. In this way, client information processing can be
delegated to a task defined outside the realm of a particular
application. There are activities that are client-centered, not
resource-centered, and for these it is not appropriate for it to
be buried in information servers.

While the URA technology itself only provides a
framework within which agents can be built, and the degree
of “intelligence” associated with each agent is at the discretion
of its creator, URAs can be used to support very sophisticated
Internet information tasks.

Matching Agents and Users — Preliminary work
Given a set of agents that perform Internet tasks, it is a
challenge to locate those that are of interest to a given user.
Suppose, for example, that Keith is a musicologist
specializing in the work of Vivaldi, and Sally enjoys listening
to Vivaldi’s music. Although the keyword descriptors for
Keith and Sally’s interests in this area are identical (music,
classical, Vivaldi), their information needs are probably
quite different. Similarly, if Sally has created a URA that
seeks (music, classical, Vivaldi)-related information from
the Internet, and then filters it to her liking, this URA will
differ from one which Keith has built. How then, can we
better characterize users and their information needs? And
what data is needed to describe a URA such that users with
similar characteristics can find those agents of interest?

Modeling Users

The problem in the (music, classical, Vivaldi) model of
Keith and Sally’s interests is that these keywords provide no
information about the reasons for their interests. But these
reasons, which stem from a user’s experience, are different
in Keith and Sally’s cases. Essentially, the list of words
(music, classical, Vivaldi) does not adequately model either
of the two English sentences originally used to describe
each user. It thus stands to reason that a simple set of
keywords does not provide enough information about the
user’s background to find agents (and thus data) of interest.

Asking a user to provide topic-related keywords is
relatively easy. Modeling a user’s background is not quite
as simple. In an effort to develop a useful working model,
we have constructed a World Wide Web (WWW) form-
based survey [1] of users. Part I of this survey is oriented
towards modeling users’ backgrounds and certain of their
interests. Its format [2][3] is based on the standard user
profile used in business: the curriculum vitae.

However, the questions are posed in a very particular
way. For example, in describing their employment, users
are asked to provide a career area, job function, and duration

of employment for each job held. These three items are
considered to be orthogonal descriptors of the user’s job.
That is, the information obtained in one category (e.g., career-
area = engineering) is independent of that gathered from the
other two (e.g., job-function = manager and duration = five-
years).

Finding orthogonal descriptors for each aspect of the user’s
background will ultimately facilitate the comparison of
different users. Currently, the choices for each descriptor are
limited to allow comparisons to be made between a relatively
small number of users.

URA Meta-information

Part Il of the survey focuses on describing search topics of
interest to a user. The survey questions relate to the topic
name and associated keywords, whether the user has a broad
interest in the topic or is only interested in very specific
related areas, and how concerned a user would be about the
privacy of his search in this area. (No mention is made in the
survey of using an agent as the basis of the search mechanism,
but this is the underlying theory.)

Unfortunately, we know that a topic and keywords are not
sufficient to describe the function of an agent. This
inadequacy may be addressed by associating the creator’s
experiences and background with the URA. This combination
of topics, keywords, and user background form a set of
meta-information about the agent.

Again, we have chosen orthogonal descriptors for each
topic: its name, technical level, scope, and privacy level [2].
The technical level describes the depth of knowledge needed
in the topic area; the scope provides a measure of breadth.
Here, “technical” does not imply “scientific”: Keith’s
technical level with respect to Vivaldi’s music is certainly
higher than Sally’s.

A URA'’s creator may explicitly decide the values of the
four descriptors. If not, their initial values may be inferred
from the creator’s profile. In addition, many topics and sub-
topics could be associated with an agent. Each of these
should have explicit or inferred initial values for the four
descriptors.

Using Meta-Information and the User Profile to
locate URAs

Given a set of users with certain profile characteristics,
and a set of agents with appropriate meta-information
descriptors, it becomes possible to create an intelligent system
to return a set of URASs that are of interest to any particular
user. With the addition of relevance feedback, the system
could progressively fine-tune a user’s profile, and thus learn
to provide URAs of greater interest. The key is that a finite
set of orthogonal descriptors is used as URA meta-
information, and that a similar set is associated with each
topic of interest to a user. If these descriptors are carefully
chosen, the problem of finding information of interest in the
Internet may be more effectively resolved.

Canadian Artificial Intelligence Autumn 1996/ 17

References

[1] S. Newell, L. Daigle, “Internet Activity Survey Form,”
<http://www.bunyip.com/urasurvey.html>, Montreal,
1996.

[2] L. Daigle, S. Newell, “Intelligent Agents and the Internet
Information Infrastructure,” INET 96, Montreal, 1996.

[3] E. Rich, “Stereotypes and User Modeling,” in User
Models in Dialog Systems, Springer-Verlag, New York,
1989.

[4] The Silk Project homepage, <http://www.bunyip.com/
products/silk/>. A

Sima Newell holds a B.Eng. in Electrical Engineering from
McGill University (Montreal, Canada) and is currently
pursuing her Master’s degree in Expert Systems in the same
department. She has been working at Bunyip Information
Systems Inc. since Spring 1995, first in Internet Operational
Services, and then in her present capacity as a researcher.
Her work involves exploring Internet information systems;
she is currently designing a system architecture that uses
user models and intelligent agents for electronic information
retrieval.

Email: sima@bunyip.com

Leslie L. Daigle holds a B.Sc. in Mathematics and Computer
Science from McGill University, and an M.Sc. in Computing
and Information Science from the University of Guelph. She
has worked with Bunyip Information Systems, Inc., since
1993. As the Project Manager for Bunyip’s Desktop Internet
Resource Discovery Client, Silk, Leslie was the principal
researcher developing the Uniform Resource Agent (URA)
technology. She is active in the Internet Engineering Task
Force, particularly in the areas of UR* and Directory
Services development. Now Vice President, Research at
Bunyip, Leslie is ever hopeful of pursuing her Ph.D. at
McGill in the area of multimedia retrieval systems, and
never misses an opportunity to argue the short-comings of
text-only retrieval technology.

Email: leslie@bunyip.com

BIG NEWS
COMES IN SMALL PACKAGES

Join CSCSI/SCEIO and receive
Canadian Artificial Intelligence magazine

See page 38 for membership information

Canadian Intelligence
Artificial Arttficielle
Intelligence au

18 / Intelligence Artificielle au Canada automne 1996

Highly Autonomous Sensor Models

Résumé

Une théorie formelle pour le développement d’un modele
générique de capteur autonome est proposée et implantée.
On peut considérer ce modele comme recouvrant un champ
assez spécifique des modeles d’agents autonomes. L’aspect
le plus intriguant de ce travail est qu’il est centré sur le
capteur lui-méme, alors que les agents autonomes considérent
que le systéme d’acquisition sensoriel est complet et aussi
précis qu’il est nécessaire. La construction de systémes
intelligents en ingénierie implique 1’enchidssement des
capacités de 1’opérateur dans le modele. Ces capacités ne
consistent pas seulement de reégles et de faits, mais aussi de
méthodologies de raisonnement et de prise de décision.
Nous présentons donc la notion selon laquelle un capteur
peutétre vu comme un agent autonome et nous le désignons
hautement autonome, puisqu’aucun systéme ne peutétre tout
a fait autonome. Non seulement un capteur hautement
autonome interpréte-t-il les données acquises conformément
a une base de connaissances intégrée sous forme de systéme
expert, mais il est aussi capable d’apprendre et de ce fait,
d’améliorer ses performances avec le temps. L’idée derriere
le modeéle est de combiner les capacités du capteur physique
et un opérateur expert controlant le capteur en temps réel.
Le modele est générique et peutétre utilisé pour modéliser
n’importe quel capteur comme un capteur hautement
autonome. Le but de notre travail est de créer des capteurs
fiables, précis, qui peuvent impliques’installer eux-mémes,
se calibrer eux-mémes, et qui fournissent une information
compléte. Dans les industries de procédés, dans les navires,
dans les usines de production d’€lectricité, et dans bien
d’autres, o I’on trouve des systémes automatiques qui font
un usage intensif de capteurs, une large proportion des
budgets est dépensée pour I’installation, la calibration et
I’entretien des capteurs. Avec le modele de capteur hautement
autonome, on veut diminuer ces dépenses sans compromettre
I’intégrité de I’information fournie par les capteurs.

Abstract

A formal theory for the development of a generic model of
an autonomous sensor is proposed and implemented. This
model can be viewed as addressing a somewhat specific
area of autonomous agent models. Perhaps the most
intriguing aspect of this work is that it concentrates on the
sensor itself whereas autonomous agents assume that the
sensory input is complete and accurate to the degree that it
needs to be. Building intelligent systems in engineering
implies embedding the capabilities of the system operator in
the model. These capabilities are not simply rules and facts,
but also reasoning and decision making methodologies. So
we present the notion of considering a sensor as an
autonomous agent itself and call it highly autonomous, since

Fernando Figueroa

no system can be completely autonomous. A highly
autonomous sensor (HAS) not only interprets the acquired
data in accordance with an embedded expert system
knowledge base, but is also capable of learning and thereby
improving its performance over time. The inspiration for the
model is to combine the capabilities of the physical sensor
and an expert operator monitoring the sensor in real-time.
The model is generic and can be used to model any sensor as
a HAS. The motivation for this work is to create sensors that
are self-installing, self-calibrating, reliable, accurate, and
that provide complete information. Many sensor intensive
automated systems such as process industries, ships, power
plants, and others spend a sizable portion of their budgets in
installation, calibration, and maintenance of sensors. The
HAS model is intended to decrease these expenses without
compromising the integrity of the information the sensors
provide.

Introduction

Development of autonomous agent models has generally
been linked with autonomous vehicles that must navigate
unknown terrains avoiding static and moving obstacles as
they try to reach a desired destination. The literature related
to autonomous agents is quite extensive, resides primarily in
computer science circles, and generally deals with two issues:
the agent and the simulated environment where the agent
navigates. In engineering, a large number of systems having
“intelligence” are being developed, e.g., intelligent
controllers, automatic systems modelers and designers, etc.
‘Whereas autonomous agent models are more comprehensive
in their attempt to imitate humans’ autonomous operation,
engineering “intelligent” systems are normally associated
with a defined area of knowledge (are not comprehensive)
and can be implemented with less hardware and software
resources. Since autonomous agents operate in an all
encompassing world, their knowledge domain can not be
very detailed, limited by lack of resources (hardware and
software). However, more recent autonomous agent models
include tools that allow the agent to operate in more focused
knowledge domains with increased detail. Given these
developments, methods and architectures developed to model
autonomous agents are now suitable to model engineering
“intelligent” systems. Often, however, the use of autonomous
agent models in engineering may require some modifications,
further extensions, and/or new interpretations.

The HAS model was developed in collaboration with my
colleague Dr. Ajay Mahajan. Detailed descriptions of the
model can be found in refereed publications [Mahajan (1994),
Mahajan and Figueroa (1995), Figueroa and Mahajan
(1994)]. We have developed a generic structure and

Canadian Artificial Intelligence Autumn 1996/ 19

methodology to model any sensor as highly autonomous. A
HAS will be described as an autonomous agent that operates
in the environment where it senses the value of a parameter
of interest. For example, a thermistor operates in a room and
it senses the value of the temperature. Although it would be
proper to include a literature survey on “intelligent” sensors,
given the space limitations, I refer the reader to our recent
publications where adequate references are provided.

Description of the Model

The HAS model operates in both deliberative and reactive
modes [Ferguson (1995), Brooks (1986, 1991)]. In the
reactive mode, it cleans in real-time the raw data from
spurious noise such as large spikes that are easily identified
and eliminated. In the deliberative mode, it uses the data
from the Sensing Element to (1) extract qualitative behaviors
of the sensor and the measurand, (2) determine trends, (3)
reason about the trends determined to provide a basis for
maintenance, modification and evolution of the knowledge
data bases (learning), and to trigger a hard calibration when
needed.

The HAS has the following components: a Sensing
Element that provides the raw signal; a Sensor Knowledge
Base that contains quantitative data such as the sensor
operating specifications (sensitivity, conversion constant,
sensor time constant, spike behaviors due to foreseeable
perturbations, frequency response, etc.); numeric data such
as tables for drift, sensitivity and response plots, etc.; and
qualitative data such as that found in the manuals indicating
conditions and procedures one must observe to insure proper
operation of the sensor. This component also includes
statistical and analytical methods to perform the following
functions:

(1) immediate filtering of the raw data and transfer of the
data to the control system for utilization,

(2) extraction of qualitative sensor and measurand behaviors
from the raw data by a combination of statistical and heuristic
techniques,

(3) quantitative interpretation of the data in the form of a
representative value.

The Sensor Knowledge Base ultimately provides the
accurate, reliable, and complete value describing the
parameter that the sensor is measuring. A Measurand
Knowledge Base contains specifications of the measurand
such as its time response constant, and a plausible set of
qualitative behaviors. These behaviors might be, for example:
constant with noise, monotonic increase, step change at the
appropriate speed, harmonic at defined frequencies, etc.
The sensor and measurand qualitative behaviors are treated
as Envisioned Behaviors and guide the analysis of the
qualitative version of the measured data. Once the measured
data has been identified with one of the Envisioned
Behaviors, then a quantitative analysis can be performed to
diagnose and calibrate the system. For example, if the
measurand behavior is matched with an envisioned step
change behavior, one could use the step change to measure

20 / Intelligence Artificielle au Canada automne 1996

the measurand time-response and update the Measurand
Knowledge Base. In another example, if a monotonic
decrease behavior has been identified, one could then try to
determine if this is actually a sensor drift behavior. One way
to determine drift may be by comparing the monotonic
decrease with drift tables in the Sensor Knowledge Base,
and examine if the conditions that cause drift (e.g., aging,
temperature changes) have indeed occurred. Another
component of the HAS model is the Learning module. This
module updates the knowledge bases in the system when
new behaviors have been discovered and/or existing
behaviors have been modified. The current technique to
discover new behaviors is to notice if behaviors not yet in
the knowledge bases occur a number of times. If this is the
case, then these become candidates to be included in the
HAS model. It is possible to run the sensor in a self-
installation mode by letting the Learning module discover
all the knowledge in the system given only a so called
“normal behavior” that it uses as reference. The “normal
behavior” is “constant with noise.” A Maintenance module
updates the knowledge in the system such as changing the
sensor or measurand parameters as a result of analysis of the
data (e.g., step-change, drift, etc.) Finally, a Hard Calibration
module calibrates the sensor numeric specifications by
connecting a known input. It is usually difficult to physically
have this module as part of the sensor, and Hard Calibration
usually implies the need for intervention by the operator.

The HAS as an Autonomous Agent

Given the prior description, it is important to relate the
HAS model to accepted autonomous agent models. The
HAS exhibits behaviors much like Ferguson’s
TouringMachine [Ferguson (1995)). It displays deliberative
and non-deliberative behavior. It is capable of autonomous
operation. That is, it has its own goals (interpret data
accurately, reliably, and completely), and it has a repertoire
of behaviors (knowledge bases) to carry out its goals and to
respond to environmental conditions. In addition, it has a
goal that apparently is not present in any autonomous agent.
The HAS must also evolve with experience in terms of
modeling its own behavior in addition to the environment’s
behavior. This goal would be equivalent to having a
TouringMachine improve its own model so that it may self-
predict its own responses to stimuli.

Since the HAS model is generic, it is appropriate to relate
it to Gensim, a simulation environment developed by
Anderson and Evans (1995). This is a simulation environment
with a collection of facilities so that the user may build
complete environments to design and test autonomous agents.
The high level structure of Gensim has the same components
of the HAS. Actions in Gensim are carried out by the agent
and its effects are manifested by the simulator. In the HAS,
actions are executed to modify knowledge bases of the
sensor and the environment, as well as to modify the incoming
data so as to extract an accurate and complete interpretation
of the environmental parameter being measured. This is

done by substituting faulty data values by extrapolated values
predicted based on the current trend. The focus function in
Gensim allows the agent to focus on certain aspects of the
environment . (The agent informs the simulator of its interests
in some objects in the environment.) This function is
performed by the HAS as it focuses on envisioned behaviors
of the measurand. Moreover, the HAS also focuses on
envisioned sensor behaviors since it must also interpret the
condition of the sensor. The perceptual information in the
HAS is acquired by the sensor element. And the domain
knowledge in the HAS encompasses sensor, operator, and
measurand knowledge domains with some shared knowledge
among them.

At the operation level, Gensim provides tools for reasoning
with the time element. In Gensim, the agent can be interrupted
every time interval P is to be presented with sensory
information. This is similar to the sampling time in the HAS
model where data from the sensors is read at every sample
time. The sampling interval is defined as the smallest time
increment to time-stamp events, and other time-related
behaviors are defined as a function of the sampling interval.
Two time-related behaviors in Gensim include the rate at
which an agent commits to actions (A), and the rate at which
changes are made to the environment (E). In the HAS
models these elements are very important, and they
correspond to the sensor’s response time constant (similar
to A) and the environment’s response time constant (similar
to E).

The HAS model includes a learning module which builds
upon existing sensor and measurand behaviors to discover
new behaviors or modify/fine-tune existing behaviors. This
activity results in continuous self-evolution of the sensor
and measurand models. The Gensim environment also
appears to provide the tools necessary to implement learning
about the environment. Anderson and Evans indicate that,
“Perception must exist to confirm the agent’s expectations
of the world, but also must provide the agent with new
information (not necessarily what it expects to see or is
directed toward) in order to form the expectations of the
world that guide its sensory abilities.” Thus the agent is
given incentive to explore objects in the world.

Future Work

Another aspect of intelligent behavior addressed in Gensim
is that of fusing information from various sensors to reinforce
perception. The HAS does not yet have communications
capabilities built in, but future work will focus on sensor
fusion and integration associated with a network of HASs.
Currently, communications protocol standards for sensors
networks are being developed (Fieldbus), but modifications
will be needed to take full advantage of the more complete
information HASs provide.

References
Anderson, J., and Evans, M., “A Generic Simulation System
for Intelligent Agent Designs,” Applied Artificial

Intelligence, V. 9, N. 5, October, 1995, pp. 527-562.

Brooks, R. A., “Intelligence without representation,”
Artificial Intelligence, Vol. 47, 1991, pp. 139-159.

Brooks, R. A., “A Robust Layered Control System for a
mobile robot,” IEEE Journal of Robotics and Automation,
Vol. 2, 1986, pp.14-23.

Ferguson, I., “Integrating Models and Behaviors in
Autonomous Agents: Some Lessons on Action Control,”
Proc. AAAI Spring Symposium on Lessons Learned from
Implemented Software Architectures for Physical Agents,
Palo Alto, CA, March, 1995.

Figueroa, F. and Mahajan, A., “Generic Model of an
Autonomous Sensor,” Mechatronics, Vol. 4, No. 3, 1994,
pp. 295-315.

Mahajan, A., “Dynamic Across Time Autonomous - Sensing,
Interpretation, Model Learning, and Maintenance Theory,”
Ph.D. Thesis, Mechanical Engineering Dept., Tulane
University, New Orleans, LA, USA, May 1994.

Mahajan, A, and Figueroa, F, “Dynamic Across Time
Autonomous - Sensing, Interpretation, Model Learning,
and Maintenance Theory,” Mechatronics, Vol. 5, No. 6,
1995, pp. 665-693. A

Fernando Figueroa was born in Peru. He received a
Bachelor’s Degree in Mechanical Engineering from the
University of Hartford, Hartford, Connecticut, USA (1983),
a M.S. Degree (1984) and a Ph.D. Degree (1988) in
Mechanical Engineering from Pennsylvania State University.
Since 1988, he has been with the Faculty of Mechanical
Engineering at Tulane University. Since 1995, he has held
the NSERC/Monenco AGRA Associate Chair of
Instrumentation and Control, at the University of New
Brunswick, Mechanical Engineering Department. He
worked at NASA Johnson Space Center in Houston as a
Summer Faculty Fellow (1993, 1994). His areas of interest
include intelligent/autonomous sensors/instrumentation and
systems, robotics, mobile robots, ultrasonic sensing, and
automatic control. Contact Information: Tel: (506)447-
3097, Fax: (506)453-5025, Email: figueroa@unb.ca

Distributed Agent Systems for Intelligent
Manufacturing
Continued from page 33

Systems and, in particular, in Multi-Agent Applications in
Manufacturing. Contact: http:/fwww.ucalgary.ca/~norrie/

Dr. Brian R. Gaines is Killam Memorial Research Professor
and Director of the Knowledge Science Institute at the
University of Calgary. He received his B.A., M.A. and
Ph.D. from Trinity College, Cambridge, and is a Chartered
Engineer, Chartered Psychologist, and a Fellow of the
Institution of Electrical Engineers, the British Computer
Society and the British Psychological Society.Contact:
gaines@cpsc.ucalgary.ca 403-220-5901Fax:403-284-4707
http: //ksi.cpsc.ucalgary.ca/KSI

Canadian Artificial Intelligence Autumn 1996/ 21

LALO: a new Agent Oriented

Programming Language and Environment

Résumé
Derni¢rement, la technologie des agents logiciels a été
couverte de fagon importante par la presse scientifique et
méme par la presse populaire. On retrouve les agents dans
des champs divers tels que le génie logiciel, la gestion de
réseau, les systémes simultanés, la robotique, les interfaces
humain-ordinateur et I'intelligence artificielle. Malgré ses
utilisations diverses, la notion de ce qu’est un agent varie
d’un champ 2 un autre et méme d’un systéme a un autre.
Dans cet article, nous adhérons a la définition commune
donnée par la communauté scientifique de I'intelligence
artificielle distribuée (IAD). Un agent est considéré comme
une entité autonome capable de décisions et d’actions
rationnelles. Récemment, Yoav Shoham [Sho 93] a proposé
le paradigme de programmation orientée agent (POA) comme
une spécialisation du paradigme de programmation orientée
objet, et a développé une implantation sous la forme du
langage Agent-0. Depuis, plusieurs équipes de recherche
ont proposé leurs propres langage POA (par exemple, voir
Agent-k {Dav 94], Congolog [Les 95], Cool [Kol 95]). Dans
cet article, nous décrivons LALO, acronyme frangais pour
Langage d’ Agent Logiciel Objet, construit au CRIM (Centre
de recherche informatique de Montréal), qui differe de fagon
significative des langages mentionnés plus haut.

1. Introduction

Lately, software agent technology has received extensive
coverage by the scientific and even the popular press. Agent
concepts are mentioned in diverse fields such as software
engineering, network management, concurrent systems,
robotics, human/machine interfaces, and artificial
intelligence. In spite of its diverse uses, the notion of what
an agent is varies from area-to-area and even from system-
to-system.

In this paper we adhere to the common definition provided
by the scientific community in Distributed Artificial
Intelligence (DAI). An agent is seen as an autonomous
entity capable of rational decisions and actions. Recently,
Yoav Shoham [Sho 93] proposed the agent-oriented
programming (AOP) paradigm as a specialization of the
object-oriented programming paradigm and developed an
implementation in the form of the Agent-0 language. Since
then, many research teams proposed their own AOP language
(see, for example, Agent-k [Dav 94], Congolog [Les 95],
Cool [Kol 95]). In this paper, we describe LALO, a French
acronym for Object Software Agent Language being
constructed at CRIM (Centre de recherche informatique de
Montréal) which differs significantly from the above
mentioned languages.

22 / intelligence Artificielle au Canada automne 1996

Daniel Gauvin, Hervé Marchal, Carlos Saldanha

The major differences are related to the way agent behavior
is specified and to the software architecture and
implementation. LALO does not impose any programming
restrictions on the specification of agent behavior. Depending
on the application, the developer chooses the most appropriate
computational method. For example, behavior can be
specified as a set of rules, a decision table, a neural network,
or even as an algorithmic procedure. The programmer is
given the freedom to specialize application agents by
associating behavior methods with new agent classes. As a
result, the new agents are better suited to the area of interest
than the generic agent classes available in LALO. Another
important characteristic of LALO is that it is a compiled
rather than an interpreted language. This feature was designed
to overcome the inadequacy of interpreters in handling certain
types of applications such as those requiring real-time
processing.

Section 2 of the paper presents a brief review of the AOP
paradigm. It is followed by a section describing the LALO
language and the corresponding programming framework.
Finally, a small example is given in Section 4.

2. Agent Oriented Programming

Agent Oriented Programming proposes a collaborative
view of computing where agents exchange information,
query other agents, offer services, accept or reject tasks, and
compete or cooperate in accomplishing tasks. In this context,
an agent is defined as an entity having internal states
categorized as beliefs, capabilities, decisions, and
commitments. Collectively, their status describes an agent’s
mental state, which changes over time. As such, time is an
essential agent parameter used in monitoring and controlling
mental activity.

Beliefs represent an agent’s perception of the world in
which it interacts. Capabilities relate to the actions an agent
can perform. An agent will take the commitment or decide
to execute an action in relation to its beliefs and its
capabilities. The relation between an agent’s mental state
and its capabilities determines the agent behavior in response
to changes in the environment (including time). Agent
behavior is essentially the sequence of actions it performs.
However, prior to performing the action, there must be a
commitment or decision to act. The mental state influences
both the commitments made and the substance of those
commitments (i.e., how actions are realized).

3. The LALO Environment
This section presents the main components of the LALO

agent-oriented programming environment. We first describe
the main components of the environment followed by a
presentation of the LALO AOP language.

3.1. Main components

The LALO programming environment consists of several
C-++ libraries, a compiler, and some utility programs. The
architecture is based on a hierarchy of agent classes. A
LALO agent is one instance of one particular class in the
hierarchy. The class of a particular agent can be specified in
the LALO program and its choice depends on the
programming technique used to specify its behavior.

At the top of the hierarchy is the class BasicAgent which
implements the communication mechanisms. The main
components of a BasicAgent are: an object of the class
InRooter to handle incoming messages, an object of the
class OutRooter to handle outgoing messages and an object
of the class InputBuffer containing received messages. When
a BasicAgent start its execution loop, it creates an InRooter
and an OutRooter. In UNIX, each start a child process,
AFW_in_process and AFW_out_process respectively, in
order to implement true asynchronous communication. After
the successful creation of the two child processes, the agent
enters a wait state for new messages. When a new message
is received, the agent places it in the input buffer. The
messages in the input buffer are handled in a first in first out
order. When the input buffer is empty, the agent returns to
his wait state.

The AOP paradigm is implemented by the LaloAgent
class which specializes BasicAgent by adding specific objects
in order to represent its beliefs, capabilities, commitments,
and decisions. The execution loop is overloaded in order to
take into account the execution of commitments and
decisions.

The RBasedAgent class further specializes LaloAgent by
adding three different rule bases and inference engines. One
rule base handles the incoming messages, the second the
execution of the commitments and decisions, and finally the
third is a general reasoning rule base. The execution loop
inherited from LaloAgent is overloaded in order to
incorporate arule based reasoning mechanism in the behavior
of the agent. This class implements a particular way to
define the behavior, based on a rule based paradigm and
illustrates how the basic class hierarchy can be extended in
order to implement new reasoning mechanisms. The agents
can communicate by using messages in the KQML ([Fin
941), and HTTP protocols. The default behavior implemented
in the classes described above can handle most of the
messages defined in those two protocols. Furthermore, the
architecture allows the user to implement other protocols if
necessary. The compiler translates a LALO program into a
C++ source file that can be compiled with any C++ compiler.
It is also used by the agents themselves (those that inherit
from LaloAgent) to compile dynamically the contents of
KQML messages that are in the LALO language.

3.2. The LALO AOP language

LALO is a compiled language based on the concepts of
agent beliefs, capabilities, decisions and commitments
defined in the previous sections. The basic elements of the
language are beliefs and tasks, two concepts which depend
on time. The time associated with each belief or task is
assigned by preceding the action or fact with a temporal
operator. For example, the temporal operator BEGIN_AT
can be used to indicate when a task should start. Similarly,
the temporal operator AT can be used to indicate at which
time a belief holds.

Agent communication actions are based on KQML which
is a language employing a flexible protocol for exchanging
messages between agents. A KQML message consists of a
performative and any number of arguments. The performative
conveys the meaning of the message; however, the content
of the message can be in any format. KQML defines a
number of reserved performatives along with their
corresponding arguments. In LALO, there is a predefined
communication action for each KQML performative. When
a communication action is executed by an agent, an
appropriate KQML message is formed and sent to the
receiver.

A LALO agent program is divided into five parts; namely,
the identification, the task declarations, the initial decisions,
the initial beliefs, and the behavior. In identification, the
author of the program (both name and email address) and
the agent class and name is given. The task declarations
component describes the capabilities of the agent. Initial
decisions correspond to the tasks an agent will execute
when it is created. As such, a decision is a special kind of
commitment where the parameter specifying the agent
committed to is ignored (the agent is committed to itself).
The next part of a LALO program describes an agent’s
initial beliefs.

Finally, the last part of the LALO program defines the
behavior of the agent. This must be done in accordance with
the reasoning mechanism used by the agent class specified
by the developer. The programming environment is designed
to provide a library of agent behavior programming methods.
For example, a class of rule-based agents will employ a rule
syntax for defining behavior, and an inference mechanism
capable of interpreting the rules. In the contrast, a plan-
based agent class will require agent behavior to be specified
as a series of plans, while a plans-hierarchy reasoning
mechanism will activate those plans at run-time.

4. Example
In order to illustrate our language, the following presents
a small LALO program:

AUTHOR: Hervé Marchal;
EMAIL: hmarchal @crim.ca;
AGENT_CLASS: RBasedAgent;
AGENT_NAME: Daniel;

Canadian Artificial Intelligence Autumn 1996/ 23

TASKS:
PUBLIC COMPOSITE promote-yourself(to);

DECISIONS:
BEGIN_AT #begin: promote-yourself(to:Carlos);

BELIEFS:
AT #begin: my-friend(agent: Carlos);

BEHAVIORS:

// (R1) If an agent asks me to tell a third agent that a fact is
true

// and I believe that it is true, I commit to the requesting
agent

IF

RECEIVED:

achieve(sender: ?agl, content:

BEGIN_AT 7t1: tell(receiver: 7ag2, content: AT
M2:71));

BELIEF: AT 72: ™f;

THEN

COMMITMENT_TO ?agl:

BEGIN_AT ?t1: tell(receiver: ?ag2, content: AT 7t2: 7f);

/I (R2) If T belief that it is false, I do not commit

IF

RECEIVED:

achieve(sender: ?agl, content:

BEGIN_AT 7t1: tell(receiver: ?ag2, content: AT 7t2:7f));
BELIEF: AT 72 : NOT 7,

THEN

COMMITMENT_TO #myself:

BEGIN_AT #now:

sorry(receiver: 7agl, in-reply-to: 7current_message,
comment: “I don’t belief in that™);

/1 (R3) If 1 don’t know whether the requesting agent is my
friend,

/1 T will belief that the fact is true and take the commitment

IF

RECEIVED:

achieve(sender: ?agl, content:

BEGIN_AT 7t1: tell(receiver: ?ag2, content: AT ?t2:7f));

UNBELIEF: AT 72 : 7f;

BELIEF : AT_NOW : my-friend(agent : ?agl);

THEN

BELIEF: AT 12 : 7f;

COMMITMENT _TO ?agl:

BEGIN_AT 7t1: tell(receiver: 7ag2, content: AT 7t2: 7f);

5. Conclusion

An agent-oriented programming environment has been
described in this paper. The main characteristics include a
compiled language and a flexible mechanism for defining
the behavior of individual agents in problem-solving. We

24 / Intelligence Artificielle au Canada automne 1996

are currently testing the environment. Some extensions and
modifications that we are planning include a more elaborate
handling of time in order to allow one to specify repetitive
tasks and to adjust the time grain. More information on
LALO is available from our web site at http://www.crim.ca/
gsbc/lalo.

References

[Dav 94] Davies, W. H. E., Edwards, P. Agent-K: An
Integration of AOP and KQML. Proceedings of the CIKM
'94 Workshop on Intelligent Information Agents, Y. Labron
& T. Finin (eds), National Institute of Standards and
Technology, Gaithersburg, Maryland, USA, 1994.

[Fin 94] Finin, T., Fritzson, R., McKay, D., McEntire, R.
KQML as an Agent Communication Language. The
Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM '94),
ACM Press, November, 1994.

[Kol 95] Kolb, M. A cooperation language. In Proceedings
of the First International Conference on Multi-Agent
Systems (ICMAS 95), San Francisco, California, USA,
June 12-14 1995. AAAI Press.

[Les 95] Lesperance, Y., Levesque, H. J., Lin, F., Marcu,
D., Reiter, R., Scherl, R. B. Fondements d’une approche
logique 2 la programmation d’agents. In Proceedings of
the Troisiémes Journées Francophones sur le Artificielle
Distribuée & les Systémes Multi-Agents (IADSMA 95), St
Baldoph, Savoie, France, 15-17 Mars 1995.

[Sho 93] Shoham, Y. Agent-oriented programming. Artificial
Intelligence, 60(1). pages 51-92, 1993. A

Daniel Gauvin is research advisor at the Centre de
Recherche Informatique de Montréal (CRIM). He joined the
CRIM in 1990 after he completed a master degree in
computer science at the University of Montréal. Since then
he has participated in several knowledge-based systems
projects and is now lead investigator in CRIM’s multi-agent
systems development environment called LALO. E-mail:
gauwvin@crim.ca.

Hervé Marchal is senior research agent at the CRIM. After
completing a DESS S.C.H.M. at Orsay University (France)
in 1989, he joined CRIM in 1994 and works in conjunction
with D.Gauvin on LALO.

Carlos Saldanha is currently the director of the Knowledge-
based Systems group at CRIM and continues to play the role
of lead researcher in the group, a position he has held since
1992.

Canadian Intelligence
Artificial Artfficislle
Intelligence au

The SIGMA Project: Market-Based Agents

for Intelligent Information Access

Grigoris J. Karakoulas

This project is the result of a joint effort with the Interactive Information Group of the National Research Council of Canada.
We especially thank Innes Ferguson, Martin Brooks, and Dale Schuurmans.

introduction

Comme I’espace de I’'information sauvegardée
électroniquement continue de s’étendre a travers les réseaux
d’ordinateurs, le besoin d’un accés intelligent a I’'information
a l'intérieur d’espaces multidimensionnels, partiellement
structurés et bruyants, est impératif. Comme exemples de
tels espaces, on peut mentionner le Usenet, les sources de
nouvelles, le WWW et les dépositoires d’information
d’entreprise. Le probleme de concevoir un systéme de filtrage
d’information (FI) représente un défi, a cause de la volatilité
de ces espaces et de la capacité limitée des usagers a spécifier
des intéréts globaux dans un champ fondamentalement
incertain de tels espaces. De plus, la distribution et la
dynamique inhérentes des réseaux d’information actuels
tendrait naturellement & suggérer une approche robuste,
décentralisée et multi-agents a la conception d’un systéme
de FI.

Le but de notre travail dans SIGMA (acronyme anglais
pour System of Information Gathering Market-Based Agents
~ Systéme d’agents basés sur le marché pour la collecte
d’information) est de développer une structure d’agents
lociciels hétérogenes et asynchrones pour gérer larecherche
d’information dans un environnement de réseau largement
distribué; d’effectuer un indexage automatisé d’éléments
d’information semi-structurés; et d’interagir avec ’usager
pour créer des filtres d’information personnalisés & partir
des réactions de l'usager, par adaption et apprentissage.
Dans cet article, nous présentons bri¢vement le modele de
marché de SIGMA et ses applications 4 une classe particuliére
de probleémes de FI (Karakoulas & Ferguson 1995; 1996).
Le modele définit une économie computationnelle que nous
avons utilisée comme base pour construire un systéme de FI
multi-usagers

1. Project Goals and Objectives

As the space of electronically stored information continues
to expand across computer networks, the need for intelligent
access to information within multi-dimensional, partially
structured, and noisy spaces becomes imperative. Examples
of such spaces are the Usenet, newswire feeds, the World
Wide Web, and enterprise-wide information repositories.
The problem of designing an information filtering (IF) system
is challenging because of the volatility of these spaces and
the limited ability of users to specify global interests over an
inherently uncertain area of such space. In addition, the
inherent distribution and dynamics of today’s information
networks would naturally appear to suggest some form of

robust, decentralized, multi-agent approach to the design of
an IF system.

The goal of our work in SIGMA (System of Information
Gathering Market-Based Agents) is to develop a framework
of heterogeneous, asynchronous, software agents that manage
information retrieval across a widely distributed network
environment; perform automated indexing of semi-structured
information items; and interact with the user to create
personalized information filters from user’s feedback through
adaptation and learning. Various adaptation models have
been proposed for dynamic multi-agent coordination,
including ones based on metaphors from artificial life
(Menczer et al. 1995) and from computational markets
(Wellman 1994), which do not use pre-fabricated
coordination strategies. As such, these adaptive, distributed
algorithms appear more likely to scale with problem size
and so be better suited to handle the increasing complexity
of today’s heterogeneous information networks. In our own
work, we address the issues of scalability and robustness by
proposing an adaptive model for multi-agent coordination
based on the metaphor of economic markets and by
integrating different machine learning techniques into the
model.

In this paper we briefly present the market model of
SIGMA and its application to a particular class of IF problems
(Karakoulas & Ferguson 1995; 1996). The model defines a
computational economy which we have used as the basis for
constructing a multi-user IF system.

2. The Market-based Framework of Agents

Markets have been devised within economics for allocating
limited or scarce resources among competing agents. They
provide the machinery for decentralized decision-making
where each agent processes only asymmetric and local
information in order to evaluate decisions regarding goods
and services. In addition, because of their decentralized and
local nature, markets can spontaneously be developed for
the exchange of goods according to local needs; they can
also adjust to unforeseeable changes. Similarly to economic
markets, the computational economy of SIGMA can be
defined in terms of goods and agents that produce and
consume those goods. The goods traded in SIGMA are
information items (e.g., news articles) in different
representation forms depending on the stage of processing.
The agents are of three general categories: (i) the consumer
agents, (ii) the producer agents and (iii) the broker agents.

Canadian Artificial Intelligence Autumn 1996/ 25

A consumer represents a user’s goal and preferences for a
task over a time period. Producers transform goods from an
input form into an output form according to their learning
techniques. In response to a consumer’s demand for goods
they enter the local market and compete with each other to
serve as efficiently as possible the demands for goods from
other agents — consumers or other producers — within the
market. A producer determines the price that maximizes its
profit by learning how to produce goods that a consumer is
expected to buy and estimating their demand. A broker is
responsible for implementing the bidding policy for a
particular consumer’s demand for goods, namely setting up
the auction each time a demand is posed in the market and
deciding which producers win the bidding. The broker also
maintains the history of the performance of the producers in
serving the particular consumer’s demand. The producers
that succeed in the bidding sell goods to the consumer at
their respective prices. The goods are of different quality.
The consumer is endowed with a budget. At any time, the
consumer is allowed to “shop around” by probabilistically
assigning its preferences among the producers and allocating
its budget for buying one or more goods. Given its choices
for goods, these stochastic preferences are reinforced by the
feedback that the consumer receives from the environment.

The feedback for each good is also propagated by the
consumer to the producer from which the product was
bought.

Different learning techniques have been developed and
incorporated into the SIGMA computational market for
dealing with the following two issues: (i) how a producer,
denoted by PG (Product Generator) in the figure, can learn
to bid by using its past performance in the market; and (ii)
how a consumer, denoted by PS (Product Selector) in the
figure, can learn to choose goods from a mixture of producers
so that its cumulative reinforcement is maximized. These
learning techniques can be considered independent of the
particular IF task. In contrast, learning how to produce by a
PG depends on the particular domain; in that case, a PG is
learning a mapping from the initial information space to a
compact representation of part of that space that is of
potential interest to the user.

The SIGMA market model described above has been
implemented as a collection of specialized CALVIN agents
(Ferguson and Davlouros 1995). The CALVIN agent
framework is an open architecture for facilitating the
development of highly concurrent, embedded agent-oriented
applications. As such, the framework provides application
developers with a powerful set of agent programming tools

get new newsgroups

g BCthEW
article id's
ﬁ‘w’
get raw articles \

submit new
article id's

¥

Usenet

get
raw
articles

submit new
newsgroups

add/delete
article id's

add/delete
VSM articles

VSM

article
depository

retrieve VSM
articles

maintain -
Foemties g
profiler
select
VSM
articles
maintain)
PS profiles PS
profiler
get bid

e

~

store bid

Figure 1. SIGMA agent level system description.

26 / Intelligence Artificielle au Canada automne 1996

including libraries of intra- and inter-agent protocols (in the
latter category, we are currently using KAPI (Kuokka and
Harada 1995)), sensory and effectory apparatus, internal
agent behavior APIs, persistent storage management, and
support for pre-emptive (anytime) scheduling of behaviors,
among others.

3. Applications for Intelligent Information Access

In the Usenet IF task the type of good which is exchanged
most within SIGMA is the Vector Space Model (VSM)
representation of an article (Salton & McGill 1983). Like
any other type of document, an article contains structured
information in its header part (author, subject, newsgroup,
etc.) as well as unstructured information in its text part. A
query submitted by a user to SIGMA consists of fields that
correspond to the structured part of a news article — namely
author(s), subject(s), newsgroup(s), and organization(s)
— and a field that corresponds to the unstructured part
~ namely text keyword(s).

The SIGMA computational market for netnews IF (see
Figure 1) consists of a consumer type of agent, called
Profile Selector (PS), and two main types of producers: (i)
the Feature Extractors (FE) which transform each news
article (a generic input good) into a document indexing
representation by using VSM; and (ii) the Profile Generators
(PG) which are mid-producers since each of them takes as
input a subset of the output of the FE producers and
transforms it into a profile (a compact representation of
documents) which the PG agent expects will satisfy the
respective consumer’s interests (Karakoulas & Ferguson
1996). Results from current experiments on this IF task
suggest that heterogeneity and adaptivity in the agents
architecture and behavior have a significant impact on
increasing the signal-to-noise ratio in accessing interesting
articles in Usenet.

While our initial interest in computational markets has
largely been focused on the design and application of
adaptive information filtering techniques to WWW-based
news, it is our belief that as the Internet and WWW become
increasingly commercialized, the need for effective profit-
based agents which can act on behalf of their owners and
seek payment for services rendered will increase
dramatically. In addition, the adoption of intranets by large
organizations for integrating corporate-wide distributed
heterogeneous information repositories opens up the
possibilities for interesting applications of SIGMA such as
intelligent dissemination and access to changes of
information in corporate as well as external networks.

References

Ferguson, I.A. and Davlouros, J.D. 1995. On establishing
multi-sensory multi-channel communications among
networked users. In Proceedings IJCAI Workshop on Al
in Distributed Information Networks, pp. 103-109.

Karakoulas, G.J. and Ferguson, L. A. 1995. A computational
market for information filtering in multi-dimensional
spaces. In Proceedings AAAI Fall Symposium on Al
Applications in Knowledge Navigation and Retrieval,
pp- 78-83.

Karakoulas, G. and Ferguson, I. 1996. SIGMA: Integrating
learning techniques in computational markets for
information filtering. In Proceedings of AAAI 96 Spring
Symposium on Machine Learning and Information
Access, AAAI Press.

Kuokka, D. and Harada, L. 1995. Matchmaking for
information agents. In Proceedings International Joint
Conference on Artificial Intelligence, pp. 672-678.

Menczer, F., Belew, R.K., and Willuhn, W. 1995. Artificial
life applied to adaptive information agents.
In Proceedings AAAI Spring Symposium on Information
Gathering from Heterogeneous, Distributed Environments.

Salton, G. and McGill, M. 1983. Introduction to modern
information retrieval. McGraw-Hill.

Wellman, M.P. 1994. A computational market model for
distributed configuration design. In Proceedings
Conference of the American Association for Artificial
Intelligence, Seattle, WA, 401-407. A

Grigoris Karakoulas is at the Department of Global
Analytics, Canadian Imperial Bank of Commerce. He is
also a Visiting Research Scientist at the Department of
Computer Science, University of Toronto. He obtained his
M.Sc. in Computer Science in 1987 from University of
Bradford in UK, and his Ph.D. in Computer Science in 1993
from Athens University in Greece. During 1993-1995, he
was Visiting Research Fellow at the Institute for Information
Technology, National Research Council of Canada. His
current research interests include multi-agent learning in
computational markets, reinforcement learning, machine
learning techniques for financial problems, and software
agents for intelligent information access. His address is:
Global Analytics, Canadian Imperial Bank of Commerce,
161 Bay St., BCE-8, P.O. Box 500, Toronto, Ontario M5J
288; e-mail: karakoul@cibc.ca

= Canadian Intelligence
ﬂl:l Ariificial ~ Artificielle
Intelligence au

Canadian Artificial Intelligence Autumn 1996/ 27

Agent Research in the Cognitive Robotics Group
Yves Lesperance, Hector J. Levesque, Fangzhen Lin, Daniel Marcu, Ray Reiter, and Richard B. Scherl

Résumé

Pour construire un agent qui agit intelligemment et a qui on
peut donner des instructions de haut niveau surce qu’ily a2
faire, il faut lui fournir une base de connaissances contenant
de I’information sur son environnement et sur ses capacités,
et des méthodes pour raisonner sur les conséquences de ses
actions, pour réviser ses connaissances lorsqu’il fait des
observations, et pour prédire les actions d’autres agents.
Ceci exige que nous nous penchions sur les questions
suivantes sur la représentation des connaissances.

Abstract

To build an agent that acts intelligently and can be given
high-level instructions about what to do, one needs to give it
a knowledge base containing information about its
environment and capabilities, and methods for reasoning
about the effects of its actions, revising its knowledge when
it makes observations, and predicting the actions of other
agents. This requires addressing the following knowledge
representation issues.

Capturing the Prerequisites and Effects of Actions

A method is needed to represent succinctly the conditions
under which actions can be performed (their prerequisites)
and the conditions that they are expected to change (their
effects). The “frame problem” concerns the effects of actions;
how can they be specified without requiring one to stipulate
explicitly the numerous conditions not affected by the action.

Perception and Other Knowledge-Producing
Actions

For embodied agents, most actions affect physical
properties of the agent and its environment, for example,
moving down a corridor. But other actions, such as reading
a message one has received, need to be characterized
differently, in that they affect the agent’s state of knowledge,
and the knowledge they yield may be required for subsequent
actions or decisions. To design an intelligent agent, it is
necessary to integrate perception and action with the rest of
the problem-solving or decision-making architecture. For
example, a robot should be able to reason about perception
if only to decide when it is appropriate to try to look for
something, rather than try to infer where it should be on the
basis of its knowledge of the world.

Naturat Events and Actions by Other Agents

Unless the agent is the only source of change in the
domain, it must be able to reason about natural events and
actions by other agents in order to adapt its behavior to their
occurrence.

28/ Intelligence Artificielle au Canada automne 1996

Goals, Intentions, Ability, and Rational Choice

When an agent must interact with other agents and does
not have complete knowledge of their internal state and the
programs they follow, it becomes useful to model them as
entities that make rational choices of actions based on their
goals, commitments, knowledge, and abilities. This is
essential if the agents are to cooperate to perform some
tasks.

A Theory of Agency

In the past few years, the Cognitive Robotics Group has
been working on a theory of rational agency based on the
situation calculus that addresses these questions. Reiter
[Reiter91] laid the foundation for our theory by showing
how the prerequisites and effects of primitive actions can be
expressed in a way that solves the frame problem for a large
class of cases. Scherl and Levesque [SL.93] extended this
solution to handle knowledge-producing actions. As well,
we developed a way of representing complex actions —
actions constructed out of the primitive ones using standard
control structures such as sequencing, conditionals, iteration,
and nondeterminism — such that these complex actions inherit
the solution to the frame problem from that for primitive
actions.

The GOLOG and CONGOLOG Programming
Languages

The set of complex action expressions handled by the
theory forms the basis of a new logic programming language
that we call GOLOG (alGOl in LOGic) [LRLLS96,
LLLMRS94]. Here is an example of a GOLOG program
that an agent organizing a meeting might be running:

proc scheduleMeeting(organizer,Participant,period)
for p: Participant(p) do

request(scheduleMgr(p),
addToSchedule(p,period,meeting,organizer));
query Whether(scheduleMgr(p),
agreedToMeet(p,self,period,organizer))

endFor;

while ~KnowWhether(self, forall p [Participant(p) ->
agreedToMeet(p,self,period,organizer)]) do
senseMsg;

if ~Empty(MsgQ(self)) then removeMsg endIf
endWhile;

/* then, inform organizer of result, etc. */

endProc

The example comes from [LLLMRS96]. The abstract
communication actions request and queryWhether are
defined in terms of the sendMsg primitive action.

Perhaps the most distinctive feature of GOLOG is that its
interpreter automatically maintains an explicit representation
of the dynamic world being modeled, on the basis of user
supplied axioms about the preconditions and effects of
primitive actions and the initial state of the world. This
allows GOLOG programs to reason about the state of the
world and consider the effects of various possible courses of
action before committing to a particular behavior. The net
effect is that programs may be written at a much higher level
of abstraction than is usually possible. Note that our approach
focuses on high-level programming rather than plan synthesis
at run-time; but nondeterminism can be used to specify
sketchy plans, leaving it up to the interpreter to search for an
executable sequence of primitive actions that will achieve
the desired effects. When an implementation of the primitive
actions is provided, a GOLOG program can be executed in a
real environment; in the absence of this, the interpreter can
nevertheless produce a simulated execution. A prototype
GOLOG interpreter has been implemented in PROLOG.

For applications involving multiple interacting agents, as
well as cases where reactive or event-driven behavior is
required, it is useful to extend the set of complex actions
handled in GOLOG to include concurrent processes,
priorities, interrupts, and multiple agents [LLLMRS96). We
call the extended language CONGOLOG (CONcurrent
GOLOG). A prototype interpreter for it has also been
implemented in PROLOG.

Applications

To evaluate our theoretical framework and the GOLOG/
‘CONGOL.OG interpreters as implementation tools, we have
been experimenting with various types of applications. One
project under way involves robotics applications. GOLOG
makes it relatively easy to specify intelligent strategies for a
robot to accomplish its tasks. So it seems that a GOLOG-
based reasoning module should be very useful as a component
of a hierarchical control system for a robot; this should yield
more powerful and adaptable robotics systems. Our first
application in this area has been mail delivery in an office
environment [LLLMRS94]. A high-level controller for the
robot was programmed in GOLOG and interfaced to a
robotics software package that supports path planning and
local navigation. So far, we have only used the system in
simulation mode; but we are acquiring a RWI B-21 robot
and will soon be running experiments in using the GOLOG
controller to have it perform tasks. A group at the University
of Bonn has also been experimenting with GOLOG to control
its RWI B-21. In collaboration with Michael Jenkin’s team
at York University, we are studying how the GOLOG
reasoning module is best integrated with the other
components of a hierarchical control system for robots in
order to get maximum performance.

In contexts such as robotics, sensor noise and “control
error” are immediate problems. We have made some
headway in modeling this within our theory [BHL95]. A
new account of planning has also been developed to deal

with that fact that robot plans typically involve sensing
[Levesque96]. Earlier work on agent-centered
representations [LL.95] has also been incorporated in our
framework [SLL95].

In another project, we are developing tools based on
CONGOLOG for modeling business and organizational
processes [YML96]. In contrast to the operational view of
conventional modeling tools, CONGOLOG takes a logical
view of processes. This should prove advantageous when it
comes to modeling system behavior under incompletely
known conditions and proving properties about the system.
CONGOLOG can produce a simulation directly from the
system specification. To test our framework, we are using it
to model processes from real organizations. One such
experiment involves modeling the procedures followed by
nuclear plant operators. Related to this is the problem of
how one can model continuous processes in a state-based
framework like the situation calculus. [Reiter 96] and [Pinto
94] develop solutions to this which provide the foundations
for the design and implementation of simulators for physical
systems [Kelley96].

Work is also under way on more classical intelligent
software agent applications. Ruhman [Ruhman96]
implemented a multi-agent “home banking assistant” tool
that can be used to monitor account balances and select the
best transaction to perform when a balance moves outside a
target range. The system involves a number of GOLOG
agents that communicate using TCP/IP. A CONGOLOG
treatment of the popular office meeting scheduling problem
has also been developed [LLLMRS96]. An implementation
of the design is under way.

As mentioned earlier, when agents start interacting with
others without having complete knowledge of the situation,
it is advantageous for them to view other agents as having
goals, intentions, and abilities, and as making rational
choices. This allows them to anticipate and influence the
behavior of other agents, and cooperate with them. It also
supports an abstract view of communication acts as action
that affect other agents’ mental states as opposed to mere
message passing. We have started extending our framework
to deal with abilities, goals, intentions, and rational choice
[SLL95,LLLS96].

References

[BHL95] F. Bacchus, J.Y. Halpern, and H.J. Levesque.
Reasoning about Noisy Sensors in the Situation Calculus.
In Proceedings of IJCAI-95, pp. 1933-1940, Montreal,
August, 1995.

[Kelley96] T.G. Kelley. Reasoning about physical systems
with the situation calculus, in Proc. Common Sense 96:
Third Symposium on Logical Formalizations of
Commonsense Reasoning, Stanford, CA, January, 1996.

[LL95] Y. Lesperance and H.J. Levesque. Indexical
Knowledge and Robot Action — A Logical Account.
Artificial Intelligence, 73, pp. 69-115, 1995.

Canadian Artificial Intelligence Autumn 1996/ 29

[LLLMRS94] Y. Lesperance, H.J. Levesque, F. Lin, D.
Marcu, R. Reiter, and R.B. Scherl. A Logical Approach to
High-Level Robot Programming - A Progress Report. In
Benjamin Kuipers, editor, Control of the Physical World
by Intelligent Systems, Papers from the 1994 AAAI Fall
Symposium, pp. 79-85, New Orleans, LA, November, 1994.

[LLLMRS96] Y. Lesperance, H.J. Levesque, F. Lin, D.
Marcu, R. Reiter, and R.B. Scherl. Foundations of a Logical
Approach to Agent Programming, in M. Wooldridge, J.P.
Mueller, and M. Tambe, editors, Intelligent Agents Volume
II - Proceedings of the 1995 Workshop on Agent Theories,
Architectures, and Languages (ATAL-95), pp. 331-346,
Springer-Verlag, Lecture Notes in Artificial Intelligence,
1996. A French version appeared in Actes des Troisiémes
Journées Francophones sur 'Intelligence Artificielle
Distribuée et les Systémes Multi-Agents, Chambery-St-
Badolph, France, March, 1995.

[LLLS96] Y. Lesperance, H.J. Levesque, F. Lin, and R.B.
Scherl. Ability and Knowing How in the Situation Calculus.
In preparation. 1996.

[LRLLS96] H.J. Levesque, R. Reiter, Y. Lesperance, F.
Lin, and R.B. Scherl. GOLOG: A Logic Programming
Language for Dynamic Domains, to appear in Journal of
Logic Programming, special issue on Reasoning about
Action and Change, 1996.

[Levesque95] H.J. Levesque. What is planning in the
presence of sensing? To appear in The Proceedings of the
Thirteenth National Conference on Artificial Intelligence,
AAAI-96, Portland, Oregon, August 1996.

[Pinto94] J. Pinto. Temporal Reasoning in the Situation
Calculus. Ph.D. Thesis, Dept. of Computer Science, Univ.
of Toronto, January 1994.

[Reiter96] R. Reiter. Natural actions, concurrency and
continuous time in the situation calculus. Proc. Common
Sense 96: Third Symposium on Logical Formalizations of
Commonsense Reasoning, Stanford, CA, January 1996.

[Reiter91] R. Reiter. The frame problem in the situation
calculus: A simple solution (sometimes) and a completeness
result for goal regression. Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor
of John McCarthy, Vladimir Lifschitz (ed.), pp.359-380,
Academic Press, San Diego, CA, 1991.

[Ruhman96] S. Ruhman. GOLOG as an agent-programming
language: Experiments in developing banking applications.
M.Sc. Thesis, Dept. of Computer Science, University of
Toronto, 1996.

[SLL95] R.B. Scherl, H.J. Levesque, and Y. Lesperance.
The Situation Calculus with Sensing and Indexical
Knowledge, in Moshe Koppel and Eli Shamir, editors,
Proceedings of BISFAI’95: The Fourth Bar-llan
Symposium on Foundations of Artificial Intelligence, pp.
86-95, Ramat Gan and Jerusalem, Israel, June, 1995.

[SL93] R.B. Scherl and H.J. Levesque. The Frame Problem
and Knowledge Producing Actions. In Proceedings of
AAAI-93, pp. 689-695, Washington, DC, July, 1993.

[SLL95] S. Shapiro, Y. Lesperance, and H.J. Levesque.

30 / Intelligence Artificielle au Canada automne 1996

Goals and Rational Action in the Situation Calculus - A
Preliminary Report, in Working Notes of the AAAI Fall
Symposium on Rational Agency: Concepts, Theories,
Models, and Applications, Cambridge, MA, November,
1995.

[YML96] E. Yu, J. Mylopoulos, and Y. Lesperance,
Modelling the Organization: New Concepts and Tools for
Re-Engineering, to appear in IEEE Expert, special issue
on Artificial Intelligence Applications in Enterprise
Modelling, June 1996.

Copies of these and other relevant sources of information

may be found at: http://www.cs.toronto.edu/~cogrobo A

Yves Lesperance is an Assistant Professor in Computer
Science at York University. He received his Ph.D. in
Computer Science from the University of Toronto in 1991.
His current work focuses on the development of logic-based
tools for modeling and designing intelligent agents.
lesperan@yorku.ca http://www.cs.yorku.ca/People/lesperan

Fangzhen Lin received his doctorate from Stanford
University in 1991. He pursued research at the University
of Toronto from 1992 to 1996. He is currently working at
the Hong Kong University of Science & Technology.

Richard Scherl is currently an Assistant Professor in the
Department of Computer and Information Science at the
New Jersey Institute of Technology. He received his Ph.D.
from the University of Illinois in 1992.

Hector Levesque is a Professor of Computer Science at the
University of Toronto. He received his Ph.D. in 1981 from
the University of Toronto. His current work focuses on how
to keep reasoning computationally tractable and on the
knowledge representation problems faced by an autonomous
agent interacting with a dynamic and incompletely known
world.

Ray Reiter holds a B.A. and M.A. in mathematics from the
University of Toronto, and a Ph.D. in Computer Science
from the University of Michigan. He is currently Professor
of Computer Science at the University of Toronto. His
research interests are in artificial intelligence, with emphasis
on foundations for knowledge representation. He is a Fellow
of the American Association for Artificial Intelligence, of
the ACM, and of the Canadian Institute for Advanced
Research. In 1993 he received the Research Excellence
Award, granted biennially by the International Joint
Conference in Artificial Intelligence.

Daniel Marcu is a Ph.D. student in the Department of
Computer Science, University of Toronto. He works in the
area of computational linguistics, knowledge representation
and reasoning for natural language systems, and robotics.
His current work focuses on building theories and systems
for agents that communicate in plain English.

Distributed Agent Systems for Intelligent Manufacturing

Introduction

Les architectures pour la fabrication intelligente formant
des sociétés d’agents coordinateurs sont devenues un sujet
de recherche important au cours de la derniére décennie.
Pendant cette méme période, la recherche sur les systémes
de fabrication intelligente a connu une collaboration
internationale plus grande, ainsi qu’une coordination accrue
des sociétés de chercheurs a travers le monde. Les modgles
et les technologies de coordination distribuée d’agents en
cours de développement pour gérer la fabrication,
s’appliquent aussi bien a4 la gestion de la recherche en
collaboration distribuée. Le programme de recherche
international des Systémes de fabrication intelligente tente
de systématiser et de rendre opérationnel le savoir mondial
sur les systémes avancés de fabrication en vue de générer de
nouveaux paradigmes [3]. Cet article met 1’accent sur la
recherche sur les systémes de fabrication intelligente 2 base
d’agents effectuée a I’ Institut de la science de la connaissance
et ala Division d’ingénierie de la fabrication de 1’ Université
de Calgary pour supporter le cycle de vie de fabrication dans
une entreprise distribuée. On y décrit des applications 2 la
coordination de recherche en fabrication et 2 des activités et
procédés de fabrication spécifiques.

introduction
Architectures for intelligent manufacturing systems as
societies of coordinating

Douglas H. Norrie and Brian R. Gaines

This article focuses on agent-based IMS research undertaken
in the Knowledge Science Institute and the Division of
Manufacturing Engineering at the University of Calgary to
support the manufacturing life cycle in a distributed
enterprise. Applications to the coordination of manufacturing
research and to specific manufacturing activities and
processes are described.

The following describes two multi-agent systems
embodying new approaches and for which working
prototypes have been developed. The first of these is a high-
level Mediator agent system which supports the coordination
in concurrent fashion, of geographically distributed
application processes via Internet communication [4]. The
second multi-agent system is a concurrent engineering
application which supports coordinated simultaneous design,
process planning, routing, and scheduling activities [7].

Mediator

Mediator is an agent-based, open-architecture information
and knowledge management system designed to provide a
flexible technology to support the management of complex
manufacturing environments. A heterogeneous environment
is assumed in which the sub-systems are geographically
dispersed and involve different application packages, not
necessarily designed to work together, multiple platforms,

agents have become a major
research theme in the last
decade. At the same time,

research activities on Mediator
intelligent manufacturing Site

systems have increasingly

involved international Mediator

collaboration and the
coordination of societies of

Server Agent

human research agents world-
wide. The distributed agent
coordination models and
technologies being developed
to manage manufacturing are
also applicable to the
management of distributed
collaborative research. The
international Intelligent
Manufacturing Systems (IMS)
research program is an attempt
to systematize and make
operational world-wide
knowledge of advanced
manufacturing systems as a
basis for new paradigms [3].

Mediator

Mediator Client Agent

Information
Agent

Mediator Mediator
Information Information

Agent Agent
y

Mediator CAD
Application Application
\

(CAD) (MRP]
Application Application

Mediator
Information
Agent

Application

Mediator
Application

Mediator
Information
Agent

\

Mediator

Application

BOM
Application

Figure 1. Mediator Operation Over a Network

Canadian Artificial Intelligence Autumn 1996/ 31

protocols and forms of user interface. The function of
Mediator is to provide a knowledge support system for the
managers and system operators involved in running a virtual
factory. It is designed to facilitate communication,
compliance with constraints including physical restrictions
and legal obligations, and to generally represent knowledge
about any activity or sub-system relevant to the
manufacturing process.

Figure 1 shows the way in which Mediator operates over
a network. A server agent at a site manages a knowledge
base consisting of a set of files from different applications.
Concept maps are used to represent the files and relations
between them. Files may be opened from the maps in the
appropriate applications. Since the maps and hypermedia
documents of Mediator are also files, the system can be used
to support large-scale linked knowledge structures. Client
agents at remote sites connect to server agents across the
network and allow files to be accessed remotely in the same
way as they are locally.

Concurrent Engineering MAS

The architecture of this concurrent engineering application
is based on a heterogeneous agent paradigm in which every
physical or other entity in the system, such as design features,
parts, and manufacturing shop floor machines, is associated
with a reasoning agent. These design, resource, part, and
coordination agents are integrated into an open ended system
in which dynamic virtual clusters of agents interact to carry
out the necessary concurrent engineering activities [8]. Novel

CAD 1 CAD 2
Env. Manager Env. Manager
Feature Agents Fealure Agents

Part Agent Part Agent

Geom. Int. Agent Geom. Int. Agent

t t

Shop-Floor Manager

Static Dynamic Dynamic
Matchmaker Machine Tool
Mediator Mediator Mediator

Resource Agents |

Machine & Tool Machine & Tool
Community 1 Community 2
00
23

Figure 2. System Architecture

—
\

32/ Intelligence Artificielle au Canada automne 1996

features are: dynamic system organization through virtual
clustering (the clusters are created, coordinated, and
destroyed as required for task accomplishment); agent
reasoning through an asynchronous message-triggered
inferencing process quite different from conventional
inferencing techniques; specially developed mechanisms to
provide each agent with its own independent thread of
execution control and to dynamically coordinate these. The
system has been tested when distributed across three
workstations connected by a local area network.

Figure 2 shows a simplified view of the architecture. The
components include a CAD sub-systems, a Shop-Floor
Manager, and Resource agent communities. These multi-
agent composite components have reasoning, control, and
communication capabilities for both their internal activities
and their collaborative actions with other agents. This synergy
achieves flexibility, expandability, fault tolerance, and
reconfigurability on a real-time basis.

The system has been implemented on a network of HP
9000/715 machines running HPUX 9.01. The CAD sub-
systems have been implemented using AutoCAD R12,
Advanced Modeling Extension V2, a light-weight process
library developed for this purpose, and C++. The Shop-
Floor Manager and resource agents have been implemented
using Smalltalk VisualWorks 2.0. Every agent in the system
has an independent thread of execution control. The HPUX
communication capabilities have been used to provide an
asynchronous messaging mechanism for communication
among the sub-systems. The constituent individual agents
use facilities provided by their respective local environment,
namely, the light weight process library and Smalitalk.

The CAD sub-system provides facilities for feature-based
design and comprises Part Agents, Feature Agents, a Design
Agent, a Geometric Interface Agent, and an Environment
Manager. A part is designed by repeated instantiations of
features on a blank geometry. The Part Agent is the repository
for both product data and knowledge, and dynamically
updates itself as the design progresses. Every feature type
present in the design system and every feature instantiated
in the design process is represented by a Feature Agent. The
design system has more than twenty-five non-degenerate
feature types for prismatic components.

The Design Agent here is the human expert. The Geometric
Interface Agent acts as an intermediary for translating
information between the graphical display, the constructive
solid geometry manipulation front end, and other agents.
The Environment Manager coordinates the activities of the
agents in the design system by acting as amessage redirector.
1t also interfaces local agents with manufacturing resource
agents through shop-floor manager.

The Shop-Floor manager plays a vital role in shop floor
control by establishing and maintaining virtual agent
communities and by redirecting messages. It imposes an
adaptive hierarchy within a resource community as required.
The Shop-Floor Manager is comprised of multiple

components, namely, a Static Matchmaker mediator, and a
number of dynamic machine and tool mediators. The
mediators have a generic coordination architecture [9] and
provide facilities for matchmaking, cloning, clustering,
dynamic coordination, and arbitration.

Each machine on the shop floor is represented by an
autonomous machine agent which has knowledge of its own
machine’s physical and process capabilities, potential or
assigned tooling, and production schedule. Each tool in the
shop floor is represented by an autonomous tool agent which
has knowledge about the tool’s shape, and its tolerance
capabilities in combination with a particular machine and
work material under standard operating parameters. It also
maintains a record of the schedule for the tool’s use.

Other Agent Research at the University of Calgary

Other agent projects related to manufacturing include a
development system for agent software [6], planning and
control of autonomous guided vehicles (AGVs) [5], and
intelligent control {1].

The applications of agent-based systems to manufacturing
are part of a long-term program of research into the
fundamentals of intelligent, adaptive agents, including
communities of agents in human society and their interactions
with technology.

The collective stance model [2] views the human species
as a single agent recursively partitioned in space and time
into sub-agents that are similar to the whole. These parts
include societies, organizations, groups, individuals, roles,
and neurological functions. Notions of expertise arise because
the species adapts as a whole through adaptation of its
interacting parts. The phenomena of expertise correspond to
those leading to distribution of tasks and functional
differentiation of the parts. The mechanism is one of positive
feedback from parts of the agent allocating resources for
action to other parts on the basis of those latter parts past
performance of similar activities. Distribution and
differentiation follow if performance is rewarded and low
performers of tasks, being excluded by the feedback
mechanism from opportunities for performance of those
tasks, seek out alternative tasks where there is less
competition. The knowledge-level phenomena of expertise,
such as meaning and its representation in language and
overt knowledge, arise as byproducts of the communication,
coordination, and modeling processes associated with the
basic exchange-theoretic behavioral model.

The collective stance model has been applied to many
areas of human-technology interaction, including educational
systems and the use of Mediator to support a learning web
[10].

References

[1] Balasubramanian, S. and Norrie, D.H. “Intelligent
Manufacturing Control,” Proceedings of 1996
Canadian Conference on Electrical and Computer

Engineering, 26-29 May 1996, Calgary, IEEE
Publication, 4 pp., 1996 (in press).

[2] Gaines, B.R. “The Collective Stance in Modeling
Expertise in Individuals and Organizations,”
International Journal of Expert Systems, Vol. 7, No.
1, pp. 21-51, 1994.

[3] Gaines, B.R. and Norrie, D.H. “Knowledge
Systematization in the International IMS Research
Program,” in Proceedings of 1995 IEEE International
Conference on Systems, Man and Cybernetics, IEEE,
New York, pp. 958-963, 1995.

[4] Gaines, B.R. and Norrie, D.H. and Lapsley, A.Z.
“Mediator: an Intelligent Information System
Supporting the Virtual Manufacturing Enterprise,”
in Proceedings of 1995 IEEE International
Conference on Systems, Man and Cybernetics, IEEE,
New York, pp. 964-969, 1995.

[5] Kwok, A. and Norrie, D.H. “Intelligent Agent Systems
for Manufacturing Applications,” Journal of
Intelligent Manufacturing, Vol. 4, pp. 285-293, 1993.

[6] Kwok, A. and Norrie, D.H. “A Development System
for Intelligent Agent Manufacturing Software,”
International Journal of Integrated Manufacturing
Systems, Vol. 5, No. 4/5, pp. 64-76, 1994.

[7] Maturana, F.P. and Norrie, D.H. “A Generic Mediator
for Multi-Agent Coordination in a Distributed
Manufacturing System,” in Proceedings of 1995
IEEE International Conference on Systems, Man and
Cybernetics, IEEE, New York, pp. 952-957, 1995.

[8] Maturana, F.,Balasubramanian, S. and Norrie, D.H.
“A Multi-Agent Approach to Integrated Planning
and Scheduling for Concurrent Engineering,”
Proceedings of Third International Conference on
Concurrent Engineering, 26-28 August, 1996,
Toronto, Canada, 8 pp., 1996 (in press).

[9] Maturana, F.P. and Norrie, D.H. “Multi-Agent
Coordination Using Dynamic Virtual Clustering in a
Distributed Manufacturing System,” Proceedings of
Fifth Industrial Engineering Research Conference
(IERCS5), May 18-20, 1996, Minneapolis, 6 pp., 1996
(in press).

[10] Norrie, D.H. and Gaines, B.R. “The Learning Web:
A System View and an Agent-Oriented Model,”
International Journal of Educational
Telecommunications, Vol. 1, No. 1, pp- 23-41,
1995.

Copies of these papers and other relevant articles may be

found at: http://ksi.cpsc.ucalgary.ca/articles/ and http://

www.ucalgary.ca/~norrie/ A

Douglas H. Norrie currently holds the Nortel Chair in
Intelligent Manufacturing at The University of Calgary,
Alberta, Canada. He is also Professor of Mechanical
Engineering and Adjunct Professor of Computer Science at
the same institution. His research interests are in Intelligent

(Continued, page 21)

Canadian Artificial Intelligence Autumn 1996/ 33

Personal Assistants for the Office Professional

Résumé

Des chercheurs étudient actuellement la conception d’agents
logiciels qui agiront en tant qu’assistants personnels au
professionnel de bureau: par exemple, des agents qui filtrent
le courrier, aident au traitement des appels téléphoniques, et
aident 2 la gestion de I’agenda quotidien du professionnel.
Ces agents devront interagir avec le professionnel d’une
fagon naturelle pour lui, autrement on ne réussira pas a les
introduire dans les bureaux de demain. De plus, lorsqu’ils
rempliront leurs fonctions, ces agents devront interagir les
uns avec les autres de fagon 2 partager I’information et a
résoudre des conflits; par exemple, lorsque I’agent qui est
responsable des appels téléphoniques voudra localiser son
propriétaire, il devra consulter 1’agent responsable de
’agenda. Les architectures d’agents utilisées pour la
conception d’agents assistants au professionnel de bureau
devront posséder plusieurs caractéristiques: une
représentation explicite du probléeme que l’agent doit
résoudre, la possibilité d’acquérir un ensemble initial de
connaissances, la possibilité pour un agent d’acquérir de
nouvelles connaissances, la modélisation des interactions
entre un agent et les autres agents dans son environnement,
et 1a possibilité pour les concepteurs de I’agent de vérifier la
validité de la base de connaissances de I’agent. Dans cet
article, nous décrivons nos modeles d’agents logiciels, qui
peuvent soutenir le développement d”architectures d’agents.

Abstract

Researchers are now studying the design of software
agents that will act as personal assistants to the office
professional, such as agents that filter email, support the
processing of telephone calls, and support the management
of the professional’s daily calendar. These agents will have
to interact with the office professional in a manner that is
natural for the professional, or they will not be successfully
integrated into the office of tomorrow. In addition, when
performing their functions, these agents will have to interact
with each other in order to share information and to resolve
conflicts; for example, when the agent that is responsible for
processing telephone calls wants to locate its owner, it will
have to consult the agent responsible for calendar
management. Agent architectures used for the design of
agents to aid the office professional will have to support
several features: an explicit representation of the problem
that the agent is solving, support the acquisition of an initial
body of knowledge, support the ability for the agent to
acquire new knowledge, support modeling of interactions
that occur between an agent and the other agents in its
environment, and permit the agent’s designers to validate
the knowledge base of the agent. In this paper, we describe
our models for software agents, which can support the
development of agent architectures.

34/ Intelligence Artificielle au Canada automne 1996

Cliff Grossner and T. Radhakrishnan

Introduction

In many of the business offices in Canada, the technology
used to support a professional has not advanced much since
the introduction of the electric typewriter, except for the
introduction of the word processor. There are many factors
that can be responsible for this, and one factor that is certainly
a problem is the gap between how office professionals
currently carry out their daily functions and the human
interface that today’s computers can provide. In fact, when
presented with the option of learning to use a new software
package, many professionals choose to continue with the
method they are currently using because the interface
provided by this software package is too clumsy and requires
too much time for the professional to learn.

We believe that with the development of intelligent
software agents that assist a professional by acting as a
personal assistant, it will be possible to further enhance the
productivity and the convenience of working because these
agents will be able to provide interfaces that do not require
large effort on the part of the professional. The personal
agent of an office professional will “know” about the
professional’s needs, working habits, and constraints, and
this knowledge will be represented in a suitable form [1].
This agent would also be a learning agent, in which case its
knowledge will be improved incrementally, and any
knowledge added to the agents’ knowledge base must be
validated [2]. Learning could come through several means,
including the agent observing the office professional
performing routine tasks [3].

An office is considered to be a open system by several
researchers [4,5]. Such a system has to operate in an
environment whose boundaries are not clearly specified.
There are several different tasks that an office professional
performs on a daily basis, such as reading email, scheduling
and attending meetings, and processing voice mail messages.
Let us suppose that each of these tasks is assisted by an
agent. Thus, there will be several agents assisting a single
office professional. An agent, as we understand, will have
the following three attributes:

+ Itis autonomous; it will operate as an independent process
and interact synchronously with other agents on a peer-
to-peer level.

« It encapsulates functionality; it serves as a container of
“human knowledge” that is needed by the agent to assist
a user in a specific task. This knowledge refers both to
computational methods and the associated data. An agent
can be accessed only through a well defined agent
interface. In this sense, it resembles an object as described
by an Object Oriented paradigm.

« It uses a predefined agent communication language;
multiple agents communicate by passing messages whose

syntax and semantics are formally defined by a standard

agent communication language.
It is possible that an agent providing a service to the office
professional will actually consist of multiple agents
interconnected through a network, and each agent may play
a different role. For example, there could be specialized
interface agents for interacting with the office professional,
or agents that are able to connect to open environments such
as the Internet. All these agents acting together will form an
agent architecture that is suitable to provide the required
service to the office professional.

Agent-to-agent communication requires the sending agent
to create some model of the relevant aspects of the receiving
agent(s). This is particularly true when problem-solving
involves alternating phases of planning and execution. In
the planning phase, the agents involved in planning will
collect information or create models of the other agents, so
that they may create a “good plan” that will be fruitfully
executed in the following execution phase. Thus, in certain
cases agent modeling becomes an important aspect in
supporting agent communication.

In this report, we will consider how to model software
agents. Our models are designed to capture the actions that
are taken by agents that interact to solve a problem, and to
capture the data items that must be shared among the agents
as they are problem-solving. First, we will consider how to
model the problem that is to be solved by the agents. Using
this model, we will then show how to model the agents
themselves, given that these agents are implemented as rule-
based systems. Then, we describe how to model the
interaction between the agents in terms of the actions that
are taken by each agent to solve the problem, and in terms of
the data items that must be shared between the agents.

Models for Software Agents

Our model for representing problems is based upon the
state space model that is used by many researchers for
generic problem-solving [6]. In the state space model,
problem-solving is seen as a traversal of a set of states, and
at each state a number of different actions may be taken
leading the problem-solver into a new state. After traversing
many states, the problem-solver will solve the problem,
reaching a final state in the state space. We propose the state
space notion to include the existence of states that are
referred to as goal states [7]. Goal states are states that are
identified by the problem-solver as being important to reach
in solving the problem. Reaching a goal state implies that a
“meaningful” step has been taken in solving the problem.

In our model for representing problems, we identify two
types of goals: concrete goals and abstract goals. A concrete
goal is a goal that is an atomic unit in terms of which
abstract goals are defined. Concrete goals are mapped to
states in the state space model, and the transitions in the
state space model will correspond to the steps required to
achieve one concrete goal starting from another concrete
goal. Abstract goals are goals that are achieved when the

problem-solver achieves several concrete goals, and it is
common that there will be a number of different combinations
of concrete goals that lead to the achievement of the same
abstract goal. In effect, these different combinations for
achieving an abstract goal represent alternative methods for
achieving that abstract goal. The appropriate method for
achieving an abstract goal each time that goal is to be
achieved will depend on the current state of the problem
being solved and the preferences of the problem-solver.

There exist many different relationships between goals,
and we make use of these relationships to determine the
combinations of concrete goals that are appropriate for
achieving an abstract goal. In our model, we focus on the
use of the subgoal relationship [8], where we include a
logical function as a component of the subgoal relationship.
This representation, shown in Figure 1, permits us to capture
the different actions that a problem-solver may take when
problem-solving as a network of goals interconnected by
the subgoal relationship. We refer to this network of goals
as a Designer’s Goal Graph (DGG). If we consider the goal
network shown in Figure 1, we can see that there are abstract
goals and concrete goals that are interconnected by XOR
(X), OR (0), and AND (A) subgoals relationships. The
XOR subgoal relationship is used to express that an abstract
goal is achieved by one of a number of different alternatives,
and only one of the alternatives would be chosen to be
achieved each time the abstract goal is to be achieved. The
OR subgoal relationship also indicates that an abstract goal
is achieved by one of a number of different alternatives, but
that it may be advantageous to pursue alternative approaches
for solving the same goal simultaneously. If several
alternatives for achieving a goal are pursued simultaneously
and one of the alternatives succeeds, all ongoing attempts to
achieve other competing alternatives would be abandoned.
In the case of the AND subgoal relationship, an abstract
goal is achieved when the set of subgoals on the AND list
are achieved.

Letus now consider how we can model an agent, assuming
that the problem to be solved by the agent has been modeled
using a designer’s goal graph. The key to modeling agents
that are implemented as rule-based systems is to define a
notion of a rule-based execution path that is analogous to an
execution path for conventional software. For this purpose,
we have developed the path model [9]. The path model
permits an agent to be modeled as a set of paths, where each
path achieves a concrete goal. Given the concrete goals that
are defined in the designer’s goal graph for the problem that
the agent is designed to solve, the path model defines
sequences of interdependent rules that will achieve a concrete
goal when all the rules in the path fire; thus, for each
concrete goal, the path model will define one or more
sequences of rules that can achieve that goal. Analysis of the
rules in each path indicates the data items that are required
by all the rules in a path to fire; thus the path model also
captures the data items that are required to achieve each
concrete goal.

Canadian Artificial Intelligence Autumn 1996/ 35

Alternative A

Alternative B

T T

Connective I I

Concrete Goal O

I Abstract Goal :)

Figure 1. Problem Representation (Designer’s Goal Graph)

Given the designer’s goal graph, the paths used to achieve
a concrete goal, and the data items required to achieve that
goal, we can now consider the different sequences of actions
that can be used by an agent to achieve an abstract goal.
Again, we will make use of the goal graph to define the
notion of a line of reasoning. A line of reasoning is a
partially ordered sequence of tuples, and each tuple consists
of a concrete goal and a path that achieves that goal. The
concrete goals in a line of reasoning satisfy the constraints
for achieving an abstract goal that is contained in the
designer’s goal graph. The tuples belonging to a line of
reasoning are partially ordered by the precedence constraints
between the concrete goals in each tuple. Each line of
reasoning represents the sequence of actions that are to be
taken to achieve an abstract goal as well as the data items
that are required by the agent to achieve that abstract goal.

The interactions between software agents can be modeled
in terms of the actions that are taken by each agent to solve
the problem, and in terms of the data items that must be
shared between the agents. At any time in the problem-
solving process, each agent will be attempting to achieve
one or more abstract goals. Each agent will determine a line
of reasoning that is appropriate to achieve the abstract goal
itis mandated to achieve. Making use of space-time diagrams,
we can determine the data items that must be shared between
the agents. We will also be able to determine at which stage
in the problem-solving process an agent producing a data
item should make the data item available, and determine
which agents will require access to that data item.

As an example, consider one possible interaction between

36 / Intelligence Artificielle au Canada automne 1996

three software agents, as modeled in Figure 2. Here, IM is
an agent that monitors news sources for specific articles,
MF is an agent that filters multimedia messages, and MS is
an agent that schedules meetings. Each of these agents is
implemented as a rule-based system, the problem domain
that each agent has been designed to solve is modeled using
a designer’s goal graph, and the rule base of each agent has
been analyzed to discover all of the execution paths that can
be used to achieve a concrete goal. In Figure 2, we show the
concrete goals that are achieved and the messages passed by
these three agents when agent IM detects that a news article
has been posted about which the office professional would
want to be notified. IM determines that it does not currently
know the location of the office professional, and decides to
send a request to agent MF, shown by (A) in Figure 2. Agent
MF decides to see if Agent MS can locate the office
professional (B). Eventually, both Agent MF and MS respond
indicating that they do not know where to locate the office
professional (D). Agent MS and IM both take on the goal of
asking other agents if they know the location of the office
professional. Agent MS is able to determine the location of
the office professional with the help of other agents (not
shown in Figure 2), and notifies Agent IM (E). Agent IM
can then deliver a message to the office professional.

In Figure 2, we show only one of many different sequences
of actions that might have been pursued by Agents IM, MF,
and MS when IM determines that it must contact the office
professional. The different sequences of actions that can
occur will be modeled using the designer’s goal graph and
the different paths that are present in the rule base of each

A B C D E
Agent IM —O—G\
Agent MF \&O J
Agent MS —C} \Q_ L e

Idle Period —

Time

Data Dependency ———

Concrete Goal O

Figure 2. Modeling Agent Interaction

agent. Of course, the data messages that are passed between
the agents will vary with the lines of reasoning each agent
uses to achieve their goals.

When the interaction between agents is modeled as we
describe, the data dependencies between the agents and the
idle times that result due to the data dependencies are known.

Selected Research Issues

In an area of application for software agents, such as office
information systems, there are several technical and research
issues to be studied. In this section, we will describe four
such issues that are relevant to our research interests: (1)
learning in the context of a rule-based agent, (2) validation
and verification of rule-based systems, (3) application level
protocols for agent to agent, and (4) user models for the
support of effective end user to agent interactions.

In our research, the knowledge base of an agent is
represented in the form of a rule base. An agent starts with a
set of knowledge and this knowledge is added to
incrementally as the agent learns. In order to facilitate
learning, an agent is
designed to observe “situation-action” pairs. These actions
are as defined in the designer’s goal graph for the problem
domain; an example action for the meeting scheduling
problem would be requesting for the postponement of a
meeting. Situations are characterized in terms of the data
items required to achieve an action as provided by the path
model, and external input from end users. Which situations
an agent should observe is an open ended question. As new
knowledge is added to the knowledge base of the agent, its
validation and verification are important to ensure that the
rules added do not “contradict” the existing rules. We have
been working on both static and dynamic validation of rule-
based systems [10].

For software agents, agent-to-agent communication is a
key issue. The language used for agent communication, the

protocol adopted to suit the underlying application domain,
and the acceptability of such protocols and languages among
researchers are essential in the development of agent-based
technology. We have developed the Consensus protocol
which is designed to be used by a set of cooperating agents
[8]. An interface agent is a software system that interacts
with both the end user and agents designed to solve a
specific problem. For an interface agent to communicate
effectively with the end user, we need suitable user models
in which the interface agent can develop appropriate
responses or requests. This is also one of our areas of
research.

Summary

We have been working on the above research topics for the
last several years. Each of our research initiatives has been
taken up as an independent piece of work. Currently, we are
working on integrating these individual research initiatives
within the context of software agents designed to aid the
office professional.

References

[1] Lashkari, Metral, M. and Maes, P. Collaborative interface
agents. In Proceedings of the 12th National Conference
on Artificial Intelligence (AAAI-94), pages 444-450, July
1994,

[2]Maes, P. Agents that reduce work and information
overload. Communications of the ACM, 37(7):30-40,
July 1994.

[3] Malone, T.W. How do people organize their ideas?
Implications for the design of Office Information
Systems. ACM Trans. on OIS, 1(1): 99-112, Jan. 1989.

[4) Hewitt, C. Offices are open systems. ACM Trans. on
OIS, 4(2):271-287, July 1968.

[5] Ho,C.S., Hang,Y. and Kuo, T.S. A society model for
office information systems. ACM Trans. on OIS,

Canadian Artificial Intelligence Autumn 1996/ 37

4(2):104-131, April 1986.

{6] Grossner, C., Preece, A., Gokulchander, P., Radhakrishnan,
T. and Suen, C.Y. Exploring the structure of rule-based
systems. In Proceedings of the Eleventh National
Conference on Artificial Intelligence (AAAI-93), 1993, pp.
704-709.

[7] Grossner, C., Preece, A., Radhakrishnan,T. and Newborn,
M. Sharing data in a multi-agent system. Submitted to
International Journal of Cooperative Information
Systems, Dec 1995.

{8] Clark, Grossner, C. and Radhakrishnan, T. Consensus
and Compromise: planning in cooperating agents. To
appear in International Journal of Cooperative
Information Systems, 1996.

[9] Grossner, C., Chander, P.G., Preece, A. and Radhakrishnan,
T. Revealing the structure of rule-based systems. To appear
in Journal of Expert Systems Research and Applications,
1996.

{10] Preece, A., Grossner, C. and Radhakrishnan, T. Validating
dynamic properties of rule-based systems. To appear in
International Journal of Human Computer Studies, 1996.

Clifford Grossner is now working as a Member of Scientific
Staff for Nortel Technology in Montreal. In addition, Cliff is
an Assistant Adjunct Professor at Concordia University.
Cliff obtained his Bachelor's and Master's degrees in
Computer Science from Concordia University in 1980 and
1982, and he obtained a Ph.D. from McGill University in
1995, also in Computer Science. Current interests include
Artificial Intelligence, Agent Architectures, Distrbuted
Systems, User Interface Design, and Distributed AL

Dr. T. Radhakrishnan received his computer education
from the Indian Institute of Technology, Kanpur, India.
Since 1975, he has been teaching and conducting research
at Concordia University in Montreal, Canada where he is
now a professor. He has supervised more than thirty
graduate students and his interests are in user interface
agents, cooperating agents, multimedia applications in
distributed processing, and the social aspects of computing.
His interests are primarily in applied research. He is co-
author of a book on Computer Organization, published by
Prentice Hall, that has gone through four editions in the last
twenty years.

| am a student

| am a member of CIPS

Name

CSCSI/SCEIO Membership

1 wish to join CSCSIVSCEIO and receive Canadian Atrtificial Intelligence
* Web Access Only ($30.00* Cdn.Jyr.)
* Printed Copy and Web Access ($40.00 *Cdn./yr.)

* Web Access Only ($15.00* Cdn./yr.)
« Printed Copy and Web Access ($15.00* Cdn.Jyr.)

» Web Access Only ($25.00* Cdn./yr.)
« Printed Copy and Web Access ($30.00* Cdn./yr.)

Mailing

Address

E- mail
Address

Please mail your membership to:

CIP$S

430 King Street West, Suite 106
Toronto, Ontario

M5V 1L5

38/ Intelligence Artificielle au Canada automne 1996

Phone: (416) 593 - 4040

Fax: (416) 593 - 5184

For more information contact CIPS or a member
of the executive.

I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
*Includes Applicable G.S.T. |

How to Get (and keep) a Research Grant

by Ian H. Witten
Revised and updated by Janice 1. Glasgow

“How to get a research grant” initially appeared as a feature article in Canadian Artificial Intelligence, No. 24, July

1990. The updated version was prepared in March 1996.

Abstract

Ian Witten a écrit ’article intitulé “Comment recevoir une
subvention de recherche” juste aprés avoir siégé trois ans
sur le comité de sélection des subventions du Conseil de
recherche en sciences naturelles et en génie (CRSNG) du
Canada. Cette version révisée de cet article a été préparée
par Janice Glasgow aprés un passage similaire sur le comité
du CRSNG. La mise 2 jour du document était motivée par le
climat en continuel bouleversement entourant la subvention
i larecherche au Canada. A cause des coupures budgétaires
fédérales, recevoir (et conserver) une subvention du CRSNG
devient de plus en plus difficile. Ainsi, la qualité de la
proposition pour obtenir une subvention est une composante
encore plus cruciale du processus de subvention qu’elle ne
I’était au moment de la rédaction de ’article originel.

1. Introduction

Ian Witten wrote the article “How to get a research grant”
after having just spent three years on the Natural Sciences
and Engineering Research Council of Canada (NSERC)
grant selection committee for Computer and Information
Science. This revised version of the paper was prepared by
Janice Glasgow after a similar term on the NSERC
committee. The updating of the document was motivated by
the ever-changing climate for research funding in Canada.
Because of federal budget cutbacks, getting (and keeping)
an NSERC grant is becoming increasingly more difficult.
Thus, the quality of a grant proposal is an even more crucial
component of the funding process than it was at the time of
the original article. The job of an NSERC grant selection
committee member is arduous, but worthwhile and
interesting. It provides an opportunity to see most of the
computer science research going on in Canadian universities,
and although committee members suffer from terrible
information overload they do gain an appreciation for the
breadth and excellence of the work being carried out. The
most painful part of the job is the extraordinarily inadequate
amount of money that granting agencies have to work with,
and the need to reduce, or even cancel, funding for many
worthwhile projects because of the extremely competitive
nature of the process and the dire shortage of funds. For
most Canadian researchers, an NSERC research grant
(formerly referred to as operating grant) provides the core
funding for their research; thus, losing this funding could
significantly affect their research career. The second most
painful part of the job, which prompted Ian Witten to write

the initial article, is seeing how many capable researchers
remain unfunded because they are not aware of how to write
good research proposals; interesting projects go by the board
because they are inadequately presented. In the hotly
competitive environment in which the grant selection
committee operates, it is inevitable that inadequate or poorly-
prepared research proposals receive little benefit of the
doubt. The onus lies squarely on the applicant to provide
clear evidence on which the committee can base a decision.
This article summarizes what the authors have learned about
how to write research proposals, through having had to
evaluate many such proposals — good and bad — over the
years. Provided certain mistakes are avoided, the excellence
of a proposal hinges on the originality and impact of the
research, and this article will not help you with that! But
there are some simple guidelines that should be followed to
generate a well-presented proposal. Several factors are taken
into account when evaluating a research grant application:

* the quality of the proposed research;

* the quality of the researcher;

* the training of highly qualified personnel; and,

» the need for funds.
The quality of a research proposal stems from a well-planned,
long-range program; this is addressed in Section 2. The
quality and impact of the work must be reflected in a well-
written document, as addressed in Section 3. A researcher’s
reputation, which is built over time, strongly influences how
his or her proposal is seen, and Section 4 gives some advice
on how to present yourself in the best light. It also discusses
the importance of training students and researchers. Section
5 sketches how a grant selection committee actually works.
Section 6 gives some information about refereeing research
grant applications, an activity that — though often seen as a
chore — is absolutely essential for the health of the discipline.
This article is targeted at proposals for NSERC computer
science research grants, which are intended to provide basic
support for an individual researcher’s work. However, many
of the ideas presented apply to any research proposal. The
NSERC research grants program stresses long-term funding
for individual researchers’ programs, rather than funding
for a particular project; other granting programs may have
different priorities. It should be emphasized that the views
expressed here do not necessarily reflect the official policy
of NSERC or any other body.

Canadian Artificial Intelligence Autumn 1996/ 39

2. Research ideas

To do research, you must formulate a question (or
hypothesis) that your work will strive to answer (or achieve).
This should not just be an isolated question, but one related
to along-term research theme that evolves over a substantial
part of your career — certainly much longer than the four-
year term of the average research grant. Moreover, you may
begin with not just a single question, but a few (although not
too many) that differ in risk, and hence potential value. You
must be able to evaluate these research questions yourself,
so that you can pick good ones and present them clearly.
Also, they should fit together into a coherent program with
definable long- and short-term objectives.

2.1 Generating research questions

In computer science, it should not be hard to come up with
good research questions. The field is young and there is
much to do. Technology changes constantly, radically
altering the boundaries of what is feasible, and new
possibilities for research are continually opening up. There
are fertile opportunities in replicating previous work more
systematically and in greater depth, i.e., rational
reconstruction of programs, experimental evaluation and
comparison, tightening up existing conceptual frameworks,
and so on. There are plenty of avenues for research in
computer science! Nevertheless, it may still be difficult to
generate specific research questions. Just trying to think
them up can easily lead to mental blocks. Good ideas often
come from reading, discussing, explaining, and, (best of all)
teaching what someone else is doing. Group discussions can
be fertile breeding grounds for new ideas. Read current
research papers in areas that interest you, force yourself to
present and explain them to others, and ideas will strike you.
In our experience, it is not the authors’ suggestions for
future research that spawn the best questions; those
suggestions are ones the authors themselves have not been
able (or bothered) to pursue successfully. People who write
research papers generally know far more about what they
are doing than the reader, and problems that they identify
but leave unsolved may well be really tough! It may be
better to capitalize on your more detached position to escape
from the author’s mind-set and think more laterally about
what he or she is working on.

2.2 Relating ideas to a theme

Strive to give your research some breadth of scope and long-
term continuity, without appearing to spread yourself too
thin. This is not easy to achieve, but merits serious effort. As
months stretch into years and years into decades, your resuits
should build up and strengthen each other so that real progress
can be perceived towards answering significant and difficult
questions. An alternative research strategy is more
opportunistic; identify problems that others have formulated
but failed to solve properly, and jump in with a new technique
of which they are unaware and show how it can be applied.
This kind of predatory strategy is often adopted by those

40 / Intelligence Artificielle au Canada automne 1996

who have special knowledge of — or an obsession with! —
a particular viewpoint or tool. One danger is that to a person
with a hammer, everything looks like a nail; you may be
blind to the inappropriateness of your pet methodology for
many of the applications you investigate. Another is that
while good and plentiful results may be obtained quite
quickly, over the long term the research program as a whole
may take on a scrappy, uncoordinated, character. Thus, it
may be better to focus your long-term efforts on particular
kinds of problems rather than on solving a string of small,
weakly related puzzles.

2.3 Safe versus risky research

By its very nature, it is hard to plan research, and any
avenue — no matter how good it seems — may turn out to
be sterile, unfeasible, or simply incorrect. On the other
hand, beware of promising to work on too many things, for
your proposal will be criticized as being “unfocused.”
Reviews of proposals sometimes state explicitly that the
evaluation would have been higher if fewer ideas had been
included. You can spoil a good proposal by adding more to
it. Propose a mix of questions to work on — some short-
term and obviously answerable, others long-term, more
risky, but potentially more valuable. It is important to take
chances in research, and equally important to be aware of
the risks being taken. Kuhn (1970) defines “normal science”
as research firmly based upon one or more past scientific
achievements, achievements that are acknowledged by the
scientific community to supply the foundation for further
practice. He contrasts this with “scientific revolutions” that
question and restructure established practice: “non-
cumulative developmental episodes in which an older
paradigm is replaced in whole or in part by an incompatible
new one.” Kuhn’s distinction, which is designed for a grand
scale (like Copernicus’s or Einstein’s revolutions in physics),
also applies in miniature at the level of the individual
researcher: safe versus risky research. Be aware of this
distinction and propose work on different levels.

2.4 Evaluating research ideas

You have to evaluate your own ideas, assess their strengths
and weaknesses, sharpen them, and present them in the
most favourable light. When you specify a goal, how will
you know if you reach it? Of course, you may not expect to
attain your goals, but if by chance you achieve complete
success you ought to be able to tell that you have done so!
Many research proposals specify goals that are so vague
they could never be reached (or already have been —
sometimes it is difficult to tell). It is essential to formulate
goals sufficiently precisely so that it will be possible to
determine when they have been reached, and (f it is not
completely obvious) you must explain how you will know.
Goals that are stated in a way that makes it difficult to
decide if they have already been achieved, or ones that are
clearly completely out of reach, will destroy the credibility
of any proposal. Are your goals worthwhile, and why? The

onus is on you to convince your reviewers that, if you are
successful, you will have accomplished something worth
doing. Of course, you might fail. But if you do succeed, it is
reasonable to ask what contributions will have been made to
scientific knowledge (i.e., results that others can build on)
or to practice (i.e., general techniques that others can apply).
If you intend to prove a theorem that no one cares about, or
tackle a particular application in a way that does not shed
light on others, then research funding will be difficult to
obtain. Have you identified a rational approach to tackling
your chosen problem? Of course, it is tough to plan research;
strategies may change depending on results you obtain along
the way. But it is essential to have some idea of what
methods you will apply to attempt to solve your proposed
problem. You must plan something more concrete than just
“waiting for inspiration” or even “reading about the problem
(and waiting for inspiration)”! Since research is evidently
unpredictable and difficult to plan, alternative lines of attack
are sometimes useful.

2.5 Cross-discipline research

By its nature, computer science research often crosses
disciplines; historically, computing has often been coupled
with mathematics, electrical engineering, and psychology.
More recently, we have seen proposals that relate computer
science research with other disciplines, such as biology,
mechanical engineering, linguistics, and education.
Unfortunately, research that crosses disciplines often suffers
in the NSERC research grant process; grant selection
committees generally favour research that promotes their
own discipline and even with evaluations from other
committees, it is often difficult to assess the impact and
significance of work that involves multiple areas of expertise.
It is extra tough to write a proposal that is cross-disciplinary.
First, you may not know a priori what committee the proposal
will end up in (this is determined by NSERC in consultation
with the committee chairs). Thus, you do not know what
audience you are addressing, e.g., a proposal written for a
computing committee might have a different focus than one
written for amath committee! For this reason, it is often best
to focus your proposal in one discipline, and use the cross-
disciplinary aspect to help demonstrate the significance and
impact of the research. For example, you might propose to
do research in knowledge representation, but state that the
work can be motivated and evaluated in terms of cognitive
psychology criteria. It is important, however, to stress the
impact and significance it has on the focus discipline since it
will be experts from that community who will be judging
your proposal (with possibly some external advice from the
secondary discipline). NSERC does have a special committee
for judging interdisciplinary proposals. However, your
research must span at least three disciplines to be eligible for
consideration by this committee. This document does not
address such research. Despite the problems discussed above,
the computing committee does recognize the importance of
research that crosses borders. It certainly strengthens your

own research if it can be demonstrated that it has significance
in other areas. Just be careful that you are not just applying
known technology to a new problem domain; your proposal
will be judged primarily on how you are contributing to the
advancement of computer science.

3. The research proposal
Carefully read and follow all instructions provided with the
grant application. Your application may be disqualified if
you do not follow specifications, such as font size and
format. As well, committee members do not appreciate
reading material presented in a non-standard way — and the
last thing you want to do is make an overextended reviewer
unhappy! Given that you have the ideas, how do you describe
them and make them sound worth funding? First, remember
that you are describing your ideas to a colleague, not a
business promoter; be positive and optimistic about your
work, but avoid making a sales pitch. Your basic problem,
as pointed out by Bundy (1988), is threefold. It is to convince
the selection committee that:

* you have identified a well-formulated goal;

* attaining this goal would be a significant contribution to

computer science;
* you have a good chance of attaining the goal with the
resources available.

One of the complexities of writing a research proposal is
that you have to address two audiences: 1) the internal and
external reviewers, who are likely to be experts in your field
of interest, and 2) the remainder of the committee, who are
computer scientists but may have limited knowledge of the
area in which you are working. Your proposal must have
something for both audiences; there should be enough depth
and detail to please the expert, but you must also convince
the non-expert of the importance and impact of your proposed
research. In particular, the abstract should be written for the
general computer science audience.

3.1 Describing your ideas

Your proposal will be evaluated by experienced, and probably
sympathetic, researchers. They have been through it
themselves and understand the difficulty of proposal writing
and conducting research. They realize that research is difficult
to plan and do not expect to be able to glean every last detail
about what you want to do just by reading the proposal. But
they can tell a lot about you, and the way you think, from
your writing. They expect you to have thought pretty hard
about your ideas, and to have worked conscientiously to
explain and present them as clearly and straightforwardly as
possible. They want to give you a chance, but they must
justify it to themselves (and to others). It is up to you to
provide the evidence for a positive decision. Do not make
your research description a sales brochure. The kind of
people who evaluate it will probably react negatively to
salesmanship. On the other hand, you must make it clear
that what you propose to do is worthwhile and has a good
chance of success. Acknowledge difficulties honestly; do

Canadian Artificial Intelligence Autumn 1996/ 41

not try to pull the wool over the readers’ eyes. If there are
snags or potential problems, say so; reviewers will be
impressed by your candor. If the difficulties are ones that
they have not thought of, they may be impressed by your
intelligence, too. It is only reasonable to assume that you
have thought through your proposal more thoroughly than
the reviewers have; consequently, if they see problems that
you do not seem to have noticed, then they will be less than
impressed with your efforts. It would reflect badly on your
proposal if you were to describe obstacles that seem
completely insurmountable, but you presumably will not be
proposing work that you judge to be unfeasible. You cannot
really lose by being honest about the problems you expect to
encounter.

3.2 The researcher

As well as having good ideas, you must explain why you are
fully — and perhaps uniquely — qualified to carry them out.
Of course, since they are your ideas, you automatically have
a head start over others. You must know the background for
the work, i.e., the relevant literature in the field and how it
relates to your research. Your proposal should contain a
brief (one page) section that reviews this prior work.! Space
will not permit a comprehensive literature survey, and you
will be unable to include many references. That makes it all
the more important to select judiciously, thereby
demonstrating that you have solid knowledge of the field,
and the ability and good taste to make the very best use of
limited space. Do not be overly introverted; mention other
work besides your own. It gives a bad impression to have all
(or even most) references to yourself or to a closed circle of
collaborators. Avoid being involved in a small clique of
researchers who publish in the same places and whose results
are referred to only by one another. Make sure your literature
review is up-to-date, including recent publications in the
area if they exist, and if not, consider explaining why (lest
your proposal be seen as belonging to a bygone era). For a
senior researcher, the “track record” of work (especially
recent) in the area will obviously play an important role in
the evaluation of the proposal. Do not waste space by listing
your own papers twice, once in the reference list and again
in the personal data form (PDF) or resume. Invent a way to
cross-reference from the proposal to the PDF (e.g., by
numbering entries in your publication list and using letters
to identify other references in the proposal). If you are a
relatively junior researcher who does not have an extensive
track record, do not fret — your proposal will be judged
relative to others at similar stages in their career. New
applicants are evaluated primarily on their potential. In these
cases where there is generally little track record, the quality
of the proposal is even more crucial. Those who are being
considered for renewal for the first time are judged on
whether they have begun to develop an independent research
program. Publications that are based only on research done
during a Ph.D. or postdoc may not convince the committee
of this. When considering subsequent renewals, evidence of

42 / intelligence Artificielle au Canada automne 1996

an independent long-term research program is essential.
This does not mean that team research is not deemed
important, quite the contrary; recent communications from
NSERC have emphasized that collaborative and concerted
activities should be actively encouraged and that grant
selection committees should give credit to effective research
interactions. This was not always perceived to be the case in
the past, when it was considered that more emphasis was
placed on sole authored papers and there was sometimes a
lack of appreciation for strong multi-authored papers. The
current sentiment is that creativity and innovation are at the
heart of all research advances, whether made individually or
as part of a group effort. In an NSERC research grant
proposal, it is useful for the applicant to clearly define his/
her personal contributions to joint research (there is a place
for this in the PDF). There is not much you can do to boost
your track record, other than presenting your
accomplishments fairly and accurately (see Section 4).
However, an important source of information concerning
whether you are the right person for the job is the
understanding and insight you display when presenting and
discussing the research in the proposal. The payoff for
explaining your ideas clearly, eloquently, insightfully, and
candidly cannot be stressed too strongly.

3.3 Structure of a proposal

Any proposal should review the context of the research,
articulate the goals that will be pursued, summarize relevant
prior work, describe aresearch plan, and give some indication
of why the research is useful. A progress report on completed
research is also required for renewals. The background should
be brief and set the context for the proposal in terms of an
overall research theme. The goals should project a fabric of
interwoven ideas, augmenting and contributing to each other,
with a mix of short- and long-term, safe and risky, research.
One useful technique is to break down an overall goal into
several interacting sub-goals or objectives — but beware of
proposing too much. Also ensure that sub-goals fit together
into a cohesive research program, rather than what might
appear to be a collection of unrelated projects. The majority
of the proposal should be devoted to a careful description of
the research objectives and the methodology whereby these
objectives will be achieved. For the research plan, you
should at least know how you are going to start out and have
some ideas for future options. Do not schedule research too
firmly or too far into the future; that is unrealistic. Be
prepared to describe alternative scenarios for the later stages,
which hinge on how the early research turns out. It might be
useful to look at the problem from different points of view
(theory, simulation, experimental implementations, human
behaviour, etc.) provided you have the background and
resources to carry this out. Be mindful of the need to evaluate
your ideas, not just develop and implement them. If
successful, what will be the effect of the research; how will
others be able to build on the results? Will they contribute to
the advancement of science, or merely develop a wonderful

“look Ma, no hands” system that leaves others no better off?
Sometimes such systems leave others worse off if they
cannot replicate or follow up on your results.

3.4 The progress report

If you have previously been funded, you must summarize
the progress made under the previous grant: What specific
contributions have been made, where have they been
published, and who has taken them up, applied them, or
developed them further? If you cannot demonstrate that you
have made good use of a previous grant, the chances of your
grant getting renewed will clearly be diminished. Publication
delays may mean that your recent work has not yet appeared
in print. Some papers based on work related to research
funded from other sources may also have appeared; while
this is a good sign, it should not be confused with research
progress stemming from the NSERC grant itself. Fortunately,
your proposal will be evaluated by experienced researchers,
who understand the publication business (particularly the
fact that ambitious research projects may require multiple
sources of funding) and that delays in publication often
occur. Be careful of your balance between progress and
proposed research. In the past, a senior researcher might
have succeeded with a proposal that mostly describes past
work and then says something to the effect of “I plan to
continue doing more or less the same thing.” In the current
competitive environment, this no longer works. Even those
with an excellent track record must include a detailed and
well-written research proposal for the work they plan to do.
Note that some of the items that indicate progress have a
natural place in the PDF. Use the space allotted for describing
your proposal wisely.

3.5 Budget

One of the criteria for a research grant is need. The
unfortunate circumstance is that almost all researchers “ne
more money than the committee can possibly provide.
Despite this, budgets should be carefully prepared and
justified. Most importantly, be realistic; some applicants
have lost credibility by proposing unrealistic budget items.
For example, if you are a new researcher, then it might be
difficult (but not impossible) to justify funding for a postdoc.
Similarly, if you are a senior researcher who has not
supervised graduate students recently, then a budget that
includes support of several students might be questioned.
Make certain that your budget items are allowable by
NSERC. Since the guidelines change year to year, check
these for each new application. A budget should reflect the
actual cost of carrying out your proposed research — even if
such funding is not available from the granting agency.
Note that the committee cannot give you more money than
you ask for, so do not be too modest in what you request!
Researchers are often funded from multiple sources,
suggesting that there may be some question of need. In
general, additional sources of funding are seen as a positive
reflection on the researcher and his/her work. However,

there are cases where the amount of time that the applicant
has for the new proposal might be a consideration. It is
important that you make clear how work being proposed is
unique and distinct from research funded from other sources.?
One major budget item affecting the need for funds is the
support of graduate students. For those who are not
supporting students, either by choice or by circumstance
(e.g., there is no graduate program at their institution), the
perceived need for funds is typically less than for those
supporting students.

3.6 Preparing the proposal

It is important to take great care to present your ideas
clearly; the people who evaluate your proposal are busy,
even overloaded, volunteers. Thus, they will probably react
negatively to any signs of sloppiness in either thinking
(fuzzy goals, inadequate background, unacknowledged
problems, etc.) or presentation (poor proofreading, spelling
errors, infelicitous formatting, incomplete references, etc.).
If you are not sufficiently motivated or excited by your ideas
to spend time honing the content and presentation of your
proposal, you cannot expect a sympathetic hearing from
whoever is obliged to evaluate it. Reviewers do not generally
look favourably on superficial or “popularized” proposals.
Make sure there is plenty of technical content for them to
pick up on. If the proposed research is highly technical, do
not shy away from reflecting the technicalities in the proposal.
There is nothing wrong with including a few equations if
necessary, even diagrams (though be careful, especially
with the latter, to ensure good use of space). Have others
read your proposal before submitting it. Encourage them to
be critical, to emulate a tough reviewer, to pick out holes
and ambiguities, to misunderstand where at all possible —
in short, to look for ways to dislike the proposal. Probably
the actual reviewers will be more sympathetic, but you
should prepare the proposal to withstand a critical onslaught.
Also, if possible, read other proposals — particularly those
that have been successful in the past — to pick up clues of
how your presentation could be improved. Some departments
and faculties have research committees or officers that
provide assistance in preparing proposals; take advantage of
any such resources that are available to you. It will probably
be four years before you have another chance to apply for a
grant, so it takes a long time to recover from funding cuts
resulting from a poorly-prepared proposal. This is particularly
true for first-time applicants, where the implication of a
good versus a bad proposal is funding versus non-funding.
Proposals are restricted to a certain number of pages. You
do not have to cover them all, but a clear exposition of
complex ideas takes a certain amount of writing and most
successful proposals occupy the majority of the allotted
space. Do not buck the system by using a tiny typeface
(chances are , your proposal will become ineligible for
funding if it does not conform to the proposed standards).
Prepare the proposal in a straightforward way that will not
upset the reader. It is better to get the bulk of your message

Canadian Artificial Intelligence Autumn 1996/ 43

across properly than to try to communicate the whole thing
in detail and fail completely! Do not try to cheat by sending
in more that the maximum number of pages as the proposal
will be truncated before it even reaches the reviewers and
important parts may be lost. Think of it as an exercise; part
of the test is seeing how effectively you can work within
specified constraints.

4. The personal data form (PDF)

Along with the research proposal, you will have to submit a
PDF giving information about your qualifications, the
positions you have held (list them in reverse chronological
order), the number of students you have supervised, your
publication list, and other information. Make sure you
document industrial and consulting work, along with any
“technology transfer” activity. Consider showing thesis titles
and publications by students under your supervision, listing
your undergraduate and graduate students and postdocs by
name (along with their career progress), summarizing your
refereeing activity, your published reviews, and so on. What
you decide to include reflects your priorities and general
professionalism; it will be used by the reviewer to build a
picture of you and your work.

4.1 The publication list

This is perhaps the most important part of the PDF and you
should take great care in preparing it. Gather together under
separate headings papers in refereed journals (clearly
indicating their *“accepted” or “published” status), papers in
refereed conference proceedings, other refereed items like
book chapters, books, non-refereed articles, and so on. Make
sure you provide correct and complete references to your
papers. It is essential to be scrupulously honest when
preparing the publication list. Reviewers react negatively to
any suspicion of cheating. Make sure you know for certain
which of your publications are refereed. Only list publications
for the specified time period. Avoid duplication in your
publication list. If a conference paper was subsequently
published as a book chapter, for example, choose one section
in which to include it and note with that entry that it also
appeared elsewhere. In general, if it is a reprint or a revision
of an earlier paper, say so, and only list it once (you do gain
credit from the fact that someone evidently thought it was
worth reprinting!). Avoid writing different papers with the
same (or very similar) titles. Submitted papers should be
collected together and clearly identified as such. People
disagree on whether you should specify the journals to
which your papers have been submitted. The argument in
favour is that it gives readers a chance to judge whether you
are submitting your work to appropriate places. On the other
hand, it might be interpreted as an attempt to glorify yourself
by association. Never succumb to the temptation to mislead
reviewers on the status of submitted papers — it is quite
possible that someone will check with the editor of the
Jjournal and discover deception (it happens). If a paper has
survived one round of refereeing and been re-submitted for

44 / intelligence Artificielle au Canada automne 1996

a second, say so. If it has been accepted subject to minor
corrections and approval by the editor, say so, giving the
date of acceptance. If in doubt, spell it out. These remarks
are intended as guidelines rather than rules, and in practice,
there is some latitude in interpreting them. Some people
prefer to list both conference papers and journal papers that
are straightforward extensions of them separately, which is
permissible so long as they are clearly cross-referenced.
The refereed or non-refereed status of papers is sometimes
not clear-cut, particularly in the case of invited papers —
and ultimately of course, it is the quality of the material that
counts, not where it appears. The most important thing is to
be open and honest about the status of your work. If you are
suspected of misrepresentation, your application will suffer
and so will your reputation. Justify the journals and
conferences where you are publishing, particularly if they
are not ones that are easily recognizable by members of the
committee. For example, interdisciplinary work might be
best presented in forums that are accessible by both
disciplines.

4.2 Explanation of research contributions

Make clear what your personal contribution is to joint
publications. If a publication is primarily the work of a
graduate student under your supervision — say so. If the
order of authors reflects their respective contribution — say
so. If anything is not clear, then a reviewer might assume
the worst case scenario.

4.3 Contributions to the training of highly qualified
personnel

The training of students and researchers is an important
criterion in the assessment of a research grant proposal. As
with publications, the focus is not just on quantity, but also
on quality; one graduate student who goes on to be a first
class researcher is obviously preferable to three unemployed
graduates. Do not just list numbers; list thesis titles, say
where students went after graduating, mention awards or
publications they may have received under your supervision,
list co-supervisors, etc. Doing so indicates that the training
of students and researchers is a high priority to you. The
merit of training is judged in conjunction with the quality of
the researcher. Someone who has a poor track record, or a
badly presented proposal, may not be considered the best
person to train new researchers. In such cases, having
supervised a large number of students might be thought of
as a negative, rather than a positive, contribution.

4.4 Other evidence of impact

This section of the PDF allows you to present further
evidence to the significance of your research. In particular,
it is useful to list awards and honours related to your work.
In some cases, you might wish to describe the significance
of the honour if it is not a well known one, e.g., a listing of a
best paper award could include the number of papers
submitted and accepted to the conference. Prestigious invited

talks also support the significance of your research. Positions
on program committees and journal boards suggest that
your peers value your contributions. One obvious evidence
of impact in computer science is the dissemination of software
resulting from research. If you have written programs that
are being used by other researchers or industry, this could be
an important contribution. Consulting activities are also
worth mentioning, if they relate to your research.

4.5 Delays in research

If there have been any significant reasons for delay in
research, then it is may be useful to specify these in the PDF.
The committee is sympathetic to the fact that there may be
situations that may result in decreased research productivity,
and this can be taken into consideration when evaluating
Your research record. Situations such as maternity leave or
illness are valid reasons for a temporary slow down in
activity. Administrative responsibilities may also have
impaired your progress. It is important, however, that these
delays be perceived as temporary (e.g., if your research has
slowed down because you have had a term as an associate
dean and have subsequently been appointed to a term as
dean, then there is no reason to think that the situation will
improve). Also, be careful not to cite delays that are perceived
asanormal part of a researcher’s responsibility (e.g., graduate
student advising or program committee membership).

4.6 Additional material

You may have the opportunity to submit additional material,
such as preprints or reprints, to support your application.
Unfortunately, reviewers are often forced to guess the quality
of a paper from the journal or conference in which it appears,
butif you can, submit actual papers. This provides a welcome

opportunity to evaluate the research contributions more
closely. Be sure to select reasonably recent work, and make
it your best work! Do not include papers just because they
have been published in prestigious journals. It may be better
to choose good papers that have appeared in obscure places,
or have not yet been published, as the reviewer will otherwise
be quite unable to evaluate this work.

5. How a grant selection committee works

It helps to know a little about how a grant selection committee
works. Following is a description of how the current (1995/
96) Computing and Information Science grant selection
committee operates; other NSERC committees tend to have
similar procedures, but we cannot guarantee this. Unlike
most other disciplines, computing has only one committee
that handles all applications (e.g., Math is split into two
subcommittees). The proposals reviewed by the computing
grant selection committee come mainly from computer
science departments of Canadian universities; applications
may also come from other departments, such as business,
library science, math, and electrical engineering. Certain
research institutes (e.g., CRIM) and colleges have employees
who are eligible for funding. As well, researchers in industry
who are adjunct professors at a university may be eligible to
apply for a grant.> The computing committee currently has
fourteen members. Each application is read carefully by
nine members of the committee. Two or three members,
who are especially knowledgeable about the relevant research
area, are specifically assigned to each proposal as “internal
reviewers” to evaluate the proposal thoroughly, read the
additional material, and prepare and present a
recommendation to the committee. The natural tendency is
for internal reviewers to champion their applications where

or failure.

* Industry ought to be doing it instead.

where others have failed.

looks feasible.

envisaged.

* Itis not clear what question or hypothesis is being addressed by the proposal.
* ltis not clear what the outcome of the research might be, or what would constitute success

* The question being addressed is woolly or ill-formed.

* Itis not clear why the question is worth addressing.

* The proposal is just a routine application of known techniques.

* There is no evidence that the proposer has new ideas that make it possible to succeed

* Anew idea is claimed but insufficient methodological details are given to judge whether it
* The proposer seems unaware of related research.

* The proposed research has already been done (or appears to have been done).

* The proposer seems to be attempting too much for the funding requested and the time-scale

* The proposal is too expensive for the probable gain.

Table 1. Some reasons for rejecting a research proposal (adapted from Bundy, 1988)

Canadian Artificial Intelligence Autumn 1996/ 45

merited, and the other committee members serve as a critical
sounding-board for the representation. The meeting proceeds
quickly — on average, there is less than ten minutes available
per application (though in cases where there is disagreement,
the discussion could last longer). Internal reviewers
summarize the application, highlighting the applicants
credentials, what they propose to do, their evaluation, and
finally their recommendation. If they judge the proposal to
be good, then they will act as a proponent, trying to persuade
the other committee members of the virtues of the case.
You should strive to make it easy for them! Re-read your
application and imagine someone having to defend it on
your behalf in the space of a few minutes. Obviously you
must highlight salient points in the summary: goals, prior
achievements, objectives, research plan, evaluation
methodology. Proposals are considered in categories; all
new applicants are handled first, then applications from
researchers whose current grants fall into the same funding
range ($0 - $15,000; $15,000 - $30,000; >$30,000) are
considered consecutively. The recommendation of an
internal reviewer includes a proposed amount for funding.
Each committee member must balance a budget, thus a
recommendation to increase the funding of one applicant
might imply the decrease or non-funding of another grant
application. As your representatives present your case, the
other members of the committee are reviewing the
application and external referee reports trying to assess the
case and decide whether they can agree with the
recommendations or not. They have studied it before, of
course, but there may be hundreds of other applications and
memories will need refreshing. Table 1, adapted from Bundy
(1988), summarizes common reasons why proposals are
rejected — bear these in mind as you prepare your proposal.
There might be disagreement between the internal reviewers
or with another committee member — maybe even an
argument (it has happened)! As the discussion proceeds, the
rest of the committee is silently scanning your application,
listening, and thinking about it. Just imagine the impact of a
poorly-prepared, scrappy proposal, and contrast it with the
effect of a beautiful, tastefully-arranged document. The
final recommendation for funding is done by a “Dutch
auction” method. An initial funding amount is proposed;
this is generally the highest of the amounts suggested by the
internal reviewers, but a higher amount can be recommended
by another member of the committee if they feel it is
warranted. Voting then proceeds where only those who are
designated readers (recall that there are nine readers and
five non-readers for each proposal) have the right to vote.
The amount incrementally decreases (usually by $1,000
decrements) until a majority of eligible voters have their
hands up. Anyone who is in conflict with a proposal (e.g., at
the same university or a co-author) is a non-reader and must
leave the room during the discussion and voting process.
The final amount decided upon is only a recommendation
to NSERC; given that the overall budget may be altered
after competition week, proposed amounts may vary from

46 / Intelligence Artificielle au Canada automne 1996

those eventually awarded.

6. Refereeing grant applications

Selection committees depend heavily on timely and carefully
prepared reviews by outside members of the research
community. Each application is sent to several external
referees for evaluation. Some are suggested by the applicant,
others by the committee. The responses are made available
to all members and referred to frequently in the committee’s
deliberations. Refereeing other people’s applications is
widely perceived as a time-consuming chore, although it
can be interesting. Ultimately, it is in our discipline’s interests
to have the fairest possible funding decisions, and
conscientious reviews play a crucial role in this. For example,
NSERC evaluates the functioning of the Computer and
Information Science committee, and the computer science
community at large, by the response rate to review requests;
this is the kind of thing that helps whenever the committee
makes requests for a larger slice of the cake (such as in the
reallocation exercise that occurs every four years). If you
care about the quality of computer science research and
future funding for the discipline, you should feel obliged to
contribute your share to the refereeing process.

It is important to prepare reviews thoughtfully and to the
best of your ability. Unqualified praise gives the impression
that you are trying to do the applicant a favour; unqualified
criticism suggests that you have a biased view. In any case,
it is helpful for you to summarize your previous knowledge
of the applicant’s work and your personal acquaintance of
him or her, if any. One-line reviews give the impression that
you have not taken time to reflect upon the proposal or
evaluate it properly. On the other hand, no one wants to read
a review that is longer that the proposal itself (yes, it does
happen!). The best reviewers evaluate proposals carefully
and summarize the contributions fairly, mentioning both
positive and negative aspects and weighing the evidence for
and against funding. Writing good reviews is just another
aspect of your professionalism; it will be noticed and will
enhance your reputation.

7. Conclusion

No amount of care and effort in preparing a research grant
proposal will compensate for a weak research program.
However, a poorly prepared proposal can prevent a strong
research proposal from being funded at the level it deserves.
The authors of this document hope that a better understanding
of the NSERC review process can assist researchers in
having a clearer idea of how to best present their ideas and
contributions for future research grant competitions.

Notes
1. Some applicants prefer to combine the literature review
with the description of proposed work. This is allowable
and sometimes more effective than putting it in a separate
section.

2. This should be done on the supplementary budget page,
rather than in the research proposal itself.

3. Eligibility requirements vary from year to year, so check
with NSERC if there is any uncertainty about the current
policies.

Acknowledgments

Ian Witten is grateful to Rick Bunt, Brian Gaines, Saul
Greenberg, Carl Hamacher, and Helmut Jurgensen for
making valuable comments on a draft of the original article.
Janice Glasgow thanks Uri Ascher for his insightful
comments on a draft of the revised version of the document,
and Nancy Barker for her assistance in recreating the initial
document.

References

Bundy, A. (1988) “How to get a SERC grant,” AISB
Quarterly 65: 7-9.

Kuhn, T.S. (1970) The structure of scientific revolutions.
University of Chicago Press, second edition. A

Ian Witten is a Professor of Computer Science at the
University of Waikato, New Zealand and the University of
Calgary.

Janice Glasgow is a Professor of Computing and Information
Science at Queen’s University.

--" = . PRECARN UPDATE

Harry Rogers

]

u_m

| I- n"
PRECARN is a consortium of 35 industry partners that
conducts pre-competitive research in the areas of Robotics
and Intelligent Systems. PRECARN also administers the
Institute for Robotics and Intelligent Systems (IRIS), one of
the federal Networks of Centres of Excellence. The IRIS
network engages 23 universities and 350 investigators,
graduate students and other professionals. Combined, the
two organizations will invest approximately $75 million in
collaborative R&D projects between now and the year 2000.

“Advanced technology has a key role to play in promoting
sustainable growth in Canada’s new knowledge-based
economy. Advanced technology provides us with the
opportunity and ability to build national prosperity using
our most important resource: our people.”

These were the words that Industry Minister John Manley
addressed to an audience of university and industry
representatives at a recent conference on developing the
advanced technology economy. This bodes well for
researchers in the fields of knowledge related technologies,
including intelligent systems.

Phase 2 of IRIS, which ends in early 1998, is just passing
its halfway mark but already planning has begun for a Phase
3. A national consultation process on the Phase 3 mission,
the framework for the network, and its projects’ content will

NOUVELLES DE PRECARN

be commencing shortly. Persons interested in contributing
to the consultation process are invited to contact PRECARN
for a copy of the position paper as well as to learn of the
location of the consultation meetings scheduled for early
November across the country.

As well, the Technology-Gap program has attracted
considerable interest from IRIS Principal Investigators. The
T-Gap program has enabled Principal Investigators to obtain
funding to develop prototypes using technologies that have
been developed in their work. Demonstrations of these
prototypes in such areas as Minimally Invasive Surgical
tools, Stereoscopic Vision, and very high speed positioning
devices are expected by the spring of 1997.

And finally, the PRECARN consortium will be opening
another competition for new collaborative research projects
in October. PRECARN contributes up to 40% of the eligible
costs of projects. For further information on these matters,
contact our offices or visit us at our web-site.

PRECARN Associates Inc., Tel: 613-727-9576, Fax:613-
727-5672, Web: www.precarn.ca, E-mail: info@precarn.ca
Address: Suite 300, 30 Colonnade Road, Nepean, Ontario

K2E 716 A

Edited by Graeme Hirst

= BOOK REVIEWS
« " =" CRITIQUES DE LIVRES

Please note that no book reviews were received by press
time. Readers who wish to review books for Canadian
Artificial Intelligence should write, outlining their
qualifications, to the book review editor, Graeme Hirst,
Department of Computer Science, University of Toronto,
Toronto, Canada MS5S 1A4, or send electronic mail to
gh@cs.toronto.edu or gh@cs.utoronto.ca. Obviously, we

cannot promise the availability of books in anyone’s exact
area of interest.

Authors and publishers who wish their books to be
considered for review in Canadian Artificial Intelligence
should send a copy to the book review editor at the address
above. All books received will be listed, but not all can be

reviewed. A

Canadian Artificial Intelligence Autumn 1996/ 47

CALL FOR PAPERS

IASTED International Conference
Artificial Intelligence and Soft Computing
July 27-August 1, 1997
Banff, Canada

SPONSOR In cooperation with:
International Association of Science and Technology American Association for Artificial Intelligence
for Development (IASTED) (AAAI)

Canadian Society for Computational Studies of
Intelligence (CSCSI)

SCOPE
Artificial intelligence Object-oriented techniques Algorithms
Expert systems Expert systems design procedures and Intelligent databases
Neural networks tools Intelligent control
Knowledge acquisition Natural languages Intelligent agents
Knowledge representation Computational linguistics Temporal and spatial reasoning
Knowledge engineering Architectures for natural languages Fuzzy logic
Distributed artificial intelligence Machine leamning Fuzzy systems
Image understanding Fuzzy expert systems Verification, validation
Logic programming Approximate reasoning Testing
Advisory systems Automated reasoning
User interface Reasoning methods
Theory of neural networks Planning and scheduling
Modelling Applications, all areas including:
Simulation Engineering, Science, Business,
Architecture Economics, Power systems, Transportation, Decision making,
Leaming algorithms Management, Environmental systems, Banking, Government,

Education, Others

INTERNATIONAL PROGRAM COMMITTEE

H. Adeli, Ohio State University, USA D. Martland, Brunel University, UK

E. Arce-Medina, National Polytech. Inst., Mexico A.R. Mikler, Ames Laboratory, USA

R. De Mori , McGill University, Canada A.R. Mirzai, Iran Univ. of Science & Tech., Iran

T. Feuring, WWU Muenster, Germany M. Morando, CNR, Italy

N. Ishii, Nagoya Inst. of Technology, Japan D. Mulvaney, Loughborough, UK

M. Jamshidi, University of New Mexico, USA N. Serbedzija, GMD FIRST, Germany

W.W.L. Keerthipala, Nanyang Tech. Univ., Singapore A. Sung, New Mexico Tech., USA

S.-G. Lee, Hannam University, South Korea S. Valenti, University of Ancona, Italy

Z.-N. Li, Simon Fraser University, Canada H. VanLandingham, Virginia Tech., USA

D. Lukose, University of New England, Australia]. Wang, Chinese Univ. of Hong Kong, Hong Kong

N. Mani, Monash University, Australia S. Zhao, Governors State University, USA
SUBMISSION OF ABSTRACTS

Initial paper selection will be based upon abstracts. An abstract should present a clear and concise view of the motivation of the subject,
give an outline of the paper, and provide a list of references. The abstract should not exceed 600 words. The International Program
Committee will make the decision concerning the acceptance of the papers. Three copies of the abstracts should be received at the
IASTED Secretariat ASC’97 (address below) by January 6, 1997. Authors should provide a maximum of five keywords describing
their work and must include a statement confirming that if their paper is accepted, one of the authors will attend the conference to present
it. Please include the full name, affiliation, full address, telephone number, fax number, and email address of the corresponding author.
Final papers and registration must be received by May 2, 1997. Papers received after that date will not be included in the proceedings.
The International Program Committee reserves the right to reject any final manuscripts if quality is poor.

IMPORTANT DEADLINES For more information or to be placed on the mailing list,
Abstracts due January 6, 1997 please contact:

Acceptance notification March 3, 1997 IASTED Secretariat ASC’97

Camera-Ready Manuscripts #80, 4500-16 Avenue NW, Calgary, AB Canada T3B 0M6
and Registrations May 2, 1997 Tel: 403-288-1195 Fax: 403-247-6851

Email: iasted@cadvision.com, Web site: http://www.iasted.com

