
CSCSI '88

Proceedings of the
Seventh Biennial Conference

of the
Canadian Society for Computational

Studies of Intelligence

Actes de la
Septieme Conference Biennale

de la
Societe Canadienne pour l'Etude de

l'lntelligence par Ordinateur

Edmonton Convention Center
Edmonton, Alberta, Canada
June 6-10, 1988

edited by R. Goebel

!CICS.G0 1~PIJTf:n SCl:"::NCE f~E."D!NG ROOM l
lJJ,1!'1· r;~ ;·1, 1.1 1 ·u?11·i:\·t ('()!~: 1>2:tt,

... v~ ,2.,: . ., :. ;: • .. ,;,., :·.~.·.:...!....
VA~J(·n111,r·p L' \. ('f.;,:,rv, ltrT '7t!

Proce~u 111~-:1 · U'r LI It:

Seventh Biennial Conference
of the

Canadian Society for Computational
Studies of Intelligence

Actes de la
Septieme Conference Biennale

de la
Societe Canadienne pour l'Etude de

l'lntelligence par Ordinateur

Edmonton Convention Center
Edmonton, Alberta, Canada
June 6-10, 1988

in cooperation with

University of Alberta

edited by R. Goebel

Canadian Man-Computer Communication Society
Canadian Image Processing and Pattern Recognition Society

.I . I

-1

!, I

ISBN 0-88864-859·6

© 1988
Canadian Society for Computatlonal Studies of lntelllgence
Soclete Canadlenne pour l'Etude de l'lntelllgence par Ordlnateur

Edited by R. Goebel
Printed by University of Alberta Printing Services

Copies of these proceedings may be obtained as follows:

Within Canada, by prepaid order (Members: $35.00 CON; Non-members: $40 CON) plus $5 postage
to:

CIPS
243 College Street (5th floor)
Toronto, Ontario
CANADA M5T 2Y1

Outside of Canada, enclose full payment ($35.00 US per proceedings, plus $2.00 US for the first
copy and $.75 US for each additional copy for book rate shipment; for surface shipment out of the
U.S. enclose full payment plus $3.00 US for the first copy and $2.00 US for each additional copy.
California residents add 7% sales tax) and mail to:

Morgan Kaufmann Publishers, Inc.
Order Fulfillment Center
P. 0. Box 50490
Palo Alto, California 94303
USA

ii

Message from the General Chairman

Wayne A. Davis
Department of Computing Science, University of Alberta

CSCSI '88, the seventh biennial conference on Artificial Intelligence in Canada, is
establishing a new milestone and hopefully its most successful. This year a
program has been put together comprising two full-day tutorials on such topical
subjects as the development of knowledge-bases systems, mobile robotics and
display of 3-D biomedical datasets. Fifteen paper sessions with more than fifty
papers to be presented, follow the tutorial session. A trade show is also available
for attendees to see state-of-the-art computer equipment.

Another milestone achieved this year is the concurrent conferences Vision
Interface '88 and Graphics Interface '88. The decision to hold the three conferences
together was made chiefly because of the overlap of subject matter, but it is also
intended to stimulate meaningful interaction between the groups and to cement the
cooperative bonds which have long existed between the societies. It is hoped that
each person finds something of interest in the sessions and these proceedings
which represent the definitive version of the presented papers.

I would like to thank each of the committee members, assistants, session chairmen,
reviewers, authors, presenters, and visiting speakers for making this conference a
success. As well, I would like to acknowledge the visible support for CSCSI '88
shown by the attendees.

iii

J
. ·'

. I

. . ·· i

' ' . :

Organizing Committee, Conference '88

Wayne A. Davis
Conference '88 General Chairman
Dept. of Computing Science
University of Alberta
Edmonton, Alberta

Darwyn R. Peachey
Graphics Interface Program Chairman
Pixar
San Rafael, California, U.S.A.

Tony Kasvand
Vision Interface Program Co-Chairman
Computer Graphics Section, NRC
Ottawa, Ontario

Adam Krzyzak
Vision Interface Program Co-Chairman
Dept. of Computer Science
Concordia University
Montreal, Quebec

Robert J. Woodham
CSCSI Program Co-Chairman
Dept. of Computer Science
University of British Columbia
Vancouver, B.C.

Nick Cercone
CSCSI Program Co-Chairman
Centre for Systems Science
Simon Fraser University
Burnaby, B.C.

Randy Goebel
Registration Chairman
Dept. of Computing Science
University of Alberta
Edmonton, Alberta

Terry Caelll
Trade Show Chairman
Dept. of Psychology
University of Alberta
Edmonton, Alberta

Mark Green
Film Show Chairman
Dept. of Computing Science
University of Alberta
Edmonton, Alberta

Jonathan Schaeffer
Publicity Chairman
Dept. of Computing Science
University of Alberta
Edmonton, Alberta

Ted Barnlcoat
Local Arrangements Chairman
Alberta Energy & Natura'. Resources
Edmonton, Alberta

Rod Johnson
Audio-Visual
Dept. of Computing Science
University of Alberta
Edmonton, Alberta

Judith Abbott
Registration Secretary
Dept. of Computing Science
University of Alberta
Edmonton, Alberta

Lynn Gaetz
Conference Treasurer
Dept. of Computing Science
University of Alberta
Edmonton, Alberta

iv

Message from the Program Co-Chairmen

Nick Cercone
Centre for Systems Science, Simon Fraser University

Robert J. Woodham
Department of Computer Science, University of British Columbia

In 1976, the first national conference sponsored by the CSCSI/SCEIO was held in
Vancouver. Since then, conferences have been held every two years, the last one
being in Montreal in 1986. These conferences have covered a wide spectrum of
topics representative of contemporary research in artificial intelligence, cognitive
psychology, and computational linguistics. In a significant departure, the
CSCSI/SCEIO had also sponsored a special workshop in Halifax in 1985 on
theoret ical approaches to natural language understanding. The CSCSI/SCEIO is
the oldest national organization for artificial intelligence research in the world, and
it has been active.

This year's conference should be our best effort to date. The number and quality of
submissions, with the success rate of acceptance of approximately 39%, is
indicative. The organization of such an effort in a relatively short time requires the
help of many people. The organizational efforts of Wayne Davis, Jonathan
Schaeffer and Randy Goebel kept us on our toes and events on schedule. The
program committee consists of Bill Bregar, Roger Browse, Terry Caelli, Veronica
Dahl, Jim Delgrande, Renato De Mori, David Etherington, Randy Goebel, Bill
Havens, Alan Jepson, Marlene Jones, James Little, Alan Mackworth, Gordon
McCalla, John Mylopoulos, Peter Patel-Schneider, David Poole, Larry Rendell, Len
Schubert and Steve Tanimoto. To all of these we offer our mrmy thanks. To the
invited speakers, to all of those who submitted papers and to all who participated in
the reviewing process, we offer our gratitude. To our respective universities, Simon
Fraser University and the University of British Columbia, we offer our sincere
appreciation for the support they have extended to the conference. Finally, we
wish to acknowledge the help of Carolyn Seely-Morrison (SFU) and Valerie McRae
(UBC) for helping keep track of the day to day activities of the program committee.

Of the submitted papers, three were singled-out for award consideration. The
paper entit led The Complexity of Model-Preference Default Theories by Selman
and Kautz was selected for the best paper award. The papers Time Revisited by
Miller and Schubert and Curved Mondrians: a Generalized Approach to Shape
from Shading by Bischof and Ferraro received honorable mention.

V

' I

. ··1
• ,'

. . I
. . · j

I

CSCSI Executive 1986-1988

Dick Peacocke, President
Bell-Northern Research

Renato De Mori, Vice-President
McGill University

Bill Havens, Secretary
Tektronix

Randy Goebel, Treasurer
University of Alberta

vi

CSCSI '88 Program Committee

Program Co-Chairmen

Nick Cercone
Centre for Systems Science
Simon Fraser University

Program Committee

Bill Bregar, Tektronix Research
Laboratories, Tektronix
Roger Browse, Computing and Information
Science, Queen's University
Terry Caelll, Psychology, University of
Alberta
Veronica Dahl, Computing Science, Simon
Fraser University
Jim Delgrande, Comput ing Science, Simon
Fraser University
Renato De Mori, Computer Science, McGill
University
David Etherington, Al Principles
Research, AT&T Bell Laboratories
Randy Goebel, Computing Science,
University of Alberta
BIii Havens, Tektronix Research
Laboratories, Tektronix
Alan Jepson, Computer Science, University
of Toronto

Referees

Abramson, Harvey
Adams, Norman
Aleliunas, Romas
Angeles, J.
Armstrong, W.
Bacchus, Fahiem
Ballard, Bruce
van Beek, Peter
Bischof, Walter
Borgida, Alex
Borynec, Jim
Browse, Roger
Butler, Brian
Caelli, Terry
Campbell, M.
Cass, Todd
Cercone, N.
Chang, E.
Cheng, Mantis
Cohen, Robin
Dahl, Veronica
Dawes, Mike
Delgrande, J im

Elcock, Ted
van Emden, Maarten
Etherington, David
Ferguson, Innes
Ferraro, Mario
Freiling, Mike
Gamble, Ken
Geffner, H.
Gillett, Walter
Ginsberg, Matt
Goebel, Randy
Goodwin, Scott
Greer, Jim
Greiner, Russ
Gurnsey, Rick
Hadley, Robert
Hamilton, Howard
Havens, Bi ll
Hayward, Vincent
Hirst, Graeme
Huang, Xueming
Hunter, Paul
Jacobsen, Chris

vii

Robert J. Woodham
Computer Science
University of British Columbia

Marlene Jones, Advanced Technologies,
Alberta Research Council
James Little, Al Laboratory, MIT
Alan Mackworth, Computer Science,
University of British Columbia
Gordon Mccalla, Computational Science,
University of Saskatchewan
John Mylopoulos, Computer Science,
University of Toronto
Peter Patel-Schnelder, Schlumberger
Palo Alto Research Lab
David Poole, Computer Science, University
of Waterloo
Larry Rendell, Computer Science,
University of Illinois at Urbana-Champaign
Len Schubert, Computing Science,
University of Alberta
Steve Tanimoto, Computer Science,
University of Washington

Jones, Marlene
Joseph, S.
Kautz, Henry
Lowe, David
Mackworth, Alan K.
Mahaderan, S.
Marley, A.
McAllaster, D.
McCalla, Gord
Mcllraith, Sheila
Mcleish, Mary
Mendoza, M.
Mercer, R.E.
Merrett, T.
Mewhort, Doug
Neufeld, Eric
O'Hearn, Peter
Patel-Schneider, Peter
Pattabhiraman, T.
Pearl, Judea
Peters, Joe
Poole, David
Rehfuss, Steve

Reiter, Ray
Robinson, Edmund
Rudd, Walter
Saint-Dizier, Patrick
Saund, E.
Saxberg, Bror
Selman, Bart
Shoham, Y.
Snarr Carter, Vicky
Song, Fei
Spencer, Bruce
Stabler, Ed Jr.
Staley, Jeff
Szafron, Duane
Tubman, Jim
Turchan, Mark
Vegdahl, Steve
Vilain, Marc
You, Jia-Huai
Yukawa, Kai
Zlatin, Dan

. I

. j

.I
I

f

Invited Speakers

Wolfgang Bibel
Computer Science
University of British Columbia
Finding Proofs, Programs, and Plans

Renato De Mori
Computer Science
McGill University
Neural Networks, Markov Models and Programming In Automatic
Speech Recognition

David Etherington
Al Principles Research
AT&T Bell Laboratories
Non-Monotonic Reasoning: Is the Answer Harder than the Question?

Geoff Hinton
Computer Science
University of Toronto
Connection/st Symbol Processing

David Lowe
Computer Science
University of British Columbia
Recognizing Objects with Curved Surfaces and Moving Parts

I : I Charles Morgan
· · Ph ilosophy

. '
. '

University of Victoria
Bets, Logic and Monotonicity

viii

Contents

Invited
Finding Proofs, Programs, and Plans .. 1

W. Bibel (invited)

Natural Language
Expressing Unrestricted Grammars by Extended DCG .. 7

Erik Knudsen
Using Default Logic to Derive Natural Language Presupposition 1 4

Robert E. Mercer
An Evidence Oracle for Argument Understanding ... 22

Mark A. Young, Robin Cohen
System X: A Portable Natural Language Interface .. 30

Paul Mcfetridge, Gary Hall, Nick Cercone, W.S. Luk

Reasoning I
Time revisited .. 39

Stephanie A. Miller, Lenhart K. Schubert
Reasoning in Temporal Domains: Dealing with Independence
and Unexpected Results ... 46

Scott D. Goodwin

Knowledge Representation
A Syntactic Approach to Mental Correspondence ... 53

Anthony S. Maida
Statistically Founded Degrees of Belief ... 59

Fahiem Bacchus
A New Normative Theory of Probabilistic Logic .. 67

Romas Aleliunas
On Using Modal Structures to Represent Extensions
to Epistemic Logics ... 7 5

Sharon J. Hamilton, James P. Delgrande
A Solution to the Paradoxes of Confirmation .. 85

James P. Delgrande
Concepts, Analogies, and Creativity .. 94

Douglas R. Hofstadter, Melanie Mitchell

Reasoning II
The Complexity of Model-Preference Default Theories 102

Bart Selman, Henry Kautz
Instance-Based Prediction of Real-Valued Attributes ... 11 O

Dennis Kibler, David W. Aha
Axiomatizations in the Metatheory of Non-monotonic
Inference Systems .. 11 7

Phillippe Besnard
Probabilistic Causal Reasoning .. 125

Thomas Dean, Keiji Kanazawa
Search Strategies for Conspiracy Numbers .. 133

Norbert Klingbeil, Jonathan Schaeffer

ix

Perception I
The Cooperative Application of Multiple Natural Constraints
to the Motion Correspondence Problem .. 140

Michael R.W. Dawson

.J
Structure Recognition by Connectionist Relaxation:
Formal Analysis ... 1 48

Paul Cooper
..

Knowledge Base Systems
A Multi-Paradigm Development System for Exploratory

. :· · I
'. I Environments ... 1 56

Anne Bergeron, Lorne H. Bouchard, Renaud Nadeau
A Hybrid Approach to Finding Language Errors and Program
Equivalence in an Automated Advisor ... 161

Xueming Huang, Gordon I. McCalla
Knowledge Acquisition Techniques for Knowledge-Based
Systems .. 1 6 9

Mildred LG. Shaw
Extracting Rules from Data with Exceptions .. 1 77

Toshiharu Sugawara
Search Strategies for Finding Partial Answers in Large

.· ,

I
Knowledge-Bases ... 1 84

Jaiwei Han, Lawrence J. Henschen, Wenyu Lu
A Rule-Based Framework for Controlling a Robotic Workce/1 191

M.E. Malowany, A.S. Malowany

Perception II
Curved Mondrians: a Generalized Approach to Shape
from Shading ... 1 9 9

Walter F. Bischof, Mario Ferraro
Extending Moment Analysis with Directed Attention to Handle
Structural Variations in Character Recognition .. 206

Dale M. McNulty
Speaker Normalization and Automatic Speech Recognition
Using Spectral Lines and Neural Networks .. 213

Yoshua Bengio, R. De Mori

Reasoning Ill
Toward the Automated Synthesis of Nondeterministic Plans
Using Generalized Condition/Event Nets .. 221

Dennis R. Bahler
Iterative Constructs in Non-Linear Precedence Planners 227

Sam Steel
Context Resolution: A Computational Mechanism for
Intelligent Backtracking 234

. I

Jia-Huai You, Yigong Wang
LEW-P: Leaming by Watching in the Planning Domain ; 242

Patrick Constant, Stan Matwin, Franz Oppacher

X

Applications
Generic Strategies and Representations for Communications
Networks Sales .. 249

Innes A. Ferguson, Dan R. Zlatin
Qualitative Modeling: Application of a Mechanism for
Interpreting Graphical Data ... 255

Sheila Mcllraith
Exploiting Fine-Grained Parallelism in Production Systems 262

Bruce T. Smith, David Middleton
An Expert Advisor for Fourth Generation Software .. 271

Douglas Skuce
Refinement of Scene Interpretation for Object Recognition
and Location .. 279

K.D. Rueb,A.K.C.VJong

xi

Finding Proofs, Programs, and Plans*

W. Bibel

University of British Columbia and
Canadian Institute for Advanced Research

Abstract

This paper is meant to set the stage for the
oral presentation of material of a more technical
nature that has been published elsewhere. In par
ticular it articulates some of the troubles caused by
current software production practice, while claim
ing that the route based on logical systems and
their deductive capabilities would offer a more sat
isfactory approach. It also points out that such a
route would require a concerted effort far beyond
the usual investments of individuals. The paper is
also meant to provide the reader with commented
references to a number of technical results yielded
in this context.

1 Introduction

Software production is a rapidly expanding multi-billion
dollar business. The products coming out from this busi
ness, however, are far from satisfactory. Because of this
people started talking of a "software crisis" around 1970.
Since a crisis is something that is overcome after a while,
the term is not used any more. The problems are worse
today than they were in 1970, worse from the user's point
of view that is. For business the situation is not bad at
all, since unsatisfactory software raises the appetite for a
new product and thus the selling figures.

There is little hope that this situation will change in
the near future. The reason is that the production of
fundamentally better software would require concerted ef
forts towards radical changes involving universities, indus
try, and governments. Matters must get really bad before
they might have a chance to improve.

This pessimistic perspective should not prevent at least
a few of us from taking little steps towards a different and
better approach, far away from the mainstream activities
in software engineering. I have devoted a substantial part
of my work to such an approach, which since 1975 I have
been calling predicative programming. It is based on the
following principles.

Programming is to a large extent a reasoning process
carried out on the basis of a body of knowledge of various
kinds. It is an activity for which people typically are not

• Invited talk presented at CSCSI'88

at their very best. Hence machine support would help
a lot. In order to provide suitable support, it is best to
aim in principle, but not necessarily in practice, at a full
automation of the whole process in order to get a better
understanding of the mechanisms involved. This requires
a full formalization of all parts involved. Only the for
malisms of logic have the capacity to provide this formal
ization in a way that suits all these principles, in partic
ular is capable to model the reasoning processes needed.

The problem with these principles is that they outline
a research program of huge dimensions that will never be
realized in an unconcerted way carried out by a few in
dividuals. So this talk will not be able to present more
than a few tiny pieces that eventually might fit into the
pattern of the whole puzzle. These pieces are taken from
my work pursued over more than a decade under the per
spective of the principles just outlined. The paper itself
is meant only to set the stage to the presentation of the
more technical material and to provide the reader with
the referential pointers to the publications elsewhere.

In detail, Section 2 reminds us of some of the prob
lems with software while Section 3 summarizes the view
of a concurrent way of predicative programming. The ba
sic tools needed include deduction surveyed in Section 4.
The next Section 5 then provides most of the pointers to
predicative programming along with some comments and
to the LOPS project realizing pieces of it. Section 6 points
out that the same techniques are applicable to planning
given the close relationship between planning and pro
gramming. Final!y, Section 7 states in a somewhat more
detailed way the rather pessimistic prospects for this kind
of approach to programming.

2 The amenities of programming

The more advanced computer systems nowadays basically
offer an option between a menu-driven and a command
oriented human interface. Let us consider the menu
driven option first. What the user can do there is choos
ing, at any given level, among a small set of options pre
sented as icons or keywords in a menu. Any of these
options would lead either to a different level with another

menu or would activate a particular command.
An understanding of the meaning of the icons and key

words is expected from the user. This includes an under
standing of the classification underlying the decision tree
represented by the menus. It also includes an understand
ing of the commands offered for execution. Usually a help
option supports this understanding if needed.

Menu-driven systems of this kind are considered to be
very user-friendly, and indeed for limited and restricted
applications such as text-processing they are quite use
ful. If we think of rather complex systems, however, their
weaknesses become obvious. First of all, expecting the
user's understanding, as just described, then means a sub
stantial burden on his part. This burden can be alleviated
by the help option to a very limited extent only, since the
information to go into the help menu grows exponentially
with the system's complexity. On the other side, running
through a number of menus before being able to execute
a certain command is a nuisance for the experienced user.
Because of these reasons, the menu-technique is not pre
ferred in more complex systems.

Command- oriented systems consist in the extreme of
a single "menu" containing a listing of all commands avail
able along with a description of their usage and meaning.
This listing is provided to the user in the form of a "user's
guide" or "user's manual". You have to be prepared to
read a couple of hundreds of pages and keep them in your
memory before you start doing useful work. We are here
not talking of memorizing poems, mind you, but of attach
ing some meaning to a letter such as 'j' or a sequence like
' ~x~c ', in fact to hundreds of them. Often the meaning
depends on the system's actual status, thus complicating
things even further.

This approach is fine for specialists spending much of
their time with one or two systems. But we can forget it
for normal people for which the computer is a tool that
is taken into consideration in various circumstances and
in irregular intervals to support their work, while often
focussing on completely different subjects. What would
be needed for such people?

Generally speaking, the system should behave in a way
as to avoid distraction of the user's attention from his
main work. That is, little effort should be needed to com
municate a command to the system such as striking a key
or at most a few of them. On the other hand, the user's
awareness of the fixed associations of meanings to keys
must not be anticipated by the system. Can we reconcile
these seemingly contradictory requests?

Some progress towards such ends might still be pos
sible with the current technology. In particular the help

2

function could be made even more state sensitive, thus
more focused. In addition, it could take into considera
tion statistical knowledge about the likelyhood of a cer
tain command being sought for by the user at any given
state. So calling help at any given moment would present,
say, at most five options with brief descriptions among
which in 95% of the cases the required command is in
cluded. The remaining 5% would require further paging
down in the context- sensitively ordered list of commands.
In particular, the phase of customization of a system needs
being included into the domain of such a help function.
In effect, such a system would more actively respond to
the needs of the user.

Unfortunately, the solution just outlined is certainly
not easy to achieve. It asks for the design of even more
complex systems resulting in even more serious problems
with respect to installation, adaptation, and maintenance
(see below) . Even if these could be managed, the result
would still be a stupid system not noticing what's really
going on.

We just touched upon a further crucial problem with
the current state of affairs . Since present systems already
are quite complex, never expect them to function prop
erly or to suit even modest demands in all cases. Conse
quently, the next version will be released in due amount of
time. You certainly want to keep up- to-date and there
fore to replace the old version by the new one. Experience
tells us that the tasks involved in this kind of work (fixing
problems and incorporating new versions) keeps a techni
cian busy full- time already for a relatively small instal
lation. More importantly, the problems arising in daily
use are becoming more and more complex. You better
look for a technician that is really smart. Some of us may
already have sensed a mood of despair in our labs.

So far our discussion was more or less concerned with
the problems involved in doing the right thing at a given
time in order to achieve an immediate behavior as desired.
Programming to a great deal is concerned with foreseeing
future needs of behavior without being able to anticipate
the circumstances under which these needs arise. Typi
cally at the time of programming we are only aware of
a rough idea of the requirements of a task or. a rather
global level. It is therefore no surprise that the software
eventually produced more often becomes a disappoint
ment rather than a success. The wish for a change of
the result is borne the day when the package is delivered.

Under this aspect, perhaps the most frustrating among
all these problems is the fact that all software production
is not additive at all. Relatively minor changes often re
quire full rewriting of major parts of a system. Often,

such rewriting has to be carried out by a new team of pro
grammers. Since familiarization with code is a demanding
task, there is even more readiness to redo the whole thing
from scratch. Paradoxically, in AI it has become even a
virtue to throw away written software in the hope that
the next version will be an improvement. The attitude
reminds me of the past days where secretaries had to re
type manuscripts again and again and again without ever
achieving a correct version. And how much more difficult
is programming in comparison with typing!

What is offered as a remedy for these problems in
the literature of software engineering? You find count
less pages filled on such topics as "application of devel
opment techniques", "life-cycle support", "verification,
validation, and testing approaches", "high-level language
programming", "data structures, abstract data types, hi
erarchical types, and operations", "integrated program
ming environments", and many others. I may be too
short-sighted, but I simply cannot see the perspective of
a solution to the fundamental problems discussed so far
offered by any of these concepts. Indeed I also did not
come across any article that would outline the scenario
in which any of these would lead us in a more desirable
future.

Since the software engineers should know, it seems
that there is no much brighter future possible, or? There
are a very few (compared to the masses of software en
gineers) researchers that have heralded a fundamentally
different approach. Their background often is in Artifi
cial Intelligence, or in Logic for that matter. Their key
words sometimes are "automatic programming" or "pro
gram synthesis" or "computational logic". Some of this
work deserves a much closer inspection. Before we have
a look at it let us envisage a scenario that would be more
desirable, and do so even at the risk of wishful thinking.

3 Concurrent software production

Although the software engineers correctly speak of the
life- cycle of software, thereby referring to various phases
(requirements, specification, and so forth) they actually
treat these phases in a sequential way, a fact that becomes
evident even by this terminologically talking of phases.
The appropriate approach would indeed be to think of
the specialists for each of these phases sitting on a round
table together, doing their work all in a concurrent way.
Like with concurrent manufacturing we could speak of
concurrent software production.

I have described the scenario of producing software
in this way in quite some detail in [13] . The basic point

3

simply is that it would be greatly desirable to have the
various phases of the life-cycle intimitely interact with
each other. For instance, it would be of great value to have
an immediate feedback from the team implementing the
software to those who set up the requirements, in order to
be able to check whether the requirements are indeed met
by the actual implementation. Similar arguments apply
to other pairs of phases of the cycle, and they will not be
repeated here. Anyway, no one would seriously disagree
with such an idea. The questionable issue is whether this
idea could ever be realized.

Realizing such a dream begs the solution to a number
of very hard problems well- known in Al, as argued in
some detail in [13], in fact in several preceding papers
starting with [11]. The (semi-) automatic synthesis of an
algorithm from a logical description is one of them, but
by far not the only one. In fact, an even harder problem
has to be solved in practice in this particular case since
a complete and correct specification of that sort is hardly
ever available. So the synthesis problem rather has to
be solved even under the circumstances of incomplete,
perhaps incorrect descriptions.

None of these problems is close to being solved. In
fact, nearly no one seems actually be interested in their so
lution, at least none from software engineering, probably
because there is little reward in attacking such very hard
problems for which real progress is visible only on close
inspection that no individual referee nor any appointment
committee is able and willing to invest. In other words,
the prospects for a realization look rather grim, an obser
vation that will be discussed further in Section 7.

The software engineers seem to either have given up
hope completely ever to be able to make software produc
tion happening in a desirable way, or they simply close
their eyes in view of the tough problems they would be
faced with, would they try to achieve such goals head- on.
I am among those who have not given up hope completely
(but see Section 7). Further I do at present see no other
way towards such more desirable goals than solving some
of these tough problems to at least some extent. For ex
actly that reason I am interested in achieving progress in
the topics mentioned in the title of this paper which are
discussed very briefly in the next three sections.

4 Proofs

There are various ways to formalize proofs. A number
of them have been discussed in [6,1]. There we have also
argued that first- order logic may be seen as a kind of
core of any logical system worthwhile to be studied in de-

tail. Resolution [2] is the most popular proof method for
first-order logic. The connection method [2,5] is an alter
native. Each of these two methods has many particular
realizations in terms of proof procedures.

Recently some progress has been achieved in evaluat
ing the comparative power of both methods. [3] compares
a number of specific procedures under this aspect. Later
Haken [18] proved that resolution (on the ground level)
necessarily is exponential. He established this using the
pigeonhole formulas. In [7] it was now proved that, in
contrast, the connection method allows short proofs for
these same formulas. This shows that both methods are
orthogonal to each other in a certain respect.

On the other hand resolution has a capacity that is
not directly available in the connection method. Namely,
a resolvent can be used many times in a proof like a lemma
in mathematical proofs. Eder [15] has extended the con
nection method so that it incorporates the lemma feature
like resolution. In fact, any resolution proof can now di
rectly be simulated in this extended method so that it is
at least as efficient as resolution. Indeed it is even prov
ably more efficient because of the result concerning the
pigeonhole formulas just mentioned.

In order to just give an idea of this extension, recall
that the connection method is based on the characterisa
tion of theorems by the existence of a spanning (and unifi
able) set of connections. In Eder's generalization this set
is organized by associating its connections with the nodes
of a directed acyclic graph (dag) which defines the number
of times each connection implicitly is taken into consid
eration for establishing the proof. This way a connection
mentioned only once explicitly may play a multiple role
like a lemma.

The purpose of these comparative studies is not so
much a competitive one rather it apparently leads us to
new insights into the nature of logical proofs and thus
to more efficient proof mechanisms. While the compar
isons focus on the simulation of proofs of the one method
within the other, by the nature of these simulations they
provide at the same time a comparative insight into the
work necessary to find the proof.

The basic first- order proof techniques might provide
only the core of future more complex proof systems as
we already indicated above. So we emphasize once more
that numerous further features [6,1] are expected to be
integrated in order to make them powerful enough for
applications. For instance, Wallen [19] has extended the
connection method in order to deal with non-classical log
ics such as modal and intuitionistic logic.

Not only are there numerous possible features, but also

4

many different ways to use these deductive mechanisms.
For instance, though deductive in nature, they might well
be used in order to achieve an inductive behaviour. Or,
although they are designed with searching for correct and
full proofs in mind, nothing prevents us to use the infor
mation provided by partial proofs of perhaps incompletely
specified statements. Note in this context that the con
nection method provides us with a very natural notion of
a partial proof as a set of connections that spans some of
the paths but not necessarily all of them.

5 Programs

In [11 ,8] I have first explored the possibility of using proof
techniques like those discussed in the previous section for
the purpose of a more comfortable and reliable approach
to programming. While this work appeared at roughly
the same time when PRO LOG entered the stage, it aimed
from the very beginning towards a more general goal. In
particular, it was not restricted to Horn clause logic. Also
it did not compromise in terms of a purely predicative1

style of programming.
The idea of predicative programming is to allow the

user to communicate with the programming environment
in a fashion that allows a problem description of the kind
people use in non-computational circumstances. The the
sis is that such a description, once it is sufficiently precise,
can be transformed into some logical formalism. Sup
ported by a knowledge base containing domain, strategic,
and programming knowledge, such a description is trans
formed into a form more suitable for computation but
still in logic . This part of the transformation involves
strategically guided deductive processes. An interpreter
(or compiler) would then enable this form of the problem
to be executed like a PRO LOG program, whereby the ex
ecution may be regarded as a proof. With the rising de
gree of automation, the idea of concurrent programming
{cf. Section 3) would become feasible, since even partial
descriptions could be handled in this way thus leading
to immediate feedback during the phase of shaping the
problem.

On the basis of [12] these ideas have been partially
realized in the LOPS project [14] that is now further
pursued by the AI group at the Technische Universitiit
Miinchen within the ALPES project under the ambrella
of ESPRIT. One could say so far that the project did not
identify any fundamental problems indicating the infeasi
bility of the idea for whatever reason. On the other hand

1 Note that this term of predicative programming, that recently has
become fashionable, was coined first in [9,8].

it also demonstrated the enormous size of the task to be
carried out, since we feel we have just gone a couple of
steps on a long way towards the final goal. Some of the
problems are the following ones.

Obviously there are all kinds of problems with the
request for a more informal and flexible user interface
that by and large are not directly related to the topic
of this paper. Further there are numerous problems left
for the transformational part that extracts a computa
tionally feasible logic program out of the original descrip
tion and the knowledge available to the system. It is this
part where the LOPS project has contributed most, but
where much more theoretical and practical work has to
be invested. In particular, it is my strong believe that
there is still a rich source of knowledge sitting in logical
papers that could usefully be exploited for this purpose.
Finally, there is still a great potential for improvement of
compilers for the resulting logic program (see [1,10] for
recent results) . In this part there is an overlap with the
work done in logic programming, and under certain as
pects also with that in program transformation.

6 Plans

A program is some sort of a plan. So one would expect
that planning is handled in a way similar to program
ming. It is not seen this way by most of those working on
planning. In consequence, all the problems described for
programming are inherent in planning systems in some
way or another. In order to overcome these problems, a
predicative and concurrent planning approach would have
to be taken in much the same way as with programming.

As a first step towards such ends the relationship be
tween proving and planning has been explored in [4], guid
ed by the work known in program synthesis. The problem
faced here concerns the fact that actions change the world
as time progresses while logic seems to be of a nature not
suitable for formalizing such changes. Our proposed so
lution to this problem considers the theorem prover as an
actor that changes its state as time progresses, this way
entering a new logical world after executing a rule that
describes an action.

While the basic idea of this approach is pretty simple
and attractive, again there are numerous problems wait
ing to be settled. Some of them are addressed in [17], par
tially in an inappropriate way from my point of view. One
of the questions I would like to see an answer for in the
first place, is the one about the relationship with modal
logic. Apart from such specific questions concerning this
particular setting of planning, all problems mentioned in

5

the context of programming are of relevance here too, of
course.

7 Prospects

There is a tremendous need for improvement of the cur
rent approach to programming (or planning) as we de
scribed in Section 2. In order to achieve such an improve
ment a more formal approach to programming would be
needed. Thereby programming means all the activities
involved in the entire life- cycle of software. Since formal
approaches tend to be complicated, a uniform formalism
would be of some help in this respect. Also, since in
trospection easily reveals that programming involves all
sorts of reasoning, logic is the natural candidate for con
sideration as such a uniform formalism. We have briefly
indicated in the last three sections, how logic could play
a role in programming, mainly by referring to work pub
lished elsewhere.

So while there seems to be an attractive perspective,
there is little reason for much optimism. First of all, logic
is hard by all means. Even if you restrict your attention
to one tiny subproblem involved, say for instance to term
unification, then it already requires the full attention of a
bright mind to come to grips with it. But there are tens
if not hundreds of facets like unification involved in such
a formal approach to programming. Therefore it seems
hard to imagine one single mind that could 6Ver bring
together such a unified theory.

Hardly any of the facets we just addressed are ever
taught at Universities. While any student of Computer
Science is required to learn quite a bit of calculus which
has only a minor relevance in our field they often can
do without any knowledge in logic which is the field that
brought forth the computer in the first place. So anyone
starting a research career with the sort of problems dis
cussed here in mind, is bound to reinvent the wheel. The
frustration going along with such a discovery makes him
change the subject to something less demanding in most
cases.

In any case, striving for such a formal approach would
require a lot of enthusiasm and concerted efforts . There
is not the slightest indication for this sort of spirit in the
field as a whole. On the contrary, key figures in software
engineering seem not even to be aware of the nature of
the problem. How else could it possibly be that one finds
numerous unfriendly, certainly incorrect statements about
the areas addressed in the present paper may be found in
the literature such as in [16] to mention but one example.

So unfortunately it is more likely that this kind of

. J

I

I

I

approach remains the hobby of a few outsiders that with
their limited capacity will continue to contribute only t iny
pieces of progress. Perhaps the only hope remaining might
be the prospect that things become so bad as traditional
systems become even more complex that people are really
getting mad with them and start looking out for radical
change. The principle of hope thus may be sustained also
in this context of software engineering.

Acknowledgements. I want to express my thanks to D.
Lowe for numerous helpful comments on this paper.

References

[1] W. Bibel. Advanced topics in automated deduction.
In R. Nossum, editor, Fundamentals of Artificial In
telligence II, Springer, Berlin, 1988.

[2] W. Bibel. Automated Theorem Proving. Vieweg Ver
lag, Braunschweig, second edition, 1987.

[3] W. Bibel. A comparative study of several proof pro
cedures. Artificial Intelligence, 12:269- 293, 1982.

[4] W. Bibel. A deductive solution for plan generation.
New Generation Computing, 4:115- 132, 1986.

[5] W. Bibel. Matings in matrices . Comm. ACM,
26:844-852, 1983.

[6] W. Bibel. Methods of automated reasoning. In
W. Bibel and Ph. Jorrand, editors, Fundamentals
of Artificial Intelligence - An Advanced Course,
pages 173 - 222, Springer, LNCS 232, Berlin, 1986.

[7] W. Bibel. On the comparative complexity of resolu
tion and the connection method. J.A CM, submitted.

[8] W. Bibel. Priidikatives programmieren. In GI -
2. Fachtagung iiber Automatentheorie und Formale
Sprachen, pages 274- 283, Springer, Berlin, 1975.

[9] W. Bibel. Predicative Programming. Technical Re
port, Technische Universitiit Miinchen, 1975.

[10] W. Bibel. Predicative programming revisited. In W .
Bibel and K. Jantke, editors, MMSSSS'85 - Math
ematical Methods for the Specification and Synthesis
of Software Systems, pages 24- 40, Springer, Berlin,
1986.

6

[11] W. Bibel. Programmieren in der Sprache der
Priidikatenlogik. (Rejected) thesis for "Habilitation"
presented to the Faculty of Mathematics, Technische
Universitiit Miinchen, January 1975.

[12] W. Bibel. Syntax- directed, semantics- supported
program synthesis. Artificial Intelligence, 14:243-
261, 1980.

[13] W. Bibel. Wissensbasierte softwareentwicklung. In
W. Brauer and B. Radig, editors, Wissensbasierte
Systeme, pages 17-41, Springer, Berlin, Fachberichte
Informatik, 1985.

[14] W. Bibel and K. M. Hornig. Lops - a system based
on a strategical approach to program synthesis . In A.
Biermann, G. Guiho, and Y. Kodratoff, editors, Au
tomatic program construction techniques, pages 69-
89, MacMillan, New York, 1984.

[15] Elmar Eder. Habilitationsarbeit. forthcoming.

[16] Jr. Frederick P. Brooks. No silver bullet - essence
and accidents of software engineering. IEEE Com
puter, 20:10- 19, April 1987.

[17] Bertram Fronhofer. Linearity and plan generation.
New Generation Computing, 5:213-225, 1987.

[18] Armin Haken. The intractability of resolution.
Theor. Comput. Sci., 39:297- 308, 1985.

[19] L. Wallen. Automated Deduction in Modal Logics.
PhD thesis, University of Edinburgh, 1987. PhD
Thesis.

Expressing Unrestricted Grammars by Extended DCG

Erik Knudsen

SYSLAB
Department of Information Processing and Computer Science University of Stockholm

S-106 91 STOCKHOLM SWEDEN

Abstract

A definition of extended definite clause grammar is pre
sented and their relation to unrestricted grammars. A
method for translating extended definite clause grammars
describing unrestricted grammars into executable prolog
programmes is presented. Three different parsing
techniques are presented and for each a complete presen
tation of how to incorporate unrestricted grammars in the
actua l formalism is done.

Keywords: Logic Programming, Parsing, Unrestricted
grammars, Definite Clause Grammars.

This work has been supported by the National Swedish
Board for Technical Development (STU)

1 Introduction

Definite Clause Grammars (DCG) has gained a reputation
of being a well su ited formalism for defining arbitrary
grammars that can easily be translated into executable
prolog programmes [1 ,4, 12] . Especia lly in natural
language analysis this formalism is widespread and used
in different systems which are able to analyze and under
stand sentences in natural language. By using the power of
prologs unification, the backtracking mechanism and the
abi lity of incorporating prolog programmes into a DCG, it
is possible to build very powerful parsers.
Although it it possible to define very complex DCG they
are in their .QJJLe.1.Q.rrn limited to describing only context
free grammars. It is a well known fact that natural lang
uage can not be captured by merely a context free gram
mar. Different attempts not just within the logic pro
gramming society has been made in order to deal with this
particular problem [2,3 ,5, 11, 13].
It is our belief that the grammar for a certain language is
best defined purely from a linguist ic point of view which
means that the grammar should contain no artificial
constructs or obscure restructuring of the grammar in
order to enable the creation of a parser.
This does not mean that we do not accept the existence of
embedded prolog goals or adding extra arguments to sinole
c?nstructs o_r parts of the grammar and thus make it pos
sible to for instance build syntax trees.
~aving this view in mind we strong ly advocate that a de
fined grammar shou ld as far as possible look the same
even when expressed as a DCG. And this should also hold
when dealing with unrestricted grammars.
In this paper we present one method of how any unre-

7

stricted grammar [6] can be expressed as an extended
DCG (XDCG). Methods for translating the defined XDCG
into executable prolog programmes are described in detail
for three different kinds of parsing techniques namely top
down parsing, left corner bottom up parsing and a par
allel parsing system. We also give a brief introduction to
the basic ideas behind those techniques [7,8,9, 12].
In section 2 a brief definition of context free grammars is
given as well as the method for translating the equivalent
DCG into a prolog programme.
Section 3 defines unrestricted grammars and the equiva
lent form of the XDCG and how it can be translated into a
prolog programme that is in fact a top down parsing sys
tem.
In section 4 different methods are given for realising two
other kinds of parsing systems or rather how those exi
sting systems can be extended in order to enable them to
parse strings belonging to a language generated by an un
restricted grammar.
Finally we give some concluding remarks in section 5.

2 Context Free Grammars

A context free grammar r can formally be defined as a
quadruple

r = {A, T, R, r) where A is the alphabet
T £; A is the set of terminals
R £; (A - T) x A* is the set of rules
r e A - T is the start symbol
A - T is the set of non terminals

L(r) i.e. the language generated by r is defined as {w e T*
: r =:, * w) where =:, * is a finite steps of derivations in r
from r tow.
As an example let us choose:

r = (A, T, R, S) where
A = {S, A, B, a, b}
T = {a, b}
R = {S ""7 C,

S -t ASB,
A -ta,
B -t b}

then L(r) = {anbn : n;:>:0}. The equivalent DCG cou ld then
be expressed as:

I

I

. I

s --> " .
s --> a & s & b.
a --> 'a'.
b --> 'b'.

where symbols within sing le quotes are regarded as ter
minals. Note that the empty string c is depicted as ". The
ampersand is the logical connective for conjunction.
This DCG is then translated into an executable prolog
programme in a sequence of restructuring operations by
the well known method that has been presented in pre
vious works by e.g. [1,12].
The technique is roughly to add so called difference lists
as arguments to each construct in the grammar. The par
sing process is then carried out by passing a string se
quentially from left to right over every construct in a
chosen rule. A construct is understood as both being a
terminal and a non terminal in the grammar. Another
view is that every terminal or non term inal might be
seen as a consumer of a substring of the original string
and that a successful parse has been made when the com
plete string has been consumed.
The resulting prolog programme [1 OJ is then:

s(S, S).
s(SO, S) <- a(SO, S 1) & s(S1, S2) &

b(S2, S).
a(a.S, S) .
b(b.S, S).

The start symbo l takes the string that is going to be par
sed and if a successful parse is made, i.e. the string be
longs to the language generated by the specified grammar,
then the string should have been consumed complete ly.
Normally str ings are represented as a list of terminals
and if a list is empty it consists only of the constant nil.
So a parse of the string 'aabb' would be to prove the goal:

<- s(a.a.b .b.ni l, nil).
true

If the string given belongs to the language the goal s/2
succeeds, if not it wi ll fail.

<- s(a.b.a .b.nil , nil).
fa lse

This techn ique can be extended to handle strings in every
part of the right hand side of the rules . Furthermore
extra variables or any prolog structure might be added as
argument to each construct and thus e.g. build a syntax
tree. As has also been said, arbitrary prolog goals can be
inserted in any place of the right hand side of the ru les in
the DCG.
Since all this has been thoroughly described elsewhere
[1 ,4, 12] we wil l immediately tackle the problem of
unrestricted grammars.

3 Unrestricted Grammars

An unrestricted grammar 'I' can formal ly be defined as a
quadruple :

'¥ = (A, T, R, :E) where A is the alphabet
T ~ A is the set of terminals
R ~ (A'(A - T)A*) x A* is the set of ru les
:E e A - T is the start symbol
A - T is the set of non terminals

8

L(r), i.e. the language generated by r, is defined as {w e

T* : r =:,* w). We note that the on ly difference between
context free grammars and unrestricted grammars is the
defin ition of the ru les.
As an example of an unrestricted grammar let us choose :

'¥ = (A, T, R, S) where
A = {S, A, B, C, a, b, c}
T = {a, b, c}
R = {S ""7 c,

S ""7 a SBC,
CB ""7 BC,
a B ""7 ab,
b B ""7 b b,
b C ""7 be,
c C ""7 cc}

then L('¥) = {anbncn : n;,:Q} i.e. all strings with n num
bers of a:s fo llowed by n numbers of b:s and fina lly fo llo
wed by n numbers of c:s.
Having in mind our earlier stated view of what should be
expressed in the equivalent DCG describing the given
grammar we get the following XDCG:

s --> " .
s --> 'a' & s & b & c.
C & b --> b & C.

'a' & b --> 'a' & 'b'.
'b' & b --> 'b' & 'b'.
'b' & C --> 'b' & 'c'.
'c' & c --> 'c' & 'c' .

Note that th is XDCG is almost identical to the given unre
stricted grammar. No artificial constructs are added or
other obscure restructuring is being made, all with the
purpose of having a "clean" XDCG from a lingu ist ic point
of view.
Now the problem occurs of how this should be translated
into an executable prolog programme since multiple
conclusions are not allowed in a pure prolog programme.
Hard as it might seem the solution is indeed simple and
elegant. The idea is the fo llowing.
All the context free ru les are translated according to the
principle described earlier although terminals are trea
ted somewhat differently. Terminals are treated according
to the principle given in the following example:
We have three ru les of the form:

a --> b & 'and' & c.
b --> 'b'.
C --> 'c'.

The generated programme becomes:

a(SO, S) <- b(SO, S1) & _and(S1, S2) &
c(S2, S).

b(SO, S) <- _b(SO, S) .
c(SO, S) <- _c(SO, S).
_and(a.n.d.S, S) .
_b(b.S, S) .
_c(c.S, S) .

which means that for every terminal we create a terminal
clause and the principle functor name is the constant ge
nerated from the terminal string. To ensure that there
wi ll be no conflict between grammar constructs and con
verted terminal symbols the underscore character is
placed in front of every converted terminal. Note that in
the prolog version we use this character is a constant.

For unrestricted grammar ru les the following idea is
applied :
The first construct of the left hand side of a rule is made
the left hand side of the equivalent prolog clause. Add dif
ference lists to every construct apart from the rest of the
constructs of the left hand side of the rule. Create a list of
those constructs and append it to the output argument of
the head of the clause.
For every construct that now participates as a part of the
created list, create an unrestricted terminal clause where
the clause is a terminal with the actual construct as the
token to be consumed when parsing.
Note that there is no difference between terminals and non
terminals apart from the fact that terminals give rise to a
set of terminal clauses. They resemble exactly the gene
rated unrestricted terminal clauses.
So what we get is a set of clauses for every XDCG rule that
is an unrestricted rule. The first member is an unre
stricted non terminal clause (1) and the rest are unre
stricted terminal clauses (2). If the same construct acts
as an unrestricted terminal clause more then once, no
more than one equivalent unrestricted terminal needs to
be created. These generated unrestricted terminal clauses
will on ly do a consumption when an unrestricted non ter
minal clause has been used when parsing. In other words,
they convey the current context.
The generated prolog programme given the above XDCG is
then:

s(S, S) .
s(SO, S) <- _ a(SO. S1) & s(S1, S2) &

b(S2, S3) & c(S3, S).
(1) c(SO, b() .S) <- b(SO, S1) & c(S1, S).
(1) _a(SO, b().S) <- _a(SO, S1) & _b(S1, S).
(1) _b(SO, b() .S) <- _b(SO, S1) & _b(S1, S).
(1) _b(SO, c().S) <- _b(SO, S1) & _c(S1, S).
(1) _c(SO, c().S) <- _c(SO, S1) & _c(S1, S).

_a(a.S, S).
_b(b.S, S).
_c(c.S, S).

(2) b(b() .S, S).
(2) c(c().S, S) .

An interpretation of an unrestricted non terminal clause
is that a successful parse over the construct in the same
clause has been made in the context of the appended con
structs.
Unfortunately since the generated programme cont~ins .
left recursive rules it is not possible to execute th is with
an ord inary pro log interpreter since it wi ll surely loop.
But it is easily seen that for example the goal
s(a.a.b.b.c.c.nil , nil) is provable from a theoretical point
of view.
In order to further prove our method consider the fol lo
wing unrestricted grammar expressed as a XDCG:

s --> ".
s --> a & b & s & 'c'.
b & a--> a & b.
b & 'c' --> 'b' & 'c'.
b & 'b' --> 'b' & 'b'.
a & 'b' --> 'a' & 'b' .
a & 'a' --> 'a' & 'a'.

It should be clear that this XDCG expresses exactly the
same language as the previous one, that is the set of

strings such that {anbncn : n;:,:O} . The equivalent prolog
programme is then:

9

s(S, S).
s(SO, S) <- a(SO, S1) & b(S1, S2) &

s(S2, S3) & _c(S3, S) .
b(SO, a().S) <- a(SO, S1) & b(S1, S).
b(SO, b.S) <- _b(SO, S1) & _b(S1, S).
b(SO, c.S) <- _b(SO, S1) & _c(S1, S).
a(SO, b.S) <- _a(SO, S1) & _b(S1, S) .
a(SO, a.S) <- _a(SO, S1) & _a(S1, S).
_a(a.S, S).
_c(c.S, S).
_b(b.S, S).
a(a().S, S).

Now we are able to parse sentences of the form anbncn :

<- s(a.a.a.b.b.b.c.c.c.nil, ni l).
true

<- s(a.b.c.a.b.c.nil, nil) .
fa lse

This funct ionality can easily be incorporated into existing
systems built for translating ordinary DCG by adding a
few clauses. Here although, we will on ly give the outlines
for the process.
What is needed is to have a preprocessor that creates the
two types of new XDCG rules from the given XDCG.
Assume a rule from the above given grammar e.g.
"b & a --> a & b". The preprocessor generates by using
the backtracking faci lity the fo llowing two XDCG rules:

b & a--> a & b.
a --> a().nil.

The first one is the same as the given ru le but the second
one is a ru le with the same construct acting both as non
terminal and terminal. Note that it is converted into a
term with arity zero and placed into a list as the only
element.
Now these two XDCG rules are translated as usual in the
main processor which adds difference lists. In that pro
cessor only the first construct of the left hand side of the
ru le gets distribution lists. After the main processor the
rules now have become the prolog clauses:

b(SO, S) & a <- a(SO, S1) & b(S1, S).
a(a().S, S).

In the same preprocessor terminals may be converted into
constants and the equivalent terminal clause be created.
The rule

a --> 'a' .

will be replaced by the following two new ru les:

a --> _a.
_a --> 'a'.

The final step is to have a postprocessor that appends all
the untouched constructs in the head of the non terminal
clause to the argument that outputs the remainder of a
parsed string:

b(SO, a().S) <- a(SO, S1) & b(S1, S).
a(a().S, S).

If the existing translation processor is used in a context
as below

· 1

I

1

repeat & read(X) & process(X, Y) &
X = eof

no major changes needs to be done:

repeat & read(X) & preprocess(X, Y) &
process(Y, Z) & postprocess(Z, U) &

X = eof

since we re ly on the backtracking mechanism.
To conclude this part of the discussion in general any
XDCG rule of the form:

a1 (X 11 • ··· • X1 ml & a2(X21, ···• X2ml & ··· &
an(X n1, ··· · X nml -->

b1(Y 11• ··· • Y1j) & ··· &
bi(Yi1, ... , Y ij) .

is translated into:

a1 (X 11 • ·· ·• X1 m , So, a2(X21, ·· ·· X2ml · ···
.an(X n1, ··· • X nml ·Si) <-

b1 (Y 11• ··· • Y1j • So, S1) & ··· &

bi(Yi1• ···• y ij • Si -1• Si) .
a2(X21, ··· • X2m• a2(X21 • ··· • X2m) .S, S) .

As has been said before, if terminals occur in a grammar
rule they are first converted into atoms and then trans
lated into a term with difference lists as arguments and
term inal clauses are created for every terminal. This
holds regardless of where the terminals occur. The
techn ique for generating a pro log programme is st ill the
same.
Formally, if any bk where 1 :,;k:,;i is a terminal it is con-
verted into a constant _bk and an add itional rule

is generated if it does not already exist. The same holds
for any a

1
where 1 <1:,;n.

Since terminals are treated in this way we allow syn
onyms to be included in the grammar.

is after preprocessing converted into

_ a1 --> _a2.
_ a2 --> a2.

For example this synonum rule

'a' --> 'd'.

generates the fo llowing two ru les

_a --> _d.
_d --> 'd'.

and after appending difference lists we get

_a(SO, S) <- _d(SO, S) .
_d(d.S, S).

10

Synonyms are rules which are not allowed in unrestricted
grammars but since our formalism is able to handle those
rules we do not want to prohibit this possibility .

4 Efficient parsing

Even if a top down parser is conceptually exce llent it is
by no means the most efficient way to parse strings in a
language. On the contrary, it is in some situations too in
efficient to be used in real life systems if the grammar is
highly complicated or if it contains a large dictionary.
Another drawback with pure top down parsing is th at left
recursive ru les can not be dealt with, unless of cource
grammar rules containing left recursion are rewritten.
This is not a new insight since several works have been
produced on how to bu ild an efficient parser in prolog [7,
8,9). We have come to like two different parsers which
we wi ll give a short presentation of and thereafter show
how these parsing techn iques can be extended in order to
handle XDCG.

4.1 Bottom Up Parsing

The first one is called BUP and is a left corner bottom up
parser which is described in detail in [7,8) .
A BUP translator system restructures a given DCG into a
new DCG that in its turn can be processed as usual with
the earlier described translation principle for a top down
parser.
For instance, given the same context free grammar as in
section 2 the thus restructured DCG would look like:

a(G) --> parse(s) & parse(b) & s(G) .
dict ionary(s) --> "
dictionary(a) --> 'a' .
dict ionary(b) --> 'b'.

(1) s(s) -->
(1) a(b) --> "
(1) b(b) --> ".

Note the extra so called terminal ru les (1) that are added
to the DCG. Those are created once for every non term inal
in the grammar. Even if BUP is a bottom up parser it is in
this version able to handle empty strings. A grammar
containing empty strings or c productions wi ll of course
have an impact on the efficiency. A simple rewriting of
the grammar so that it will only generate a language L(,)

= {anbn : n>O} would give:

a(G) --> parse(b) & s(G).
a(G) --> parse(s) & parse(b) & s(G).
dictionary(a) --> 'a' .
dictionary(b) --> 'b'.
s(s) -->
a(a) --> " .
b(b) --> " .

But we will use the grammar with the empty string al
lowed. The equivalent prolog programme would then look
li ke :

a(G, SO, S) <- parse(s, SO, S1) &
parse(b, S1, S2) & s(G , S2, S).

dictionary(s, S, S).
dictionary(a, a.S, S).
dictionary(b, b.S, S) .
s(s, S, S).
a(a, S, S).
b(b, S, S).

The goal parse/3 is defined as:

parse(G, SO, S) <- dictionary(P, SO, 81) &
X ; .. (P.G.81 .S.nil) & X.

So to parse the string 'aabb' would be to prove the goal:

<- parse(s, a.a.b .b.nil, nil).

The principle for translating an XDCG into a prolog pro
gramme based upon the BUP idea is somewhat similar to
the previous one described above. In general the following
holds:
Given any unrestricted XDCG rule of the form :

a1 (X11• .. . , X1m) & a2 (X21, .. . , X2m) & ... &

an (Xn1 · .. . , Xnm) -->
b1(Y 11• .. . , Y1j) & b2(Y21 , ... , Y2j) &
... & bi(Yi 1, ... , Yij) .

and a1 is not a terminal it will after the preprocessing be
translated into a new XDCG rule:

b1 (G, Y11 · Y1j.nil, A) &

a2(X21, ... , X2m) & ... &

an(Xn1 • .. . , Xnm) -->
parse(b2, v21 Y2j .nil) & .. . &

parse(bi, Yi 1 Yij·nil) &

a1 (G, x11 X1 m.nil, A) .
(1) d ict ion ary(a2 , x21 X2m.nil) -->

a2(X21 • .. . , X2m).n il.
(1) dictionary(an, Xn 1 Xnm·nil) -->

an(Xn1' ... , Xnm).nil.

Here unrestricted dictionary entries (1) are created for
every construct that participates in the left hand side of
the ru le except for the first construct. Terminals that
occur in a rule that will not generate dictionary entries
will be treated according to the same principle described
as in section 3.
The goal parse/4 is defined as:

parse(G, A, SO, S) <-
dictionary(P, A1, SO, 81) &
X ; .. (P.G.A1 .A.81 .S.nil) &
X.

If n;1 the following transformation is done:

b1 (G, Y11 · Y1j·nil, A) -->
parse(b2, v21 Y2j'nil) & ... &

parse(bi, Yi 1 Yij·nil) &

a1 (G, x11 X1 m.nil, A).

If n; 1 and i; 1 and b1 is a terminal the following trans
formation is done:

dictionary(a 1, x11 X1 m .nil) --> b1.

If i>1 and b1 is a terminal the following two ru les are
generated:

II

terminalk(G, •• A) -->
parse(b2, v21 Y2j'nil) & .. . &

parse(bi, Y i1 Yij ·n il) &

a1 (G, x11 X1 m.nil, A).
dictionary(terminalk, nil) --> b1.

where terminalk is the k:th generated rule of this kind.
Finally we create terminal rules for every non term inal
in the grammar according to the following

gives a terminal rule:

When a synonym rule occur

we get the following prolog ~:

dictionary(G, A, a2.s, S) <

dict ionary(G, A, a1 .S, S) .

a1 c(S0, S) <- a2c(S0, S).
a2c(a2.s, S).

where as usual aic is the rewritten terminal symbo l.
After the initial restructuring operat ions or the prepro
cessing phase all rules are treated as usual, eg appending
distribution lists and the creation of prolog clauses. Fi
nally we only have to consider those unrestricted rules or
rather at this stage clauses with more than one conclu
sion. All constructs in the left hand side of the rule except
the first one are appended to the last but one string argu
ment in the final construct of the right hand side of the
prolog clause.

b1 (G, Y11 · Y1j·nil, A, So, Si) <-
parse(b2, v21 Y2j .n il , s0 , s1) & .. . &

parse(b i, Yi1 Yij'nil, Si-2• Si-1) &

a1 (G, x11 X1 m.nil, A,

a2(X21 · ... , X2m) ·
an(Xn1 • ... , Xnm).S i-1 • Sj).

Translating the unrestricted grammar given in section 3
will resu lt in the following prolog programme:

a(G, SO, S) <- parse(b, SO, 81) &
parse(s, 81, 82) & _c(S2, 83) &
s(G, 83, S) .

a(G, SO, S) <- parse(b, SO, 81) &
b(G, a() .81, S).

terminal1 (G, SO, S) <- _c(SO, 81) &
b(G, c.81, S) .

terminal2(G, SO, S) <- _b(SO, 81) &
b(G, b.81, S).

terminal3(G, SO, S) <- _b(SO, 81) &
a(G, b.81, S) .

terminal4(G, SO, S) <- _a(SO, 81) &
a(G, a.81 , S) .

_a(a.S, S) .
_b(b.S, S) .
_c(c.S, S) .
dictionary(s, S, S).
dict ionary(a, a().S, S) .
dict ionary(b, b().S, S) .

. 1

dictionary(terminal1, b.S, S) .
dictionary(terminal2, b .S, S).
dictionary(terminal3, a.S, S) .
dictionary(terminal4, a.S, S).
s(s, S, S) .
b(b, S, S).
a(a, S, S).

The discrepancy between the general form and the exam
ples we have given is due to the fact that we have not used
any argum ents to the non terminals in the defined XDCG.
Integrating this mechanism into a DCG translating system
will also require both a pre-translator and a post-trans
lator. That is also a straightforward doing and will not be
nresented here.

In [7] different techniques for making the BUP parser
more efficient are presented, e.g . introducing the link
relation. All the techniques described are directly ap
plicable in an XDCG without having to do any additional
work .

4.2 Parallel parsing

The second parsing principle is the parallel parsing sys
tem (SAX) described in [9] . We will here only use the
"primitive" version of the idea in order to describe how
unrestricted grammars can be dealt with in a simple way .
In the SAX version a given DCG is restructured by adding
unique identifiers between both terminals and non ter
minals. Using our earlier presented context free gram
mar with the modification that we do not allow empty
strings the equ ivalent DCG in the SAX environment would
look like:

s --> a & id1 & b.
s --> a & id2 & s & id3 & b.
a -- > 'a'.
b --> 'b'.

This DCG is now completely translated into a prolog prolog
programme :

a(S, id1(S)).
b(id1 (SO), S) <- s(SO, S).
a(S, id2(S)) .
s(id2(S), id3(S)).
b(id3(SO), S) <- s(SO, S).
_a(SO, S) <- a(SO, S).
_b(SO, S) <- b(SO, S).

The start symbol in the grammar generates a prolog
clause containing a test on the two markers that are in
troduced when the parsing takes place:

s(SO, S) <- SO = begin & S = end.

When parsing the string 'aabb' the following goal is pro
ved:

<- _a(beg in, X1) & _a(X1, X2) &
_b(X2, X3) & _b(X3, end).

Now to introduce the capabi lity of parsing strings be
longing to an unrestricted grammar we simply move all
the left hand side constructs to the right and side . In ge
neral if given an unrestricted grammar rule of the form :

a 1 (X 1) & a2(X 2) & ... & an(Xn) --> b1 (Y 1) &

b2(Y2) & .. . & bm(Yml -

12

where 1 :5k:5n and 1 :5l:5m and every Xk and Y1 equals Xk1,

. .. , Xkn and Y 11, ... , Yim respectively, it is translated

into :

b1 (Y 1, SO, id1 (SO, XY)) .

b2(Y 2• id1 (SO, XY), id2(SO, XY)).

bm-1 (Y m- 1 ' idm _2(SO, XY), idm_ 1 (SO, XY)) .
bm(Ym, idm _1(SO, XY), Sn)<-

a1 (X1, SO, S1) & a2(X2, S1, S2) & ... &

an(Xn, Sn- 1, Sn) .

where XY equals x1, ... , Xn,Y 1 , Y m·

If m=1 we get

b1(Y1, SO, Sn)<- a1(X 1, SO, S1) &

a2(X2 , S1. S2) & ... &

an (Xn, Sn-1, Sn).

Note that arguments to non terminals are passed via the
id-structure. Further note that terminals are rewritten
according to the same principle already described. By ad
ding a list as argument to the end-marker we are able to
get output from the parsing. If the start symbol in the
grammar equals s(X1, ... , Xn) we get the following test

predicate.

s(X1, ... , Xn, SO, S) <- SO = begin &

S = end(X1 Xn.nil).

Given our previously introduced XDCG we change it to not
contain empty productions to the following :

s --> a & b & 'c'.
s --> a & b & s & 'c' .
b & a--> a & b.
b & 'c' --> 'b' & 'c'.
b & 'b' --> 'b' & 'b' .
a & 'b' --> 'a' & 'b' .
a & 'a' --> 'a' & 'a' .

we get the following prolog programme:

_c(id2(SO), S) <- s(SO, S) .
a(S, id1 (S)) .
b(id1 (S), id2(S)) .
_c(id5(SO). S) <- s(SO , S) .
a(S, id3(S)) .
b(id3(S), id4(S)).
s(id4 (S). id5(S)) .
b(id6(SO), S) <- b(SO, S1) & a(S1, S) .
a(S, id6(S)).
_c(id7(SO), S) <- b(SO , S1) & _c(S1, S) .
_b(S , id7(S)) .

_b(id8(SO), S) <- b(SO, S1) & _b(S1, S).
_b(S, id8(S)).
_b(id9(SO), S) <- a(SO, S1) & _b(S1, S).
_a(S, id9(S)) .
_a(id1 O(SO), S) <- a(SO, S1) &

_a(S1, S) .
_a(S, id1 O(S)) .

The same idea can now be adapted into the extension of the
SAX principle and expressed in a better suited form to be
used in a parallel environment. This is however not de
scribed in this work.

5 Concluding Remarks

The notion of XDCG have been introduced and the principle
for how this formalism can be translated into executab le
prolog programmes has been presented. We have also
showed the outlines for how an existing system for trans
lating DCG can be changed in order to deal with XDCG. A
system for translating an arbitrary XDCG into either of
the dicussed parsing principles has been implemented in
prolog. Possible future research should be to investigate
how both the BUP and SAX parsing techniques could be
extended in order to handle the full class of unrestricted
grammar rules which includes rules with heads beginning
with a terminal.

Acknowledgement

I would like to express my great gratitude to both G.
Johnsson at IBM Svenska AB, Lidingo Laboratory and H.
Lehmann at IBM Germany, Heidelberg Scientific Center
who initially showed that it was possible to express a
subset of unrestricted rules within the BUP formalism.
Also to IBM Svenska AB, Lidingo Laboratory where parts
of the ideas presented in this work has been implemented.
Many thanks also to A. Bjornerstedt, I. P. Orci and B.
Wangler for reading and commenting on this work.

13

References

[1 J Clocksin, Mellish, "Programming in Prolog",
Springer Verlag, 1981

[2) A. Co lmerauer, "Metamorphosis Grammars",
Natural Language Communication with Computers Ed.
Bole, Springer Berlin, May 1978

[3) V. Dahl, H. Abramson, "On Gapping Grammars",
Proceedings of the Second International Logic
Programming Conference, 1984

[4) V. Dahl, "Hiding Complex ity From the Casual
Writer of Parsers", Natural Language and Logic
Programming, North Holland, 1985

[5 J H. Lehmann, N. Ott, M. Zeoppritz, "A Multilingual
Interface to Databases", IBM Germany, Heidelberg
Scientific Center

[6) H. Lewis, C. Papadimitriou, "Elements of the
Theory of Computation", Prentice Hall, 1981

[7) Y Matsumoto, H. Tanaka, H.Hirikawa, H.Miyoshi,
H.Yasukawa, "BUP: A Bottom-Up Parser Embedded in
Prolog", New Generation Computing, No 1, 1983, pp
145-158

[8) Y Matsumoto, M. Kiyono, H. Tanaka, "Facilities of
the BUP Parsing System", Natural Language and Logic
Programming, North Holland, 1985

[9) Y. Matsumoto, "A Parallel Parsing System for
Natural Language Analysis", /COT Research Center,
Institute for New Generation Computer Technology

[1 O I IBM, "VM/Programming in Logic", Program
Description and Operations Manual, Program Number
5785-ABH, 1985

[11) F. Pereira, "Extraposition Grammars", American
Journal fa Computational Linguistics, Vol 7 No 4, 1981

[1 2) F. Pere ira, D. Warren, "Definite Clause Grammars
for Language Analysis - A Survey of the Formalism and a
Comparison with Augmented Transition Networks",
Artificial Intelligence 13, 1980, pp 231 -278

[1 3) P. Sabatier, "Puzzle Grammars", Natural Language
and Logic Programming, North Holland, 1985

.. I

Using Default Logic to Derive Natural Language Presuppositions

Robert E. Mercer•
Department of Computer Science

Miclcllcscx College
University of \Ves tern Ontario

Abstract

Nat ural language presuppositions are an essenti al part of
the meaning of a nat ur al language utterance. Consid
ered as inferences, presuppositions are derived from the ut
tered sentence , the background real world knowledge, and
knowledge concern ing conversational princip les . Due to the
conjectural and defeasible nature of these in ferences, the
der ivat ion process cannot be a classical inference procedure.
A method is discussed that uses default rules to capture the
lin guist ic k11ow lc<lgc, 011c or 1110rc default theories to repre
sent t he utterance, and a default logic proof procedure to
perform the inferencin g.

1 Introduction

A hearer 's interpretat ion of a uat ural language utterance
should include the inferences that can be generated from
three sources: the sentence uttered, knowledge about the
world, and knowledge abou t language use. One well-studied
inference is the natural languag e presupposition1 .

Being implied by a natu ral language sen tence- and the
natural (or preferred) interpretation of its simple nega
tion is the primary quali ty that qualifies a n inference as
a presupposition. This evaluation of in ferences is called

the negation I. cs /. . l'r csuppositio11s arc generated from lexi
cal and syntactic contexts. T hose contexts which pass the
negation test can be termed presupposilional environments.
Sentences (1)- (5) demonstrate some prototyp ical examples

of presuppositions produced by the fo llowing presupposi
tional env ironments, respectively: noun phrases, posses
sives, fact ive verbs, certain aspectuals, and definitions of

'This research was partially supp orted by NSERC grants A 7642
(to rt. Reiter) and A3039 (to P. C. Gilmore) .

1 I use th.is term here rather than the simpler pre&uppo,ition to
.indicate that its linguistic usage is different than its orthodox philo
sophical use. Presuppositions were originally proposed to .imply the
existence of noun phrase referents and to explain t he lack of a trnth
value for those sentences whose presuppositions were false. In its lin
guistic sense , the term embodies the class of inferences, generated from
a number of li nguistic situa tions , which pass a nega ti on test . Through
out the remainder of this paper I will drop the modifiers and use the
simpler pre,uppo&ition to mean natural language pre,uppo,ition.

14

words. In each of these examples t he truth of the affirma
tive a-sentence always imp lies the truth of the c-sentence,
and the truth of the negative b-sentence normally implies
the truth of the c-sentence.

(1) a. T he present king of Buganda is bald.

b. T he present king of Uuganda is not bald.

c. T here ex ists a present king of Uuganda.

(2) a. Jack's children arc bald .

b . Jack's children arc not bald.

c. Jack has children.

(3) a . Mary is surpri sed that Fred left.

b. Mary is not surprised that Fred left.

c. Fred left.

(1) a. (At time t), John stopped beating the rug.

b. (At time t), John did not stop beating the rug.

C. (Prior to time t), John had been beating the ru g.

(5) a. My cousin is a bachelor.

b . My cousin is not a bachelor.

C . My cousin is a male adu lt .

Presuppositions have the quality that there are linguis
tically natural means for indicating that a simple negation
is not to be interpreted normally. Examples for each of the
sentences (1)- (5) are given in (6). It is important to note
that the method used to indicate that the negation is to be
interpreted in an unnatu ral manner is that one of the nor
mal (presuppositional) inferences is made inconsistent .

(6) a . The present king of Buganda is not bald; Buganda

is a republic .

b. Jack's children are not Laid; he doesn't have any.

c. Mary is not su rprised that Fred left because he
didn't leave.

d. John did not stop beating the rug because he
had n 't started.

e. My cousin is not a bachelor. Ile is only three years
ol<l.

In addition, knowledge about the world can override the
normal interpretation of negative sentences. The follow
ing example provides an inst ance of a normal (presupposi
tional) inference being prevented by information contained
in the non-linguistic context. Suppose that both Bill and
Jim know that Bill's cousin is a three-year old. They want
to go to a bache lor party tonight but Bill must babysit his
cous in . In response to Jim's question, "vVhat are we going
to do with your co usin?", Bill utters (7), in a sense mean
ing that the cousin woul<ln 't be able to go to the party. In
this case Jim woul<l not make the normal (presuppositional)
inference that Bill's cous in was an adu lt because the non
linguistic context, known to both Bill an d Jim, contrad icts
this inference.

(7)]Vly cousin is not a bachelor.

A persistent theme in the attempts by linguists to define
presuppositions, is the projection problem: given the pre
suppositions of a simple sentence, which ones survive the
embedding of this sentence in a more complex sentence.
Verbs like 'dream' prevent the presuppositions of their su b
ordinate clauses being projected as presuppositions of the
main sentence. Sentence (8) docs not presuppose the exis
tence of a King of Buganda even though the subordinate
clause in isolation does. 'Possibly' normally projects all un
derlying presuppositions. (9) normally implies that John
has children. Other constructions, most notably 'or' and 'if
... then', sometimes project the presuppositions from both
clauses, for example (10), and sometimes do not, for exam
ple the presupposition of the consequent is not projected in
(11).

(8) Jack dreamt that the King of Buganda is bald.

(9) It is possible that John's children are at school.

(JO) Mary stopped beating t.hc rug or John stopped beat
ing th e egg.

(11) If John was beating the egg then he has stopped
(beating the egg).

The purported solutions devised by a number of linguists
have a ll been structural in nature: Given a tree-like struc
tural description of the sentence and the presuppositions
of the leaf nodes, which presuppositions get recursively in
herited by the parent nodes. Some of the solutions require
additional (non-structural) filtering. A different approach
to the projection problem is to view presuppositions as in
ferences (in an appropriate logic) that can be derived from
the sentence and the linguistic and non-linguistic context.
T his view places the study of presuppositions in the much
broader context of knowledge representation and reasoning.

15

The remainder of this paper discusses the technical aspects
of a default log ic approach, focussing mainly on the com
plications created by 'or' and 'if ... then'.

2 Representing Natural Language
Negation

Classical representation problems are caused by negation .
The problems occur because the standard method of nega
tion in the representation language (I am assuming first
order logic) does not correspond to the preferred interpre
tation of negation in natural language. These problems are
exemplified in (1 2). T he aITTrmative sentence (12a) is rep

resented in (12b). The sentence (12c) is the negation of
the aITTrmative sentence. Although the negation of (12b) is
given in (12d), the 'usual meaning' of (12c) is more closely
represented by (12e). On the other hand, (12£) cannot be
represented by (12e).

(12) a. T he present king of Buganda is bald.

b. 3x.King-of-Buganda(x) I\
Vy(J(ing-of-Buganda(y) :J x = y) I\ BALD(x)

c. The present king of I3uganda is not bald.

d. -,:Jx .l(ing-of-lluganda(x) I\
Vy(J(ing-of-Buganda(y) :J x = y) I\ BALD(x)

e. 3x.I<ing-of-Buganda(x) I\
Vy(J(ing-of-Bitganda(y) :J x = y) I\ --,flALD(x)

f. T he present king of Buganda is not bald because
there is no king of Buganda.

T here are two approaches to solving the representational
problems caused by negation in natural language. The
orthodox view is to say that negation is (syntactically or
lexically) ambiguous between two or more representations.
What seems to be an insurmountable prob lem for this view
is to provide the means to decide which representation to
use in different situations. The heterodoxy is to say that
negation is vague that is, there exists only one representa
tion which is true under more than one set of truth con
ditions. Proponents of the heterodox view include Kemp
son (1975), Wilson (1975), Atlas (1977), Gazdar (1979),
and Mercer (1987). In this view sentence (1 2c) has the
single representation given by (12d). T he problem for this
view is that while the representation allows for multiple
interpretations, Grice's Princ iple of Cooperative Conversa
tion (Grice (1975)) commits the speaker to using an utter
ance that shou ld all ow the hearer to generate the correct
interpretation, that is, the one corresponding to the inter
pretation for (12e). Choosing the more general (12d) to
represent (12c) immediately prohibits the use of first order
logic to derive the preferred interpretation for the follow
ing reason . (12e) is 1~ot a logical consequence of (12d) in
first order logic and if (12d) were supplemented with a set
of axioms that a llowed the derivation of (1 2e), an undesir
able consequence would be that the presuppositions of (1 2c)

I

• 1

would be valid or they could be derived from the set of ax
ioms (th at is , t hey would be unconnected to the utterance).
The other requirement, that the derived interpretation is
only preferred and that one of the other possib le interpre
tations is to be chosen if tl1ere is suffi cientl y clear indicat ion
to reject the preferred interpretation, also prohibits the use
of firs t order logi cal techni ques to derive the preferred in
terpretation . Since firs t order logi c is monotonic the pre
ferred interpretation would alw ays be derivable. However,
the other interpreta tions are inconsistent with the preferred
interpreta tion .

Since the inference must be conjectural and the rules of
inference must be defeasible, default logic has been used
to cap ture the required inferencing abilities. T his paper
discusses this technique for negated presuppositional envi

ronments.

3 Logical Representation of
Presuppositions Using Default

Rules

I assume throughout this paper that the speaker's utterance
has undergone the firs t phase of the interpreta tion process
which generates a semanti c representation (logical form) of
the sentence uttered. This semanti c representation will be
a well-formed sentence in a first order S4 modal language
containing a countab ly infinite se t of predicate symbols,
constant symbols, and variable symbols, plus the logical
symbols/\, V, ::i , , , Ks, and Ps. The las t two symbols,
called modal operators, are to be interpre ted as ' the speaker
knows that' and 'for all the speaker knows, it is possible
that', respectively. Although there is no general method
known to generate this representation, some general rules
can be fo llowed. Any sentence with an explicit negation is
translated into the widely scoped negation of its affirmative
counterpart . Any compound sentence is mapped clause by

clause into a logical form, each clause being treated as a

sentence.

A normal def aull rule is a rule of inference denoted

a(x) : (J(x)
fJ (x)

where a(x) and /J(x) are all first order formulae whose free
variables are among those of x = x 1 , .. . , Xm. Intuitively,
a default rule can be interpreted as: For a ll individuals
X1, . .. , Xm, if the prerequisite a(x) is be]ieved2 and if /J(x)
is consistent with what is believed, then the consequent
(J(x) may be conjec tured. A normal default th eo ry is a set of
first order formulae together with a set of normal defaults.
A fi xed point of a normal default theory is the deductive
closure of the set comprised of the first order formulae and

2 T he verb beli eve should be taken to mean first order derivable or

conjectw-ed.

16

some maximal set of consequents that are consistent with
the fixed point.

For the purposes of this paper, I wi ll change slightly the
interpre tat ion of the default rule to mean: if the speaker
says 'a(x)' and /J(x) is cons istent with the hearer's knowl
edge base, ! (flu, then the hearer can conj ec ture f3 (x). It
is not absolutely clear what the verb sa ys means or how it
should be represented. For the purp oses of this paper I on ly
require those notions first presented in Grice (1975) under
the title Princip le of Cooperative Conversation and formal
ized in Gazdar (1979). Under Gazdar's interpretation of
Grice's max ims the speaker is committed to the truth of u,

the sentence that he utters. Therefore the speaker knows u.

T he conversational approach th at I t ake views the contri

bution of a speaker's utterance u as the addition of Ksu to
KBu along with other conversational information which is
detailed in section 5. T he meaning of t he utterance is then

a fun ction of the inferencing process on I<B II U { Ksu}.
The default rules requ ire some extra information to guard

against misuse of the default rules. This information is a
conjunct in the prerequisite of the default rule. Except for
this technical aspect this extra information plays no role.
Since it creates long default rules, I have left it out of all
the examples. For furth er details see Mercer (1987) .

In the following sections I wi ll show a method of der iv
ing presuppositions which is based on default logic. This
approach makes use of default rules to represent presup
positions (Mercer and Reiter (1982)) . An example of one
presuppositional environment should point out the salient
features. T he example will be given in some detail in order
to descr ibe the in fere ncin g th a t leads lo the pref erred inter
pretation3 (W ilson (1975)) of the certain aspectual 'stop '.
A presupposition of a preferred interpretation of a simple
sentence can be viewed as the consequent of a default rule
and the preferred interpret a tions of vague linguistic forms
are then inferences made using these ass umptions.

Example - Stop

In this example e represents a n event, and t 1 and t2 are
time parameters meant to represent times relevant to the

event, e. Even though a proper representa tion for continu
ous actions has yet to be obtained, I assume here that the
definition of 'stop' given in (13) is sufficient. Paraphrasing

(13), an event stops if and only if there is a time, t 1 , at
which the event was being done and a later time, t2, at
which the event was not being done. Dy a simple nega
tion of (13) the definition of 'not stop ' given in (1 4) can
be generated . What is important to note here is that this

is the wide scoping of the logical negation operator, which
gives the vague semant ic definiti on of 'not stop' . In addi
tion to the usual definition of 'not stop ' given in (14), the
default rule (15) also supplies part of the meaning of 'not

3 Kempson (1975) uses the term natural interpretation.

{

,STOI'(flEJ\T(John,r1)) }
\/e.,S1'0J>(e) =

T 1 = Vl1Vl2.(l1 < 12 /\ JJO(e, t1)) :J JJO(e , 12)
,STOP(e): :ll .JJO(e , I)

:ll.DO(c, I)

Figure 1: A possible default theory for John did not stop

beating the rng.

stop'. This default rule plays a crucial role in generating
the preferred interpretation of 'not stop'.

(13) STOP(e) = :ll1:ll2.l1 < 12 /\ DO(e, t1) /\ ,DO(e, 12)

(14) ,S"l'Ol'(c) =
Vl1 Vl2.(t1 < 12 /\ DO(c, l1)):) DO(e, 12)1

(l
5

) ,STOP(e): :lt .DO(e, t)
:lt.DO(e, I)

Suppose that a speaker, S, utters (lG). According to
the rul es of the comrnu 11ication act given in section 3,
the hearer can interpret this utterance as (17). The re
sulting default theory, T1, shown in Figure 1 represents
KBu U {Ksu} after it has undergone case analysis (see sec
tion 5). Doth (18) and (19) can be derived from T1 using
the default logic proof theory described in Reiter (1980).
(18) represents the presupposition of (lG). (19) represents
the preferred interpretation, which can be paraphrased as
there is some time at which the event JJEAT(John,1· 1)

was being done a11d it continues to be done at a ll futur e
times .

(16) John did not stop beating the rug .

(17) Ks,STOP(JJEAT(John,r 1)) 5

(18) :ll.DO(flEAT(John, 1· 1), t)

(19) :lt.DO(BEAT(John, 1·1), t) I\

Vl'.I < t':) DO(flEAT(John, 1·1), I')

On the other hand, the speaker can 11 se the 'because'

clause in (20) to indicate the ext ra qualification represented
in (21) which is added to T1, to give T2, which is shown
in Figure 2. Neither (18) nor (19) can be derived from
the theory generated by this utterance , given in T2, Any
derivation of (18) must include a successful invocation of
the default rule (15) . But in the default theory, T2, invo
cation of this rule is blocked by the sentence (21) 6 .

4 This representation is equivalent to the disjunc tive nota tion

-,STOP(e) = Vt1Vt2,..,(t1 < t2) V ..,DO(e, ti) V DO(e, t2)

which I have used in previous discussions.
5 STOP(BEAT(John, r 1)) should be interpreted as a succinct no

tation for the First Order representation:
3e.EVENT(e) I\ Tl'PE(e, BEAT) I\

SUBJ (e, John) I\ OBJ(e,ri) I\ ..,sTOP(e).

6 The 'because '-clause (21) together with the definition (H) can be
used to derive

17

,STOJ'(JJEJ\ T(Jo hn , r1)) /\
\ft.,DO(JJEJ\ T(John, 1·1), t))

\/e.,STOI'(e) =
Vt1Vl2 .(t1 < 12 /\ DO(e, t1)):) DO(e,l2)

,STOP(e): :ll.DO(e, t)

:lt.DO(e, t)

Figure 2: A poss ible default theory for John did not stop

beating th e rug because he was never doing it.

(20) John did not stop beating the rug because he was
never doin g it .

(21) Ks\/t.,DO(JJEA 7'(Jo hn, 1·1), t)

4 The Projection Proble1n

That presuppositions arise from lex ical and syntactic en
vironments is no longer a source of disagreement. How
ever, the projection problem - how does a complex sen
tence inherit the presuppositions of its parts - has been
a major source of disagreement. In particular, the projec
tion class called the filters exhibits a classi c problem: two
sentences , (22) and (23), have the same form (two clauses
joined by 'or ') but have differing presuppositional proper
ties. The first di sjunct 'Mary stopped beatin g the rug' of
the S-sentence in (22) presupposes7 that 'Mary was beat
ing the rug'. Likewise t he second disjunct presupposes that
'John was beating the egg' . T he sentence inherits all the
presuppositions of its constituents.

(22) S: Mary stopped beating the rug or John stopped
beating the egg.

P: Mary was beating the rug and John was beating
the egg .

The first disjunct 'Your teacher is a bachelor' of the S
sentence in (23) pres11pposes that 'Your teacher is male and
an adult'. The second disjunct 'Your teacher is a spinster'
presupposes that 'Your teacher is female and an adult' . It
is obvious that t he sentence does not inherit a ll the presup
positions of its constituents.

(23) S: Your teacher is a bachelor or a spinster.

P: Your teacher is an adult .

..,sTOP(BEA T(J ohn, r 1))

which paraphrases as 'Jolm did not stop b eating the rug.' Although
the ability to derive the m a in clause of the sentence may have signifi
cance, say for an analysis of relevance or causation, I am not interested
in it here .

7 Li the sense a llowed by many lingwsts clauses can have (poten
tial) presuppositions and presuppositional environments can be un
negated as well as negated. Although I a rgue agains t this usage in
Mercer (1987), I use the verb 'presupposes' in the accepted linguistic
sense so that I can explain the projection m ethod.

.. I

." I

I

. i

P*: Your teacher is a male.

P*: Your teacher is a female.

The three st and ard fix es to the projec tion rule have bee n:
a set of rul es that take the presuppositions of the clauses
and remove the undesirable presuppositions as the sen
tence meaning is being composed (Karttunen (1973, 1974),
KartLunen and Peters (1975 ,1979), Soamcs (1979)); a set
of rules, invoked after the sentence has been fully inter
preted, that cancel the unwanted presuppositions from a
complete set of potenti al presuppositions (G azdar (1979));
or a set of rul es that embody both of these methods
(Soames (1982)) . A non-projec tion rule method that in
terprets the sentence in a left-to-right sequential manner,
can be found in (<.:unji (1UR'2)). The des ir ed resnlt in ench
case is to retain all a nd on ly the presuppositions of the

complex sentence.
In Mercer (1987), I reject the projection rule paradigm

and replace it with a theory that views presupposing as a
form of inference . Since this paper is concerned only with
the technical aspec ts of this theory, I refer to Mercer (1987)
for a fuller discuss ion of the reasons for rejecting the pro
ject ion rule paradigm. I now turn to the discussion of what
takes the place of the projec tion rule in a theory which
represents presnppositions as consequents of default rules.

5 Deriving Presuppositions in
Complex Sente nces

The concept discussed herein - using default logic to de
rive presuppositions - is strongly influenced by Gazdar's
theory. Section 3 discusses how default rules in a default
theory together with default logic proof theory captures
Gazdar's idea of presuppositions being consis tent with a
context. Another influence is the use of clausal implicatures
in connection with deriving presuppositions from complex
sentences. In the default logic approach the clausal im
plicatures arc used to control the division of the original
theory into its firs t order cases. In Gazdar 's theory the con
text is first incremented with the clausal implicatures which
in appropriat e situations make the clausal presup positions
inconsistent with the context (which for Gazdar's theory
means that they fail to be presuppositions of the sentence).
A major problem for Gazdar's approach - explaining why
the implicatures are added to the context befor e the pre
suppositions - is not found in the derivational approach .

The clausal implicatures are derived from the natural lan
guage sentence according to Gaz clar's formal treatment of
Grice's conversational principles (Grice (1975)) . The sen
tence uttered by a speaker commits the speaker not on ly to
the truth of the sentence but · a lso to the possibility of its

cl auses (its parts). So in the case of the speaker uttering 'A
or fl' or ' if A then fl', unless there is background knowledge
or there are linguistic reasons to prevent it, the speaker is

18

committed to PsA, Ps-,A, Psll, and Ps-,fl . These impli
catures will provide the means to restrict the division of the
theory rep resenting the utterance into its cases.

5.1 Choosing the Cases for the Case
Analysis

De cause defau lt logic proof theory does not di splay any ana
logue to the law of the excluded middle (the antecedents of
the defaul t rules must be provab le and there is no equivalent
to the deduction theorem8) and because presupposit ions do
arise from the clauses of complex seutences , some form of
analysis by cases is required. Since a st atement is prov
able in a cnse analysis only if it is provable in all cases , the

choice of cases is critical. As in the case of a fir st order
theory, too few cases wou ld a ll ow inappropriate statements
to be proved. In add ition because of the non-monotonic na
ture of default logic, having too many cases could prevent
approp riate statements being proved.

In general the choice of cases must refl ec t two princip les .
Since the case analysis is a proof theoret ic analogue of the
model theoretic law of the excluded middle, each case must
co mpletely determin e the truth values of each of the dis
juncts found in the statement to which case analysis is be
ing applied . Also , since the case analysis is justified solely
on linguistic grounds (sec Merce r (1987) for fu r ther discus
sion), the cases must reflec t t hi s linguisti c situation . To
justify a rnse, t he poss ibilit y of the statement that distin
guishes the case must be provable from the ori ginal default
theory. Since none of the modal statements take part in the
proofa, they are left out of the cases . An example shou ld
clarify these ideas.

Example

Suppose the sentence 'A or fl' is uttered. T he
default theory represe nting this utterance wou ld
be

T = {Ks (A VB), PsA, P.,-,A, P5 B , P.,-,B,
0 1, · · · , Cl'n, 81 , · ··,tin}

where 01, ... , On represent the appropriate first

order st atements and ti1 , ... , tin represent the ap
propriate default rules. Since A f\-,fl and -,A I\ B
co mpletely det ermin e (that is, determine the truth
values of both) A and fl, and since the st atements
Ps(A I\ -,B) and Ps (-,A I\ fl) can be derived,
A I\ -,fl and -,A I\ B distinguish the two cases.
Note that a lthough PsA, Ps-,A, PsB, Ps-,B are

8 Besnard, Quiniou, a11d Quinton (1983) discuss properties of a

t ransformed defa ult theory in wh ich a ll d efaulls of I.he form c, : /3 are
/3

t f d . :c,-:)/3 1'1 rans orm e mto --- . 1e u se of a transformed default theory
C, J /3

rat.her than the case analysis approach h as not b een fully investigated.

a ll derivable , none of A, ,A, B, ,B are candi
dates for disting11is hi11 g a case because, individu
ally, none of them comple tely determin e the truth

values of both A and B.

Hence the two cases o f the original th eory, T, are

Tcoscl = {AA ,B,01, ... , a 11 ,01, ... ,o"}

Tcu•c2 = {,At\ JJ, a 1, ... , an, 01, . .. , on}

T he simp le negated sentence, an example of whi ch is pre

sented in section 3, is just a spec ial inst ance of the case anal
ys is procedure. In th e simple negated sentence , ,X (which

is represented as Ks,X), the possibility of the only case

(disl.ing11is hcd by ,X) can be proved using th e 11tte rance

and th e th eorem I- K8 ,X I- P8 , X.

5.2 A Proof-Theoretic Definition of
Presuppositions

D efinition 1 A sentence c,, is a pres11pposi tion of an ut
t erance u, represented by the default theory 6.,,9, if and
on ly if 6.u 1--c:,. 0 10 and c,, E Th(CONSEQUENTS{D}), but
l'. 11 17' Ct' and l'. 11 17' c:,. • ct 11 .

T his definiti on can be loose ly parnphrased as: if a is in

th e log ical closure of the default consequents a lld is prova ble

from the utterance, and a ll proo fo req uire th e invoca tion of

a default ru le and ill the case of multip le cx tensioll dcfa11 lt

th eories, a is in a ll extensions, then a is a presupposition

of the utte ran ce.

5.3 Exarnple - Or: No cancellation

T he discussion in section 4 indicates that sentence (24) has

the conjunction of a ll th e pres uppositions th at its two dis

juncti ve clauses wo11ld have if uttered in isolation. T he

derivat ion procedure g iven below indicates the default proof

theory approach to de riving presuppositions in complex

sentences .
9 For purposes of thi s definiti on, the only defaults in Au are the

presupp osition genera ting d efau.lt s. In reality the d efault theory would
contain many oth er kinds of d efaults . The d efiniti on would h ave to b e
ch anged so that the proof o f c, , requires the invocation of a presuppo
sition generating d efault, and that a E Th(C ONSEQUENTS {D')),
where D' is the se t of presupp osition genera ting defaults

10 Sin ce a case analysis is being u sed, Au I- D. c, m eans tha t

A u e . .. ; I- D. c, f or all i .
11 All of the examples presented in th.i s pap er deal with default the

ori es h aving single extensions. In those theo ri es whi ch h ave multiple
ex tensions , so1ne way of s tati ng that a presupp os iti on is in all ex
tensions is require d . S ince extensions of nonnal d efault theori es are

orth ogonal, if Au has multiple ex t en sio ns then there ex ists a sentence

f3 such that Au 1-t::,. f3 and Au I-D. ~fJ. I wi ll call this situation b eing
sput a lon g the /J-d imension. If the ex tensions do n ot spljt a long t he
a-din1ens ion then either a is in a ll· cxtcnsio n.'i or a is in no ex tension.
So if Au 1-t::,. c, (which means tha t at leas t 011e ex t ension contains a)

and ~u I/ fl -.a (whic h n1eans that no ex t ens ion contains -,a, which
m eans that the ex tensions do not spljt on the a-dimension) then c, is

iu all ex tensions .

19

Ks [.S'TOP(flEAT(Mary , 1· 1)) v
STOI'(flEAT(John, c1))]

Ve.STOI'(e) ::::>

:l l1:ll 2. l1 < t2 t\ DO(e, 11) t\ ,DO(e, 12)
,STOP(c): :lt.DO(e, t)

31.DO(e, t)
P sSTOI'(JJEA T(Mary, r 1))

P s,STOl'(JJEAT(Mary, r 1))

P sSTOP(JJEAT(John, e1))
P s,STOP(JJ EAT(John , e1))

F igure 3: A poss ible I<DuU{Ksu} for Mary stopped bea ting
th e rug or John slo pJJ ed beating th e egg.

(24) Mary stopped beatin g t he ru g or J ohn stopped beat
ing th e egg .

In the same manner that was descr ibed in section 3 T3,

which is displayed ill F igur e 3, is th e KJJ11 U {l<su} pro
du ced as a resu lt of (2'1) being uttered . T he firs t three s t ate

ments are exactly what is fo und in the theory described in

section 3: the representation of th e se ntence , the firs t or

der definition of STO P, and the default. rule for ,STOP.
In addition to th ese statements th e enhan ced theory now
requires th e next four s tatements whi ch a.re th e cl a usal irn

plicatures derived fr om t he disjunctive sentence. T he two
statements desc ribed in (25) arc der ivab le from T 3 . Case

analys is can be app lied to t.he cases represented in the bod
ies of these two statements .

(25) PsSTOP(JJEAT(Ma 1·y, r 1)) t\
,STOP(JJEAT(John , e1))

P.,,STOP(BEAT(Mary, 1· 1)) I\

STOP(JJEA T(John, e1))

I will now deta il t he derivat ion as it proceeds in th e

two cases. Rath er th an g iving the two comple te theories,

T3Cnsel and T3Cn•c 2 , I wi ll give on ly th e first order state
ment that distinguishes each theory.

T3 : STOJ'(JJEAT(l\Jary, r1)) I\
easel

,STOP(flEAT(John, e1)).
T he conjuncts (2G) and (29) are derivable . Using (2G),

(27), universal ins tallti at ion, modus pon cns, existential

spec ifi cation, deriv a tion of a conjun ct, and existential

generali zation, (28) ca n be derived .

(2G) S TOP(JJEAT(Mary,r1))

(27) \/e .STOP(e) :::>
:ll1 :ll2.l1 < 12 A DO(c, 11) I\ ,DO(e, t2)

(28) :lt.DO(JJEAT(Mary, r1), t)

Usin g (29), th e de fa11lt rule (30) , and default proof

t heory, (31) can be derived.

.I

(29) --.S TO!'(DEAT(John, e1))

(
3

0) --.STOJ'(c): 3/.DO(e, t)
3t.DO(e, t)

(31) 3t .DO(DEAT(John, e1), t)

The conjunction of (28) and (31) gives (32). Note (32)
is deriv able using default proof theory but not using
first order methods alone .

(32) 3t .DO(IJEA'l'(Mary, 1·1), t) A

3t.DO(JJEJ\ T(John, e1), t)

T3Cnsc
2

: --.STOl'(DEA T(Mary, r 1)) A
STOJ,(JJEJ\ T(John, ci)).

The derivation of (33) proceeds in a manner simi
lar to th e derivation of (:12) except that the roles of

DEAT(John, e1) and DEAT(Afory , r1) have been in

terchanged.

(33) 3t.DO(DEAT(Mary, r1), t) A
3t.DO(JJEA T(John, ei) , t)

Because the st atement in (32) a nd (33) is derivable in
both cases , the presupposition generating default is re
quired in its derivation, and it is in the logical closure of
th e default consequ~ nts, it is a presuppos ition of (24) . This
result shou ld be predi cted by any adequate theory of pre
supp ositions.

5.4 Example Or: lntrasentential
cancellation

If the extra real world knowl edge - tha t an egg can be

beaten only by one person - is part of the knowledge base
in which the derivation of th e presupposition is done, then
sentence (34) is an example of intrasententi al cancellation of
clausal presuppositions. 12 In terms of the theory presented

here cancellation of clausa l presuppositions is a failure to
derive the conjunct ion of those inferences which would be

derived if the disjuncts were used se parately (in an appro

pri ate context) .

(34) Mary stopped beating the egg; or John stopped beat-

ing the egg;.

The hearer's knowledge base T 4 1 which is generated as a
result of (34) being uttered, is displayed in Figure 4. The
contents are the meaning postu la tes concerned with the

concept STOP, the st a tement that eggs can be beaten only
by one person, four first order m odal statements (results of

the clausal implicature rule), knowledge about Mary, John,
and the egg , and the one equ ality axiom required in the

following discussion . The two ·statements described in (35)
are derivable from T 4. Case analysis can be app lied to the
cases represented in th e bodies of these two statements .

12 I thank Alan Mackworth for th.is example.

20

(35) PsSTOP(DEAT(Mary, e1)) A
--.STOP(DEA 1'(John, e1))

Ps--oSTOI'(DEAT(Mary, e1)) A

S TO l'(JJEJ\ T(J ohn, c1))

will now detail how the derivation of the conjunc
tion of th e pres uppositions of th e two clauses is prevented.

Rather th an giving the two complete theories, T 4cnsel an<l
T4Casc

2
, I wi ll giv e on ly th e fir s t order statement that dis

tinguishes each theory.

T4Ca•et: STOP(BEAT(Mary, e 1)) A

--.STOI'(DEAT(John, e1)).
The conj uncts (36) and (39) a rc derivable . Using (36),
(37), universal instantiation, modus ponens, existential

spec ifi cation, de rivation of a co11j11nct, and ex istential

ge neralization, (38) ca n be derived.

(36) STOP(DEAT(i\!ai·y, e1))

(37) \/e.STOP(e):)
3 l13l2.t1 < 12 A DO(e, 11) A --.DO(e, t 2)

(38) 3t .DO(DEAT(Mary, e1) , I.)

(41) can be derived on ly by resorting to default proof

theory. Out the default rul e ('10) , its antecedent (39),
and default proof theory, can not deriv e ('11) . Since (38)

is derivable from first order prin ciples, it must be in the

fixed point of T4Cascl . T he default rule (40), with
e instantiated to JJEA T(John, e 1), is blocked because
its just ifi cat ion is not cons istent with this fi xed point.
Intuitively, both Mary and John could not have beaten

the same egg.

(39) --.STOI'(DEAT(Joh11, e1))

(
4

0) --.S"J'OP(e): 3t.DO(e, t)
:lt.DO(e, t)

(41) :lt.DO(JJEAT(Jolin ,e1),t)

T4coae
2

: --.STOP(DEAT(Mary, e 1)) A
STOP(BEAT(John, e1)).

The derivation of (42) proceeds in a manner simi
lar to the derivation of (38) except that the roles of

BEAT(John, e1) and DEAT(Mary, e1) have been in
terchanged.

(42) 3t.DO(JJEAT(John, e1), t)

Since (38) is derivable from T 4c and (41) from
usel

T4c , (43) is derivable in both cases. Since this state-
nse2 .

ment can be deduced from T4 using on ly first order proof
theory, it is an entailment. Except for the minor differ
ence in interp reting (43) as an enta ilment rather than as

a presupposition of the utterance, this analysis coincides

Ks [STO P(flEJ\ T(Mary , e1)) V STOP(BEAT(John , e1))]
Vc.S"J'Ol'(c):) :l!.1:ll.2.l1 < l 2 I\ lJO(c, l1) I\ --. JJO(c, l2)

VxVyVz 1Vz2Vt 1Vl2.EGG(z1) I\ EGG(z2) I\
DO(BEA T(x, z 1), t 1) I\ JJO(JJ EJ\ T(y, z2) ,l2) I\ x f; Y :::) z 1 f; z2

--.STOP (c): :lt.DO(e, t)
:lt.DO(e, t)

P s STOP(flEJ\ T(Mary, e1))
PrSTOP(flEAT(Mary, e1))
P 5 STOP(BEAT(John, e1))

PrSTOP(flEJ\ T(John, e1))
Ma1·y f; John

EGG(e1)
Vx .x = x

Figure 4: A possible KBu U {Ksu } for Mary stopped beating th e eggi or John stopped beating the eggi.

with what is predicled by any rea5onable presuppositional
theory. (Some invest igations call these entailments triv
ial presuppositions (Soames (1982)). W hat is important is
tha t the conjunction of (38) and (12) is not derivab le.

('13) :lt.DO(BEJ\ T(A lary, c 1), t) v
:lt.JJO(DEJ\ T(John, e1), t)

6 Conclusions

The semantic representations of natural language sentences
can be vague (that is, it can be true under a variety of
truth co nditions). Uecause vagueness contravenes Grice's
Principle of Cooperative Conversation this anomaly must
be removed. T he ambiguity caused by vagueness is resolved
according to pragmatic ru les . Uecause the pragmatic rules
are defeasible and conj ectural in nature, they are captured
as default rules. The position is taken that presuppositions
are inferences generated from these pragmatic ru les. Pre
sup positions are then used to generate the preferred inter
pretation of the vague representation. This paper discusses
the technical aspects of using default proof t heory together
with a case analysis to generate presuppositions for various
nat ural language sentences.

References

Atlas , J. D . (1977), "Negation, Ambiguity, and Presuppo
sition" , Linguistics and Philosophy 1:321- 336.

Uesna.rd, Ph., IL Quiniou, and P. Quinton (1983), "A
T heorem-Prover for a. Decidable Subset of Default
Logic", Proceedings of J\;\;\J-83, pp 27- 30.

Carnap , IL (1956), Meaning and Necessity, University
Press.

Gazda.r , G. J.]VI. (1979), Prngmatics: Jm.plicature, Presup
posi tion, and Logical Forin, Academic Press.

Grice, II. P. (1975), "Logic and Conversation" in Syntax
and Semantics, v.3, Speech Acts, P. Cole and J. L.
I1-1organ (eds), Academic Press, pp 11- 58.

21

Gunji, T. (1982), Toward a Comp utationa l Theory of Prag
matics: Discourse, Pr·esupposition, and Jmpli cature,
Indi ana University Linguistics Club .

Kartt unen, L. (1 973), "P resuppos il.ions of Compound Sen
tences", Linguistic Jnq11iry 4:169- 193.

Karttunen, L. (1971) , "Presupposition and Linguistic Con
tex t", Theoretica l Linguistics 1:181- 194.

Karttunen, L. and S . Peters (1975), "Conventional Implica
ture in Montague Gramm ar" , Proceedings of the First
;\ nnual Meeting of the Berke ley Linguistics Societ y, pp
266- 278.

Ka.rtt unen, L. and S. Peters (1979), "Conventional Implica
ture" in Sy ntax and Se mantics, v .11, Presuppositions,
C.-K. Oh and D. A. Dineen (eds) , Academic Press, pp
1- 56.

Kempson, R. M. (1975), Presupposition and th e De limita
tion of Seman tics, Cambridge University Press.

Mercer, R. E. (1987), ;\ Defau lt Logic Apprnach to
th e Derivation of Na turn/ Language Presuppositions,
Ph.D. T hes is, Dept. of Computer Science, University
of Bril.islt Colu111bi a.

l\'lercer, R. E. a nd R . Reiter (1982), "The Representation
of Presuppositions Using Defau lts", Pro ceedings of th e
Fou 1·th Biennial Co nj erence of th e CSCSJ/SCEIO , pp
103- 107.

Reiter, R. (1980), "A Logic for Defau lt Reasoning", Artifi
cial Intelligence 13:81-132.

Soames, S. (1979), "A Projection Problem for Speaker Pre
suppositions" , Linguistic !nqitiry 10:623- 6(36.

Saa.mes, S. (1982), "How Presuppositions a.re Inherited : A
Solution to the Projeclion Problem", Linguistic In
quiry 13:483- 515.'

Wilson, D. (1975), Presuppositions and Non-Trn th
Co nditional Sema ntics, Academic Press.

I

·· ,
!
I
I

. '

·,

An Evidence Oracle for Argument Understanding

Mark A Young
Department of Computer Science

University of Waterloo*
Waterloo, Canada

Abstract

When trying to understand a speaker's argument, it
is necessary to determine what his claim is and what
evidence he provides for it. It is necessary, therefore,
to be able to recognise evidence relations in terms
of the speaker's beliefs. This paper describes an im
plementation of an Evidence Oracle, which tests for
evidence between statements and builds a model of
the speaker based on the evidence relations found.
This implementation constitutes a valuable achieve
ment in the development of practical discourse anal
ysis systems, proposing a basis for verifying certain
relationships between utterances. Another contribu
tion of the work is a stratified speaker model which
allows for varying levels of acceptance of beliefs at
tributed to the speaker. Some extensions of this ap
proach for plan inference are also discussed.

1 Introduction

This paper is a short description of the Evidence Or
acle more fully described in [Young87]. The oracle
takes two propositions, Q and P, and answers the
question "Does the speaker mean P to be evidence
for Q?" In coming to its answer the oracle consid
ers its own model of the world and a model of the
speaker. Based on the answer it derives, it may build
on the speaker model.

1.1 The Argument Understanding
System

The EO is based on the subsystem of the same name
in Cohen's Argument Understanding System (AUS).
The AUS (described in [Cohen83, Cohen87a] and
partially implemented in [Smedley86, Smedley87])
parses a Natural Language argument (monologue)

0 Now at Bell-Northern Research Ltd, Ottawa

22

Robin Cohen
Department of Computer Science

University of Waterloo
Waterloo, Canada

into a tree representation. The root of the tree is
the main claim of the speaker, and the children of
each node are the statements made in evidence for
that node. By identifying and using a limited num
ber of coherent transmission strategies, Cohen was
able to restrict the number of calls to the EO to be
linear in the number of statements in the argument.

Figure 1 shows the flow of control and data in the
A US. The propositions of the argument are passed
one at a time to the Proposition Analyser (PA},
which, based on the restrictions of the transmission
strategy, selects those nodes in the argument repre
sentation which may be related to the current propo
sition. For each of the selected nodes, the question
of evidence is asked of the EO. When an evidence
relation is found, the current node is inserted at the
appropriate position and the A US goes on to the next
proposition. The Clue interpreter finds and analyses
clue words in the argument. These are special words
and phrases used by the speaker to indicate the struc
ture of the argument (e.g. connectives). These clues
may restrict the nodes considered in the search of the
Proposition Analyser, or the types of evidence rela
tions considered for each node pairs (passing the clue
information to the Evidence Oracle).

The transmission strategies the A US accepts are:

1. claim first-each claim followed by the evidence
for it.

2. claim last-each claim preceded by the evidence
for it.

3. hybrid-each sub-argument is either claim first
or claim last.

If the argument is coherent and the analysis is cor
rect then the representation returned will be a tree.
It is expected that this tree will be passed on to some
sort of Response Unit (RU), which will generate a re
ply to the argument. It is the RU which will deal with

n.l.argument · · · · · · · ······ Proposition Analyser..,.········· · · argument rep.

/ ~
Evidence Oracle Clue Interpreter

~ ..
I>

speaker model knowledge base control flow
· · · · · · data flow

Figure 1: System Design

the believability of the overall argument; the EO, in
contrast, is concerned with the believability of the
individual evidence relations in the argument-the
basis for deciding the yes/ no answer for the PA.

2 The Evidence Oracle

2.1 Frames of Evidence

To recognise evidence relations the EO uses frames
with slots for a conclusion and one or more premises.
We say that Eis evidence to C (claim) if E and C fit
some frame of evidence with E as a premise and C as
the conclusion. The frames used appear in tables 1
and 2. Modus Ponens and Modus Tollens represent
the rules of logic. The Generalization is a variation
on Modus Ponens in which the correspondence is not
perfect; that is, it need not be true for all values of its
free variables. It may be viewed as either a default
rule (as in [Reiter80] or [Poole&al86]) or as a rela
tion which is merely probable. The generalized rule
corresponding to A-+ Bis represented by A-i>B.

Refutation and Concession appear in counter
arguments, and serve to deny a rule proposed by
another speaker. The "rule" is contradicted by giv
ing a counter-example-the refutation. Before show
ing the counter-example, though, it is usual to lead
the way with concessions-examples of the "rule" at
work. These concessions are a form of contrastive
evidence, as discussed in [Cohen83].

Table 2 shows frames of partial evidence. These
forms of evidence allow for "giv.ing examples". There
is an implied rule at work here:

If the examples for a generalization out
weigh the examples against, then that gen
eralization is (probably) true.

23

The above rule may not be particularly convincing
(to say nothing of the generalization it is being used
to support), but the usage is common.

The oracle should also be prepared to recognise
incorrect rules of logic, such as "Asserting the Con
sequent", if there is evidence that the speaker is using
them. For now we will restrict our attention to the
above frames.

2.2 Missing Premises

The speaker often does not fill in all slots of the ap
plicable frame. This phenomenon is called Modus
Brevis in [Sadock77]. Thus, while the speaker could
say

Socrates is a man. All men are mortal.
Therefore, Socrates is mortal.

he is more likely to say either

All men are mortal. Therefore, Socrates is
mortal.

or (even worse)

Socrates is a man, and, therefore, mortal.

The listener is expected to fill in the empty slots from
his own knowledge.

It is important that the missing premises could
plausibly be held by the speaker. That the missing
premises contradict shared beliefs or earlier state
ments of the speaker could indicate that the relation
found is not the one intended.

[Cohen83] suggests that we determine whether a
belief is plausible by consulting the following sets of
knowledge:

1. Shared beliefs

.I

Minor Major
Premise Premise Conclusion

Modus Ponens A A--tB B
Modus Tollens -,B A-B -,A
Generalization A A-t>B B
Refutation A ..,B -, (A --t B)
Concession A B -, (A --t B)

Table 1: Frames of Evidence

Minor Premises Conclusion
Positive Example A B A--tB or A-t>B
Contrapositive Example -,B ..,A A--tB or A-t>B
Counterexample A ..,B A-t>B

Table 2: Frames of Partial Evidence

2. The hearer's beliefs

3. A stereotype of the speaker

4. A model of a hypothetical person-a "least de
tailed" speaker model.

To facilitate the implementation, we shall take a
slightly different approach. The oracle will consult:

1. Shared beliefs

2. A model of the speaker, including a stereotype

3. The system's beliefs/ knowledge.

We assume the speaker is reasonably competent at
logic. Therefore, if he says that P is evidence for Q
by virtue of the relation PI\ R --t Q, then he believes
not only that P, Q, and P /\R --t Qare true, but also
that R is true. On this basis, any premises missing
from an accepted evidence relation may be added to
the speaker model.

2.3 Model of the World

The oracle maintains a model of the world to help
it judge the plausibility of missing premises. Part
of that world model is a model of the speaker. The
world model is broken into several modules, depend
ing on who holds the beliefs represented:

facts the beliefs common to the conversants1 .

speaker the speaker's beliefs, broken down into:

explicit those statements made by the speaker,
and thus attributed to himself.

1 These are referred to as shared beliefs. This may be seen
as one-sided mutual belief, as in [Clark&Marshall81].

24

missing beliefs we have attributed to the
speaker on the basis of evidence relations
determined earlier in the argument.

stereotype default beliefs for the speaker. The
system's beliefs will initially serve as a basis
for the speaker stereotype.

hearer the private beliefs (or knowledge) of the sys
tem.

The ordering of modules given above reflects the
order of search for missing beliefs. Roughly speak
ing, the further down the list one must search for a
missing belief, the less plausible it is that the speaker
has that belief. Predicates that do not appear in the
list, however, may also be judged plausible. In par
ticular, if a predicate is not explicitly contradicted
by one of facts, explicit, or missing, then it can be
considered plausible.

2.4 Determining Evidence Relations

To show how frames are used to determine evidence
relations, consider the instantiation of the Modus Po
nens frame given in table 3. The speaker gives the
speech on the left (the statements are numbered for
later reference), which is translated into the predi
cates on the right. (Our implementation of the ev
idence oracle, in Waterloo Unix Prolog (WUP), as
sumes that the input has already been pre-processed
into the predicate notation) 2 • The oracle can then fit
the predicates into the slots for Modus Ponens and
recognise the relation intended.

Assuming a claim last transmission, and that the
statements are made in the urJcr given above, the PA

2 The implementation was tested on a number of examples,
including several much longer than the ones presented in this
paper for illustration.

(1-1) All men are mortal.
(1-2) Socrates is a man.
(1-3) Therefore, Socrates is mortal.

Major Premise
Minor Premise

Conclusion

mortal(X} t- man(X}
man(socrates)
mortal(socrates)

Table 3: An instantiation of the Modus Ponens frame

first asks the EO whether (1-1) is evidence for (1-2) .
The oracle answers no, since there is no frame of evi
dence appropriate for the proposed relation. The PA
defers handling (1-1) for the present. The next ques
tion asked is whether (1-2) is evidence for (1-3) . The
oracle discovers that (1-2) and (1-3) fit the Modus Po
nens frame with (1-1) as the missing premise. Since
(1-1) appears in explicit (it was put there on the first
call to the oracle), it is deemed a plausible belief and
the relation is accepted. The PA then completes pro
cessing the argument by asking whether (1-1) is ev
idence for (1-3). This succeeds in the same manner
as (1-2) for (1-3) did, with the same result. The ar
gument has been successfully parsed into the tree:

(1-3)

I \
(1-1) (1-2)

To illustrate adding missing premises to the
speaker model, consider the following. Assume
the speaker and system have a common belief
that all greek men are mortal (represented by
mortal(X}t-greek(X}/\man(X)). The speaker says
"Socrates is greek, and therefore mortal." The or
acle can recognise greek(socrates} as evidence for
mortal(socrates) with two missing pieces: the rule
about the mortality of greek men, and a belief that
socrates is a man. As long as the speaker's beliefs do
not indicate that Socrates is not a man we can accept
that belief as plausible. The predicate man(socrates)
would then be added to module missing.

2.5 Multiple Evidence Relations

Sometimes more than one frame of evidence may be
appropriate for a given pair of predicates. Consider
the following argument

(2-1) Socrates is Greek,
(2-2) and, so, mortal.

with shared beliefs

greek(socrates)
mortal(socrates)

mortal(X) t- greek(X} /\ man(X}

mortal(X} t- greek(X} /\ woman(X)

25

There are two frames of Modus Ponens that allow
(2-1) as evidence for (2-2). One has Socrates as a
man, the other as a woman3

Hone of these beliefs is plausible and the other not,
then there would be no problem to choose between
them. When both are plausible, however, we must
make a decision. The simplest solution is to take
whichever is more convenient-the first one gener
ated, for example. Another solution is to refrain from
choosing-simply report a relation without updating
missing. The former solution could lead to many
errors, while the latter results in lost information.
Keeping disjunctive knowledge in missing is another
possibility, but would require a more complex man
agement of the missing module. We prefer to make
take some decision on the intended interpretation, in
accordance with the general strategy of the A US to
incrementally reconstruct the representation for the
input.

2.6 Belief Levels

Our solution is as follows: when faced with multi
ple evidence relations the oracle will select the most
plausible. A predicate is not plausible if its nega
tion appears in any of facts, explicit, or missing. The
beliefs considered plausible (in order of decreasing
plausibility) are

1. beliefs the speaker has attributed to himself

2. beliefs the oracle has attributed to the speaker

3. belief typical to the speaker's stereotype

4. beliefs not contradicted explicitly by 1 or 2.

Table 4 gives numerical values to the various ac
ceptable combinations. Conjunctions receive the
value of the least plausible conjunct. (Note that 0
indicates the most plausible, and 11 the least. Only
predicates without a value on the above table are
implausible.)

3 Actually, this is a case where there are two possible major
premises for the same frame of evidence. There are examples
as well where two different frames may apply - e.g. Concession
or Refutation. See [Young87J for more details.

·I

I

·I

i

I

I

Truth value in Truth value in stereotype
e;r;plicit/missing True Unknown False
True/ True 0 1 2
True/ Unknown 3 4 5
Unknown/ True 6 7 8
Unknown/ Unknown 9 10 11

Table 4: Relative Plausibility

A predicate is true in a module if it appears in that
module, false if its negation appears there, and un
known otherwise. Based on the truth values found,
the oracle assigns a numerical value representing
plausibility. This internal representation allows com
parisons to be made more easily.

If the system is aware that Socrates was a man
and is using its own beliefs as a stereotype of the
speaker, then it will judge it more plausible that the
speaker also believes Socrates to be a man than that
he believes him to be a woman (see figure 2).

2.7 Inconsistent Beliefs

As was said earlier, predicates which are explicitly
contradicted by the speaker's beliefs are rejected as
implausible. The restriction to e;r;plicit contradiction,
as opposed to provable falseness, is motivated by re
cent work in modelling belief. Human beings are im
perfect reasoning agents (some reasons for which are
given in [Fagin&Halpern85]) , and thus may be un
aware of implicit contra.dictions in their arguments.
[Levesque84] allows that a. speaker may be aware that
A implies C and that B implies -.C and still believe
both A and B. A modification of [Levesque84] by
[Fagin&Halpern85] restricts an agent from believing
both C and -.C explicitly4 (though [Levesque84] al
lowed this).

2.8 Missing Major Premise

When one of the missing premises of an argument
is the major premise, the judgement of plausibility
is carried out somewhat differently than is described
above. Clearly, any two premises can fit the Modus
Ponens frame with an appropriate missing major
premise. For this reason, no such major premise is
generated unless it appears somewhere in the sys
tem's knowledge of the world.

On the other hand, we must allow that it is possible
that the intended rule is one that the system has
not previously encountered, yet which is still valid.

4Actually, explicit contradiction is allowed , but only be
tween differing states of mind. See the article for more
information.

26

Therefore, if no other frame of evidence is found to
fit the given predicates, the oracle will generate a
Generalization major premise and test that premise
for plausibility.

The tests carried out to judge the plausibility of
a self-generated major premise are based on philo
sophical definitions of evidence, particularly those of
[Nathan80]. [Nathan80] provides four rules to test
whether one proposition is evidence for another. The
first version of the EO using a less sophisticated ver
sion of these tests, will merely make a count of ex
amples and counterexamples to the proposed gener
alization.

For example , if the oracle is asked whether
shark(joey) is evidence for dangerous(joey) , and it
finds no other frames of evidence appropriate, it
will test shark(X) -i>dangerous(X) for plausibility. If
it finds more dangerous sharks than non-dangerous
ones, and it finds more non-dangerous non-sharks
than non-dangerous sharks, it will judge the relation
plausible. If either of the tests fails then the relation
is rejected. In this way the oracle may generate new
rules based on its observations.

3 Related Work

3.1 Plan Inference

The general problem of plan inference has been ad
dressed recently by several researchers, including
[Kautz87, Pollack86, Carberry87]. [Pollack86] states
that it would be useful to have a model of plan in
ference that distinguishes the beliefs of the planner
from those of the observer. The reason for this dis
tinction is to allow the observer to recognise incorrect
plans and generate appropriate responses. The EO
makes such a distinction in the context of argument
understanding, and can be applied to plan inference
as well.

By identifying claim with plan,· and evidence with
subplan, the oracle can detect when one stated goal
of the user is a subgoal of another. With the dis
tinction between ezplicit and missing in the speaker
model, the oracle can help isolate the cause of the

hearer's beliefs:
shared beliefs:

man(socrates)
mortal(X} +- greek(X} /\ man(X)
mortal(X} +- greek(X} /\ woman(X}

considering greek(socrates) for mortal(socrates)

greek(socrates) is evidence for mortal(socrates)
with [man(socrates)] missing.
man(socrates) has belief level 9

The conjunction has belief level 9

greek(socrates) is evidence for mortal(socrates)
with [woman(socrates)] missing.
woman(socrates) has belief level 10

The conjunction has belief level 10

success greek(socrates) for mortal(socrates)
missing [man(socrates)]

Figure 2: Sample Session: Multiple Relations

user's error, especially when more than one explana
tion of the error exists. The oracle can also detect
plans from questions regarding the conditions on a
plan ([Young87, p 50]).

To elaborate on the potential use of the strat
ified speaker model of the Evidence Oracle for
plan inference, consider the following example, from
[Pollack86]:

I want to prevent Tom from reading my
mail file. How can I set the permissions on
it to faculty read only?

with the translation into predicates as follows:

(l)prevent (mmfile read tom}

(2)set-permission (mmfile read faculty)

and a starting set of rules in the system of the fol
lowing form:

prevent (F P U) +

set-permissions (F P G)

lnot (member (U G}}

lnot(system-mgr (U))

set-permissions (F P G } +

valid-permission (P G}

type ("SET PROTECTION (G : P} F"}

Using its own beliefs as a basis for the stereotype
of the user, the system infers that she intends to do

27

(1) by doing (2). Missing beliefs that Tom is not a
member of the faculty and that he is not the sys
tem manager may be filled in. If one of these beliefs
is wrong (in the system's view), then the plan is,
in Pollack's terminology, ill-formed. The Response
Unit could provide a reply by using the general rules
above. Now, the division of beliefs into explicit, miss
ing and stereotype may provide some more informa
tion. If the rule itself is in missing, then the source
of the confusion may be an incorrect understanding
of the conditions on the plan. If, however, all miss
ing beliefs are also believed true by the system, then
the plan may still be incorrect - e.g. valid-permission
(faculty read) could be false, and the plan thus un
executable. The Response Unit could provide a dif
ferent kind of response, in this case.

[Carberry87] considers assumptions made by plan
recognition systems that she feels ought not to be
made. One of these is that the user does not have

· incorrect beliefs about the domain. The oracle does
not make this assumption. Another is that the user's
statements are correct and not misleading. This is
related to the previous assumption, in that the EO
allows for incorrect statements. If the user's state
ments lead to contradictions in the plan, the oracle
will detect these. Otherwise the Response Unit must
deal with whether the speaker's unsupported word
should be accepted.

The oracle makes an attempt to deal with another
assumption, that the user's queries always address
aspects of the task within the system's knowledge of
the domain. The oracle will try to recognise novel

.1

. ;
I

i
I . '

I

methods, and to follow new premises laid out by the
speaker. The oracle, however, does appeal to its own
knowledge to judge plausibility. In this respect, it
works best in limited domains where the relevant
rules are likely to be already stored.

The final assumption is that no errors are intro
duced into the speaker model. The oracle cannot pre
vent incorrect inferences from being made, no more
than people can; however, it does try to keep the
speaker consistent, and keeps what the speaker said
separate from what it infers he believes. It also saves
its work, to make it easier to go back and fix the
model when an error is detected.

3.2 Argument Understanding

This work on the evidence oracle can be merged with
existing implementations of the A US ([Smedley86,
Smedley87]), providing a prototype working version
of the overall model of [Cohen83].

In [Smedley86], the basic proposition analyser is
implemented. The evidence oracle is replaced by an
"ask-the-user" facility. [Smedley87] augments this
basic analysis algorithm to include the acceptance
of connective clues, to help restrict the processing
and detect incoherent arguments (according to the
algorithm of [Cohen87b]).

The current, stand-alone implementation of the or
acle has some extra features. Some-such as a parser
for an entire claim-first argument-are to facilitate
demonstrations. Others-such as the ability to back
track through incorrect decisions-were design deci
sions to simplify the work. These features can be
bypassed and the oracle assimilated directly into the
implementations of [Smedley86, Smedley87], replac
ing appeals to the user. (See [Young87] for the de
tails}. This integrated code will be thoroughly tested
in an upcoming research project.

4 Conclusion

In this paper we have described an implementation of
a module for deciding a question of evidence in the
context of argument understanding. In particular,
the module answers the question "Does the speaker
intend his statement P to be evidence for his state
ment Q?"

To decide the question, the oracle uses frames
prototypes of evidence relations. Each relation found
must match one of these frames. If more than one
relation is found, then considerations of user and sys
tem beliefs, with a ranking provided by "belief lev
els", provide an indication of the most likely intention
of the speaker.

28

The implemented oracle thus makes possible a full
implementation of an argument understanding sys
tem based on the model of [Cohen83], critical to the
advancement of practical processing models of dis
course.

As it answers the questions posed to it, the oracle
takes note of what beliefs are required to support the
relations found, and ensures that these are plausible.
If the relation is accepted, this "keyhole recognition"
is used to expand the speaker model. The system
does not, however, give as much weight to these in
ferred beliefs as to explicit statements by the speaker.
Moreover, for the stand-alone version of the oracle,
if some contradiction is found in the speaker's argu
ment, the oracle has the ability to revise the inferred
beliefs to restore consistency.

The oracle might also be useful in recognising
plans, particularly those that are only hinted at by
the speaker. The two problems are similar in that
some hierarchy applies, and that not all relevant
components are mentioned. Therefore, the general
proposals for belief recognition and updating of the
speaker model have useful extensions for other natu
ral language understanding tasks.

Acknowledgements

Many thanks to Peter van Beek and David Poole for
their comments on earlier versions of this paper, and
to John Sellens for his technical assistance in pro
ducing the final copy. This research was partially
supported by NSERC (Natural Sciences and Engi
neering Research Council of Canada) .

References

[Carberry87] Sandra Carberry, "Plan Recognition in
User Modelling," to appear in Computational
Linguistics, 1987.

[Clark&Marshall81] H H Clark and C R Marshall,
"Definite reference and mutual knowledge," in
A Joshi, B Webber and I Sag (eds} Elements
of Discourse Understanding, Cambridge Uni
versity Press, 1981.

[Cohen83] Robin Cohen, "A Computational Model
for the Analysis of Arguments," University of
Toronto Technical Report' CSRG-151, Octo
ber, 1983.

[Cohen87a] Robin Cohen, "Analyzing the Structure
of Argumentative Discourse," Computational

Linguistics, Volume 13, Nos. 1-2, January
June 1987, pp 11-24.

[Cohen87b] Robin Cohen, "Interpreting Clues in
Conjunction with Processing Restrictions,"
Proceedings of AAAI-87, 1987, pp 528-533.

[Fagin&Halpern85] Ronald Fagin and Joseph Y
Halpern, "Belief, Awareness, and Limited
Reasoning: Preliminary Report," Proceedings
of JJCAI-85, 1985, pp 491-501.

[Kautz87] Henry Kautz, "A Formal Theory of Plan
Recognition", Department of Computer Sci
ence, University of Rochester Technical Re
port TR 215, May, 1987.

[Levesque84] Hector J Levesque, "A Logic of Implicit
and Explicit Belief," Fairchild Technical Re
port No. 653 , and FLAIR Technical Report
No. 32, August, 1984.

[Nathan80] NM L Nathan, Evidence and Assurance,
Cambridge University Press, 1980.

[Pollack86] Martha Pollack, "A Model of Plan Infer
ence that Distinguishes between the Beliefs of
Actors and Observers," Proceedings of A CL-
86, New York, NY, 1986.

[Poole&al86] David Poole, Randy Goebel and Ro
mas Aleliunas, "Theorist: A logical reasoning
system for defaults and diagnosis," Univer
sity of Waterloo Research Report CS-86-06,
February, 1986.

[Reiter80] R Reiter, "A logic for default reasoning,"
Artificial Intelligence 13 {1&2}, 1980, pp. 81-
132.

[Sadock77] J Sadock, "Modus Brevis: The Trun
cated Argument," in Papers from the 13th
Regional Meeting, Chicago Linguistic Society,
1977.

[Smedley86] Trevor J Smedley, "An Implementation
of a Computational Model for the Analysis of
Arguments," University of Waterloo Research
Report CS-86-26, July, 1986.

[Smedley87] Trevor J Smedley, "Integrating Connec
tive Clue Processing into the Argument Anal
ysis Algorithm Implementation," University
of Waterloo Research Report CS-87-34, 1987.

[Young87] Mark A Young, "The Design and Imple
mentation of an Evidence Oracle for the Un
derstanding of Arguments," University of Wa
terloo Research Report CS-87-33, June, 1987.

29

System X: A Portable Natural Language Interface

Paul McFetrldge, Gary Hall, Nick Cercone, and W.S. Luk
Laboratory for Computer and Communications Research

School of Computing Science
Simon Fraser University

Burnaby, British Columbia, CANADA V5A 186

Abstract
System .x is a natural language interface which currently

translates English into the de facto standard re lat ional database
language SOL. The system consists of a set of independent
modules, a Lexicon, a Parser, and a Semantic Interpreter, which
create a canonical query representation. This canonical form
represents the join path implicit in the query. A second set of
modu les translate the canonical form into a logical form. This logical
form is current ly translated into SOL. Subsequent versions will
translate the log ical form into different database languages. We
describe the operation of the system and include discussion of the
major advantages of System X with respect to current natural
language interfaces to databases. These advantages include the
degree of portability of System X, the (heurist ic} solution to the
multiple access path problem (MAPP} and learn the meanings of
new words.

1. Introduction

Natural Language Understanding systems (NLUs} require world
know ledge in order to understand input questions. Natural
language database interface systems (Nlls} store world knowledge
in a number of ways. All systems have semantic information stored
in a lexicon. Some systems have domain spec ific semantic
information encoded in rules for transforming queries from one
internal (logical} form into another. An example of such a system is
TOA, see (Johnson 1984). Some current systems mainta in a
knowledge structure separate from the database which is used to
interpret queries. For example, TEAM (Mart in et al. , 1985)
embodies a conceptual schema of general world knowledge and
integrates into this structure knowledge specific to the application
domain when customizing the system to a given database. A simi lar
approach is taken by Datalog, see (Hafner and Godden 1985),
which employs a semantic network of general concepts augmented
by a set of database concept nodes to create a knowledge base.1

A significant obstacle in constructing NLI systems of any uti lity
is the acqu isition of th is knowledge. Each application represents a
certain domain. A NLI system must acquire knowledge of this
domain and of the natual language (NL} expressions which refer to
the entities and relationships it contains. The ease with which an
NLI system acquires this knowledge is a measure of its portability.

There are two main approaches which make NLI systems
portable between applications. The first approach is to modularize
the system so that those modules containing domain specific
informat ion can be exchanged. This approach is emphasized by
Datalog. Experts analyze the new domain and create the necessary
modules. The second major approach is to provide interface
software for a database administrator (OBA} or skilled user to

For a more complete account of natural language interfaces,
especially earlier systems, see Cercone and Mccalla (1986) . In that
paper they discuss a number of additional natural language
database systems including, for example, the systems of (Codd
1974, 1979), (Hendrix et al. 1978), (Kaplan 1984), (McCoy 1982),
(Waltz 1978) and (Webber and Finin 1984).

30

provide the requ ired domain specific information without undue
difficulty. This is the approach taken by TEAM. In either case these
systems require significant non-trivial human intervention resulting
in loss of portability.

System X, a NLI to relational databases under development at
Simon Fraser University has addressed portabi lity in several ways
Each major step in the translat ion from English to SOL is contained
in a separate modu le. Each module is itself separated into
submodu les which contain domain independent or domain
dependent knowledge, the latter be ing replaced for new
applications. Although interface software is necessary to acquire
knowledge, the philosophy of System X is that the amount of
knowledge which humans must provide can be minimized by
maximizing the amount of know ledge wh ich the system can
discover for itse lf by analyzing the database and by using
information available from input queries.

The understanding of NL expressions referring to re lationships
among entit ies often requires extensive world knowledge. Such
re lationships among entit ies in the world are often represented in a
re lat ional database by virtual relations which must be derived by
performing a sequence of "joins" on two or more of the base
re lations stored in the database. A NLI must be able to translate
these NL expressions the corresponding sequences, or join paths.
Current systems deal with this problem in one or both of two ways.
Some systems, including TOA and Datalog, assume that the
database is simple and on ly a few unambiguous relat ionships are
represented in it. This assumption is highly unrealistic because
databases which represent complex domains must represent many
different relationships among many different sets of entities . Often
there are different relationships among the same set of entities
which must be represented. A second approach demands that a
database expert provide the join path corresponding to every NL
expression that refers to such a relationship and that can be
expected to be encountered in a query. TEAM and TOA require
that this daunting task be part of the customization process.
System X contains Pathfinder, which uses a model of the
application domain to automatically generate the vast majority of
these jo in paths as they are requ ired during semantic
interpretation. The model is derived by System X directly from the
database scheme with minimal assistance from someone fami liar
with the database.

Automatically disambiguating queries in languages which
permit ambiguity with respect to the operations required to access
desired data is known as the query inference problem. A
subproblem of the query inference problem, known as the Multiple
Access Path Problem (MAPP}, is to decide which of the number of
join paths that derive relations containing the attributes mentioned
in an ambiguous query is the correct path. SystemlU, (U llman
1982), and Verdi, (Wald and Sorenson, 1984) are two systems
which have been built which solve the query inference problem for
an ambiguous tuple calculus. The approach used by Pathfinder is
similar to these two approaches but Pathfinder has several
advantages. Unlike System/U, Pathfinder tries to distingu ish the
most likely path from a set of probable paths. Verdi also
distinguishes most likely paths but uses a representation of the
database scheme, known as an Entity-Relationship data model,

which requires greater effort to create than does the representation
used by Pathfinder.

2. System X: overall system design

System X consists, in part, of a set of modules which create a
canonical query representation. This query representation is
passed to a second set of modules which translate it into a (logical)
form similar to that of TOA, (Petrick, 1984), and thence into SOL.
The canonical form represents the join path implicit in the query,
any predicates - such as "greaterthan" - which are to be applied
against database values, and any operat ions - such as "average" -
which are performed on values from the database, as well as
quantifiers and their scope.

Modules which construct the canonical query representat ion
include a Lexicon, a Parser and a Semantic Interpreter. Figure 1. is
a simplified represe ntat ion of the overall system. Each module is
independent of the other modules, providing that replacements
accept input and provide output of the appropriate sort.

The Lexicon cons ists of two dictionaries: sy ntact ic and
semantic . It is designed so that the addition of novel words is largely
automatic and does not requ ire human intervention. Serving as a
front end to the syntactic dictionary is a morphological analyze r
Morphos. The analyze r consists of two sets of rules : a set of
morphological rules which define the set of inflectional endings and
permit inferences about the grammatical category of strings, and a
set of respelli ng ru les which describe how strings are to be
transformed after inflectional endings have been removed. This
front end substantially reduces the amount of storage required for
the syntactic dictionary since only the root form of a word need be
stored.

Since the analyser does not require a root dictionary to check
against, it is used to generate new lexical entries, querying the user
when an inflectional ending is used by more than one grammatical
category and automatically updat ing the lexicon when a new word is
unambiguously analyzed.

The semantic dictionary is divided into two parts: a domain
independent lexicon of predicates, operations, quantifiers, etc .
which are transported from applicat ion to applicat ion, and an
applicat ion dependent lexicon. The latter is largely generated
automatically from the database schema. Hand customizat ion is
limited to a synonym dictionary.

Further reducing storage requirements is a preprocessor which
examines queries for strings whose lex ical representation - both
syntactic and semantic - can be defined by their form alone. These
include proper names, standard code names and numbers, etc.
These strings are not represented in the lexicon, but are defined
automatically when encountered in the input stream.

System X's Parser is a top-down breadth-first parser. Grammar
rules are translated into LISP code which may be compiled. The
compiled grammar is applied to the input query by an interpreter to
produce a set of parse trees

It is possible for a grammar rule to invoke the semantic
interpreter to choose among compet ing parses. This flexibility
enables the parser to reject syntactically possible but semantically
anomalous trees at the source of the anomaly , instead of
maintaining competing parses and rejecting anomalous trees after
parsing is completed. Rules of grammar may be ass igned a rank
re lative to others which parse the same node, so that the order in
which they are applied to a string is controlled . This ordering
ensures that rules most likely to succeed are attempted first.

Associated with each rule of grammar is a set of semantic
interpretation rules. When the semantic interpreter is presented
with a parse tree, it retrieves from the tree the name of the grammar
rule which produced the tree. This name provides access to the
appropriate set of translation rules.

31

Natural Language Preprocessor ,._ ___ _, S~nhctic
Lexicon

initial strings

parse trees

Semantic Interpreter

canonical forms

Canonical Form
to SQL Translator

"\...---.
(Pathfinder) ---

SQL forms

response Database _= Files =_]
Management S~stem

Figure 1. A simplified graphical representation of System X.

Semantic interpretat ion rules are divided into domain
dependent and domain independent rules. The former are applied
first to a parse tree to interpret any express ions peculiar to the
applicat ion. They serve as filters to the latter which describe how
any particu lar parse tree shou ld be interpreted.

Underlying the semant ic interpreter is the Pathfinder
subsystem for generating join paths given a set of two or more
column names. Since terms are treated as values in the database,
the semantic representation of an expression of two or more terms
or expressions is the join path between them. The task of the
semantic interpreter is to pass the column names represented by
the terms in an expression to this system and build up a
representation using the join path which it returns. Treating
semantic interpretation in this way results in a very flexible system
which requires little customizat ion.

The modules that translate the canonical form to logical form
and thence to SOL, successfully convert canonical forms
containing any combinat ion of universal quantifiers, ex istential
quantifiers and negation operators into complex SOL express ions
that experienced SOL programmers would have great difficulty in
composing. Routines in the translator perform some optimizations
on the access path specified by the canonical form in order that the
data may be more efficient ly retrieved.

All the examples in the remainder of the paper are taken from
an academic domain which is represented by the database scheme
in Table 1.

Relation Attributes
STUDENT ~ name major minor sex status
FACULTY l.ill;,uJWt name office sex status
DEPARTMENT ~ chairman faculty
COURSE Qllil.!lli;l, description dept
OFFERING QflfilJt cname semester units
CLASS ~ offer# sec faculty# text
ENROLL ~ fil.U.d.e.D11t final -grade
SCHEDULE ~umaroom
APPOINT ~#~

Table 1 The Academic Database 2

2 Attributes in the key are underlined.

i
, I

3. From English to parse trees

3.1 The Lexicon, Template and Morphos
Each of the Lexicon's two dictionaries, syntact ic and

semantic, is also divided into domain dependent and domain
independent subfiles. System X does not use an a priori set of
knowledge structures onto which the database structure must be
mapped. Instead, the database structure serves as the basis of the
semantics. The semantic representation of a term is its role in the
database.Thus nouns and adject ives are defined as values in the
database; verbs, when possible, are associated with relations. For
example, the semantic representations of the const ituents of math
course are an adjective which is a value of either the major or the
dept co lumn and a noun which represents possible values of the
cname column. The consequence of this is that large portions of
the domain dependent semantic lex icon can be created without
human interact ion. Actual handcoding of the semantic lexicon is
necessary for synonyms and some verbs. For example, verbs such
as pass and fail refer to re lationships among ent ities which cannot
be discerned by analysis of the structure of the database

A major problem with any interface is lexicon size. In principle,
the interface must be able to recognize the contents of the
database; as a consequence, the lexicon may be at least as large as
the database. Note that the proper names and identity numbers in
the university database number in the tens of thousands. The
lexicon is accessed through a pair of subsystems which function in
part to reduce lexicon size. These subsystems are TEMPLATE and
MORPHOS. The former provides a means to define terms which
can be recognized by their physical shape. Such words include
proper names, part numbers and report identity numbers.
TEMPLATE provides a simple mechanism for describing the shape
of these and associat ing this description with a means for creating
the appropriate grammatica l and semantic representations .
TEMPLATE compiles the description into LISP as a pattern
matcher which when successful creates grammatical and semantic
representations for the input form.

.TEMPLATE provides the flex ibility an NLI system must have to
easily handle the many small but difficult problems which particular
applications present (Hafner and Godden, 1985). For example, the
use of numbers to refer to hardware or university semesters cannot
be handled by listing each number in the lexicon. However, since
such expressions conform to a recognizable form, they may be
assigned a (possibly ambiguous) definition by TEMPLATE.

MORPHOS is a ru le-based morphological analyser which first
scans ~ word for recognizable inflectional suffixes before searching
the lex icon . Each morphological ru le defines a possible suffix and
states what grammatical information can be inferred from the
presence of the suffix. After a suffix is removed , the remaining stem
has a set of spelling rules applied and generates the correct
spe lling of the uninflected form. For example, after the inflect ional
suffix is removed from cities the resulting citie is respelled as city.
Since MORPHOS generates lexical entries for regularly inflected
forms and correct ly generates the uninflected form, regularly
inflected words need not be entered in the grammatical lexicon. In
addition to thereby reducing lex icon size, MORPHOS is able to
assist in generating the grammatical lexicon. If no lexicon is available
or if the uninflected form of a word cannot be found in the lex icon
then if the analysis of MORPHOS is unambiguous, lexical entrie~
for the input word and its uninflected form are generated.

3.2 Syntactic Analysis
When an input query is presented for syntactic analysis, the

preporcessor first replaces each word in a query with its grammatical
representat ion . The output of the preprocessor, an
undifferentiated list of grammatical representations, is passed to
the parsing system. The pars ing system consists of three
subsystems; a set of grammar rules, a compiler which translates
these rules into LISP code and an interpreter which applies these
rules to the input. The grammar is under cont inual revision;
currently, it is well developed in most query types and in expansion
of noun phrases and comparatives. It is unable to handle any but

32

the uninteresting cases of conjunct ion and, though it can
successfully parse sentence fragments, it cannot handle ellipsis as
yet.

The grammar and interpreter are domain independent and may
be easi ly transported to new applicat ions. The only customization
necessary in principle is the creat ion of a syntactic lex icon.
However, if users of an application use idiosyncratic locutions to
refer to entities in the domain, new rules are easily added.

The parser is permitted limited interaction with the semantic
component. Among the act ions which a grammar rule may take
upon successfully parsing a node is to pass the resulting parse to
the semantic interpreter. If the semantic interpreter cannot assign a
meaning representation to the parse, it is rejected . If the interpreter
returns a meaning representation, it is stored in the register
TRANSLATION in the parse tree. The only information from the
semantic interpreter which the parser uses is the fact that an
interpretation is possible, it does not use the semantic structures in
subsequent parsing as does a semantic grammar. Interaction of the
syntactic and semantic components is used to resolve syntact ically
ambiguous structures. Since the parser operates breadth-first
without backtracking, it must carry all possible parses throughout
the parsing process and let the semantic interpreter se lect the
appropriate parse. By provid ing a mechanism for interaction
between the syntactic and semant ic components, many
syntact ically ambiguous structures can be resolved at the source of
the ambiguity and, thus, the number of possible parses is reduced.

4. Semantic Interpretation

The resulting parse tree from a query, which may have meaning
representations attached to some of its subtrees, is passed to the
semantic component. The organization of the semantic component
mirrors that of its syntact ic counterpart. It consists of a set of
semantic rules, a compi ler which translates these into LISP code
and an interpreter which applies the rules to a parse tree. A
semantic rule is associated with at least one syntact ic rule and is
designed to translate the parse tree which that syntact ic rule
creates. The rule -based implementation of the semant ic
component has important consequences for portability. Hafner and
Godden(1985, p159) discuss examples of phrases which are within
the range of Datalog's grammar and are paraphrases of queries
which Datalog can understand but which it can not process. Their
solution requires creating new semantic nodes and procedures for
interpreting these phrases. The solution to this problem in System
X requires no new nodes or procedures . Instead the semantic
component is extended by add ing new semantic rules. The
addition of new rules is part of the general process of extending the
linguistic coverage of the system.

Whereas many interfaces produce a single logica l form,
System X is designed to produce several representat ions each
designed for a particular purpose; for examp le, query
representation, representation of presuppositions, pronoun
reso lution, etc. At the moment, on ly the first representat ion has
been implemented. The query representation language was
inspired by TOA although it has it now bears little resemblance to
its precursor.

When a parse tree is passed to the semantic interpreter, the
meaning representations of each of its const itu ent nodes is
retrieved. For each node, if it is a terminal node, its meaning
representat ion is retrieved from the semantic lex icon; if it is
nonterminal, the interpreter recursive ly descends the parse tree.
For example, the parse tree assigned to the query Has every math
major taken math344? is depicted in Figure 2. When this is
presented to the semantic interpreter, the interprete r begins a left
to right recursive descent down the tree. During the interpretation
of the subject noun phrase, the interpreter arrives at the N" node.
After it has retrieved the meaning representations of the
const ituents of this, it applies to them the set of semantic rules
assoc iated with the grammar rule which create the parse, in this
case 1 N". The re levant ru les are those concerned with attaching an

adjective to a noun. Adject ive attachment depends on the
semantic content of the adjective; the semantic structure assigned
to math major wi ll differ from that assigned to average grade, which
requires the operation AVERAGE.

Each semantic rule is a pattern matcher which specifies both
the structure and the semantic content of the const ituents. Most
ru les wh ich create semantic structures pass the nodes in the
appropriate order to the fu nction CREATE-TREE. This function
examines its arguments to determine what type of semantic
structure to create. If no verb was passed as an argument, it creates
a semantic structure which represents a database object. If a verb is
passed, an S node is created with it as its verb. The phrase math
major is passed without a verb, thus the semantic structure
represents a database object, namely, the set of student numbers
from the tuples in the student re lation which have math as the value
of the major column.

N •••
4w·· -----OU.ANT N •• •

I 1r··
every w·

1n··
I N.

JC__
ad··· N
la~r · 1~

A N~UN

math major

NJX"
1NJx· ·

I
NJx·
3NJx·

I
NJX

I
have

y·
3y·
~

VERB N •••
I 1w··

take A
malh344

Figure 2. The parse tree for "Has every math major taken
math344?".

During the interpretation of the query, the auxiliary phrase and
the verb are examined for tense. During the customization process,
if t ime is encoded in the database, the name of the column which
represents lime is placed in the register *TIME*. If th is register is
fi lled, the semantic interpreter wil l create a semantic structure for
the period implicit in the query. The structure in Figure 4 represents
the past tense of our example query.

NP
I

student 11 -----NOM S

I ~
x2 V NP NP

rela~ion stud!nt 11 ma~or
I I I

student x2 math
Figure 3. Semantic representation of math major

At the level of the S node, the semantic interpreter has
retrieved semantic structures for the subject noun phrase, the
verb, and the noun phrases and prepositional phrases in the verb
phrase. It is possible that at this level some of the NP structures are
ambiguous. For example, in the query From whom did Smith take
math301 ? the words whom and Smith are defined as referring to
either students or faculty members. In this case Pathfinder cannot
be used to disambiguate these structures. In these cases, a small

33

case grammar which describes the re lationships in the application
domain is used to disambiguate ambiguous structures.

NP
I

semester

/"-.-_s
NOM

I V~P
x5 I I I

predicate se mester semes ter
I I I

lessthan x5 x5
Figure 4. Semantic represe ntation of temporal reference.

The semantic ru les associated with SA node call functions
responsible for retrieving quantif ied objects and representing their
scope. By conve ntion, ail universal quantif iers are explicit ly
represented, but only those ex istentia l quant ifi ers which have
within the ir scope a universal quantifier are represented.

All interpretation rules which build semantic structures re lating
different entiti es use Pathfinder to discover how these entities
are re lated in the database. The path returned by Pathfinder is
used to create the appropriate semantic structure.

5. Pathfinder

Relationsh ips between different entities are represented by
non-terminal nodes in the parse tree. The interpretation of these
nodes requires establishing the relationship between attributes
corresponding to the heads of the branches of the subtree rooted
at that node. In other words, the access path to the database
relation corresponding to the subtree must be found. Consider the
S node in Figure 2. The interpretation of this node requ ires the
derivation of th e relationship between math344 (which
corresponds to the attribute CNAME in COURSE and OFFERING)
and majors (which corresponds to the attribute STUDENT# in either
STUDENT or ENROLL) .

Since a given set of attributes may belong to different database
relations derived by different access paths, interpreting this type of
non-terminal node requires an ability to solve the MAPP. Pathfinder
is used by the se mantic translation ru les responsib le for
interpreting this type of node to generate a "best guess" of the
co rrect re lat ion. The correct re lat ion is assumed to be the one
which contains the most cohesive relat ionship between the given
set of attributes.

We beg in our discussion of Pathfinder by examining the
semantics of attribute relationships in relat ional databases. Next we
make explicit certain assumptions about the design of the relational
databases to which System X is to interface. Finally we describe the
data structu re and the algorithm Pathfinder uses to derive the
database objects wh ich correspond to the relationships referred to
in NL queries.

5.1 Data Dependencies
A database scheme represents re lationships between entities

in the world because database designers represent dependencies
that ex ist between entities by dependencies between th e
database attributes wh ich denote those entit ies. It is these data
dependencies that give the scheme its structure .

The basic type of data dependency from which most attribute
relationships are constructed is the functional dependency (FD) .
We say X ~ Y, read attribute Y is functionally dependent on an
attribute X, (or X functionally determines Y), if for each value of X
there is exactly one Y-value. In the academic world represented by
our example database a student may only have one major and a
course may be offered by only one department. Thus the database
design contains the functional dependencies STUDENT# ---) MAJOR,
and CNAME ---) DEPT.

Functional dependency is a transitive relation. The attribute
CLASS# which denotes classes functionally determines OFFER#
which denotes offerings. Since OFFER# functionally determines
CNAME wh ich denotes courses, CLASS# also (transitively)
functionally determines CNAME.

Database theory identif ies one kind of data dependency, other
than the functional dependency, which corresponds to a "real
world" dependency. This data dependency is known as the
multivalued dependency (MVD). Roughly speaking, there is a
multivalued dependency in relation rot attributes Yon attributes X if
there is a set of zero or more values of Y associated with a given
value of X, and the set of Y-values is not determined in any way by
attributes in rother than those in X or Y. A functional dependency is
a special case of a multivalued dependency.

For example, suppose our academic database scheme
contained a base relation composed of the union of the schemes
for ENROLL and SCHEDULE instead of those two schemes. This
new scheme would be

ENROLUSCHEDULE = ~ ~ 1ime. room final-grade.

In a re lation on ENROLUSCHEDULE there would be a MVD of
{TIME ROOM} on CLASS# and a MVD of {STUDENT# FINAL-GRADE} on
CLASS#. These MVDs reflect the fact that there is a given set of
times and rooms to which all students enro lled in a class are
scheduled, and that there is a given set of students expected to
attend all schedu lings of each class. It is this dependency between
schedul ings and enrollments that is represented in the database by
the MVDs mentioned above.

A relation containing MVDs will contain redundancies. In
ENROLL/SCHEDULE each class· schedule will be repeated for
every student in the class. Adherence to fourth normal form (4NF),
a commonly accepted standard for database design, requires that
such relations be decomposed in order to el iminate the
redundancies. The two relations, ENROLL and SCHEDULE, are
the result of the decomposition of ENROLUSCHEDULE into 4NF.

5.2 Cohesiveness of Attribute Relationships
The relationship among a given set of attributes is more or less

cohesive depending on the type of joins which are requ ired to
associate the members of the set into a single relation. According
to relational database theory joins may be characterized as either
lossless or lossy (Ullman, 1982). Informally, a lossless join is one in
which there is a MVD of each the attributes in the resulting relation
on the attribute set on which the join takes place. A lossy join is a
join which is not lossless. A relat ion whose derivation includes only
lossless joins is more cohesive than a relation whose derivation
includes a lossy join. For example, consider two relat ions: the first
formed by the lossless joins of the OFFERING re lation to CLASS
and COURSE on the attributes OFFER# and CNAME respectively,
and the second formed by the lossy join of the CLASS relation to
the APPOINT relation on the attribute FACULTY#. Both derived
relations contain the attribute set {CLASS# DEPT}. The two
occurrences of the set represent two different relationships that
exist between classes and departments. The relationship
represented in the relation created by the lossless joins is the
relationship that exists between a class and the department which
offers the class . The relationship represented in the relation
created by the lossy join is the relationship that exists between a
class and the department which employs the faculty member who
teaches the class. Clearly, this latter relationship is weaker than the
former. Even though the second relation was created by fewer
joins than the first, the fact that it was derived via a lossy join led to a
less cohesive object. The relationship between attributes that are
brought together by a lossy join is always weaker than a re lationship
between attributes brought together by any number of lossless
join.

We measure the cohesiveness of attribute relationships within
relations derived via lossless joins alone by weighing the number
and type of dependencies that make up those relationships. We

34

assign weights to each dependency type in inverse proportion to
the strength of the dependency. MVDs are the weakest; therefore
they are assigned the greatest weight, which is 2 units. FDs are
stronger; we assign to them a weight of 1 unit, except in the special
case of the FD of an attribute on itself. In this case the weight
assigned is 0.1. (For a justificat ion of this particular weighing
scheme, see (Hall et al, 1988)).

The weight of a particular relationship among a given set of
attributes is the sum of the weights of the dependencies that make
up that re lat ionship. The more numerous and the weaker the
dependencies that make up an attribute re lationship, the less is its
cohesiveness. Thus the cohesiveness of an attribute relationship
is inversely related to its weight.

5.3 Assumptions
Before describing the method Pathfinder uses to ca lculate

access paths, we outl ine our assumptions about the design of the
target database in which the paths are sought. Firstly, we assume
that the database is in 4NF.3 The on ly dependencies that exist in
4NF databases are FDs between keys and attributes within a single
relation.

We also assume that if two attributes have the same name and
one is part of a key of a relation then both denote the same entity .
We call th is the Unique Key Name Assumption (UKNA). The UKNA
ensures that transitive FDs are preserved. That is, X -) Z when
X-) Y and Y -) Z only if Y denotes the same entity in both the
latter expressions.

Finally, we assume that an entity denoted by a compos ite
primary key Kk of a relation Rk is not referred to in another re lation
R1. This restriction can be enforced by adding, when required, a
single attribute surrogate key to Rk and using the surrogate in R1 to
refer to the entity denoted by Kk. We call this the Surrogate Key
Name Assumption (SKNA) . As a result the SKNA different
relationships between the same ent ities may be represented by
the same attribute set in different relations without concern that
System X will mistakenly conclude that an occurrence which is a key
of one relation is functionally dependent on the key of another
relation which contains a second occurrence.

5.4 Representing Attribute Relationships
In order to derive access paths, Pathfinder uses a

representation of the database scheme which we call the join
graph.

The nodes in a join graph represent the base relations (Rt, ... ,
Rn) in a database. Each node is labelled with the name of its
corresponding relation and its key. There is a directed edge (Ri, Rj)
from node Rito node Rjiff there is an attribute A in Riwhich
denotes the entity denoted by the key Kjof Rj- For example, in our
academic database the key of the re lation STUDENT, STUDENT#,
denotes the entity type "student" . The relation ENROLL contains
an attribute, (also named STUDENT#), which represents the same
entity type . Thus there is an directed edge in the join graph from
the node ENROLL to the node STUDENT.

In most cases, as it was in the example above, the two attributes
A and Kj will have the same name. However it may be that a
database designer gives different names to attributes which
denote the same entity. For example, in the academic database
scheme the attribute in the relation STUDENT which denotes the
department constituting a student's major is named "MAJOR" and
those same departments are denoted in the relation
DEPARTMENT by the (key) attribute named "DEPT". Note that in
the join graph there is an edge from node STUDENT to node
DEPARTMENT.

3 Pathfinder may be easily extended to handle 3NF databases.
However we have not yet implemented the extension.

SCHEDULE
(class'*time)

APPOINT
(faculty• dept)

Figure 5 Join Graph of the Academic Database

There is an undirected edge { R v, R wl between R v and R w if a
dependency of the type that yie lds MVDs ex ists between the
entities represented by Rv and Rw. The re lat ion pair (ENROLL
SCHEDULE) meets this requirement and therefore there is an
undirected edge in the join graph between the nodes labelled with
the names of these two re lations.

When a set of attributes is submitted to Pathfinder, the system
creates nodes to represent the attributes and adds those nodes to
the join graph. After these target attribute nodes are added, we call
the resulting graph the augmented join graph. There is a directed
edge from (relation) node Rito (attribute) node Ajin the augmented
join graph if attribute Ajis contained in relation R;. Thus, in our
example, if {FACULTY# CHAIRMAN} was a target attribute set, two
attribute nodes, FACULTY# and CHAIRMAN would be added to
the graph along w ith edges (FACULTY .FACULTY#),
(APPO INT,FACUL TY#), (CLASS,FACUL TY#), and
(DEPARTMENT.CHAIRMAN) . Figure 6 shows our example join
graph augmented w ith nodes representing the attributes
FACULTY# and CHAIRMAN.

ENROLL SCHEDULE
(Class I* student I*) f-1cUSS~-t_(~c:]:la~S~S~l*'..._lt1!_!!·m~e'.LJ)

STUDENT
student•

dept CHAIJU1AN

Figure 6. Augmented join graph.

Join graph edges represent lossless joins between the
relations correspond ing to the nodes adjacent to the edge. In the
case of a directed edge the join takes place on the key of the
relation represented by the node at the head of the edge. In the
case of an undirected edge the join takes place on the intersection
of the keys of the two re lations represented by the adjacent nodes.
Every lossless join between two base relations in the database is
represented by exactly one edge in the join graph. At the time that
the join graph is created, a table called *join-edges* is also created.
This table contains the join specificat ions for each of the lossless
joins corresponding to the edges in the join graph.

Lossy joins are represented in augmented join graphs by a pair
of directed edges which have a common node at the head of each
edge. Such an edge pair represents the join of the re lat ions
represented by the nodes at the tail of each of the two edges on
the attribute represented by the common node. (If the common
node represents a re lat ion, the join takes place on the key of the
relation.)

35

The above mapping between augmented jo in graph edges
and database joins resu lts in the following mapping between
subgraphs of the augmented join graph and database relat ions.
Trees in an augmented join graph represent re lations derived by O
or more lossless joins. Subgraphs of the augmented join graph
which are not trees represent re lations whose derivation includes at
least one lossy jo in.

In addition to representing joins between re lat ions, the edges
of an augmented jo in graph represent dependencies between
attributes of the database. A directed edge represents the FD of
the attribute represented by the node at the head of the edge on
the key of the relation represented by the node at the tai l of the
edge. (If the node at the head represents a re lation, the
determined attribute in the corresponding FD is the key of that
re lat ion.) An undirected edge represents the MVD between the
sets of attributes which comprise the keys of the relations
represented by the nodes adjacent to the edge. Weights equal to
the weights of the corresponding dependencies are assigned to
the edges of an augmented join graph. Thus the cohesiveness of
the re lation corresponding to a subtree of an augmented join graph
can be measured by summing the weights of the edges of the
subtree .

5.5 Finding the Most Cohesive Relation
Recall that Pathfinder is used to derive access paths for

relations corresponding to non-terminal nodes of parse trees. The
correct re lation is assumed to be the one contain ing the most
cohesive relat ionship between the attributes represented by the
heads of the branches of the subtree rooted at the node being
interpreted. Pathfinder restricts its search to relations derived
exclusively by lossless joins: relations derived by lossy joins are so
weak that they are not even considered. For example, recall the
re lationship between CLASS# and DEPT contained in the re lation
formed by the lossy join of the relat ion APPOINT to the relation
TEACH . This attribute relat ionship represents the real wor ld
re lationship between a department and a class which occurs when
the class is taught by a facu lty member in the department. The
simplest Eng lish phrase referring to this re lat ionship must make
reference to the faculty member or members in question. For
example, "classes of math professors" refers to those classes
taught by professors appointed to the math department. Removing
the reference to the faculty member yields a phrase such as "math
classes". Phrases mentioning only classes and departments reter
to the relationship that exists between classes and the
departments which offer those classes. That is, such phrases
correspond to the re lationship between the attributes DEPT and
CLASS# which is contained in the lossless join of the relations
CLASS, OFFERING, and COURSE. Figure 7 is the parse tree for
the phrase "classes of math professors".

w ...---......_
(classfl) N p· (fe.cultyfl)

I~
NOUN PREP w··
I I I

classes of w·
I

(dept) ADJ""~N (fe.cultyfl)

~ N+N
professors

Figure 7 Parse of a phrase referring to a lossy join.

The interpreter will resolve the relationship between FACULTY#
and DEPT at the NA node in the right branch of the tree. This is the
relationship denoted by the occurrence of {FACULTY# DEPT} in the
base relation APPOINT. The attribute FACULTY# wi ll then be
identified as the head of the PA node. Finally the interpreter will

I

resolve the relationship between CLASS# and FACULTY# at the NA
node at the root of the tree. This is the relat ionship denoted by the
occurrence of {FACULTY# CLASS#} in the re lation CLASS. Note
that, although the original phrase refers to a complex relationship in
the database which involves a lossy join, neither of the composite
re lationsh ips that the interpreter wi ll resolve involve such a join.

Since the relation corresponding to a non-terminal parse tree
node must be derivable without a single lossy join, Pathfinder
restricts its search to subtrees of the augmented join graph.
Finding the most cohesive attribute re lationship containing a given
set of target attributes is accomplished by finding the tree in the
augmented join graph which contains the nodes corresponding to
the target attributes and has an edge weight less than any other
tree containing those nodes.

This is a version of the Minimum Cost Steiner Tree problem for
graphs, which may be defined as fo llows. Let G = (V, E) be a
connected graph with vertices V and edges E. Let TV be a set of
target nodes where V;;;, TV. A Steiner tree is a graph SG = (SV, SE)
such that SG is a subtree of G and SV ;2 TV. Let COST:E -t N be a
cost function from the edges E to the positive integers N. The
minimum cost Steiner tree (MCST) minimizes the sum of COST(e)
for edges e in SE. A recent survey of the Steiner problem in graphs
may be found in (Duin and Volgenant, 1987).

Although the corresponding decision problem was proved NP
complete in (Karp, 1972), there is an efficient linear time algorithm
for solving the MDST problem in graphs when I Tl/I= k, for any small,
fixed k (Levin, 1971). This algorithm suits our problem since we can
realistically assume that the number of attributes at the head of the
branches rooted at a non-terminal node in a parse tree will be less
than six. We call our version of the algorithm STE IN ER. The
algorithm STEINER returns all MCSTs that contain its input attribute
set.

A MCST returned by STEIN ER is a complete specif ication of
the access path to the re lation containing the relationship between
the target attributes that the MCST represents. Each edge in the
MCST adjacent to two re lat ion nodes represents a join between the
corresponding base relations on the attributes specified in the
·join-edges• table. The remaining edges adjacent to the leaves
represent the project ion of the re lat ion created by the joins onto
the target attributes.

Figure 6 is the join graph for our example database augmented
with nodes to represent the target attribute set {CHA IRMAN
FACULTY#}. This is the set that would be submitted to Pathfinder
when an interpretation is being sought for the phrase "Prof. Jones'
chairman". 01 the two Steiner trees for this target set depicted in
Figure 8, clearly the minimum tree is the one rooted at the
APPOINT node. A glance at Figure 6 will conf irm that this is the
minimum cost Ste iner tree connecting these two attributes in the
augmented join graph. This tree represents the relat ion formed by
the join of the relations APPOINT and DEPARTMENT on DEPT, the
key for DEPARTMENT. The re lat ionship it represents is the
re lat ionship between a facu lty member and the chairman of the
department to which he is appointed. The other tree in Figure 8
represents the relationship between a faculty member and the
chairman of the department for which the facu lty member teaches
courses . The minimum tree corresponds to our intuition about the
re lat ionsh ip that is actually being referred to in the phrase "Prof.
Jones' chairman".

36

CLASS
class•

OFF ER ING I r A.CUL 'IYU I
offer•

IDEPARTMENTI I

. dept H CKA.IRHA.N !
Figure 8 Subtrees containing {FACULTY# CHAIRMAN}

5.6 Portability Considerations
System X uses the Pathfinder subsystem to derive the access

paths which correspond to NL constructions in its input queries.
The semantic representation that Pathfinder uses is the join graph.
Almost all the information required to create a join graph is available
in the database scheme. The system must be informed of attributes
which are named differently but denote the same entity. In addition,
the system must be informed of the existence of MVDs. The effort
required for this intervention is significant ly less than the effort
required for a database expert to derive all the join paths that may
be requ ired and insert them into a table or some other data
structure. Thus, the Pathfinder subsystem reduces the amount of
time and effort required to bring up System X in a new application
domain and makes it easier to transport between domains.

6. From Canonical Form to SOL

Since the canon ical form represents the query in terms of
database entities the translation from this form to SOL is re latively
straightforward.

The canonical form is initially translated into a logical form. The
logical form is a set domain re lational calcu lus. Like the canonical
form its inspiration comes from the TOA logical form to which it
retains many similarit ies. Since it is a relational calcu lus it can be
translated into any relational query language of equal or greater
expressive power, thus enabling System X to be transported to a
wide range of re lat ional database management systems.

Figure 9 contains the logical form and SOL for the query of
Figure 2.

Logical Form:
(INT'

(NOT'
(SETX X2

(AND (RELATION STUDENT (STUDENT# MAJOR)
(X2'MATH)
(= =))

(NOT'
(SETX X5

(SETX X7
(SETX X6

(AND (RELATION ENROLL
(STUDENT# CLASS#)
(X2X6)
(==))

(RELATION CLASS
(OFFER# CLASS#)
(X7X5)
(==))

(RELATION OFFERING
(SEMESTER CNAME

OFFER#)
(X5 'MA TH344 X7)
(= ==))

(LESSTHAN X5 '873))))))))))

SOL:
CTR
SELECT UNIQUE A.STUDENT#

FROM STUDENT A
WHERE A.MAJOR = 'MATH'
AND NOT EXISTS

(SELECT UNIQUE C.SEMESTER
FROM CLASS B, OFFERING C, ENROLL D
WHERE C.CNAME = 'MATH344'
AND B.OFFER# = C.OFFER#
AND A.STUDENT# = D.STUDENT#
AND B.CLASS# = D.CLASS#
AND C.SEMESTER < 873)

Figure 9. Example Logical Form.and SOL

The relational calculus that const itutes the logical form has
been extended slightly to allow some flexibility in the response of
System X to different types of queries. A verif icat ion clause,
defined as

<Verification> ::= (INT' [NOT'] <retrieval>),
specifies a query that expects a "yes" or "no" answe.r,

depending on whether the <retrieval> does or does not succeed in
retriev ing records from the database. The logical form in our
example indicates that if the <retrieval> (SETX X2 ...) succeeds 1n
finding a record the response should be "no", otherwise it s~ould
be "yes". Since this facility does not form part of SOL a s1m1lar
extension has been made by System X to that language. In the
SOL version of the query the keyword CTR (that is, "counter")
performs this same function of ind icat ing how the result of the
retrieval is to be interpreted.

Since SOL does not contain a universal quantifier, universal
quantification must be expressed by means .of double negatio~ in
SOL queries. The transformation of the universal quant1f1er into
double negation occurs during the translation of canonical form into
logical form. The logical form in Figure 9 contains the result of such
a transformation.

7. Concluding Remarks

System X makes some interesting, although occasionally
small , improvements in the state-of-the-art for natural language
interfaces to databases. Our ach ievements centre around four
aspects indigenous to natural language interfaces specifically and
natural language understanding in general.

37

Since templates permit defin ition by recognition rather than
storage, we claim lexicon storage reduction as an accomplishment.
Reducing the amount of information that must be stored in a
lexicon makes the system more like ly to be able to be transported
to computers that have limitations on storage and to applications
which have large storage requirements.

MORPHOS also contributes to storage reduction as it obviates
the need to store all forms of regularly inflected words. In addition, it
provides a unique customization tool operating in the background
to create a grammatical lexicon, querying the user only when
necessary.

System x is flexible, providing different ways to solve many
different syntactic and semantic problems. For example, the use of
numbers as common nouns is solved using TEMPLATE but we
cou ld of used syntactic and semantic rules instead.

Pathfinder automatically generates most of the access paths
required by System X using a representation of the datab~se
wor ld which is constructed with a minimum of human intervention.
Thus, Pathfinder reduces both customization and storage
requ irements.

Acknowledgements

We would like to thank the Natural Sciences and Engineering
Research Council of Canada for the grants which have made this
research possible . In addition, we would like to thank Dr. Gordon
McCalla who contributed significantly to the ideas we presented in
this paper.

References

[1)

[2)

[3)

[4)

[5]

[6)

[7)

[8)

[9]

[1 OJ

[11)

[1 2]

[13]

Ballard, Bruce W., Lusth, John C. and Tinkham, Nancy L.
LDC-1: A Transportab le, Knowledge-Based Natural
Language Processor for Office Env ironments . ACM
Transactions on Office Information Systems 3(2):1-25, 1985.
Cercone, N. and McCalla, G. Accessing Knowledge through
Natural Language. Invited Chapter for M. Yovits 25th
Anniversary Issue Advances in Computers series, Academic
Press, pages 1-99, 1986.
Codd, E.F. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM 13(6):377-387, 1970.
Codd, E.F. Seven Steps to RENDEZVOUS with the Casual
User. Data Base Management. North-Holland Publishing Co.,
Amsterdam, 1974, pages 179-200.
Codd, E.F. Extending the Database Relational Model to
Capture More Meaning. ACM Transactions on Database
Systems 4(4):397-434, 1979.
Du in, C.W. and A. Volgenant. Some Generalizations of the
Steiner Problem in Graphs. Networks 17(3) :353-364, 1987.
Hafner, Carole D. and Godden, Kurt. Portablility of Syntax
and Semantics in Datalog. ACM Transactions on Office
Information Systems 3(2):141 -164, 1985.
Hall , Gary. Querying Cyclic Databases in Natural Language.
Master's thesis, , September, 1986.
Hall , Gary, WoShun Luk and Nick Cercone. Disambiguating
Queries Using Dependency Graphs. Technical Report 87-7,
LCCR, SFU, Burnaby, B.C., 1987.
Hall , Gary, McFetridge, P., Cercone, N., Luk, W.S. Automatic
Access Path Generation in System X. Submitted to 5th
Annual Conference on Data Engineering.
Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D. and Slocum,
J. Developing a Natural Language Interface to Complex Data.
ACM-TODS 3(2):105-147, 1978.
Johnson, D.E. Design of a Portable Natural Language
Interface Grammar. Technical Report 10767, IBM Thomas J.
Watson Research Laboratory, Yorkton Heights, N.Y. , 1984.
Kao, M., Cercone, N. and Luk, W.S. Turning Null Responses
into Quality Responses. IEEE Transactions on Software
Engineering. 1987, to appear.

. I
I

. I

[14] Kaplan, S.J. Designing a Portable Natural Language
Database Query System. ACM-TODS9(1) :1-19, 1984.

[15] Karp, R.M. Reducibi lity among combinatorial problems.
Complexity of Computer Computations. Plenum Press, New
York, 1972, pages 85-103.

[16] Levin, A. Ju. Algorithm for the Shortest Connection of a
Group of Graph Vertices. Soviet Math. Dok/. 12(5) :1477-
1481, 1971.

[17] Martin, P., Appelt, D., Grosz, B. and Periera, F. TEAM: An
Experimental Transportable Natural Language Interface.
Database Engineering 8(3):10-22, 1985.

[18] McCoy, K.F. The ENHANCE System: Augmenting a
Knowledge Base for Natural Language Generation (1) .
Technical Report MS-CIS-82-52, Dept. of Cmpt. & Info
Science, Univ. of Penn., Philadelphia, PA., 1982.

[19] Petrick. S.R. Semantic Interpretation in the Request System.
Technical Report RC 4457, IBM Thomas J. Watson Research
Laboratory, Yorkton Heights, N.Y., 1973.

[20] Petrick. S.R. Natural Language Database Query Systems.
Technical Report RC 10508, IBM Thomas J. Watson
Research Laboratory, Yorkton Heights, N.Y., 1984.

[21] Ullman, Jeffrey D. Principles of Database Systems, 2nd ed.
Computer Science Press, Rockville, Maryland, 1982.

[22] Ullman, Jeffrey D. The U. R. Strikes Back. In Proceedings of
the ACM Symposium on Principles of Database Systems,
pages 10-22. Los Angeles, CA., 1982.

[23] Ullman, Jeffrey D. Implementation of Logical Query
Languages for Databases. ACM-TODS 10(3):289-32 1,
1985.

[24] Wald , J.A. and P.G. Sorenson. Resolving the Query
Inference Problem Using Steiner Trees. ACM- TODS
9(3) :348-368, 1984.

[25] Waltz, D. An English Language Question Answering System
for a Large Relational Database. CACM 21 (7) :526-539,
1978.

[26] Webber, B.L. and Finin, T. In Response: Next Steps. Natural
Language Interaction in Artificial Intelligence Applications for
Business. Ablax Pub. Co., Norwood, N.J., 1984 .

38

Time Revisited

Stephanie A. Miller

Lenhart K. Schubert

Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2Hl

ABSTRACT

Temporal reasoning is essential for many AI applica
tions. To date, most research has concentrated on
temporal inference in isolation without considering
the role it can play in a more general reasoning
environment. This paper takes an efficient temporal
reasoner and extends its inferential capabilities to
handle both strict and nonstrict relations. The result
ing temporal specialist is incorporated into a system
intended for low level reasoning in natural language
understanding. The specialist assists the resolution
based theorem prover in function evaluation, literal
evaluation, and generalized resolving and factoring.
The combined system can do some proofs in just a
few steps that would nom1ally require many. An
example from the fully operational hybrid system is
included.

Keywords: temporal reasoning, special inference methods,
theory resolution, knowledge representation

1. Introduction

Given certain explicit relationships among a set of events
or episodes, we would like to be able to infer additional rela
tionships implicit in the ones given. For example, if the events
are part of a narrative, they will frequently form sequences in
which adjacent events are known to follow one another; for
such a sequence, we would like to be able to infer, without
much effort, that events earlier in the sequence precede later

ones, regardless of the number of intervening events. In addi

tion, if we are given information about the durations or abso
lute times of some of the events, we would like to be able to
infer quantitative consequences of this information, such as

minimum and maximum elapsed time between given events.
These sorts of inferences are essential in several areas of AI

including story understanding, causal reasoning, and planning

[All84].

Since temporal orderings are transitive and durations

cumulative, such inferences in a typical general theorem prover

can be computationally expensive. To compensate for this,
researchers have tried to develop special representations and

efficient methods for temporal inference. However, much of
this work concentrates on temporal inference in isolation,
rather than on using such a mechanism in a more general

39

environment.

In this paper, we start with an efficient temporal specialist
(based on Taugher and Schubert's model [SPT87, Tau83]) that
does temporal inference in isolation. This specialist is unusual
in the way it exploits chains of events such as are commonly

found in narratives (or plans), so as to achieve constant-time
determination of time order for many pairs of events. It does

so without requiring all events to lie on chains, and without

computing trans1uve closure. To further increase the
effectiveness of the specialist, its capabilities are extended here

to make it more complete and flexible; the major enhancement

being the ability to handle both strict and non-strict time order
ing. Non-strict ordering is often appropriate for the end of one
event in relation to the beginning of the next in a narrative

(where there may or may not be a delay between them), while
strict ordering is often appropriate for the beginning of an
event in relation to its end (when the event is of a type that can
not transpire instantaneously) . This, as well as consistency and
expressibility considerations, required considerable expansion

of the set of temporal predicates and argument patterns handled
by the specialist.

We then incorporate the resulting specialist into a general
inference system with a resolution-based core (based on de
Haan's theorem prover [HaS86]), where it assists the theorem
prover with function evaluation, literal evaluation, and general

ized resolution and factoring. The temporal specialist bypasses
the normal proof procedure for the operations it handles, and
can cut out numerous proof steps that would otherwise be
required. Temporal literal evaluation uses the specialist's

timegraph representation to simplify assertions, and resolvents
generated by the theorem prover. Function evaluation
simplifies a term by evaluating it (for example, (start-of el)
can be simplified to a constant, el start) . Generalized resolving
and factoring make use of Stickel's partial theory resolution

[Sti83] to quickly determine incompatibility or subordination

of one literal by another. This allows resolution and factoring
to be done where they usually cannot. For example, we can

factor rrx during a] or [x during b]] to fa during b;1, even

1 If we have [a during b/ represented in the Limegraph.

though the literals have different signs. Similarly, if we know

[a before-12 b], we can resolve [x before a] with [x after b} to

the null clause, although the predicates are not identical, and
the signs are the same.

The hybrid system consisting of the resolution-based
theorem prover and the temporal specialist has been imple
mented in Lucid Common Lisp and mns on a Sun 3n5. An
example is included from the operation of the system, which is

called ECoNet (since it does the low level inferencing neces
sary for ECoSystem [HaS86]). This system is to the best of

our knowledge the most powerful combination of a general
deductive mechanism with a temporal specialist built to date.

2. The Temporal Specialist

Most current research in temporal inference uses two
basic types of representations - time intervals and time points.
Time intervals represent a given time period of finite length.

There are numerous simple relations (from [All83, ViK86])
that can be defined between two intervals (equal, before
(including meets), after (including met-by), during (including

starts and ends), contains (including started-by and ended-by),
overlaps, and overlapped-by).

The other major representation used is time points. These

are abstract "instants" of time and are assumed to be non
decomposable. Pairs of such time points can be used to
represent intervals. Only a few relations can exist between
time points (<, <=, >, >=, =), and logical combinations of
these can be used to define interval relations.

There is a trade-off between expressibility and efficiency
in the use of the two representations. For instance, if we res
trict the relationships that may be specificed for time intervals
to disjunctions of those listed above (as Allen did), and simi

larly restrict relationships that may be specified for two time
points to disjunctions of equalities and inequalities, then the
interval representation is more expressive and flexible, while
the time point one is more efficient. In particular, closure on
Allen's interval based approach [All83] is shown to be NP

hard by Kautz and Vilain [ViK86], while closure may be done
in O (n 3) time in the time point representation, where n is the
number of points. If arbitrary conjunctive/disjunctive con

straints on sets of time points are allowed, then of course the

time point representation is as expressive as the interval
representation, but efficiency is then lost. In general, the func

tion of a specialist should be to handle as large a class of rela
tionships as possible without sacrificing efficiency. Any infer
ences that fall outside the capabilities of the specialist can still

be handled by the general deductive mechanism, albeit much
less efficiently.

2.1. Taugher and Schubert's Representation

Taugher and Schubert's representation [SPT87, Tau83] is

1 Before-I means strictly before.

40

based on time points. Besides being able to determine rela
tions between time points quickly (often in constant time), it

can represent and reason with durations and absolute times.
The representation uses a partial order graph, called a time
graph, whose nodes represent time points. Directed links
between points indicate the given relation between the two
points (< or<= depending on interpretation). The timegraph is
partitioned into chains, which are defined as sets of points that
are all linearly ordered with respect to each other, with possible
transitive arcs3. Links between points in the same chain are

in-chain links; between points in different chains, cross-chain

links. Each point has a pseudo-time (a number) associated with
it, which is arbitrary except that it respects the ordering rela
tionship between it and other points on the same chain. Chain

and psuedo-time information are calculated when the point is
first entered into the timegraph, and stored directly with the
point. Determining the relationship between any two points in
the same chain may be done in constant time simply by com

paring their pseudo-times, rather than following the in-chain

links.

To determine the relationship between points in different
chains, a search is required, but only the cross-chain links need

to be examined explicitly. A metagraph keeps track of the
cross-chain links effectively by maintaining a metanode for
each chain, and using the cross-chain links for links between
metanodes. As in-chain checking can be done in constant time,

a graph search is dependent on the number of cross-chain links
rather than the total number of time points. Creation of all sup

porting graph structures (including the metagraph) requires

0 (n + e) space and O (n + e) time, where n is the number of
time points, and e is the number of relations between them.
Note that a timegraph amounts to a set of atomic inequalities.

Disjunctions such as [[a<= b} or [c <= d]J or inequalities
such as [a -= b] cannot be represented. This restriction, along

with the exploitation of time chains, is what enables the spe
cialist to operate efficiently.

Figure 1 shows an example time graph and metagraph.
Following the cross-chain links, we can get that triangle! is
before square3, and squarel is before circle3, but no informa
tion about triangle2 and square3.

Furthermore, an absolute time (date) minimum and max

imum are stored with each time point. These are six-tuples of
the form (year month day hour minute second), where each ele

ment may be numeric or symbolic (e.g. (1987 04 a 12 b c)

represents some time at or after 12 a.m. and before 1 p.m. of
some day in April, 1987). Absolute time maxima propagate

back to points before the given point (in the chain or on other

chains), and minima propagate forward. This ensures that each
point has the best absolute time information possible. Details

may be found in [Tau83]. Absolute time comparisons can

3 Schubert et al. clarify this point in [SPT87]. as Taughcr' s thesis was
not clear on it. Transitive arcs arc in-chain links which do not make up the
"backbone" of the chain; that is, there are intervening nodes and links. Fig
lfre 1 shows a transitive arc between circle2 and circle4.

Timegraph (each node represents a time point)

I
I

I
I
I
I
I
I
I

~

I / LL

~ / --
~'q-ua-re-1 _:----~•~1 square2 ',4 square3

in -chain links

- - - - - - -> cross-chain links

Mctagraph (each node represents a chain)

Chain 2

(squares)
< -------------------- Chain 3

(triangles)

Figure 1. Example Timegraph and Metagraph

sometimes be used to get a relation in constant time between
two points on different chains, avoiding a metagraph search.
Duration minima and maxima (in seconds) are stored on the
li1:ks between points. These may affect the absolute times

around them, which are then propagated.

Insertion of a relation requires a constant amount of pro
cessing in most cases, except for propagation of absolute times.
In the worst case, propagation may require going to every point
in the graph, although this is highly unlikely. Occasionally a
chain may have to be renumbered, which involves all the

points in a single chain.

Intervals/events/episodes4 are represented by their start
and end time points. The intervals are kept in a separate table,
which contains these end points. Interval relations are defined
as combinations of time point relations between the start and
end points of the intervals.

2.2. Enhancements to the Taugher and Schubert Model

Although this time model is efficient and does most of the
temporal reasoning we need, it requires several enhancements.
First, confusion surrounding whether a point (a) could be
inserted between two others (b and c) and remain on the same
chain5, was resolved by allowing this to take place only when c

has the smallest pseudo-time of any in-chain descendant of b

(i.e is closest). Note that in this case the link from b to c will
be a transitive arc (bypassing one intermediate node, namely a)
of the resulting chain. Otherwise a must be placed on a new
chain.

Second, the original representation can represent either
strict relations(<, >, =), or non-strict relations(<=, >=, =),
depending on whether links between points are interpreted as <
or<=, but not both. Our goal here was to extend the model to

4 Interval, event, and episode are used interchangeably in this paper.
5 A CMPUT 551 (Artificial Intelligence I) class at the University of

Alberta discovered this in 1984 while reimplementing the algorithm as part
of a project.

4 1

handle both, without losing the efficiency of the original. For
cross-chain relations, a flag indicating strictness on the link
itself is enough, since cross-chain links are explicitly examined
during a search. For points within the same chain however,
examining each link for strictness would mean that we could
no longer determine in-chain relationships in constant time.
Attempts to handle this by adding another pseudo-time failed
because they either could not represent all possible combina
tions, or were not constant time.

The successful method eventually found requires two
extra numbers - a maximum-pseudo and a minimum-pseudo.

The minimum-pseudo of a given point is the pseudo-time of the
nearest predecessor on the chain that the point cannot be equal
to; the maximum-pseudo, of the nearest successor on the chain
that it cannot be equal to6. To determine the relation between
two points, we first compare their pseudo-times to find out
what order the points are in. Then we compare the pseudo
time of the first point with the range given by the minimum
and maximum of the second point (or vice versa). If it is prop
erly within that range (i.e. greater than the minimum and Jess
than the maximum), the relation given by the pseudo-times
alone is non-strict; otherwise it is strict. Propagation of
minima and maxima maintains strictness of relations
throughout the chain. This propagation is similar to propaga
tion of absolute times (minima propagate forward, maxima
back), although the comparison at each propagation step may
be shorter (only one number to compare instead of a possible
six).

To see how this works, consider the following example.
Suppose a<= b <= c <= d <= e, and then we assert a< d:

6 This requires the addition of two additional pseudo-times
to represents points before the beginning of the chain (-oo) and
beyond the end (+00) . To make chain renumbering easier,
pointers to the minimum and maximum points are kept, rather
than their actual pseudo times.

·I

·1
j

: J

Point
Pseudo-times
Minimum-pseudo
Maximum-pseudo

a
1

3000

b
1000

C

2000
d

3000
1

e
4000

1

Note we have a < d, a <= b, b <= C, a< e, and so on -
correctly. Now assert c < e:

Point a b C d e
Pseudo-time 1 1000 2000 3000 4000
Minimum-pseudo -oo -oo -oo 1 2000
Maximum-pseudo 3000 4000 4000 +oo +oo

This method is flexible enough to handle any combination of
relations, easy to understand and implement, and maintains the
constant time in-chain checking.

To evaluate whether a given relation holds, or to deter

mine the strongest relation constraining two points, we now
need to consider that there may be numerous paths between the

points, some of which may represent strict relations, and some
non-strict. To determine the relation between two points, one
must continue finding paths until a strict path is found or all
such paths have been found . Within each chain, the strictness
of the relation between points is easily calculated in constant
time (the range comparison), and used in the path determina
tion. It is only where there are several possible cross-chain

links leaving a point that there is a possibility for paths of
different strictness. In the worst case, this could require O (m 2)

time, where m is the number of cross-chain links. Since we
stop with the first strict path found, this maximum will rarely
be reached9.

With the additional capabilities for handling strict and
nonstrict ordering, we now need some way of telling the tem
poral specialist which ordering to use. This was one reason,
among others, for some changes to the set of temporal predi

cates recognized by the specialist. In Taugher's thesis, the fol
lowing predicates were used for entry of intervals/events:

a before b [c]

a after b [c]

a equal b
a during b [c]

=> a end<= b start
(both within time frame c if specified)

=> a start >= b end
(both within time frame c if specified)

=> a end = b start
=> if c specified, a between b and c;

otherwise a within b

During evaluation, some additional relations could be deter
mined: overlaps, overlapped-by, contains, as well as some

weaker ones: starts-before, ends-before, starts-after, ends
after, starts-equal, and ends-equal.

The predicates used in the temporal specialist imple

mented in this paper are essentially the same ones that Taugher
used, with some exceptions. The weaker predic.11cs have not
been implemented. DurinR is used only in 1he sense of

8 The pseudo-times are numbers generated by the system which reflect
the ordering on the chain.

9 With some additional effort, we could improve the algorithm to save
partial results between points so that each cross-chain link need only be
looked at once. This would bring the time required back to
o (m), the same as for a search without strictness requirements.

42

"within", enabling the option of a timeframe argument.
Between was introduced to handle the case where one argu
ment is to be inserted "during" two others (see above). Except
for between, all predicates now have the optional third argu
ment representing a time frame (instead of just before and

after). Usage of this argument leads to fewer chains being
built in the timegraph, resulting in a more nearly optimal time
graph. All the predicates may be used for both entry (asser
tion) and evaluation for consistency.

The original predicates are now considered "stems" and

may have one or two strictness values appended (stem/
strict] [-strict2]]) . Strictness values are:

Strictness Value
-1
-0
nil

Meaning
strict (< or >)
meets (end points abut - i.e. are equal)
non-strict(<= or>=).

Some examples of the new predicates:

Literal
[a before-I b]
[a between-0-1 b c]
[a during--] b]

Temporal Meaning
a<b
[a after-0 b] & [a before-I c]
start of a >= start of b, and
end of a < end of b.

The new specialist is quite flexible, accepting episodes,
time points, or absolute times in any combination as arguments

for the predicates (except the timeframe, which must be an
episode), where Taugher's programs were quite rigid in the
argument patterns accepted. On assertion, if an argument is an
absolute time instead of a named time point or episode, the

appropriate absolute time bound of the other argument is
updated. For example,

(a before (date' 1987 '04 '01 '00 '00 '00))
would update the upper bound of a's absolute time (the max
imum). For evaluation, the appropriate bound is compared

against the absolute time, or two absolute times may be com

pared.

In addition, some new predicates have been introduced to
handle durations: at-most-before, at-most-after, at-least-before,

at-least-after, exactly-before, and exactly-after. These take
three arguments, of which the first two may be events or time
points (no absolute times) and the third denotes the duration
between the two in seconds. At-most- implies maximum dura
tion, at-least- minimum duration, and exactly- involves both.

To determine the duration between any two points, an exhaus
tive search must be done between those points, following both
in-chain and cross-chain links, to get the best duration bounds

(the greatest minimum, and the smallest maximum). Duration
information on arcs and implicit in absolute times is used.
Details are in [Mil88].

3. Use of The Temporal Specialist in a More General
Environment

The main system for representing knowledge and making

inferences uses a resolution-based theorem prover featuring

automatic classification of propositions, topical access of

clauses for resolution, and type inheritance through a type

hierarchy [HaS86]. This system is designed to handle large,

diverse bodies of knowledge efficiently. Although the topical

access and type hierarchy improve the performance of the

theorem prover immensely, it can still suffer from the compu

tational explosions to which all theorem provers are prone.

This is especially true when working with the transitive rela

tions involved in temporal inference, so that it is desirable to

delegate temporal inference to the temporal specialist as far as

possible.

Interesting proofs we can ask the system to do involve

"mixed" inference (i.e. involving both temporal relations and

others). For example, in the story of Little Red Riding Hood,

deciding whether the wolf was alive when everyone was eating

the goodies in the basket requires using knowledge that one

can only be alive before one is killed, and temporal inference

to determine that the episode of eating the goodies came after

the episode of killing the wolf. Other examples of the uses of

such "mixed" reasoning in planning and problem-solving can

be found in [AlK85].

Further extensions were necessary to integrate the special

ist into the main system. The main system organizes modal

propositions into subnets, with one subnet for each person's

mental world. As the subnets may contain contradictory infor

mation, the temporal specialist also maintains a separate time

graph (and metagraph) for each subnet10. Simple temporal

evaluations may be done within the subnets, although at this

stage no real modal inference is done by either the temporal

specialist or the main theorem prover. Upon completion of

proofs by contradiction, the main system retracts all changes

made. To remain consistent, the temporal specialist had to be

extended to have this capability as well, which is used exten

sively in generalized resolving and factoring.

Schubert et al. [SPT87] suggest that a specialist can assist

a theorem prover in literal evaluation, and generalized resolu

tion and factoring. In addition, the specialist can be used to

simplify literals by evaluating functional terms. Assertions

must also be entered into the specialist representation for use in

future evaluations. Most of the requirements for simple literal

evaluation and entry have already been discussed. Generalized
resolution and factoring make use of both the entry and evalua

tion phases to check for resolving or factoring actions.

Figure 2 shows an example of the system in operation,

trying to answer a question about the story of Little Red Riding

Hood, similar to the one mentioned earlier.

10 This assumes that all temporal propositions within a mental world are

consistent.

43

The question the system tries to answer is

Was the wolf alive at some time after everyone talked or
after everyone ate the goodies? 11

which we translate to

?[Ex episode [W alive x] & [[x after all-talk] or
- [x after-I (end-of eat-goodies)]]J12.

In this translation, it is taken for granted that there is a noun

phrase referent determination process which has selected the

episode here called all-talk as the referent of everyone talked,
and eat-goodies for everyone ate the goodies. Similarly, Wis

the individual referred to as the wolf. It is sometimes possible

to handle this with existential quantification (e.g. [E x_episode
[everyone eat goodies x] & [x ...]]), but this only works satis

factorily when a "yes" answer is expected. If a "no" answer is

expected, the system currently answers "unknown", as there

may be events fitting that description it doesn't know about

(default reasoning would be required otherwise). The example

in Figure 2 required about 57.5 seconds - just under a minute.

This was with a knowledge base consisting of about 150 pro

positions (which are normalized into over 450 clauses), some

for general knowledge and some for the simplified version of

the the Little Red Riding Hood story we use for testing (it con

sists of over 70 propositions, 20 of which temporally relate

episodes in the story). The number of steps required for the

proof was small, although the operations accelerated by the

specialist would normally have required many applications of

temporal axioms.

These uses of the temporal specialist differ from previous

approaches in that there are more possiblities for the temporal

specialist to assist. In a system like that of Allen et al.

[AGF84], for example, which computes transitive closure of

input assertions to give constant time lookup later, we would

be restricted to the literal evaluation phase only. As their sys

tem requires that closure be done for each entry (0 (n 3) time)

and has no facilities for retraction, generalized resolving and

factoring in it would be inefficient, if at all possible.

In the next sections we gloss over the interface mechan

ism between the theorem prover and the temporal specialist,

and concentrate on the operation of the temporal specialist.
Details on the interface itself may be found in [Mil88].

3.1. Function Evaluation

During literal simplification, the temporal specialist may

evaluate temporal functional terms to a more usable entity than

the original term. The functions used most commonly are

start-of and end-of, which return the time point for the start and

11 Although somewhat awkward, this question illustrates all the areas of
temporal specialist assistance without being overwhelming.

12 The question is phrased using after-1, and specifying end-of Lo show
that the system can actually handle predicates of different strictness, and
combinations of time points and events. The questions could just as easily
have been phrased as [E x_episode [W alive x} & [[x after all-talk] or [x
after eat-goodies]j]. Also note that a sort tag (_episode) is attached t.o ~o~e
terms; this is used to differentiate terms so that the temporal specialist 1s
called only when appropriate.

I

==> ?(E x_eplsode (W alive x) & ((x arter all-ta lk) or (x after-1 (end-of eat-goodies))))
Entering disproof clauses:
(W ALIVE SCON-380) (deptl1 I)
((SCON-380 AFfER ALL-TALK) I (SCON-380 AFTER-I (END-OF EAT-GOODIES))) (depth I)

Time Specialist: END-OF (EAT-GOODIES) evaluated to EAT-GOODIESEND
((SCON-380 AFfER ALL-TALK) I (SCON-380 AFTER-I EAT-GOODIESEND)) (depth I)

Time Specialist: Trying to factor (SCON-380 AFTER ALL-TALK) and (SCON-380 AFTER-I EAT-GOODIESEND)
Time Specialist: Factored to (SCON-380 AFTER ALL-TALK)

(SCON-380 AFfER ALL-TALK) (depth I)

Resolved (W ALIVE SCON-380) in the disproof clause
(W ALIVE SCON-380)
against(" U-VAR-2 ALIVE EPISODE-VAR-I) in((" U-VAR-1 KILL U-VAR-2 EPISODE-VAR-2)

I(" EPISODE-VAR-I AFTER EPISODE-VAR-2) I(" U-VAR-2 ALIVE EPISODE-VAR-I))
yielding ...

((" SCON-380 AFTER EPISODE-VAR-I) I(" U-VAR-1 KILL W EPISODE-VAR-I)) (depth 2)

Resolved(" U-VAR-1 KILL W EPISODE-VAR-I) in the disproof clause
((" SCON-380 AFTER EPISODE-VAR-I) I(" U-VAR-1 KILL W EPISODE-VAR-I))
against (WOODCUTTER KILL W WOLF-DEMISE) in (WOODCUTTER KILL W WOLF-DEMISE)
yielding ...

(" SCON-380 AFTER WOLF-DEMISE) (depth 3)

Time Specialist: Trying to resolve(" SCON-380 AFTER WOLF-DEMISE) agains t (SCON-380 AFTER ALL-TALK)
Time Specialist: Resolved with residues null
Resolved(" SCON-380 AFTER WOLF-DEMISE) in the disproof cl ause

(" SCON-380 AFTER WOLF-DEMISE)
against (SCON-380 AFTER ALL-TALK) in (SCON-380 AFTER ALL-TALK)
yielding tl1e null clause.

NO

C N · · 13 Figure 2. Example of E o et rn operation

end of an episode, respectively, and date which returns an

absolute time representation recognized by the temporal spe

cialist.

3.2. Literal Evaluation

When evaluating whether a literal is true, one or more of

the evaluation techniques already discussed is used. If the

predicate is a duration predicate (e.g. at-most-before), the dura

tion is calculated and compared to the one given. For other

predicates, if any arguments are absolute times, an absolute

time comparison is done. Otherwise, the question is split into

several time point evaluation questions, each of which uses the

metagraph. The example shown in Figure 2 does not overtly

show incidences of literal evaluation, but it was used during

the generalized factoring and resolving steps there.

3.3. Generalized Resolution and Factoring

Schubert et al. [SPT87] show some examples of when

generalized resolving and factori ng can be done by a temporal

specialist. There are many more cases where these operations

can be useful, dependent mainly on information already

asserted in the timegraph. Determining whether two literals

are resolvable or factorable involves similar methods, so they

will be described together. The temporal specialist determines

possible unifications that may lead to resolving or factoring

13 This example shows actual output of the system, edited for clarity and
brevity. Bold print is user input; the rest, system output. The existentially
quantified variable x in the question has been converted to the skolem con
stant SCON-380 used in the proof. The timegraph contained, among other
relations, that all-talk is during eat-goodies, and that eat-goodies is after
wolf-demise, the episode corresponding to the woodcutter killing the wolf.

44

actions, and uses the timegraph as a medium in which to com

pare the literals after substitution.

When resolving or factoring, unification of the arguments

of the two literals is required. Since the predicates in the two

literals are not necessarily identical, there is no restriction that

the arguments be unified in the typical order (i.e. first from

literall with first from literal2, and so on). The temporal spe

cialist tries all possible unifications, testing after each to see if

there is a resolving or factoring action that can be taken. Note

that the two literals do NOT need to have the same number of
arguments. For example:

Literals

(x after y) vs (el between e2 e3)

Unifications

(x/el, y/e2), (x/el, y/e3),
(x/e2, y/el), (x/e2, y/e3),
(x/e3, y/el), (x/e3, y/e2)

For each unification, we try to enter one literal into the

time graph, and compare the other one to it within the time

graph. Use of the timegraph allows comparison against the

newly entered literal (what we started out to do), as well as

other temporal relations asserted earlier (which enables the

time specialist to shortcut the proof so drastically). During a

generalized resolving attempt, we are looking for a unification

that makes the two literals incompatible, or incompatible with

the negation of a residue14. During a generalized factoring

attempt, we look for a unification that makes one literal

unnecessary. Details of the algorithm may be found in

14 A residue (from Stickel's partial theory resolution [Sti83] is a literal
(or set of literals) whose negation would make the two literals incompatible
(resolvable in one or more steps to the null clause).

[Mil88].

4. Conclusions

The intent of this research was to incorporate an efficient
temporal reasoner that handled all our temporal inference
requirements into a general reasoning environment. The exten
sions to the temporal specialist itself enabled it to handle more

possible temporal inferences, including reasoning with both

strict and non-strict relations, at modest computational
expense. The specialist accelerates the main theorem prover
by performing literal evaluation and generalized resolution and

factoring, as well as simplifying literals by functional term
evaluation. The resulting hybrid can do some proofs that

would normally require numerous steps in just a few.

There is a trade-off between the development time for a
specialist and the efficiency it adds to the combined reasoner.
The time spent in developing and enhancing the temporal spe
cialist was well invested, since temporal reasoning is so essen
tial in many AI applications. Although the time specialist

slows down single steps of the system (because of the greater
complexity of tests for resolvability or factorability), it can
shorten the number of proof steps drastically. Some problems
that previously y,,ere not feasible can now be done in reason

able time. One drawback in such a system is that some of the
inferences are hidden within the temporal specialist, and are
thus "invisible". However, since the type of temporal inference
performed by the specialist is well understood and almost
"obvious", justification is not essential - provided bugs and
"holes" have been eliminated.

Work is underway to add more specialists to the system
(namely a number/arithmetic specialist, a color specialist, and
a set/list specialist), and to examine the interactions and possi
ble communication between them.

45

References

[All83] James F. Allen, Maintaining Knowledge about
Temporal Intervals, Communications of the ACM
26, 2 (1983) , 832-843.

[All84] James F. Allen, Towards a General Theory of
Action and Time, Artificial Intelligence 23, 2
(1984), 123-154.

[AGF84] J.F. Allen, M. Giuliano and A.M. Frisch, The
HORNE Reasoning System, Tech. Rep. 126,
Computer Science Department, University of
Rochester, Rochester, NY, 1984.

[AIK85] J.F. Allen and H.A. Kautz, A Model for Naive
Temporal Reasoning, in Formal Theories of the
Commonsense World, J.R. Hobbs and R.C. Moore
(ed.), Ablex, Norwood, NJ, 1985, 251-268.

[HaS86] Johannes de Haan and Lenhart K. Schubert,
Inference in a Topically Organized Semantic Net,
Proc. AAAI-86 l, (1986), 334-338.

[Mi188] Stephanie A. Miller, Time Revisited, M.Sc. Thesis,
Department of Computing Science, University of
Alberta, 1988.

[SPT87] L.K. Schubert, M.A. Papalaskaris and J. Taugher,
Accelerating Deductive Inference: Special Methods
for Taxonomies, Colours and Times, in The
Knowledge Frontier, N. Cercone and G. McCalla
(ed.), 1987.

[Sti83] Mark E. Stickel, Theory Resolution: Building in
Nonequational Theories, Proc. AAAI-83,
Washington, D.C., 1983, 391-397.

[Tau83] J. Taugher, An Efficient Representation for Time
Information, M.Sc. Thesis, Department of
Computing Science, University of Alberta, 1983.

[ViK86] Marc Vilain and Henry Kautz, Constraint
Propagation Algorithms for Temporal Reasoning,
Proc. AAAI-86 I , (1986), 377-382.

. I

Reasoning in Temporal Domains:
Dealing with Independence

and Unexpected Results

Scott D. Goodwin
Department of Computing Science,

University of Alberta,
Edmonton, Alberta, Canada, T6G 2Hl

scott@alberta.uucp

Abstract

Much interes t has been focu sed on nonmonotonic
reasoning in temporal domains since Hanks and Mc
Dermott discovered that intui tive temp oral axiom
atizations give rise to the multiple model/mul t iple
extension problem. Herc we consider nonmonoto nic
reasoning in temporal domains from the perspective
of theory formation. We cla im that this framework
can be applied to temporal reasoning in a simple and
intuiti ve way, and we disc uss why approaches that
advocate ex plicit axiomati zation of causality a rc not
desirable. Two prob lems concerning model order
ing/theory preference a.pproaches are described and
a solution to one of these problems is given. Finally,
we disc uss why the second of th ese problems is not
as easy to solve as has been suggested ; we disc uss
requirements for its solution.

Keywords: N onmonotonic Reasoning, Theory Formation,
Temporal Reasoning, Frame Problem ,
Knowledge Independence

1 Introduction

Recently, much interest has b een focused on nonmonotonic
reasoning in temporal domains. Since Hanks and McDer
mott (HM86] discovered that temporal axiomatizations give
rise to the multiple model or multiple extension problem ,
many solutions have been proposed . Just as researchers
were beginning to reach a consensus that what was needed
was some sort of model ordering (or theory preference)
scheme (predominantly, based on the chronological order
of actions [Kau86,Sho86,GG87a]), a serious challenge was
issued . It was suggested that it may be necessary to take a
different view of the domain by explicitly including causal
ity in our ontology. In their proposals, Loui [Lou87], Lif
schitz [Lif87], and Haugh [Hau87] show that the multiple
model or multiple ex tension problem can be avoided by di
rectly axiomatizing causal relations. Haugh goes further to
3how that chronological preference methods fail to correctly
model common sense when the domain involves (what we
call) independent relations whose truth is unknown (we ex
plain this further in section 4) or when the result of a se
quence of actions is different from the expected result.

46

Regardless of Haugh's claims, the causal axiomatiza
tion approach has serious drawbacks. There is good reason
to claim that this approach is not desirable. Hanks and
McDermott have criticized it as follows:

" ... if we adopt one of these solutions we have
in effect a llowed technical problems in the logic
to put too much pressure on our knowledge rep
resentation. Part of the presumed appeal of ex
pressing theories in logic is that the language
should allow us to explore our intuitions about
domains like naive physics What we should
be thinking about a t the logical level are is
sues like whether time is continuous or discrete,
how many modalities there are, whether time is
made out of points or intervals , etc. But if we
follow the example of those who would have us
change our ontology, we in effect have to phrase
our axioms in one particular way ... just to get
around the inadequacies of our inference mech
anism." [HM87]

Any solution to the problem of nonmonotonic reason
ing in temporal domains must address both Hanks' and
McDermott's criticisms and the concerns raised by Haugh.

In what follows, nonmonotonic reasoning in temporal
domains is considered from the perspective of theory for
mation [PGA87]. We claim that the observe-hypothesize
predict-test-revise framework can be applied to temporal
reasoning in a simple and intuitive way, and that Hanks'
and McDermott 's criticisms and Haugh's concerns can both
be addressed in the framework. In the next section, we
begin by explaining the theory formation framework and
reviewing the basic elements of one theory formation ap
proach: Theorist. Section 3 reviews an earlier proposal for
applying the framework to temporal domains. In section 4,
we discuss the first problem described by Haugh, namely,
that chronological preference methods give incorrect results
when there are independent relations. We show how this
problem arises and how to deal with it without the conces
sions made in Loui's, Lifschitz's, and Haugh's proposals.
In the following section, we mention the second problem
Haugh raises: the problem of dealing with sequences of
actions which don' t result in their normally expected out
come. We do not solve this problem, but indicate that the

solution involves distinguishing between the task of predict
ing the expected outcome of a sequence of actions and the
task of explaining an anomalous result . We will conclude
by summarizing the main points of the paper.

2 A Theory Formation Framework

The development of nonmonotonic reasoning systems was,
in part, motivated by the inability of logical deduction to
capture the forms of rational inference typically involved in
common sense reasoning. Israel has argued tha t nonmono
tonic reasoning should be considered within the framework
of scientific theory formation [Isr80] . In the spirit of Israel's
proposal, Poole and his colleagues have been investigating
the theory formation approach to common sense reasoning
in the Theorist project [PGA87]. Based on a philosophy
inspired by Popper [Pop58], Theorist views reasoning as
scientific theory formation (rather than as deduction) . Sci
ence is concerned, not merely with collec ting facts , but a lso
with finding explanations, making predictions , and testing
and revising theories. R easoning in the Theorist frame
work involves building theories that explain observations1

.

A theory D, consisting of instances drawn from a set of po3-
3ible hypothe3e3 ll., is said to explain a set of ob3ervation3
G if the theory, together with the fact3 F, logically implies
the observations; it must also be consistent with the facts .
Formally,

D explains G if D ~ instances of elements of ll.
such that,
FUD I= G, and FUD is consistent.

In most implementa tions of Theorist, the representation
language is full first -order clausal logic; in this case, F, D ,
and O a re sets of sentences, and ll. is a set of sentence
schemas.

To illustrate, the well known birds fly example is ax
iomatized below. The syntax used in the axiomatization
is a slight simplification of tha t used in current Theorist
implementations (cf. [PG871) . The statement fact Clau3e
means that Clau3 e E F and the statement default Clau3 e
means tha t Clau3e E ll..2

fact bird(tweety).
fact bird(X) <- penguin(X).
fact ,flies(X) <- penguin(X) .
default flies(X) <- bird(X).

Now we can explain G = {fii e3 (tw eety)} with the theory D
= {fiie3(twe ety) <- bird(tweety)} formed by instantiating
the default fiie3(X) <- bird(X) with X = tweety. Should we
later learn that penguin(tweety) then the theory D would
no longer be consistent with the facts and, consequently,
we are no longer able to explain G = {fii e3 (tw eety)} .

Note that, in general, there may be multiple theories
tha t explain the observations. These correspond to mul
tiple minimal models in circumscription [McC80] and to

1Goodwin and Gagne [GG87b] and Poole [Poo88] have proposed
elaborations of the Theorist fra mework incorporating prediction.

2See [Poo88] for a n explanation of various kinds of possible
hy potheses- here we a re only concerned wit h defau lts.

47

mult iple extensions in default logic [Rei80]. To discrimina te
among multiple competing theories, theory preferences may
be sp ecified . This meta-level knowledge can be used to
prune theories that are irrelevant, or to order theories by
utility or likelihood, etc. We will describe an example of
theory preference in the next section where we examine the
use of Theorist for t emporal reasoning.

3 Temporal Reasoning using Theorist

The Theorist framework has been applied to temporal rea
soning to deal with the frame problem (for the details, see
[Goo87,GG87a]). Here we provide a brief sketch of the re
sults.

In Theorist , temporal domain knowledge can be rep
resented as facts, possible hypotheses, and theory prefer
ences; but before this can be done, some choice of ontology

is necessary- for simplicity, the ontology of situation cal
culus is used . In the simplest case, where there is complete
knowledge of the initia l situation and the effects of actions,
facts are used to represent these. The non-effects (or things
unaffected by actions) are expressed by representing the
usua l frame axioms as defaults. As Hanks and McDermott
noted, this style of representation leads to the multiple ex
tension problem. To illustrate, consider the well known
Yale Shooting Scenario (YSS) [HM86] . The scenario starts
with a gun tha t is initially unloaded and a potentia l victim
who is alive. The sequence of actions, load the gun, wait,
and shoot is considered. We are interested in reasoning
about the result of the act ions . Below is an axiomatization
of this scenario.

fact , loaded(O).
fact a live(O) .
fact loaded(do(load,S)).
fact ,alive(do(shoot,S)) <- loaded(S) .
fact ,loaded(do(shoot,S)) .
default loaded(do(A,S)) +---> loaded(S).
default a live(do(A,S)) +---> alive(S).

For brevity, we introduce the following synonymous names
for situa tions of interest .

1 = do(load ,O), 2 = do(wait,1) , 3 = do(shoot ,2)

The above axiomatization gives rise to many theories that
describe the possible ways the truth-value of rela tions might
persist over the action sequence: load, wait , shoot. These
theories a re the subsets of the set of instances of elements
of ll. that are consistent with F , tha t is, they are the con
sistent subsets of:

{loaded(!) +---> loaded(O), alive(l) +---> alive(O),
loaded(2) +---> loaded(!) , a live(2) +---> a live(l),
loaded(3) +---> loaded(2), alive(3) +-> a live(2)}

We are ignoring instances of ll. that are irrelevant to these
quence of act ions being considered (e.g., alive(do(wait ,0))
+---> alive(O)) . These could be pruned using theory prefer
ence, but, in practice, this is not necessary because the
resolution-based implementation of Theorist only considers

I
. !

·I

·I

instances of fl. relevant to G. The above set of instances of
fl. has two maximal3 consistent subsets, namely,

D1 = {loaded(2) <----> loaded(l) ,

alive(l) <----> a live(O) ,

alive(2) <----> alive(l)}

and

D2 {loaded(3) <----> loaded(2),

alive(l) <----> alive(O) ,

alive(2) <----> a live(l),

alive(3) <----> alive(2)}.

Here FU D1 F --,alive{S) and FU D2 F alive{S). In spite
of these multiple theories, the common sense expectation
in the shooting scenario is that the gun remains loaded
while waiting and the victim dies (See [HM86]). The theory
corresponding to this is D 1 •

The primary result in [Goo87,GG87a) is that multiple
competing theories can be discriminated on the basis of a
chronological preference method called chronological max
imization of persistence. By specifying theory preference
knowledge as a partial ordering on the set of all possi
ble theories, a preferred theory (in this case Di) can be
,elected. The partial ordering is similar to the ordering
proposed for circumscription approaches (cf. [Kau86]), ex
:ept that instead of chronologically minimizing clippings,
we chronologically maximize (in the sense of set inclusion4)

the occurrence of frame defaults. The intuition behind
this ordering is that since most things are unaffected af
ter performing an action, we should maximize persistence.
In addition, to reflect that actions occur in sequence, we
maximize persistence- step by step- in the order the ac
tions occur, i.e., chronologically. Thus for instance, D 1 is
preferred over D 2 since up to the completion of the wait ac
tion, D1 contains all of the frame defaults that D 2 contains,
but D2 does not contain all of the frame defaults contained
by D1 (for instance, loaded(2) <----> loaded(l) is not in D2).

Having represented the YSS as described above, we can
predict the outcome of a sequence of act ions, for instance,
whether --,alive{S) is expected, by finding an explanation for
it whose underlying theory is the preferred theory from the
space of possible theories (when there are multiple preferred
theories, we make predictions from their disjunction). Fur
ther elaborations of the approach to incorporate default ac
tion effects, communication conventions, weak constraints,
error recovery, etc. are still under investigation. Having
given this brief overview of Theorist applied to temporal
reasoning, we are now in a position to consider the con
cerns raised by Haugh.

4 Dealing with Independent Knowledge

The first of the problems Haugh draws our attention to
is that chronological preference methods arrive at incor-

3 If we interpret defau lts as meaning normally then, intuitively, we
want to maximize normality (in some sense) .

4 Actually, the proposal was more general; it provided for domain
Jependent partial orderings other than subset inclusion .

48

rect conclusions when there is (what we call) independent
knowledge. Haugh illustrates this problem, which we call
the knowledge independence problem, with the following ex
ample. Suppose we have a scenario similar to the YSS
except that while the wait action is performed someone
will attempt to unload the gun5 and will be successful if
he knows how. Further, we make no commitment as to
whether the person knows how to unload the gun. We
might axiomatize this by adding the axiom:

fact --,loaded(do(wait,S)) <- knowsJi.ow.

to the YSS axiomatization given earlier.
Since the truth-value of knows_how is unknown, the new

fact does not constrain the set of consistent theories so the
maximal consistent theories are Di and D 2 as before (see
section 3). If chronological preference methods are applied
to the axiomatization, the conclusion arrived at is that the
gun remains loaded and the victim dies; that is, the pre
ferred theory is Di. This theory involves an implicit as
sumption that the person does not know how to unload the
gun (i.e., --,knowsJiow is derivable from FU D 1) . Clearly
this is not the desired result. The result should be (ac
cording to common sense) that, because we do not know
whether the person knows how to unload the gun, we do
not know if the gun is successfully unloaded , and therefore,
we do not know if the victim will be killed .

Note that if knows_how were known to be false, chrono
logical preference would correctly conclude that the vic
tim dies (i.e., D 1 would be the preferred theory) and if
knows_how were known to be true chronological preference
would correctly conclude that the victim lives (i.e, since D 1

would be inconsistent D 2 would be the preferred theory).
The problem arises when the truth-value of knows.Jiow is
unknown because, as a side effect of making persistence
assumptions about the loaded relation, we conclude some
thing about the knowsJiow relat ion. When the truth-value
of knowsJiow is not known, the conclusions drawn should
be conditional. For the above example, the answer should
be alive{S) if knows.Jiow and --,alive{S) if knows.Jww.

The knowledge independence problem is not due to any
inadequacy of the chronological preference methods; rather,
it is due to a weak axiomatization- knowledge about the
independence of relations (knows_how) has not been repre
sented. To solve this problem, we need to establish what
independence means and how it can be represented. Intu
itively, independence of a relation means that its truth
value constrains the assumptions that may be made in
drawing conclusions and not vice versa, i.e., the truth-value
of independent relations are a priori determined though
perhaps unknown presently. So characterizing a domain
involves deciding what knowledge is independent of the as
sumptions. Once this is decided, the next problem is how
to represent and reason about knowledge independence.

With circumscription, it is well known that, depending
on the circumstances, certain relations should be allowed
to vary and others should remain fixed [McC86,Lif86]. One
useful criterion is that relations should be fixed if they are

5 We can view the effec t of the wait action as the combined effect of
:oncurrent actions.

determinants and should be allowed to vary if they are re
sultants. The notion of fixed relations seems to capture at
least some of the intuition behind independence. Whether
it completely characterizes independence is not clear, but
for now we will take the two to be equivalent.

In the modified YSS example above, knowsJiow is an
independent relation and, therefore, should be treated as
fixed. Poole [Poo87] has proposed a method to incorporate
the concept of fixed and varying relations in Theorist. This
elaboration allows the side effects of making assumptions
to be controlled and made explicit by allowing conditional
answers. We first review Poole's proposal and then see
how it leads to a solution of the problem of dealing with
independence.

In addition to the set of facts F and the set of possi
ble hypotheses .6., Poole introduces a set of fixed relations
0. This new set is intended to include relations which we
do not want to make implicit assumptions about. Poole
defines two new forms of explanation: conditional and un
conditional.

Definition 1 ((Poo87]) We say that g is conditionally ex
plainable from F, .6. and 0, if there is a set D of instances
of elements of .6., and a formula C made of instances of

elements of 0 (under conjunction, disjunction, negation),
such that

1. F/\C/\Dl=g

2. F I\ C I\ D is consistent

3. if FI\ CI\ D I= 8, where () is a formula made from
elements of 0 , then FI\ C I= 8.

D is said to be the theory that explains g, and C is the
condition for D .

Definition 2 ((Poo87]) We say that g is unconditionally
explainable from F , .6. , 0 if g is conditionally explainable
with theories D; and corresponding conditions C; for i
1, n, such that FI= C1 V ... V Cn.

The problem of dealing with independence can now be
solved by first declaring the independent relations as fixed
and then answering the query, "Do you expect g to be
true?" with "yes" - unconditionally predicting g- if there is
an unconditional explanation of g whose underlying theory
is the preferred theory (according to chronological prefer
ence), or answer with "yes if C is true" - conditionally pre
dicting g if C - if there is a conditional explanation for g
whose underlying theory is preferred. For instance, in the
modified YSS example, we should add

fixed knows_liow.

to the axiomatization. Here fixed Atom means that Atom
E 0. Now, by definition 1, we can conditionally explain
,alive(J) with the condition C = {,knows..how} and the
theory D 1 (see section 3). Since D 1 is the preferred the
ory (of theories consistent with FU C), we conditionally
predict ,alive(J) if ,knows..how. We can also conditionally
explain alive(J) with the condition C = { knows..how} and
the theory D 2 • In this case, D 1 is inconsistent with FU C

49

and D 2 is the preferred theory. Therefore, we conditionally
predict alive(J) if knows_how. Vve should note that there
is a conditional explanation of alive(J) with condition C =
{ ,knows_how} and theory D 2 , but in this case, D 2 is not
the preferred theory since D, is consistent with FU C and
D1 is b etter than D 2 . Therefore, we cannot conditionally
predict ali·ue(J) if , knows_how.

More importantly, we cannot unconditionally predict ei
ther ,ali·ue(3) or alive(3). In the first case, this is b ecause
there is no unconditional explanation of ,alive(3) since ev
ery conditional explanation of it has the condition C =
{ ,knows_how} and the requirement from definition 2 that
F I= C is not satisfied. In the second case, there is an un
conditional explanation of alive(3) with theory D 2 since the
disjunction of the conditions of the conditional explanations
for Cllive(J) (see above) follows from the facts as required
by definition 2 (i.e., F I= { knows_how} V { ,knowsJiow}).
Nevertheless, D 2 is not the preferred theory since D 1 is
consis tent with F U { knows_how V ,knows_how} and D 1

is better than D 2 . Therefore, we cannot unconditionally
predict Cl live(J).

Besides solving the problem of dealing with indepen
dence in t emporal reasoning, this approach has an added
advantage for planning. Forming conditional plans is easier
because the relevant conditions are automatically identi
fied via conditional explana tion. Vve should note that con
ditional and unconditional explanation have been imple
m ented for Theorist [You87], but conditional and uncondi
tional prediction has not as yet been implemented (though
we foresee no great difficulties in doing this). Let us now
turn to the second problem raised by Haugh.

5 Dealing with Unexpected Results

The final example given by Haugh illustrates another in
teresting problem. \i\Then the result of a sequence of ac
tions conflicts with the normally expected result, applying

chronological preference methods doesn't give the intuitive
explanation of the anomalous result. Let us illustrate this
using Haugh's robot example. In the scenario, there is a
robot whose motion is controlled be gears which can be
locked or unlocked. Initia lly a person has the ability to lock
the robot's forward gears, the reverse gears are locked , the
forward gears are unlocked, and the robot is not moving ei
ther forward or reverse. After the sequence of actions: WClit,
lock_fwd, try_moving, the robot is observed moving. The
Theorist axiomatization corresponding to the one given by
Haugh for this scenario is as follows:

fact canJocldwd(O).
fact lockedJev(O) .
fact -.locked_fwd(0) .
fact ,moving_fwd(0).
fact ,moving_i-ev(O).
fact lockecUwd(do(locldwd,S)) +- canJocldwd(S).
fact moving_fwd(do(try _moving,S)) +- lockedJev(S).
fact movingJ·ev(do(try _moving,S)) +- locked_fwd(S) .
fact ,movingJev(S) +- moving_fwd(S) .
default canJocldwd(do(A,S)) +-+ canJocldwd(S).
default lockedJ·ev(do(A,S)) +-+ lockedJev(S).

I

·.· I . .

default locked_fwd(do(A,S)) .--. locked_fwd(S).
default moving_fwd(do(A,S)) <---+ moving_fwd(S) .
default moving_.rev(do(A ,S)) <---+ movingJ ev(S).

This is obtained by using Haugh 's axiom T9 to t ransla te
Caiises{p , c,e) to T{p ,s) I\ R es idt{c,s,s') =;- T(e,s_') whi<:h
translates to e{ do{c, S)) .- p{S). Whenever T(p ,s) 1s true m
Haugh 's axiomatization, p{S) is true in ours, and vice versa.
Haugh uses the predicate Caiises to define his minimality
cri teria : Pot entiaLcause and D et ermined_ cause. As we are
not concerned with these criteria here, we do not need to
include Causes in our axiomatization.

Haugh goes on to explain that normally we would ex
pect the robot to be unable to move after the firs t two
actions, since we expect both gears to be locked. Never
theless, the robot is observed moving after the final action
so somehow one of the gears must have become unlocked.
Haugh observes that the chronological preference methods
would conclude tha t the reverse gear must have been un
locked for no good reason. Common sense gives us no basis
to decide which gear is unlocked.

While Haugh 's claim is correct , there is a slight t ech
nical problem with the axiomatization he gives: from the
last three facts above, we can derive

,locked_rev{ S) .- locked_fwd{ S)

(the corresponding st a tement is derivable in Haugh's ax
iomatization). Apparently Haugh overlooked this in his
analysis. As it stands, the conclusion that the reverse gear
is unlocked is the expected result of locking the forward
gear.

The axiomatization can be adjusted to represent the
scenario Haugh had intended by replacing the two facts
describing the try_moving action with:

fact moving_fwd(do(try J'Iloving,S)) .
lockedJev(S), ,locked_fwd(S) .

fact movingJ ev(do(try J'Iloving,S)) .-
locked_fwd(S) , , lockedJev(S) .

With this corrected axiomatization, the point Haugh was
trying to make is indeed true. Chronological preferences
methods will conclude that the reverse gear is unlocked,
even though there is no basis to decide which gear is un
locked.

The source of the difficulty here is that , while the ex
pected sta te of affairs after performing the sequence of ac
tions is that both gears are locked and no movement occurs ,
the actual state of affairs is different. Chronological prefer
ence methods are inappropriate for explaining anomalous
results. This is because they maximize the normality (per
sistence of truth-values) of each action in the order of their
occurrence. The stra tegy of chronological preference, in
effect, determines the normal effect of an action assum
ing that the actions preceding it had their normal effect.
When each action has its normal effect , the outcome is
the one predicted by chronological preference. When the
observed outcome is not the expected outcome, one expla
nation is that one or more actions didn't have its normal ef
fect . Chronological preference, however, postpones the ab
normality as late as possible. Consequently, chronological

50

preference has a built-in assumption that if one of the ac
tions in a sequence is abnormal, it is expected to be the las t
one. Clearly, since there is no justification for this assump
tion, chronological preference is an inappropriate heuristic
for explaining anomalous results.

There are other possible explanations for anomalous re
sults as well, namely: the specification of the initial situ
a tion is incorrect, or the specifica tion of the action effects
is incorrect , or the actual sequence of actions was different
from the specified sequence of actions, or the observa tion
of the outcome was faulty. The problem of determining
whether specifications are faulty is what Hayes has called
the prediction problem [Hay71] and is part of the larger
problem of belief maintenance and revision.

In light of all the possible explanations for anomalous
results, it should be clear that the solution is far from easy .
Since the source of the anomaly may be a faulty axioma
tization, approaches that suggest giving up the preferred
theory and moving to the next best theory to explain the
anomaly cannot be considered complete solutions. If the
axioms are faul ty, we should not have much confidence in
their corresponding theories. Probably what's needed is
more knowledge about the ways in which actions can be ab
normal. With this knowledge, a diagnosis approach can be
used to explain unexpected results and possibly prescribe
treatments, i.e., revisions to the axioms. This remains an
area for further research.

6 Conclusion

We have seen how the scientific theory formation approach
can be applied to temporal reasoning through the use of a
theory preference criterion called chronological maximiza
tion of p ersist ence. We have also reviewed Haugh's criti
cisms of this t echnique, particularly, that it d raws incorrect
conclusions when there is independent knowledge. A solu
tion to this problem was proposed; tha t is, independent
relations should be declared as fixed predica tes. In con
junction with this, unconditional prediction can b e used
to determine if a result is expected independently of the
truth or falsity of the independent relations . As well, con
ditional prediction can be used to determine the conditions
underwhich particular results are expected.

Some of the advantages of this approach over tha t sug
gested by Haugh (and similar proposals by Loui and Lifs
chitz) are:

1. It addresses Hanks' and McDermott 's crit
icisms; we are not forced to phrase our ax
ioms in t erms of causality;

2. We don't have to decide when to use po
tential causes and when to use determined
causes (cf. [Hau87]), and

3. We can easily form conditional plans be
cause conditional prediction automa tically
identifies the relevant conditions.

Nevertheless, further study is necessary to answer ques tions
about whether there is a more general notion of indepen
dence than that expressible by fixed rela tions. For instance,
do we need to talk about independence of objects, indepen-

dence of formulae, independence of rela tions w.r.t. certain
assumptions but not others, et c. We need a specification of
general indep endence and a means to represent and reason
about it. A general specification of independence is ob
viously related to probabilistic independence, and further

understanding of representations based on probability is
warranted (e.g., (Ale87,Bac88]) . In any case, independence
seems to be an important concept that should be further
investigated.

Finally, we saw how the problem of dealing with anoma
lous results is more complex than sometimes portrayed.
Solving it may require extra domain knowledge about the
way in which anomalous results can arise. Perhaps a com
bination of diagnostic reasoning and b elief maintenance is
needed for this problem. The Theorist project is attempt
ing to bring these and other seemingly disparate aspects
of hypothetical reasoning within one unified framework.
Much work remains to be done.

Acknowledgements

I have b enefit ed greatly from the ideas, criticisms, and en
couragement of many people. Deep thanks to my super
visor, Randy Goebel. Thanks also to George Ferguson,
Patrick Fitzsimrpons, Abdul Sattar, Gurminder Singh , and
Bonita Wong at the University of Alberta and David Poole,
Eric Neufeld, Denis Gagne at the University of Waterloo
who have contributed to this work through many discus
sions and debates. Special thanks to an anonymous re
viewer for valuable criticisms and suggestions.

References

(Ale87] R. Aleliunas. Math ematical Models of R eas oning:
Competence Models of Reasoning about Proposi
tions in English & Th eir R elationship to the Con
cepts of Probability. Research Report CS-87-31,
Department of Computer Science, University of
Waterloo, Waterloo, Ontario, July 1987.

(Bac88] F. Bacchus. Sta tistically founded degrees of be
lief. In Proceedings of the S eventh Canadian Con
f erence on Artificial Int ellig ence, June 1988. (in
this volume).

(GG87a) R.G. Goebel and S.D. Goodwin. Applying theory
formation to the planning problem. In Proceed
ings of the 1987 Workshop: Th e Frame Problem
in Artificial Intelligence , pages 207- 232, Morgan
Kaufmann, Los Altos, California, April 1987.

(GG87b] S.D. Goodwin and J.D .D. Gagne. Explanation
and prediction. May 1987. (unpublished) .

(Goo87) S.D. Goodwin. R epresenting Frame Axioms as
D efault s. Research Report CS-87-48, Depart
ment of Computer Science, University of Water
loo, Wa terloo, Ontario, July 1987.

51

(Hau87) B. Ha ugh. Simple causal minimizations for tem
poral persistence and projec tion. In Proceedings
of th e Sixth National Conference on Artificial
Int elligence, pages 218- 223, Morgan Kaufmann,
Los Altos, California, July 1987.

(Hay71) P.J . Hayes. A logic of actions. Ma chine Intelli
gen ce, 6:495- 520, 1971.

(HM86) S. Hanks and D.V. McDermott. Default reason
ing, nonmonotonic logics, and the frame problem.
In Proceedings of the Fifth National Conference
on Artificial Int elligence, pages 328- 333, Morgan
Kaufmann, Los Altos , California, August 1986.

(HM87) S. Hanks and D.V. McDermott . Nonmonotonic
logic and temporal project ion. Artificial Int elli
gence, 33(3):379- 412, November 1987.

[Isr80] D.J . Israel. What's wrong with non-monotonic
logic? In Proceedings of th e First National Con
ference on Artificial Intelligence, pages 99- 101,
Stanford University, Stanford, California, August
18-21 1980.

[Kau86) H. K autz. The logic of persistence. In Proceed
ings of the Fifth National Conference on Artificial
Int elligence, pages 401-405, Morgan Kaufmann,
Los Altos, California, August 1986.

[Lif86) V. Lifschitz. Pointwise circumscription: Prelimi
nary report. In Proceedings of th e Fifth National
Conference on Artificial Intellig ence, pages 406-
410, Morgan Kaufmann, Los Altos, California,
August 1986.

[Lif87) V. Lifschitz. Formal theories of action. In Pro
ceedings of th e 1987 Workshop: Th e Fram e Prob
lem in Artifi cial Intelligence, pages 35- 57, Mor
gan Kaufmann, Los Altos, California, April 1987.

[Lou87] R .P. Loui. Response to Hanks and McDermott:
T emporal evolution of beliefs and beliefs about
temporal evolution. Cognitive S cience, 11 , 1987.

(McC80] J. McCarthy. Circumscription- A form of non
monotonic reasoning. Artificial Int elligence, 13(1
& 2):27- 39, 1980.

[McC86] J. McCarthy. Applications of circurnscription to
formalizing commonsense knowledge. Artificial
Int elligence, 28(1):89- 116, 1986.

[PG87] D.L. Poole and S.D. Goodwin. A Theorist to
Prolog compiler. August 1987. (unpublished] .

[P GA87) D.L. Poole, R.G . Goebel, and R. Aleliunas . The
orist: A logical reasoning sys tem for defaults and

diagnosis. In N. Cercone and G. McCalla, editors,
Th e Knowledge Frontier: Essays in th e Repre
sentation of Knowledge, pages 331- 352, Springer
Verlag, New York, 1987.

·i

I

.J

[Poo87] D.L. Poole. Fixed Predicates in Default Reason
ing. Research Report CS-87-11, Department of
Computer Science, University of Waterloo, Wa
terloo, Ontario, February 1987.

[Poo88] D.L. Poole. Default and abductive reasoning:
An architecture for explanation and prediction.
Journal of Intelligent Systems, 1988. [submitted].

[Pop58] K. Popper. The Logic of Scientific Discovery.
Harper & Row, New York, 1958.

[Rei80] R. Reiter. A logic for default reasoning. Artificial
Intelligence, 13(1 & 2):81- 132, 1980.

[Sho86] Y. Shoham. Chronological ignorance: Time,
nonmonotonicity, necessity and causal theories.
In Proceedings of the Fifth National Conference
on Artificial Intelligence , pages 389- 393, Morgan
Kaufmann, Los Altos, California, August 1986.

[You87] M. Young. Implementing fixed predictates
in Theorist. In Experiments in the Theorist
Paradigm: A Collection of Student Papers on
the Theorist Proj ect, Department of Computer
Science, University of Waterloo, May 1987. [Re
search Report CS-87-30].

52

A Syntactic Approach to Mental Correspondence*

Anthony S. Maida

Department of Computer Science
333 Whitmore Laboratory

Pennsylvania State University
University Park, PA 16802

Abstract

Mental correspondence occurs when two cognitive
agents are attending to (i.e., thinking about) the same thing.
This paper shows a method to represent beliefs about men
tal correspondence. We illustrate the method on a prob
lematic example in which one of two agents has a rather
vague concept of some entity, and the other agent is think
ing about whatever the first agent is thinking of. In the
course of treating the example we address the following: 1)
specificity verses non-specificity of objects of belief; 2)
quantification across belief contexts; and, 3) belief nesting.

Keywords. Knowledge, belief, quotation, quantifying-in,
intension.

Introduction.

One approach to the representation of natural
language belief sentences involves the use of quoted sen
tences in first-order logic. This paper applies this
"quoted-language" approach to the representation of sen
tences which convey information about mental correspon
dence. In particular, our goal is to represent, using quoted

predicate calculus (QPC), significant components of the
following sentence first used by Geach (1967, p. 628): Hob

thinks a witch blighted Bob's mare, and Nob wonders whether she (the
same witch) killed Cob's sow. Clearly, Nob is thinking about
whatever Hob is thinking of. However, Hob may not have
a specific witch in mind. Cresswell (1985, p. 143) and
Pendlebury (1982, p. 347) ask how Nob could be thinking
of what Hob is thinking of if Hob is not thinking of any
thing in particular. This paper shows how such "mental
correspondence" information can be represented in a
syntactically-based belief reasoner. To achieve this, we
must cope with the following: 1) specificity verses non
specificity of objects of belief; 2) correspondence of mental
representations in different belief contexts; and, 3) belief
nesting. The problem of mental correspondence, and our

* - This research was supported in part by NSF grant CRR-8716776.
Thanks to John Barnden, Mingqi Deng, Minkoo Kim, and Joe Nieder
berger for discussion of ideas in this paper.

53

approach to it, is important for the following reason. The
approach illustrates a more flexible means to quantify
across belief contexts than by wiring in assumptions about
standard names or rigid designators . This flexibility is
necessary in commonsense domains, such as natural
language understanding.

Relation to Other Work. The approach described
here is based on Haas (1986) and Perlis (1985) in that it
uses quoted predicate calculus. This work evolved from the
earlier work of Moore and Hendrix (1979) and Konolige
(1982), which identified an agent's beliefs with formulas in
a first-order language. Perlis (1985, 1986) showed that the
quoted-language approach is not doomed to inconsistency.
Haas (1986) showed that reasoning about beliefs could be
done efficiently by use of a process called simulative

reasoning. Simulative reasoning was known before Haas
(cf., Creary, 1979; Konolige, 1982; Moore, 1977, p. 224)
but he showed it could be applied to situations involving
some kinds of incomplete knowledge.

Non-specificity of Belief.

It is difficult to represent many simple natural
language assertions of belief. One well known sentence
taken from Quine (1956) appears below.

(I J Ralph believes there is a spy.

The sentence has two interpretations (cf., Quine, 1956).
One interpretation is that Ralph believes there is a spy but
Ralph does not suspect any individual in particular. This,
we will call the "non-specific" reading. The other interpre
tation is that Ralph does suspect some individual in partic
ular. This, we will call the "specific" reading.

Semantics: Ralph's Data Base State. We assume
that Ralph, and other agents, maintain beliefs by use of
expressions in a particular mental language, namely, quoted
predicate calculus (QPC). Therefore, we know what
expression is in Ralph's mind when he believes "non
specifically" that there exists a spy. Ignoring variable
renamings, an expression something like: (exists (x) (is-spy x))

will reside in Ralph's mental data base. For the specific
reading, there is less certainty as to what Ralph's belief is.

. . . I

•• I

I

I

I

I

The following are example propositional sentences, which
if any resided in Ralph's data base, would make the
specific reading true: (is-spy Ortcutt) or (is-spy (father-of Sey

rrwr)). For the specific reading to be true, there must exist
some representation in Ralph's data base with some, as yet,
unspecified properties such as being a proper name or per
ceptual representation. We are unable to fully specify these
properties other than mentioning that they may require
full-fledged knowledge-based reasoning about designators.
An alternative approach based on standard names, and
which does not make assertions about designators, has been
explored by Konolige (1982).

Definition of the Mental Language.

Quotes. We refer to propositions and parts of propo
sitions by use of a single quote mark prefixed to the object
we are refering to. A quoted list is equal to the list of
quoted elements. In complex formulae, a preceeding
comma unquotes an implicitly quoted element.

Explicit Belief of an Agent. There is a predicate
"believes-that" which takes two arguments. The first
denotes an agent. The second argument denotes a sen
tence. An expression of the form: (believes-that Agent Propos)

is true just in case: 1) the propositional sentence designated
by "propos" resides in the data base for the designated
agent; and, 2) the propositional sentence is marked as true
in that data base. When these two circumstances are
satisfied, we will say that the sentence is in the agent's
belief set.

Returning to Ralph's Beliefs.

We can represent that Ralph non-specifically believes
there is a spy:

(2) (believes-that Ralph '(exists (x) (is-spy x)))

This expression states that the sentence (exists (x) (is-spy x))

resides in Ralph's data base and is marked as true. We
can represent the specific interpretation by the expression:

(3} (exists (x) (believes-that Ralph (list 'is-spy x)))

Expression { 3} is true if there exists a quoted term (e.g,
"'Fido,") such that the expression "(list 'is-spy x)" is equal
to a designator for a propositional sentence and this sen
tence is in Ralph's belief set. If the quoted term were
"'Fido," the sentence would be "(is-spy Fido)." Representa
tions (2) and {3} have been used by Perlis (1985).

Skolemizing Formulas. We will skolemize formulas
because non-specific existential assertions can set up men
tal handles that can be subsequently referred to in natural
language discourse. Consider the sentence sequence below:

Ralph believes (non-specifically) that there is a spy. Ralph won
dered whether the spy was clever.

54

The phrase "the spy" in the second sentence accesses a
handle that was set up by the first sentence; but the first
sentence said that Ralph did not have any particular indivi
dual in mind, so where does this handle come from? One
way to get this handle is by skolemizing existential asser
tions. This is because the representational form for the
non-specific reading matches that for a specific reading.
This technique, we will apply to the Geach sentence.

Representing Unresolved Ambiguity. Let us
skolemize expressions {2} and {3}. We now assume that
Ralph's mental language is skolemized QPC. Therefore we
can skolemize the term designating the expression that
would be used in his data base. This gives us expression
(5}. The skolemized version of { 3} would be { 6}.

(5) (believes-that Ralph '(is-spy skolcm-1))

(6) (believes-that Ralph (list 'is-spy skolem-2))

Now expression { 6} is only approximately correct because
if the expression: (is-spy skolem-3) resided in Ralph's data
base, then it would be sufficient to make expression (6}
true, which is undesireable because { 6} would be true
when Ralph did not have someone specific in mind.

We assume the agent is sensitive to whether a term is
a skolem constant and realizes when it is using a skolem
constant. With a skolem constant, there is no prospect for
the agent to perform any sort of semantic attachment in
order to gather more information about the nature of the
entity refered to by the constant. This is in contrast to, for
instance, perceptually-based tenm that might be generated
by looking at an entity. In that circumstance th'e agent
would know of the possibility of acquiring more informa
tion by looking again. The act of looking would be a form
of semantic attachment (cf., Weyrauch, 1980).

We can fix { 6} as follows:

(7) (and
(believes-that Ralph (list 'is-spy skolem-2))
(is-not-sk-const skolem-2))

Expression {7} now stipulates that whatever skolem-2
refers to, the referent must not itself be a skolem constant.

There is an interpretation where the listener has not
disambiguated between the specific and non-specific
interpretation. In fact, humans often do not notice the
ambiguity of sentence { 1} . We can represent this by
expression (8} where we are uncommitted about the nature
of the designator Ralph is using.

(8) (believes-that Ralph (list 'is-spy skolem-2))

We then have the option of later enriching the representa
tion with an assertion saying whether or not the object
referred to by "skolem-2" is a skolem constant. Asserting
that it is a skolem constant gives us the non-specific
interpretation. Asserting that it is not a skolem constant
gives us the specific interpretation. In summary, a
representation which does not distinguish between the
specific and non-specific interpretation of sentence { 1} is
given in expression (8}. Both the specific and non-specific
interpretations can represented by incrementally

augmenting the knowledge base.

Correspondence of Mental Representations.

Relative Denotation. Different agents may take the
same designator in their respective mental languages to
denote different entities. To express this kind of
knowledge, we will introduce a function called "relative
den" which accepts two arguments, an agent and a designa
tor.1 The instantiated function term denotes what the agent
takes the designator to denote. For example, the expres
sion: (relative-den John 'Fido) denotes whatever John thinks
"Fido" denotes.2 The observer can represent that he and
John agree about what "Fido" denotes by the expression:

(9) (= Fido (relative-den John 'Fido))

We will call assertions like expression (9) assertions of
correspondence. 3

Semantics of Relative Denotation. We give a
semantics for relative denotation by use of a hierarchy of
models. Having equated the explicit beliefs of an agent
with a set of sentences in the agent's mental language, we
can treat an agent's belief set as a logical theory in QPC
for which we can supply a model. When an agent main
tains a mental designator, we can speak of its denotation
b)' virtue of its causal connections (e.g. , perceptual-motor
and behavioral) to the world. Further, if an agent has two
mental designators whose causal connections indicate that
they are used to denote the same entity, then it seems rea
sonable to say that the agent believes that the designators
corefer. Were this not the case, the agent would not have
beliefs about anything.

An example is illustrated in Figure 1. In the area
enclosed by the box labelled "model-1," we have two dis
tinct ordinary dogs. The box labelled "Ralph's theory" con
tains part of Ralph's belief set. In particular, Ralph has two
distinct representations which by virtue of their causal con
nections to the world, denote the same entity. Conse
quently, it follows that he believes that the designators
(i.e., representations) corefer.4

1 The decision Lo use relative denotation emerged during discus
sions with Joe Niederberger.

2 If the designator "Fido" does nol reside in John's data base, then
the instantiated term cannot designate anything. In this case, we will
say that it designates the distinguished object NOTHING.

3 Various apparatus has been used Lo express similar notions.
Creary (1979), and later Bamden (1986), used a "concept-of' predi
cate. Martin (1979) used co-descriptors. Rapaport and Shapiro (1984)
asserted extensional equivalence across belief contexts. Smith (1986)
talks about the more general notion of circumstantial relativity. The
use of relative denotation differs from the other proposals in that it
remains in the confines of denotational semantics.

55

Model-2

Model-I

(= Fi.Jo (relative-den Ralph 'Fido))

(= Fi.Iv (relative-den Ralph 'Hairy-dog))

(believes-that Ralph '(= Fido Hairy-dog))

Figure 1. A domain and interpretation illustrating the use
of the "relative-den" function symbol.

An observer of Ralph also has a theory. His theory,
by virtue of its causal connections, is about both Ralph's
mental structure and the ordinary world that Ralph has
beliefs about (i.e., the contents in the box labelled "model-
2"). The observer uses the designator "Fido" to denote the
same entity that Ralph uses the designator "Fido" to
denote. Fw1hermore, the observer believes this, as indi
cated by the correspondence assertion (= Fido (relative-den

Ralph 'Fido)) that exists in the observer's theory. Notice that
the observer uses the designator "Hairy-dog" to denote a
different entity than Ralph does. These considerations give
the following identity.

(forall (x y)
(= (= (relative-den Ralph x) (relative-den Ralph y))

(believes-that Ralph ' (= ,x ,y))))

De Re Beliefs. We turn to a more complicated vari
ant of (1), shown in (10) .

(!OJ Ralph believes that the Queen of Thebes is a spy.

This sentence has two interesting interpretations deriving
from the way the phrase "the Queen of Thebes" is inter
preted. In the first case (the de re interpretation), Ralph
believes that some person (who, possibly unknown to
Ralph, happens to be the Queen of Thebes) is a spy. In the

4 Just as in a logical theory, we would say that A equals B relative

to a model if and only if A and B denote the same entity in the model
(cf., Genesercth & Nilsson, 1987, p. 25). The interpretation function
would have LO be wired into Ralph's perceplllal/molor system.

· . . 1

. I

second case (the de dicto interpretation), the speaker
believes that Ralph believes that the person in question is
indeed the Queen of Thebes and is indeed a spy. We will
only discuss the former interpretation because the latter is
well understood.

Truth Conditions of De Re Ascriptions. The de re
interpretation might be intended after Ralph sees a person
walking into restricted areas of a castle while not realizing
that this person is the Queen of Thebes. Given this, the
truth conditions of the de re sentence would be:

(11) (exists (dcsg)
(and (believes-that Ralph (list 'is-spy desg))

(= The-Q-of-Thebes (relative-den Ralph desg))))

An equivalent to this sentence has not been represented by
practitioners of the quoted-language syntactic approach
(i.e., Haas, 1986; Perlis, 1985).

Moore and Hendrix (1979) stated the truth conditions
of the de re interpretation to a belief sentence. However,
they did not show how the truth conditions translate into a
knowledge representation formalism. Let us look at their
statement.

A sentence of the form "A believes S" is true if and only if the
individual denoted by "A" has in his belief set a formula P that
meets the fo llowing two conditions: first, the subexpressions of
"S" that arc interpreted de dicta must express the meaning for
him of the corresponding subexpressions of P; second, the subex
pressions of "S" that are interpreted de re must have the refer
ence for him of the corresponding subexpressions of P, and he
must be able to pick out the reference of P (p. 19).

In our case, the agent is Ralph, S is "the Queens of Thebes
is a spy," the subexpression of S that is interpreted de dicto
are the words "is a spy," and the subexpression of S that is
interpreted de re is the words "the Queens of Thebes. " P
is expression (11) . When Moore and Hendrix use the
phrase "reference for him," we use the relative denotation
function. Where Moore and Hendrix use the phrase "be
able to pick out the reference," we have no corresponding
technical device. Moore and Hendrix distinguish between
the meaning and reference of an expression. We take the
meaning of an expression for Ralph to be a copy of the
actual expression Ralph uses.

Expression (11) contains two parts. The subexpres
sion (believes-that Ralph (list · is-spy desg)) represents the portion
of the sentence which should be taken de dicto and
attempts to actually describe the expression Ralph uses.
The subexpression (= The-Q-of-Thebes (relative-den Ralph desg))

encodes the de re portion of S and asserts, as Moore and
Hendrix stipulate, that the phrase "the Queen of Thebes"
has the reference for the observer of the corresponding
expression of P, i.e., desg .

Belief Nesting.

We want to represent that some observer believes that
Ralph believes (specifically) that there is a spy. The

56

observer's data base would contain the following formulas.

(15) (bclicves-t11at Ralph (list 'is-spy skolem-2))
(16) (is-not-sk-const skolcm-2)

We, as observer of the observer (Observer Two), must
describe the state of the observer's data base. This is done
below.

(17) (believes-that observer
'(believes-that Ralph '(is-spy ,skolem-3)))

(18) (is-sk-const skolem-3)

(19) (believes-that observer
'(is-not-sk-const (relative-den Ralph ,skolem-3)))

(20) (= Ralph (relative-den observer 'Ralph))

Expressions (17) and (18) state that expression (15)
resides in the observer's data base. Expression (19) states
that expression (16) resides in the observer's data base.
"Skolem-3" in expressions (17)-(19) is used to denote
"skolem-2" of expression (15) and {16) . That is why in
expression (18) we assert that "skolem-3 " denotes a
skolem constant. However, Ralph uses "skolem-2" to
denote something that is not a skolem constant. That is
why, in (19), we say that the denotation for Ralph of what
we denote by "skolem-3" (i.e., "skolem-2") is not a skolem
constant. Finally, (20) asserts that Observer Two agrees
with the original observer on what "Ralph" denotes.

Mental Correspondence.

We now return to the Geach sentence armed with
tools for treating non-specificity of belief, correspondence
across belief contexts, and belief nesting. We simplify the
sentence to remove verbs that are beyond the scope of this
paper. This gives us { 21).

(21} Hob believes (non-specifically) that a witch killed the horse
and Nob believes that the (same) witch killed the pig.

The observer has beliefs about two people, Hob and Nob.
This means we must specify the state of Hob and Nob's
data bases prior to specifying the state of the observer's
data base. Specifying Hob's data base is based on analogy
with (8).

(believes-that Hob (list 'kills skolcm-1 'horse))
(is-sk-const skolcm-1)

(believes-that Hob (list 'is-witch skolcm-1))

These are the observer's beliefs about Hob's beliefs. The
middle expression can be left out if we do not commit our
selves to whether the belief is specific or non-specific.
Since the observer believes that Nob believes that the very
same (non-specific!) witch killed the pig, this entails that
Nob believes that Hob believes (non-specifically) that a
witch killed the horse. These can be expressed by analogy
with the previous section as shown below. It is reminiscent
of pushing down environments, described in Wilks & Bein
(1983) and Wilks & Ballim (1987).

(believes-that Nob '(believes-that Hob '(kills ,skolem-2 horse)))

(is-sk-const skolem-2)

(believes-that Nob '(is-not-sk-const (relative-den Hob ,skolcm-2)))

(= Hob (rdative-den Nob 'Hob))

Nob independently believes about some object that it killed
a pig and is a witch. This is expressed below.

(believes-that Nob (list 'kills skolem-3 'pig))

(believes-that Nob (list 'is-witch skolem-3))

Furthermore, Nob believes a correspondence ({ 22)) and the
observer believes a correspondence ({ 23)).

[22) (believes-that Nob '(= ,skolem-3 (relative-den Hob ,skolem-2)))

[23) (= (relative-den Hob skolem- 1) (relative-den Nob skolem-3))

Ob,erv~r

",,,__)' j.,J1'c•t~

tv•~ .. r•t,. I
C.~'i'f't.Src.V'\df'to,c (.,

Figure 2. The correspondences for the Geach sentence,
expressions [22) and [23).

Discussion.

Since the problems of resolving referents in natural
language - definite descriptions, anaphoric pronouns, and the like

are inherently problems of determining mental
correspondence, the approach seems applicable to those cir
cumstances as well: Very little, however, has been said
about the semantics of these skolem constants. For this
paper, we assume that their semantics is identical to those
of normal terms and their non-specific nature is based on
the inability to use them in procedural attachment. In our
current work, we have come to believe that mental
representations can not be denotational in a model-theoretic
sense. However, that is a topic of a future paper.

57

References

[1] Barnden, J. A. (1986) Imputations and explications:
Representational problems in treatments of proposi
tional attitudes. Cognitive Science, 10, 319-364.

[2] Creary, L. G. (1979) Propositional attitudes: Fregean
representation and simulative reasoning. Proc. IJCAI,
6, 176-181.

[3] Cresswell, M. J. (1985) Structured meanings: The
semantics of propositional attitudes. Cambridge, MA:
MIT Press.

[4] Fauconnier, G. (1985) Mental spaces: aspects of
meaning construction in natural language. Cam
bridge: MIT Press.

[5] Geach, P.T. (1967) Intentional identity. The Journal
of Philosophy, 64, 627-632.

[6] Genesereth, M. & Nilsson, N. (1987) Logical founda
tions of artificial intelligence. Los Altos, CA: Morgan
Kaufman.

[7] Hass, A. R. (1986) A syntactic theory of belief and
action. Artificial Intelligence, 28 (3), 245-292.

[8] Kaplan, D. (1971) Quantifying in. In L. Linsky (Ed.)
Reference and modality. Oxford: Oxford University
Press.

[9] Konoli ge, K. (1982) A first-order formalization of
knowledge and action for a multi-agent . planning
system. In J.E. Hayes, D. Michie, & Y.H. Pao (Eds.)
Machine Intelligence 10, pp. 120-147, Chinchester,
England: Ellis Horwood.

[10) Maida, A. (1983) Knowing intensional individuals and
reasoning about knowing intensional individuals.
Proc. !JCAJ, 8, 382-384.

[11) Maida, A. (1985) Selecting a humanly understandable
knowledge representation for reasoning about
knowledge. International Journal of Man-Machine
Studies, 22, 151-161.

[12) Maida, A. (1986) Introspection and reasoning about
the beliefs of other agents. The Eighth Annual
Conference of the Cognitive Science Society, Amherst,
MA, 187-195.

[13] Martin, W. A. (1979) Roles, co-descriptors, and the
formal representation of quantified English expres
sions. Technical Report No. MIT/LCS/fM-139, 1979,
545 Technology Square, Cambridge, Massachusetts
02139.

[14) Moore, R. C. & Hendrix, G. G. (1979) Computational
models of belief and the semantics of belief sentences.
SRI Artificial Intelligence Center Technical Note 187,
SRI International, Menlo Park, CA.

[15) Niederberger, J. (1987) A syntactic approach to
Kripke's "A puzzle about belief." Master's paper,
Department of Computer Science, Penn State Univer
sity, University Park, PA 16802.

[16] Pendlebury, M. (1982) Hob, Nob, and Hecate: The
problem of quantifying out. Australasian Journal of
Philosopy, 60, 346-354.

[17] Perlis, D. (1985) Languages with self-reference I:
Foundations (or We can have everything in first-order
logic!). Artificial Intelligence, 25 (3), 301-322.

[18] Perlis, D. (1986) Self-reference, knowledge, belief,
and modality. Proc . AAAI-86, Vol. 1, 416-420.

[19] Quine, W. V. 0. (1956) Quantifiers and propositional
attitudes. Journal of Philosophy, 1956, 53, 177-187.

[20] Rapap01t, W. J. & Shapiro, S. C. (1984) Quasi
indexical reference in propositional semantic network.
Proceedings of the Tenth International Conference on
Computational Linguistics, Stanford, California, July
2-6, 1984, pp. 65-70.

[21] Smith, B. C. (1986) Varieties of self-reference. In J.
Halpern (Ed.) Theoretical aspects of reasoning about
knowledge (pp. 19-43). Los Altos, CA: Morgan
Kaufmann.

[22] Van Lehn, K. (1978) Determining the scope of
English quantifiers. MIT AI Lab Report AI-TR-483.

[23] Weyrauch, R. (1980) Prolegomena to a theory of
mechanized formal reasoning. Artificial Intelligence,
13, 133-170.

[24] Wilks, Y. & Ballim, A. (1987) Multiple Agents and
the Heuristic Ascription of Belief. In Proceedings of
IJCAI-87, Milan, Italy, 118-124.

[25] Wilks, Y. & Bien, J. (1983) Beliefs, points of view,
and multiple environments. Cognitive Science, 7, 95-
119.

58

Statistically Founded Degrees of Belief

Fahiem Bacchus*
Department of Computing Science

The University of Alberta
Edmonton, Alberta

T6G 2Hl

Abstract

A logic, called Lp, is developed which can express a large
variety of statistical knowledge. This logic takes a novel ap
proach to the problem of mixing probabilities with first order
logic. In the logic there is a probability distribution over the
domain of discourse, while in previous work, e.g., Nilsson's
probability logic, the probability distribution is over the set
of possible worlds. It is shown how logics with a probability
distribution over the set of possible worlds are incapable of
expressing statistical knowledge, e.g., "The majority of birds

can fly," whereas, the logic developed here can. It is shown
how this statistical knowledge can be used to induce a degree
of belief in sentences which make reference to specific indi
viduals, e.g., "Tweety can fly." These degrees of belief are
generated through a simple and intuitive inductive assump
tion. The induced degrees of belief display non-monotonic
properties and provide an alternative formalism for express
ing and reasoning with notions of statistical typicality. The
formalism has the advantage of possessing a transparent se
mantics, based on sets and probabilities of those sets, as well
as a sound and complete syntactic proof theory.

1 Introduction

The main contribution of this work is the development of a
formal logic capable of representing, and reasoning with, a
wide variety of statistical knowledge The logic, called Lp,
is a type of probability logic. It is, however, very different
from most previously developed probability logics. Whereas
most previous probability logics posit a probability distribu
tion over the set of possible worlds, in Lp the probability
distribution is over the domain of discourse. This allows Lp
to express statistical knowledge inexpressible in the possible
worlds approach. The logic is an extension of ordinary first
order logic, and it possesses a sound and complete proof the
ory which can reason not only with formulas of first order
logic but also with the statistical knowledge.

Lp is, however, incapable of assigning probabilities to
closed formulas (i.e., formulas in which all of the variables
are bound, also called sentences). It will be demonstrated
how the statistical knowledge expressed in Lp can be used to

· This research was supported by the University of Alberta through
their Dissertation Fellowship

59

generate degrees of belief for a broad class of closed formu
las. This is accomplished through a simple and intuitive in
ductive assumption. These induced degrees of belief display
non-monotonic behaviour, i.e., they can change (drastically)
with the addition of new knowledge.

By itself Lp is capable of representing the kind of poorly
quantified statistical knowledge typically found in diagnos
tic domains, e.g. , the domain of medical diagnosis. It is also
capable of reasoning with this knowledge in a sound and
complete manner. In fact its reasoning abilities logically sub
sume all previous probability based reasoners. Furthermore,
it possesses a solid semantic foundation.

The combination of Lp and the inductive generation of de
grees of belief offers an alternative to the default logic of Re
iter [1] in those situations where a statistical interpretation
of the default is available. In particular, multiple inheritance
hierarchies with exceptions can be given a natural treatment
with this formalism [2]. Furthermore, because the generated
degrees of belief are based on probabilities , they can be used
for decision theoretic planning in those situations where costs
are available (see, e.g., Luce [3]) , taking advantage of strong
results due to De Finetti and others (see [4, chapters 3 and
7]) which show that measures over a propositional lattice of
sentences used to guide decisions must be probability m ea
sures if the decision maker is to secure the possibility of a
net gain (or at least 'breaking even') in all decision-making
situations.

Section 2 demonstrates the difference between the possible
worlds approach and Lp, presents the intuition behind the
induction of degrees of belief, and discusses the expressive
ness of Lp. Section 3 gives, in a condensed form, the formal
details of Lp, including the deductive proof theory. Sec
tion 4 does the same for the inductive mechanism. Section 5
consists of some examples of the types of reasoning possible.
Finally, section 6 makes some conclusions and discusses some
open problems.

2 Motivation

2.1 Lp

Most previous work on probability logics in AI, [5,6], and
in philosophy, [7,8,9,10,11,12], that the author is aware of,
has posited a probability distribution over the set of possible
worlds, where a possible world in this context is considered

• <

. '

I

. . . I

to be one possible complete specification of the truth values
of the sentences of the logic.1 In this approach the probabil
ity of any sentence becomes the measure of the set of possible
worlds in which that sentence is true. This leads to an essen
tial difficulty when trying to express statements about the
proportion of objects which possess a certain property, as for
example, in the statement "More than 50% of all dogs bark."
This statement makes a claim about dogs in general, and in
a first order language the only plausible means of represent
ing it is by assigning a probability to the universal sentence
VxDog(x)-+ Bark(x). However, if the knowledge base con
tains a single instance of an individual dog who cannot bark,
then the universal sentence will be false in all possible worlds;
thus, the probability of the universal sentence will be zero,
even if every other individual dog in the knowledge base is
known to bark.

In contrast, in Lp the probability distribution is over the
domain of discourse. This approach allows the expression
of statistical knowledge through probability terms which
contain open formulas (i.e., formulas with free variables).
For example, the previous statement can be expressed with
the Lp sentence [Bark(x) IDog(x)]x > .5. This sentence
is formed from the'>' predicate symbol, the constant '.5',
and a probability term which contains two open formulas,
Bark(x) and Dog(x). Intuitively, the probability term rep
resents the proportion of dogs, x, which bark. These prob
ability terms have a completely different semantics from the
semantics of ordinary universal sentences and can be used to
express a wide variety of statistical knowledge.

A key innovation which contributed to the expressiveness
of the logic was to make the logic two sorted, by including a
totally ordered field of numbers in the semantics. One sort
of entity in the logic is the set of objects 0, and the other
sort is a field of numbers. The intention is that the set of
objects consists of things of interest (e.g., cars, people, kinds
of cars, etc.), while the field of numbers are the denotations
of the probability terms.

Probabilistic knowledge is encoded in Lp through the for
mation of probability terms from open formulas. These
terms are field terms, i.e. , they refer to particular, but un
specified, numbers in the field. Symbols representing orcler-

1 Work in philosophy posits a probability distribution over the propo
sitional lattice formed by the equivalence classes of the sentences in
the logic. The bases for this probability distribution are sentences
which are long conjunctions and which fix the truth value of all other
sentences. Corresponding to each such long conjunction is a possible
world-the long conjunction specifies the truth values in that possible
world. Hence, a probability distribution over these basis sentences is
equivalent to a probability distribution over the set of possible worlds.
When the logic is first order logic universally quantified sentences are
assigned a probability which is equal to the product of the probabili
t ies of all the instantiations of that universal sentence. This is called
the substitutional interpretation (see LeBlanc [11]) . (Technical details
differ from author to author). In fact, this is the only reasonable inter
pretation if one also wishes to preserve the normal semantic meaning of
universal sentences. When using the substitutional interpretation one
false instantiation (i.e., an instantiation with probability zero) will force
the probability of the universal to be zero. For example if we know that
Tweety is a bird who cannot fly, i.e., Fly(Tweet y) has probability zero,
then we must also have that the probability of VxBfrd(x)---+ F ly(x) is
zero (cf. the possible worlds approach described in body of text).

60

ing relations and field functions are also included; so, sen
tences can be formed from a mixture of these symbols and
the probability terms. Sentences formed in this manner can
be very expressive. For example, knowledge like "It is more
likely that a politician is a lawyer than an engineer" can be
expressed with an Lp sentence formed with the less than
field predicate symbol, '<'.

The two sortedness of the logic also allows the creation
of 'measuring' functions which map from the set of objects
to the field of numbers. These functions can be viewed as
being metrics which are applicable to the objects. For ex
ample, one could say W eight.in_kgs(Jack) = 80 to indicate
that the measuring function W eighLin_kgs maps the object
Jack to the number 80, the obvious interpretation being that
Jack weighs 80 kgs. With these measuring functions it is
possible to express functional probabilistic information like
"The more a bird weighs the less likely it is that it will be
able to fly."

2.2 Belief Formation

Lp can express statistical knowledge, but no probability can
be assigned to a closed formula like "Bark(Fido)." In the
logic closed formulas are either true or false. On the other
hand, the possible worlds approach can assign probabilities
to closed formulas, but is incapable of expressing statistical
knowledge. Hence, these two approaches are in a sense two
parts of a complete picture.

The statistical knowledge in Lp can be used to gener
ate degrees of belief, which can be viewed as assignments of
probability, for a broad class of closed formulas. These statis
tically induced degrees of belief have an advantage over the
subjective probabilities representable in the possible worlds
approach. The advantage is that they are founded on objec
tive information about the world, information which could
in principle be accumulated by a rational agent through its
experience with the world.

The degrees of belief are generated through a simple in
ductive assumption which has a long history. It is similar
to the way in which we make sense of statements like "the
probability that a coin will show heads when flipped is 0.5."
For a particular instance of flipping a coin it is necessarily
the case that the coin will show either heads or tails, i.e., the
truth value of Show_heads will be either zero or one. When
we state that the probability of Show-heads is 0.5 we are ran
domizing the particular coin. In other words, we know that
50% of the instances of flipping coins yield heads (assuming
that there are as many coins biased to heads as to tails),
and since we do not have any information that distinguishes
this particular coin, it is reasonable to believe Show_heads to
degree 0.5. Similarly for formulas like "Bark(Fido)" where
Fido is a clog, if it is known that (say) 90% of all clogs bark
and all that is known about Fido is that he is a dog, then
the inductive assumption would impart a degree of belief of
0.9 to the (closed) formula "Bark(Fido)" by assuming that
Fido was a randomly selected dog.

Inductive assumptions of randomization have appeared
before in the philosophy of science literature, at least as
early as Reichenbach (1949 [13]) and more recently in work

by Kyburg [14,15). Similar inductive assumptions have also
appeared implicitly in most of the expert systems which deal
with uncertainty. For example, in the MYCIN system most
of the rules which have certainty factors a.re in the form "The
certainty of infection D given symptoms A, B and C is x."
Here an implicit randomization is ta.king place over the space
of patients. When diagnosis is performed on a particular pa
tient it is assumed that these certainties a.re applicable to
that patient; this is identical to an inductive assumption of
randomization.

The inductive assumption must deal with situations where
there is conflicting knowledge. The example of Fido the
barking clog can be used to illustrate this point. The in
ductive assumption generates a single degree of belief for the
sentence "Bark(Fido)" only when all that is known a.bout
Fido is that he is a clog (i.e. , all that is deducible a.bout
Fido from the knowledge base using Lp deduction). This
situation is rare; usually much more is known a.bout named
individuals. For example, the sentences "Dingo(Fido)" or
"Black(Fido)" may also be in the knowledge base. In gen
eral, the degree of belief in "Bark(Fido)" induced from the
knowledge that Fido is a clog will be completely different
from the degree of belief induced from, say, the knowledge
that Fido is a dingo. That is, considering Fido to be a ran
domly selected clog yields a different degree of belief than
when Fido is c~nsiclerecl to be a randomly selected dingo
(dingos don't bark). Thus, the knowledge base can gener
ate a range of different degrees of belief for any sentence,
dependent on what knowledge is used in the inductive step
of randomization. These different degrees may conflict and
there may be no reason to choose one over the other. This
problem has a long history and is known as the problem of
choosing the proper reference class (see Ky burg [15)). There
is, however, a natural preference criterion which can be ap
plied in many situations.

This preference criterion is based on the simple intuition
that the more knowledge that is used to generate the de
gree of belief the better is that degree of belief. More
knowledge has a simple interpretation in Lp; i.e. , the sen
tence a represents more knowledge than (J if a -+ (J is de
ducible from the knowledge base. 2 For example, the fact that
Dingo(Fido) -+ Dog(Fido) (as dingos a.re a subset of the set
of clogs) indicates that the knowledge D ingo(Fido) should
be preferred when inducing a degree of belief in Bark(Fido) .

3 The Logic Lp

Due to space limitations all proofs a.re omitted; also, to sim
plify the presentation, only models with finite sets of objects
a.re considered. For the proofs as well as a treatment which
allows infinite domains of discourse see Bacchus [16). This
longer version also gives a more detailed exposition of every-

2In general, it is undecidable in fi rst order logic (and thus in Lp
which is an extension) as to whether or not er -+ /3 is deducible from
the knowledge base. One can, however, always be conservative and
assume that er -+ f3 is not deducible if a deduction is not found before
some resource limit is exceeded . By assuming that no deduction exists
one is forced to consider both degrees of belief.

6 1

thing discussed here.
The letters n and m a.re used as meta-linguistic variables

denoting natural numbers.

3.1 Symbols

We start with a denumerable set of symbols. This set in
cludes symbols which denote constants, functions of any a.r
i ty, predicates of any a.rity, and variables. The constants
and predicates can be of two types, either field or object.
(When there is a danger of confusion the field symbols will
be written in a bold font) . The function symbols come in
three different types: object , field and measuring functions.
The measuring functions will usually have special names like
W eight or S ize.

Along with these symbols we also have a set of dis
tinguished symbols, symbols whose interpretation is fixed .
There a.re the following field symbols: the constants 1 and
0, the binary predicates = and ?., and the binary function
symbols +, - , x, and -,-. The symbol = is also used to
represent the object equality predicate.

Finally, we have the logical connective/\, the quantifier V,
and the probability term former [o).

3.2 Formulas

The major difference between formulas in Lp and in first
order logic is the manner in which terms a.re built up.

TO) A single object variable or constant is a.n o-term; a
single field variable or constant is an f-t erm.

Tl) If f is an n-a.ry object (field) function symbol and
i t, . . . , tn a.re o-terms (f-terms) then f t1 . . . tn is an o
term (!-term). If v is an n-a.ry measuring function sym
bol and t1 , .. • , tn a.re o-terms then vt1 .. . tn is an f-t erm.

T2) If a is a formula. and x is a vector of n object variables,
(xi, . .. , Xn), then [a)x is an f -term.

The formulas of Lp a.re built up in the standard manner,
with the a.clclecl constraint that predicates can only apply to
terms of the same type. A notable difference with first order
logic is that {-terms can be generated from formulas by the
probability term former.

The connectives V and -+ , and the quantifier 3 a.re defined
in the standard manner from the given primitives. It is also
convenient to define an extended set of field inequality predi
cates, :5 , <, >, and E (denoting membership in a.n interval) ,
from the primitive ?, . The predicate symbols = and ?. as
well as the function symbols +, x , -, and -;- , a.re written in
the more readable infix form. Furthermore, standard con
ventions of scope and precedence a.re used to limit the use of
parentheses.

Conditional probabilities a.re represented in Lp with the
following abbreviation.

Definition 3.1

[alfJ]x =df [a /\ fJ]x-;- [fJ]x,

if [fJ]x f. O; otherwise, it is mulefin ed.

. I

3.3 Examples of Representation

1. Notions of typicality, e.g., "Most birds can fly:"

[fly(x) lbird(x)]x > c,

where 'c' is some field constant in the open interval
(0.5, 1) . Thus, we avoid specific numbers. c has a spe
cific denotation (i.e., the percentage of flying birds has
a specific value), but we do not have access to it (i.e.,
we don't what the percentage is, all that we know are
some crude bounds).

2. Functional probabilistic relations, e.g., "Heavier birds
are less likely to be able to fly:"

\ly([fly(x)lbird(x) I\ weight(x) < Y]x >
[fly(x) lbird(x) I\ weight(x) > Y]x),

3. Mixing universal quantification and probabilities, e.g.,
"The probability of finding a given type of animal at a
zoo is a function of the expense of acquiring and main
taining that type of animal:"

\lx(animal.iype(x) ~ [at(x, y)lzoo(y)lv=f(expense(x))),

where expense is a measuring function symbol and f
is a field function symbol. f could be declared to be
non-decreasing:

\lxy(x > y ~ f(x) > f(y)).

Thus, even if we do not know f's denotation we could
still reason about different values of f.

4. Knowledge of independence:

[P(x) I\ Q(x) IR(x)]x = [P(x)IR(x)]xx [Q(x)IR(x)]x,

Thus we can represent finely grained notions of inde
pendence and are not stuck with global assumptions.

5. Notions from Statistics, e.g, "The height of adult male
humans is normally distributed with mean 177cm and
standard deviation 13cm:"

\lxy([height(x) E (x,y) IAdulLmale(x)]x
= normal(x, y, 177, 13)).

Here normal is a field function which, given an inter
val (x,y)3, a mean, and a standard deviation, returns
the (rational number approximation of the) integral of a
normal distribution, with specified mean and standard
deviation, over the given interval.

30ne would probably want to constrain the values ofx and y further,
for example, x < y. Also, in example 2, y could be constrained to keep
it in some reasonable bounds, e.g., non-negative.

62

3.4 Semantic Model

An Lp-Structure is defined to be the tuple M:

((0, Ro,Fo), (F,R:F,F:F), w, { µn I n= 1,2 ... }}

Where:

a) (O,Ro,Fo) represents a finite (see [16]) for infinite do
mains) set of individual objects 0, a set of relations, Ro,
and a set of functions Fo, both of any arity. Included
in Ro is the equality relation.

b) (F, R:F , F:F) similarly represents a totally ordered field
of numbers along with a set of relations and functions
which include the equality and greater than or equal
relations as well as the field operations addition, mul
tiplication, and their inverses. F contains two distin
guished elements which are the units of addition (zero)
and multiplication (one).

c) iJ! represents a set of measuring functions, functions from
on to F.

d) { µn I n = 1, 2, . .. } is a sequence of probability func
tions. Each µn is a set function whose domain is the
field of subsets of on defined by the formulas of Lp,
whose range is F, and which satisfies the axioms of a
probability function (i.e., µn(A) > zero, /tn(A U B) =
µn(A) + /tn(B) if An B = 0, and µn(on) = one).

The sequence of probability functions is a sequence of
product measures. That is, for any two sets A E on and
B E om and their Cartesian product A x B E on+m, if
A E domain(µn) and B E domain(µm), then A X B E
domain(µn+m) and µn+m(A X B) = µn(A) X µm(B). This
constraint insures that different variables bound by the prob
abili ty term formers behave in an independent manner.

Independence ensures that the probability terms satisfy
certain conditions of coherence. For example, the order of
the variables cited in the probability terms makes no differ
ence, e.g., [a]x,y = [a]y,x· Universal quantification also dis
plays this property, e.g., \lx\lya = \ly\lxa. Another example
is that the probability terms are unaffected by tautologies,
e.g., [P(x) I\ (R(y) V -,R(y))](x,v) = [P(x)]x-

It should be noted that this constraint on the probability
functions does not make any implicit assumptions of inde
pendence of the form commonly found in probabilistic in
ference engines (e.g., the independence assumptions of the
Prospector system [17], see Johnson [18]). This constraint af
fects the values of probability terms with different variables,
also, complex probability terms, e.g., [[a]x = xJv· (This can
be also be seen from axiom (P7), presented in the next sec
tion, which expresses the constraint.) The constraint does
not make any presumptions concerning the independence of
formulas which contain the same set of probability variables.
That is, in general [a I\ ,8];.t ,f. [a];.t x [,B]x. See [16] for further
discussion of this point.

3.5 Semantics of Formulas

Meaning is given to the formulas of Lp in the standard man
ner, i.e., by defining a correspondence between the formulas
and the Lp-Structure M augmented by the truth values T
and 1- (true and false). Such a correspondence is called an
interpretation. An interpretation maps all of the symbols
to appropriate entities in the Lp-Structure. For example,. it
maps every object constant symbol to an element of 0, every
field predicate symbol to an element of R:;:, etc. It maps the
distinguished symbols to the expected entities; e.g., it maps
the distinguished constant O to the zero (unit of addition) of
:F. An interpretation also gives an initial assignment to all
of the variables; i.e., it maps all of the object variables to
elements of O and all of the field variables to elements of :F.

These assignments serve as the inductive basis for an in
terpretation of the formulas. This interpretation is built up
in the same way as in first order logic, with the added con
sideration that universally quantified object variables range
over O while universally quantified field variables range over
:F. The only thing which needs to be demonstrated is the
semantic interpretation of the probability terms.

Let CJ'(x /a) denote a new interpretation which is identi
cal to CJ' except that it assigns the individual a to the vari
able x (types must match). More generally, let CJ'(x/il),
where i1 = (a1, ... , an} and x = (x1, ... , Xn/ are vectors
of individuals and variables (of matching type), denote a
new interpretation identical to CJ' except that (x;V(x/ii) = a;,

(i=l, ... ,n).
The probability terms are given the following semantic

interpretation:

• For the f-term (ex];;,

Since µn is a probability function which maps to the field
of numbers :F, it is clear that [ex];; denotes an element of
:F under the interpretation CJ'; thus, it is a valid f-term. As
mentioned before, the domain of µn is the field of subsets
of on defined by the formulas of Lp. It can be proved that
this set of subsets of on is in fact a field of subsets (16], thus
showing that /Ln is a well defined probability function.

Definition 3.2 An interpretation CJ' satisfies a formula ex
(set of formulas if>} if cxu = T ((3u = T for every (3 E if>},
written CJ' F ex (CJ' I= <P). A set of formulas if> entails a
formula a (written if> F a) if every interpretation CJ' which
satisfies if> also satisfies a.

3.6 Deductive Proof Theory

This section provides a deductive proof theory for Lp. The
proof theory consists of a set of axioms and rules of inference,
and can be shown to be both sound and complete. The proof
theory for Lp is similar to the proof theory for ordinary first
order logic. A major change is that in the axioms of Lp two
new sets of axioms must be introduced, one to deal with the
logic of the probability function, and another set to define
the logic of the field :F.

63

The probability terms introduce a new way of binding vari
ables in formulas. This invalidates all of the standard first
order results on variable binding as well as those results on
variable substitution. These results can, however, be recon
structed in Lp from new definitions which take into account
the binding effects of the probability terms. The construc
tion of these definitions along with proving their formal prop
erties represents the majority of the work involved in the
generation of a deductive proof theory for Lp. All of these
details will be omitted. For this presentation it is sufficient
to say that variable substitution in Lp works in a manner
which is a natural extension of the way it works in first order
logic.

Axioms of Lp

If a is a formula of Lp, then a generalization of a is any
formula of the form \lx1 ... \lxna, where {x1, ... , Xn} is a set
of not necessarily distinct variables of either type.

First order Axioms

All of the axioms of first order logic, see, for example, Bell
(19].

Field Axioms

All of the axioms of a totally ordered field, see, for example,
Maclane [20].

Probability Function Axioms

Pl) \lx1 ... \lxncx-+ [a];;= 1,
where x = (x1, ... , Xn/ and every x; is an object vari

able.

P2) [a];;~ 0.

P3) [a];;+ [,a];;= 1.

P4) [a];;+ (/3];; ~ [a V (3]x.

P5) [a I\ (3];; = 0 -+ [a]x + [/3];; = [a V ,B]x.

P6) [a];;= [a(x;/z)]x(x; /z),
where z is an object variable which does not appear
in a and x(x;/ z) is the new vector of object variables
(xi, ... , Xi-1, z , Xi+l, • • •, Xn/•

Generalization

Gl) All generalizations of the preceding axioms.

Rule of inference

The only rule of inference is modus ponens, i.e.,

• From {a ,a-+ /3} infer (3.

I

Definition 3.3 A deduction is a finite sequence of formulas
where the formulas are either axioms, from a set of hypothe
ses, or inferred from earlier formulas by modus ponens. A
deduction whose last formula is a is called a deduction of
a. <I> f-- a means there is a deduction of a from the set of
hypotheses <I>, and f--- a means that there is a proof of a. A
proof is a deduction from an empty set of hypothesis, i.e., a
deduction which just uses the axioms.

The above axioms comprise a sound and complete proof
theory when O is finite.

Theorem 3.4 (Completeness) If <I> I= a, then <I> f-- a.

Theorem 3.5 (Soundness) If <I> f-- a, then <I> I= a.

Lemma 3.1 The following are provable in Lp:

a) ([a-. ,8];1 = 1 /\ [,B-, a],1 = 1) ---> [a],1 = [,B]x.

b) [a V ,8];1 = [a],1 + [,B],1- [a/\ ,B]x.

It is also easy to prove Bayes' theorem in Lp.

Theorem 3.6 (Bayes Theorem) The following is prov
able in Lp:

4 Induction

The semantics of Lp allows a clear demonstration of the
need for an inductive mechanism. A universally quantified
formula is true for all objects. Hence, it is necessarily true for
any particular object. The probabili ty terms, however, state
the proportion of objects for which a formula is true. There
is no mention of which individuals satisfy the formula. The
probabilities expressed in Lp do not apply to any particular
individual. Thus, they do not apply to closed formula which
mention particular individuals.

This section presents an inductive mechanism of belief for
mation which can use the general, non-specific statistical in
formation expressed in Lp to generate degrees of belief in
closed formulas. When the truth value of the formula is not
entailed by the knowledge base, the mechanism is capable of
generating graded degrees in the range 0-1; when the truth
value is entailed, the mechanism can assign a degree repre
sentative of the entailed truth value, i.e., 0 or 1.

First, we define a new set of formulas { B(al,B)}, where a
and ,8 are closed formulas of Lp. Intuitively these formulas
represent the belief in a given the knowledge ,8. No formal
semantics are, however, given for these formulas. Nor is any
logic (with connectives) based on these formulas presented.
In the context of this work the meaning of these formula is
imparted through the inductive evaluation function defined
below. This function assigns a degree to these belief formu
las.

Denote by a(c/x) the new formula which results from re
placing every occurrence of c; with x; in the formula a. Also,
let J{ B denote the knowledge base.

64

Definition 4.1 (Inductive Evaluation Function)
Given that a closed formula, a, contains the vector of ob
ject constants c (and no other object constants), the belief
formula B(al,8) is assigned a degree equal to the following
Lp pmbability term:

degree(B(a l,8)) = [a(c/x)l,B(c/x)]x,

where x is a vector of object variables which do not occur in
a or ,8.

The intuitive interpretation of this evaluation function is
simple. We are saying the degree of belief in a(c) given ,8(c),
should be equal to the extent that a random tuple x, with
all the properties ,8 given for c, is likely to have properties a.
So for example, the degree of belief in Bark(Fido) given the
knowledge Dog(Fido) will be equal to the probability that a.
random dog x can bark (i.e., the probability that a. random
object with the property Dog also possesses the property
Bark).

If we are interested in the sentence a there may be many
different belief formulas, B(al,8), a.bout a, ea.ch based on
different knowledge ,8. In general the knowledge base will
contain information a.bout the degrees of various of these
formulas, and these degrees may be conflicting. For example,
the degree assigned to B (a l,8) can be very different from
the degree assigned to B(al6). If the assertion of interest is
a it may be impossible to choose between these competing
beliefs.

The intuitive interpretation of B(al,8) gives, however, a
natural preference criterion which can in many cases decide
which belief is better-beliefs based on more knowledge are
to be preferred. This yields the following preference crite
rion:

Definition 4.2 (Preference Criterion) The belief
B(al,8) is to be preferred to the belief B(al6), written

B(al,8) > > B(al6),

if KB f--- Vx,8(c / x) -. 6(c / x). A lso, we say that a belief
B(al,8) is well founded if 1(B f--- ,8 .

If the truth value of a is entailed, i.e., J(B f--- a or J{ B f--

,a, then for any belief B(al,8) the belief B(al,8 /\(,)a) is
to be preferred. If J{ B f--- a then B (a l,8 /\ a) is well founded
and has degree 1. Similarly, if I(B f--- ,a then B (a l,8 /\,a) is
well founded with degree 0. That is, when the truth value of
a is entailed the degree of the most preferred, well founded
belief about a is representative of its entailed truth value.

It has long been noted in AI that probabilities display
non-monotonic behaviour ([21], [22], [23]), and in fact, the
preference criterion allows for non-monotonic behaviour. If
a. new sentence 6 is added to J(B (representing an increase
in knowledge), then new preferred beliefs may be formed
based on 6. These new beliefs may have degrees which a.re
completely different from the degrees of the beliefs they su
perseded. (See the example on inheritance).

The preference criterion can be given two simple justifica
tions. First, if Vx,B(c / x) -. 6(c / x) then ,8 H ,8 I\ 6. Thus, it

can be shown that the degree of B(etl/3) is equivalent to the
degree of E(et l/3 I\ 8). Hence, B(et l/3) is equivalent to a belief
founded on more knowledge.

Semantically, when the degree of belief is assigned we are
considering the constants which appear in et to be indistin
guishable from all of the vectors which satisfy (J(c/x). If
\/x(J(c/x) --, S(c/x) then it is the case that the set of vec
tors satisfying /3 (c/ x) is included in the set of vectors satis
fying S(c/x) . Hence, we are losing less information when c
is considered to be indistinguishable from the vectors which
satisfy /3 (c/ x) than when c is considered to be indistinguish
able from the vectors which satisfy S(c/x), simply because,
there are more vectors in the latter set.

5 Examples of Reasoning

Example 5.1 Nilsson's Probabilistic Entailment

Nilsson [5] develops a probability logic based on the possible
worlds approach. He shows how the probabili ties of sentences
in the logic are constrained by known probabilities, i.e., con
strained by the probabilities of a base set of sentences. For
example, if [P /1. Q] = 0.5 then the values of [P] and [Q]
are both constrained to be 2: 0.5. These constraints are in
Nilsson's terms probabilistic entailments.

Nilsson gives some methods for calculating these entail
ments. The important point, however, is tha.t these bounds
are simply consequences of the laws of probability. In fact,
the theorem

[et V /J];; = [CY];;+ [/J];; - [et /1. (3];;,

along with the fact that the probability terms are non
negative (Axiom P2), gives the full set of constraints from
which all probabilistic entailments are derived. This theo
rem is true in Lp. And, since the proof theory of Lp is
complete, constraints similar to Nilsson's can be deduced in
Lp. Numerically the constraints are identical, i.e., the best
bounds deducible in Lp are the same numbers as the best
probabilistic entailments; however, the probabilities must be
interpreted differently.

For example, if the base set in Nilsson's logic is {[P] = 0.6,
[P --, Q] = 0.8}, probabilistic entailment gives the conclu
sion 0.4 :s; [Q] :s; 0.8. If the symbols P and Q are written
as one place predicates, this knowledge could be represented
by the following set: {[P(x)]x = 0.6, [P(x)--,Q(x)]x = 0.8}.
It is easy to show that 0.4 :s; [Q(x)]x :s; 0.8 is deducible from
this knowledge.

Example 5.2 Comparative Probabilities

If our knowledge base consisted of a set of rankings, e.g. ,
the set

{[H1(x)IE(x)]x> [fh(x) JE(x)]x, [H2(x)IE(x)]x> (H3(X)IE(x)]x},

then using the field axioms, in particular the transitivity
axiom (Vxyz) x>y /1. y >z--, x>z, it is possible to rank the
degrees of belief formulas of the form B(H;(c) IE(c)). That

65

is, it is deducible, e.g., that the degree of B(H1(c) IE(c)) is
greater than the degree of B(H3(c) IE(c)). Rankings of this
sort may be sufficient when all that is required is to choose
among the alternative hypotheses. For example, in choosing
between competing diagnoses.

Example 5.3 Inheritance

For example, we may have the following information: "Ele
phants are gray", "Royal Elephants are elephants", "Royal
Elephants are not gray", "Clyde is a Royal Elephant", and
"Clyde is an Elephant." This knowledge can be encoded in
Lp with the following set of sentences:

{ [Gray(x) IElephant(x)]x > c,

\lxRoyal...Elephant(x)--> Elephant(x),

[Gray(x) IRoyal....Elephant(x)]x < 1-c,

Royal....Elephant(Clyde), Elephant(Clyde) },

where c is some field constant close to 1. Given this knowl
edge, we have that the degree of

B(Gray(Clyde) JRoyal....Elephant(Clyde)) < 1-c,

while the degree of

B(Gray(Clyde) IElephant(Clyde)) > c

However, it is deducible from the knowl
edge base that \lxRoyaLElephant(x)--,Elephant(x) . Hence,
B(Gray(Clyde) IRoyal...Elephant(Clyde)) is a. preferred be
lief. It is less than 1 - c; thus, Clyde is probably not grn.y.

If it was not known thaL Clyde is a Royal elepha.nt , just
that he is an elephant, then belief formation would assign
a degree greater than c to the belief that C' lyde is gray,
based on the knowledge that he is an elephant. If the new
information that Clyde is a Royal elephant is now added
to the knowledge base, this old belief would be retracted.
That is, the preferred belief, based on the knowledge that
C' lyde is a Royal elephant, would now be obtainable from
the knowledge base. This is an example of non-monotonic
behaviour.

Lp is also capable of dealing with inheritance in the pres
ence of composite classes formed with logical connectives and
with inheritable relations, see (16]. A more traditional graph
based approach which uses Lp as its underlying semantics is
presented in (2].

6 Conclusions and Open Problems

A formal logic with predicates and a probabilistic compo
nent has been developed. By having a field of nlllnbers ex
plicitly in the semantics it can represent a far wider range of
probabilistic information than heretofore possible with other
probability logics. An essential difference between the type
of knowledge expressible in this logic and probability logics
using the possible worlds approach has been identified and
with it the need for an inductive mechanism. A sound and
complete proof theory has been presented for the logic, a

I

proof theory which can reason both with sentences in ordi
nary first-order logic as well as with the probabilistic infor
mation expressible in Lp. A simple inductive mechanism
has been presented. It allows degrees of belief to be formed
which display non-monotonic behaviour.

One very attractive area for future research is learning,
i.e., accumulating the statistical knowledge expressed in Lp
automatically, through experience. There are a large set
of methods developed in statistics which may be applica
ble. This would have an impact on knowledge acquisition
in systems where training cases are available, e.g., diagnosis
systems.

Since the effects of probabilistic schemes of inference can
be duplicated in Lp, it is possible to construct a theory of
diagnosis. The author is currently working on a theory of
diagnosis from statistical principles which should be usable
in domains like medical diagnosis.

7 Acknowledgements

Len Schubert's comments have been an invaluable aid. In
particular, the early insights into the inductive mechanism
were his. Thanks also to Jeff Pelletier for providing some
useful references to the philosophical literature, and to the
referees for some helpful criticisms.

References

[1] Raymond Reiter. A logic for default reasoning. Artifi
cial Intelligence, 13, 1980.

[2] Fahiem Bacchus. A Heterogeneous Inheritance System
Based on Probabilities. Technical Report 87-03, Alberta
Center for Machine Intelligence, University of Alberta,
Edmonon, Alberta, Canada. T6G-2E9, 1987.

[3] R.D. Luce and H. Raiffa. Games and Decisions. John
Wiley, New York, 1957.

[4] R. Carnap and R.C. Jeffrey. Studies in Inductive Prob
ability. Univ. of California Press, Berkeley and Los An
geles, CA, 1971.

[5] Nils J. Nilsson. Probabilistic logic. Artificial Intelli
gence, 28:71-87, 1986.

[6] Alan Bundy. Incidence calculus: a mechanism for prob
abilistic reasoning. Journal of Automated Reasoning,
1:263-283, 1985.

[7] Rudolf Carnap. Logical Foundations of Probability.
University of Chicago Press, 1962.

[8] H. Gaifman. Concerning measures in first order calculi .
Israel Journal of Mathematics, 2:1-18, 1964.

[9] H. Field. Logic, meaning, and conceptual role. Journal
of Philosophy, 77:374-409, 1977.

[10] B. van Fraassen. Probabilistic semantics objectified.
Journal of Philosophic Logic, 10:371-394, 1981.

66

(11] H. LeBlanc. Aiternatives to standard first-order seman
tics. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic. Vol II, pages 225-258, Reidel,
Holland, 1983.

[12] C. Morgan. Weak conditional comparative probabil
ity as a formal semantic theory. Zeit. fur Math. Log.,
30:199-212, 1984.

[13] Hans Reichenbach. Theory of Probability. University of
California Press, Berkeley and Los Angeles, CA., 1949.

[14] Henry E. Kyburg, Jr. The Logical Foundations of Sta
tistical Inference. D. Reidel, 1974.

[15] Henry E. Kyburg, Jr. The reference class. Philosophy
of Science, 50(3):374-397, September 1983.

[16] Fahiem Bacchus. Statistically Founded Degrees of Be
lief Technical Report 87-02, Alberta Center for Ma
chine Intelligence, University of Alberta, Edmonon, Al
berta, Canada. T6G-2E9, 1987.

[17] Richard 0. Duda, Peter E. Hart, and Nils J. Nilsson.
Subjective bayesian methods for rule-based inference
systems. In Bonnie Lynn Webber and Nils J. Nilsson,
editors, Readings in Artificial Intelligence, pages 192-
199, Morgan Kaufmann, 1981.

[18] R.W. Johnson. Independence and bayesian updating
methods. Artificial Intelligence, 29:217-222, 1986.

[19] John Bell and Moshe Machover. A Course in Mathe
matical Logic. Elsevier, Netherlands, 1977.

[20] S. MacLane and G. Birkhoff. Algebra. Macmillan, New
York, 1968.

[21] E. Rich. Default reasoning as likelihood reasoning. In
AAAI-83, pages 348-351, 1983.

[22] Matthew L. Ginsberg. Does probability have a place
in non-monotonic reasoning? In Proceedings of the 9th
JJCAI, pages 107-110, August 1985.

[23] Benjamin N. Grosof. Non-monotonicity in probabilistic
reasoning. In Proceedings of the AAAI/RCA Workshop
on Uncertainty and Probability in Artificial Intelligence,
pages 91-98, 1986.

A New Normative Theory of Probabilistic Logic

Romas Aleliunas

Simon Fraser University, Burnaby, British Columbia, Canada VSA JS6

ABSTRACT By probabilistic logic 1 mean a normative

theory of belief that explains how a body of evidence affects

one's degree of belief in a possible hypothesis . A new

axiomatization of such a theory is presented which avoids a

finite additivity axiom, yet which retains many useful inference

rules. Many of the examples of this theory-its models-do

not use numeric;/ probabilities.

Another goal is to indicate the general reasons

why recent theories of decision-making and belief

(non-monotonic "logic, " the Dempster-Shafer theory, etc.) do

not represent anything really new.

Every rational decision-making procedure is founded

on some theory of probabilistic logic (also called a theory of

rational belief). This article proposes practical and logically

correct theories of rational belief that are more general than the

probability theory we learn in school, yet remain capable of

many of the inferences of this latter theory. We also show why

recent attempts to devise novel theories of rational belief

usually end up being either incorrect or reincarnations of the

more familiar theories we learned in school.

What is a Probabilistic Logic ?

Following KEYNES [1921], I take probabilistic logic to

be any scheme for relating a body of evidence to a potential

conclusion (a hypothesis) in a rational way. We assign degrees

of belief (which we also call probabilities) to the possible

relationships between hypotheses and pieces of evidence.

These relationships are called conditionals. We will use the

expression "f(PIQ)" to stand for "the conditional probability of

P given the evidence Q as given by the probability assignment

f. " We have chosen to encode the potential hypothesis, P, and

the collected evidence, Q, as finite sentences of some language

67

L. We take probabilistic logic to be synonymous with theory

of rational belief, probability to be identical to degree of

belief, and probability assignment to be the same as belief

function . Normative theories of rational belief have had a long

history (KEYNES [1921], CARNAP [1950], FINE [1973]).

Let the set of probabilities be P. We begin by

regarding this as a set of uninterpreted formal marks. A theory

of probabilistic logic is chiefly concerned with identifying the

characteristics of a family F of functions from LxL to P. F is

the set of permissable belief functions (also called the set of

possible probability assignments) from which a rational agent

is permitted to choose. Our convention is that for any fin F,

f(PIQ) represents the probability assigned by f to the hypothesis

P given the evidence Q. P and Q can be any statements in

L-no distinction is made between hypothesis statements and

evidence statements in probabilistic logic.

The set F of rational probability assignments clearly

cannot be the set of all functions from LxL to P. Both F, and

each individual element in it, must be subject to some

constraints. Of course different theories of rational belief may

vary in their choices for these constraints, but I believe they all

share some in common. One such common constraint is : if "I

believe P is certain when I see Q" then it cannot also be the case

that "I believe -P is possible when I see Q." Moreover, the

correctness of these constraints-and therefore of the rules of

inference they engender-cannot depend on the particular

application that they are put to. Decision "theory" does not

dictate the standards of correctness for inferences in

probabilistic logic (TUKEY [1960]).

Does the set of probabilities P have any internal

structure? We must, at the very least, be able to assert that

some conditionals are more believable than others, or else there

is no practical use for this theory. This implies that we have, at

the very least, a partial ordering among conditionals. If we

. . I

I

I

want to approach the subject algebraically, we can, without

loss of generality, introduce a new probability symbol into P

for each pair of sentences drawn from the language L and

assign whatever (partial) set of orderings between these

symbols that we wish . In this way we can reproduce any

partial ordering whatsoever between the conditionals as an

ordering of the elements of P. A theory which adopts this

approach is called a weak comparative theory of probability in

FINE [1973] .

A theory of rational belief is not a substitute for a

decision-making procedure. Probabilistic logic does not

prescribe "rules of detachment," "rules of commitment," or

other decision-making rules. The only judgements a theory of

probabilistic logic tells you how to make are conditional

judgements-how to assign a value to a conditional

probability. Conditional judgements of probability are the only

judgements that can be infallible . Moreover, conditional

judgements are the natural inputs to a decision-making

apparatus.

What is a Decision Procedure ?

A decision procedure tells you how to bet. I refrain

from using the te1m decision theory since it is not a theory in

the usual sense. A decision procedure is, instead, a concrete

thing-a particular set of rules describing the behaviour of a

specific physical machine. Decisions sometimes have to be

made with little or no evidence; decision procedures make

mistakes.

Regardless how it may be implemented, a decision

procedure can always be described in a certain standard way.

To formulate this kind of description we must first identify the

general principles that govern the procedure's behaviour. I find

it convenient to divide such a description into two parts. The

first part describes the principles of evidence-the probabilistic

logic- that the decision-making machine (implicitly) employs.

The second part describes how these principles are applied in

this specific implementation. Ideally the only possible causes of

bad decisions are misapplications of probabilistic logic.

The principles governing the application of

probabilistic logic to decision-making fall into several

subgroups. These concern the problems of statistics, utility

assignment, and the formulation of decision rules.

Statistics is concerned with how probabilities are

assigned and how the statistical model is built. Statistical

problems include the choice of language for encoding evidence

and hypothesis statements, the choice of a set of hypotheses,

68

and the choice of simplifying independence assumptions. (A

hypothesis is merely a statement whose expected utility is

relevant to the decision-making machinery.)

A utility assignment describes how the decision

procedure ranks the costs and rewards of various outcomes.

Decision rules describe how probabilities and utilities combine

to affect decisions.

Suppose, for instance , that we have a decision

procedure called Alpha that always decides in favour of the

hypothesis with maximum likelihood (GOOD [1983]) . Then we

can describe Apha as a procedure which (implicitly) assigns

equal prior probabilities and equal utilities to all hypotheses

(outcomes).

Suppose we have another procedure called Beta that

merely scans down an ordered list of hypotheses and chooses

the first one that is consistent with the current evidence. Then

Beta's probabilistic logic simply judges hypotheses to be either

possible (probability"#- 0) or impossible (probability = 0) on the

given evidence-a matter of testing logical consistency. Beta

(implicitly) assigns non-zero prior probability exactly to those

hypotheses which appear on its list, and Beta (implicitly) uses

utilities ordered in the same fashion as the list.

The standards of correctness of a probabilistic logic

cannot be dictated by the application to which it is put (TUKEY

[1960]). But what many writers have failed to realize-and this

is a novel feature of the theory presented here- is that many

other aspects of a probabilistic logic can be tailored to suit the

application. We have, for example, a great deal of latitude in

choosing a convenient set of probabilities P. After all, if the

decision-procedure does not (implicitly) use numerical utilities,

then why should it use numerical probabilities? There is no

reason to use a probabilistic logic that makes fine

discriminations between degrees of belief if these

discriminations serve no practical end.

New Axioms for Probabilistic Logic

These axioms are flexible enough to permit one to

tailor the set of probabilities to the application at hand. The

probabilities are therefore treated as uninterpreted formal marks

in the axiomatization given below. We will examine possible

interpretations later-each interpretation will give rise to a

probabilistic logic.

The axioms describe the constraints that are

appropriate for any rational theory of belief. The axioms fall

into three groups: (1) axioms about the domain and range of

each probability assignment f in F, (2) axioms stating

consistency constraints that each individual fin F must obey,

and (3) axioms that say something about F itself. Finite

additivity does not appear as an axiom since it essentially forces

probabilities to be numbers.

The usual semantics for probabilistic logic uses

"possible worlds.*" We associate to each proposition P a set

of situations or possible worlds S(P) in which P holds.

("Possible world" is left as a primitive unanalyzed concept.)

When Q is given as evidence, the conditional probability f(PJQ)

is some measure of the fraction of the set S(Q) that is occupied

by the subset S(P&Q). (The individual points in S(Q) need not

have equal weight. They need not even have any weight at all

as is often the case in Lebesgue measure theory .) This fraction

is given by a (possibly non-numerical) function µf(S(P&Q),

S(Q)) whose values range over the set P . (The familiar

numerical theory of probability relies on this same semantics

except that the relative sizes of the fractions must be coded

numerically in this case.) The correctness of any axioms for

probabilistic logic can be grasped by a semantics of this form.

AXIOMS for PROPOSITIONAL PROBABILISTIC LOGIC

Axioms about the domain and range of each fin F.

1. The set of probabilities, P, is a partially ordered set. The

ordering relation is" ~ ."

2. The set of sentences, L, is a free boolean algebra with

operations &, v, and -, and it is equipped with the usual

equivalence relation" "' ." The generators of the algebra are a

countable set of primitive propositions. Every sentence in Lis

either a primitive proposition or a finite combination of them.

(See BURRIS et al. [1981] for more details about boolean

algebra.)

3. If P "' X and Q "' Y, then f(PJQ) =f(XJY).

Axioms that hold for all fin F, and for any P, Q, R in L.

4. If Q is absurd (i.e. Q "' R&- R), then f(PJQ) = f(PJP).

5. f(P&QJQ) = f(PIQ) ~ f(QIQ).

6. For any other gin F, f(PJP) = g(PJP).

7. There is a monotone non-increasing total function, i, from

Pinto P such that f(-PJR) = i(f(PJR)).

8 . There is an order-preserving total function , h, from PxP

into P such that f(P&QJR) = h(f(PJQ&R), f(QJR)) . Moreover, if

f(P&QJR) = O*, then f(PJQ&R) = O* or f(QIR) = O*, where we

define O* = f(- RJR) as a function off and R.

9. Iff(PJR) ~ f(PJ - R) then f(PJR) ~ f(PJRv-R) ~ f(PJ-R) .

* Historically, the possible world semantics of probability theory seems

to have inspired KRIPKE's semantics for modal logics [1980, p.16).

69

Axioms about the richness of the set F.

Let 1 = Pv-P. For any distinct primitive propositions A, B,

and C in L, and for any arbitrary probabilities a, b, and c in

P, there is a probability assignment fin F (not necessarily the

same one in each case) for which-

10. f(AJl) = a, f(BJA) = b, and f(CJA&B) = c.

11. f(AJB) = f(AJ-B) = a and f(BJA) = f(BJ-A) = b.

12. f(All) = a and f(A&Bll) = b, whenever b ~ a.

Commentary on the Axioms

1. You cannot do anything useful with a probabilistic

logic if you cannot compare some degrees of belief with others.

On the other hand not all applications require a total ordering

for probabilities.

2 & 3. We clearly do not sacrifice generality by letting L be a

free algebra.

The laws of boolean equivalence state, to pick one

particular example, that the truth conditions of the sentence

P&R are the same as those of R&P. In other words each

sentence picks out the same set of situations : S(P&R) =

s(R&P). These two conjunctions must therefore have the same

probability given Q since f(P&RJQ) = µf(s((P&R)&Q), S(Q)) =

µf(s((R&P)&Q), S(Q)). (Indeed, a weaker notion than boolean

equivalence is sufficient for most of the results below.)

The prior probability of P, which we will write as

f(P), can be defined to be f(P) = f(PJ P v -P). This is correct

since -P v Pis vacuous when taken as an evidence statement.

4. Absurd evidence (such as -R&R) provides no basis

for judging the probability of any hypothesis since S(-R&R) is

the empty set. Assigning f(PJ-R&R)=f(PJP) in these cases is a

mathematically elegant way to treat this anomaly consistently

(MORGAN [1982]). (An equally acceptable, alternative,

treatment is to restrict the domain of each f so that absurd

evidence is always excluded. Adopting this second approach

does not alter any of the results stated later, but it does

complicate the statement of the axioms.)

5 & 6. These axioms establish useful scaling conventions

among probabilities and probability assignments.

7. R. Cox [1946, 1961] first used the idea that the

probability of -P given R can be determined from the

probability of P given R as an axiom in his study of

probabilistic logics using real numbers. He did not, however,

assume that i was order inverting.

. . . I

I

I

8 . This is a weak form of the product rule for

probabilities: f(P&Q) = f(PIQ)·f(Q). We will call h the product

of probabilities. R. COX [1946, 1961) also introduced this

axiom, but without insisting that h be order preserving or that it

have no non-trivial zeroes (see below).

The contrapositive form of the last part of axiom 8

states that the product of two non-zero probabilites is also not

zero. This is to say that, given the evidence R, if P&Q is

impossible, then either Q is impossible, or else P is impossible

given Q, or both. We say that h has no non-trivial zeroes when

this condition holds.

9. A finite additivity axiom is an axiom that asserts the

existence of a function h* such that for any f, P, Q, and R-

f(PvQ IR) = h*(f(P IR), f(P&-Q IR)) .

Finite additivity requires that the probability of PvQ can be

determined from the probabilities assigned to just the two

mutually exclusive sentences P and -P&Q (ACZEL [1966)).

Suppose P is statistically independent of R, which we

write as f(PIR) = f(PI-R). Then it should follow that f(P) =

f(PIR) = f(PI-R) since the probability of P does not depend on

whether R holds or not. Axiom 9 permits this conclusion to be

drawn. So does finite additivity, but we are avoiding this

axiom in favor of the weaker axiom 9.

Consider next the following argument conducted in

English: "If this coin lands heads I will almost certainly end up

winning the entire game. If it lands tails then it is still likely that

I will win (because I 'm so far ahead). So even before we toss

the coin, it is clear right now that my chances of winning are

somewhere between likely and almost certain." The

probabilities mentioned in this argument are not numbers, so

no addition formula is possible, yet the conclusion is

compelling. Axiom 9 is sufficient to draw the conclusion from

the premises in this argument also.

10, 11 & 12. These three axioms guarantee that the set

F of probability assignments is rich enough to freely model: (1)

any behaviour of growing chains of evidence, (2) statistically

independent events, and (3) partial probabilty assignments to

conjunctions of potential hypotheses.

Axiom 10 shows that the product of probabilities is

associative since f(P&Q&R) = h(h(f(RIP&Q),f(QIP)), f(P)) =

h(f(RIP&Q), h(f(QIP), f(P))).

Axiom 11 can be used to show that the product is

commutative by using the equation f(P&Q) = h(f(PIQ), f(Q)) =

h(f(QIP),f(P)). Axiom 9 is used in this proof to calculate f(P)

70

and f(Q) from f(PI-Q) = f(PIQ) and f(QI-P) = f(QIP).

Hence we see that (P, h) forms a commutative

semigroup, so we may write p·q instead of h(p,q) whenever

this is convenient.

Axiom 12 is another way of stating our conviction that

any conditional must, in principle, have a probability. If we

know, for example, that

f(March winds) = a

f(March winds & April showers) =b

then there must be some probability r such that

f(April showers I March winds)= r.

Of course we must have b = r·a (axiom 8), and b:.,; a (axiom 5)

or else this probability assignment is inconsistent. FUCHS

[1963] calls any partially ordered semigroup naturally

ordered just in case there always exists a solution r to the

equation q = r·p whenever q:.,; p. Axiom 12 only requires that a

solution exist, not that it be unique.

Possible Interpretations of this Theory

These axioms do not presume the existence of

probabilities called O and 1 in the set P. It easily follows from

the axioms, however, that f(P IP) = f(Q IQ) = g(QIQ) for

arbitrary f, g, P and Q, and therefore the convention 1 = f(PIP)

leaves the probability 1 well-defined. Likewise O = f(-P IP) is a

good definition of probability 0. Thus every P that is consistent

with the above axioms must have a O and a 1. Probability 1

denotes complete certainty, and probability O denotes

impossibility. If I say "Q is possible," I mean f(Q)'7'0 for my

choice off.

The probabilities O and 1 are therefore special elements

of every possible P. To give a mathematical model for a P

which satisfies these axioms we must therefore give a

consistent interpretation to each component of the structure

(P, :.,;, h, i, 0, 1).

(Model I) 0,1-Probabilistic Logic

P(2) = {0, l} and O·O = 0·1 = 0, 1·1 = 1, i(O) = 1, i(l) = 0,

and O:.,; 1.

(Model 2) Simple Real Probabilistic Logic

P(R) = [0,1), the closed interval of real numbers from Oto 1.

Let p·q be the ordinary numerical product, and let i(p) = 1 - p.

Use the usual ordering relation.

For more examples suppose (P, :.,;) is a totally ordered

set with n elements. Then the table below displays the number,

N(n), of non-isomorphic models consistent with this

constraint-

n 2 3 4 5

N(n) 2 3

6 7

7 16

Yet another model of these axioms is the following one

mimicing English probabilities. My aim here is not to claim that

this is the correct model for English probabilities, but instead to

show that a good approximation to English probabilities will

not be ruled out by these axioms.

(Model 3) Simplified English Probabilistic Logic

Let P(E) be the algebra of probabilities generated by the two

formal symbols {LIKELY, UNLIKELY}, subject to the

following additional constraints:

(Cl) UNLIKELY = i(LIKELY)

(C2) 0 < UNLIKELY < LIKELY < 1.

The elements of P(E) are strings of symbols generated by-

(G 1) concatenating previously constructed strings in P(E),

(G2) forming i(s) wheres is a string in P(E),

(G3) introducing the formal symbol s(p,q) for any pair of

elements p and q in P(E) whenever p ~ q and there does not

yet exist a solution, r, in P(E) for the equation p = q·r.

The only ordering relations are those that can be

inferred from (Cl), (C2), and the properties of the functions h

and i. This set is not totally ordered.

The symbols introduced by (G3) do not, as far as I

know, have English names. But not being able to name them in

English does not mean they do not exist.

Is This Theory Useful ?

This theory is useful for several reasons-

(U 1) The number of distinct degrees of probability is a

feature left up to the user. This makes it possible to tailor the

probabilistic logic to the goals of the decision procedure.

(U2) Many useful inferences can still be carried out.

(U3) Some statistical prob lems, like assigning prior

probabilities, can be considerably simpler to solve in a

non-numerical system. For example in the (unique) three

valued system you only have to decide if an event is certain,

impossible, or neither.

To illustrate (U2) I will exhibit a calculation in the

system P(E) (Model 3). Let's start with the three premises-

(P l) It is possible that it's cloudy.

(P2) If it's cloudy, it's likely to rain.

(P3) If it rains then the street will get wet.

The following conclusion can be drawn from these premises-

71

If it's cloudy, the chances are better than likely that the street

will get wet.

Let us code these premises symbolically for convenience. They

become-

(Pl) f(C) ¢ 0.

(P2) f(R IC) = LIKELY.

(P3) f(W IR) = 1.

Now by (P3) we have f(-W IR)=O. Hence

O=f(-W IR)·f(R)=f(-W&R)~O, and therefore f(-W&R&C) = 0

by axiom 5. Now O=f(-W&R&C)=f(-WIR&C)·f(RIC) ·f(C),

and because f(RIC)¢0 and f(C)¢0, it must be the case that

f(-W IR&C)=O since products have no non-trivial zeroes. Thus

f(W IR&C)=l. It's now easy to find f(W IC) ~ f(W&RIC) =

f(W IR&C)·f(RIC)= 1 ·LIKELY=LIKELY. Hence f(W IC)~LIKEL Y.

There are several points to note

(I) We used the following trivial theorems:

0 ~ p ~ 1 for any probability p,

p·q ~ q for any pair of probabilities p and q.

(2) Premise (Pl) is needed in this particular derivation.

(3) The inequality is a necessary part of the conclusion. After

all, maybe the street can get wet in some other way.

(4) This argument holds regardless of whether it is cloudy or

not at the moment, and regardless of whether it ever rains or

not. This argument is about the state the world could be in-it

does not confine itself to the unique actual state the world is in

now. Probabilistic logic treats all conditionals, counterfactual

or not, in the same way.

(5) The conclusion is completely convincing even though

LIKELY can have no numerical interpretation.

The Tar-Pit Theorem

Under what conditions does the familiar numerical

theory of probability become the only possible theory of

rational belief? Richard COX [1946, 1961] first investigated

this question under the assumption that probabilities were

numbers. ACZEL [1966] reports stronger results under the

assumption of finite additivity for probabilities. The following

theorem is in the same vein, but it drops these two assumptions

and even some of the axioms. I call it the Tar-Pit Theorem

because it shows how easy it is to get stuck in stuff that has

been lying around for a long time.

Definition

P is archimedean ordered if, for any p ¢ 1 and any q ¢ 0 in P,

the repeated product p·p· ... ·p = p" becomes smaller than q for

some positive integer n.

The Tar-Pit Theorem

Under the conditions established by axioms 1 through to 12,

the following two statements are logically equivalent:

(1) The set of probabilities P is totally ordered and also

archimedean ordered.

(2) The algebraic structure (P, ~. h, i, 0, 1) is isomorphic to a

subalgebra of the system (P(R), ~. ·, i, 0, 1) given as Model

2, namely Simple Real Probabilistic Logic.

Dropping both axiom 11 and the assumption that products have

no non-trivial zeroes does not affect the result.

A short proof of this is given in the Appendix. The

requirement for archimedean ordering appearing this theorem

can be removed and replaced by either cancellativity (i.e. for

any p,q,r ;tO in P, if p·r = q·r then p = q), or else by finite

additivity (with some other minor adjustments in hypotheses).

Space is too limited to state these results precisely.

On Reinventing the Wheel

Several theories of belief have been recently developed

that have claimed some novelty over the familiar probability

theory with real numbers. The DEMPSTER-SHAFER theory is

one example, and the MYCIN theory is another (see

BUCHANAN & SHORTLIFFE [1984] for a description of both).

Both of these theories use numbers to measure degrees of

uncertainty. In light of the Tar-Pit theorem it is no surprise,

therefore, that KYBURG [1987] has shown that the

DEMPSTER-SHAFER theory can be reinterpreted and

understood in the language of familiar probability theory, and

that HECKERMAN [1986] has done a similar thing for the

MYCIN theory. In the process of uncovering the exact

relationship, each author has exposed the general statistical

assumptions that were surreptitiously imposed by each of these

two systems. Whatever novelty these systems may have had

rested on these questionable statistical assumptions.

KYBURG [1987] showed that the DEMPSTER-SHAFER

theory manipulates convex sets of probability assignments. (A

set S of probability assignments is convex if for any two

probability assignments f and g in C, and any number z

between O and 1, the function z·f + (1-z)·g is also in C. As a

consequence of this the range of values assumed by f(PIQ) for

fixed P and Q, when you let f range over all members of C,

forms a closed interval.)

HECKERMAN [1986] , on the other hand, found that a

MYCIN "certainty factor" is a monotonic increasing function of

the likelihood ratio f(PIQ) I f(PI-Q).

72

Both KYBURG and HECKERMAN observed, in the

respective systems they studied, that certain statistical

assumptions about conditional independence were built into the

inference rules themselves. HECKERMAN, for example,

showed how MYCIN's implicit assumptions made MYCIN

incapable of correctly handling a statistical inference problem

that involved three or more mutually exclusive and exhaustive

possible outcomes.

Non-monotonic "logics," which originated with

REITER [1980] and MCDERMOTT & DOYLE [1980], are

another recent novelty. Given a set of premises, say

Ql&Q2& ... &Qn, a non-monotonic "logic" is a

non-deterministic machine for deriving "plausible inferences."

We will write "Pd Q1&Q2& ... &Qn" if Pis derivable from the

stated premises by one of these machines.

At the very least a non-monotonic "logic" must tell me

what the good bets are. If "P d Q1&Q2& .. . &Qn" does not

mean that P is a good bet given I have already seen

Q1&Q2& ... &Qn, then I see no practical point to

non-monotonic "logic." I am indebted to Charles MORGAN for

showing me why a non-monotonic "logic" cannot be a logic in

the usual sense of the word. This still leaves open the

possibility, however, that non-monotonic "logic" is some sort

of betting system. Here are three possible explanations for

"plausible inference" in terms betting rules-there are, of

course, an endless number of possibilities:

(Dl) P d Q => u(P)·f(PIQ) > c,

(D2) P d Q => min {u(P)·g(PJQ) I g is in S} > c,

(D3) P d Q => f(PIQ) > d(PI-Q),

where u(P) denotes the utility of outcome P, f is some fixed

probability assignment, c is some fixed constant, and S is

some special subset of F.

Suppose Q holds. Pis a good bet, according to (Dl),

when my expected utility from it exceeds some threshold. (D2)

is more conservative: it says P is a good bet only when the

minimum I expect to gain (over some set of probability

assignments) is large enough. (D3) uses likelihoods to pick out

good bets.

For example REITER's system [1980], to a first

approximation, judges hypotheses only on the basis of

consistency and it assumes an equal assignment of utilities to

all outcomes. It is therefore no surprise that such a scheme is

too simple to be very useful. (To be precise, REITER's system

is based on "Pd Q=> f(PJQ&B) >O ," where B

is some base set of facts that is never doubted.

This criterion can be

simplified to "P d Q=> g(PJQ)>O " because, for

fixed B, the equation g(XIY)=f(XIY &B) defines g to be another

valid probability assignment in F.)

Non-monotonic "logic" is further hampered by not

manipulating probabilities and utilities explicitly. Suppose we

adopt the criterion that any event with probability exceeding

0.80 is a good bet, and suppose I have built a non-monotonic

"logic" that is sound by this criterion. Toss a fair die (with six

faces). Let L(i) code the event that face i shows. Let Q denote

the background information about dice tossing. Then certainly

L(i) will not be a non-monotonic inference from Q for any i in

this system. The disjoint event L(l) v L(2) v L(3) v L(4) v L(5),

however, is a good bet according to our chosen criterion. But

how can an inference like this be made in general within a

non-monotonic "logic" that excludes probabilities from its

calculations?

Fuzzy "logic" (ZADEH [1965], GUPTA et al. [1979])

is another novelty. This theory leads to bad bets because,

among other things, it is inconsistent with axiom 8. Fuzzy

"logic" replaces the functional equation f(H&T) =h(f(HIT),f(T))

with f (H&T)=h(f(H),f(T)) where h is still a function with no

non-trivial zeroes.

To demonstrate the difficulties this alteration leads to,

consider tossing a fair coin. By symmetry, fuzzy "logic" must

assign equal "possibility levels" to the two outcomes so that

f(H) =f(T) =p for some p#O. Now according to fuzzy "logic's"

rules, f(H&T) = min(f(H),f(T)) = p ;c 0. But the event H&T is

impossible! Interpreted charitably, this means that O is not the

only way of coding impossibility in fuzzy "logic." We have

just seen that the value p also must code for impossibility. But

then both possible outcomes of the coin toss are now marked

impossible-an absurdity. I am quite prepared to bet money

against this unrealistic "logic" since I do not expect to lose.

The onus is clearly on the inventor of a new theory of

rational belief (or rational decision-making procedure) to

demonstrate its novelty and its correctness. None of the

theories mentioned in this section are, simultaneously, a new

and a good guide to betting.

Appendix: Proof of the Tar-Pit Theorem

Actually, this proof continues to hold even if we omit

axiom 11 (independence) and the last part of axiom 8 (h has no

non-trivial zeroes).

That (2) implies (1) is obvious. So we will concentrate

on proving the converse, namely any archimedean totally

ordered set P that satisfies the remaining axioms must be a set

of real numbers under ordinary multiplication.

This proof relies on another theorem that was first

73

found by 0. HOLDER at the turn of the century, and later

rediscovered by A. H. CLIFFORD (see FUCHS [1963, p.165]) .

HOLDER and CLIFFORD proved that any totally and naturally

ordered archimedean semigroup must be isomorphic to a

subsemigroup of one of the following three. The non-zero and

non-unit elements of these three distinguished semigroups are

isomorphic to-

(1) the open interval of reals (0, 1) under ordinary

multiplication,

(2) the half-open interval of reals [1/e, 1), under the binary

operation max(x·y, 1/e)

(3) the interval [1/e, 1) augmented by an artificial element§,

under the following operation:

x·y if x·y 2': 1/e

§ ifx·y < 1/e

where e is the base of the natural logarithms, and § < 1/e.

According to our axioms i(i(p)) = p, and so the

function i is an anti-isomorphism of P which inverts P's

ordering relation. The semigroups resulting from (2) and (3)

can therefore be ruled out because no such i can ever be found

for them. This leaves only possibility (1), which, after we

restore the O and 1 elements, is the closed interval [0,1] under

multiplication. This proves the theorem.

Acknowledgements

The Natural Sciences and Engineering Research

Council of Canada supported my work while I was at

Waterloo. Some of this work was prepared for presentation

while I was a Visiting Scientist at the IBM Canada Laboratory.

The preparation costs of this particular paper have been met by

a President's Research Grant from Simon Fraser University.

I have a benefited from discussions with Harvey

Abramson, Robert Hadley, Peter Ludemann, Charles Morgan,

Len Schubert and my colleagues from the Logic Programming

and AI Group at Waterloo, including Robin Cohen, Randy

Goebel, Eric Neufeld, David Poole, and Maarten van Emden.

References
Janos ACZEL [1966] Lectures on Functional Equations
and Their Applications, Academic Press, New York.

Bruce G. BUCHANAN and Edward H. SHORTLIFFE, editors
[1984] Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming
Project, Addison-Wesley, Reading, Massachusetts.

Stanley BURRIS and H.P. SANKAPPANAVAR [1981] A
Course in Universal Algebra, Springer-Verlag , New
York.

Rudolph CARN AP [1950] Logical Foundations of
ProlJalJility, University of Chicago Press, Chicago.

I

. I

I

- [1962) "The aim of inductive logic," in Logic,
Methodology, and Philosophy of Science, eds. E.
Nagel, P. Suppes, and A. Tarski, Stanford University Press,
Stanford, pp.303-318.

Richard T. Cox [1946) "Probability, Frequency, and
Reasonable Expectation," American Journal of Physics, Vol.
14, pp.1-13.
- [1961) The Algebra of Probable Inference, John
Hopkins Press, Baltimore.

Terrence L. FINE [1973] Theories of Probability: An
Examination of Foundations, Academic Press, New York
and London.

Simon FRENCH [1984] "Fuzzy Decision Analysis: Some
Criticisms" in Studies in the Management Sciences:
Fuzzy Sets and Decision Analysis, Vol. 20,
North-Holland, Amsterdam and New York.

Laszlo FUCHS [1963) Partially Ordered Algebraic
Systems, Pergamon Press, Oxford-London-New
York-Paris .

I. J. GOOD [1983) Good Thinking, The foundations of
probability and its applications, University of Minnesota
Press, Minneapolis, 1983.

Madan M. GUPTA, Rammohan K. RAGADE, Ronald R.
YAGER, editors [1979) Advances in Fuzzy Set Theory,
North-Holland, Amsterdam-New York-Oxford.

David HECKERMAN [1986] "Probabilistic Interpretation for
MYCIN's Certainty Factors," in Uncertainty in Artificial
Intelligence, Laveen N. Kanal and John F. Lemmer (eds .),
North-Holland, New York, 1986, pp.167-196.

John Maynard KEYNES [1921) A Treatise on Probability,
Macmillan, London.

Bernard 0. KOOPMAN [1940) "The Axioms and Algebra of
Intuitive Probability," Annals of Mathematics, Vol. 41, No.
2, pp. 269-292, April 1940.
- [1941) "Intuitive Probabilities and Sequences," Annals of
Mathematics, Vol. 42, No. 1, pp. 169-187, January 1941.

Henry E . KYBURG, Jr. [1987) "Bayesian and Non-Bayesian
Evidential Updating," Artificial Intelligence, Vol. 31, No.3,
March 1987, pp.271-293.

Saul KRIPKE [1980) Naming and Necessity, Harvard
Uinversity Press, Cambridge, 1980, p.16.

D. MCDERMOTI & J. DOYLE [1980) "Non-monotonic Logic
I," Artificial Intelligence, Vol 13, pp.27-39.

D . MCDERMOTT [1982] "Non-monotonic Logic II :
non-monotonic modal theories," Journal of the ACM , Vol 21,
No. 1, pp.33-57.

Charles G. MORGAN [1982] "There is a Probabilistic
Semantics for Every Extension of Classical Sentence Logic,"
Journal of Philosophical Logic, Vol. 11, pp.431-442.

David POOLE, Randy GOEBEL, Romas ALELIUNAS [1987]
"Theorist: A Logical Reasoning System for Defaults and
Diagnosis," in the Knowledge Frontier, Nick Cercone &
Gordon McCalla (editors), Springer-Verlag, New York, 1987,
pp.331 -352.

74

Raymond REITER [1980] "A logic for default reasoning,"
Artificial Intelligence, Vol. 13, pp.81-132.

John W. TUKEY [1960] "Conclusions vs Decisions,"
Technometrics, Vol. 2, No. 4, November, 1960.

Lotfi A. ZADEH [1965) "Fuzzy Sets," Information and
Control, Vol. 8, pp.338-353.

On Using Modal Structures to Represent
Extensions to Epistemic Logics

Sharon J. Hamilton 1 and James P. Delgrande2

School of Computing Science
Simon Fraser University

Burnaby, B.C.
Canada V5A 1 S6

Abstract

Modal structures have recently been developed as
an alternative to Kripke structures for providing the
semantic basis for various modal logics. While
m?dal structures. are mathematically equivalent to
Knpke structures 1n a certain sense, it is argued that
modal structures provide a simpler and more intui
tive basis for representing particular states of the
modal notions of knowledge and belief. Since these
notions, rather than the traditional notions of neces
sity and possibility, are of particular interest to Artifi
cial Intelligence, it is of interest to examine the ap
plicability and versatility of these structures. This
paper presents an investigation of modal structures
by examining how they may be extended to account
for generalizations of Kripke structures. In particular
we show how they may be extended to situations or
parti~I possible w?rlds, to a generalized accessibllity
relation among situations, and to a full first-order
system. In all cases the extensions are shown to be
equivalent to the corresponding extension of Kripke
structures. In addition , a three step transformation
from Kripke to modal structures is presented to
clarify the relationship between the two models.

Keywords: modal structures, Kripke structures
epistemic logics, possible world semantics. '

1. Introduction
Kripke structures were proposed in [Kripke 63] as a

semantic basis for modal logics of necessity and pos
sibility. The general idea is that a proposition a may ei
ther happen to be true (for example, it is true that I hap
pen to be sitting at my desk at the present time) or may
necessarily be true (for example, every square must of
necessity have four sides). The latter proposition may be
written as La, to distinguish it from simple truth. The truth
of La is expressed relative to the notion of "possible
worlds" : La is true just when a is true in al l worlds that
are possible given the present world. By varying the no
tion of what worlds are accessible from a particular world,
one may specify various differing notions of necessary

1This research was supported in part by a Postgraduate Award
from Bell-Northern Research and a Natural Sciences and Engineer
ing Research Council of Canada Postgraduate Scholarship.

2This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada grant A0884.

75

truth. [Halpern and Moses 85] provides a highly readable
introduction to such modal logics.

The notion of a possible world in this context seems
highly intuitive, since necessity is readily interpreted as
"truth in al l possible worlds". However, modal logics have
also been used to model (among other things) the epis
temic notions of knowledge and belief, and for these no
tions, the possible worlds basis is perhaps not as intui
tive. In the semantics of such systems, Ba (that is, the
agent beli eves a) is true just when a is true in all worlds
that are consistent with what the agent believes. [Fagin,
Halpern, and Vardi 84] and [Fagin and Vardi 85] argue
that it is not clear how Kripke structures reflect particular
states of knowledge and belief, and introduce modal
structures as a formally equivalent but arguably more in
tuitive alternative. These structures consist of a number
of levels, where level O corresponds to what is true in the
real world, level 1 corresponds to what the agent directly
believes about the world, level 2 corresponds to what the
agent believes that it be lieves about the world, and so on.
Hence, the levels of modal structures correspond neatly
to levels of meta-knowledge, and arguably allow in
dividual states of knowledge to be clearly represented.

In this paper we examine the extensibi lity of modal
structures by examining how they may be augmented to
account for various generalizations of Kripke structures.
In Section 2, we provide background information by
describing modal structures in general, giving their formal
equivalence to Kripke structures, and describing a par
ticu lar modal structure that models the logic weak
S5 [Fagin, Halpern, and Vardi 84], [Fagin and Vardi 85].
We also describe an original method of deriving modal
structures from Kripke structures. In Section 3, we inves
tigate the extensibi lity of modal structures to the logics of
explicit and implicit belief described in [Levesque 84a]
and [Lakemeyer 87]. In these systems, the notion of pos
sible worlds in Kripke structures is generalized to that of
partial possible worlds, or situations. Section 4 describes
briefly how the first-order logic of belief described in
[Levesque 84b] can be represented in modal structu res.

The formal equivalence of the two approaches has been
demonstrated for all extensions; for brevity, however, the
theorems have been omitted. The theorems and their
proofs, together with further details, may be found in
[Hamilton 87].

.. ,

I

. . I

·1
I

I
I

2. Kripke Structures and Modai Structures
This section briefly reviews the semantic structures

with which we are concerned . A Kripke structure con
sists of a set of states G, a binary accessibility relation R
over those states, and an assignment of truth values 1t to
primitive propositions at states. For w, VE G, if wRv, then
v is said to be accessible from w. Informally, the states
are interpreted as possible worlds, and the accessibility
relation gives those worlds that are considered possible
with respect to a given world. For epistemic logics (i.e.,
logics of knowledge and belief), the accessibility relation
gives those worlds that are consistent with what an agent
bel ieves at a particular "real" world. An agent at a world
w is said to believe a proposition p if and only if p is true
in all worlds accessible from w.

Different restrict ions placed on the accessibil ity rela
tion enable one to model different properties of
knowledge or bel ief. Consistency of belief is obtained in
a Kripke structure by requiring that the accessibil ity rela
tion be serial (for every world w, wRv for some v).
Positive introspection, wherein an agent knows every
thing that it knows, is obtained by requiring that the ac
cessibi lity relation be transitive (if wRv and vRx, then
wRx); and negative introspection, wherein if an agent
does not know something, it knows that it does not know
it, is obtained by the Eucl idean restrict ion (if wRv and
wRx, then vRx). The logic weak S5, which is obtained by
requ iring that the accessibility re lation be serial, tran
sitive, and Eucl idean, gives a kind of belief that is consis
tent, although not necessarily accurate with regard to the
"real world". The log ic S5 is obtained by requiring that
the accessibi lity re lation be reflexive instead of serial (for
every world w, wRw). This requ irement ensures that the
agent's beliefs accurately reflect the "real world", and dis
tinguishes knowledge from bel ief.

[Fagin, Halpern, and Vardi 84] and [Fagin and Vardi
85] introduce modal structures as an alternative to Kripke
structures. A modal structure models a particular world w
in a Kripke structure; it tells both what is true at w and
what is bel ieved by an agent A at world w.3 It consists of
a series of levels, where each level models a particular
"depth" of the agent's knowledge or meta-knowledge.
For example, the fact that primitive proposition p is true is
recorded at level O; the fact that agent A believes that p
is true is recorded at level 1 ; and the fact that A believes
that A believes that p is true is recorded at level 2.

The correspondence to Kripke structures is rough ly
as fo llows. World w in a Kripke structure describes a
specific "state of affairs"; th is (single} state of affairs is
described at level O in the modal structure for world w.
The agent is considered to be "at" level 0. The set of
worlds immediately accessible from w models the agent's
beliefs about w; these worlds constitute level 1 in a modal
structure. The sets of worlds accessible from those ac
cessible from w gives the agent's beliefs about its bel iefs
about w; these worlds are contained at level 2 of the

3Modal structures are actually designed for multi -agent logics.
However, since the extensions described in this paper are all to
single-agent logics, and since the extension to a multi-agent struc
ture is a straightforward one, the single-agent version is described
here.

76

modal structure, along with the worlds through which they
are accessible. This process can be repeated arbitrari ly
many times to al low for arbitrarily deep nestings of
be liefs. A modal structure thus gives the fu ll accessibility
information in a Kripke structure from a single world; to
obtain all the information present in a particu lar Kripke
structure, one requ ires in general as many modal struc
tures as there are worlds in the Kripke structure.

A modal structure can now be formally
defined [Fagin and Vardi 85] . P is a fixed, finite set of
primitive propositions.4

Definition 1: f0: P -t {true, false} is a cJh -order
assignment.

Intuitive ly, f0 assigns truth values to the primitive proposi
tions in P at level O of the modal structure.

Definition 2: The tuple <fo> is called a 1-ary
world (or simply a world), because it contains a
single element. In general, a tuple <fa,
f1, ... ,fk_ 1> is cal led a k-ary world because it con
tains k elements.

Let Wk be the set of al l k-ary worlds .

Definition 3: fk: {A} -t Powerset(Wk) is a
1(-h-order assignment, for k 2'. 1.

Intuitively, the assignment fk associates with the agent a
set of possible k-ary worlds that are compatible with its
depth-k beliefs. fk(A) is the set of k-ary worlds as
sociated with agent A by fk> at level k of the modal struc
ture.

Definition 4: A modal structure is an infin ite se
quence <f0,t1, ... ,> if the prefix <f0, ... ,fk_1> is a k
ary world for every k 2'. 1.

Kripke structures can contain worlds with duplicate
truth assignments, such that two distinct worlds v1 and
v2 , where v1 and v2 have identical truth assignments, are
both accessible from world w. In a modal structure, iden
tical k-ary worlds are collapsed into one, so that every
level k contains only distinct k-ary worlds. Modal struc
tures can be drawn as trees, and the relationship be
tween Kripke and modal structures can be clari fied by
showing the transformation from a Kripke structure to a
modal structure drawn as a tree. Figure 2-1 shows a
three-step transformation from a Kripke structure to a
modal structure, for world w of the Kripke structure. The
Kripke structure contains five worlds, of which v1, v2 , and
v3 have identical truth assignments. In the first step, the
Kripke structure is "unraveled" to create a Kripke tree
rooted at world w. In step 2, collapsed Kripke trees of
successive depths are obtained from the original tree by
cutting off the tree at each depth and recursively, from
the leaves to the root, col lapsing any duplicate subtrees.
The collapsed Kripke tree of depth 1 in the figure, for ex
ample, has only one leaf because worlds v1, v2 , and v3
are collapsed into one. Simi larly, the collapsed Kripke
tree of depth 2 has only two subtrees because the sub
trees rooted at v1 and v2 are collapsed into one. The

4Kripke structures assume an infinite set of primitive propositions.

V1 V3 we 'o= ew
w V1 fjA) = ev1

we ,e
~v, /v1

V2 -<:: f(A):
i w we , • ,e V3 .. ,

~w <v, w<~:• V2 V X
X

X
V3

Krlpke Collapsed Modal
Structure · - - ~n~a~.;i - - -

Krlpke
Tree spilt and ~ Krlpke Trees · - - t~ke - - - - - Structure

collapse subtrees

Figure 2-1: Three-Step Transformation from a Kripke Structure to a Modal Structure
final step of the transformation produces the modal struc
ture for world w. At level 0, fn is the truth assignment re
for world w. At every level k above level 0, fk(A) is the
set of depth-(k-1) subtrees of the root win the collapsed
depth-k Kripke tree. Each such subtree is represented
by <g0,g1, ... ,gk_1>, where g0 is the truth assignment at
the root of the subtree, and 9m(A) is the set of
depth-(m-1) subtrees of the collapsed Kripke subtree
rooted at world g0, for 1 :,; m :,; k-1. Notice that each
subtree at every level of the modal structure is itself a
collapsed Kripke tree for a modal structure representing
the world at its root. gk_1 (A) is called the suffix of the
subtree rooted at g0, and contains all the depth-(k-2) sub
trees of g0.

Because of th is co llapsing of duplicate subtrees, a
single modal structure corresponds to an infinite number
of Kripke structures. The collapsing of duplicate subtrees
together with the use of a finite set of primitive proposi
tions ensures that each level contains a finite set of k-ary
worlds. Th is feature, along with the clear separation of
levels of meta-belief, makes modal structures more
suitable than Kripke structures for representing particular
states of knowledge and bel ief. In fact, a particular state
of belief corresponds to exactly one modal structure, but
to an infinite number of Kripke structures.

The language L consists of a set P of primitive
propositions (infinite for Kripke structures, but fixed and
finite for modal structures), the connectives /\ and -,, and
the modal operator B, where Ba is read "the agent
believes a". The connectives v, ::i , and = are introduced
by definition . The depth of a sentence of Lis the deepest
nesting of modal operators in the sentence. For ex
ample, the sentence B(Bp /\ B(Bp v q)) has depth 3,
where p,q E P. The support relations for logics modeled
by Kripke structures are shown below. They tel l how to
determine the truth of any sentence of L at a world win a
Kripke structure M from the truth assignment to the primi
tive propositions at that world. I= means "supports the
truth of" and l;c means "does not support the truth of". p
is a primitive proposition, and a and ~ are formulas of L.

1. M, w I= p iff p is true at w under truth assign
ment re .

2. M, w I= -a iff M, w l;c a

77

3. M,w I= a/\~ iff M,w I= a and M,w I=~-
4. M, w I= Ba iff M, v I= a for al l v such that wRv.

A sentence a E L is satisfied at a world win Kripke struc
ture M if M, w I= a, and a is valid in M (written "I= a") if a
is satisfied at every w E G.

The support relations for logics modeled by modal
structures is now given.5 [Fagin, Halpern, and Vardi
84] proves that the satisfiabil ity of a sentence of depth k
is confirmed at level k in a modal structure. p is a primi
tive proposition, and a and ~ are formulas of L.

1. <f0, ... ,fk> I= p iff p is true under truth assign
ment f0.

2. <f0, ... ,fk> I= -a iff <f0, ... ,fk> l;c a.

3. <f0, ... ,fk> I= a A ~ iff <f0, ... ,fk> I= a and
<fo,fk> I=~-

4. <f0, ... ,fk> I= Ba iff <g0, ... ,gk_1> I= a for every
<g0, ... ,gk_1> E fk(A), where a is of depth k-1.

The truth of al l formulas that contain no modal operators
is confirmed at level O of the modal structure, while the
truth of formulas with k nested modal operators is con
firmed at level k. A depth-k sentence a is satisfied at a
modal structure f (written "f I= a") if <f0, ... ,fk> I= a, and a
is valid if it is satisfied at every modal structure.

Each modal structure corresponds to a single state
of a Kripke structure, whose truth assignment is restricted
to a finite set of propositions, together with its acces
sibil ity information. Moreover, each Kripke structure cor
responds to a collection of modal structures, such that
exactly the same set of sentences is satisfiable, and thus
valid, in each model. The following theorem makes the
equivalence explicit.

Theorem 5: (Fagin and Vardi 85] To
every Kripke structure M and state s in M, there
corresponds a modal structure fM,s such that
M,s I= a iff fM 5 I= a, for every formula a. Con
versely, there' is a Kripke structure M such that

5
The symbols I= and I>' a_re used in this paper to define the sup

port re lat ions for several logics; the symbols have distinct definitions
for each logic. Because the meaning is clear from the context,
however, no confusion arises.

I

for every modal structure fthere is a state s1 in
M such that f I= a iff M,s, I= a, for every formula
a.

Belief structures [Fagin and Vardi 85] are simply
modal structures constrained to model the logic weak S5.
Figure 2-2 shows the first three levels of a sample belief
structure and the Kripke structure that it corresponds to .

fo= wR

f(A) : • • • w1

1 a
w1 w2 W3

ljAl ,.1\ £ wR / ~.:1 w2

~ /
W3

W1 W2~W2W3

0

W1 W2 W3

Figure 2-2: A Belief Structure and
a Corresponding Kripke Structure

The world wR at level O is the "real world". At level 1,
worlds w1, w2, and w3 are the worlds compatible with the
agent's bel iefs, and assigned to it by f1. At level 2, f2 as
signs to the agent a set of three 2-ary worlds that are
compatible with its beliefs about its beliefs about the
world.

There are three semantic restrictions on be lief struc
tures, the first of which applies to all modal structures.

T1) Basic Restriction: <g0, . .. ,gk_2> e fk.1 (A) iff there is
a gk_1 such that <g0, ... ,gk_2, gk_1> e fk(A), fork ~ 2.

That is, each (k-1)-ary world forms the prefix of some k
ary world at level k, and each k-ary world at level k has
as its prefix some (k-1)-ary world from the previous level.
In terms of trees, this restriction says that the leaves of
subtrees at level k-1 are the parents of leaves at level k,
and conversely, that the leaves at level k have as parents
the leaves of subtrees at level k-1. Intuitively, each level
extends the agent's lower-level beliefs. In Figure 2-2,
each world at level 1 is the prefix of some 2-ary world at
level 2, and the leaves at level 2 are the children of
worlds at level 1.

T2) Full Introspection: if <9o, ... , gk_1> e fk(A) , then
9k-1 (A) = fk-1 (A), fork ~ 2.

Agents under weak S5 are fully introspective, so the
worlds accessible from those at the previous level are ex
actly all the worlds at the previous level. That is, an
agent knows exactly what it believes and doesn't believe
at the previous level. T2 corresponds to the transitive
and Euclidian restrictions on Kripke structures.6 In
Figure 2-2, the suffix of each 2-ary world (the set of

6The transitive and Euclidean restrictions may be specified in
dividually by replacing the equality in T2 with a subset (~) re lation for
the transitive restriction and a superset (:::2) relation for the Euclidean
restriction [Vardi 85].

78

leaves of each subtree) at level 2 contains all the worlds
at level 1. Because weak S5 does not require beliefs to
correspond to "reality", wR is not required to appear at
level 1.

T3) Consistency: fk(A) is nonempty fork ~ 1.
An agent's be liefs must be consistent. Since worlds are
consistent, if there is some world at every level, then the
agent's bel iefs are consistent. T3 corresponds to the
serial restriction on Kripke structures.

A bel ief structure has an infinite number of levels.
After some level, however, an agent will have no new in
formation to bel ieve, and the higher levels wi ll contain
only the worlds compatible with the beliefs the agent
gains by introspecting about its beliefs (and lack of
beliefs) at the previous levels.7 A level which contains no
information not in the previous level is called a
no-information extension of the previous level [Fagin,
Halpern, and Vardi 84] .

3. BLK-Structures and BL4-Structures
[Levesque 84a] describes a sing le-agent logic of

implicit and explicit be lief (called BL in this paper), where
explicit beliefs are those "actively held" by the agent, and
implicit beliefs are the logical consequences of the ex
plicit be liefs. Explicit beliefs are not required to be con
sistent. As well, an agent is not required to believe ex
plicitly all tauto logies, the consequences of its explicit
be liefs, or certain statements that are logically equivalent
to its explicit bel iefs. The language of BL consists of a
set of primitive propositions P, the connectives " and -,,
and the modal operators B and L. Ba is read "the agent
explicitly believes a" and La is read "the agent implicitly
be lieves a". The connectives v, ::, and = are introduced
by definition. No nesting of modal operators is allowed,
so the agent possesses no meta-beliefs.

The semantics of BL is given in terms of situations
as well as worlds : A situation assigns true, false, both or
neither to propositions. A world then is a complete and
consistent situation, or alternatively, a situation is a par
tial, possibly inconsistent, world . The semantics is given
in terms of a model-structure, called a BL-model in this
paper to avoid confusion with modal structures. A
BL-model M is a 4-tuple <S,B,T,F>, where S is the set of
all situations, B is the set of situations that correspond to
the agent's explicit bel iefs, and T and F map primitive
propositions to sets of situations in which they are
respectively true and false. The agent's implicit bel iefs
are modeled by the set of worlds W(B), which is
compatible with the belief set B. A world w is compatible
with a situation s if all propositions that are true (false) at
s are true (false) at w. Every w e W(B) is compatible
with some s e B, and all explicit beliefs are also implicit
beliefs by the definition of compatibility. The support
relations for a situation in a BL-model M are shown
below. l=r means "supports the truth of", l=F means
"supports the falsity of", and l*r means "does not support
the truth of".

711 there are several agents, the situation is more complex:
see [Fagin, Halpern, and Vardi 84] for details.

1. M,s l=r p iff s e T(p).
M,s l=F p iff SE F(p) .

2. M,s l=r (av ~) iff M,s l=r a or M,s l=r ~
M,s l=F (av ~) iff M,s l=F a and M,s l=F ~-

3. M,s l=r (a A ~) iff M,s l=r a and M,s l=r ~
M,s l=F (a A~) iff M,s l=F a or M,s l=F ~-

4. M,s l=r -a iff M,s l=F a.
M,s l=F -a iff M,s l=r a.

5. M,s l=r Ba iff for every situation t e B, M,t l=r
a .
M,s l=F Ba iff M,s l*r Ba.

6. M,s l=r La iff for every world w e W(B), M, w
l=r a.
M,s l=F La iff M,s l*r La.

The truth of a sentence a is verified only at worlds in
W(B). In particular, a is valid (written "l=a") if it is
satisfied at all worlds in all BL-models. a is satisfied at a
world we W(S) in a BL-model M (written "M, w I= a") if
M,w l=r a.

The semantics of BL can be given equivalently in
terms of a collection of modified modal structures called
BL-structures, where each BL-structure models one
situation (or world) in a BL-model. Since BL permits no
meta-knowledge, BL-structures contain only two levels.
Level O contains an assignment f0 of true, false, both or
neither to the propositions in P; it represents the "actual
situation", where agent A is located. At level 1, A is as
signed both a set of situations s1 (A) and a set of worlds
w1 (A), which correspond to B and W(B), respectively.
Each world in w1 (A) is compatible with some situation in
s1(A), just as W(B) and Bare compatible in BL-models.
BL-structures are described in detail in (Hamilton 87] .
The logics BLK and BL4, which are described next, ex
tend BL to allow meta-beliefs. The modal structures
which provide their semantics are described in detail.

[Lakemeyer 87] extends BL to allow meta-beliefs in
his logic BLK. The language used is that of BL, except
that nested beliefs are allowed; the only restriction on
nesting is that no L may appear in the scope of a 8, so
the agent cannot hold explicit beliefs about its implicit
beliefs. This is a syntactic restriction on the language
which does not affect the semantic model.

Lakemeyer introduces the constraint that an agent
cannot introspect explicitly about its beliefs. To achieve
this, he replaces the belief set B in the BL-model with
two accessibi lity relations R and R, for positive and nega
tive explicit beliefs, respectively. Positive explicit beliefs
are sentences with an initial unnegated B operator (e.g.,
Ba and B(Ba v -8~)). Negative explicit beliefs are sen
tences with an initial negated 8 operator (e.g., - Ba and
-B(Ba v B~)) . The intuition is that an agent A's beliefs
are confirmed by looking in one set of situations (those
accessible through R), and discon~med by looking in
another (those accessible through R). The two acces
sibility relations co incide at worlds, which model A's im-

79

plicit beliefs. Thus, wRs iff wRs, for a world w and a
situation s. This ensures that and agent's beliefs are
consistent at a world, although they may not be at a
situation . Unlike in BL-models, both worlds and situa-
tions are reachable through R and R. Implicit beliefs are
fully introspective, as in weak S5, but are not required to
be consistent. A BLK-model is then a 5-tuple
<S,T,F,R,R>, where S, T, and F are as in BL-models,
and R and R are the accessibility relations.

Transitive and Euclidean restrictions on worlds in
BLK-models give the agent full implicit introspective
powers over its implicit and explicit beliefs. For all worlds
wand v and situations s e S,

if wRv and vRs, then wRs (transitive), and

if wRv and wRs, then vRs (Euclidean).

The support relations for a BLK-model are the same
as those for a BL-model except for those that interpret
sentences of the form Ba and La. Intuitively, Ba is sup
ported at a situation if a is supported at all situations ac
cessible through R; Ba is not supported at a situation if~
is not supported at some situation accessible through R.
La is true if a is true in all worlds accessible through R.
a, of course, can itself contain modal operators. The two
new support relations follow.

5. M,s l=r Ba iff for all t, if sRtthen M,t l=r a .

M,s l=F Ba iff for some t, sRt and M,t l* r a .

6. M,s l=r La iff for all worlds w, if sRw then M, w

l=r a.
M,s l=F La iff M,s l* r a.

Satisfiabi lity and validity are defined as for BL-models.

The semantics of BLK can be described equiv
alently in terms of a collection of extended BL-structures
called BLK-structures; each BLK-structure is equivalent
to a situation in a BLK-model, along with its accessibility
information. Level O of a BLK-structure contains an as
signment of truth values that describes the "actual
situation", as in BL-structures. Each ensuing level as
sociates with agent A two sets of situations, correspon~-
ing to the situations accessible to A through R and R.
The formal definition is shown below. As before, we as
sume a fixed, finite set of primitive propositions P, and a
single agent A.

Definition 6: s0: P ~ Powerset({true,false}) is

a cJ.h -order situation truth assignment. w0: P ~

{true.false} is a cJ.h -order world truth assignment.

Intuitively, s0 assigns true, false, both or neither to the
propositions in P, while Wo assigns either true or false to
them. fo is the s0 that describes the "real situation" at
level O of a BL-structure.

Definition 7: <So> is a 1-ary situation
(abbreviated situation), and <Wo> is a 1-ary
world (abbreviated world).

A world is a situation. T(p) is the set of all situations at
which p is true, and F(p) is the set of all situations at

' .I

·.· .. j

I

. I

which pis false, for all p e P. Every world appears in ex
actly one of T(p) or F(p), but each situation can appear in
one, both, or neither.

Let S1 be the set of all 1-ary situations.

Definition 8: t1 : {A} ~ 2S1 is a 1s'-order positive

situation assignment. f1: {A} ~ 2S1 is a

1s'-order negative situation assignment. [t1, t1]

is a 1s'-order BLK-assignment.

Intuitively, f1 associates with the agent a set of 1-ary
situations compatible with _ its explicit positive beliefs
about the world. Intuitively, f1 associates with the agent a
set of situations compatible with its explicit negative
beliefs about the world.

- -
Definition 9: <f0,[t1,t1]. ... ,[fk_1,tk_1]> is called a
k-ary BLK-situation. If <fo> is a world,

- -
<fo,[f1.f1].[fk_1,fk_1]> is also called a k-ary
BLK-world.

Let Sk be the set of all k-ary BLK-situations. Then
kth_order positive and negative situation assignments are
specified as follows.

Definition 10: t {A} ~ Powerset(Sk) is a

ifh-order positive situation assignment. t {A}
~ 2Sk is a ifh -order negative situation
assignment.

Intuitively, fk assigns to the agent a set of k-ary
BLK-situations which are ~ompatible with its positive ex
plicit depth-k beliefs, and fk assigns to each agent a set
of k-ary BLK-situations which are compatible with its
negative explicit depth-k beliefs. fk(A) is the set of k-ary

BLK-situations assigned to the agent by fk, and fk(A) is
!he set of k-ary BLK-situations assigned to the agent by
fk, both at level k. W(fk(A)) is the set of k-ary

- -
BLK-situations <g0,[g1 ,g1]. ... ,[gk_1,gk_1]> e fk(A) in which
<9o> is a world. The suffix of a k-ary BLK-situation

- -
<f0,[f1.f1], ... ,[fk_1.fk_1]> is the set of depth-(k-2) subtrees
assigned to the _ agent by the (k-1)th_order
BLK-assignment [t1.tk_1]; fk_1(A) is called the positive

suffix, and fk_1 (A) is called the negative suffix.

Definition 11: The infinite sequence <fo, [f1 .f1].

[f2,t2]. ... > is a BLK-structure if every prefix <fo,
- -

[f1.f1]. ... ,[fk_1,fk_1]> is a k-ary BLK-situation for
every k > 0, and the structure satisfies the
semantic restrictions S1, S2, and S3 given
below.

Figure 3-1 shows the first three levels of a sample
BLK-structure and a corresponding BLK-model. The
hollow circles represent situations, while the dark circles
represe~t worlds. The solid and dashed lines represent
R and R, respectively. The BLK-structure models world
w1 of the BLK-model. At level 1 of the BLK-structure,
f1 (A) contains the situations compatible with the agent's

80

positive beliefs ab9ut the world (those accessible through
R from w1), while t1 (A) contains the situations compatible
with the agent's negative beliefs about the world (those
accessible through R from w1).a At level 2, t2(A) con
tains three subtrees, each one rooted at one of the situa
tions in f1 (A). The leaves of each subtree are the situa-

tions accessible through R and R from the root, so that
f1 (A) represents beliefs of the form BBa and B-Ba. The

same is true of f2(A), which models beliefs of the form

- BBa and -B-Ba. It is possible for f2(A) (t2(A)) to con
tai~ more than one subtree rooted at a situation in t1 (A)

or f1 (A); this could happen if the BLK-model contained
two situations with identical truth assignments but dif
ferent accessible situations.

F
0

, wl

f
1
(A) : O O e :~(A)

sl s2 w2

Figure 3-1: A BLK-Structure and
a Corresponding BLK-Model

,T(A)
2

Three semantic restrictions are needed to enforce
the properties of BLK. S1 and S3 are closely related to
T1 and T2 of belief structures, and S2 enforces the coin-
cidence of R and R at worlds.

S1) Basic Restriction: <9o, [g1,g1]. ... , [gk-2•9k-2l> e

fk_1(A) (t1(A)) iff there exists a [gk_1,gk_1] such that

<9o, [91 ,91J. ... , [9k-2 •9k-2l, [9k-1 •9k-1l> e fk(A) (fk(A))
fork ~ 2.

S1 says simply that each (k-1)-ary BLK-situation at level
k-1 forms the prefix for at least one k-ary BLK-situation at
level k, and the prefix of each k-ary BLK-situation at level
k is equivalent to some (k-1)-ary BLK-situation at level
k-1. Intuitively, as in be lief structures, each level extends
the agent's lower-level beliefs. In Figure 3-1, for ex
ample, each of the three elements of t1 (A) forms the
prefix (the root in this example) of some 2-ary

8 1n this example, t2(A) contains the same subtrees as f2(A), be
cause <fo> is a world. This is not true in general.

BLK-situation in t2(A), and the prefix of each 2-ary
BLK-situation in t2(A) is some element of t1 (A). The

- -
same is true of t1 (A) and t2(A) .

S2) wRs iff wRs: If <fo> is a world in the BLK-structure
- -

<f0, [f1 .t1]. ... > then fk(A) = fk(A) for all k ;;::: 1.

S2 corresponds to the BLK-model restriction wRs iff
wRs, which ensures that the agent's positive and nega
tive beliefs are consistent at a world. This restrict ion
must therefore be enforced whenever the BLK-structure
models a world . In a BLK-structure, a positive depth-k
sentence is modeled by the subtrees in fk(A), while the
correspo~ding negative sentence is modeled by the sub
trees in fk(A). So if <fo> is a world, the positive and
negative sets at each level must be the same. Restric
tion S2 is illustrated in Figure 3-1; notice that it holds not
only in the main BLK-s!ructure, but also within the 2-ary
BLK-world in t2 (A) and t2(A).

S3) Full Implicit Introspection: For <9o> a world, if
- -

<9o, [91 ,91J, ... ,[gk-1 •9k-1l> E fk(A) then 9k-1 (A) =
fk_1 (A) fork ;;::: 2.

S3 enforces the BLK introspection axiom, which
gives full implicit introspection over implicit and explicit
beliefs. It corresponds to the transitive and Euclidean
restrictions on R in BLK-models, and says that the posi
tive suffixes (gk(A)) of k-ary BLK-worlds at level k must
contain all the (k-1)-ary BLK-situations at level k-1. By
restriction S2, the negative suffixes (gk(A)) contain the
same worlds, so the agent's implicit beliefs are fully intro
spective.

The support relations for BLK-structures are shown
below. pis a primitive proposition, and a is a sentence.
As in BLK-models, l=r means "supports the truth of", l=F
means "supports the falsity of", and l;>!cr means "does not
support the truth of".

- -
1. <f0.[f1 .t1]. .. . ,[fk,fk)> l=r p iff <fo> e T(p) .

<fo,[f1.f1J. ... ,[fk,fk)> l=F p iff <fo> E F(p).
- -

2. <t0,[t1,t1J, ... ,[fk,fk)> l=r -a iff
- -

<fo,[f1 .f1J, ... ,[fk,fk)> l=F a.
- -

<fo.[f1 .f1J. ... ,[fk,fk)> l=F - a iff
- -

<fo,[f1.f1J. ... ,[fk,fk)> l=r a.
- -

3. <f0,[t1,t1), ... ,[fk,fk)> l=r a " P iff
<f0,[t1,t1), ... ,[tk)k]> l=r a and

- -
<fo,[f1.f1J. .. . ,[tk,tk]> l=r p.

- -
<f0,[t1,t1J, ... ,[tk,fk)> l=F a " p iff

- -
<f0,[t1,t1), ... ,[fk,fk)> l=F a or

- -
<fo,[f1 .f1J. ... ,[fk,fk)> l=F p.

81

- -
4. <t0,[t1,t1). ... ,[fk,fk)> l=r av p iff

- -
<fo,[f1.f1J, ... ,[fk,fk]> l=r a or

- -
<fo,[f1.f1 J. ... ,[tk,tk]> l=r p.

- -
<f0.[f1 .f1). ... ,[fk,fk)> l=F av P iff

- -
<fo,[f1.f1J, ... ,[fk,fk]> l=F a and

- -
<fo,[f1.f1), ... ,[fk,fk)> l=F p.

- -
5. <f0,[t1,t1]. .. . ,[fk,tk)> l=r Ba iff

- -
<9o, [91 ,91 J, ... ,[gk-1 •9k-1l> l=r a for all

- -
<9o,[91 ,91J, [gk-1 •9k-1l> e tk(A).

- -
<f0.[f1 .t1J, ... ,[fk,fk]> l=F Ba iff

<9o,[91,91J. ... ,[gk_1,9k-1l> l;>!cr a for some
- - -

<9o, [91,91J. ... ,[gk-1,9k-1l> e fk(A) .
- -

6. <f0,[t1.t1]. .. . ,[tk,fk)> l=r La iff
- -

<Wo,[91,g1]. ... ,[gk_1,gk_1]> l=r a for all
- -

<Wo, [91 ,91J. ... ,[gk-1,9k-1l> e W(tk(A)) .
- -

<f0,[t1 .t1). .. . ,[fk,fk]> l=F La iff
- -

<fo,[f1 .f1], ... ,[fk,fk)> l;,!,T a.

A sentence a of depth k is modeled at level k of the
BLK-st~ucture. Specifically, the BLK-structure f =
<w0,[t1.t1]. ... > is said to s_atisfy s~ntence a of depth k
(written "f I= a") if <Wo,[f1 ,t1]. ... ,[fk,fk]> l=r a. a is valid
(written "l=a") if it is satisfied in every BLK-structure <Wo,

[f1 ,t1]. ... >. Validity thus corresponds to satisfiability at
every world in every model of Kripke structures.

The equivalence between BLK-models and
BLK-structures is similar to the equivalence between
Kripke structures and belief structures: BLK-structures
model a single situation, wh ile Lakemeyer's BLK-models
model collections of situations, such that the same set of
sentences is satisfiable in each model.

Theorem 12: [Ham~ton 87] To every
BLK-model M = <S,T,F,R,R> and world win M,
there corresponds a BLK-structure fM w such
that M, w I= a iff fM w I= a, for every formula a.
Conversely, there is a BLK-model M such that
for every BLK-structure f there is a world w, in
M such that f I= a iff M, w, I= a for every formula
a .

Lakemeyer presents an axiomatization of BLK that is
both sound and complete with respect to BLK-models.
Since BLK-models and BLK-structures are equivalent,
the axiomatization is also sound and complete with
respect to BLK-structures.

BLK-structures, like belief structures, are infinite in
height. However, after some finite number of levels, no
further information is introduced, and the agent's higher
level bel iefs resu lt from its implicit introspection. These
implicit beliefs can be propagated upwards through the

I ·,

I
. I

i
4

I

levels on the positive side by using a no-information BLK
extension similar to the no-information extension of be lief
structures. Intuitively, the no-information BLK-extension
[fk+ 1, fk+ 1] describes the agent's depth-(k+ 1) be liefs,
given that it has no information other than that expressed
in its depth-k beliefs. The explicit and implicit no
information extensions begin at the same level, since ex
plicit beliefs are implicit beliefs. The suffixes of positive
(k+ 1)-ary BLK-worlds in the no-information
BLK-extension contain the entire previous level, to model
the fact that the agent's implicit beliefs at that level are a
result of introspecting about its beliefs at the previous
level. The suffixes of positive (k+ 1)-ary BI.K-situations
contain al l possible (k+ 1)-ary BLK-worlds in order to
model the fact that the agent has no positive beliefs
about either its beliefs or its non-beliefs at the previous
level. The suffixes of al l negative (k+ 1)-ary
BLK-situations and BLK-worlds contain all possible
(k+ 1)-ary BLK-worlds in order to model the fact that the
agent does not believe anything at that level. The formal
definition of the no-information BLK-extension is
in [Hamilton 87].

[Lakemeyer 87] transforms BLK into a system
cal led BL4, which is like BLK except that the agent's ex
plicit positive beliefs are subject to positive introspection.
This is done by making R transitive for situations as well
as worlds (if sRt and tRu, _!_hen sRu), and a~ding the
balancing restrict ion that if sRt and tRu, then sRu, for all
situations s, t, and u. BL4 can be modeled in a
BL4-structure, which is a BLK-structure with one ad
ditional semantic restriction, S4, to enforce explicit posi
tive introspection. The formal definition of S4 is given
below. The support relations for BL4-structures are ex
actly those of BLK-structures.

S4) Explicit Positive Introspection: If <9o,[91 ,91], ... ,
- -

[9k-1 •9k-1l> E fk(A) (fk(A)), then 9k-1 (A) k fk-1 (A)

(fk_1(A)) for all k ~ 2.
S4 says that at every level k above level 1_, the positive
suffixes of k-ary BL4-situations in fk(A) and fk(A) are sub-

sets of fk_1 (A) and fk_ 1 (A), respectively. This is illustrated
in Figure 3-2, which shows the first three levels of a
BL4-structure and the associated BL4-model. As before,
the hollow and dark circles represent situations and
worlds, respectively. In every subtree of f2(A), the set
91 (A) (the set of leaves reachable through R) is a subset

of f1 (A), and similarly, every set 91 (A) in f2(A) is a subset

of f1 (A) . In the subtrees that model worlds wand v, the

same is true of 91 (A) (the set of leaves reachable through

~). In the subtrees that model the situations r and t,
91 (A) is not a subset of the sets in the previous level.

Explicit be liefs are extended through a
no-information BL4-extension which incorporates restric
tion S4. In BL4-structures, the positive BL4-situations
that model non-worlds at the upper levels model the
beliefs the agent acquires by introspecting explicitly
about its positive beliefs, whi le those that model worlds
continue to model the agent's implicit, fully introspective

82

beliefs. Details are in [Hamilton 87j.

4. KB-Modal-Structures
While the previous sections extended modal struc

tures to allow partial possible worlds and a double acces
sibility relation, this section extends modal structures to a
first-order quantificational setting. [Levesque 84b] and
[Levesque 81 a] describe a first-order language, KL, that

can be used as the representation and query language
for a knowledge base (KB), and enables the KB to
answer questions about both its domain and its
knowledge.9 The semantics of the language is given in
terms of a possible worlds model which gives the KB the
power of weak S5, but is extended to allow quantification
over variables. This section briefly describes the lan
guage KL and its semantic theory, and presents an
equivalent representation using an adaptation of belief
structures.

KL includes countably infinite sets of predicate and
function symbols including the equality predicate "=",
constants, individual variables, and parameters, which
act as rigid designators in the domain. It includes a
single modal operator K, where Ka is read "the KB
believes that a", and the standard first-order logical
operators. Terms of KL include variables, parameters,
and function applications, and sentences are defined
recursively in terms of predicate applications combined
by the logical operators.

A function v assigns every primitive term of KL to a
parameter, enabling the KB to know when two terms
refer to the same domain entity, or co-refer. Ifs is the set
of all primitive sentences that the KB believes to be true,
then [s, v] is a world-structure, which models a possible
world. A KB-model m is any non-empty set of world
structures, intuitively, those that are compatible with the
world-knowledge of the KB. The accessibility relation on
the worlds in mis transitive, Euclidean, and serial, and so
the logic has the properties of weak S5.

The semantics of KL can thus be defined in terms of
a modified belief structure called a KB-structure, where
each KB-structure models a single world-structure in a
KB-model. KB-structures are exactly the bel ief struc
tures of Section 2, except that level O is redefined to
describe first-order worlds instead of propositional ones.
The three semantic restrictions on belief structures apply
directly to KB-structures, and a new semantic restriction,
described below, is added. The no-information extension
of belief structures can also be applied directly.

Level O of each KB-structure contains an assign
ment v of terms to parameters, and a set of primitive sen
tences s that are true given v at that world-structure. It
also contains a domain-mapping function (DMF) d which
maps the parameters to the domain entities. In each
KB-model there is a single implicit DMF which applies
over all world-structures, but each KB-structure models
only a single world-structure, so the mapping must be

9The KB actually has beliefs about the domain, since its
knowledge is not required to be accurate, but it has accurate
knowledge of its own knowledge. The terms knowledge and belief
will be used interchangeably in this section.

V •
r

f2(AJA· I \
I I \

I \
0

t

A\
r V U r V U

~(A):

~(A):

W V r
• • 0

r

A\
\

\

0
r V U

w V

A \
\ A

v

\
\ A ' '

V r V V

w · - -- - -- - - ---- --,
'

u

R R -
Figure 3-2: A Sample BL4-Structure and

a Corresponding BL4-Model
done in every KB-structure. The universality of the map
ping across the world-structures modeled by
KB-structures must therefore be enforced; the function d
will be used in the formulation of a semantic restriction for
this purpose on KB-structures. Level O then consists of a
triple t0 = [s,v,d].

Semantic restriction UD (Universal Domain) ensures
that the DMF dis the same across all world-structures in
the KB-structure. Since levels O and 1 together contain
al l the possible worlds in the corresponding KB-model, it
suffices to compare the DMF of every world-structure at
level 1 with that of level 0. Let <f0>.d represent the
domain mapping function of the world-structure <fo> =
<[S,V,dj>.

UD) <g0>.d = <f0>.dfor all <9o> e f1(A) in KB-structure
<fo, f1 , ... >.

The support relations of the KB-structures bear a very
close resemblance to the support relations of the
KB-model, given in [Levesque 84a]. In fact, all but the
support relation for sentences of the form Ka are iden
tical, with <[s, v,d], f1 , ... ,fk_1 > substituted for m,[s, v,d] .
The one that differs is shown below.

7. <[s,v,d], f1, ... ,fk> I= Ka if <[s',v',a], 91 , ... ,gk-1>
I= a for all <[s', v',d], g1 , ... ,gk_1 > e fk(KB).

KB-structures are equivalent to Levesque's
KB-models in the same way that be lief structures are
equivalent to Kripke structures, with the additional restric
tion that the DMF of the KB-model be equivalent to the
DMF in the KB-structures. The equivalence theorem and
its proof are in [Hamilton 87].

83

5. Discussion
This paper has shown how the modal structures

of [Fagin, Halpern, and Vardi 84] and [Fagin and Vardi
85] can be adapted to model the non-standard epistemic
logics BL of [Levesque 84a] and BLK and BL4
of [Lakemeyer 87], and a first-order system, the
KB-model of [Levesque 81 b] and [Levesque 84b]. As
well, a three-step transformation from Kripke to modal
structures was described to clarify their relationship.

Modal structures do appear to be generally exten
sible to logics that differ from the standard epistemic
logics for which they were designed. But are they, as
their inventors claim, more intuitive than the Kripke struc
tures they replace? In belief structures this does seem to
be the case; the transitive and Eucl idean restrictions on
an accessibility relation, for example, seem less ob
viously related to full introspection than having the same
set of accessible worlds at every successive level. Cer
tainly as well, the ability to look at a particu lar level k of
the modal structure to determine the depth-k beliefs of an
agent is appealing, compared to the necessity of tracing
all paths of length k in a Kripke structure to find the ap
propriate set of worlds. But the relationship between the
worlds, which is easily seen in a Kripke structure, can be
obscured in a modal structure by the redundancy at each
level. In Figure 2-2, for example, it is clear that in the
Kripke structure the worlds accessible from wR are in an
equivalence class. But to draw the same conclusion from
the corresponding modal structure, it is necessary to
verify at every level that the suffix at each level contains
all the worlds of the previous level. The intricate notation
of modal structures can also be unwieldy, especially in
the more compl icated models.

[Fagin and Vardi 85] demonstrates that the finite
number of worlds at a level and the ability to verify a
depth-k sentence at level k lead to simpler proofs for
soundness and completeness, as well as decidabi lity,
with modal structures than with Kripke structures. This
should be true also for the extensions described in th is
paper.

Modal structures assume a fixed, finite number of
primitive propositions, presumably to model the beliefs of
a finite agent. This restriction undoubtedly makes it
easier to represent particular states of belief, since the
number of unique possible worlds is now finite. The
restriction may not always be reasonable, however, since
it effectively bars the agent from ever holding be liefs that
are not represented in the fixed, finite set. There is no
structural reason why modal structures could not be
defined for an infinite number of propositions, but the
number of possible worlds at a level would not then be
guaranteed to be finite, and determining validity in modal
structures would no longer be decidable.

Acknowledgements: We are grateful to Gerhard
Lakemeyer for helpful correspondence during the for
mulation of BLK-structures, to Alan Mekler for pointing
out the relationship between modal structures and trees,
to one of the reviewers for detai led, helpful comments,
and to Howard Hamilton for technical assistance in the
preparation of this paper.

I

I
I

References

[Fagin and Vardi 85)
Fagin , R. and Vard i, M.Y. "An Internal Semantics for
Modal Logic: Preliminary Report", in Proc. 17th ACM
SIGACT Symp. on the Theory of Computing, pages
305-315. Providence, RI, 1985.

[Fagin, Halpern, and Vardi 84)
Fagin, R., Halpern, J.Y., and Vardi, M.Y. "A Model
Theoretic Analysis of Knowledge : Prelim inary
Report", in Proc. 25th IEEE Symp on Foundations of
Computer Science, pages 268-278. 1984.

[Halpern and Moses 85)
Halpern, J. and Moses, Y. "A Guide to the Modal
Logics of Knowledge and Belief", in Proc. of the Ninth
International Joint Conference on Artificial Intel
ligence (IJCAl-85), pages 480-490. 1985.

[Hamilton 87)
Hamilton, S.J. Using Modal Structures to Represent
Extensions to Epistemic Logics, Master's thesis,
Simon Fraser University, December, 1987.

[Kripke 63)
Kripke, S. "Semantic Analysis of Modal Logic",
Zeitschrift fur Mathematische Logik und Grundlagen
der Mathematik,9:67-96, 1963.

[Lakemeyer 87)
Lakemeyer, G. "Tractable Meta-Reasoning in
Propositional Logics of Belief", In Proc. of the Tenth
International Joint Conference on Artificial Intel
ligence {IJCAl-8'1) . Milan, Italy, 1987.

[Levesque 81 a)
Levesque, H.J. A Formal Treatment of Incomplete
Knowledge Bases, PhD thesis, University of Toronto,
1981.

[Levesque 81 b)
Levesque, H.J. "The Interaction with Incomplete
Knowledge Bases: A Formal Treatment", in Proc. of
the Seventh International Joint Conference on Artifi
cial Intelligence (IJCAl-81), pages 240-245. Van
couver, B.C., 1981 .

[Levesque 84a)
Levesque, H.J. "A Logic of Implicit and Explicit
Bel ief", Technical Report 32, FLAIR, August, 1984.

[Levesque 84b)
Levesque, H.J. "Foundations of a Functional Ap
proach to Knowledge Representation", Artificial
Intelligence 23:155-212, 1984.

[Vardi 85)
Vardi, M. "A Model-Theoretical Analysis of Monotonic
Knowledge", in Proc. of the Ninth International Joint
Conference on Artificial Intelligence {IJCAl-85),
pages 509-512. Los Angeles, 1985.

84

Appendix

Theorem 12 and its proof are shown below.

Theorem 12: To every BLK-model M =
<S,T,F,R,R> and world w in M, there corresponds a
BLK-structure fM ,w such that M, w I= a iff fM,w I= a, for
every formu la a. Conversely, there is a BLK-model M
such that for every BLK-structure f there is a world w, in
M such that f I= a iff M, w, I= a for every formu la a.

Proof: To sh~ the first part of the theorem, sup
pose M = <S,T,F,R,R> is a BLK-model. For every situa
tio~ s E S in M, we construct a BLK-structure fM ,s = <f0,

[f1 ,f1), ... >, where f0 is the assignment at situation s. Sup
pose we have constructed a (k-1)-ary BLK-situation <fo,

- -
[f1.f1), ... ,[fk_2,fk_2]> for each situations e S. Then t 1(a) =
{<go, [91 ,g1], ... ,[gk_2,gk_2)> I sRg}. and ·L (a) = {<ho,

[h1 ,h1], ... ,[hk_2,hk_2]> I sRh}. where <g0,
- -

[91 ,91J. ... ,[gk-2•gk_2]> is the k-ary BLK-situation con-
- -

structed for g, and <ho, [h1,h1), ... ,[hk_2,hk_2]> is the k-ary
BLK-situation co nstructed for h. As we ll , W(t 1 (a)) =

- -
{< wo, [g1,91J. ... ,[gk-2•gk_2]> I sRw}, where w is a situation
g e S that is a world. It remains to be shown that M, w I=
a iff fM w I= a. The proof is mechanical and is left to the
reader.'

To ~ow the converse of the theorem, let M =
<S,T,F,R,R> be a BLK-model where S = {s, I s, = f0 for

every BLK-structure f = < fo, [f1 ,t1), ... >} . Then s, Rg iff

<9o, [g1,91J. .. . ,[gk-2•9k-2l> E fk_1(a) , and s, Rh iff <ho,

[h1 ,h1], ... ,[hk_2,hk_2]> e \ _1 (a) for every k ;::: 1, where <9o,
- -

[91 ,g1J. ... ,[gk-2•gk_2]> is the (k-1)-ary BLK-situation that

corresponds to g, and <ho, [h1 ,h1), ... ,[hk_2,hk_2]> is the
(k-1)-ary BLK-situation that corresponds to h. w(t1)(a))
is defined as above . f I= a iff M, w11=a by the same
reason ing as in part 1.

A Solution to the Paradoxes of Confirmation

James P. Delgrande

School of Computing Science,
Simon Fraser University,

Burnaby, B.C.,
Canada V5A 1S6

Abstract

A recalcitrant problem in machine learning concerns the
issue of what hypotheses are supported by what evidence. If
one accepts, first, that some ground instances describing a
domain do indeed support some general hypotheses while oth
ers do not and, second, that if an instance supports a
hypothesis, it also supports all logical consequences of the
hypothesis, then unintuitive and problematic results are
immediately forthcoming. For example, a flying bird would
support not only the hypothesis that birds fly, but also the con
trapositive that all non-flying things are non-birds. This paper
argues that, while an instance that supports a hypothesis does
also support all consequences of the hypothesis, the notion of
classical consequence is too strong to apply to the problem at
hand and that instead a weaker notion of consequence should
be adopted. A formal system which addresses the problems of
evidential support is developed, and it is shown that in this
framework the problems do not arise.

Resume
Cet article adresse un probleme relie au domaine de

l 'apprentissage automatique concernant Jes hypotheses qui sont
soutenues par un ensemble d'evidence. Si on accepte,
premierement, qu'il y ait des fait qui puissent soutenir des
hypotheses generales alors que d'autre ne le font pas, et que,
deuxiement, un fait soutenant une hypothese implique qu'il
soutient egalement toutes Jes consequences logiques de cette
hypothese, alors on se retrouve devant une situation
problematique. Par example, un oiseau volant ne soutiendrait
non seulement l'hypothese "Jes oiseaux volent" mais aussi
J 'hypothese opposee, soit "Jes choses qui ne volent pas ne sont
pas des oiseaux". Nous pretendons dans cette communication
qu'un fait soutenant une hypothese soutient aussi toutes Jes
consequences logiques de cette hypothese qu'il soutient. Nous
pretendons aussi que Ia notion de consequence de la logique du
premier ordre est trop forte. On a besoin done d'une notion de
consequence plus faible. Pour achever ce but, nous presentons
dans ce papier un systeme formel qui adresse Jes problemes de
soutien d'evidence et nous demontrons que ces problemes
n'arrivent pas avec cette methode.

85

1. Introduction

The area of inductive learning addresses the problem of
forming general hypotheses on the basis of a set of specific
facts. For this approach, a learning system receives informa
tion concerning a domain of application in the form of facts, or
ground atomic formulae. On the basis of this information the
learning system induces general statements characterising the
domain, and hence hypothesises relations among the known
relations in the domain. These hypotheses are phrased
independently of any particular individuals. Clearly then, in
this approach one must determine when a fact is to count as
confirming a hypothesis. In the case of universal statements
though, the problem appears to be trivial: a general statement
is confirmed by any of its instances. Hence, for example, the
statement "all ravens are black" is confirmed by a black raven 1

and falsified by a non-black raven. This observation appears to
be so straightforward, that every (to my knowledge) Artificial
Intelligence (AI) system that generalises from examples simply
accepts this without comment.

Yet matters are not quite as straightforward as they at first
seem. If one accepts the condition that whatever evidence
confirms a hypothesis also confirms a statement that is logi
cally equivalent to it, then difficulties arise immediately. For
example, consider the hypothesis "all ravens are black" and its
contrapositive "all non-black things are non-ravens" . Clearly a
non-black non-raven supports the latter hypothesis. However
it also, by the above criterion, supports the former hypothesis.
Thus we are Jed to the unappealing conclusion that the desk
that I am writing on, or my pen, supports the hypothesis "all
ravens are black". To quote Nelson Goodman, "the prospect of
being able to investigate ornithological theories without going
out in the rain is so attractive that we know there must be a
catch in it" [Goodman 79 p. 70]. This problem is known vari
ously as the "paradoxes of confirmation" or "Hempel's para
dox".2

1 More accurately, is confirmed by an instance representing a black
raven. Although confirmation is a relation between statements, I will, for
simplicity, on occasion talk more loosely about objects confirming state
ments .

2 Note though that these problems do not constitute a genuine paradox
per se. There is, for example, nothing inconsistent arising from the prob
lem . Rather what we have is a clash with commonsense intuitions. A more
appropriate term then is perhaps "the problems of confirmation".

!

I
I

I

There are various proposals in the philosophical literature
for a solution to this problem; none however appears to be
unproblematic. In AI, as mentioned, this problem appears to
have not been addressed. Clearly though there has been exten
sive research carried out in machine learning and, in particular
in a restriction of inductive learning, learning from examples
[Carbonell et al 83] . If a goal of AI is to understand principles
underlying intelligent behaviour, then it is essential that such
difficulties be addressed. In particular, for the situation at
hand, it seems important that some account of the relation
between evidence and hypotheses be given.

This paper attempts to provide a starting point for such an
account. We argue that the difficulty arises from the use of the
notion of classical consequence as a metric for determining
which sets of sentences are to be counted as confirmed by a
particular piece of evidence. Rather, the approach taken here
is to address the problem of evidential support from first princi
ples and, from a set of arguably minimal assumptions, give a
formal account of this problem. To do so, we first review a
system that has been developed from first principles as a means
of analysing formal issues arising from learning from exam
ples. Subsequently we show how it may be applied to the
problem at hand. This system proves to be weaker than classi
cal logic; in particular negation is weaker than classical nega
tion. As a means of further analysing this approach to
confirmation, an alternative, three-valued semantics is also
developed for the system Lastly, we show that the paradoxes of
confirmation do not arise in this framework. The approach is
argued to be largely independent of the notions of "evidence"
and "confirmation" used by a learning system; thus these con
siderations arguably apply to all systems that learn from exam
ples.

In this paper however we address only the issue of what
ground instances are to count as positive instances of
hypotheses. Broader issues, such as how hypotheses are to be
updated in the presence of new, conflicting instances, are
irrelevant to the problem at hand, and are ignored. For a possi
ble account of these further issues, as well as more details on
the formal systems presented here, see [Delgrande 87c].

2. The Paradoxes of Confirmation

Consider again the hypothesis "all ravens are black" . We
can represent this in first-order logic as

(x)(Raven (x)-::)Black (x)). 1.

This hypothesis is logically equivalent to the following state
ments:

(x)(-,Black (x)-::)-,Raven (x)),

(x)(-,Raven (x) V Black (x)).

2.

3.

Intuitively an individual that is both a raven and black (say,
Raven (a) /\Black (a)) confirms this hypothesis. Intuitively
also some things, say my right shoe or the Eiffel Tower, do not
confirm this hypothesis. However, my right shoe and the Eiffel
Tower do appear to confirm statements 2 and 3. If we accept
that logically equivalent statements are supported by the same
evidence, then we are presented with a dilemma. It appears
that we must either allow that all three individuals - individual

a, my right shoe, and the Eiffel Tower - uniformly confirm
statements 1-3, or else we must allow that logically equivalent

86

statements need not necessarily be confirmed by the same evi
dence. This issue was originally discussed by C.G. Hempel in
[Hempel 45]. [Black 66] and [Scheffler 81] contain highly
readable and thorough surveys; neither however proposes an
unproblematic solution.

One proposed approach to the problem is to claim that
hypotheses need to be placed in some "context". Thus, to use
Black's example, "all vertebrates are warm-blooded" is a state
ment about animals, or about vertebrates. On the other hand,
the argument goes, the statement "all non-warm-blooded things
are non-vertebrates" is not. Hence we might formulate the first
statement instead by "relativising" the context to animals:

(x)((An (x) ii Vert(x)) -:::) (An (x) ii WB (x))). 4.

The corresponding restricted contrapositive would be:

(x)((An (x) 11-,WB (x)) -:::) (An (x) /\-,Vert (x))). 5.

In this case an animal that is cold-blooded and invertebrate
may well be seen as confirming the original hypothesis. How
ever, 4 is also logically equivalent to

(x)((An(x)V-,An(x))-:::)

(-,An (x) V-,Vert(x) V (An (x) ii WB (x)))). 6.

A positive instance of 6 is:

(An (a) V -,An (a)) ii

(-,An (a) V-,Vert (a) V (An (a) ii WB (a))). 7.

Hence any non-animal will satisfy 7 and thus be evidence for 6

and so, by implication, 4. Thus any individual falling outside
the "context" provides evidence for the hypothesis. This
clearly is as bad as the original dilemma.

An alternative is to attempt to provide some account of
how evidence changes one's confidence in a given hypothesis.
Such approaches generally begin with the observation that, for
example, the class of ravens is (presumably) much smaller that
the class of non-black things. That being the case, finding a
particular raven to be black should increase one's confidence in
the hypothesis much more than finding a particular non-black
entity to be non-raven. Thus both instances confirm "all ravens
are black"; it's just that one does so much more than the other.
However this approach, which boils down to quantifying the
notion of "degrees of confirmation", has a number of problems.
To begin with, using degrees of confirmation may be quite
simply irrelevant to the problem: the problem after all is sim
ply to determine what is to count as a confirming instance. It
appears also that a successful characterisation of degrees of
confirmation will not lend itself to the problem at hand. In par
ticular, the paradoxes arise even when the cardinality of the
antecedent is obviously larger than that of the complement of
the consequent. Consider the examples:

All atoms are inanimate, or

All invertebrates are cold-blooded.

In neither case does it seem reasonable to take the pen in front
of me (say) as a positive instance. Note also there is good rea
son to doubt that any coherent account of degrees of
confirmation may be obtained [Putnam 79].

A third possible solution, proposed by Black, begins with
the claim that the error arises in treating the conditional in "all
ravens are black" as the material conditional: arguably it isn't
the material conditional that one wants, but rather some other

weaker operator. This seems plausible, since it does seem
clear that whatever the connective is in "all ravens are black",
it is not material implication. For one thing, it certainly isn't
the case that every raven is black - albinos, for example, gen
erally are white. [Lewis 73), [Chellas 75) and others have con
sidered the problem of conditionals other than material impli
cation, such as those dealing with counterfactual or other sub
junctive statements. [Delgrande 87a] and [Delgrande 88] con
tain an analysis of the conditional used in naive scientific state
ments, such as "ravens are black" or "birds fly". In all these
cases, the truth of a conditional depends not on the present
state of affairs being modelled, but on other states of affairs.
So, for example, in Lewis' approach, the truth of the counter
factual A =:>B depends on the states of affairs most similar to

the present one in which A is true.

Applying these approaches to the present problem is not
straightforward because the semantics of the underlying sys
tems rests on the notion of "alternative states of affairs" or
"possible worlds". Thus for example, in the approach of [Del
grande 87a], while the truth of Raven (a) A Black (a) is deter
mined with respect to the present state of affairs, the truth of
"ravens are black" is determined with respect to other "less
exceptional" states of affairs that may be quite different from
the one presently being modelled. Now this may be fine for
expressing the meaning of, say, "ravens are black", or other
such conditionals, but it does not lend itself to the problems of
evidence and hypotheses. On the one hand, it seems somewhat
unusual to say that a particular black raven in this state of
affairs provides evidence for a statement whose truth is deter
mined relative to other states of affairs. On the other hand, if
we require that the present state of affairs be one of those used
in determining the truth of "ravens are black", then we are
forced to have our conditional operator correspond to material
implication. This in turn requires that in the present state of
affairs all ravens must be black, which clearly is unrealistic.
Hence to the extent that all extant systems for dealing with
variable conditionals rely on a possible worlds semantics, this
last suggestion appears inapplicable for our purposes. Note
also that this last proposal supposes that the difficulty lies with
the conditional. However, the claim of this paper is that the
difficulty in fact arises with negation. Assuming that this claim
is indeed correct, then it is quite conceivable that the paradoxes
of confirmation will also arise with conditionals weaker than
the material conditional.

3. Approach
The framework within which I wish to address the para

doxes of confirmation is as follows. A hypothesis will be a
general, universally quantified statement that is not known to
be either true or false, but for which one has justified belief in
its truth.3 A hypothesis then may be of the form
(x)(a(x) ::J P(x)) or simply a(x) ::J P(x), where a(x) and P(x)
will be used to stand for arbitrary wffs of first-order logic, with
free variable x. We will accept a priori that such a hypothesis
is confirmed by an instance of the form a(a) A P(a). The issue
then is one of determining, given that ground instance e

3 In this paper however I will not be concerned with what constitutes
"justified belief', except for some very general considerations.

87

confirms the general hypothesis h, what other hypotheses e

confirms.

Consider for example where we have a hypothesis a(x)

that is supported by some set of instances. We know that a(x)
is equivalent to (a(x) A (P(x) v-,p(x))). The instances support
ing a(x) then should also provide evidence for
a(x) A (P(x) v-,p(x)). However if we assume that the set of
instances that support the conjunction of two hypotheses is the
intersection of the sets that support the conjuncts, then we may
run into difficulties. Conceivably the known instances of p and
-,p could be disjoint from those of a. So even though we
know of instances satisfying a, we may not know of instances
that satisfy a(x) A (P(x) V -,p(x)) and so by most any criteria,
would not have evidence for it.4 This is in contrast to state
ments such as a(x) A P(x) and P(x) A a(x) where any instance
known to satisfy one conjunction must satisfy the other; hence
evidence for one must constitute evidence for the other.

So the question of interest is to formally characterise this
support relation among hypotheses . Fortunately we can make
use of an existing system to address this question. [Delgrande
87b] and [Delgrande 87c] develop a foundational approach to
"learning from examples" and "learning by being told" [Car
bonell et al 83]; the results presented there are applicable to the
present case. In broad outline, the approach is as follows. The
domain of application is assumed to be described by a presum
ably infinite set of ground atomic formulae, formed from
presumably infinite sets of individuals and predicates. The
truth value of some of these instances are known and constitute
the evidence that may support hypotheses . For example, we
may know that Raven (opus), Black (opus), and
-,Bird (snoopy), but we may know neither Black (snoopy) nor
-,Black (snoopy). Hypotheses will express relations among
relations in the domain. For example, "the set of (or extension
of) ravens is contained in that of black things" may be one such
hypothesis.

By term I will mean an entity that denotes a relation in the
domain. To each term in a hypothesis we can associate two
subsets of the ground instances, consisting of those known to
satisfy the term and those known to not. Thus with the term
"black raven" we can associate the set of individuals known to
be both ravens and black, and the set known to be either non
black or non-raven. These sets then contain all the individuals
known to satisfy or to not satisfy the term. Hence for term t in
hypothesis h these sets give the individuals that t may contri
bute as evidence in support (or not) of hypothesis h. Note then
that we do not restrict the notion of evidence that could be used
by a learning system, except to require that a hypothesis have
known confirming instances. However we do require that the
evidence for a hypothesis be a function of the known satisfying
(and known non-satisfying) instances in the terms of the
hypothesis.

4 Note that if we were to take individuals known to be true of a and
determine whether or not they were true of~. then we could locate individu
als known to satisfy a(x)"(~(x)v~~(x)) and hence locate evidence for
a(x)A(~(x)v~~(x)). However this process is quite independent of the simple
determination of which consequences of h are supported by e, given that e
supports h. See [Delgrande 87c] for an examination of how such a determi
nation of instances may be carried out.

' j

.,
I

These (pairs of) sets in a term interrelate in various ways.
In the following section, the algebra of these pairs is derived,
and from this algebra the corresponding propositional logic is
derived. These systems provide a precise specification of what
hypotheses are supported by the same evidence. Given the
propositional system, it is a trivial matter to translate sentences
from this system into a first-order one.

To summarise then, for the approach I assume only that:

1. The task is to determine what ground instances support
what general statements.

2. Some instances support a hypothesis, some do not, and
some are irrelevant to the hypothesis.

3. For a hypothesis to be supported, there must be a known
satisfying instance of the hypothesis.

4. The evidence for a hypothesis is a function of the known
satisfying (and known non-satisfying) instances in the
terms of the hypothesis.

4. Formal Systems for Evidential Support

4.1. An Algebra for Evidential Support

Hypotheses are expressed in a language HL that is analo
gous to that of elementary set theory, except that operators and
relations are subscripted with the character "h ". In [Delgrande
87b] and [Delgrande 87c] operators for the converse, composi
tion, image, domain, and others are specified. These are not
directly relevant to our concerns with the paradoxes of
confirmation, and so are not included here. A "ply" operator
-:::>1, is also introduced [Curry 63]. After we consider the

algebra of terms of HL, we will want to also consider the
corresponding propositional logic; the ply operator serves as
the analogue in the algebra of the material conditional in the
logic.

Definition: If P is the set of known predicate names, then the
terms of HL are exactly those given by:

1) If ae P then a is a term ofHL.

2) If a and p are terms of HL, then so are anh P,
auh p, -,ha, and a-:::>h p.

Definition: The sentences of HL are exactly given by:

If a, p are terms of HL, then ~hp, ach p, a~h P, a;cp,
a<t:p, ag;p e HL.

So, for example,

Raven uh Penguin uhRobin ~h Bird

has the reading "the set of ravens, penguins, and robins is
hypothesised to be contained in the set of birds".

While this is a somewhat impoverished language com
pared to that of first-order logic, it is, arguably, the appropriate
language for expressing relations among relations in the
domain. In addition the systems developed appear to be gen
eral and expressive enough to sufficiently illustrate and argue
our approach to the paradoxes of confirmation. Hence the
arguments given here apply also to more expressive systems.
Lastly, there is a clear and easy translation of the systems
developed into a full first-order framework.

88

Given a particular predicate there is a set of individuals
(or tuples) which are known to satisfy it and a set of individu
als which are known to not. Hence:

Definition: For each known predicate symbol P define sets
P + and P _ by:

P+=(<a1, ... ,an> I P(a1, .. . ,a,.) is known to be
true},

P_=(<a1, . .. ,an> I -.P(a1,,,.,an) is known to be
true}.

The sets P +, P _ are called the known extension and known
antiextension (respectively) of P.

The known extension and antiextension corresponding to
terms in HL can easily be determined. Thus, for example, the
hypothetical intersection of P and Q is known to contain just
those elements that both P and Q are true of, and is known to

not contain just those elements that either P or Q is known to
not be true of. For the hypothesised operations we obtain the
following known extension/antiextension pairs.

Definition:

Complement:

Union:

Intersection:

Ply:

-,ha is <a._, a+>

auh P is <a+uP+, a._np_>

anh P is <a+nP+, a._up_>

a-:::>h P is
<(-,a+uP+) n (-,p_ua._), p_n-,a._>5

The expression -,<X+ is defined as I - a+ where I is the set of all
known individuals (i.e. individuals represented by constants in
the set of ground instances).

Now, the relations that will be of interest to us are not the
hypothesised relations between terms, but rather will be known
relations among extension/antiextension pairs of terms. Two
terms of HL are defined to be (strictly) equal when their known
extensions and antiextensions coincide. Containment (~) is
introduced by the usual definition. In [Delgrande 87c], the
known relations among terms (e.g. a= P) are used in part to
enforce hypothesised relations among terms (e.g. a=h P).
However here, where we do not consider the dynamics of
hypothesis maintenance, we will consider only the known rela-
tions among terms.

Definition: For a, p terms of HL,

a= p iff a+= P+ and a._= p_,

a~p iff anhP=a,

a< P iff a~P and a*P·
These relations then give the evidential relations that are
known to hold among terms in a hypothesis. Thus for exam
ple, it follows easily from the above expressions that
anhp = Pnha; hence any individuals known to satisfy (or not)

anh p will do likewise for pnh a. The algebra of these rela
tions on the corresponding pairs of sets then provides a formal
specification of these relations. This algebra, HLA, is given by

5
The expression for the ply is actually getting a little ahead of the game:

while the expressions for the complement, union, and intersection are
derived using clear intuitions, the expression for the ply is derived once
postulates for it have been given (below).

HLA = [H; --,h, nh, uh, :::,h], where, for a set of known indi
viduals I, the carrier H is given by:

H = (<a ,b > I a ,b ~ I and a nb = 0).

The pair of elements in a member of H corresponds to possible
individuals known to be in a relation or to not be in the rela
tion. Upper and lower bounds of H are defined by:

Definition:

1 = <1,0>; 0 = <0,1>.

We obtain the following postulates and rule of inference:

Postulates:

Pl cxnhP = Pnha auhP=Puha

P2 cxnh(Pnhy) = (cxnhP)nhy

auh(Puhy) = (auhP)uhy

P3 cxnh(auhP)=a auh(cxnhP)=a

P4 cxnh(Puhy) = (cxnhP) uh (cxnhy)

auh(Pnhy) = (auhP) nh (auhy)

P6 cxnh (Puh (anh y)) = (cxnh P) uh (cxnh y)

auh (Pnh(auhy)) = (auhP) nh (au1,y)

P7 cxnhO= 0 auhO=a cxnh 1 = a auh 1 = 1

P8 a = --,h -.1, a

P9 -.1,(auhP) = --,hanh--,hP

PIO cxnh--,ha ~ Puh--,hp

Pl l anh (a:::,hp) ~ P

Rule of Inference:

Pl -PIO then characterise nh, uh, and --,h , These postu

lates very nearly, but don't quite, characterise Boolean alge

bras. Instead of a postulate for a universal complement,

we obtain the weaker postulate PIO. However we retain postu

lates governing universal bounds (P7) and involution (P8) as

well as De Morgan's laws (P9). The weakened complement

arises from the fact that the known extension and antiextension

of a predicate typically do not together constitute the set of

known individuals I. The subalgebra [H; --,h, nh, uh] has

been investigated under the names of normal involution lat

tices [Kalman 58] and Kleene algebras [Kleene 52].

Postulate Pl l and rule Rl govern the ply operator. Pl 1

effectively specifies in the algebra that modus ponens applies

to the ply, while Rl says that the ply is maximal among poten

tial operators satisfying Pl 1. The postulate and rule are impor-

89

tant because they guarantee that, when we come to consider the

corresponding propositional logic, implication in the logic will

correspond to standard material implication. On the other

hand, it is readily shown that the ply is not reducible to other

operators and, in particular, the equivalence (a::, P) = (-.a VP)

of propositional logic (PC) will not hold in the derived logic.

The reason that this equivalence is not obtained however is

because the complement in HLA is weaker than in Boolean

algebra and so, not surprisingly, negation is weaker in our sys

tem than in PC.

4.2. A Propositional Logic for HLA

For the algebra HLA we also derive the corresponding

propositional logic, HLL. While the correspondence is

interesting from a technical standpoint, the logic also serves to

specify evidential relations in a perhaps more familiar fashion.

The operations of hypothesised intersection, union, and com

plement are clearly analogous to the logical operations of con

junction, disjunction, and negation; the ply corresponds to the

material conditional. This logic is specified as follows:

Axiom Schemata

Al a::, (p:::,a)

A2 (a::i (P ::iy)):::, ((a::, P):::, (a::, y))

A3 aAp:::,a

A4 aAp:::,p

AS a ::i (P:::, (a" P))

A6 a:::,(aVP)

A7 p:::,(aVP)

A8 (a::, y) ::i @:::,y):::, (av p ::i y))

A9 a = --,-,a

A 10 (a::> -.a) V--,(a:::, -.a)

Rules of Inference

MP From 1- aand 1- a:::,pinfer1- P.

HN 1- a::J P iff 1- (a:::,-.a)VP andl- (-.p:::, P)V--,a.

A semantic account for the formulae of HLL follows

easily from the algebra HLA:

Definition: I= a' in HLL iff a= 1 in HLA.

The formula a' is obtained from a by replacing intersection

with conjunction, etc. in the obvious way. The material condi

tional is linked to containment, via entailment, by the follow

ing.

Proposition: I= a'::i p' in HLL iff a ~p in HLA.

.. ,
I

We obtain:

Theorem: HLL is sound and complete with respect to HLA.

The intended interpretation of derivability in the logic

corresponds to an evidential support relation between formu

lae. That is Ji- HLLa can be interpreted as "if we have evi

dence for the elements of r, then we are guaranteed to have

evidence for a". That this interpretation is indeed reasonable

can be seen from the correspondence 1- HLL a'::> P' iff a~p in

HLA. Thus 1- HLLa'::> P' if and only if the instances support

ing a also support p.

Not surprisingly, negation in HLL is weaker than in PC:

we lose reductio ad absurdum as a method of proof; also we

lose the law of the excluded middle. PC is obtained however if

AIO and HN are replaced by (a =>P) =>((a::>,P) ::>-,a). The

logic resembles the system of first-degree entailment, Efde, of

[Anderson and Belnap 75]. The principal difference is that

axiom A I and the theorem a::> (P ::> P) of HLL is rejected by

Anderson and Belnap, while their axiom (a::> P) ::> (,P ::> .a)

is not a theorem of HLL. We also obtain:

Theorem:

1-a::> P iff l-,P=>,a.

If I- .av P then I- a::> p.

If I- P then I- -,p ::> a.

If I- P and I- a::> -,p then I- ,a.

If I--,(a::> P) then I- ,p.

Note however that none of the formulae obtained by replacing

the meta-theoretic "if · · · then · · · " in the above theorem,

with the material conditional, is a theorem of HLL. Also, nei

ther a V-,a nor (aA-,a) ::> p nor (-,a VP)= (P ::> a) are

theorems of HLL.

Thus it appears that the introduction of a single (i.e. uni

terated) negation operator can generally take place only

between valid statements. This is in contrast with PC where

the introduction of negation is a relation among formulae.

Since converting between a disjunction and a conditional in PC

involves the use of negation, we can only relate valid instances

of disjunction (and hence conjunction) with valid instances of

the conditional in HLL. This point is worth restating for

emphasis. In HLL, conjunction, disjunction, and the condi

tional behave exactly the same as in PC. The difference

between HLL and PC lies in their respective treatment of nega

tion: the negation operator of HLL is weaker than that of PC.

Thus although the equivalence (-,aV P) = (a=>P) is lost in

90

HLL, this loss cannot be attributed to a differing interpretation

of implication; rather the loss is an artifact of the weaker nega

tion.

This last point proves to be the key in resolving the para

doxes of confirmation. However before considering the para

doxes in light of this system, we first further investigate the

properties of the negation operator by considering an alterna

tive, 3-valued, semantics for HLL.

4.3. A Three-Valued Semantics

This section continues the analysis by considering a

three-valued semantics for HLL. In addition to the truth values

"true" and "false", a third is introduced standing for, perhaps,

"indeterminate" or "undetermined".6 "True" then, from our

reading in the logic of the last section, can be interpreted as

"has supporting evidence". Truth tables are given for the logic,

and it is shown that the set of theorems corresponds to the set

of tautologies. This result is interesting then not only because

it provides further insight into the logic, but also because it

yields an easy decision procedure via the truth tables. The

consistency proof is quite easy; the completeness proof follows

the method presented in [Mendelson 64] for the completeness

of PC, but extends it to deal with three truth values .

The expression for the hypothesised intersection anh P

was given by <a+nP+, CLUP->. Given our previous interpre

tation, this can be read as "something is evidence for a and P

iff it is evidence for both a and p; something is not evidence

for a and p iff it is not evidence for either a or p; otherwise the

evidential relation cannot be determined". By similar reason

ing with the definitions of the other connectives, we get the fol

lowing truth tables:

a -,a

T F

? ?

F T

a1p T ? F T ? F T ? F

T T ? F T T T T ? F
? ? ? F T ? ? T T F
F F F F T ? F T T T

6 "Epistemic value" is undoubtedly a more appropriate term than "truth
value" in this context; however, for simplicity I will retain the more familiar
"truth value".

These values are determined entirely by the underlying

algebra, HLA, and thus by our original assumptions concerning

evidential relations. Hence for example the fact that if a and P

have value ? then a ::J p has value T is dictated by the assump

tion that the ply is maximal among possible operators satisfy

ing modus ponens. The truth tables are truth-functional and,

moreover, reduce to PC when only the truth values T and F are

considered. A truth value assignment V for formulae of HLL

is easily defined, based on these truth tables.7 Given such a

definition then, as usual, V verifies a formula a if V(a)=T. A

formula is a tautology if V (a)= T for all truth value assign

ments for a. We obtain:

Theorem: a is a tautology iff a is a theorem of HLL.

Since we now have three truth values, a point of interest

is to further examine the role of negation in HLL with respect

to these values. Our approach is to consider three "negation

operators", one for each truth value, where each operator is

true just when the formula that it is applied to has a specified

truth value, and is false otherwise. Thus, for falsity we would

want the operator to be T when the formula is F, and F other

wise. If we call these operators J1, J2 and h we require the

following truth tables. 8

a Ji(a) J2(a) J3(a)

T

?

F

T

F

F

F

T

F

F

F

T

Interestingly, these operators are definable in terms of negation

and the conditional:

Definition:

J1 (a) is -,(a::J -,a).

}i(a) is (a::J-,a)A(-,a::Ja) or-,J1(a)A-,J3(a).

J3(a) is -,(-,a::Ja) or 11(-,a).

Theorem:

1-HLL<P ::J J3(a)) ::J «P ::J J2(a)) ::J «P ::J J 1 (a)) ::J -,p)).

I-HLLJ1(a) V J2(a) V J3(a).

The first formula of the theorem provides an analogue to

the usual axiom of PC for introducing negation,

(P ::J -,a) ::J «P ::J a) ::J -,p). That is, one way to prove -,p is to

show that assuming p leads to a contradiction. This didn't

7 Thus for example, for conjunction, V(aAP)=T iff V(a) =T and V(P)=T;

V(aAP) = F iff V(a) = F or V(P)=F; otherwise V(aAP) = ?.
8 This notation is taken from JRosser and Turquette 52], as is the notion

of the extended negation operators.

91

work for us with-, since we don't have 1- HLLa,V-,a. However

the "extended" negation operators fill the gap: a valuation must

be one of true, false, or indeterminate. This is given explicitly

in the second formula of the theorem, and provides a law of the

excluded middle for HLL. It also proves to be the case that

either of the formulae of the theorem could be used in place of

A 10 in the proof theory of HLL.

Appositives - words that follow a noun or pronoun and

identify it - are usually set off by commas if they are nonres

trictive. Such words add parenthetical information, for exam

ple: Her cat, Mount Diablo Base Line as Seen from Highway

395 Just North of Bridgeport, knew how to give an admirable

back rub with his well-tempered and discreet claws.

This treatment of HLL as a three-valued logic can be

equally well viewed as specifying a correspondence between

HLL and the (specific) system ofHLA, [(T,?,F}; -,h, nh, uh,

::Jh]. In this case T corresponds to 1, F corresponds to O and

the truth tables give the results of applying an operation to any

two elements of the set (T,? ,F}.

5. A Solution to the Paradoxes of Confirmation

The rule of inference for negation, NH, provides the reso

lution for the paradoxes of confirmation. Recall that the para

doxes arose from the assumption that whatever supports a

universal generalisation also supports all statements that are

logically equivalent to the generalisation. Thus, for example,

non-black non-ravens apparently support the hypothesis that all

ravens are black. The paradox is resolved here not by rejecting

the assumption that evidence supports all logical consequences

of a generalisation; rather it is resolved by asserting that the

notion of classical consequence is too strong for the problem at

hand. What we have effectively done to this point then is

develop a logic for specifying what hypotheses are supported

by the same evidence.

Consider then the hypothesis Raven ::JBlack . In PC, we

have:

1- (Raven ::JBlack) = (-,Black ::J-.Raven).

Hence, if we were using PC to determine which hypotheses are

supported by what evidence, then a black raven would also

support the statement that non-black things are non-ravens.

However the above is certainly not a theorem of HLL. Rather

what we have is the meta-theorem:

1- HLLRaven ::J Black iff 1- HLL -,Black ::J -,Raven,

or in the obvious translation into a first-order system,

. I

I

I

I

1-(x)(Raven(x)=>Black(x)) iff 1- (x)(-.Black(x) =>

-.Raven (x)).

Thus a black raven provides no support for non-black things

being non-raven. However, if it is the case that all ravens are

indeed black, then it also is the case that all non-black things

are non-ravens. In a similar fashion, since we no longer have
the equivalence (Raven =>Black)= (-.Raven V Black), a

confirming instance for one side of the equivalence does not

constitute evidence for the other side.

This logic also is the strongest logic in which the para

doxes do not arise, in the following sense. Recall that in the

algebra HLA terms were identified with

extension/antiextension pairs; these pairs specify all that can

be known about a particular term. Thus, for anh p, the only

individuals that are known to be in the intersection are those in

CX+r'l P+, and the only individuals that are known to not be in

the intersection are those in a... u p_. Furthermore, no other

individuals may justifiably be claimed to be in the extension or

antiextension. In the case of the ply, for example, this leads to

some not-entirely intuitive properties - for example the value

of a=> P where both a and Pare? is T. However, one clearly

could consider a yet weaker logic (were the preceding formula

would have value? for example) with arguably more plausible

properties, and it should be clear that the problems of

confirmation would not arise in that framework. Rather, the

logic HLL specifies, according to our assumptions, the strong

est such logic in which the problems do not arise.

It is interesting to note that in the surveys of proposed

solutions to this problem ([Black 65], [Scheffler 81]), little

consideration was given to altering the underlying logic. The

unstated assumption (presumably) was that altering the logic

was too large a sacrifice if the logic was to also be used for rea

soning about the conjectures. Here though the app~oach is to

explicitly distinguish the formal systems used for determining

relations of evidential support among hypotheses, from the sys

tems for deductively reasoning with hypotheses. In this case,

in the system for evidential support, HLL, the paradoxes of

confirmation don't arise. This weaker logic then is appropriate

for deciding what confirms what. For deductively reasoning

with hypotheses, first-order logic is presumably appropriate.

6. Conclusions

This paper has proposed and developed a solution to the

"paradoxes of confirmation". The approach is to reject the

claim that evidence supporting a hypothesis also supports all

consequences of the hypothesis in classical first-order logic.

Instead, beginning from first principles we examine a particu-

92

Jar, arguably general, notion of "evidence" and from this

develop formal systems that characterise a relation of eviden

tial support. An algebra HLA is derived based on intuitions

concerning elementary notions of support. From this system a

logic HLL is derived; equivalent sentences in this logic

correspond to statements that are (or would be) confirmed by

the same evidence. It proves to be the case that in HLL con

junction, disjunction, and the conditional have the same pro

perties as in classical propositional logic. Negation however is

weaker; in particular we do not have the standard law of the

excluded middle. In order to further characterise and examine

this notion of negation, we also consider a three-valued seman

tics for HLL. Analogues to the properties of classical negation

(for example, the excluded middle) are also presented.

It was shown that within the resultant framework the

paradoxes do not arise. Informally, the problem does not occur

because, with the weaker negation, instances known to satisfy

or to not satisfy a particular predicate do not constitute the set

of all known individuals. However, we still retain a useful

notion of negation. For example, while an instance that sup

ports the hypothesis a(x) => P(x) does not support

-,p(x) => -,a(x), it is the case that any instance supporting a(x)

also supports -,-,a(x) and that any instance supporting

a(x) A P(x) also supports -,(-,a(x) V -,p(x)).

The notion of evidence for a hypothesis was left

undefined except for two, arguably fundamental, restrictions.

First we require that a supported hypothesis have at least a sin

gle known confirming instance. Second, we require that evi

dence for a hypothesis be a function of the known satisfying

(and known non-satisfying) instances in the terms of the

hypothesis. These restrictions appear to be quite general, and

presumably any AI system that learns from examples satisfies

these conditions.

Acknowledgement

This paper is taken in part from my doctoral dissertation

in the Department of Computer Science at the University of

Toronto. Robert Hadley, Sharon Hamilton, and Howard Ham

ilton provided helpful comments to an earlier draft; Pierre

Massicotte helped with the translation of the asbtract. I also

wish to thank the two anonymous referees for their comments.

Financial assistance from the Province of Ontario and the

Department of Computer Science, University of Toronto, is

gratefully acknowledged, as well as support from the Natural

Sciences and Engineering Research Council of Canada grant

A0884.

References

[l] A.R. Anderson and N.D. Belnap Jr., Entailment: The
Logic of Relevance and Necessity, Vol. I, Princeton
University Press, 1975

[2] M . Black, "Notes on the 'Paradoxes of Confirmation'", in
Aspects of Inductive Logic, J. Hintikka and P. Suppes
eds ., North-Holland, 1966

[3] J.G. Carbonell, R.S. Michalski, and T.M. Mitchell, "An
Overview of Machine Learning", in Machine Learning:
An Artificial Intelligence Approach, R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell (eds.), pp. 3-23, 1983.

[4] B.F. Chellas, "Basic Conditional Logic", Journal of Phi
losophical Logic 4, 1975, pp 133-153.

[5] H.B. Curry, Foundations of Mathematical Logic,
McGraw-Hill, 1963

[6] J.P. Delgrande, "A First-Order Logic for Prototypical Pro
perties", Artificial Intelligence, 33, 1, 1987a.

[7] J.P. Delgrande, "A Formal Approach to Learning from
Examples" , 10th International Joint Conference on
Artificial Intelligence, Milan, Italy, August 1987b.

[8] J.P. Delgrande, "A Foundational Approach to Auto
nomous Knowledge Acquisition", Computational Intelli
gence, 4, 3, 1987c.

[9] J.P. Delgrande, "An Approach to Default Reasoning
Based on First-Order Conditional Logic: Revised

93

Report", Artificial Intelligence (to appear), 1988.
[10] N. Goodman, Fact, Fiction and Forecast, 3rd ed., Hackett

Publishing Co., 1979
[11] C.G. Hempel, "Studies in the Logic of Confirmation",

Mind, Vol. 54, pp. 1-26, 91 -121, 1945.
[12] J.A. Kalman, "Lattices with Involution", Transactions of

the American Mathematical Society, Vol. 87, 1958, pp
485-491

[13] S.C. Kleene, Introduction to Metamathematics, North
Holland Pub. Co., 1952

[14] D. Lewis, Counterfactuals, Harvard University Press,
1973.

[15] E. Mendelson, Introduction to Mathematical Logic, D.
Van Nostrand Co., 1964

[16] H. Putnam, "'Degree of Confirmation' and Inductive
Logic", in Mathematics, Matter and Method: Philosophi
cal Papers Volume I, 2nd ed., Cambridge University
Press, 1979, pp 270-292

[17] J.B. Rosser and A.R.Turquette, Many-Valued Logics,
North-Holland Pub. Co., 1952

[18] I. Scheffler, The Anatomy of Inquiry: Philosophical Stu
dies in the Theory of Science, Hackett Publishing Co.,
1981

·I

I

Concepts, Analogies, and Creativity

Douglas R. Hofstadter and Mehmie Mitchell
Department of Psychology and Department of Computer Science

University of Michigan
Ann Arbor, Michigan 48104

Abstract
Analogy-making requires the ability to perceive
situations very flexibly, to use concepts fluidly rather
than rigidly, to decide which aspects of a situation are
relevant, to determine the "best" level of abstraction at
which to perceive a given situation, and to flexibly
translate ideas in one situation into a different situation.
These abilities are central to every facet of human
intelligence, from perception and learning to recognition
of concrete and abstract objects (faces, letters, artistic
and musical styles), and even to creativity. We believe
that the mechanisms for analogy-making in humans are
centered on the overlapping, associative, and flexible
structure of human concepts, and the goal of our
research is to understand the nature of this structure and
how creative analogy-making arises from it. In this
paper we describe a theory of how this conceptual
structure interacts with perception in the process of
analogy-making, and describe a computer model of our
theory that is able to create analogies in a "microworld".
We believe that this microworld captures much of the
essence of analogy-making in general and that
mechanisms successful in this small world will form the
core of models of creativity in more complex domains.

Keywords: Analogy, Cognitive Modeling, Concepts,
Creativity

1. Introduction
This paper describes a theory of human concepts

and analogysmaking, and a computer model of this
theory that is able to create analogies in a small domain.
The goals of this research are: (1) to understand the
structure of human concepts: their overlapping and
associative nature, and their flexibility as a function of
context -- in short, their "fluidity"; (2) to understand
how fluid concepts are used in the creation of analogies;
(3) to understand the role played by such analogies in
creative thought.

2. The Microworld of Our Model
For our research we have designed a

"microworld" small enough to be manageable, but large
and rich enough to contain what we believe to be the
recurrent issues in analogy-making (Hofstadter, 1984a).
The microworld consists of the 26 letters of the alphabet
and other associated concepts; in it we construct analogy
problems involving strings of letters. Despite their
apparent simplicity, many of these problems involve
abstract notions such as grouping, symmetry, and
sequence . Seven sample problems are given below.
(Notational note: In what follows, lowercase boldface

94

letters designate instances of letter categories, and
uppercase boldface letters designate the categories
themselves. For example, a is an instance of the
category A.)

1. /fabc ---> abd, then pqrs --->? (That is, if the
string abc changes to abd, then what is the analogous
change to pqrs?)

A literal answer is pqrd, using the rule "Replace
the rightmost letter by a D". A more abstract way of
perceiving the change is "Replace the rightmost letter by
its successor", yielding pqrt. Other possible answers
include pqss ("Replace the third letter by its
successor"), pqds ("Replace the third letter by a D"),
pqrs ("Replace all C's by D's"), and abd ("Replace any
string by abd"). Most people prefer pqrt.

2. If abc ---> abd, then srqp ---> ?
Here there are two answers that view the situation

abstractly: trqp and srqo. The original rule is sti ll
"Replace the rightmost letter by its successor", but this
rule must be "translated" to apply to srqp. The answer
trqp results from the translation "Replace the leftmost
letter by its successor", involving a "slippage" from
rightmost to leftmost (i.e., the leftmost letter in srqp
plays the role of the rightmost letter in abc) based on
seeing abc as a left-to-right string and srqp as a
right-to-left string (where each string increases
alphabetically). The answer srqo results from the
translation "Replace the rightmost letter by its
predecessor", a result of seeing abc as increasing and
srqp as decreasing (both viewed as moving rightwards),
yielding a slippage from successor to predecessor.

3. If abc ---> abd, then aaabbbccc ---> ?
A rigid answer would be aaabbbccd . A more

insightful perceiver would see aaabbbccc as consisting
of three groups (aaa-bbb-ccc). The answer
aaabbbddd involves a slippage from the concept letter
to the concept group ("Replace the rightmost group by its
'successor"').

4. If abc ---> abd, then mrrjjj --->?
One answer is mrrkkk, but this doesn't take into

account the abstract similarity between abc and mrrjjj:
abc increases alphabetically while mrrjjj consists of
groups that increase numerically. If this similarity is
perceived, then the answer is mrrjjjj, fluidly extending
the concept successor. People occasionally give the
answer mrrkkkk, replacing the rightmost group by both
its numerical .and alphabetic successor. This answer is
strange in that it confounds aspects of the two situations.

Once the abstract similarity between abc and mrriij has
been perceived, and the slippage from alphabetic
successor to numeric successor has been made, then to
also apply the notion of alphabetic successor to the
numeric -successor situation shows a strange
combination of flexibility and rigidity. It is as if a
translator decided to tell the story of War and Peace in
the context of the American Civil War, but gave the (now
American) characters the names "Natasha" and "Alexey".
An even stranger translation would leave the names in
the original Cyrillic letters, which might correspond to
the answer mrrdddd.

5. If abc ---> abd, then aababc --->?
Another creative extension of the concept

"successor": if aababc is parsed as a-ab-abc, then the
"successor" of the rightmost "letter" (actually the group
abc) is abed, yielding the answer a-ab-abed, which
seems elegant compared to aa babd, in which no
grouping was perceived, and the C was simply replaced
by a D.

6. If abc ---> abd, then ace--->?
A fairly literal answer is acf, which doesn't take

into account the "double successor" structure of ace (C
is the double successor of A, etc.). If ace is seen as
similar to abc because abc is a "successor group" and
ace is a "double-successor group", then the best answer
is acg.

7. If abc ---> abd, then xyz --->?
We exclude the "circular-alphabet" answer xya in

order to force the analogy-solver to deal with the "snag"
(that Z has no successor) and to look at the problem
more deeply. A very abstract but compelling view (once
seen) is that the A in abc corresponds to the Zin xyz,
since A is the first letter of the alphabet, and Z is the last
letter. This renders a be and xyz abstract "mirror
images" of each other, making possible a strong answer:
wyz.

As is evident, many analogy problems in this
microworld require creativity; they require the solver to
view situations flexibly, to perceive abstract kinds of
similarity, to decide which aspects of a situation are
relevant, to determine the "best" level of abstraction at
which to perceive a given situation (e.g., "Replace the
rightmost letter by its successor" versus "Replace the
rightmost letter by a D''), and to flexibly translate ideas
in one situation into a different situation. The letter
strings can be thought of as representing abstract
idealized situations; in this sense, the concepts and
situations of our microworld become metaphors for
concepts and situations in other domains. The abilities
listed above are by no means unique to solving
letter-string analogy problems, but are central to the
creation of an analogy between any two situations. In
fact, these abilities are central to every facet of human
intelligence, from perception and learning to recognition
of concrete and abstract objects (faces, letters, artistic
and musical styles), and even to creativity. We believe
our microworld captures much of the essence of
analogy-making in general and we are creating a
computer program that can make fluid and creative
analogies in this small world. Our belief is that
mechanisms successful in this small world will form the
core of models of creativity in more complex domains.

3. Competing Pressures and Deep Analogies;
Related Work on Analogy

A fundamental tenet of our theory is that analogies

95

arise from the interaction and competition of many
pressures (Hofstadter, 1984b). Pressures can be aspects
of a given situation that push the perceiver to view it in a
certain way, or they can be a priori biases of the
perceiver. For example, in problem 6, there is a
perceptual pressure to map the C in abc onto the C in
ace, which competes with a pressure to see the two
rightmost letters as playing the same (more abstract) role.
An essential question is how "syntactic" pressures
(emphasizing more superficial features) compete with
"semantic" pressures (emphasizing more abstract
features) . In general, in good analogies, the more
semantic pressures win out, but this is not always the
case (Hofstadter, 1985a).

Much of the work on analogy by other researchers
has focused on what pressures analogy-making
involves. Gentner's work on structure-mapping and
systematicity is perhaps the best-known (Gentner,
1983). We agree that systematicity plays an important
role in many analogies, but we see it as one pressure
among many , not always producing the strongest
answer. As we show below, in our system, pressures
toward systematicity are emer~ent rather than explicit
driving principles, and must compete with other
pressures. Holyoak and Thagard (1987) have proposed
five constraints on analogical mapping that are very
similar to pressures in our system, and they use a
relaxation algorithm on a connectionist network to allow
these constraints to compete and cooperate. Other
researchers (Burstein, 1986; Carbonell, 1983; Darden,
1983; Evans, 1968; Greiner, 1985; Kedar-Cabelli, 1985;
Winston, 1980) have proposed pressures similar to
systematicity and to the constraints of Holyoak and
Thagard, and have built models for deciding how to use
these pressures in different situations. More detailed
comparisons of our work with other research is given by
Hofstadter (1984b) and by Hofstadter, Mitchell, and
French (1987).

Some researchers propose that mapping one
situation onto another can be done only if one knows the
purpose of the analogy (Kedar-Cabelli, 1985), and that
the goodness of the mapping is determined largely by the
"usefulness" of the analogy in solving problems or
making predictions (Greiner, 1985). In our view, many
analogies do have a purpose (e.g., to help understand a
given problem), and such a purpose creates pressures
affecting the analogy. But we disagree on the centrality
of purpose or usefulness in analogy. Many analogy
problems in our microworld (and in real life) have
compelling answers despite the absence of any purpose
they might serve. This is because humans have a strong
sense of context-independent similarity; that is, certain
mappings seem compelling in and of themselves.
(Consider the geometric analogies of Evans, 1968, and
the pattern-recognition problems of Bongard, 1970,
which helped inspire our microworld.) We are studying
how differences in pressures affect the preference for
one mapping over another. These pressures can of
course include ones related to a specific purpose, but this
is by no means necessary. This difference of opinion
brings up another difference between our focus and that
of many other researchers. Analogy is often
characterized as something used in problem-solving -
i.e., as a "tool" to be used by a reasoning procedure.
We believe the opposite: in our view the analogical
facility pervades cognition at every level, and high-level
cognitive functions (reasoning, problem-solving) emerge
from analogy-making capacities, rather than the reverse.

.· I

I

·· 1

.i

.I

I
I

4. Architecture of the Model
"Copycat" is the name of the computer program

that serves as a model of our theory. It has been
described previously by Hofstadter (1984b, 1985a) and
by Hofstadter, Mitchell, and French (1987). (Meredith,
1986, has used a very similar architecture to model
pattei:n perception in a different but closely related
domam.) The program produces answers to letter-string
analogy problems like the ones given above. The
philosophy behind the model is that fluid, human-like
thought should be a.n emergent property of a system
composed. of man)'. mdependent processes running in
parallel., mfluencmg each other by creating and
destr~ymg temp?rary structures and by raising and
lowering the acuvauon levels of various permanent
con.cepts stor~d in an associative network. We rely on
statistics to bnng coherent and focused behavior out of a
"seething broth''. of small. parallel actions. A guiding
met~phor for this model 1.s !he .way in which a living
eel! s coher~n.t glob~! activity 1s created by the joint
~cuo~s. of rmlhons of mdependently-acting enzymes. As
'.n a Iivmg ~ell, ~opycat has no top-level executive; rather
its processmg 1s carried out in parallel by cooperating
and competi~g "chains'' of "enzymes" (small pieces of
code) that bmld and destroy organizing structures while
interacting probabilistically with each other and with a
network of permanent concepts (a "Slipnet").

4.1 The Slipnet
The model is centered on a structure we call the

"Slipnet", which embodies in an approximate way our
notion of what concepts are, how they overlap, and
how, under pressures, one concept can "slip" into
another related one, producing a shift of viewpoint and
perhaps a new insight.

Figure 1: A small part of Copycat's Slip net

A small part of Copycat's Slipnet is shown in
Figure 1 above. A node in the Slipnet represents the
"core" of a concept, and a link simultaneously represents
a resemblance or relationship between two nodes and a
potential substitution of one node for the other in
descriptions containing that node (e.g., given certain
situations, the description "rightmost letter" could
become "leftmost letter", as it did in problem 2 above).
We call such a substitution a slippa~e from one node to
another. The shorter the link, the stronger the
resemblance, and the easier it is for a slippage to be
made. Slippages are not restricted to nodes connected by
a single link; a slippage can be made between any two
sufficiently close nodes. Thus the Slipnet represents all
potential slippages.

96

Each node has a fixed degree of semanticity: a
number representing the node's degree of conceptual
depth. We use the word "semantic" to describe relatively
general or deep, concepts in order to contrast with the
notion of "syntactic", which implies easily seen surface
qualities. Letters have a low degree of semanticity;
concepts like "predecessor" and "rightmost" are more
semantic; then come concepts like "repetitive group";
finally, domain-independent concepts like "opposite" are
the most semantic of all. Each node also has a
time-varying activation -- a number representing its
perceived relevance to the problem at hand. (Similar
notions of activation have also been used by Anderson,
1983, Collins and Loftus, 1975, Norman and
Rumelhart, 1982, Quillian, 1968, Reitman, 1965, and in
connectionist networks such as those of Feldman and
Ballard, 1982, and McClelland and Rumelhart, 1986).
Nodes become activated when the program perceives
instances of the concept involved, and stay activated as
long as such instances are perceived. The activation of a
node pushes the system to look for more instances of the
given concept. Nodes spread activation to their
neighbors, and also decay. Low-semanticity nodes lose
activation quickly through decay, hence never get very
activated, whereas very semantic nodes, which decay
slowly, can reach high activations. This ensures that
general and abstract concepts have deeper influences on
the course of the analogy, producing an effect that is
similar to Gentner's "abstraction" and "systematicity"
principles (Gentner, 1983).

Links have two attributes: length and label. The
!.e.n.g.th of a link corresponds t0 the intuitive notion of
conceptual distance. The ll!bel of a link roughly classifies
the resemblance or relationship the link encodes. Each
label is itself represented by a node, and the length of a
link changes dynamically in a manner determined by the
activation of its label node. For example, the nodes
leftmost and rightmost are connected by a link with label
opposite (see Figure 1). A high activation of opposite
will cause the link between leftmost and rightmost to
shrink. The distance between any two nodes is a
function of the lengths of the links on all the paths
between the two nodes. This distance function
determines the perceived resemblance and the likelihood
of slippage between any two nodes.

The blurriness and context-sensitivity of human
concepts has been investigated by many cognitive
scientists, including Hofstadter (1985a), Holland et al.
(1986), Kahneman and Miller (1986), Lakoff and
Johnson (1980), Rosch et al. (1976), and Smith and
Medin (1981). In our model, a £.Q!lC.elll is a region in the
Slipnet, centered on a particular node (its core), having
blurry rather than sharp boundaries: any other node is
included in the concept with probability inversely related
to its distance from the core node. For example, the
concept B is almost always part of the concept A, but C
is less likely to be included, and Q is almost never
included. The boundaries of a concept are also dynamic:
since the lengths of links in the Slipnet are variable, the
distance from the core node to nearby nodes changes as
different aspects of the problem are perceived. Thus
concepts are not explicit structures that can be
manipulated by the program, but rather they are emergent
aspects of the Slipnet arising from many low-level
interactions between dynamic link-lengths and
environmental inputs. Their flexibility and context
sensitivity are due to this emergent nature. This notion
of e mer~ent concepts (Hofstadter, 1984b) gives
Copycat's Slipnet a flavor similar to many connectionist

models (McClelland and Rumelhart, 1986), and to
classifier systems (Holland et al., 1986).

4.2 Perceptual Structures
In this section we will use the following problem

as an example: If abc ---> abd, then ssrrqqpp ---> ?
This is a combination of problems 2 and 3 above. There
are two strong answers: ttrrqqpp and ssrrqqoo.

Copycat's input is a "raw" analogy problem: the
program is given only the three strings of letters (abc,
abd, and ssrrqqpp), and is told only the category
membership of each of the letters (e.g., a is an instance
of A), and the left-to-right order of the letters in each
string. In order to formulate a solution, the program
must "perceive" at a high level what is going on in the
problem. To accomplish this, the program builds (on
top of the letter strings) various kinds of structures that
represent its high-level perception of the problem. (This
is similar to the way the Hearsay II speech-recognizing
program built perceptual structures on top of raw
representations of sounds; see Erman et al., 1980.)
These structures represent concepts of various degrees of
generality being brought to bear on the problem, and
accordingly, each of these structures is built out of
copied parts of the Slipnet. The flexibility of the program
rests on the fact that concepts from the Slipnet can be
"borrowed" for use in perceiving situations, and that
those concepts are not rigid but rather fluid, adjusting
themselves to fit the situations at hand. An essential part
of our model is this interaction of top-down and
bottom-up processes: as the program's perception of a
given problem adjusts itself to the shapes of concepts in
the Slipnet, the shapes of those concepts themselves are
determined by what the program perceives.

The program builds five kinds of perceptual
structures: descriptions, relations, groups,
correspondences, and rules. Descriptions borrow nodes
from the Slipnet in order to describe objects in each
string. For example, the first S in ssrrqqpp might have
the following descriptions: "leftmost letter", "leftmost
letter in leftmost repetitive group", "an instance of S",
and so on. The group ss might have the descriptions
"leftmost repetitive group", "repetitive group of S 's with
length 2", and so on. Each word in the description is
actually a node in the Slipnet (except for words like "in"
and "of', which we insert for readability). Relations are
descriptions of objects relative to other objects in the
same string. Relations are built on top of descriptions,
and also consist of borrowed parts of the Slipnet. For
example, Figure 2 shows a relation between the A and
the Bin abc.

.,::: :::::: :: :::;.

8''\s
0
0
0

0

0
0
0

b

i.Dst=e or@
nghtm.ost letter

0
0
0
C

Figure 2: A successor relation

When the program notices relations, it begins
looking for related ~- At present Copycat has
concepts for three types of groups: successor groups

97

(e.g., abc viewed from left to right, or srqp viewed
from right to left), predecessor im>ups (e.g., abc viewed
from right to left, or srqp viewed from left to right), and
repetitive im>ups (e.g., aaaa and abababab, both being
repetitive groups of length four). There are other types
of groups the program should eventually be able to
recognize, including symmetry !!TOUps (e.g. , elqle and
abcdcba) and generic 1.l!llle.£ (e.g., mblmblmbl is a
repetitive group containing three copies of the tuple
mbl). Like letters, groups have descriptions and
relations to other objects. For example, the group bbb
can be represented by a parameter-letter Band thus the
group bbb can be conceived of as the "successor" of the
group aaa. Decomposing a string into groups can
require considerable subtlety, as in perceiving that the
string aababc contains three successor groups (a, ab,
and abc) that themselves form a successor group at the
parameter-letter level: ABC).

The heart of what Copycat does in creating an
analogy is to construct correspondences between objects
in different strings. A correspondence is a mapping
between two objects that are found to resemble each
other in ways relevant to the situation at hand. Each
correspondence is justified by a set of slippages (or
substitution rules) between two concept nodes; those
slippages give reasons for the correspondence. For
example, the slippage rightmost--> leftmost says that the
role of rightmost in the original string is being played by
leftmost in the target string. A slippage consists of the
names of two nodes, one from the first object's
descriptions and the other from the second object 's
descriptions, which are (at the time the slippage is
created) sufficiently close in the Slipnet. (Whether the
two nodes are "sufficiently close" to each other is
decided probabilistically) . Figure 3 below shows two
diagonal correspondences for the sample problem, along
with the slippages that underlie them.

8

miPPM~
leftmost·> rightmost
leitr·> paremeter·leitr
successor-> 3uccessor
right·> left

b C ----> 8

,;,
miPPM~

rightmost·> leftmost
leitr ·> paremeter·leitr
predecessor·> predecessor
left·>right

S R Q P

b

Ll D LI LI ----> 7

Figure 3: A set of correspondences

d

(For the sake of clarity, Figure 3 shows only the
correspondences between abc and ssrrqqpp. The
program would also build "horizontal" correspondences
between abc and abd, most likely mapping the A to the
A, the B to the B, and the C to the D.)

In Figure 3 above, the uppercase italic letters
above the repetitive groups in ssrrqqpp are
parameter-letters representing the groups. The program
creates these paramt er-letters when it perceives the
repetitive groups. The cmrespondence between the A
and the parameter-letter P is supported by the slippages
leftmost --> rightmost; letter --> parameter-letter;
successor--> successor; and right--> left (the last two
slippages come from the fact that the A has a successor
relation to its right neighbor, and the parameter-letter P
has a successor relation to its left neighbor). The

. i
I

I
I
I

I . '

correspondence between the C and the parameter-letter S
is supported by the slippages rightmost --> leftmost;
letter--> parameter-letter; predecessor--> predecessor;
and left--> right. The use of the word "slippage" to
describe a pair like successor --> successor may seem
strange, since nothing was slipped! But if slippages are
seen as ~ for correspondences between objects,
then such an identity slippa~e can be a very strong
reason for making a mapping between two objects.

Notice that there is no correspondence between the
B in abc and anything in ssrrqqpp. This reflects the
fact that in any analogy, many aspects of the source
situation have no counterparts in the target situation. For
example, when making an analogy between the
Iran-Contra affair and Watergate, you probably wouldn't
find a Watergate counterpart of the cake that was taken
along on the secret mission to Iran (although one might
exist). Mappings tend to be made between pairs of
salient objects (such as Presidents Reagan and Nixon)
and between pairs of very similar objects (such as the
daytime TV broadcasts of the U.S. Senate hearings in
both situations). Such biases for salience and similarity
guide Copycat's construction of correspondences.

Each correspondence has a strength associated
with it, representing in principle the goodness of the
mapping it encodes, and in practice how hard the
correspondence is for the program to destroy. The idea
of assigning strengths to correspondences reflects the
philosophy that good analogies are created by perceiving
deep similarities between situations. This requires a
strength function that values (1) slippages involving
nodes with a high degree of semanticity (e.g., letter-->
parameter-letter), suggesting that abstract aspects of the
situations are being taken into account; (2) slippages with
small distances in the Slipnet (e.g., the identity-slippage
A --> A), suggesting that very similar aspects about the
situations are being taken into account; (3)
correspondences supported by many slippages,
suggesting that many aspects of the situations are being
taken into account; and (4) correspondences that are
compatible with already-existing correspondences.
Roughly speaking, two correspondences are compatible
if the supporting slippages of one are conceptually
parallel to the supporting slippages of the other,
expressing the same "world view"; for instance, the
slippages leftmost --> leftmost and rightmost -->
rightmost are parallel, whereas leftmost--> leftmost and
left --> right are not. (The notion of valuing
conceptually parallel slippages, along with the bias
towards more semantic descriptions of objects and
relationships, tends to give rise to mappings that satisfy
Gentner 's systematicity principle, but not
deterministically.) A different set of mutually compatible
correspondences (i.e., different from the set given in
figure 3) would map the A in a be onto the
parameter-letter S and the C onto the paramter-letter P.
In a run of the program, these two sets of
correspondences would probably compete with each
other; the choice of a winner would emerge from the
outcome of many probabilistic choices based on the
strengths of the correspondences (see figure 4).

In each of Copycat's analogy problems there is
some kind of transformation carrying the first string
(here, abc) into the second string (here, abd), and the
analogy solver has to transfo~ the third ~tring (here,
ssrrqqpp) in "the same way . To do this, Copycat
builds a rnk -- a structure summarizing the program's
perception of the first transformation -- and uses the

98

slippages relating the first and third strings to translate
this rule for use on the third string. Some possible rules
for abc --> abd are: "Replace all C's by D's", "Replace
the rightmost letter by a D", "Replace the third letter by a
D", and "Replace the rightmost letter by its successor".
At present, the program uses the simplifying assumption
that all rules are of the form "Replace by
___ ", where only one object (i.e., letter or group)
has been replaced. The blanks are to be fi lled in with
descriptions of objects. This rule template can be used
for a large number of problems, but certainly not all
(e.g., "If eqe --> qeq, then aaabaaa -->?",where the
rule is to "turn the string 'inside-out'"), so this capability
will have to be expanded.

The rule "Replace the rightmost letter by its
successor" is a good description of the transformation
between abc and abd, but not general enough to create
good analogies in sufficiently distant situations. For
example, if applied directly to ssrrqqpp, this rule
would give ssrrqqpq, which virtually all people
consider to be too literal and rigid. To apply to the new
situation, the rule has to be translated. The translation is
implicitly given in the slippages underlying the
correspondences between abc and ssrrqqpp. For
example, the set of correspondences shown in figure 3
includes the following slippages : letter -->
parameter-letter, rightmost --> leftmost, and successor
--> successor. The program simply applies these
translation instructions to the original rule. This
produces "Replace the leftmost parameter-letter by its
successor", yielding answer ttrrqqpp.

Some researchers have proposed that people make
analogies not by translation, but by creating a sufficiently
abstract "schema" that applies to both the initial and
target situations (Genesereth, 1980; Gick and Holyoak,
1983; Greiner, 1985). We agree that in some cases one
can create an schema, but in general, no rule can
anticipate how all other situations will differ from the
original one. For example, all of the sample problems
given at the beginning of this paper are in an abstract
sense the "same" problem (in each, the idea is to replace
an "extreme" element by its "successor"), but it would be
very hard to create one single abstract schema that could
be used to find the answer in each case, and impossible
to create a schema that could be used on these fillil on the
infinitely many other problems with this same theme.
We believe that our scheme of translation via slippages
borrowed from a concept network (i.e., a Slipnet) is a
better model of the mechanisms behind analogy-making.

4.3 How Copycat Works
The actual building (and destroying) of perceptual

structures is carried out by codelets -- small pieces of
code that play the role of enzymes mentioned above. As
was said before, Copycat has no top-level executive; all
processing is carried out by codelets, many of which are
independent and run in parallel. A certain set of codelets
is present at the onset of processing. New codelets are
sometimes created by old codelets to continue working
on a task in progress, and these codelets may in turn
create other codelets, and so on. New codelets can also
be created by certain highly activated nodes in the
Slipnet. When a codelet is created, it is assigned an
.urgenu: a number representing how important it seems
to its creator at the time of its creation, and it is placed in
a pool of waiting codelets. At each time-step of the
program, a certain number of codelets are selected from
the pool probabilistically according to urgency, and these
codelets run in parallel.

The operation of Copycat can be roughly divided
into three stages:
1) Constructing one or more descriptions for each object
(letter or group) in each string, perceiving relations
between objects within a string, and noticing groups
within a string (such as the four groups in ssrrqqpp) -
in short, building a high-level perception of each string.

2) Finding correspondences between objects in the
initial string (abc) and the modified string (abd), and
between objects in the initial string and the target string
(ssrrqqpp) .

3) Constructing a rule to describe the transformation
between the initial string (abc) and the modified string
(abd), and using the mapping between the initial and
target strings to fluidly adapt (i.e., translate) the rule to
the target string (ssrrqqpp).

It is important to point out that these stages are not
preprogrammed; rather, they emerge from the
lower-level probabilistic architecture of the system. This
division of the processing into stages only roughly
describes the program's behavior. The construction of a
perceptual structure is divided into small steps, each step
setting the stage for the next. Each step corresponds to a
codelet, and since many codelets run in parallel, efforts
towards building different structures are interleaved,
sometimes cooperating and sometimes competing. In
other words, these high-level tasks are carried out by
interleaved chains of codelets, with each codelet being
responsible for some very small action. Many chains -
some cooperating, some competing -- progress in
parallel at different rates, the rate of each being set by the
urgencies of its component codelets. Thus Copycat
follows what we call the principle of the parallel terraced
scan: simultaneously exploring promising avenues at
high speeds and others at lower speeds (Hofstadter,
1983) . Almost all codelets make one or more
probabilistic decisions, and the high-level behavior of the
program arises from the combination of thousands of
these very small choices. In this way, Copycat's "style"
arises from its low-level stochastic substrate.

Figure 4 shows nine screen printouts from an
actual run of the program on the sample problem. The
program was interrupted at various points during its run
and these printouts of its graphics were made. They
show how perceptual structures are formed in an
interleaved manner, how competition between
correspondences occurs, and how a compatible set of
correspondences is settled upon and used to create an
answer.

5. Present Status of Copycat
At present, the Copycat program can solve

problems 1, 2, and 3 from the sample problems given at
the beginning of this report, as well as several variants
(including abc ---> abd, ssrrqqpp ---> ?), and should
soon be able to solve problems 4 and 5. By "solve", we
mean that the program is able to (on different runs) come
up with fill of the various answers that people give to
each problem, including the very rigid answers, although
it is much more likely to produce answers that we see as
being more flexible and abstract. (Since the program's
low-level workings are permeated by probabilistic
choices, it often produces different answers on different
runs.) It is possible to modify Copycat's behavior by
varying parameters associated with the program; we can,
for example, cause it to "prefer" more rigid answers
(i.e., to produce them more often).

99

Problems 6 and 7 are beyond the program's
present capabilities, and will necessitate some additions
to the architecture beyond what has been described above
(see Hofstadter, Mitchell, and French, 1987).

6. Conclusion
In this paper we have described the Copycat

program as it is currently implemented. We are now
extending its capabilities and also testing its generality by
using the same architecture in different domains
(Hofstadter, Mitchell, and French, 1987). Our long-term
goal is, of course, to create mechanisms for doing
analogies in their full generality and in any domain. We
are not at present dealing with the important question of
how people ~ memories in order to construct an
analogy with a given situation (Carbonell, 1983; Gick
and Holyoak, 1983; Schank,1983); in Copycat the two
situations are merely presented. We are also not trying
to make our programs create new concepts (i.e., to add
new nodes to the Slipnet). In that sense, we are not
modeling learning. On the other hand, our work does
involve learning, if that term is taken to include the
automatic generalization from experience that humans
perform in novel contexts (Holland, 1986; Holland et
al., 1986). Our focus is, above all, to understand the
nature and interaction of human concepts. We believe
that the mechanisms we are developing are
psychologically realistic; the ultimate test is, of course,
how well they mirror human performance over a broad
range of problems in many domains.

Acknowledgements
Our special thanks go to Robert French for many important

contributions to this project. David Rogers and Gray Clossman
have also given us invaluable assistance. In additon, we thank the
following people for helpful discussions: Daniel Defays, Dedre
Gentner, Robert Hofstadter, John Holland, Greg Huber, John Laird,
Roy Leban, Wayne Loofbourrow, Alejandro L6pez, Larry
Maloney, David Moser, Ed Smith, and Henry Velick. This
research has been supported by a grant from the University of
Michigan, a grant from Mitchell Kapor, Ellen Poss, and the Lotus
Development Corporation, a grant from Apple Computer, Inc., and
grant DCR 8410409 from the National Science Foundation.

References
[I] Anderson, J.R. (1983). The architecture of cognition.
Cambridge, MA: Harvard University Press.
[2] Bongard, M. (1970) . Pattern recognition. Hayden Book
Co. (Spartan Books).
[3] Burstein, Mark H. (1986) . Conceptual formation by
incremental analogical reasoning and debugging. In R. Michalski
et al . (Eds.), Machine learning: An artificial intelligence approach:
YQL..2. Los Allos, CA: Morgan Kaufmann.
[4] Carbonell, Jaime G. (1983) . Learning by analogy:
Formulating and generalizing plans from past experience. In R.
Michalski et al . (Eds.), Machine learning· An artificial intelligence
~. Palo Alto, CA: Tioga.
[5] Collins, A. M. and E. F. Loftus (1975) . A
spreading-activation theory of semantic memory. Psychological
Review, 82, 407-428.
[6] Darden, Lindley (1983). Reasoning by analogy in scientific
theory construction. Proceedings of the International Machine
Learning Workshop. Monticello, Ill.
[7] Erman, L.D., F. Hayes-Roth, V. R. Lesser, and D. Raj
Reddy (1980). The Hearsay-II speech-understanding system:
Integrating knowledge to resolve uncertainty. Computing Surveys.
12(2), 213-253.
(8] Evans, Thomas G. (1968). A program for the solution of a
class of geometric-analogy intelligence-test questions. In M.
Minsky (Ed.), Semantic information processing. Cambridge, MA:
MIT Press.

I

(9) Feldman, J. and D. Ballard (1982). Connectionist models
and their properties. Cognitive Science. !5.(3), 205-254.
[!OJ Genesereth, Michael R. (1980). Metaphors and models.
Proceedin gs of the First Annual National Conference on Artificial
Intelligence, 208-211. Menlo Park, CA: American Association of
Artificial Intelligence.
[11) Gentner, Dedre (1983). Structure-mapping: A theoretical
framework for analogy. Cognitive Science.1(2).
(12) Gick, Mary L. and Keith J. Holyoak (1983). Schema
induction and analogical transfer. Cogni tive Psychology, 15., 1-38.
[13) Gre iner, Russell (1 985). Lea rnin g by understanding
illl.l!.!.ogie£ (Technical Report STAN-CS-85- 1071). Stanford, CA:
Stanford University, Computer Science Department.
(14) Hofstadter, Douglas R. (1983). The architecture of Jumbo.
Proceedings of the International Machine Learning Workshop.
Monticello, Ill.
(1 5) Hofstadter, Douglas R. (1984a) . Simple and not-so-simple
analogies in the Copycat domain. Unpublished FARG Document,
University of Michigan, Ann Arbor, MI.
(16) Hofstadter, Douglas R. (1 984b). The Copycat project: An
experiment in nondeterminism and creative analogies (AI Memo
#755). Cambridge, MA: MIT AI Laboratory.
(17) Hofstadter, Douglas R. (1985a). Analogies and roles in
human and machine thinking. In Metamagica l Themas (pp.
547-603). New York: Basic Books.
(18) Hofstadter, Douglas R., Melanie Mitchell , and Robert
French (1987). Fluid concepts and creative analogies: A theory
and its computer implementation. Technical Report 10. Cognitive
Science and Machine Intelligence Laboratory, University of
Michigan, Ann Arbor, Ml.
(19] Holland, John, Keith J. Hoyoak, Richard E . Nisbett, and
Paul R. Thagard (1986) . In ductio n . Cambridge, MA:
Bradford/MIT Press.
(20) Holland, John (1986). Escaping brittleness: The
possibilities of general-purpose learning algorithms applied to
parallel rule-based systems. In R. Michalski ct al . (Eds.), Machine
learning: An artificial in telli gence approach: Vol 2. Los Altos,
CA: Morgan Kaufmann.
(21) Holyoak, Keith J. and Paul Thagard (1987). Analogical
mapping by constraint satisfaction . Manuscript submitted for
publication.
(22] Kahneman, Daniel and Dale T. Miller (1986). Norm
theory: Comparing reality to its alternatives. Psychologica l
Review, 2.3.(2), 136-153.
(23) Kedar-Cabelli , Smadar (1985) . Purpose-directed analogy.
In Proceedin gs of the Cogn itive Science Society. Irvine, CA.
[24) Lakoff, G. and M. Johnson (1980) . The metaphorical
structure of the human conceptual system. Cognitive Science, 1
(2), 195-208.
(25) McClelland, J. and D. Rumelhart (1986) (Eds.) . Earal!.el
distributed processin g. Cambridge, MA: Bradford/MIT Press.
(26] Meredith, Marsha J. (1986). Seek-Whence: A model of
pattern perception. Unpublished doctoral dissertation, Indiana
University, Computer Science Department.
[27) Norman, D. and D. Rumelhart (1982). Simulating a
ski lled typist: A study of skilled cognitive-motor performance.
Cognitive Science, !5.(1).
[28) Quillian, Ross (1968). Semantic Memory. In M. Minsky
(Ed.), Semantic information processing. Cambridge, MA: MIT
Press.
(29) Reitman, Walter (1965). Cognition and thought. New
York: Wiley.
[30) Rosch, E., C.B. Mervis, W.D. Gray, D.M. Johnson, and
P. Boyes-Braem (1976). Basic objects in natural categories.
Cognitive Psychology,.8, 382-439.
(31) Schank, Roger (1983). Dynamic memory. Oxford
University Press.
[32) Smith, E. E. and D. L. Medin (1981). Categories and
~- Cambridge, MA: Harvard University Press.
[33) Winston, Patrick Henry (1980). Learning and reasoning by
analogy. Communications of the ACM, 23.(1 2), 689-703.

100

Figure 4: A run of the program on abc --> abd,
ssrrqqpp --> ? T hi s run produced the answer
ttrn1qpp , but note that s in ce the program is
non-deterministic, different runs can produce different
answers. In particular, the an swer ssrrqqoo is
produced quite often, and o n rare occasions, rig id
answers such as ssrrqqpq and ssrrqqpd are
produced.

·> (tn1t - ccat abc 'abd 'ssrrqqpp)
()
-> I

b --> b

q q p p -->

d

I. The program is presented with the th ree stri ngs .

:llJ {'lre t)
, c Jnterrupt : Break: 0
{ I) I

~ a~ b a b C - - >

I'-..
s r. q q p p -->

2. Successor-predecessor relations between lellcrs begm
to be noticed (represented by small arcs between lc llcrs)
and the program tentatively considers a correspondence
between the two B's (dashed arc).

-> (run- cc al)
'Clnterrupt : Break: ()
c{I) I

----~. ~- -,/~
7 b C - - > a b

I
I

h R

~ q

p
q ~ - -> 7

3. Sameness relations and groups in ssrrqqpp begin t?
be noticed and the correspondence between the two _B s
has been built (solid arc). Other tentative
correspondences are being considered, includin g a
correspondence between the A and the S (dashed hne).

k:{iJ (? r a t)
~cinlorrupt: Break: ()
OJ I

4. Successor-predecessor re lations have been noticed
between some of the parameter-letters. A correspondence
has been built between the A and th e leftmos t S
(represented by a jagged line; its si ngle s lippage,
"leftmost--> leftmost", appears below it) . A competing
te nta tive correspondence between th e C and the
parameter-letter Pis being considered (dashed li ne).

a b ~ --> a b d

A ,~
_ S _ R _ 0 _ P

~ E_3 ~ ~ -->
nio, l •) l'IIO, t

leller-)p· lelter
pred·)succ
left -)le{t

5. A fight has occurred between th e A -S
correspondence and the C-P correspondence, and the
latter has won and destroyed the for mer. A competing
correspondence between the C and the parameter-letter S
is being considered. The mapping between abc and abd
is now complete, although a ltern at ive "h orizontal"
correspondences continue to be considered.

n o, t -) h ost
letter-)p- letter

pred-)pred
left -) rlght

-->

d

6. The C-S correspondence has been built, destroying
the C-P correspondence. The compatible A-P
correspondence is being considered.

IOI

~ b

S _ R _ 0 - P

~~~~ 
nto,t-) h os t 

letter-)p· le t ter 
pred-) pred 
left -> right 

hosl - )r,iost 
letter->p- letter 

, ucc· >,ucc 
righ l - )left 

d 

--> 

7. The A-P correspondence has been built . In addition, 
a rule describing the change from abc to abd has been 
created (in box at top of screen). 

~',, ~-: a b d 

/~~ 
r.'." S -: I R r;:- 0 -:l '- p -:1 ~ ~~~ --> 
r,io,t -) hosl 

l e l hr -)p· leller 
pred -) pred 
lefl -) r i ghl 

h osl - >ntost 
htter->p- lette r 

succ -) succ 
ri gh l -) hft 

Replace l 1110st JIIH'Atllete r - hitter by successor of l MOst para-ter- l el l er 

8. The rule has been translated (the translated rule 
appears at the bottom of the screen). Compet in g 
tentative correspondences continue to be considered. 

1 ( 7ret) 
() 
-> I 

~--> 

S R O P 

LJ LJ Li Li--> 
n ost -) h o, t 

etter- >p- htter 
pred->pred 
l eft- >ri ght 

hosl -) nt o,t 
htte r ->p- htter 

succ -) succ 
rlghl - >left 

d 

ttrrqqpp 

9. An answer has been created from the translated ru le. 



. . 1 

· I 
. i 

• • . 1 

The Complexity of Model-Preference Default Theories 

Bart Selman 
Department of Computer Science 

University of Toronto 
Toronto, Canada M5S lA 4 

bart@ai.toronto.edu 

Abstract 
Most formal theories of default inference 
have very poor computational properties, 
and are easily shown to be intractable, or 
worse, undecidable. We are therefore inves
tigating limited but efficiently computable 
theories of default reasoning. This pa
per defines systems of Propositional Model 
Preference Defaults, which provide a true 
model-theoretic account of default infer
ence with exceptions. Model Preference 
theories are not identical to Default Logic 
or Circumscriptive theories, but some of 
our complexity results extend to those for
malisms. 
The most general system of Model Pref
erence Defaults is decidable but still in
tractable. Inspired by the very good 
(linear) complexity of propositional Horn 
theories, we consider systems of Horn 
Defaults. Surprisingly, finding a most
preferred model in even this very limited 
system is shown to be NP-Hard. Tractabil
ity can be achieved in two ways: by elimi
nating the "specificity ordering" among de
fault rules, thus limiting the system's ex
pressive power; and by restricting our at
tention to systems of Acyclic Horn De
faults. These acyclic theories can encode 
inheritance hierarchies of the form exam
ined by Touretzky, but are strictly more 
general. 
This analysis suggests several directions for 
future research: finding other syntactic re
strictions which permit efficient computa
tion; or more daringly, investigation of de
fault systems whose implementations do 
not require checking global consistency -
that is, fast "approximate" inference. 
Keywords: nonmonotonic reasoning, 
knowledge representation. 

I. Introduction 
It is commonly acknowledged that an agent need 
not, indeed cannot, have absolute justification 

Henry Kautz 
AT&T Bell Laboratories 

AI Principles Research Department 
Murray Hill, NJ 07974 
kautz@allegra.att.com 

102 

for all of his beliefs. An agent often assumes, for 
example, that a certain member of a particular 
kind ( e.g., Tweety the bird) has a certain prop
erty ( e.g., the ability to fly) simply because it is 
typically true that entities of that kind have that 
property. When formulating a plan of action, an 
agent often assumes that certain acts will lead 
to certain consequences, when in fact those con
sequences are not guaranteed because the world 
may be in some unusual state. In order to as
similate information about its environment, an 
agent will often use a strategy of "hypothesize 
and test", and adopt a particular model of those 
inputs, rather than maintaining a representation 
of all logically possible interpretations. 

Such default reasoning seems to offer several 
advantages. It allows an agent to come to a de
cision and act in the face of incomplete informa
tion. It provides a way of cutting off the possibly 
endless amount of reasoning and observation that 
the agent might perform in order to gain perfect 
confidence in its beliefs. And, as Levesque (1986) 
argues, default reasoning may greatly reduce the 
complexity of regular deduction. Defaults can be 
used to "flesh out" an incomplete knowledge base 
to a vivid one; that is, a set of atomic formulas 
which completely characterize a domain. Once a 
vivid knowledge base is obtained, deduction re
duces to standard database lookup. 

A satisfactory formal theory of default rea
soning should therefore both model what an 
agent could come to believe on the basis of 
given facts and default assumptions, and pre
cisely characterize the very real efficiency of de
fault reasoning over pure deduction ( or classical 
probability theory, for that matter). While there 
is some dispute (Hanks and McDermott 1986) 
as to the representational adequacy of such pro
posed formal systems as Default Logic (Reiter 
1980) or Circumscription (McCarthy 1980), no 



one is prepared to defend their abysmal compu
tational properties. All are easily shown to be 
undecidable in the first-order case, and badly in
tractable in the propositional case. 

We are therefore investigating limited but 
efficiently computable theories of default reason
ing. Such results are of interest even if one in
tends to implement the default reasoning system 
on a massively parallel machine. As Levesque 
(1986) points out, the processing requirements of 
an exponentially-hard problem can quickly over
whelm even enormous arrays of processors, equal 
in size to the number of neurons of the brain. 

Our interest in using defaults to generate 
vivid models is a particular reason for our con
cern with complexity results. It is hardly of in
terest to eliminate the exponential component of 
deductive reasoning by introducing an even more 
costly process of transforming the representation 
into a vivid form. 

The number and variety of formal default 
systems presents an immediate obstacle to the 
problem of determining the complexity of the 
task of default inference itself. Who is to 
say, for example, that a problem which is in
tractable when formulated in theory A is not 
tractable when formulated in theory B? Ether
ington (1986) has demonstrated that one should 
not simply lump all default theories together, as 
they differ significantly in both their expressive 
power and the kinds of conclusions they justify. 
Part of the problem in comparing default theo
ries is their primarily syntactic characterization; 
indeed, even the semantic accounts provided in 
the literature retain a strong syntactic flavour 
(Etherington 1987). 

This paper defines a straightforward way of 
encoding defaults by stating a preference order
ing over the space of all possible models. This 
ordering is defined by statements of the form, 
"a model where a holds is to be preferred over 
one where (3 holds." The details of this system 
of Model Preference Defaults are spelled out be
low. The task of the default inference process is 
to find a most preferred model. 

This theory provides a true semantic char
acterization of default inference; it is important 
to note that it is not a "semantics" which sim
ply mimics the sequential application of syntactic 
rules. One benefit of this model-theoretic foun
dation is the ease with which one can incorporate 
a general specificity ordering over defaults. As 
will be seen, the specificity ordering makes sense 

103 

of exceptional defaults, and is at the heart of 
probability theory's notion of the reference class 
(Kyburg 1983). Various kinds of Model Prefer
ence theories have expressive power comparable 
(but not strictly identical) to special cases of De
fault Logic or Circumscription, and some of our 
negative complexity results carry over to those 
formalisms. 

The propositional version of Model Pref
erence Default theory is decidable but still in
tractable. Inspired by the very good (linear) 
complexity of propositional Horn theories, we 
next consider systems of specificity-ordered Horn 
Defaults over initially-empty knowledge bases. 
Surprisingly, finding a most-preferred model in 
even this very limited system is shown to be 
NP-Hard. Tractability is finally achieved by re
stricting our attention to systems of Acyclic Horn 
Defaults. These acyclic theories can encode in
heritance hierarchies of the form examined by 
Touretzky, but are more general. 

The final section of this paper considers the 
consequences of this complexity analysis. One 
reaction may be to search for other syntactic re
stricti.ons on default theories which permit effi
cient computation. A more daring venture would 
be to investigate default systems which do not re
quire the existence of a single model of the entire 
theory. Such systems might be able to perform 
fast "approximate" inference. 

II. Model Preference 
Defaults 

What is the meaning of a default rule? A com
mon approach ( e.g., Reiter's Default Logic) is 
to take it to be similar to a deductive rule, 
but with the odd property of possessing a global 
(and perhaps non-computable) applicability con
dition. The concl-usions of such a system can only 
be defined by examining the syntactic structure 
of particular proofs. There is a very different 
interpretation of default rules, however, with a 
natural and intuitive semantics, which is inde
pendent of the details of the proof theory. This 
approach is to use rules to define constraints on 
the set of preferred ( or most likely) models of a 
situation. The goal of default inference is then to 
find a most preferred model ( of which there may 
be many), but the details of the syntactic pro
cesses employed are separate from the model's 
semantic characterization. 



- -1 

I 

I 

I 

-, 
I 

Unlike previous approaches, the result of 
Model Preference Default inference is always a 
complete model; an appropriate result given our 
goal of obtaining a vivid representation as de
scribed above . By contrast, a Default Logic proof 
arrives at an extension, that is, a set of formulas 
which only partially characterizes a situation. 

The model theory for Circumscription is 
similar to that for Model Preference Defaults, 
in that it involves considering models which are 
maximal in some partial order. They differ, how
ever, in that the conclusions of a circumscriptive 
proof must hold in all maximal models, and in 
the fact that the partial order in a circumscrip
t ive theory is defined solely in terms of minimiz
ing predicates. The first difference makes circum
scriptive theory (perhaps too) cautious, while the 
second leads, at t imes, to unnatural complex
ity in encoding default knowledge in terms of 
predicate minimization. T he work of Shoham 
(1986) on default reasoning involving time and 
his unifying framework for nonmonotonic reason
ing (Shoham 1987) appear to be quite similar to 
our own, in the emphasis on a semantic theory 
based on partially-ordered models; it remains to 
be seen how comparable our systems are in ex
pressive power. 

We define a series of default systems, begin
ning with a general but weak system 'D, add a 
specificity-ordering over defaults to obtain v+ , 
then restrict to Horn-form defaults to yield 'DH 
and 'DH+, and finally consider acyclic sets of 
default rules 'DHt. This paper considers only 
purely propositional systems; a later paper will 
provide a straightforward extension to include 
propositional schemas. 

Definitions 
Let P = {p1 , p2 , .... pn} be a set of propositional 
letters , and £ be a propositional language built 
up in the usual way from the letters in P and 
the connectives , and /\ ( the others will also be 
used freely as syntactic abbreviations). Also, let 
q and r b e single literals ( a literal is propositional 
letter p E P or its negation ,p written as f5), and 
a and /3 be (possibly empty) sets of literals. 

Definition: Model. 
A model ( or truth assignment) M for P is a func
tion t : P --t {T, F}. M satisfies a set S of for
mulas of £ (written as M F S) iff M assigns 
T to each formula in the set. Complex formulas 
are evaluated with respect to M in the standard 

104 

manner. 

Definition: Default Rule. 
A default rule cl is a rule of t he form a --t q. The 
rule cl is a Horn-form default rule iff a contains 
only positive literals . 

Definition: Applicabili ty. 
A default ruled, of the form a --t q, is applicable 
at a model M iff 

1. NI F a, and 
2. d is not blocked at },,if. (For the definition 

of blocking see the description of the Speci
ficity Condition given b elow.) 

If cl is applicable at },,if, then the application of 
rule cl at M leads to a model cl(.M). This model 
is identical to M with the possible exception of 
t he truth assignment to the letter occuring in the 
literal q; this letter is assigned a truth value such 
t hat d(M) F q. 

Definition: Ordering on models. 
Given a set of default rules D, the rela tion <+ 
between pairs of models is defined as follows: 
M ~+ M ' iff 3d E D s.t . d(NI) = J..if '. The rela
tion ~ between pairs of models is defined as the 
reflexive transitive closure of ~ +. Let M > M ' 
be defined as [( J..if' ~ J..if) /\ ,(J..1 ~ M ')]. 

Definition: Maximal Model. 
Mis a maximal model w.r.t. a set of defaults D 
iff ,3M ' ( M ' > NI). 

Definition: Default System 'D. 
In default system 'D we consider problems of the 
the following form: find an arbitrary model for a 
given set of propositional letters P which is max
imal according to a given set of defaults , while 
ignoring condition 2 of the definition of applica
bility. 

For example, suppose that P is { student, 
adult, employed}, with the intended interpre
tations " this person is a university student", 
" this person is an adult", and " this person is 
employed" ( example from R eiter and Criscuolo 
1983). Then the defaults "Typically university 
students are adults", "Typically adults are em
ployed", and "Typically university students are 
not employed" can be captured as follows: 1 

1) student --t adult 
2) adult --t employed 
3) student --t employed 

1 We omit the set braces in the left-hand side of the 
default rules . 



1 

4 4 
sae sae sae sae 

3 j 2 j 2 j 3 

4 4 
sae sae sae sae 

1 

Figure 1: The preference ordering on models as 
given by the default rules 1) - 4). 

So, for example, rule 1 says that when given two 
models that assign T to student and that differ 
only in the truth-assignment of adult, give pref
erence to the model with adult assigned T. The 
default which says this person is a university stu
dent can be encoded by: 2 

4) 0 --+ student 

Figure 1 gives the preference ordering on the 
models as defined by these defaults rules. We use 
the obvious abbreviations for the propositional 
letters in P. Thus, for example, sae stands for 
the model in which both student and adult are 
assigned T and employed is assigned F. A di
rected edge from a model 111.a to a model Mb in
dicates that Ma :'.S+ Mb, The numbers alongside 
the directed edges indicate the corresponding de
fault rules. 

We see that the model sae is maximal, since 
there is no model that is strictly preferred over 
this model (as a matter of fact, for all other 
models M*, such as for example sae, we have 
M* :'.S sae). 

There is a maximal model in this system, 
however, that does not correspond to our intu
itive understanding of the situation. This model 
is related to the "multiple extension" problem 
which has created much trouble in previous work 
on default reasoning (Hanks and McDermott 
1986). Because 1) does not capture the notion 
that the third rule above should override the sec
ond, the model sae is also maximal. 

Therefore we define a stronger default sys-

2 Instead of adding default rule 4 to the set of defaults, 
one can express the fact that this person is a university 
student by having the propositional formula student in 
the theory. (The notion of a maximal model w.r.t.a set of 
defaults and a non-empty theory is defined below.) 

105 

tern which includes the notion that a more spe
cific default overrides a less specific one. 

Definition: Specificity Condition. 
Given a set of defaults D , a default rule d of the 
form a --+ q is blocked at 111 iff :ld' E D of the 
form ((3 U a) --+ q and NI p= ((3 U a). 

From the above definitions, it follows that 
a model preference ordering is completely deter
mined by the default rules; a theory has no ef
fect on the ordering. (See also the definition of 
a maximal model w.r.t. a set of defaults and a 
non-empty theory at the end of this section.) 

Definition: Default System 1)+. 

In default system 1)+ we consider problems of 
the following form: find an arbitrary model for a 
given set of propositional letters P which is max
imal according to a given set of defaults, where 
rules may be blocked by the specificity condition 
(i.e., both conditions of the definition of applica
bility are taken into account). 

The first example is now more completely 
captured in v+ as follows. 

student --+ adult 
adult --+ employed 

-~~~ 

student, adult --+ employed 
0 --+ student 

The only maximal model is now sae. 3 (The 
graph representing the preference ordering is 
identical to the one in figure 1, without the arc 
labeled 2 from sae to sae and the arc labeled 3 
from sae to sae.) 

While v+ appears to have adequate expres
sive power to handle the standard examples of 
default reasoning , we will see that it does not 
succumb to a tractable algorithm. Therefore we 
define the following restricted classes of default 
problems. 

Definition: Default Systems 1)1-{ and 1)1-(+. 

In 1)1-{ we are concerned with the set of prob
lems in system 1) involving only Horn-form de
fault rules; and likewise for 1)1-{+ w.r.t. v+. 

Definition: Acyclic Defaults. 
Define the directed graph G(D) = (V, E) associ-

3 In this example a different solution to the the prob
lem of multiple extensions that does not rely on speci
ficity ordering would be to instead replace rule 2 by 
adult, stttdent -> employed. However , specificity ordering 
captures nicely the intuition behind property inheritance, 
namely that properties inherited from more general con
cepts can be overridden by properties inherited from more 
specific concepts (more generally: more specific defaults 
should override less specific ones). 

I • 



ated with a set of default rules Das follows: 4 the 
V contains a vertex labeled Pi for each proposi
tional letter Pi in P , and E = {(Pi, Pi) I 3d E D of 
the form a - q s.t. {[(p; Ea) V (Pi Ea)] A [(Pi= 
q) V (Pi = q)]}. A set of defaults D is called 
acyclic iff the G(D) is an acyclic directed graph. 

The two sets of defaults discussed above are 
examples of sets of acyclic defaults . They encode 
basic examples of acyclic inheritance hierarchies 
(Touretzky 1986) . Acyclic theories can encode 
such hierarchies, but are more general. 

Note that there are also natural examples 
that do not fall into the class of acyclic default 
systems, such as those obtained by adding the 
default rule adult - student to the sets of de
faults given above. 

Definition: Default System VHt . 
In VHt we are concerned with the set of prob
lems in system 1)7-{+ involving only acyclic sets 
of defaults. 

While problems of property inheritance fall 
within VHt, they do not completely circum
scribe it. In Selman and Kautz (1988) we present 
an example of an acyclic preference default the
ory which cannot be easily represented in t erms 
of property inheritance. 

Finally, we consider the case in which we 
have apart from a set of defaults D also a non
empty set of facts T. 
Definition: Maximal model w.r.t. D and T. 
Let D b e a set of defaults and Ta set of proposi
tional formulas. A model Mis maximal w.r.t. D 
and T iff (M I= T) A ,:3M' [(.l\1' > M) A (M' I= 
T)].s 

III. Computational 
Complexity 

We defined a notion of default reasoning based 
on a model preference ordering. As stated above, 
the goal of default inference is to find a maximal 
model given a set of facts and a partial ordering 
on the models as defined by a set of default rules. 

4 This graph should not be confused with a graph like 
the one in figure 1 which makes explicit the ordering on 
the models. 

5 Given a model M that satisfies a non-empty theory, 
there may exist a model M ' such that M ' does not satisfy 
the theory and M' > M. Therefore, we only require a 
maximal model w.r.t. a set of defaults and a non-empty 
theory to be maximal w.r.t. the set of models that satisfy 
the theory. 

106 

Because of our interest in tractable forms of de
fault reasoning, a central question is: what is the 
computational cost of finding such a model? 

The problem of finding a maximal model is 
clearly decidable, since one can simply scan the 
directed graph representing the partial order on 
models for a maximal model w.r.t. the defaults 
and the set of facts. We proceed by analysing 
the computational complexity of finding such a 
model. First we consider the general system 1). 

The following theorem shows that the prob
lem of finding a maximal model6 given an ar
bitrary set of defaults D is computationally in
tractable (provided P =/. NP): 

Theorem 1. The search problem 1) is NP-hard. 

The proofs of the theorem~ in this section are 
given in Selman and Kautz (1988), here we will 
only give a high-level description of them. 

The proof of theorem 1 is based on a Turing 
reduction from 3-Satisfiability (Borgida 1986). 
In the proof it is shown how a propositional for
mula a in conjunctive normal form with three lit
erals per clause can be translated in polynomial 
time into a set of default rules D(a) with the 
property that if a is satisfiable then all maximal 
models (ignoring condition 2 of the definition of 
applicability) of D will satisfy a. Now, consider 
an algorithm that takes as input a formula a (an 
instance of 3-Satisfiability) and constructs D( a), 
then calls an oracle that returns in const ant time 
a maximal model M of this set of defaults, and, 
finally, returns "yes" if M satisfies a and "no" 
otherwise. The algorithm returns "yes" iff a is 
satisfiable; it runs in polynomial time. Therefore, 
finding a maximal model is NP-hard. 

6 We are interested in an algorithm that handles an ar
bitrary problem in V. Therefore, we consider the search 
problem (Garey and Johnson 1979) associated with V. A 
search problem II is defined as a set of finite objects Sn 
called instances, and for each instance I E Sn a set of finite 
objects S[I ] called solutions of I . An algorithm is said to 
solve a search problem if it returns the answer "no" when
ever S [I] is empty and otherwise returns some arbitrary 
solution belonging to S[I]. 

With each system of defaults X defined above one can 
associate in a straightforward manner a search problem X0 • 

E.g., an instance I of the search problem V. associated 
with Problem Class V is a set of propositional letters P 
and a set of default rules D. S[I] is the set of maximal 
models for P w.r.t. D (ignoring condition 2 in the definition 
of applicability). To keep our notation simple, we omit 
the subscript s. So, theorem 1 states that, provided P 
-:f. NP, there exists no polynomial algorithm that, given 
as input a set of defaults D, finds an arbitrary maximal 
model (ignoring the specificity ordering). 



Given the very good complexity (linear, 
Dowling and Gallier 1984) of propositional Horn 
theories, we now turn our attention to default 
system 1)'}{. According to the following theorem 
such defaults can indeed be handled efficiently: 

Theorem 2. There exists a linear algorithm for 
the search problem TJH. 

In Selman and Kautz (1988) we give a hill
climbing algorithm with linear time complexity 
and prove its correctness. We also show how the 
algorithm can be modified to take into account 
a non-empty theory consisting of a set of liter
als. The resulting algorithm is non-linear, but 
still polynomial. 

We now consider the influence of the speci
ficity condition (necessary to handle exceptions 
properly in default reasoning). This leads to the 
following surprising result: 

Theorem 3. The search problem T)1{+ is NP
hard.7 

The essence of the proof lies in transforming the 
set of default rules as used in the proof of the
orem 1 into a set of Horn-form defaults. We 
therefore replace negative literals by new letters, 
e.g., p is replaced by p'. Vle then add extra 
sets of Horn-form default rules that guarantee 
that when the original formula a is satisfiable, no 
maximal model will assign the same truth value 
to a pair of corresponding letters, such as p and 
p'. The specificity condition is essential for this 
result. 

Theorems 2 and 3 show how a relatively 
small change in expressive power of a tractable 
representation can lead to a computationally in
tractable system. Results like this show the im
portance of a detailed analysis of the compu
tational properties of knowledge representation 
and reasoning systems (Levesque and Brachman 
1985). 

The following result is another illustra
tion of the tradeoff between expressiveness and 
tractability: 

Theorem 4. Given a set of Horn-form defaults 
DH (no specificity ordering) and a theory TH 
consisting of a set of Horn formulas, the problem 
of finding a maximal model w.r.t. DH and TH is 

7 As a direct consequence it follows that the search prob
lem v+ is NP-hard. 

107 

NP-hard. 

This result is of interest because of the fact that 
both propositional Horn-form defaults without 
specificity ordering (Theorem 2) and Horn theo
ries by themselves are linear. 

Finally, we can again obtain a tractable sys
tem by limiting our default systems to acyclic 
ones: 

Theorem 5. There is a polynomial algorithm 
for the search problem VHt. 

In Selman and Kautz (1988) we give a polyno
mial time algorithm and prove its correctness. 
The algorithm can be adapted to handle non
empty theories consisting of a set of literals.8 

IV. A Comparison to 
Default Logic 

In this section we compare model preference de
faults to Default Logic (Reiter 1980) and demon
strate how our complexity results may be used 
to analyze the complexity of default reasoning 
systems based on Default Logic. In Selman and 
Kautz (1988) we give a more detailed compari
son, and also a similar analysis of the relation to 
circumscription (McCarthy 1980). 

We first discuss an example of the transla
tion of a set of preference default rules D into 
a set of default rules Ddt of Default Logic. The 
translation is done is such a way that there will 
be a one-to-one correspondence between maxi
mal models of D and extensions of Ddt (T = 0). 

Consider the set of defaults D used in the 
example illustrating specificity ordering (section 
II). The corresponding set Ddt contains two 
groups of rules. The first group consists of 
rules that correspond to the model preference 
defaults: 9 

{
s:a s/\a:e a:e/\s ~} 

a ' e ' e ' s · 

(Note the use of a semi-normal default in the 
third rule to enforce a specificity ordering.) The 
second group of rules guarantees that the only 
extensions of Ddt are complete models: 

{
~ :a/\s :e/\(s/\a) :e/\a} 

' - ' ' . a a e e 

8 Although we expect that theories consisting of Horn 
formulas can also be handled efficiently, we have yet to find 
a polynomial-time algorithm for this case. 

9 Again, we use the obvious abbreviations . 



.·I 

·I 

. ! 

These defaults can be viewed as a set of closed 
world assumptions (Reiter 1978) that "force" the 
system to decide on each letter. (Unlike other 
cases of closed world assumptions , no preference 
is given to negative information.) Dd1 has only 
one extension,10 Th{ s, a, e}, corresponding to the 
only maximal model of D. 

The correspondence between sets of model 
preference rules and default logic rules can be 
used to show the intractabili ty of certain classes 
of semi-normal default rules by reductions from 
intractable model preference systems. The re
duction process is somewhat complicated by the 
fact that the straightforward translation process 
used in the example above only applies to re
stricted sets of model preference rules.11 How
ever, it turns out that the process is applicable 
to the set of rules used in the proof of the in
tractability of DJ-(+. Therefore, it follows that 
the problem of finding a complete set of literals 
that lies within an extension of a set of semi
normal defaults is NP-hard, even if we restrict 
the rules to the form [a: (q A/3)]/q where a is a 
conjunction of positive literals, {3 is a formula in 
conjunctive normal form with at most two liter
als per clause, and and q is a single literal. 12 

V. Conclusions 
We introduced a system for default reasoning 
based on a model preference relation. A max
imal model in such a system is a complete de
scription of a preferred or most likely state of 
affairs, based on incomplete information and a 
set of defaults. Unlike most other approaches to 
default reasoning, ours is purely semantic, and is 
defined independent of syntactic notions. 

The goal of our work is to develop tractable 
methods of default reasoning, for use in fast rea
soning systems which represent knowledge in a 
vivid form. Therefore, we only allow complete 
models as default conclusions. Model preference 
theories seem to be of interest , however , b eyond 

10 Here Th denotes closure under logical consequence. 
11 The complication arises from the definition of maximal 

model as a model that has no model that is strictly larger. 
Therefore, the models on a cycle in the graph correspond
ing to the partial orderings relation on models can all be 
maximal (if not strictly dominated by another model). In 
that case, a translation like the one given above can lead 
to a set of semi-normal defaults with no extensions. 

12 Defaults of this form are similar to, but somewhat 
more general than, those used in network default theories 
(Etherington 1986) . 

108 

this one application. The specificity ordering on 
defaults, a crucial component of any kind of de
fault reasoning, is neatly captured in D+ and 
its subtheories. Another natural application for 
model preference theories is to encode a logic of 
choice, whereby an an agent chooses which of his 
goal states is most preferred. 

We presented a detailed analysis of complex
ity properties of the various model preference de
fault systems. The analysis indicates that only 
systems with quite limited expressive power lead 
to tractable reasoning ( e.g., DJ-{ and DHt). We 
also gave an example of how a relatively small 
change in the expressive power of a tractable sys
tem can lead to intractability (from DJ-{ to the 
intractable DJ-(+). 

Acyclic inheritance hierarchies can be rep
resented in the tractable system DHt. Classes 
of acyclic rules have also been singled out by 
others ( e.g. , Touretzky (1986) on acyclic inher
itance hierarchies, and related work by Ether
ington (1986) on ordered default theories) for 
their relatively good computational properties. 
A direct comparison with our approach is com
plicated by the fact that we do not allow for par
tial models. It should b e noted that the precise 
computational properties of most of these other 
system have not been analyzed in detail ( e.g., it 
is an open problem whether computing an exten
sion based on the notion of inferential distance is 
tractable (Touretzky 1987)). 

The na ture of model preference defaults was 
further illustrated by a comparison with De
fault Logic (Reiter 1980). In this comparison we 
showed how a set of semi-normal rules, which 
can be viewed as representing a special form of 
closed world assumptions, can be added to a set 
of default logic rules in a way that guarantees 
the extensions to be complete models. As part 
of the comparison we showed how complexity re
sults for model preference can be used to obtain 
complexity results of restricted classes of other 
default reasoning systems. 

This work suggests several directions for fu
ture research. One is the development of a first
order version of model preference defaults. An
other is to allow for more expressive power and 
introduce some form of "approximate reasoning" 
to keep the system tractable. A search for other 
tractable sub-classes would be in order. And, fi
nally, to determine the usefulness of the tractable 
systems we have identified , a further study of 
the forms of defaults necessary in real world do-



mains , e. g., conventions in cooperative conversa
tion (Perrault 1987), is needed . 

Acknowledgments 
This work originated from research meetings orga
nized by Ron Brachman and financially supported by 
AT&T Bell Laboratories. It was supported in part 
by a Government of Canada Award to the first au
thor. Vve would like to thank Hector Levesque for 
providing the definition of model preference defaults 
and for introducing us to the complexity questions as
sociated with these systems, and Alex Borgida for the 
complexity result for D. vVe also t hank Ron Brach
man , Jim des Rivieres, Dave Etherington, and Armin 
Haken for useful discussions and comments. 

References 
Borgicla, A. (1986) Personal communication, Sep

tember 1986. 

Dowling, W.F. and Gallier, J.H. (1984). Linear
Time Algorithms for Tes ting the Satisfiability of 
Propositional Horn Formulae. Journal of Logic 
Programming, 3, 1984, 267- 284. 

Etherington, D.W. (1986). Reasoning With Incom
plete Information: Investigations of Non-Mono
tonic Reasoning. Ph.D . Thesis, University of 
British Columbia, Department of Computer Sci
ence, Vancouver, BC, Canada, 1986. Revised ver
sion to appear as: Reasoning With Incomplete In
formation. London: Pitman / Los Altos, CA: 
Morgan Kaufmann. 

Etherington, D .W. (1987). A Semantics for Default 
Logic. Proceedings of the Tenth International 
Jo int Conference on Artificial Intellig ence, Milan, 
Italy, 1987, 495 - 498. 

Garey, M.R. and Johnson , D.S . (1979). Computers 
and Intractability, A Guide to the Th eory of NP
Completeness. New York: W.H. Freeman, 1979. 

Hanks, S. and McDermott, D . (1986). Default Rea
soning, Non-Monotonic Logics, and the Frame 
Problem. Proceedings of the Fifth National Con
f erence on Artificial Intelligence, Philadelphia, 
PA, 1986, 328- 333. 

Kyburg, H. (1983). The Reference Class. Philosophy 
of Science, 50 , 1983, 374- 397. 

Levesque, H.J. (1986). Making Believers out of Com
puters. Artificial Intelligence, 30, 1986, 81- 108. 

Levesque, H.J. and Brachman, J .R. (1985). "A Fun
damental Tradeoff in Knowledge Representation 
and Reasoning (Revised Version)." In Readings 
in Knowledge R epresentation by R.J. Brachman 
and H.J. Levesque (Eels .) , Los Altos, CA: Morgan 
Kaufmann, 1985, 41- 70. 

109 

McCarthy, J . (1980). Circumscription - A Form of 
Non-Monotonic Reasoning. Artifi cial Intelligence, 
13 , 1980, 27- 38. 

Perrault , C.R. (1987) . An Application of Default 
Logic to Speech Act T heory. Technical Report , 
SRI International, Artificial Intelligence Center, 
Palo Alto, CA, 1987. 

Reiter, R. (1980). On Closed World Data Bases. In 
Logic and Data B ases, Gallaire, H. and Minker, J . 
(eels.) , New York: P lenum Press, 1978. 

Reiter, R. (1980). A Logic for Default Reasoning. 
Artificial Intelligen ce, 13 , 1980, 81- 132. 

Reiter, R. and Criscuolo, G . (1983) . Some Represen
tational Issues in Default Reasoning, Computers & 
Math ematics with Applications, (Special Issue on 
Computational Linguistics), 9 (1) , 1983, 1 - 13. 

Selman, B. and Kautz, H. (1988). Model-Preference 
Default Theories. Technical Report , U niversi
ty of Toronto, Department of Computer Science, 
Toronto, Ont. , Canada, 1988. 

Shoham, Y. (1986). Reasoning About Change: Time 
and Causation from the Standpoint of Artificial 
Intelligence. Ph.D. Thesis, Yale University, Com
puter Science Department, New Haven, CT, 1986. 

Shoham, Y. (1987). Nonmonotonic Logics: Meaning 
and Utility. Proceedings of the Tenth International 
Joint Conference on Artificial Int elligence, Milan, 
Italy, 1987, 388- 393. 

Touretzky, D .S. (1986). Th e Mathematics of Inheri
tance Systems. Research Notes in Artificial Intel
ligence. London: Pitman/ Los Altos, CA: Morgan 
Kaufmann , 1986. 

Touretzky, D.S. (1987) Personal communication, Ju
ly, 1987. 



. ·. 1 

:I 

.·/ 

Instance-Based Prediction of Real-Valued Attributes 

Dennis Kibler David W. Aha 

Department of Information & Computer Science 
University of California, Irvine 

Irvine, CA 92717 U.S.A. 
kibler@ics.uci.edu aha@ics.uci.edu 

Abstract 

Instance-based representations have been applied to numerous 
classification tasks with a fair amount of success. These tasks 
predict a symbolic class based on observed attributes. This 
paper presents a method for predicting a numeric value based 
on observed attributes. We prove that if the numeric values 
are generated by continuous functions with bounded slope, 
then the predicted values are accurate approximations of the 
actua l values. We demonstrate the utility of this approach by 
comparing it with sta ndard approaches for value-prediction. 
The approach requires no background knowledge. 

Keywords: incrementa l learning, prediction, instance-based, 
continuous functions 

1 Introduction 

Instance-based learning (IBL) strategies represent concepts 
using sets of instances and a similarity metric, where each 
instance is described in terms of a set of attribute-value 
pairs. IBL techniques have been applied to several learning 
problems, including speech recognition (Bradshaw, 1987), 
word pronunciation (Stanfill & Waltz, 1986; Stanfill, 1987), 
handwritten symbol recognition (Kurtzberg, 1987), thyroid 
disease diagnosis (Kibler & Aha, 1987), and the cart-pole 
balancing problem (Connell & Utgoff, 1987). In each case, 
IBL techniques were shown to be computationally inexpen
sive methods for solving classification tasks. Most IBL ap
plications involved the prediction of symbolic values. Con
nell and Utgoff, however, applied their CART system to 
predict values for a numeric domain, namely the degree 
of desirability of instances (which represent states in their 
domain). In this paper we present a method for apply
ing instance-based techniques for predicting numeric val
ues. Theoretical and empirical arguments are supplied to 
support our claims. 

Most of the published work on learning from examples 
tasks involved the prediction of symbolic values (Vere, 1980; 
Mitchell, 1982; Quinlan, Compton, Horn, & Lazurus, 1986; 
Michalski, Mozetic, Hong, & Lavrac, 1986). In many cases, 
numeric attribute domains were transformed to symbolic 
domains in order to simplify the learning task. This trans
formation often required the assistance of an expert. In 

110 

many domains, however, experts do not exist or are suf
ficiently scarce to make the transformation task difficult. 
Some systems, such as STAGGER (Schlimmer, 1987), au
tomatically perform this transformation process, but they 
incur computational costs and do not guarantee success . 
IBL techniques do not require these transformations. 

Instance-based techniques are good methods to use for sym
bolic value-prediction tasks because they are extremely sim
ple to apply, they allow for the incremental processing of 
training instances, they are highly tolerant of noise in the 
predictor attributes (Stanfill , 1987), and they tolerate ir
relevant attributes (Kibler & Aha, 1987; Stanfill, 1987). 
They also are good methods for numeric value-prediction 
tasks. We can prove that instance-based prediction (IBP) 
techniques are correct when given noise-free instances (see 
Section 3) and they are applicable to a large set of value
prediction tasks. In a sense that we will make precise, 
any continuous function with bounded slope is learnable 
by these techniques . 

The set of continuous functions contains a huge class of nat
urally occurring functions. Most physical laws are differen
tial equations which have differentiable functions as their 
solutions. Our estimation of physical processes, and in par
ticular, the movement and equilibrium of bodies, is required 
in such daily events as balancing, walking, eating, pouring, 
cooking, driving, throwing, catching, etc. Our ability at 
sports rests on the ability to predict, with some accuracy, 
the positions and velocities of moving bodies as well as the 
ability to coordinate and execute our own movements . Mis
predictions, such as expecting another step while climbing 
stairs or lifting light objects which appear to be heavy, can 
yield calamitous results. 

In Section 2 we illustrate our algorithms and compare IBP 
techniques to linear regression techniques for prediction. 
The latter is an alternative prediction method that is most 
applicable to those functions expressible as a linear combi
nation of their attributes. IBP techniques are more gener
ally applicable to the class of locally linear functions . One 
advantage of linear regression is that it tolerates noise. In 
Section 2 we introduce a simple technique (later applied 
in our experiments) that allows instance-based approaches 
to tolerate noise when predicting numeric values. (General 
techniques for tolerating noise in instance-based symbolic 
classification tasks are described by Aha & Kibler (1988).) 



Section 3 summarizes our theoretical justifications for ap
plying these techniques to numeric value-prediction tasks. 
We provide empirical justification in Section 4. We con
clude in Section 5 with a discussion and evaluation of IBP. 

2 Algorithms and Illustrations 

Instance-based learning and prediction algorithms have pre
dominantly been applied to symbolic classification tasks. In 
these tasks each instance is represented as a set of attribute
value pairs, where the values are either numeric or nominal. 
The value to be predicted is always nominal. A concept is 
a subspace of the instance space. 

The problem to be solved by symbolic classification algo
rithms is to determine a function F that, given an instance, 
yields the concept of the instance. More precisely, let C be 
a set of concepts, I be an instance space with n attributes, 
and v; be the set of values in attribute domain i (1 ~ i ~ n ). 
Then 

F((x1, .. , ,xn)) = C; 

where Vi (1 ~ i ~ n){x; EV;}, and 

C; EC. 

Given a set of instances, learning algorithms typically gen
erate a summary description or predicate for each symbolic 
concept. These predicates can be applied to a new instance 
to yield a classification. In contrast, instance-based ap
proaches represent a concept using a set of instances and a 
similarity metric. A new instance is classified by some form 
of best-match with existing concepts. 

For example, we (Kibler & Aha, 1987) have applied sev
eral IBL algorithms to two of Quinlan's thyroid disease 
databases ( Quinlan et al, 1986). The instances were de
scribed in terms of 26 attributes. The concepts consisted 
of the set 

{ hypothyroid, sick-euthyroid, negative }. 

Each learning algorithm was given a training set of in
stances from which it derived a concept set, which is also a 
set of instances. The concept set was subsequently tested on 
a test set of disjoint instances. The nearest neighbor classi
fication algorithm was used for all the learning algorithms. 
For each test instance t, it guessed that F(t) = F(n), where 
n is t's nearest neighbor in the concept set. We measured 
each algorithm's performance by recording the percentage 
of test instances that were classified correctly by the con
cept set. In effect, a concept description ( concept set plus 
similarity metric) described each algorithm's guess of F 
with respect to the instances on which it was trained. 

In this paper we are concerned with instance-based methods 
for predicting numeric rather than symbolic values. More 
specifically, if we let R be a numeric domain, then we can 
describe F for predicting numeric domain values as follows: 

F((x1, .. ,,xn)) =r; 

where Vi (1 ~ i ~ n){x; EV;}, and 

r; E R. 

111 

Vt E Training Set: 

• C <-CU {normalize(t)} 

Vt <- normalize(t'), t' E Test Set: 

• Ve E C{c -:f. t} : calculate Similarity(t,c) 

• Let Sim ~ C be the set of N% most similar 

instances of C to t. 
• Let Sum= L Similarity(t,c) 

cES im 
. Similarity( t, c) 

• Then F-est1mate(t) = L x F(c) 
S

. Sum 
cE Im 

Table 1: The proximity algorithm experiment (C = concept set ). 

n 

Similarity(t,c) = LSimil(i(t),i(c)) 
i=l 

where Simil(x,y) = 1.0 - Ix - YI, and 

i (t) yields the attribute value of instance t 
in dimension i 

Table 2: Similarity of two normalized instances (n dimensions). 

Connell and Utgoff (1987) recently applied IBP techniques 
to the cart-pole balancing problem. Their system predicted 
state desirability, which was continuous from - 1 (undesir
able) to 1 (most desirable). Saved instances had values of 
either - 1 or 1. All other instances' degree of desirability 
were derived via a weighted-similarity function of the saved 
instances' desirability values. In our case, saved numeric 
domain values can have any range and any value within 
that range. 

We chose to use the simplest instance-based learning algo
rithm, called the proximity algorithm, for the experiments 
in this paper. The proximity algorithm simply saves all 
training instances in the concept set. The IBP method 
employed in the experiments is detailed in Table 1. The 
normalization algorithm maps each attribute value into the 
continuous range 0-1, ensuring that all attributes are as
signed equal classification salience. Assuming that each at
tribute counts equally is not necessarily correct, but is, at 
least, fair. The problem of finding the appropriate weights 
for attributes is another example of the unsolved credit as
signment problem. The estimate F(t) for test instance t 
is defined in terms of a weighted-similarity function of t's 
nearest neighbors in the concept set. The similarity of two 
normalized instances is defined in terms of their Euclidean 
distance, as detailed in Table 2. 

The classification algorithm employed in the experiments 
is a variant of Shepard's function (Connell & Utgoff, 1987) 
that, instead of using all concept instances to assist in clas
sifying a new instance, uses only the subset of the neigh
boring concept instances for numeric value prediction. The 
underlying assumptions of the linear regression model is 
that F is approximately linear. In contrast, using only a 
few neighboring instances for classification assumes that the 
concept function is locally linear, a much weaker assump
tion. Unfortunately, our techniques become more sensitive 
to noise as fewer instances are used. 



. ·· I 

I 

F(x) = (x - 2)(x + l)(x - 3) = x3 
- 4x 2 + x + 6 

36-.----- --------~ 
-- Function to be Approximated 
- - IBP Approximation 

24 ------ Linear Regression Resu lt 
o Instance 

12 

0 

-12 

I 
'/ 

-24 -+---l--+----1---1----1------l---l 

-2 -1 0 1 2 3 4 5 
(Both approximations were derived from 

the 10 instances shown above.) 

Figure 1: Approximating a typical non-linear function. 

If the function is linear and without noise, then our function 
produces the same effect as interpolation. For example, if 
the domain is the real numbers, then the predicted value 
of a test instance is the weighted average of the F values 
of its two closest observed instances. Figure 1 illustrates 
an application of our techniques where F is a polynomial 
function. 1 Included in Figure 1 are two approximations of 
F, one by IBP using 10 training instances and the other by 
a linear regression model derived from the same training 
set. Linear regression techniques, of course, are not meant 
to be applied to nonlinear functions . This simply demon
strates a case where IBP methods are applicable and linear 
regression methods are not. 

In the general case where there are n attributes one might 
expect to use the n+ 1 nearest neighbors. Instead we choose 
to use N% of the nearest values. This allows us to tolerate 
some noise and yet does not demand that we assume the 
function is globally linear. We take an "average" hyper
plane defined by these instances to predict the value of the 
unknown. 

3 Theoretical Justification 

The goal of this section is to demonstrate that instance
based techniques can learn to predict the value of any con
tinuous function with bounded derivative. To do this we 
first establish that a sufficiently large random sample of 
values presents a good sampling of instances. Then we 
demonstrate that, given a good sample of instances and 
values, a piecewise linear function can be generated which 
will closely approximate the unknown function. 

1 We use a modified definition of IBP approximation for one-dimensional oppli
cations. Instead of making predictions from a set of nearest neighbors, the IBP 
approximation bases approximations on the two 11surrounding" sample instances 
and uses the nearest neighbor approach for instances that arc not surrounded. See 
Theorem 1 for details . 

11 2 

3.1 Coverage Lemma 

Here we establish that a large-enough sample gives a good 
coverage of the domain. 

We start by reviewing some basic material from advanced 
calculus. An €-ball about a point x of the real line R is 
the set of points {y : IY - x i < €}. (Note that the size of 
an €-ball in 1 dimensional space is approximately 2€.) The 
same definition is valid in n-dimensional Euclidean space 
R"', if we interpret Ix - YI as the distance function in R"'. 

Definition: Let X be a subset of an m-dimensional space. 
A subset S of X is an €-net for X if, for all x in X there 
exists ans in S such that is - x i < f. 
We now prove that a sufficiently large random sample from 
the unit interval will probably be an €-net. 

Lemma 1. Let f and 5 be fiud positive numbers less than 
1. A random sample S containing m > 1/f X ln(l/€5) in
stances from [O, l ] will form an €-net with confidence greater 
than 1 - 5. 

Proof: We prove this lemma by partitioning the unit 
interval into k equal-sized sub-intervals, each with size less 
than€. We also ensure that, with high probability, at least 
one of the m sample instances lies in each sub-interval. 

Let k > 1/f. The probability that arbitrary instance i E 
[O, l] will lie in some selected sub-interval is 1 - 1/k. The 
probability that none of the m sample instances will lie in 
a selected sub-interval is (1 - 1/kr. The probability that 
any sub-interval is excluded by all m sample instances is 
k x (1 -1/kr. Since (1 - 1/kr < e-m/\ then 

k X (1 - 1/kr < k X e-m/k. 

We ensure that this probability is small by forcing it to be 
less than 5. We solve form as follows: 

k X e-m/k < 5 
e-m/k < 5/k 
-m/k < ln(5/k) 

m > -k X ln(5/k) 
m > k X ln(k/5) 

Consequently, with probability greater than 1-5, each sub
interval contains some sample instance of S. Since each 
instance of [O, l] is in some sub-interval, then, with this 
same probability, an arbitrary instance of I is within f of 
some instance of S. • 

The proof of Lemma 1 generalizes to any bounded region 
in R"' (i.e. it guarantees that by picking enough random , 
samples, we can ensure that we will probably get a good 
coverage of any nice domain). 

3.2 Instance-based Prediction Theorems 

Here we prove that, given a good sample of instances, IBP 
can generate a piecewise linear function that is a good ap
proximation to an unknown continuous function. 



Definition: A function f is an €-approximation of a func
tion g if they have the same domain, and for all instances 
x in their common domain lf(x) - g(x)I < c. 

The following definition is motivated by Valiant's (1984) 
work on learnability theory. 

Definition: A function f is learnable by IBP techniques 
when, for 1 > Ii, c > O, the function J generated by IBP is 
an c-approximation off with probability greater than 1-li. 

Note that our definition does not specify how long learning 
might take, only that it usually converges to approximately 
the right answer. 

Definition: The slope of a function f is bounded on X by 
B if 

Vx,x' EX (x # x') l f(xl = ~~x') I::; B. 

The following theorem demonstrates that continuous, real
valued functions with bounded slope in the unit interval 
[0,1] are learnable. Extensions to multi-valued functions of 
multiple arguments is standard, requiring only a working 
knowledge of advanced calculus. 

Theorem 1. Let f be a continuous, real-valued function 
on [O, 1] with slope bounded by B. Then f is learnable by 
IBP techniques. 

Proof: Let f be a continuous function on [O , 1]. Let 
/j and c be arbitrary positive numbers less than 1. We will 
guarantee that f does not vary much on a small interval by 
using the bound on the slope off. In particular, we apply 
Lemma 1 with c' = c/2B. (We assume, without loss of 
generality, that B 2: 1.) The lemma guarantees that, if m 
is large enough, then we will have an c/2B-net for [O, 1] with 
confidence greater than 1 - Ii. More specifically, we let S be 
a random sample of [O, 1] with size m > 2B/c x ln(2B/cli). 

We define the approximation function i(x) of f(x) as fol
lows. For each of them sample points, let J be defined as 
the sample value. On non-sample points, let J be defined 
as the linear interpolation of its surrounding neig;hbors. If a 
non-sample point pis not surrounded, then let f (p) = f (x ), 
where x is the closest neighbor in the sample. 

Now we must show that J is an €-approximation off. Let 
x be an arbitrary point in [O, l]. We shall consider first the 
case where x is surrounded by sample instances x ' and x" 
in S, where x ' is the nearest neighbor of x in S. Note that 

f(x) = f(x') + s (x ', x ) X (x - x' ) 

f(x ) = f(x') + s (x ' ,x") x (x - x') 

wheres( x ' , x) is the slope off between x ' and x ands( x', x") 

is the slope of J between x' and x" . 

Since B is the upper bound on the slope between any two 
points for f( x ), it is also an upper bound on the slope 
between any two points for J ( x ). Therefore, 

lf( x) - f(x ')I = ls (x',x) x (x - x') I <Bx c/2B = c/2 

and 

lf(x) - J(x') I = ls(x', x") x (x - x') I <Bx c/ 2B = c/2. 

11 3 

Since f ( x') = f( x' ), we have, by triangular inequality, 

lf( x) - J(x) I < c/2 + 0 + c/2 = c. 

The second case, where x is not surrounded by sample in
stances in S, can be handled similarly. This proves that the 
piecewise linear approximation J is an €-approximation of 
f .• 

Using an extension of Lemma 1 and a proof similar to that 
used for Theorem 1, we can prove Theorem 2. 

Theorem 2. If f is a continuous function on a closed and 
bounded n-dimensional space with derivative bounded by B, 
then f is learnable by IBP techniques. In particular, for 
given positive values of c and Ii, m > 2B/cn x ln(2B/cnli) 
samples will suffice. 

Note that any piecewise linear curve and any function with 
a continuous derivative has a bounded slope. 

This result indicates that, given an open domain, one needs 
to require some constraints on the "wildness" of the func
tion in order to ensure that the time to learn is polyno
mially bounded. In particular, we compensate for looser 
constraints on the domain of the function by tightening the 
constraints on how fast the function can change its value 
over a small interval. That is, we require that the derivative 
of the function exist and be uniformly bounded. 

The requirement for the bound on the derivative is illus
trated by the function sin(l/ x ) on the open interval (0,1]. 
Note that as x approaches O, the derivative (slope) of the 
function is unbounded. As is easily seen, for any c between 
0 and 1, there is no piecewise linear €-approximation of this 
function. 

While these results establish the appropriateness of IBP 
for noise-free functions, real world data requires attention 
to noise. A standard method for tolerating noise is to use 
some form of averaging. In particular, we believe that the 
following change to the algorithm yields a method which 
works for noise in the function value, but the proof eludes 
us. 

Instead of constructing a piecewise linear approximation 
based on a single c-net, consider forming m c-nets, each net 
yielding a piecewise linear approximation ];. We define J 
to be the (pointwise) average of these f;. Clearly J is still 
piecewise linear. We believe that, the resulting J will be a 
good approximation. We demonstrate the appropriateness 
of this method with an empirical study. 

4 Empirical Justification 

In this section we describe our experiments and show how 
the results support our conjecture. In particular, we note 
that instance-based learning techniques achieve the same 
accuracy as linear regression methods. We note that if the 
underlying function was exactly linear then both linear re
gression and IBP would yield perfect predictions. The value 
of IBP is that it requires that the function be only locally 
linear while linear regression requires that the function be 
globally linear. Also, IBP requires no ad hoc adjustments 
to the underlying method, which are often made when ap
plying linear regression models. 



I 
I 

. I 

I Acronym I Attribute Name Unit 

MCYT Machine Cycle Time Nanoseconds 
MMIN Minimum Main Memory Kilobytes 
MMAX Maximum Main Memory Ki lobytes 
CACH Cache Memory Size Kilobytes 
CH MIN Min Number of 1/0 Channels Channels 
CHMAX Max Number of 1/0 Channels Channels 

Table 3: Predictive attributes of the central processing units database. 

Vendor/ Model MCYT MMIN MMAX CACH 
CHMIN CHMAX PRP 

IBM 4341-12 185 2000 16000 16 
1 6 76 

DEC-Vax-11/750 320 512 8000 4 
1 5 40 

Sperry 1100/94 30 8000 64000 128 
12 176 1150 

Table 4: Example instances of the CPU characteristics database. 

4.1 Experimental Data 

We chose to experiment with the database published by 
Ein-Dor and Feldmesser (1987) in the April 1987 issue of 
the Communications of the ACM. The authors described 
a stepwise multivariate linear regression technique for pre
dicting the published relative performance (PRP) of cen
tral processing units. Each of the 209 cpu data instances is 
represented with six predictive attributes ( described in Ta
ble 3). The other attributes included the vendor, the model 
name, and its published relative performance. Three exam
ple instances are shown in Table 4. 

The purpose of their article was to describe a predictive 
model for computer systems that was simpler than queue
ing networks. Our purpose here is to demonstrate that IBP 
techniques can be used to describe models of equal simplic
ity and accuracy for approximating the published relative 
performance function. 

We chose to experiment with this data set for several rea
sons: 

1. The authors presented a case study that allowed us to 
contrast a linear regression model with an IBP model 
on the same data set. 

2. We wanted to show that IBP models support predic
tive behavior for natural databases ( as opposed to be
ing restricted to carefully crafted artificial databases). 

3. We were interested in investigating the predictive qual
ity of IBP techniques when both the input and output 
attributes were numeric. 

11 4 

Range of Number % Average Deviation 
Relative of ~inear IBP 

Performance Instances Regression Raw Tuned 

0-20 31 72.17 81.38 55.62 
21-100 121 28.64 27.88 29.64 
101-200 27 28.57 27.91 31.60 
201-300 13 23.93 19.16 22.21 
301-400 7 21.49 22.12 27.14 
401-500 4 18.72 16.80 16.20 
501-600 2 17.35 11.86 30.49 
600+ 4 10.34 43.69 33.35 

I All 209 1 33.91 I 35.02 I 33.02 I 

Table 5: Average deviation of relative performance predictions. 

4.2 Experiment and Results 

We carried out two experiments with the cpu performance 
data. In each case, the function F to be predicted was PRP. 
The results of both our own experiments and the original 
linear regression experiment are displayed in Table 5. All 
results are in terms of the average deviation of the predicted 
and actual cpu performance values.2 

Ein-Dor and Feldmesser (1987) calculated the linear regres
sion equation for cpu performance and then used it to pre
dict each instance's relative cpu performance. Since re
gression minimizes the square of the absolute error, it will 
appear to be more accurate for large values when evaluated 
in terms of relative error. 

In our first experiment (see column Raw in Table 5), each 
instance was described in terms of the 6 given attributes. 
The training and test sets were identical; they contained all 
209 instances. We set the value for N to 3%, meaning that 
the IBP prediction of a test instance's relative cpu perfor
mance was based on its 3% most similar instances in the 
concept set ( excluding the test instance itself). The prox
imity algorithm fares relatively well in each range except 
the first and last. The values of the first (smallest-valued) 
range were sensitive to small absolute errors and thus pro
duced the greatest relative error. The last range contains 
the highest values, which were few in number and highly 
scattered. Actually it would be easy to assign some mea
sure of confidence with IBP which would suggest that the 
predicted value was tenuous, at best, for the high range. 

The overall average deviation of predicted and actual values 
for the first experiment is surprisingly similar to that of the 
linear regression experiment, which was only slightly better. 

What differed between the experiments is of greater im
portance. The regression experiment required a great deal 
of application-dependent knowledge while the first IBP ex
periment employed none. Ein-Dor and Feldmesser analyzed 
the data and subject domain and reviewed the linear corre
lations of the PRP values with the 6 independent attributes. 
They concluded that transformations of the independent 

2 Thc published value for overall average deviation of the linear regression model 
is 34.10 (Ein. Dor & Fcldmcsscr, 1987) , which disagrees with our calculation of 33.91. 
Otherwise, our calculations arc in agreement. 



I Derived Attribute Attribute Transformation 

Average Memory Size (MMIN + MMAX)/2 x 10- 3 

Cache Memory Size CACH x 10-1 (or O if none) 
Channel Capacity (CHMIN + CHMAX)/2 + 1 

x(l/MYCT) x 10 

Table 6: Transformations of the 6 independent attributes. 

and dependent attributes were needed to enhance the re
gression model's predictiveness . First, they chose to employ 
a square-root transformation of the dependent attribute. 
They then chose to employ 3 "tuned" attributes to be used 
as independent attributes for prediction of the square-root 
of the published relative performance values. The tuned at
tributes are average memory size, 1/loth of the cache size, 
and channel capacity. The transformations are listed in 
Table 6. 

The problem they faced is a typical one when using linear 
regression. What do you do when the dependent variable is 
not a linear combination of the attributes? In their case, by 
appealing to domain knowledge, specifically Grosch's law, 
they reasoned that the square root of the performance would 
be a linear combination of measured attributes. Finding 
this particular transformation requires a model of the do
main. IBP does as well without introducing domain exper
tise. 

In our second experiment (see column Tuned in Table 5), we 
used the same tuned input attributes for the IBP method 
as thosed used by the linear regression technique. This 
was done by calculating the values for the three tuned at
tributes and representing the instances in terms of them. 
The effect of tuning attributes is to give a better weight 
to each individual attribute. The average deviation results 
for this experiment also appear in Table 5. In this case, 
we find that the IBP predictions are slightly better than 
those given by the linear regression model, again measured 
in terms of average deviation. 

5 Discussion 

Continuous functions are an extremely large class of func
tions . In particular, they can represent the behavior of 
physical systems. Our ability to interact successfully with 
the world depends, in part, on our ability to predict the 
continuously changing environment. Given a sufficiently 
large sample size, we have shown that IBP is guaranteed 
to yield a good approximation for continuous functions. In 
the presence of noise, we demonstrated that IBP yields re
sults equivalent to that of linear regression, but without 
having to make ad hoc assumptions. Moreover, the tech
nique is incremental. In short, IBP is a simple, general, ef
ficient technique which yields high quality predictions. As 
we have illustrated, the quality of predictions by IBP can be 
improved if one has appropriately weighted features. Find
ing computationally efficient means for calculating these 
weights, however, requires further research. 

One of the criticisms of IBL techniques is that they have 
high storage requirements. Recent results, however, have 

11 5 

suggested that simple learning algorithms can be applied 
that greatly ease storage requirements. Bradshaw's (1987) 
disjunctive-spanning algorithm uses an averaging technique 
in an effort to reduce storage requirements while maintain
ing high classification accuracies. Kurtzberg (1987) de
scribed an algorithm that, when trained on 288 instances 
(four copies of 72 handwritten symbols), saved only 121 in
stances and still achieved a 99.0% classification accuracy 
on a same-sized, disjoint set of test instances. Kibler and 
Aha (1987) showed that the same algorithm, when applied 
to Quinlan et al's (1986) hypothyroid disease data, saved 
an average of only 10 of the 220 training instances and still 
achieved a 97% accuracy on a disjoint set of 500 test in
stances. We (Kibler & Aha, 1988) have shown that the 
upper bound on the number of instances required for ap
proximating concepts is proportional to the lengths of the 
boundaries separating concepts. IBL techniques do not ap
pear to have large storage requirements for symbolic clas
sification tasks. We anticipate that similar storage-saving 
techniques can be used to assist numeric value-prediction 
tasks. 

A more severe criticism of instance-based representations 
is that they do not yield concise encapsulations of the data 
that can easily be understood and reasoned about by hu
mans or machines. For example, BACON (Langley, 1981) 
discovers the ideal gas law (pV/nT = c, where c is a con
stant) given numerically-valued data. IBP techniques can
not represent, let alone find, this relationship. BACON 
heuristically searches through a space of functional expres
sions to find this formula. Similarly, linear regression meth
ods search through the space of linear equations to find 
an easily understood relationship between the independent 
and dependent attributes. IBP does not yield comprehen
sible summaries of the data. The compensating value of 
IBP is that it does not require that the data satisfy some 
predefined model. 

Acknowledgements 

We would like to thank Marc Albert for suggesting a re
vision of Theorem 1. 

References 

Aha, D. W ., & Kibler, D. (1988). Detecting and removing 
noisy instances from concept descriptions. Manuscript 
submitted for publication. 

Bradshaw, G. (1987). Learning about speech sounds: The 
NEXUS project . In Proceedings of the Fourth Inter
national Workshop on Machine Learning (pp. 1- 11). 
Irvine, CA: Morgan Kaufmann. 

Connell, M. E., & Utgoff, P. E. (1987). Learning to control 
a dynamic physical system. In Proceedings of the Sizth 
National Conference on Artificial Intelligence (pp. 
456- 460) . Seattle, WA: Morgan Kaufmann. 

Ein-Dor, P., & Feldmesser, J. (1987). Attributes of the 
performance of central processing units: A relative 
performance prediction model. Communications of the 
Association for Computing Machinery, SO, 308-317. 



.·.··. :I 

·' 
.·! 

Kibler, D., & Aha, D. W. (1987) . Learning representa
tive exemplars of concepts: An initial case study. In 
Proceedings of the Fourth International Workshop on 
Machine Learning (pp . 24-30). Irvine, CA: Morgan 
Kaufmann. 

Kibler, D., & Aha, D. W. (1988). Comparing instance
averaging with instance-saving learning algorithms 
(Technical Report 88-06). Irvine, CA: University of 
California, Irvine, Department of Information and Com
puter Science. 

Kurtz berg, J. M. (1987). Feature analysis for symbol 
recognition by elastic matching. I .B.M. Journal of Re
search and Development, !11, 91-95. 

Langley, P. (1981 ). Data-driven discovery of physical laws. 
Cognitive Science, 5, 31-54. 

Michalski, R.S., Mozetic, I., Hong, J., & Lavrac, N. (1986) . 
The multi-purpose incremental learning system AQ15 
and its t esting application to three medical domains. 
In Proceedings of the Fifth National Conference on 
Artificial Intelligence (pp. 1041-1045). Philadelphia, 
PA: Morgan Kaufmann. 

Mitchell, T. M. (1982). Generalization as search. Artificial 
Intelligence, 18, 203-226. 

Quinlan, J. R., Compton, P. J., Horn, K. A., & Lazurus, L. 
(1986). Inductive knowledge acquisition: A case study. 
In Proceedings of the Second Australian Conference on 
Applications of Expert Systems. Sydney, Australia. 

Schlimmer, J . C. (1987). Incremental adjustment of rep
resentations for learning. In Proceedings of the Fourth 
International Workshop on Machine Learning 
(pp. 79-90). Irvine, CA: Morgan Kaufmann. 

Stanfill, C., & Waltz, D. (1986). Toward memory-based 
reasoning. Communications of the A CM, 29, 1213-
1228. 

Stanfill, C. (1987) . Memory-based reasoning applied to 
English pronunciation. In Proceedings of the Sixth Na
tional Conference on Artificial Intelligence (pp. 577-
581). Seattle, WA: Morgan Kaufmann. 

Valiant, L. G. (1984) . A theory of the learnable. Commu
nications of the Association for Computing Machinery, 
27, 1134-1142. 

Vere, S. A. (1980). Multilevel counterfactuals for general
izations of relational concepts and productions. Arti
ficial Intelligence, 14, 139-164. 

116 



AXIOMATIZATIONS IN THE METATHEORY 

OF NONMONOTONIC INFERENCE SYSTEMS 

Philippe Besnard 

IRISA 

Campus de Beaulieu 

35042 Rennes Cedex 

FRANCE 

Abstract 

In this preliminary report, nonmonotonic inference 

systems are examined in an abstract setting 

independent from the inferential apparatus they 

develop, that is, they are regarded as relations 

between sets of formu las, premises on the one hand 

and conclusions on the other hand. Specifically, 

various axiomatizations for properties of nonmonotonic 

inference relations are given, which yield nice 

characterizations for some existing nonmonotonic 

inference systems. The approach proposed also 

displays some connection, in the form of 

incompatibility, between nonmonotonicity and the 

converse to the property expressed by the deduction 

theorem. 

11 7 

1 Introduction 

Formalizing properties for inference systems has 

been achieved by Tarski [1956) and Gentzen [1969) 

who defined the notion of consequence relation. 

Precisely, a language being fixed so as to define the 

class of al l formulas, in order for any relation I
between sets of formulas and individual formulas, 

called an inference relation, to be a consequence 

relation, Gentzen set up the requirement of 

. a reflexive property: 

if A E T then T I- A 
. a cut rule : 

if T I- A and S,A I- B then T,S 1- B 
for all formulas A and B and sets of formulas S and 

T, also called theories. 

The notation S,A for S u {A} and T,S for T u S is 

standard in this context. 



. I 

The point to be made now is that if T I- A and 

S,A I- A then T,S I- A holding by virtue of the cut 

ru le and S,A I- A being postulated by the reflexive 

property, these two conditions cause any consequence 

relation I- to enjoy 

. the monotonicity property: 

if T I- A then T,S I- A 

Formalizing properties for nonmonotonic inference 

systems has been undertaken by Gabbay (1985] and 

Makinson (1987] as such systems are being paid 

increasing attention [Bobrow 1980]. In the framework 

developed by Gabbay for inference relations I - which 

are not monotonic, Gentzen's cut rule as formulated 

above is weakened to 

. the cumulation property: 

if T I - A then T I - B iff T,A I - 8 
which gathers 

. cautious monotonicity: 

if T I- A and T I- 8 then T,A 1- 8 
and 

. transitivity: 

if T I - A and T,A I - B then T 1- B 

the latter being just an instance of the cut ru le. 

Now, instead of weakening monotonicity, dropping 

it altogether is worth investigating in case of 

nonmonotonic inference systems constructed out of 

consequence relations. Indeed, the notions attached to 

some variants of such a more radical revision of 

Gentzen's conditions for inference relations appear to 

qualify more existing nonmonotonic systems than the 

revision advocated by Gabbay (in particular, it seems 

desirable to qualify systems in [Gallaire & Minker 

1978), that is Reiter's closed world assumption and 

Clark's predicate completion as well as logics in 

[Bobrow 1980], that is McCarthy's circumscription, 

Reiter's defau lt ·1ogic and the nonmonotonic logic due 

to McDermott and Doyle). As a justification for all this, 

the present paper reports on the fact that, even at a 

118 

preliminary stage of examination (conducted in a 

Gentzen - style framework but not in a Tarski - style 

framework because there is no deep difference 

between both [Besnard 1988]), the approach just 

proposed can be shown to yield significant results . 

2 The framework 
So, as a major departure from Gabbay's and 

Makinson's works, the nonmonotonic inference 

relations I - under consideration here are supposed to 

be based on an underlying consequence relation I- as 

characterized by Gentzen. In this context, it makes 

sense to formulate the following 

. weak cumulation property: 

if T I- A then T 1- B itt T,A 1- B 

which basically says that theories equivalent in the 

sense of the consequence re lation I- are also 

equivalent in the sense of the inference relation 1- . 
Not al l existing nonmonotonic inference systems meet 

such a requirement. For instance, consider I -
standing for predicate completion and I- standing for 

first order logic. Even though { P} I- ~P~ P, it is not 

the case that {PJ.~P~P 1- A iff {P} 1- A 

Since the cumulation property consists of cautious 

monotonicity and transitivity, it is clear that four basic 

re laxation conditions arise for inspection 

. if T I- A and T 1- B then T,A 1- 8 

. if T I- A and T,A I - B then T 1- B 

. if T I - A and T I- B then T,A 1- B 

. if T 1- A and T,A I- B then T 1- B 

The first two form the weak version of the cumulation 

property. The th ird one combined with reflexivity is 

equ ivalent (the empty theory being not taken into 

account) to conservativeness stated below. Of special 

interest is the fourth one called 

. compound transitivity: 

if T I - A and T,A 1- B then T I - 8 



An example for a nonmonotonic inference relation 

I - satisfying only compound transitivity with respect to 

the relation I- representing first order logic is given by 

default logic. It appears that one of the most striking 

pecularities of default logic (one symptom of which is 

that the inference relation I - standing for default logic 

is not defined for all theories 1) is shared by all 

inference relations I - of the kind discussed. 

Property 1: If an inference relation I - satisfies 

compound transitivity with respect to a consequence 

relation I- then for any theory T the restriction of I -
to T either is empty or includes the restriction of I- to 

T 

Proof: Given a theory T, assume that the first 

alternative possibility is not the case . Then T I - A for 

some formula A. Now, for all formula B such that T 

I- 8 it follows'that T,A I- 8 by monotonicity. Thus, 

T I - 8 is obtained by applying compound transitivity. 

D 

Indeed, an inference relation whose restriction to 

some theory is empty may sti ll conform to compound 

transitivity. The reason for this is that compound 

transitivity is a conditional property, henceforth it is 

satisfied in case its proviso is not. 

The loose connection between a possibly 

nonmonotonic inference relation I - and its underlying 

consequence relation I- may be reinforced in a very 

natural way so that I - encompasses I- as described 

by the following 

. conservativeness: 

if T 1- A then T 1- A 

Examples of nonmonotonic inference relations that 

obey conservativeness and compound transitivity with 

respect to first order logic are provided by predicate 

completion, closed world assumption, circumscription, 

the nonmonotonic logic devised by McDermott and 

Doyle and also the normal fragment of default logic. 

11 9 

Following Makinson (1987), an inference relation 

I - may be required to preserve the consistency 

induced by its underlying consequence relation 1- , 
that is I - may be required to satisfy 

. re lative consistency: 

if T I - A for all formulas A then T I- A for all 

formulas A 

Examples are now the Horn fragment of both 

closed world assumption and predicate completion, the 

well - founded fragment of circumscription and the 

normal fragment of default logic. 

Except for Property 1, all results given throughout 

the text hold for any (possibly nonmonotonic) inference 

relation I - which satisfies conservativeness, but not 

necessarily relative consistency, with respect to an 

underlying consequence relation 1-. Also, for taking 

into account any such inference relation 1- , reflexivity 

need not be postulated since it follows from 

conservativeness with respect to consequence relation 

1-. 

3 T - regular and CT - regular inference 

relations 

The conditions exposed up to now form the basis 

for the study presented in the sequel. 

Definition: Given an inference relation I - with 

underlying consequence relation I- such that 

conservativeness is satisfied, if compound transitivity is 

verified then I - is said to be CT - regular, whereas if 

transitivity is verified then I - is said to be T - regular. 

To reformulate the above classification with the 

terminology just introduced, the Horn fragment of 

predicate completion, the well - founded fragment of 

circumscription and the normal fragment of default 

logic are all CT - regular. 



• 1 

• 1 

I 
. I 

I 
I 
' 
j 
! 

I 

._1 

. I 

: •• l 

I 

Two observations are enough to characterize 

whether an inference relation is T - regu lar in case it is 

CT - regular and conversely. 

Property 2: If an inference relation is T - regular then it 

is also CT - regu lar 

Proof: If T 1- A and T,A 1- B then, first, T 1- A and 

second, T,A I - B because I - satisfies 

conservativeness with respect to 1-, Since I - is T -

regular, it follows that T I - B. D 

Property 3: Not every CT - regular inference relation is 

T - regular 

Proof: Taking /- to refer to classical sentential logic, 

I - is constructed as follows. Fix two propositional 

letters P and Q. For every theory T, in case T u 
{ ~Q" P} is consistent for sentential logic then T I -
A whenever T u { ~O" P} I- A, in case T u 
{ P~ Q} is consistent for sentential logic then T I - A 

whenever T u { P~ Q} I- A, otherwise T I- A 

whenever T I- A. If T I - A is taken to hold only as 

just indicated then the resulting definition of I - clearly 

shows that I - satisfies conservativeness with respect 

to /-. To prove compound transitivity, assume T I - A 
and Tu {A} I- B. From this, in case Tu { ~Q" P} 

or T u { P~ Q} is consistent for sentential logic, T 1-
8 follows from Gentzen 's cut rule for sentential logic. 

Otherwise, T I - B is obtained as well, in quite a 

straightforward manner. So, I - is CT - regular. But it 

is not T - regu lar because if T is empty then T I - P 

and T,P I - Q but T I -1 Q. o 

Incidentally, the proof shows that the normal 

fragment of default logic is not T - regular, it is only 

CT - regular . However, the well - founded fragment of 

circumscription is T - regular. 

120 

4 MP - regular and CMP - regular inference 
relations 

The cut ru le may be altered in such a way that, as 

a result, implication is given prominence over any 

other connective [Tarski 1956]. For instance, it may be 

required that an inference relation I - satisfy 

. modus ponens: 

if T I - A and T I - A~ B then T I - B 

Similarly to transitivity, modus ponens leaves room 

for variation and an inference relation I - with 

underlying consequence relation I- may be checked 

for satisfying 

. compound modus ponens: 

if T I - A and T I- A~ B then T I - 8 

Definition: Given an inference relation I - with 

underlying consequence relation I- such that 

conservativeness is satisfied, if compound modus 

ponens is verified then / - is said to be CMP - regular, 

whereas if modus ponens is verified then I - is said to 

be MP - regular. 

Property 4: If an inference relation is MP - regular then 

it is also CMP - regular 

Proof: If T 1- A and T 1- A~ B then, first, T 1- A 

and second, T I - A~ B because I - satisfies 

conservativeness with respect to 1-. Since I - is MP -

regu lar, it follows that T I - B. o 

Property 5: Not every CMP - regular inference relation 

is MP - regular 

Proof: An appropriate I - with underlying I- given by 

classical sentential logic is constructed as follows. Fix 

a propositional letter P. For every theory T, in case T 

I-+ ~P and T I-+ P then T I - A iff T,P I- A or T,~P 

I- A, otherwise T I - A iff T I- A. This being taken 



as a definition for 1- , it is routine to verify that I -
satisfies conservat iveness with respect to 1- . Now, 

assume T I - A and TI- A=} 8 . In case T I-+ ~P and 

T I-+ P then either T,P I- A or T, ~P I- A Since 

T,P 1- A=} 8 and T,~P I- A=} 8, then either T,P 1-
8 or T,~P I- 8. Hence T I- 8. Otherwise, from T 
I- A it follows that T I - A Thus T I- 8 because T 

I- A=} 8. So, T I - 8 in this case too. That is, I - is 

CMP - regular. But I - is not MP - regular because if T 

is empty then T I - P and T I - P=} ~P I\ P but T I-! 
~P I\ P. o 

The normal fragment of default logic is not MP 

regular, it is only CMP - regular. In contrast, the well -

founded fragment of circumscription is MP - regu lar. 

It remains to elucidate how transitivity, in its mere 

as well as compound version, and modus ponens, also 

in its mere as well as compound version, articulate in 

the framework at hand. This is the subject matter to 

be dealt with next. 

5 Comparing types of regular inference 

relations 

Two fundamental properties that consequence 

relations dealing with implication are urged to satisfy 

are 

. the deduction principle : 

if T,A I- 8 then T I- A =} 8 
as well as 

. the ru le of detachment: 

if TI- A =} 8 then T,A 1- 8 

For an inference relation I - with an underlying 

consequence relation 1- , being CMP - regular or being 

CT - regular are closely related in view of I- obeying 

the rule of detachment and the deduction principle. 

12 1 

Property 6: An inference relation with an underlying 

consequence relation satisfying the rule of detachment 

is CMP - regular if it is CT - regular 

Proof: Assume T I - A and T I- A=} 8 . From the 

latter, T,A I- 8 is obtained by the rule of detachment 

for 1- . Now, if T I- A and T,A I- 8 then T I- 8 
because I - is CT - regular. So, T I - 8 and I - is 

CMP - regular. o 

Property 7: An inference relation with an underlying 

consequence relation satisfying the deduction principle 

is CT - regular if it is CMP - regular 

Proof: Assume T I - A and T,A I- 8. From the latter, 

T I- A =} 8 is obtained by the deduction principle for 

J-. Now, if T I- A and T 1- A =} 8 then T I- 8 

because I - is CMP - regular. So, T I - 8 and I - is 

CT - regular . o 

So, for an inference relation coping with 

implication, being CMP - regular or being CT - regular 

are basically equivalent, but being MP - regular or 

being T - regular are not so strongly connected. 

Property 8: A MP - regu lar inference relation need not 

be T - regular 

Proof: From classical sentential logic, a MP - regular 

I - which is not T - regular is defined next. Fix two 

propositional letters P and Q. In case T I- ~ P then T 

1- A iff T I- A. in case T I- Pand TI-+ ~Othen T 
1- A iff T,Q I- A, otherwise T 1- A iff T, P I- A 

Now, it is not difficult to prove by case analysis that 

I - is MP - regular. But I - is not T - regular because 

if T is empty then T I - P and T,P I - Q but T I-/ 
Q. 0 

Property 9: A T - regu lar inference relation need not 

be MP - regular 



. J 

: I 

.I 

Proof: It suffices to construct a relation I - from 

classical sentential logic where T I - A for all formulas 

A whenever T is inconsistent for sentential logic 

otherwiseeT I - A iff A is in some consistent complete 

extension of T in the sense of sentential logic. From 

this definition, it is obvious that I - is T - regular. 

However it is not MP - regular because if P is a 

propositional letter then in case T is empty, T I - P 

and T I - P~ P A~P but T I./ P A~P. o 

In fact, for an inference relation coping with 

implication, being MP - regular or being T - regu lar are 

the same under the deduction principle and the rule of 

detachment. 

Property 10: If a MP - regular inference relation 

satisfies the deduction principle then it is also T -

regu lar 

Proof: Assume T I - A and T,A I - B. Since I -
satisfies the deduction principle, T I- A~ B. Since I -
is MP - regu lar, if T I- A and T I- A~B then T 1-
B. So I - is T - regu lar. o 

Property 11: If a T - regular inference relation satisfies 

the rule of detachment then it is also MP - regu lar 

Proof: Assume T I- A and T I- A~ B. Since I
satisfies the ru le of detachment, T,A I - B. Since I -
is T - regular, if T I - A and T,A 1- B then T / - B. 
So I - is MP - regular. o 

Property 11 is much less interesting than Property 

10 because non monotonic relations do not satisfy the 

rule of detachment if they are to convey a standard 

concept of consistency as discussed in the next 

section. 

122 

6 Rule of detachment, deduction principle 

and nonmonotonicity 

In a number of inference systems having at least 

implication and negation as connectives, consistency, 

i.e. the property that not every formula follows from a 

theory, is characterized by 

. the ex falso quodlibet: 

T I- A~<~A~ B) 

A noticeable fact is that the ex falso quodlibet is 

not compatible with the rule of detachment for any 

CMP - regu lar inference relation having a quite 

common nonmonotonic character. 

Property 12: Let I- be an CMP - regu lar inference 

relation with an underlying consequence relation /

satisfying the ex falso quodlibet. If I - is nonmonotonic 

such that T I - A and T,~A I -1 A for some T and A 
then I - cannot satisfy the rule of detachment. 

Proof: Assume T I - A and T,~A J -1 A. Now, T I
A~ (~A~ AJ by the ex falso quodlibet for 1-. Since I -
is CMP-regu lar, T I- ~A~A. Assuming that I
satisfies the rule of detachment, T,~A I - A, a 

contradiction. o 

Application of Property 12 shows that 

circumscription, including its well - founded fragment 

and default logic, including its normal fragment, do no 

respect the rule of detachment. 

Property 12 as formulated above is, in light of 

Property 2, Property 4 and Property 6, the most 

general statement about the incompatibility between 

nonmonotonicity and the rule of detachment applied to 

the ex falso quodlibet. However, explicitly stating the 

somehow weaker Property 13 may be worthwhile. 



Property 13: Let I - be a MP - regular inference 

relation satisfying the ex false quodlibet. If I - is 

nonmonotonic such that T I - A and T,~A I -1- A for 

some T and A then I - cannot satisfy the rule of 

detachment. 

Proof: Assume T I - A and T,~A I -1- A Now, T I -

A=> ( ~A=> A) by the ex falso quodlibet. Since I - is 

MP - regular, T I - ~A=> A. Assuming that I - satisfies 

the rule of detachment, T,~A I - A, a contradiction. o 

Also, a slight variant to Property 12 and Property 

13 is worth mentioning, which can be introduced by 

noticing that, for a consequence relation, the ex false 

quodlibet gives rise to a sufficient condition concern ing 

inconsistency, that is, 

. if T I- A then T,~A I- 8 for all 8 
If, conversely, inconsistency only arises through the ex 

false quodlibet then a necessary condition is in force, 

that is, 

. if T.~A I- B for all B then T I- A 
which holds for intuitionistic and classical sentential 

logics for instance. Now, in the formulation of Property 

12 and Property 13, let the consequence relation 

involved to allow for both the necessary and sufficient 

conditions just given and let relative consistency to 

hold. Then Property 12 and Property 13 hold not on ly 

for the special, no matter how fundamental, form of 

nonmonotonicity mentioned but indeed for any form of 

non monotonicity. 

In contrast, nonmonotonicity and the deduction 

principle appear not to be connected. 

Property 14: Not every non monotonic MP- regular 

inference relation violates the deduction principle 

Proof: First, an inference relation I - with underlying 

consequence relation I- representing classical 

sentential logic has to be specified. To this end, a 

123 

propositional letter Pis fixed. In case T I- ~P then T 

1- A iff T 1- A otherwise T 1- A iff T,P I- A This 

definition clearly yields the nonmonotonic MP - regu lar 

character of 1-. That I - conforms to the deduction 

principle is proved next. Assume T,A I - B. In case 

T,A 1- ~Pthen T,A 1- B so that T I- A=> Band T,P 
I- A=> B. From either, T I - A=> B fo llows by 

conservativeness. In case T,A l-1 ~P then T l-1 ~P 

by monotonicity. So, T,A,P I- B due to T,A I - 8 
and if T,P 1- A=> B then T 1- A=> B. Since T ,A,P 1-
8 then T,P 1- A=> B so that T 1- A=> B is obtained. 

D 

Property 15: Not every non monotonic CMP - regu lar 

inference relation satisfies the deduction principle 

Proof: Define a CMP - regular I - based on classical 

sentential logic by fixing two propositional letters P 

and Q and stating that in case T l-1 P and T l-1 
~(0=> Pi then T I - A iff T,0=> P I- A otherwise if T 

l-1 ~(P~ Q then T 1- A iff T.P~ Q I- A else T I 

A iff T I- A It can be easily checked that I - is 

non monotonic and CMP- regu lar. If T consists of the 

unique formula Pv Q then T I - P and T,P I - Q but 

T I -1- P=> Q that is, the deduction principle does not 

hold for 1-. o 

7 Conclusion 

In this paper, a research initiated by Gabbay and 

pursued by Makinson is addressed in such a manner 

that a complete picture of existing nonmonotonic 

inference systems is given by way of the properties 

they enjoy or not. However, investigating rather weak 

characterizations of inference systems turns out to be 

helpful for isolating specific features of 

nonmonotonicity thus meeting Gabbay's original 

motivation. For instance, identifying general properties 

of inference systems leads to a resu lt establishing that 



·. I 

I 
I 

existing nonmonotonic inference systems strongly deny 

the rule of detachment. In fact, further development of 

the approach proposed in this paper, either along 

these lines or devoted for instance to nonmonotonic 

inference systems based on conditional logics with 

weak implication [Nute 1986] [Delgrande 1987] thus 

appear rather promising. 

8 Appendix: Schema of types of regular 
inference relations 

deduction principle for I-

CMP 

rule of detachment for I-

deduction principle for [ -

MP 

ru le of detachment for [ -

9 References 

Besnard Ph. [1988] 

CT 

T 

Gentzen/Tarski - Style Study of Non - Monotonic 

Inference, in preparation. 

Bobrow D. (ed .) [1980] 

Special Issue On Non - Monotonic Logics, Artificial 

Intelligence 13 (1 - 2). 

Delgrande J. [1987] 

A First - Order Logic for Prototypical Properties, 

Artificial Intelligence 33, pp. 105 - 130. 

124 

Gabbay D. [1985] 

Theoretical Foundations for Non - Monotonic 

Reasoning in Expert Systems, in: Logics and Models 

of Concurrent Systems (Apt ed.), Springer-Verlag, 

Berlin. 

Gallaire H. & Minker J. (eds.) [1978] 

Logic and Databases, Plenum Press, New York. 

Gentzen G. [1969] 

Collected Papers of Gerhard Gentzen (Szabo ed.), 

North Holland, Amsterdam. 

Makinson D. [1987] 

General Theory of Non - Monotonic Inference, draft. 

Nute D. [1986] 

A Non - Monotonic Logic Based on Conditional Logic, 

RR/01 - 0007, ACMC, University of Georgia, Athens. 

Tarski A. [1956] 

Logic, Semantics, Metamathematics. Papers from 

1923- 1938. (Woodger ed.), Clarendon Press, Oxford. 



Probabilistic Causal Reasoning 

Thomas D ean1 and Keiji K anazaw a 
Department of Computer Science 

Brown University 
Box 1910, Providence, RI 02912 

Abstract 
Predicting the future is an essential component of de
cision ma king . In most situations, however , there is 
not enough information to ma ke certain predi ctions . 
In this paper, we develop a theory of ca usal reason
ing for predictive infe rence under un certa inty. We 
emphasize a common type of prediction th a t involves 
reasoning a bout persistence: whether or not a propo
sition once made true remains true a t some lat er time. 
We provide a decision procedure with a polynomial
time a lgorithm for det ermining the proba bility of the 
possible consequences of a set events and initial condi
tions. Problems in dealing with persistence by non
monotonic temporal reasoning schemes are avoided 
by the use of simple probability inform ation . The 
ideas in this paper h ave been implemented in a pro
toty pe sys tem th at refin es a database of causal rules 
in the course of applying those rules to con stru ct and 
carry out plans in a manufacturing dom a in . 

Keywords: uncertainty, causal reasoning, probability, tem 
poral reasoning 

I. Introduction 
Vve are interested in the design of robust inferen ce systems 
for generating and executing plans in routine m anufactur
ing situations. We hope to build autonomous agents capa
ble of dealing with a fairly circumscribed set of possibili
ties in a manner tha t demonstrates both strat egic reason
ing ( the ability to anticipate and plan for possible futures ) 
and adaptive reasoning ( the ability to recognize and react 
to unanticipa ted conditions). In this paper , we develop 
a computa tional theory for temporal reasoning under un
certainty that is well suited to a wide variety of dynamic 
domains. 

The domains tha t we are interested in have the follow
ing characteristics : (i) things cannot always be predicted 
accurately in advance, (ii) plans m ade in anticipation of 
pending events often have to be amended to suit new in
formation , and (iii) the knowledge and ability t o acquire 

l T his work was supported in part by t he Nationa l Science Foun
d ation under grant IRI-861 2644 and by an IBM fac ul ty d evelopment 
award. 

125 

predictive rules is severely limited by the planner's expe
rience. Reasoning in such domains often involves mak
ing choices quickly on the basis of incomplete information. 
Although predictions can be inaccura te, it is often worth
while for a planner to a ttempt to predict what conditions 
are likely to be true in the future and generate plans to 
deal with them . 

Our theory includes (i) a polynomial-t ime decision 
procedure for probabilistic inference about temporally
dependent information , (ii) a space and time efficient 
method for refining probabilistic causal rules, and (iii) a 
mechanism to support planners in recognizing potential 
plan failures . This paper is primarily concerned with the 
first two of these. Details concerning the other are pro
vided in the extended paper (Dean and Kanazawa, 1987a] . 

II. Probabilist ic Causal Theories 
In order to explore some of the issues tha t arise in causal 
reasoning, we will consider some examples involving a 
robot foreman that directs activity in a fac tory. The robot 
has a plan of action tha t it is continually executing and re
vising. Among its t asks is the loading of trucks for clients. 
If our robot learns tha t a truck is more likely to leave than 
it previously believed , then it should consider revising its 
plans so that this truck will be loaded earlier . If, on the 
other hand , it predict s tha t a ll trucks will be loaded ahead 
of schedule, then it should t ake advantage of the opportu
nity to take care of other t asks which it did not previously 
consider possible in the available time. 

In order to construct and revise its plan of action, the 
robot makes use of a fairly simple model of the world: a 
special-purpose theory about the cause-and-effect relation
ships that govern processes at work in the world (referred 
to as a causal th eor y) . The robot 's causal theory consists 
of two distinct typ es of rules which we will refer to as pro 
j ection rules and persis t ence rnles . vVe will defer discussion 
of persistence rules for just a bit. 

As an example of a projection rule, the robot might 
have a rule tha t st a tes tha t if a client calls in an order , 
then , with some likelihood , the client 's truck will even
tually arrive to pick up the order . The consequent pre
diction , in this case the arrival of a client 's t ruck, is con-



I 

·I 

proposition in order to get rid of a lingering or persistent 
proposition: a feat that often proves difficult in nontrivial 
domains. If a commuter leaves his newspaper on a train , 
it is not hard to predict tha t the paper is not likely to be 
there the next time he rides on tha t train; however , it is 
quite unlikely that he will be able to predict what caused 
it to be removed or when the removal occurred. 

When McDermott first proposed the notion of per
sistence as a framework for reasoning about change [Mc
Dermott , 1982], he noted that persistence might be given 
a probabilistic interpretat ion . That is exactly what we 
do here. We replace the single default rule of persistence 
used in most planning system s with a set of (probabilistic) 
rules: one or more for each fluent that the system is aware 
of. Our robot might use a persistence rule to reason about 
the likelihood that a truck driver will still be waiting at 
various times following his arrival at the factory. The in
formation derived from applying such a rule might be used 
to decide which truck to help next or how to cope when a 
large number of trucks are waiting simultaneously. Each 
persistence rule has the form PERSIST(P, p ), where P is 
a fluent and p is a function of time referred to as a survivor 
function [Syski, 1979] . In our implementation, we consider 
only two types of survivor functions: exponential decay 
functions and piecewise linear functions. The former are 
described in Section IV., and the latter, requiring a some
what more complex analysis, are described in [Dean and 
Kanazawa, 1987a] . Exponential decay functions are of the 
form e->.t where ,\ is the constant of decay. Persistence 
rules referring to exponential decay functions are nota ted 
simply PERSIST(P, >.). Such functions are used , for exam
ple, to indicate that the probability of a truck remaining 
at the dock decreases by 5% every 15 minutes . The per
sistence rule PERSIST(P, ..\) encodes the fact that: 

p(HOLDS(P, t) I HOLDS(P, t - ~ )) = e- >.( i-.~ ) 

where ~ is a positive number indicating the length of an 
interval of time. Exponential decay functions are insen
sitive to changes in the time of occurrence of events that 
cause such propositions to become true, and, hence, are 
easy to handle efficiently. 

There are. a number of issues that every computa
tional approach to reasoning about causality must deal 
with. One such issue involves reasoning about dependent 
causes [Pearl , 1985] (e.g., the applica tion of two probabilis
tic causal rules that have the same consequent effects, both 
of which appear to apply in a given set of circumstances but 
whose conditions are correla ted) . Another issue concerns 
handling other forms of incompleteness and nonmonotonic 
inference [Ginsberg, 1985] [Dean and Boddy, 1987] ( e.g., 
the robot might have a general rule for reasoning about the 
patience (persistence) of truck drivers waiting to be served 
and a special rule for how they behave right around lunch 
time or late in the day) . While we agree that these prob
lems are important , we do not claim to have any startling 
new insights into their solution. There is one area, how
ever , in which our theory does offer some new insights, 

126 

ditioned on two things: an event referred to as the trig
gering event, in this case the client calling in the order, 
and an enabling condition corresponding to propositions 
that must be true at the time the triggering event occurs. 
For example, the rule just m entioned might be conditioned 
on propositions about the type of items ordered, whether 
or not the caller has an account with the retai ler , or the 
time of day. The simplest form of a projection rule is 
PROJECT(P1 I\ Pz ... I\ Pn,E,R,1,,). This says tha t R 
will be true with probability 1,, immedia tely following the 
event E given that A through Pn are true at the time E 
occurs. Restated as a conditional probability, this would 
be: 

p(HOLDS(R, t + c) I 
HOLDS(Pi I\ P2 ... I\ Pn , t) I\ OCCURS(E , t))) = 1,, 

We assume that P1 through Pn are independent. Projec
tion rules are applied in a purely antecedent fashion ( as in 
a production system) by the inference engine we will be 
discussing. The objective is to obtain an accurate picture 
of the future in order to support reasoning about plans 
[Dean, 1987a] [Dean, 1987b]. 

Our approach, as described up to this point, is fairly 
traditional and might conceivably be handled by some ex
isting approach [Pearl, 1985] [Duda et al., 1981]. What 
distinguishes our approach from that of other probabilistic 
reasoning approaches is that we are very much concerned 
with the role of time and in particular the tendency of cer
tain propositions ( often referred to as fluents [McCarthy 
and Hayes, 1969]) to change with the passage of time. By 
adding time as a parameter to our causal rules, we have 
complicated both the inference task and the knowledge ac
quisition t ask. Complications notwithstanding, the capa
bility to reason about change in an uncert ain environment 
remains an import ant prerequisite to robust performance 
in most domains. We simply have to be careful to circum
scribe a useful and yet tractable set of operations. In our 
case, we have allowed the computational complexity of the 
reasoning t asks and the availability and ease of acquisi
tion of the data to dicta te the limita tions of our inference 
mechanism. 

Our inference system needs to deal with the impreci
sion of most temporal information. Even if a robot is able 
to consult a clock in order to verify the exact time of oc
currence of an observed event , most information the robot 
is given is imprecise ( e. g., a client states that a truck will 
pick up an order at around noon , or a delivery is scheduled 
to arrive sometime in t he next 20 minutes). One of the 
most important sources of uncertainty involves predicting 
how long a condition lasts once it becomes true (i.e., how 
long an observed or predicted fact is likely to persis t) . In 
most planning system s ( e.g., [Sacerdoti, 1977]) there is a 
single ( often implicit) default rule of persistence [Dean and 
McDermott , 1987] that corresponds more or less to the in
tuition that a proposition once made true will remain so 
until something makes it false. The problem with using 
this rule is tha t it is necessary to predict a contravening 



1.0 

0.5 

t= 0 

PROJECT(AL WA YS,ARRIV E( truck),A 1'DOCK( truck),!) 
PRO/ ECHATDOCK( truck),LEA VE( truck),NOT( ATDOCK( truck)J,1 J 
PERSIST(A1'DOCK(lruck),g) 

5 6 7 10 

Figure 1: A simple causal theory illustrating the use of 
survivor functions 

1.0 

0.5 

t = 13 

OCCURS(ARRJVE(TRUCK14), 11) and 13 S tl S 15 

OCCURS(CLOSE(STORE1), 12) and 16.5 S 12 S 17.5 

14 15 16 17 

Figure 2: A set of basic facts and their probabilistic inter
pretation 

and that concerns the form of probability functions used 
in causal rules and how they can be used to efficiently pre
dict the causal consequences. 

III. Probabilistic Projection 

In this section, we will try to provide some intuition con
cerning the process of reasoning about p ersistence, which 
we will refer to as probabilistic projection. A planner is 
assumed to maintain a picture of the world changing over 
time as a consequence of observed and predicted events . 
This picture is formed by extrapolating from certain ob
served events ( referred to as basic facts) on the basis of 
rules believed to govern objects and agents in a particular 
domain. These governing rules are collectively referred to 
as a causal theory. · 

Figure 1 depicts a simple causal theory. Operators 
(HOLDS, OCCURS), predicates (ATDOCK), and con
stants (TRUCK14) are in upper case, while functions (p, 
g) and variables ( t, truck) are in lower case. We refer 
to an instance of a fact (type) being true over some in
terval of time as a time token, or simply token. For ex
ample, ARRIVE(TRUCK14) denotes a general type of 
event whereas OCCURS(ARRIVE(TRUCK14) , t) denotes 

127 

I 

p(HOLDS(AfD0CK(TRUCK14),t)) =! p(OCCURS(ARRIVE(TRUCK14),z))g(l-z)dz \ --
1 0 

p(OCCURS(CL\E(STORE1),I)) 

0.5 

t = 13 14 15 16 17 

Figure 3: An example of simple probabilistic inference 
about persistence 

a particular instance of ARRIVE(TRUCK14) becoming 
true. The predicate ALWAYS is timelessly true (i.e., 
Vt HOLDS(ALWAYS, t)). The function p, a survivor func
tion, describes how certain types of propositions are likely 
to p ersist in lieu of further supporting or contravening in
formation. 

Figure 2 shows a set of basic facts corresponding to 
two events assumed in our example to occur with probabil
ity 1.0 within the indicated intervals. The system assumes 
that there is a distribution describing the probability of 
each event occurring at various times, and uses some de
fault distribution if no distribution is provided. 

Evidence concerned with the occurrence of events and 
the persistence of propositions is combined to obtain a 
probability funct ion 1r for a proposition Q being true at 
various times in the future by convolving the density func
tion f for an appropriate triggering event with the survivor 
function p associated with Q: 

1r(t) = it= f( z )p(t - z )dz (1) 

Figure 3 illustrates a simple instance of this kind of in
ference. Note that the range of the resulting probabil
ity function is restricted; after the point in time labeled 
17, the p ersistence of ATDOCK(TRUCK14) is said to be 
clipped, and thereafter its probability is represented by an
other function not shown. 

All probability computations are performed incremen
t ally in our system. Each token has associated with it a 
vector which is referred to as its expectation vector that 
records the expected probability that the proposition cor
responding to the token's type will b e true at various times 
in the future . 

The system updates the expectation vectors every 
time new propositions are added to the database, and also 
at regular intervals as time passes. In the update, a single 
p ass sweep forward in time is made through the database. 
There is, according to the domain and granularity of data, 
a fixed time step, or a quantum by which we partition time. 
Starting at the "present time," we compute for each propo-



I 
I 

!, . 

l = 0 

p(I-IOLDS(ATDOCK(fru ck),t)) 

17 g(,l)p(HOLDS( ATD OCK(fruck),t - 6)) 

-6-time step 

p(OCCURS(ARR/V E(l ruck),1)) 

Figure 4: Computing the convolution integral incremen
tally 

sition its expected probability for the time step according 
to the causal theory governing that type of proposition , 
and record it in the expect a tion vector. We compute the 
probability for all propositions, before moving on to the 
next time step , The process is repeated for some finite 
number of time steps, 

For event causation, the update is straightforward; in 
the simplest cases , it is just a table lookup and copying of 
the density function into the vector. For the convolution 
it is necessary to take steps to avoid computing the convo~ 
lution integral afresh a t each time step , We compute the 
convolution as a Riemann sum, successively summing over 
the time axis with a mesh of fixed size (the time step) , 
By using the exponential decay form of survivor functions 
it is possible to compute the convolution a t a time ste; 
by looking only at the value for the last time step , inde
pendent of the time at which the proposition of interest 
became true. All that is required is to multiply the last 
value by the constant decay rate, and add it to any con
tribution from the causal distribution for tha t time step. 
The process is illustrated graphically in figure 4. 

There are many details concerned with indexing and 
applying projection rules that will not be mentioned in this 
paper (but see [Dean and McDermott, 1987]). The details 
of probabilistic projection using exponential decay func
tions are described in Section IV .. Our update algorithm 
is polynomial in the product of the number of causal rules 
the size of the set of basic facts, and the size of the mesl~ 
used in approximating the integrals . For many practical 
situations, performance is closer to linear in the size of the 
set of basic facts . 

The convolution equation can be easily extended to 
handle the case of clipping. We add to (1) a t erm, the 
function g, corresponding to the distribution of an event 
which clips the st a te of a fact being true. 

f
t t 

7r(t) = -ex> f( z )e- A(t - z)[l -1 g(w )dw ]dz (2) 

The cumula tive distribution of g defines the degree to 
which it becomes unlikely tha t the fact represented by 

128 

7r rem ains true in the world. We see tha t under certa in 
conditions, (2) describes exactly what we desire. Unfortu
na tely, there will be a tendency for the decay function and 
g to count the same effects twice. In (Dean and K anazawa, 
1987b] we address m ethods by which this problem can be 
attacked in a different probabilistic framework. 

IV. Algorithmic Considerations 
Probabilistic causal theories are composed of two types of 
rules, projection rules: 

PROJECT(Pi I\ A ... /\ Pn , E , R , i-) 

and persistence rules: 

PERSIST(Q , >..) 

where P1 through P,, , R , and Q are all fact types, and E 
is an event type. We assume (statistical) independence of 
fact types so tha t, if we are interested in the conjunction 
P1 I\ P 2 ... I\ P,,, we can assume that 

n 

p (HOLDS(Pi AA ,. , I\Pn , t)) = IIp (HOLDS(P;, t) ) (3) 
i= l 

We define a rela tion -<c on fact types so that Q -<c R 
just in case there exist s a rule of the form PROJECT(P1 I\ 
P2 . . . /\ Pn, E, R, i-) where P; = Q for some i. For any 
given set of causal rules, the graph 9-<c whose vertices cor
respond to fact types and whose arcs are defined by -<c is 
likely to have cycles ; this will be the cause of a small com
plication tha t we will h ave to resolve la ter . In this paper, 
we distinguish between fact types corresponding to propo
sitions that hold over intervals and event types correspond
ing to inst antaneous (point) events. For each occurrence 
(token) of a point event of typ e E , we will need its density 
function p( OCCURS( E, t)) . Probabilistic projection t akes 
as input a set of initial events and their corresponding den
sity functions, Given the res tricted format for projection 
rules, the only additional point events are generated by the 
system in response to the creation of new instances of fact 
types . For each token of fact type P , we iden t ify a point 
event of type T R A NS (P ) corresponding to the particu
lar instance of tha t fact becoming true, In the process of 
probabilistic projection, we will want to compute the cor
responding density fun ction p (OCCUR S(TRANS(P) , t). 
In addition to computing density functions, we will also 
want to compute the m ass functions p(HOLDS(P, t)) for 
instances of fact s. 

In order to describe the process of probabilistic pro
jection, we will divide the process into two different stages: 
determinis tic causal projection and probabilis tic causal re
finem ent. The actual algorithms are more integrated to 
take advantage of various pruning techniques, but this sim
pler , staged, process is somewhat easier to understand. 
Deterministic causal projection starts with a set of tokens 
and a set of projection rules and generates a set of new to
kens T by scanning forward in time and applying the rules 



without regard for the indicated probabilities. This stage 
can be carried out using any number of simple polynomial 
algorithms (see (Dean and M cDermott , 1987] (Hanks and 
McDermott, 1986]) and will not be further detailed here . 
Probabilistic causal refinement is concerned with comput
ing density and mass functions for tokens generated by de
terministic causal projection. In the following , all density 
and mass functions are approximated by step (i.e., piece
wise constant) functions. We represent these functions of 
time using vectors (e.g. , mass(T) denotes the mass func
tion for the token T and massi(T) denotes the value of the 
function at t = i). For each fact token Tp, we create a 
corresponding event token TTRANS(P) and define a vec
tor m ass(Tp ). For each event token TE , we define a vector 
clensity(TE)- We define an upper bound non projection 
and assume that each mass and density vector is of length 
n 2

• Initially, we assume that 

YT E T : 1 '.S i ::; n : clensity i(T) = 0 I\ m assi (T) = 0 

Event tokens are supplied by the user in the form 

l
ist 

"'= p( OCCURS(E, t))clt 
est 

where est and 1st correspond (respectively) to the earliest 
and latest start time for the token and r;, is the probabil
ity that the event will occur at all. We assume that the 
density function for such an event is defined by a Gaus
sian distribution over the interval from est to 1st. For a 
token TE corresponding to a u ser- supplied ini tial event, 
it is straightforward to fill in clen sity(TE). Probabilistic 
causal refinement is concerned with computing m assi(Tp) 
and clensityi(TTRANS(P)) for all fact tokens Tp and all 
event tokens TTRANS(P)" We partition the set of tokens 
T into fact tokens T F and event tokens TE . Probabilistic 
causal refinement can be defined as follows: 

Procedure: refine(T) 
for i=l ton: 

begin 
for T E TE : 

density-update(T, i); 
for T E TF: 

mass-update(T, i); 
end 

Of course, all of the real work is done by density-update 
and mass-update . Each token has associated with it a spe
cific derivation that is u sed in computing its mass or den
sity. For a token TTRANS(R) ' this derivation corresponds 
to a rule of the form 

PROJECT(Pi I\ P2 ... I\ Pn , E, R , r;, ) 

and a set of antecedent tokens {TE, Tp, , Tp2 ••• Tp.,} used 
to instantiate the rule and generate the consequent token 

2 There are some obvious optimizations to be made here. 

129 

Tn. Given that 

p(OCCURS(TRANS(R)) , t) = 
r;, * p( OCCURS(E, t)) * p(HOLDS(P1 I\ P2 .. . I\ Pn , t) 

a11J, assuming independen ce (3), we have 

Procedure: density-update(TTRANS(R) > i) 
clensity;(TTRANS(R)) ,-

"'* clensityi(TE) * rrj=l massi (Tpj) 

There is one problem with this formulation: it relies 
on all the mass and density functions for the antecedent 
conditions being already computed for the instant i. In 
the present algorithm, refine takes no care in ordering the 
tokens in T. There are a number of ways of ensuring that 
the updates are performed in the correct order. The easiest 
is to partially order T according to -<c and insist that 
Y-<c be acyclic, but this would preclude the use of most 
interesting causal theories. A more realistic method is to 
partition T with respect to an instant i into those tokens 
that are open and those that are closed. Deterministic 
causal projection defines an earliest start time (est) for 
each token; for event tokens a latest start time (1st) is 
specified. An event token is open throughout the interval 
est to 1st and closed otherwise. For fact tokens, we modify 
probabilistic causal refinement so that it closes a fact token 
Tp as soon as m assi (Tp) drops below a fixed threshold. A 
fact token is open from its est until it is closed. All we 
require then is that for any i the set of tokens that are open 
define an acyclic causal dependency graph using -<c. This 
restriction still allows for a wide range of causal theories. 
To get refine to do t he right thing, we would have to apply 
refine only to open tokens and either sort the tokens using 
-<c, or (as is actually done) define refin e so that if, in 
the course of updating a consequent token , refine finds an 
antecedent token that hasn't yet been updated , it applies 
itself recursively. 

The derivation of a token Tp corresponds to a rule of 
the form PERSIST(?,.,\) where .,\ is the constant of de
cay for the fact type P, and an event token TTRANS(P)" 
The procedure mass-update is a bit more difficult to de
fine than density-update since it depends upon the type of 
decay functions used in persisten ce rules. In the case of ex
ponential decay functions, the operation of density-update 
is reasonably straightforward . 

Recall the basic combination rule for probabilistic pro
jection: 

1r( t) = 1-tO() f ( X )p( t - X )clx 

and suppose that p is of the form e- >- z where .,\ is some 
constant of decay, and tha t f can be approximated by a 
s tep function as in 

J( x) ~ { 

C1 So '.S X < SJ 
C2 SJ '.S X < S2 

Cn Sn- I '.S X < Sn 



" I 

. I 

I 
• 1 

We will take advantage of the fact that 

1.:• f( x)dx = ~ 1.~·+• f(x)dx 

and 

where 5 = Sk+1 - Sk, 

Making appropriate substitutions, we have 

t 1··+• f(x)p(sk+1 - x)dx 
i=j Si 

I: 1.··+• f( x) p( sk+1 - x)dx 
i=j s , 

!.••+• + f( x)p(sk+1 - x)dx 
•• 

It should be clear that updates depending upon such 
simple survivor functions can be performed quite quickly. 
Integration is approximated using Riemann sums with a 
mesh of fixed size (roughly) corresponding to 5. We define 
the procedure mass-update as follows: 

Procedure : mass-update(Tp , i) 
mass;(Tp) +--

e>-P6 mass;_1 (Tp) + density;(TTRANScP)) 

The actual algorithms are complicated somewhat by 
the fact that the choice of mesh size may not coincide pre
cisely with the steps in the step functions approximating 
survivor functions and distributions. We compensate for 
this by using a somewhat finer mesh in the update algo
rithms. The fact that we employ a fixed mesh size still 
causes small errors in the accuracy of the resulting mass 
and density functions, but these errors can be controlled . 
We have tried to make a reasonable tradeoff, taking into 
account that the finer the mesh the larger the mass and 
density vectors. Given that the step functions used for 
encoding survivor functions and distributions are only ap
proximations, there is a point past which employing a finer 
mesh affords no additional information. We have found 
that a mesh size of half the smallest step in any step func
tion works quite well in practice. 

V. Acquiring Persistence Rules 
Statistical methods have not seen particularly wide appli
cation in AI. This is largely due to problems concerning the 

130 

avaiiability of the data necessary to employ such methods. 
Data provided from experts h as been labeled as unreliable, 
and the use of priors in Bayesian inference has been much 
maligned. An alternative to expert judgements and esti~ 
mating priors, is to integrate the data acquisition process 
into your system: have it gather its own data. In such 
a scheme, all predictions made by the system are condi
tioned only upon what the system has directly observed. 
Of course, this is unrealistic in m any cases (e.g., diagnos
tic systems whose decisions could impact on the health 
or safety of humans). In the industrial automation appli
cations considered in this paper, however, not only is it 
practical, but it appears to be crucial if we are to build 
systems capable of adapting to new situations. 

In this section, we describe a system for continually re
fining a database of probabilistic causal rules in the course 
of routine planning and execution. Given the focus of this 
paper, we will concern ourselves exclusively with the acqui
sition ( or refinement) of persistence rules. Our warehouse 
planner keeps track of how long trucks stay around and 
uses this information to construct survivor functions for 
various classes of trucks. The system must be told which 
quantities it is to track and how to distinguish different 
classes of trucks, but given that, the rules it acquires are 
demonstrably useful and statistically valid in the limit. 

The survivor function for a given class of trucks is 
computed from a set of data points corresponding to in
st ances of trucks observed arriving and then observed leav
ing without being loaded3 . It should be clear that, in gen
eral, a collection of data points will not define a survivor 
function uniquely. There are many ways in which to derive 
a reasonable approximation for such a function . For exam
ple, we might employ some form of curve fitting based on 
an expected type of functi on and the sample data. While 
such methods may yield more accurate approximations in 
some cases, for our application, there are simpler and more 
efficient methods. 

Our system derives two parameters for constructing 
survivor functions. The first is an estimate of the delay 
(i.e., the initial interval of time during which the function 
remains constant), and the second corresponds to the rate 
of decay during the function 's period of descent. We simply 
use the arithmetic mean of the samples to compute the 
rate of decay. With both of the simple classes of functions 
we have considered , the exponential decay and the linear 
decay functions, computing, respectively, the persistence 
parameter ( >-) and the slope is trivial. In the case of an 
exponential decay, we use the mean as the half-life of the 
function. 

Computing the delay interval is also quite simple. Re
call that , in our examples, the delay corresponds to the 

3 T here is actuall y more information to be had. For example, 
instances of trucks observed arriving and subsequent ly observed to be 
absent (the exac t time of leaving unknown) are presumably relevant 
to the problem at h and , and, in fact, it is possible to make use of 
such information by making various additional assumptions. We will 
not, however , consider such complications here. 



interval of time during which no trucks are likely to leave. 
Each data point is represented as an integer corresponding 
to how long a particular truck stayed around. Keeping in 
mind that there will be occasional aberrations, we choose 
to ignore some percentage of the data points correspond
ing to those that are far from the mean. There are more 
sophisticated means of doing this, but we simply sort the 
data points for each class of trucks in increasing order, 
and set the delay to be the length of time corresponding 
to some data point in the kth percentile of the resulting 
sorted list, where k defaults to 5. This provides a reason
able approximation to the actual functions, and it is very 
fast to compute. 

We can now sketch the simple a lgorithm utilized in our 
system. As noted, we need to collect data for each class 
of interest. The data for each class is collected in a data 
structure along with various intermediate quantities used 
by the update algorithm' ( e.g., since the algorithm calls 
for the arithmetic mean of the data points it is convenient 
to incrementally compute the sum of the elements of the 
collection) . The class data type has the following accessor 
functions associated with it ( c is an instance of class): 

type( c ): the type of the associated survivor function: 
linear or exponentia l 

la mbda(c) : the rate or slope 
delay( c ): the delay 

history( c ): a vector corresponding to the sorted collec
tion of data points (individual data points 
are referenced using history( c )( i) where i is 
an integer index) 

insts( c ): the number of data points in the collection 
sum(c): the sum of the items in the collection 

offset(c): a percentile indicating the bottom n data 
points in the sorted collection to be ignored 
in computing the delay (defaults to 5%) 

Assuming that c is an instance of class and p is a new 
data point, the acquisition algorithm can be described as 
follows: 

Procedure: acquire(c,p) 
history( c) <--- insert(p, history( c)); 
in sts(c) <--- in sts(c) + 1; 
sum(c) <--- sum(c) + p; 
lambda(c) <--- rate(c, ((sum(c)/ insts(c))- delay(c))); 
delay(c) <--- history(c) (finsts (c) * offset(c)l ) 

The function inse rt is assumed to insert a data point into 
a sorted collection. The function rate depends on the type 
of survivor function used: 

Function: rate( c, µ) 
if µ = 0 

then +oo 
else if type(c) = linear 

then 0.5/µ 
else if type( c) = exponentia l 

then log 2/ µ 

13 1 

Although we have t ested our approach extensively in 
simulations and have found the acquired persistence data 
to converge very rapidly to the correct values, we do not 
claim that the above methods have any wider application. 
The simplicity of the a lgorithm and its incremental nature 
are attractive, but the most compelling reason for using it 
is that the algorithm works well in practice. Probabilis
tic projection does not rely upon a particular method for 
coming up with persistence rules. As an alternative, the 
data might be integrated off line, using more complex ( and 
possibly more accurate) methods. 

It should be noted that our system is given the general 
form of the rules it is to refine. It cannot, on the basis of 
observing a large set of trucks, infer that trucks from one 
company are more impatient than those from another com
pany, and then proceed to create two new persistence rules 
where before there was only one. The general problem of 
generating causal rules from experience is very difficult. 
We are currently exploring methods for distinguishing dif
ferent classes of trucks based on statistical clustering tech
niques ( e.g., Kolmogorov-Smirnov's D-statistic [Dunn and 
Clark, 1974] and Shapiro-Wilk 's W-statistic [Shapiro and 
·wilk, 1965]). Using such methods, it appears to be rela
tively straightforward to determine that a given data set 
corresponds to more than one class, and even to suggest 
candidate survivor functions for the different classes. How
ever, figuring out how to distinguish between the classes 
in order to apply the different survivor functions is consid
erably harder. 

VI. Conclusions 

In this paper, we have sketched a theory of reasoning about 
change that extends previous theories [McDermott, 1982] 
[Shoham and Dean, 1985]. In particular, we have shown 
how persistence can be modeled in probabilistic terms. 
Probabilistic projection is a special case of reasoning about 
continuously changing quantities involving partial orders 
and other sorts of incomplete information, and as such it 
represents an intractable problem. We have tried to iden
tify a tractable core in the inferences performed by proba
bilistic projection. 

In [Dean and Kana.zawa, 1987a], we describe a plan
ning system capable of continually refining its causal rules. 
The system makes predictions, observes whether or not 
those predictions come to pass, and modifies its rules ac
cordingly. It is capable of routine data acquisit ion and 
updates its probabilitistic rules in the course of everyday 
operation. Initial experiments with the prototype system 
have been very encouraging. We believe that the inferen
tial and causal rule refinement capabilities designed into 
our system are essential for robots to perform robustly in 
routine manufacturing situations. We hope that our cur
rent investigations will yield a new view of strategic plan
ning and decision making under uncertainty based on the 
idea of continuous probabilistic projection. 



I 

·I 
I 

References 

[Dean, 1987a] Thomas Dean. An approach to reasoning 
about the effects of actions for automated planning 
systems. Annals of Operations R esearch, 1987. 

[Dean , 1987b] Thomas Dean. Large-scale temporal data 
bases for planning in complex domains. In Proceed
ings IJCAI 10, Milan, Italy, IJCAI, 1987. 

[Dean and Boddy, 1987] Thomas Dean and Mark Boddy. 
Incremental causal reasoning. In Proceedings AAAI-
87, pages 196- 201 , Seattle, Washington , AAAI, 1987. 

[Dean and Kanazawa, 1987a] Thomas Dean and Keiji 
Kanazawa. P ersist ence and Probabilistic Infere nce. 
Technical Report CS-87-23, Brown University De
partment of Computer Science, 1987. 

[Dean and Kanazawa, 1987b] Thomas Dean and Keiji 
Kanazawa. P ro bab ilis tic Temporal R easoning. Tech
nical Report forthcoming, Brown University Depart
ment of Computer Science, 1987. 

[Dean and McDermott, 1987] Thomas Dean and Drew V. 
McDermott. Temporal data base management. Arti
fi cial Intelligence, 32:1- 55, 1987. 

[Duda et al. , 1981] R .0. Duda, P.E. Hart , and Nilsson 
N.J. Subjective bayesian methods for rule-based in
ference systems. In B.W. Webber and N.J. Nils
son, editors, R eadings in Artificial Intelligence, Tioga, 
Palo Alto, CA, 1981. 

[Dunn and Clark, 1974] Olive Jean Dunn and Virginia A. 
Clark. Applied Statistics: Analysis of Variance and 
R egression. John Wiley and Sons, 1974. 

[Ginsberg, 1985] M.L. Ginsberg. Does probability have a 
place in non-monotonic reasoning? In Proceedings 
IJCAI 9, Los Angeles, CA, IJCAI, 1985. 

[Hanks and McDermott, 1986] Steve Hanks and Drew V. 
McDermott. Default reasoning, nonmonotonic log
ics, and the frame problem. In Proceedings AAAI-86, 
pages 328- 333, Philadelphia, Pa., AAAI, 1986. 

[McCarthy and Hayes, 1969] J ohn McCarthy 
and Patrick J . Hayes. Some philosophical problems 
from the standpoint of artificial intelligence. Ma chine 
Int elligence, 4, 1969. 

[McDermott , 1982] Drew V. McDermott. A temporal 
logic for reasoning about processes and plans. Cogni
tive Science, 6:101- 155, 1982. 

[Pearl , 1985] Judea Pearl. A constraint propagation ap
proach to probabilistic reasoning. In Proceedings of 
th e 1985 AAAI/IEEE Sponsored Workshop on Uncer
tainty and Probability in Artificial Intelligence, 1985. 

[Sacerdoti , 1977] Earl Sacerdoti. A Strncfore for Plans 
and Behavior. American Elsevier Publishing Com
pany, Inc., 1977. 

[Shapiro and Wilk, 1965] S. S. Shapiro and M. B. 
Wille An analysis of variance test for normality. 
Biometrika, 52:591- 612, 1965. 

132 

[Shoham and Dean , 1985] Yoav Shoham and Thomas 
Dean. Temporal notation and causal t erminology. In 
Proceedings Seventh Annual Conference of the Cogni
tive S cience Society, Cognitive Science Society, 1985. 

[Syski, 1979] Ryszard Syski . Random Processes. Marcel 
Dekker , New York, 1979. 



Search Strategies For Conspiracy Numbers 

Norbert Klingbeil 
Jonathan Schaeffer 

Computing Science Department, 
University of Alberta, 

Edmonton, Alberta 
Canada T6G 2Hl 

Abstract 

McA11ester's Conspiracy Numbers algorithm is an 
exciting new approach to minimax search that builds 
trees to variable depth without application-dependent 
knowledge. The likelihood of the root achieving a 
value is expressed as that value's conspiracy number: 
the minimum number of leaf nodes required to change 
their value to cause the root to change to that value. 
Initial experience indicates that the algorithm places 
too much emphasis on depth rather than breadth of 
search. Several variations on the conspiracy numbers 
search strategy are reported, each adding an increasing 
degree of breadth to the search. The ideas have been 
implemented in a program that solves tactical chess 
problems. Experiments indicate that the new algo
rithms are capable of solving 41 % more problems 
than McAllester' s original proposal. 

Keywords: conspiracy numbers, alpha-beta, minimax 
search, search algorithms. 

1. Introduction 

There are many well-known methods for 
efficiently searching minimax trees. Alpha-beta [5] 
and SSS* [13], for example, are elegant algorithms 
that greatly reduce the search effort required. How
ever, both have a fundamental limitation: they are 
constrained to fixed depth searches. This results in 
tremendous search overhead by the exploration of 
sub-trees which have small chances of success, yet 
must be considered to be certain the algorithm returns 
the correct result. 

Disciples of artificial intelligence have long 
scoffed at these so called brute-force methods and 
sought a more knowledge-based approach. Berliner's 
B* [ 1, 10] is an elegant best-first proof procedure that 
expands minimax trees to variable depths using 

133 

knowledge to guide the search. Unfortunately, its 
application dependent knowledge requirements are its 
undoing: it is too difficult to reliably determine the 
optimistic and pessimistic values required to bound 
the true value of every node in the tree. 

McAllester's Conspiracy Numbers algorithm is a 
new approach to minimax search [8, 9]. Rather than 
searching to a fixed depth, the algorithm selectively 
expands nodes in the tree until a specified degree of 
confidence is achieved in the root value. Confidence 
is defined by a value's conspiracy number: the 
minimum number of leaf nodes that must change their 
value (or conspire) to cause the root of the tree to 
change to that value. The novelty of the algorithm is 
that it selectively expands nodes in an application 
independent manner, without requiring, for example, 
extensive leaf node domain-dependent knowledge 
such as B* requires. As the algorithm is new, there is 
little theoretical and experimental data on its perfor
mance. 

This paper explores alternate search strategies for 
conspiracy numbers. McAllester's original paper 
described a strategy that resulted in continually 
expanding the left-most son of interior nodes [8]. 
Experiments show this method often results in a pro
gram descending to ridiculous depths that have no 
practical chances of success. By adding some breadth 
to the search, a significant improvement in perfor
mance is possible. These ideas have been imple
mented in a program that solves tactical chess prob
lems. Experimentally, adding additional breadth to 
the tree and enhancing the algorithm to converge on 
the best son of the root, not just the best value, has 
resulted in a 41 % increase in the problem solving 
capabilities of the program. 

Section 2 provides an overview of the conspiracy 
numbers algorithm. In section 3, alternate search stra
tegies are considered. These strategies have been 
implemented and the experimental results are 



. ·I 

I 

I 

presented in Section 4. Finally, Section 5 presents the 
conclusions and further work. 

2. Conspiracy Numbers 
Conspiracy numbers provide a measure of the 

difficulty to change the current minimax value of a 
node. In Figure 1, assuming the root is a maximum 
node, how many leaf nodes in the tree have to change 
their value, as a result of being searched one ply 
deeper, to cause the value at the root (Vroot) to 
become 2? The simplest way would be if node J's 
value changed to 2. Another way would be for both 
nodes F and G to change their values appropriately. 
Nodes F and G form a set of conspirators for 
increasing Vroot to 2; both have to conspire to 
achieve this result. Node J also forms a set of con
spirators for increasing Vroot to 2; in this case the 
minimal set. The minimum number of leaf nodes that 
must conspire to change Vroot to a specific value is 
called the conspiracy number (CN) for that value . 
Figure 2 shows the conspiracy numbers for Figure 1 
along with the minimal set of conspirators for each 
value. 

-3 2 
-22 
-12 

0 1 
10 
2 1 
3 1 

-3 1 
-2 1 
-1 1 

0 1 
10 
2 1 
32 

Value CN Nodes to Change 
-3 2 (E and (For G)) 
-2 2 (E and (For G)) 
-1 2 (E and (For G)) 
0 1 (E or J) 
1 0 
2 1 (J or K) 
3 2 (E and (J or K)) or (F and G) 

Figure 2. Conspirators. 

It turns out that there are simple recursive rela
tions for calculating the conspiracy numbers of a node 
from the conspiracy numbers of its descendents. In 
what follows, let m denote the minimax value of a 
node and v denote the value we would like to change 
m to. 

At a leaf node, changing m to any other value 
requires a conspiracy of only that node itself, and 
hence has a conspiracy number of 1. If we do not 
want to change the node's value, then no conspiracy is 
required and the conspiracy number is 0. If the leaf 
node is also a terminal node, then there is no way to 
change its value and a conspiracy number of oo is 
assigned. Hence, the conspiracy numbers for a leaf 
node are: 

-3 1 
-2 1 
-11 
00 
1 1 
22 
32 

-3 1 
-2 1 
-1 1 

0 1 
1 0 
2 1 
3 1 

Figure 1. Conspiracy Numbers. 

134 



CN(v)= (l if 

if 

if 

v=m 

v"i=m 

terminal node 

At a maximizing interior node, to increase the 
value to v requires only one of the sons to change its 

_ value to v. Assuming that the conspiracy number for 
each son has already been calculated, then the 
minimum number of conspirators required to increase 

the node to v, iCN (v ), is just the minimum number 
of conspirators to increase one of the sons to v. This 
yields the following relation: 

( 

0 for all v$m 
iCN(v)= MIN iCNj(v) for all v>m 

all sons i 

To decrease the node's value to v, J.CN(v), requires 
all sons whose value is greater than v to decrease their 
value to v . Given the minimal set of conspirators for 
decreasing ea<th son to v, all members of each of 
these sets must conspire together to decrease the 
node's value to v. Therefore: 

J.CN(v)= 
0 for 

L J.CN/v) for 
all sons i 

all 

all 

v'2:.m 

v<m 

For a mimm1zmg interior node, the following 
dual relations apply: 

iCN(v)= 
0 for 

L iCN/v) for 
all sons i 

!CN(v)= ( 
0 for 

MIN J.cNi ( V) for 
all sons i 

all 

all 

all 

all 

v$m 

v>m 

v'2:.m 

v<m 

Figure 1 shows the conspiracy numbers for each 
node, with iCN and J.CN merged into one vector. It 
is worth noting that if v < w then iCN (v) $ iCN (w) 
and J.CN (w) '2:. J.CN (v ). Also, given a set of con
spirators for changing the value of a node to v, 
(v "i= m ), this same set can conspire to change the 
node to any value between m and v. 

Since conspiracy numbers represent the difficulty 
of changing the value of a node, one way they can be 
used is to judge the accuracy of the root value. A con
spiracy threshold (CT) is introduced that specifies the 

135 

minimum number of conspirators required before we 
consider it unlikely a node can take on that value. A 
value v is a likely value if CN(v) < CT . The range 
of likely root values is given by [Vmin, Vmax], where 
Vmin $ Vroot $ Vmax . 

The algorithm continues to search until it has nar
rowed the range of likely values to just one value. 
Once all root values but one have been ruled out, we 
expect further search will not change that value. The 
higher the threshold, the greater the confidence in the 
final root value. 

Given a range of likely root values, how do we 
rule out all but one of them? The obvious way is to 
rule them out one by one, starting with either Vmax or 
Vmin. To rule out Vmin or Vmax, the algorithm tries 
to increase the corresponding conspiracy number to at 
least CT. This is done by "proving" that a member of 
the minimal conspiracy set will not conspire with the 
other members of the set to help change the value of 
the root node to either Vmin or Vmax . 

During each step of the tree growth procedure, 
the algorithm must choose to either rule out Vmax or 
rule _out_ Vmin . Faced with these two alternatives, it 
chooses to attempt to rule out the value which is 
furthest from Vroot. If both are equidistant from the 
root value, it then arbitrarily chooses to 
rule_out_Vmin. Having made a decision to rule out 
Vmax, for example, a leaf node from the minimal set 
of conspirators must be found to search one ply 
deeper (or expanded). To find this node, the algo
rithm descends from the root using the following pro
cedure: 
a) at a maximizing node 

Only one successor node must increase its value 
to Vmax for the parent root node to do likewise. 
The most likely branch is the one requiring the 
least number of conspirators to increase it to 
Vmax. Computing CN (Vmax) of each successor, 
choose the successor node requiring the minimum 
conspirators. If more than one branch has the 
minimum, arbitrarily choose the left-most one. 

b) at a minimizing node 

Here there may be many descendent nodes that 
have to increase their value to increase the parent 
node to Vmax. Each such branch contains con
spirators which together form the set of conspira
tors to increase this node to Vmax. Again the 
algorithm can choose to traverse any of the 
appropriate branches and we arbitrarily choose to 
take the left-most one. 

Having reached a leaf node, that node is 
expanded (i.e. searched one ply deeper). Since each 
descendent may yield a favourable or unfavourable 



. l 

I 

assessment, the descendents are ordered according to 
the results of their evaluation. By putting the more 
favourable descendents first, this increases the 
chances that the left-most descendent is the best, justi
fying the above choices. The minimax value and con
spiracy numbers are passed back up the tree, resulting 
in new numbers along the path from the root to the 
leaf node. 

What is being accomplished by expanding this 
node? If we are successful at increasing the value of 
this node to Vmax, then the number of conspirators in 
this set has been decreased by one and therefore other 
members of the set can be expanded to see if they will 
conspire successfully. If the value is less than Vmax 
and the expanded node is minimizing, then we may 
have been successful at increasing the number of con
spirators at the root (i.e. increased the minimal set of 
conspirators). The number of conspirators may have 
reached CT, resulting in a narrowing of the range of 
likely values at the root. At a maximizing expanded 
node with a value less than Vmax, nothing has been 
accomplished towards ruling out Vmax. 

A dual strategy exists for ruling out Vmin. This 
tree growth procedure was McAllester's original pro
posal. A detailed description of the algorithm can be 
found in [12]. 

3. Search Strategies 
The tree growth procedure as originally defined 

by McAllester is rather simple in that they always 
explore the left-most son whose value and conspiracy 
number is within the search range. Figure 3a illus
trates this strategy, with circles representing nodes in 
the tree that are expanded. Note that this is an ideal
ized version of the resulting tree, ignoring branches 
whose value or conspiracy number is not in range. 

a) McAllester b) Minimal breadth 

Early experiments using conspiracy numbers on 
trees with randomly generated terminal node values 
(strongly ordered trees using the method described in 
[7]) indicated that the program would often descend to 
ridiculous depths following the left-most branch at 
every node. As a result, the program usually had 
enormous difficulty converging to a value [3]. Exami
nation of the program's behaviour suggests that more 
breadth and less depth could improve performance. 

One way of thinking about minimax trees is that 
some nodes are AND nodes (all sons must be con
sidered) while others are OR nodes (at least one son 
must be considered). This can be seen from the for
mulas used to compute conspiracy numbers: the MIN 
operation requires all sons to be considered, while the 
SUM nodes requires at least one. McAllester's search 
strategy involves considering the left-most son at OR 
nodes, even though, in theory, any of the branches 
could be taken. Of course, since branches are sorted 
at expanded nodes in order of leaf node value, there is 
a high probability that the left-most son is best. 

Breadth can be added to the search by simply 
altering the search strategy at OR and AND nodes. 
One simple modification to the algorithm is to restrict 
descending from an OR node until all of the sons of 
that node have been expanded to a fixed minimum 
depth. The philosophy here is that all the sons can 
contribute conspirators towards achieving the goal, 
rather than continually relying on the left-most son. If 
the left-most son has difficulty achieving the required 
number of conspirators, McAllester's algorithm will 
keep trying that branch until success is achieved one 
way or the other, when in fact another branch may be 
able to find the requisite conspirators more quickly. 
For example, if this depth is set to one, then before 
descending deep into the tree from an interior node, 

c) OR round-robin 

Figure 3. Search Strategies 

136 



each son of this node must be expanded. These 
expansions may achieve (or get closer to) the required 
conspirators before descending the left-most son. 
With a depth restriction of 1, this method is called 
minimal breadth, and is illustrated in Figure 3b) with 
arcs used to emphasize the notion that all sons of that 
node are considered. 

An alternative to always examining the left-most 
son at an OR node would be to cycle through all the 
sons, since any of them can contribute conspirators. 
Every time this node is reached, the algorithm can use 
a round robin approach to ensure each is treated 
equally. This strategy is called OR round robin and 
is illustrated in Figure 3c). Note that the middle 
branch of the root has not been expanded, as would be 
the case, for example, if its value was out of the range 
of likely values. 

At AND nodes, there is not much to gain by 
adding breadth since all sons must be considered any
way. However, an algorithm with both AND round 
robin and OR round robin strategies would result in a 
breadth-first search of the tree. The breadth-first ter
minology should be qualified since it is not a conven
tional breadth-first search; the breadth is only for 
nodes of the tree whose values lie in the (changing) 
range of likely values. 

An additional enhancement is possible when one 
considers that the algorithm converges on a value, not 
a best son. If all the values in the range 
[Vmin, Vmax] are only achievable from the same son 
of the root, then further search is unnecessary. The 
algorithm may not know the value of the tree, but it 
knows which branch is best. In the context of game 
trees, this best move cutoff would allow the program 
to stop searching once it has found the best move, not 
just the best value. 

4. Experiment Results 

The conspiracy numbers algorithm has been 
implemented in a program that solves tactical chess 
problems. The most notable enhancement to the algo
rithm has been the inclusion of iterative deepening on 
the conspiracy threshold [12]. Rather than starting the 
program with a high threshold, the algorithm begins 
with a threshold of 2 and having solved that, increases 
it to 3, and so on. This method has the advantage of 
being able to stop the program at any time and know 
the degree of confidence in the root value. Further 
details on the implementation can be found in [4]. 

Many experiments with chess programs have 
used the 300 position test set taken from the book Win 
At Chess [11]. However, the problem set is not 
difficult and it does not take much effort to solve more 
than 80% of the problems. This causes problems if 

137 

the test suite is used for comparing algorithms in that 
a superior performance translates into solving an addi
tonal small percentage of the problems. Conspiracy 
numbers (the minimal breadth variant) and alpha-beta 
have been compared using this test suite [121. 
Initially alpha-beta out-performs conspiracy numbers, 
but as the program running time is increased, con
spiracy numbers solves more problems than alpha
beta. The effectiveness of alpha-beta is hampered by 
the exponential growth in the tree, where on average a 
factor of 5 in computing power is required to search 
an additional depth or ply deeper. 

The following experiments were done using a set 
of problems taken from the Encyclopedia of 
MiddleGame Combinations [2]. The problem set 
consists of 90 positions, the first 5 problems from 
each section of the encyclopedia plus a few additional 
difficult ones. Many of these problems are quite chal
lenging, even for a human! The experiments were run 
on a Sun 3n5. Each position was run until 300,000 
nodes were expanded; roughly 30-40 minutes of CPU 
time. 

Figure 4 illustrates the performance of 4 con
spiracy numbers variants: McAllester's original pro
posal, minimal breadth, breadth-first, and OR round 
robin (ORRR) enhanced with best move cut-offs. The 
problems correctly solved are plotted against the 
number of nodes expanded by the algorithm. The 
results clearly show the advantage of adding some 
breadth to the search and the effectiveness of the best 
move cut-off. Two of the round robin variants (AND, 
OR) are not shown, although their results are compar
able to the breadth-first version shown. 

A significant and surprising finding was that the 
average conspiracy threshold required to solve the 
problems is between 2 and 3. This threshold is usu
ally achieved quite quickly in the search. The addi
tional effort spent in reaching 300,000 expansions 
results in the answers achieving an average threshold 
of 9. This confirms the value of iterative deepening. 

The heart of the problem with McAllester's ver
sion lies in the evaluation function used at leaf nodes. 
If it were perfect, then taking the left-most son at 
every node would work and McAllester' s original 
algorithm would be preferred. But perfect informa
tion is rarely available. Marsland and Campbell 
define the trees typically built by game searching pro
grams to be strongly ordered, where sons of a node 
can be ordered so that 70% of the time the best son is 
known and 90% of the time it is in the top 25% [6] . 
McAllester's strategy will only consider exploring 
other sons if the left-most son does not have any 
appropriate conspirators under it. If the best move is 
not in the left-most position, it may be some time until 



. ·1 

I 

I 

this algorithm finishes exploring all sons left of the 
best son and then starts exploring the best son. The 
round robin algorithms give these other sons a greater 
chance of being explored earlier, thus increasing the 
chances of finding the best son more quickly. 

The goal of McAllester's algorithm and the round 
robin alternatives is to find the correct value of the 
root node. However, a frequently occurring case is 
where one branch is clearly better than all other 
branches but the algorithm has not converged yet on a 
single root value. These algorithms will all shift their 
attention to this one branch, trying to find its correct 
value. The best move cutoff enhancement would 
recognize that the best move has been found, but not 
its value, and increment CT at this point causing the 
algorithm to explore other branches as well. Conse
quently, this enhancement increases the achievable 
threshold, allowing greater exploration of other 
branches in the tree. As a result, the enhancement 
does quite well, as shown in Figure 4, and can be 
viewed as a significant improvement to the algorithm. 

In comparing the four aigorithms, the emphasis 
was on the number of problems solved by each, and 
not on the type of problems each is capable of solving. 
Of the 90 positions, all four algorithms were able to 
solve 34 common problems, while 32 were not solv
able by any. Of the remaining 24, 2 required the 
depth possible only through McAllester's version, and 
4 required the breadth of the round robin schemes. 
Thus, although OR round robin with best move cut
offs is a compromise between depth and breadth and 
performs quite well, there will always be problems 
requiring extremities of breadth or depth. 

S. Conclusions 

How good is the conspiracy numbers algorithm? 
Experiments reported in [12) indicate conspiracy 
numbers to be superior to alpha-beta for solving tacti
cal chess problems t. However, it is difficult to make 
a fair comparison of the two algorithms. The 
confidence in the answer returned by a fixed depth 
alpha-beta search is measured by the depth of search. 

t One example reported is of a problem with a 15-ply solution. 
In one hour of compute time, an alpha-beta searcher was only 
able to search 8-ply. Conspiracy numbers found the solution in 
10 minutes. 

6v-i.-----------------------------, 

5 

4 

Solved 3 

1 

1 0 1 0 2 0 

ORRR+ 
Best Move 

3 0 

Nodes Expanded (X 1000) 

Figure 4: Search Strategy Comparison. 

138 

3 0 



Confidence in conspiracy numbers is measured by the 
conspiracy threshold achieved. In practice, it is not 
clear what level of confidence is required before one 
starts to believe the answers, whether one uses alpha
beta or conspiracy numbers. 

Results were disappointing when conspiracy 
numbers was used in a chess program that plays posi
tional as well as tactical chess [ 12]. It appears that the 
program does a lot of unproductive searching deep in 
the tree. The problem seems to be with the stability of 
the evaluation function. From move-to-move, the 
assessment of the position would change, if only by a 
small amount (unlike in the tactical case), resulting in 
the root having difficulty converging to a value. 

Conspiracy numbers is an exciting, new approach 
to minimax search. It has several important advan
tages over conventional alpha-beta search approaches, 
notably the ability to grow trees to variable depth in 
an application independent manner without any 
enhancements to leaf node evaluators. However, its 
disadvantages include the question of algorithm con
vergence (it is not guaranteed to converge) and the 
problem of determining a satisfactory termination 
threshold. 

There are several promising areas of research to 
be explored with conspiracy numbers. First, alpha
beta search enhancements (such as transposition 
tables) can be used to improve search efficiency. 
Second, algorithm performance is strongly tied to the 
accuracy of leaf node evaluations yielding trade-offs 
of quality (and therefore cost) of evaluation versus 
tree size. Third, there are interesting possibilities for 
using conspiracy number information in an alpha-beta 
searcher. Finally, there are some interesting possibili
ties for a hybrid algorithm combining B * and con
spiracy numbers. B* relies on artificially constructed 
probabilities to make its search decisions. Conpiracy 
numbers can be viewed as probabilities that, unlike 
B *, come directly from the search tree. Combining 
the two algorithms is an obvious path to explore. 

The algorithm is still in its infancy and there is 
plenty of room for enhancements. The search stra
tegies presented in this paper represent the first 
attempt at improving the algorithm's performance. 
Although the 41 % increase in the program's ability to 
solve chess problems is significant, it certainly is not 
the final word on this topic. 

139 

Acknowledgements 
Thanks to Robert Enns for his work on our initial 

implementation of Conspiracy Numbers. This 
research was funded by Natural Sciences and 
Engineering Research Council of Canada grant 
A8173. 

References 

1. H.J. Berliner, The B* Tree Search Algorithm: A 
Best First Proof Procedure, Artificial 
Intelligence 12, 1 (1979), 23-40. 

2. Chess Informator, ed., Encyclopedia of 
Middle game Combinations, Sahovski 
Informator, Beograd, 1985. 

3. R. Enns and N. Klingbeil, unpublished 
experiments, Department of Computing 
Science, Univerity of Alberta, 1986. 

4. N. Klingbeil, Implementing Conspiracy 
Numbers, M.Sc thesis, Department of 
Computing Science, Uni verity of Alberta, 1987. 
In preparation. 

5. D.E. Knuth and R.W. Moore, An Analysis of 
Alpha-Beta Pruning, Artificial Intelligence 6, 
(1975), 293-326. 

6. T.A. Marsland and M.S. Campbell, Parallel 
Search of Strongly Ordered Game Trees, 
Computing Surveys 14, (1982), 533-551. 

7. T.A. Marsland, A. Reinefeld and J. Schaeffer, 
Low Overhead Alternatives to SSS*, Artificial 
Intelligence 31, 1 (1987), 185-199. 

8. D.A. McAllester, A New Procedure for 
Growing Mini-Max Trees, Technical Report, 
Artificial Intelligence Laboratory, 
Massachusetts Institute of Technology, 1985. 

9. D.A. McAllester, Conspiracy Numbers for 
Min-Max Search, Artificial Intelligence, 1987. 
In press. 

10. A.J. Palay, The B* Tree Search Algorithm -
New Results, Artificial Intelligence 19, 2 
(1982), 145-163. 

11. F. Reinfeld, Win At Chess, Dover Books, 1945. 

12. J. Schaeffer, Conspiracy Numbers, Artificial 
Intelligence, 1987. To appear. Also to appear 
in Advances in Computer Chess V, D. Beal and 
H. Berliner (ed.), Elsevier Press, 1987. 

13. G.C. Stockman, A Minimax Algorithm Better 
Than Alpha-Beta?, Artificial Intelligence 12, 2 
(1979), 179-196. 



.1 

THE COOPERATIVE APPLICATION OF MULTIPLE NATURAL 

CONSTRAINTS TO THE MOTION CORRESPONDENCE PROBLEM 

Michael R. W. Dawson 

The Centre For Advanced Study 
In Theoretical Psychology 

The University of Alberta 

Edmonton, Alberta, Canada 

INTRODUCTION 

The human visual system is capable of 
producing the illusion of movement from a 
rapid succession of static images. In 
order to generate this apparent motion the 
identity of elements must be maint~ined 
over time. Therefore the visual system 
must be able to identify an element in one 
position in the first image (Frame I) and 
another element in a different position in 
the second image (Frame II) as constituting 
different glimpses of the same moving 
element. A system that can correctly make 
such identifications, called motion 
correspondence matches, has solved what 
Ullman (1979) calls the motion 
correspondence problem. The discovery of 
the principles exploited by the visual 
system to solve the motion correspondence 
problem is an important goal of apparent 
motion research (Attneave, 1974). 

The motion correspondence problem is 
an example of a problem of 
underdetermination, because the information 
input to the system is consistent with more 
than one interpretation. A solution to the 
motion correspondence problem might be 
described as a list of identity matches 
between Frame I and Frame II elements. 
However, if there are N different elements 
(e.g . , small dots) in both Frames I and II, 
then there are N! different lists of 
matches that could be constructed. 
Therefore in order to say how the motion 
correspondence problem is solved, one must 
describe the procedure used to select the 
correct member from this set of N! possible 
lists. 

The natural computation approach to 
vision (e.g., Marr, 1982) attempts to deal 
with problems of underdetermination in the 
following manner: The correct solution to 
a problem is selected f rom a set of 
potential solutions by exploiting one or 
more natural constraints . These 
constraints are "natural" in the sense that 
they describe very general properties that 
are true of the physical world. The 
solution that is eventually selected by the 
system must therefore be consistent with 
the input to the system, and must also be 

140 

consistent with the properties defined by 
the natural constraints . Thus a natural 
computation approach to the motion 
correspondence problem would require the 
description of a set of constraining 
properties such that (i) these properties 
are general characteristics of physical 
motion, and (ii) these properties lead to 
the selection of the correct set of motion 
correspondence matches . 

There have been a number of 
suggestions about the natural constraints 
that could be applied to the motion 
correspondence problem (for a brief review, 
see Dawson & Pylyshyn, 1988). This paper 
argues that these different principles are 
not individually sufficient to account for 
human perceptions of apparent motion. 
Instead, different principles must be 
applied simultaneously. The purpose of 
this paper is to describe a cooperative 
network that attempts to accomplish this 
for multiple constraints. This description 
proceeds as follows: First, there is a 
brief review of two previous approaches to 
the motion correspondence problem. Second, 
the empirical limitations of these 
approaches are discussed. Third, the 
characteristics of a new model of motion 
correspondence processing are detailed . 
This model simultaneously applies 
constraints that (i) minimize the distance 
moved by elements, (ii) minimize 
differences in the direction moved by 
elements, (iii) encourage one-to-one 
mappings between elements in the two frames 
of view. Finally, the performance of this 
model is compared to models that do not 
apply these constraints at the same time. 

SOME NATURAL CONSTRAINTS ON APPARENT MOTION 

THE MINIMUM DISTANCE PRINCIPLE 

Ullman (e.g., 1979) has argued that 
human mot i on correspondence processing is 
best studied using the motion competition 
paradigm (see also Burt & Sperling, 1981; 
Chang & Julesz, 1984) . In this paradigm, 
apparent motion is produced by replacing a 
central Frame I element with two lateral 
Frame II elements, one to the left and one 



to the right of the original position of 
the Frame I e lement. The Frame I element 
is seen to move either to the left or to 
the right. 

One of the strongest predictors of the 
perceived direction of motion in a 
competition display is interelement 
distance (i .e. , the distance between an 
element in Frame I and an element in Frame 
II). All things being equal, the visual 
system prefers short correspondence matches 
(e.g., Burt & Sperling, 1981; Ullman, 1979, 
Chap. 2). Therefore if motion to the left 
in a competition display involves a shorter 
intere l ement distance than motion to the 
right, then motion to the left will be 
preferred. Thus one constraint on 
solutions to the motion correspondence 
problem could be a minimum distance or 
"nearest neighbour" principle -- the visual 
system attempts to assert a motion 
correspondence match between a Frame I 
element and the element neares t to it in 
Frame II. 

Ullman (1 979, pp. 114- 118) argues that 
the minimum distance principle is a natural 
constraint. He has shown that when 
movement in 3D space is projected onto a 2D 
surface (i.e., the retina), slow movements 
are much more probable than fast movements. 
Thus a preference for short motion 
correspondence matches (i.e., slow 
movements) could indicate the exploitation 
of a property determined by the geometry of 
the viewing situation . Ullman's minimal 
mapping theory applies the minimum distance 
principle, and successfully solves the 
motion correspondence problem for a wide 
variety of apparent motion displays. 

THE COVER PRINCIPLE 

Proximal visual features usually arise 
from physical features on the surface of 
solid objects. Thus vis~al elements do not 
appear or disappear from view, except when 
physical features become occluded by the 
movement of edges (either due to the 
rotation of the object in question or to 
different objects moving through the line 
of sight ) . In visual environments such as 
ours, element occlusions are low 
probability events. This is because the 
density of edges is much lower than the 
density of surfaces (Marr, 1982). This 
suggests a further constraint on solutions 
to the motion correspondence problem, which 
Ullman (1979) calls the cover principle . 
The cover principle is the claim that Frame 
I elements do not inexplicably disappear, 
and that Frame II elements do not 
inexplicably appear. In Ullman's minimal 
mapping theory, the cover principle is 
implemented by 
requiring that each Frame I element be 
matched to at least one Frame II element, 
and that each Frame II element be matched 
to at least one Frame I element. 

14 1 

THE UNIQUENESS CONSTRAINT 

Many researchers (e.g . , Attneave, 
1974; Kolers, 1972; Ullman, 1979) have 
observed that the human visual system 
prefers to make one-to-one mappings between 
frames of view when apparent motion is 
perceived. In other words, the visual 
system tends to discourage motion percepts 
in which one Frame I element splits apart 
to form two Frame II elements, or in which 
two Frame I elements fuse together to form 
a single Frame II element. Some models of 
stereo correspondence explicitly enforce a 
preference for one-to- one mappings between 
frames using what has been called the 
uniqueness constraint (e.g., Marr & Poggio, 
1976) . 

The uniqueness constraint is also a 
plausible natural constraint for the motion 
correspondence problem, because the 
physical integrity of objects ensures that 
object splits or fusions during movement 
should occur with very low probabilities. 
Indeed, Ullman's revised minimal mapping 
theory (1979, chap. 3) applies such a 
constraint by incorporating a penalty for 
splits and fusions into the "nearest 
neighbour" cost function that is minimized 
subject to the cover principle . 

THE RELATIVE VELOCITY CONSTRAINT 

Dawson ( 1986; Dawson & Pylyshyn, 1986) 
has attempted to solve the motion 
correspondence problem by applying 
constraints other than those used by Ullman 
(1979) in minimal mapping theory. Minimal 
mapping theory incorporates the assum~tion 
that the movement of any one element in an 
apparent motion display is independent of 
the movement of any other display element. 
However this assumption is not true of 
human 

1

perceptions of apparent motion . 
Dawson (1987) demonstrated that perceptions 
of motion competition displays could be 
changed by surrounding the display with a 
context that was a lso set into apparent 
motion. Motion correspondence matches that 
were in the same direction as the motion of 
the context were preferred, even if these 
matches were longer than other potential 
matches. 

Other researchers have demonstrated 
related effects on the perceived direction 
of motion (Chang & Julesz, 1984; Green , 
1983; Krumhansl, 1984) . Sensitivity to the 
relative motion of display elements also 
appears to be an important factor in 
organizing global motion percepts (e.g . , 
cutting & Proffitt, 1982; Gogel, 1974; 
Johansson, 1950; Proffitt & Cutting, 1979, 
1980) . As well, physiological studies have 
identified neurological channels that 
appear to be sensitive to the relative 
motion of different elements, or to the 
interaction between different patterns of 
movement (e.g., Bridgeman, 1972; Frost & 
Nakayama, 1983; Hammond & Mackay, 1977; 



Kaji & Kawabata , 1985). Together, these 
results all point to a different type of 
constraint to be applied to the motion 
correspondence problem. This has been 
called the relative velocity constraint 
(e.g ., Dawson, 1986). According to this 
constraint, the visual system should 
attempt to assign motion correspondence 
matches such that elements near one another 
in Frame I should travel in similar 
directions . 

It has been argued that the relative 
velocity constraint is a natural 
constraint, because it arises from the 
physical integrity of objects (Dawson, 
1986· Dawson & Pylyshyn, 1988 ). The 
integrity of objects places constrai~ts on 
the transformations that can be applied to 
the configuration of the parts that 
comprise these objects. For example, if an 
object is rigid or near rigid, then one 
should not be able to move it through space 
in such a way that a part of it between two 
other parts at time tis not between the 
two others at time t+l~ 

Dawson (1986; Dawson & Pylyshyn, 1986) 
has developed a discrete relaxation 
algorithm that applies the relative 
velocity constraint to the motion 
correspondence problem. This model is a 
departure from minimal mapping theory 
(Ullman, 1979), insofar as the cover 
principle is explicit ly abandoned, and 
there is no sensitivity to interelement 
distances. Nevertheless, this model has 
been shown to so l ve a wide variety of 
motion correspondence problems, and 
therefore has demonstrated the plausibility 
of the relative velocity constraint. 

LIMITATIONS OF THE NATURAL CONSTRAINTS 

The models described above have been 
relatively successful in providing the 
correct motion correspondence matches for a 
variety of apparent motion displays . 
However, it is still the case that these 
models do not provide correct solutions 
(i .e., the solutions generated by the human 
visual system) for relatively simple 
displays. This is because the principles 
exploited in these different models are not 
independently sufficient constraints on 
solutions to the motion correspondence 
problem. 

LIMITATIONS OF MINIMAL MAPPING THEORY 

As was described above, Ullman's 
(197 9 ) minimal mapping theory applies both 
the minimum distance constraint and the 
cover principle. Both of these constraints 
lead to empirical limitations of the model. 
For example, the results of Dawson (1987) 
indicate that perceptions of motion 
competition displays are sensitive ~o 
patterns of relative motion. This 
sensitivity is not incorporated into 
Ullman's cost function, which only measures 
the magnitude of potential motion 
correspondence matches. 

142 

The cover principle provides another 
set of problems for minimal mapping theory. 
There is reason to believe that the cover 
principle may not always hold for human 
perceptions of apparent motion. 
Specifically, the cover principle may not 
be applied in cases where there is 
independent visual evidence for the 
presence of an occluding edge. Sigman and 
Rock (1974) demonstrated that the presence 
of occluding surfaces is an important 
variable in the perception of apparent 
motion. If the disappearance of an element 
cannot be accounted for by the presence of 
an occluding surface, than an attempt is 
made to cover the e l ement with a motion 
correspondence match (i .e., if possible, 
the disappearance of an element from one 
image location is dealt with by asserting 
that the element moved to a new location). 
If the disappearance of an element can be 
accounted for by the presence of an 
occluding surface, then a motion 
correspondence match is not computed for 
the element ( i.e., it is not covered, and 
is therefore not seen to move). 

The evidence above suggests that the 
cover principle might only hold in the 
absence of visual evidence for occluding 
edges. However, this too is not correct. 
Consider the motion competition display 
depicted in Figure 1. According to the 
cover principle, both Frame II elements 
must be covered by ~otion correspondence 
match, and therefore minimal mapping theory 
is required to generate the solution 
depicted in Figure l(a). However, it is 
relatively easy to create a situation in 
which human observers see the motion 
depicted in Figure l(b): one element is 
seen to move in one direction, while 
another element suddenly appears in view. 
Note that this percept violates the cover 
principle as implemented in minimal mapping 
theory, and that this occurs in a display 
where no visual evidence for occluding 
edges is present. 

LIMITATIONS ON THE RELATIVE VELOCITY 
CONSTRAINT 

Dawson's (e . g . , 1986) discrete 
relaxation labeling model also has 
difficulty accounting for some basic 
empirical facts about apparent motion 
perception. This is because the only 
information used in this model to constrain 
solutions to the problem is relative 
velocity information. 

For instance, Dawson (1987) reports 
that while perceptions of motion 
competition displays are affected by the 
presence of a moving context, subjects are 
still sensitive to interelement distance. 
Indeed, if this were not the case, then the 
threshold measurements used to contradict 
Ullman's (1979) independence hypothesis 
could not have been obtained . However, 
sensitivity to interelement distances was 
not built into Dawson's algorithm. 



A more striking example of the type of 
difficulty facing this model is revealed by 
considering a general limitation on 
relative velocity information. Any display 
that has only one Frame I element does not 
have any relative velocity information, 
because the relative velocity constraint 
requires maximizing the similarity of 
motion direction of at least two Frame I 
elements. Thus Dawson's (e.g., 1986) model 
cannot compute the correct motion 
correspondence matches for displays like 
the competition display depicted in Figure 
1, or for the simplest apparent motion case 
in which there is only one element in both 
frames of view. 

THE SIMULTANEOUS APPLICATION OF CONSTRAINTS 

Underlying the discussion in the 
previous section are two basic points: 
First, constraints like the minimum 
distance principle and the relative 
velocity constraint are not individually 
sufficient to account for all solutions to 
the motion correspondence problem. Second, 
the cover principle provides numerous 
difficulties for a theory of motion 
correspondence processing. It would appear 
that an adequate theory of motion 
correspondence processing would require 
that (i) the cover principle be abandoned, 
and (ii) both the minimum distance and the 
relative velocity constraints be applied 
cooperatively. This section describes a 
particular model that meets these 
requirements . 

INITIAL REPRESENTATION 

The model takes as input the (x, y) 
coordinates of elements in Frames I and II 
of an apparent motion display. On the 
basis of this information, a local, 
parallel network of connected processing 
units is constructed. Each of the units in 
the network represents one of the possible 
motion correspondence matches for the input 
display. Thus if the display has N 
elements in Frame I, and M elements in 
Frame II, the network that Is constructed 
has N * M processing units. Each of these 
units can have an activation level ranging 
in value from 0.00 to 1.00 . The activation 
state of the set of units in the network at 
time tis represented as the column vector 
~(t). 

At the start of processing, each unit 
is assigned an activation level of 0.50. 
At the end of processing, the activation 
level of each unit will be either 1.00 
(indicating that the motion correspondence 
match represented by the unit is included 
in the solution to the problem) or 0.00 
(indicating that the motion correspondence 
match represented by the unit is not 
included in the solution to the problem) . 
Note that with this type of representation, 
the cover principle is not enforced. Any 
of the units can be driven to 0.00 at the 
end of processing, which would not be 

143 

permitted under the cover principle. 

The processing units are linked to one 
another by connections of varying 
strengths. Connections can be excitatory 
or inhibitory, and are symmetric (namely, 
the strength of the connection from unit 
'a' to unit 'b' is equal to the strength of 
the connection from unit 'b' to unit 'a'). 
Connection strengths are defined a priori 
in the model by applying the uniqueness, 
the proximity, and the relative velocity 
constraints. In principle, the network is 
"massively parallel", for it is possible 
for each of its units to be connected to 
every other unit . As a result, the 
connections among the units can be 

represented by the square matrix~' which 
has N * M rows and columns . In practice, 
however, some units may not be connected to 
one another (i.e., the connection between 
them has a strength of 0 . 00). This is 
because the constraints used to define the 
connections are applied locally, as is 
described below . 

DEFINING CONNECTIONS USING THE UNIQUENESS 
CONSTRAINT 

Let U be a square matrix that 
represents the connections among units 
defined by only applying the uniqueness 
constraint . Recall that this constraint is 
used to inhibit the splitting or fusing of 
display elements during perceived movement. 
The matrix U is constructed in the 
following manner: all units that represent 
motion correspondence matches emanating 
from the same Frame I element are given 
mutually inhibitory connections of strength 
equal to -1.00. For instance, if units i 
and j represent matches originating from 
the same display element, then ~;j and ~ji 

are both set to - 1 . 00. As well, all units 
that represent motion correspondence 
matches terminating at the same Frame II 
element are given mutually inhibitory 
connections of strength equal to -1.00 . 
All other connections in U are given a 
strength of 0.00 . 

DEFINING CONNECTIONS USING THE PROXIMITY 
CONSTRAINT 

Let P be a square matrix that 
represents - the connections among units 
defined by only applying the proximity 
constraint. Recall that this constraint is 
used to encourage the selection of shorter 
motion correspondence matches . P is 
defined by creating a single excitatory 
connection between each unit and itself; as 
a result P is a diagonal matrix . The 
strength of-the connection ranges from 0.00 
to 1.00, and is a function of the length of 
the motion correspondence match represented 
by the unit . The shorter this match is, 
the stronger is the e xcitatory connection. 
Following Ullman's (1979) analysis of the 
proximity constraint, an exponential 
function is used to map match length onto 



.I 

I 

I 

I 

.I 
I 

connection strength: P;; = EXP ( - 1 . 00 * 
scale * length of motion correspondence 
mat ch i), where the "scale" variable is 
simply used to s harpe n or flatten the 
differences between connection strengths. 

DEFINING CONNECTIONS USING THE RELATIVE 
VELOCITY CONSTRAINT 

Let V be a square matrix that 
represents - the connections among units 
defined by only applying the relative 
velocity constraint. Recall that this 
constraint is used to ensure that e l ements 
near one another in Frame I are seen to 
move with similar velocities. V is 
constructed in the following manner: 
First, neighbourhood relationships among 
matches are determined . Two matches are 
neighbours if and only if they emanate from 
different Frame I elements which are 
s ufficiently near one another to fall 
within a specified computational radius 
(equal to 5.00 distance units in the 
current implementation). Second, the 
relative velocities for all pairs of 
neighbouring matches are computed by taking 
the Euclidean distance between the 
endpoints of the matches after being 
centered to a common origin. This distance 
is used to create the connection between 
the units representing the neighbouring 
matches . If matches i and j are neighours, 
then ~ij = 2.0 EXP ( -1.00 *scale* 
Euclidean distance between matches i and 
j). Thus it is possible for relative 
velocity connections to be inhibitory or 
excitatory, ranging in possible strength 
from -1.00 to 1 . 00. 

DEFINING THE OVERALL CONNECTIVITY MATRIX 

The square matrix W represents the set 
of connections among units defined on the 
basis of the simultaneous application of 
the three constraints defined above. Wis 
simply defined as the scaled sum of-the 
three individual connectivity matrices : W = 
scale* ( U + P + V) . The main effect-of 
the scale- tnat -is used is simply to 
increase or decrease the number of 
iterations requi red for the network to 
converge. In the exampl es described below, 
the sca l e va lue used was 0.02. 

Note that this approach to defining 
the · overall set of connections allows 
f uture constraints to be incorporated into 
the model . For instance, some current work 
on apparent motion is focusing upon the 
role that geometric and topological 
constraints may play in the motion 
correspondence process (e.g., Chen, 1985; 
Green, 1986). These types of contraints 
could be used to define new connectivity 
matrices, which in turn could be simply 
added into W. 

UPDATING THE ACTIVITY OF THE UNITS 

The activity vector a is iteratively 
updated by using Was a source of positive 

144 

feedback (e.g., Anderson, 
Ritz, & Jones, 1977) . 
equation that is applied is: 

Silverstein, 
The updating 

~ (t+l) = ~ (t) + w * ~(t) 

In addition, the values 
a simple cutoff ru l e -
to range from 0.00 to 
cutoff ru l e is applied 
"brainstate- in-a-box" 

in a are bounded by 
they are restricted 
1.00. A simi l ar 

in Anderson et al ' s 

model of categorical perception. A 
mathematical property of the "brainstate
in-a-box" model {whic h is a consequence of 
the symmetric structure of W) i s that 
eventually a is driven into a state in 
which a ll of the units are at one of the 
cutoff activity levels (i .e. , either 0 . 00 
or 1.00 in the motion correspondence model 
described above ) . Thus this iterative 
application of positive feedback will 
result in a converging to a state that 
represents a solution to the motion 
correspondence problem. 

PERFORMANCE OF THE MODEL 

The model is capable of generating the 
correct set of motion correspondence 
matches for a variety of apparent motion 
displays. Figure 2 depicts some example 
solutions for di,sp l ays involving various 
rotations and translations of elements. 
These solutions are "correct" in the sense 
that they are generated by the human visual 
system. These solutions are also generated 
by minimal mapping theory (Ullman, 1979) 
and by Dawson's {1 986) discrete relaxation 
model . 

The model also demonstrates 
significant improvements in performance 
over Dawson's {1 986) discrete relaxation 
model. The c urrent model computes the 
correct solutions for displays that this 
previous model could either not process, or 
for which it generated incorrect solutions. 
These results are depicted in Figure 3 . In 
all cases, this improvement in performance 
can be attributed to the fact that 
proximity information is available in 
addition to relative velocity information. 
The model also deals with displays for 
which minimal mapping theory generates 
incorrect solutions (see Figure 4). One 
reason for this is sensitivity to relative 
velocity information . Another reason for 
this is that the cover principle is not 
operating in the multiple constraint model. 

The model is also capable of 
generating correct solutions to symmetric 
patterns of apparent motion (see Figure 5). 
Attneave {1974) noted that human 
perceptions of these types of displays 
varied predictably as a function of whether 
the number of Frame I elements was odd or 
even. Attneave suggested that this 
empirical finding would be very difficult 
for a data-driven motion correspondence 



algorithm to emulate. It would appear that 
this result can be accounted for by the 
simultaneous application of three different 
natural constraints on apparent motion. 

REFERENCES 

Anderson, J.A., Silverstein, J., Ritz, S., 
& Jones, R. (1 977) . Distinctive 
features, categorical perception, and 
probability learning: Some 
applications of a neural model. 
Psychological Review, 84, 413-451. 

Attneave, F. (1 974) . Apparent movement and 
the what-where connection. 
Psychologia, ~, 108-120. 

Bridgeman, B. (1972). Visual receptive 
fields sensitive to absolute and 
relative motion during tracking. 
Science, 178, 1106-1108. 

Burt, P., & Sperling, G. (1 981). Time, 
distance, and feature trade-offs in 
visual apparent motion. Psychological 
Review, 88, 171-195. 

Chang, J . , & Julesz, 
Cooperative phenomena 
movement perception 
cinematograms . Vision 
1781- 1788. 

B. (1984) . 
in apparent 

of random-dot 
Research, 24, 

Chen, L . (1985). Topological structure in 
the perception of apparent motion. 
Perception, 14, 197-208. 

Cutting, J . , & Proffitt, D. (1982). The 
minimum principle and the perception 
of absolute, common, and relative 
motion. Cognitive Psychology, 14, 211 -
246 . 

Dawson, M. (1986). Using relative velocity 
as a natural constraint for the motion 
correspondence problem. U. W.O. Centre 
For Cognitive Science Technical 
Memorandum No . 27. 

Dawson, M. (1987) . Moving contexts do 
affect the perceived direction of 
apparent motion in motion competition 
displays. Vision Research, ~, 799 -
809. 

Dawson, M. , & Pylyshyn, Z. (1986). Using 
relative velocity information to 
constrain the motion correspondence 
problem: Psychophysical data _ and a 
computational model. Proceedings of 
the Sixth Canadian Conference on 
Artifical Intelligence. Toronto : John 
Wiley & Sons. 

Dawson, M. , & Pylyshyn, z . (1988) . Natural 
constraints on apparent motion. In Z. 
Pylyshyn ( Ed . ) Computationa~ P:oc~sses 
In Human Vision: An Interdisciplinary 
Perspective. Norwood, N.J. : Ablex, in 
press. 

145 

Frost, B., & Nakayama, K. (1983). Single 
visual neurons code opposing motion 
independent of direction. Science, 
220, 744-745. 

Gage 1 , W . ( 19 7 4 ) . 
in visual 
Journal Of 

The adjacency principle 
perception. Quarterly 

Experimental Psychology, 
26, 425-437. 

Green, M. (1 983 ) . 
facilitation of 
real motion. 
861-865. 

Inhibition and 
apparent motion by 

Vision Research, -~~, 

Green, M. (1986) What determines 
correspondence strength in apparent 
motion? Vision Research, ~, 599--607. 

Hammond, P., & MacKay, D. (1977) . 
Differential responsiveness of simple 
and complex cells in cat striate 
cortex to visual texture. Exploratory 
Brain Research,~, 275-296. 

Johansson, G. (1950). Configurations I n 
Event Perception. Uppsala, Sweden: 
Almqvist and Wiksell. 

Kaji, s., & Kawabata, N. (1985). Neural 
interactions of two moving patterns in 
the direction and orientation domain 
in the complex cells of cat's visual 
cortex . Vision Research,~, 749-753. 

Kolers, P. ( 1972). Aspects Of Motion 
Perception. Oxford: Pergammon Press. 

Krumhansl, C. ( 1984) . 
processing of visual form 
Perception,~, 535-546. 

Independent 
and motion. 

Marr, D. (1982) . Vision . San Francisco: 
W.H . Freeman. 

Marr, D. , & Poggio, T. (1976) . Cooperative 
computation of stereo disparity. 
Science, 194, 283-287. 

Proffitt, D., & 
Perceiving 
configurations 
Perception & 

cutting, J . ( 1979). 
the centroid of 

on a rolling wheel. 
Psychophysics, ~, 389-

Proffitt, D., & Cutting, J . (1980). An 
invariant for wheel-generated motions 
and the logic of its determination. 
Perception,~, 435 - 449. 

Sigman, E., & Rock, 
Stroboscopic movement 
perceptual intelligence. 
I, 9- 28. 

I. (1974). 
based on 

Perception, 

Ullman, S. (1979). The Visual 
Interpretation Of Motion. Cambridge, 
Mass .: MIT Press. 



I 

.. :I 

•~--~01---·
A 

• o,..__~•-

Eigurli! l. 

Solutions to a motion correspondence display, where empty squares 
indicate the positions of Frame I elements, and filled squares 
indicate the positions of Frame II elements. (a) Solution 
required by enforcing the cover principle in minimal mappin q 
theory. (b) Human perceptions of the display . 

D-11 
D-11 

A 

C 

Figure 2. 

Performance of the model with the 
t t o o exponential scaling parameters 

se o. • 75. In all cases, these solutions ar 
human visual system. ( a ) Translation. e generated by the 
Translation with rotation . ( b ) Ternu s translation. ( c ) 

0 • • D • A I • D 
a-a 

• D 

D-11 
f. 

figure 3. 

Improvements of the current model over Dawson's (1986) 
model. The previous model could not generate any 
correct solutions. (a) Translation of a single element. 
split of a single element. Cc ) Shearing movement. 

146 

discrete 
of these 

( b) The 



~ ~ 
~ r 

D-1111 D-11 

• ~ B ~ 

D--111 D-11 
Figure 4. 

Improvements of the current model ovar minimal mapping thaory . 
The current model generates the correct solutions on the laft; 
minimal mapping theory generates the incorrect solutions on the 
right. 

~ ~ 
~ °"' A 

I 

~ 
~ 

C 

Figur~ 

The current model generates the 
symmetric patterns of motion, 
human visual system. Note that 
the cover principle. 

AUTHOR'S NOTES 

The research reported in this paper was 
supported by NSERC operating grant No. 
A2038 awarded to the author. 
Correspondence should be addressed to Dr. 
Michael Dawson, Centre For Advanced Study 
In Theoretical Psychology, The University 
of Alberta, Edmonton, Alberta, Canada T6G 
2E9. 

147 

5. 

"minimal cover" solution for 
which is also generatad by the 
this is done without enforcing 



- I 

Structure Recognition by Connectionist Relaxation: 
Formal Analysis 

Paul Cooper 
Department of Computer Science 

University of Rochester 
Rochester, NY 14627 

cooper@cs.rochester.edu 

Abstract 

A formal description is given of a connectionist 
implementation of discrete re laxation for labelled 
graph matching. The app li cation is fast para ll e l 
indexing from structure descriptions. The network is 
limited by comp lexity considerations to the detection 
and propagation of unary and binary consistency 
constraints. 

The convergence of the a lgorithm is proven. The 
desired behavior of the a lgorithm is formally specified, 
and the fact that the network correctly computes this is 
proved. Explicit and exact space and time resource 
requirements are developed. 

Keywords: connectionist network, attributed graph 
matching, discrete relaxation, constraint propagation 

1. Introduction 
This paper provides a formal description and 

analysis of a connectionist network that matches 
labelled graphs in a limited way. The network is a 
specialized and massively parallel implementation of 
discrete relaxation or constraint satisfaction which 
propagates unary and binary constraints [Mackworth 
1977, Humme l and Zucker 1983]. 

The network was designed for the indexing task in 
recognizing structured objects [Shapiro and Haralick 
1981, Feldman 1985a]. The utility of di scre te 
relaxation in such vision app lications is well known 
[Waltz 1975, Davis and Rosenfeld 1981, Hinton 1977, 
Kitchen and Rosenfeld 1979]. The experimenta l 
performance of the network described here was 
investigated in earlier work involving the recognition 
of Tinker Toy objects in images [Cooper and Hollbach 
1987]. 

In this paper, the complexity and correctness 
characteristics of the network are demonstrated . 
Following a detailed description of the network design 
and operation, the convergence of the algorithm is 
proven. The desired behavior of the algorithm during 
relaxation is formally specified, then it is demonstrated 
that the network conforms to this desired behavior. 

148 

Complexity ana lysis shows that the network requires 
O(N4

) space, where N is the number of nodes in the 
graphs to be matched. Worst case time complexity is 
linear in the number of nodes and arcs, a l though 
convergence in a small constant number of time steps is 
more likely. The feasibi lity of the a lgorithm given its 
resource requirements is discussed. 

2. Network Design 
In this section a connectionist network design is 

given that can represent two labelled graphs, and a ll 
possible matches of the graphs to each other. As in a ll 
connectionist implementations, the l ack of an 
interpreter suggests the adoption of the unit/value 
principle - every value which can play a role in the 
computation is represented exp licitly as a unit. Of 
course, the network must be of finite size. Therefore, a 
size bound N on the number of nodes in the graphs is 
required. Aside from the this size limitation, the 
network will be universal for any pairwise graph 
matching problem. 

Units representing the nodes of the graphs are 
designated pi. A unit representing an arc between 
nodes Pe and Pr is designated rer· Only the nodes are 
labelled, and the label associated with pi is designated 
Ii. The Ii are the output of the Pi, and are taken to be 
integers between 1 and 10. Superscripts are sometimes 
used to refer to particular graphs, ie. QA, It, re/. 

Every possible pairing of nodes and arcs is 
represented explicitly by a unit. The pairing of node 
p A with node p 8 is a unit designated m.. The units 

I J IJ 

which represent arc pairings are designated n r h (for 
e ,g 

the pairing of arcs re/ and rgh 8 ) . These units are also 
refered to as node matching units and arc matching 
units, respectively. 

These sets of uni ts are best conceived of in terms of 2 
arrays, as in Figure 1. The left-hand array represents 
the nodes of both graphs, and all possible node pairings. 



The right-hand array represents the arcs of the graphs, 
and a ll possible arc pairings. If exactly one unit in each 
row and column of each array were active, this would 
represent an isomorphism between the 2 graphs. 

The sets of units are connected in three logically 
independent ways. All connections are symmetric, 
with weights of unity. 
Graph Input Connections 

a ll p A connect to all m for all j 
I IJ 

a ll p 8 connect to all m . for a ll i 
J IJ 

a ll r rA connect to all n r I for a ll gh e e ,g 1 

all r h8 connect to all n 1. 1 for a ll ef g e .g , 

These connections a llow the representation of the 
input graphs to interact with the matchings units. 
Winner -take -all Connections 

Each m and n 1• 1 participates in a winner-take-all 
IJ C ,g 1 

competition (WTA) against the other units in its row 
and column. There are a variety of implementations of 
WTA nets, any of which is suitable. For simplicity in 
describing unit functions later, a WTA network is used 
in which each unit compares itself to the maximum of 
all the others. 

each m is connected to m .k for all k and mk. for 
IJ I j 

all k 
each nef,gh is connected to nef, ab for all ab and 
n b h for all ab a ,g 

Cross -array Connections 
Because the arcs are undirectional, each arc pairing 
n r I is consistent with four node pairings m . A set of 

8 ,g 1 IJ 

connections from one array to the other reflect this fact. 
each n r I connects to exactly 4 m as follows: 

e 1g 1 IJ 

(i) i = e &j=g 
(ii) i = e& j =h 
(iii) i = f&j=g 
(iv) i=f&j = h 

With the piA designated by numerals , the p/ 
designated by letters, and the re/ and rghB designated 
correspondingly, Figure 1 demonstrates these cross
array connections. 

A 

€J 00 0 
2 0 00 0 
3 0 80 0 
4 o e ·· o 

B-D C-D 

000 
000 
000 

2-3 0 00 0 0 0 
2-4 0 00 0 0 0 
3-4 o oo e o o 

Figure 1: node matching array, arc matching arra y, and 
e xampl e constraint propaga tion links 

149 

3. Network Operation 
Now that the configuration of the network is 

established, the relaxation process which matches the 
graphs is described. There are three major aspects to 
the computation. First, the network is initialized to 
compute the particular problem instance. Second, 
loca l uniquenesses are found in both graphs and 
matched. (These are referred to as match "seeds") . 
Finally, matches are propagated as far as possible. 

The relaxation itself is a synchronous computation. 
Each time step consists of 2 substeps. The first substep 
is the constraint propagation phase. In this substep, 
node matching units send messages to consistent arc 
matching units, and vice versa. The second substep is 
the winner-take-all contest. Units which win the 
contest signify matches between particular nodes or 
particular arcs. Losers signify incorrect matches; these 
units eventua lly turn off. As th e computation 
proceeds, the high ("matched") potential propagates 
bach and forth, growing larger and larger loc al ly 
consistent matches from the seed matches. The match 
terminates when the largest possible number of loca lly 
consistent matches have been determined. 

3.1 Internal Unit Structure 
The definitions of Feldman and Ballard (1982] are 

adopted as the formal basis for the connectionist units. 
Thus, roughly, units have inputs, state, potential or 
activation, and output. 

Graph units, including the Pt p/ re/ and rg1, 8 , are 
very simple. They each have a set of discrete states 
{off, on}. The potential corresponding to state off is 0 
for the pi and ref' while the on potential is 1 for the ref 
and equal to Ii for the pi. Unit output is equal to unit 
potential. These units are locked in one state (and 
potential) or the other for the duration of the 
computation. Which units are active depends on the 
particular instance of GA and G8 . 

The matching units are more complex. Each ui 

(where ui is an mer or nef.gh) is a tuple < Si, Xi, Di > 
consisting of 

Si - the unit's state, where Si E { off, contending, 
bound} 

Xi - the unit's potential (equal to its output), 
where Xi E { 0, 1, 2, ... 20} 

Di - a set of data inputs to the unit 
The data inputs Di are conveniently divided into sites, 
with a vector of inputs at each site. Thus: 

Di = { Dgraph' DWTA' Deross-array} 
corresponding to the 3 types of connections attached to 
each matching unit. Note that the same subscript is 
used to designate the unit, sta te, and potential. Thus, 



·I 

· I 

.. 1 

the state of a typical node matching unit mii is 
designated simply sij" 

3.2 Unit Functions 
The state, potential and output of a unit are 

generally functions of the previous state, previous 
potential, and current input. This computation, the 
unit function, is now specified for the matching units. 
(The other units do not change state, so their unit 
function is trivial). The same unit function is 
computed by each matching unit uii independently. 

The unit functions are different during 
initialization and during relaxation. The unit function 
for initialization is given first. For each unit uii,' 2 

specific data inputs of Dg,aph are identified and 
designated as d and d. These inputs are the outputs 

I J • 
from the graph units in the row and column of the unit 
u . With these conventions, the unit function for a 

IJ 
node matching unil is: 

if initialization step then 
ifd = d then 

I J 
S (- contending 

IJ 

x ii -1 
else 

s ij (-off 
xii -o 

Note that while the activation functions for the node 
and arc matching units are the same, the effect is 
different for the two kinds of units. In the node 
matching array, a ll units representing matches 
between nodes with the same label are initialized to the 
contending state . In the arc matching array, all 
possible arc matches (corresponding to arcs which 
actually exist in this problem instance) are activated. 

Because the network is universal for any graphs up 
to size N, unless the input graphs are very dense, 
relatively few of the available units are active after 
the initialization step. 

The unit function for the matching units during a 
regular processing step is more complex. Recall that 
the computation is synchronized, with two sub-steps 
per time step. The unit function must therefore access 
a time state variable as well as previous state and a 
subset of current inputs. The unit function for the node 
matching units is: 

if Si= contending 
if winner-take-all substep then 

if xi > max ( DWTA ) then 
S (- bound 

I 

xi - p - 5 
else 

if x i < max ( DWTA ) then 

150 

Si +-off 
X -o 

I 

else 
Si (- contending 
X -1 

I 

else if propagation substep then 

Xi (- ~ d where d E D cross-array 

The arc matching units have the same unit function as 
the node matching units, except the potentials 
corresponding to the states contending and bound are 1 
and O instead of p and 1. These potentials were chosen 
for convenience in the proofs which follow in the 
Appendix. 

4. Correctness 
To show the network correctly computes what is 

desired, it is necessary to first show that it converges. 
The nature of the units and the way they change state 
constrain the network so it has a convex state space, as 
the following proof demonstrates. 

Theorem l: The Network Converges 
Proof: 
Clearly, only the matching units mii and nef.gh are 
relevant. At the completion of each time step, each 
such unit u has state s E { off, contending, bound }. 
Define a global goodn~ss measure or total for the 
network T = ~- T as the sum of the individual unit 

I I 

goodnesses, where 
T = 1 if S = bound 

I I 

Ti = 0 if Si = off 
T

1 
= -1 ifSi = contending 

Now, units in state bound and state off cannot change 
state. Therefore, if a unit ui changes state, Ti must 
increase. Therefore, T is a monotonically increasing 
function. But the number of units is a finite constant, 
so T can only increase a finite number of times. 
Therefore, the network must eventually converge to a 
stable state. 
QED 

The next step is to show that once the network has 
converged, it is in the desired state. One way to do this 
is to show that at each time step the a lgorithm does 
what is expected, and that it can do no more when it 
converges. Therefore, the proof of correctness is 
derived from understanding the nature of the 
algorithm, formally specifying this, and showing that 
the network state change conforms to the goal. 

The algorithm is designed to detect unique matches 
between two labelled graphs, and to propagate these 
matches as far as symmetry and consistency allow. 
Interestingly, the criterion "as far as symmetry and 
consistency allows" is a function of time. Following 



this intuitive structure, the proof proceeds by defining 
the following: 

unique unary (node) matches 
unique binary (arc) matches 
an arc matchable by propagation at time t 
a node matchable by propagation at time t 
matchable graph elements 

Formal yet unsurprising definitions for these 
designations are given in the Appendix. For example, 
a unique unary node match occurs when there exists a 
node in the candidate object graph with a labe l that is 
unique to that graph, there exists a node in the target 
model graph with a label unique to that graph, and the 
two unique labels agree. The key to defining the nodes 
and arcs matchable by propagation at time t is 
formalizing the intuitively straightforward concepts of 
consistency and symmetry. Node matches are 
consistent with arc matches if each node is one end of 
the matched arc. 

That the network can correctly execute each 
necessary substep is shown in the Appendix in the 
following Lemmas: 
Lemma 1: The network detects unique node matches 
Lemma 2: The network detects unique arc matches. 
Lemma 3: The network assigns a unique consistent 
match to arcs matchable at time t by time t+ 1, (if the 
computation has not a lready terminated). 
Lemma 4: The network assigns a unique and 
consistent match to nodes matchable at time t by time 
t+ 1, (if the computation has not already terminated). 

The proof of each Lemma follows in a 
straightforward way from the appropriate definitions 
as above, and the unit functions. With these Lemmas 
available it is a simp le matter to show the following. 

Theorem 2: The network assigns a unique consistent 
match to every matchable graph element. 
Proof: (Contradiction) 
Assume the network converges in K steps, so TK = TK-l. 
Assume that there exists a matchable graph element 
which is not assigned a match. By Lemmas 1 and 2, the 
network assigns matches for the unary and binary local 
uniquenesses, so it cannot be these. By Lemmas 3 and 
4, the network matches those e lements which are 
matchable by propagation at time t < K. Therefore, if 
a matchable graph element exists that is not matched, 
it must be matchable by propagation for some t > K-1, 
say t=C. To reach this state at t=C (which is different 
from the state at t=K-1), the network must change 
state during every timestep from t =K-1 to t=C. But 
TK = TK·l, and the network does not change state after 

15 1 

t=K-1. 
QED 

3.1 Correctness: Isomorphisms and Near Matches 
Suppose the graphs are the same size. If all the 

nodes and arcs of GA are matchable (with matchable 
defined as in the Appendix), the matching computed by 
the network is the unique isomorphism. 

But suppose the sizes are equal, yet more than one 
isomorphism exists between the graphs. In this case, 
not a ll the graph elements are matchable. For this to be 
true, there must exist some kind of local symmetry in 
the graph, beyond which the constraint of consistent 
matching cannot propagate. In this situation, a ll 
(ambiguous) isomorphic matches between the graphs 
are represented in the final state of the network, by 
competing matching units whose state has stabilized at 
contending. Clearly, if necessary, case ana lysis could be 
used to further disambiguate. The worst case for 
symmetric ambiguity occurs when there are no match 
seeds. Then, no matchable local uniquenesses exist in 
the graphs at all. This degenerate situation is not 
likely to occur in a visual recognition problem. 

Finally, we must consider what happens if the 
graphs are completely dissimilar. That is, either their 
sizes differ, or their structure differs, or both. It is sti ll 
true that the network computes all seed matches, and 
propagates each match as far as consistently possible. 
The final matching has the largest possible locally 
isomorphic ~ubgraphs matched, with each containing a 
seed match . 

4. Complexity 

4.1 Space Complexity 
In analyzing the comp lexity of a connectionist 

network, the most important characteristic is the 
number of units required for the computation. But the 
fixed size of the uni versa! network is clear: 

number of node units pi= N 
number of node matching units m = N 2 

IJ 

number of arc units ref= -tN(N - 1) 
number of arc matchings units n r h = [ -tN(N - 1) )2 

e .g 
So the total number of units is O(N4

). The number of 
connections is also O(N4

), if a reasonably efficient 
implementation is used for the winner-take-all 
networks. The O(N2) fan-out can be circumvented by 
using output trees. 

4.2Time Complexity 
Suppose we designate the number of nodes plus the 

number of arcs in a graph A as SIZE A, and simi larly for 
graph B. 



.. , 

.. 1 

I 

Theorem 3: The network converges in K time steps, 
where K < = min(SIZE", SIZE 13 ). 

Proof: 
Consider the smaller of the two graphs if they have 
unequal sizes, and suppose without loss of generality 
that it is graph A. The maximum time it could take for 
a seed match to propagate to some matchable graph 
element is SIZEA steps., It cannot take longer because 
no graph element can be matched twice (ie. cycles 
cannot be traversed) , and propagation only occurs 
when matches are being made. Finally, whi le graph B 
might have a longer path, propagation can only occur 
for the shorter length of time that the elements of A are 
being matched. 
QED 

One of the interesting aspects of this result is what it is 
not. That is, one might expect that the longest 
propagation path would be equa l in length to the 
longest path between any 2 nodes in the graph (the 
diameter of the graph). This is not true, however, 
because propagation depends not only upon the path 
taken, but also upon when the propagation steps occur 
and whether or not symmetries are present at a given 
time. Sometimes a node becomes matchable by a very 
roundabout propagation path. 

Of course, the occurence of the worst case is highly 
unlikely. With this parallel implementation, it is 
much more reasonable to suppose that the algorithm 
converges in at most a small constant number of time 
steps. Experiments [Cooper and Ho llb ach 1987) 
confirm this. 

4.3Network Complexity: Feasibility 
The feasibility of an algori thm can judged from its 

complexity. The network is N 4 in units and 
connections, and guaranteed to require less than SIZE" 
steps. For sma ll N the space requirement is 
reasonable, especially if the number of required units is 
compared to that available in the human brain. For 
larger N, an obvious way to reduce space complexity 
would be to use hierarchical structure representations. 

The feasibility of the design has also been 
demonstrated constructively , in the experiments of 
Cooper and Hollbach [1987). Even for experiments 
with N about 10, it would be quite straight-forward to 
implement a 10,000 unit network. Such a network 
implemented on a parallel processor such as the 
Butterfly can even be expected to be simulated in 
reasonable time [Fanty 1986). 

152 

5. Discussion and Conciusions 
The central contribution of this paper has been to 

describe a connec tioni st implementation of discrete 
relaxation for labe lled graph matching, and prove the 
correctness of its operation. In genera l, discrete 
relaxation is we ll understood [Mackworth 1977, 
Mackworth and Freuder 1985, Hummel and Zucker 
1983, Mohr and Henderson 1986) and its utility has 
been demonstrated, especially in vision app lications 
[Waltz 1975, Davis and Rosenfeld 1981, Hinton 1977). 
The structure recognition or labelled graph matching 
application for relaxation has a lso been exp lored 
[Kitchen and Rosenfeld 1979), but not with a parallel 
implementation. The specifics of the connectionist 
implementation illuminate some interesting issues. 

The massive ly parallel implementation of discrete 
relaxation represents one end of the time/space 
complexity spectrum. Advantageo usly, expli cit and 
precise time and space complexities are easy to derive 
from the design, and have been given above. As with 
most parallel implementations, space costs have been 
traded off in favor of execution time, yet the space 
complexity remains feasible. The explicit nature of the 
implementation a lso makes extending the a lgorithm in 
parallel trivial, and its resource requirements remain 
obvious. 

It is a lso interesting to observe how working within 
the connectionist paradigm constrains a design. The 
requirement that there be no interpreter means each 
relevant value must be represented by a unit. This 
suggests in the context of the graph matching problem, 
that representing matchings for ternary or higher 
relations would become prohibitively expensive. 
Furthermore, bandwidth limitations on the messages 
the units can send each other (inspired by neural 
communication bandwidth limitations) restrict the 
character of what can be computed with unary and 
binary constraints. For example, it would be difficult 
to modify the algorithm so that more than one unary 
predicate could be used (eg. [Kitchen and Rosenfeld 
1979)). Likewise, bandwidth limitations restrict the 
potential utility of the unary predicate itself. 
Interestingly, the overall resource requirements of the 
algorithm suggest an upper bound on the number of 
parts a structure representation can have before a more 
efficient representation such as a hierarchy is required. 
Structure representations with more than a small 
constant number of parts, like in the small double 
digits, would become unwieldy. 

The paper contains somewhat stronger and more 
specific results about what can be matched than are 



typically found (cf. the definitions of matchable by 
propagation for nodes and arcs). These results were 
obtainable because the exact nature of the algorithm 
was very tightly constrained (eg. only unary and 
binary constraints, with propagation occurring only 
under very specific conditions). 

The particular performance characteristics of the 
algorithm suit the task problem - fast indexing from 
structure descriptions - very well. With this 
implementation, the theoretical speed one expects from 
massively parallel designs is available. Complete 
recognition (with verification) requires that a complete 
correspondence between object and model be 
established, and this algorithm is not guaranteed to do 
so. But it can be used to quickly reject large numbers of 
model candidates, so later more expensive processes 
can be more confidently and efficiently applied to the 
remaining candidates. 

There are two obvious directions to develop the 
work. First, one could attempt to generalize the 
algorithm beyond the application for which it is 
designed. In recent work, Swain and Cooper [1988] 
addressed this issue by developing a parallel 
implementation of the classic and generally applicable 
constraint satisfaction algorithms of Mack worth [1977] 
and Hummel and Zucker [1983]. In Swain and Cooper 
[1988], correctness characteristics are inherited from 
the original formulation of the algorithm, instead of 
requiring a separate proof. 

A major limitation of the current design that is 
shares with all discrete relaxation algorithms is its 
discrete nature, requiring exact input. In future work, I 
plan to investigate indexing from structure with 
uncertain and inexact structure descriptions. 
Connectionist implementations seem to be natural 
hosts for such problems, although they often involve 
state spaces with local minima, and thus require 
optimizations [Hopfield and Tank 1985]. The 
implementation and proof given here provide a basis 
from which to investigate such more general indexing 
problems. 

Acknowledgements 
Jerry Feldman was an indispensable help throughout. 
Paul Chou provided invaluable last-minute 
motivation, suggestions and criticism. Nigel Goddard 
and Susan Hollbach assisted in the original work. 
Mike Swain pushed me to the next step. 
This work was supported by the Air Force Systems 
Command, Rome Air Development Center, Griffiss Air 
Force Base, New York 13441-5700 and the Air Force 
Office of Scientific Research, Bolling AFB, DC 20332 
under Contract No . F30602-85-C-0008. The latter 
contract supports the Northeast Artificial Intelligence 
Consortium (NAIC) . I thank the Xerox Corporation 

153 

University Grants Program for providing equipment 
used in the preparation of this paper. 

References 

Cooper, Paul R and Susan C. Hollbach. "Parallel 
Recognition of Objects Comprised of Pure 
Structure", Proceeding DARPA Image 
Understanding Workshop, L.A., February 1987 . 

Davis, L.S. and A. Rosenfeld . "Cooperating Processes 
for Low-Level Vision: A Survey", Artificial 
Intelligence, 17:245-163, 1981. 

Fanty, M. "A Connectionist Simulator for the BBN 
Butterfly", TR 164, Computer Science 
Department, University of Rochester, January 
1986. 

Feldman, J e rome A. "Connectionist Models and 
Parallelism in High Level Vision", Computer 
Vision, Graphics, and Image Processing 31, 178-
200, 1985a. 

Feldman, Jerome A. "Energy and the Behaviour of 
Connectionist Models", TR 155 , Deparment of 
Computer Science, University of Rochester, 
1985b. 

Feldman, J .A. and D. Ballard. "Connectionist models 
and their properties," Cognitive Science, 6, 205-
254, 1982. 

Hinton, G.E. Relaxation and Its Role in Vision. PhD 
Thesis, UniversityofEdinburgh, 1977. 

Hopfield, J.J. and D.W. Tank. "Neural Computation of 
Decision in Optimization Problems", Biol. Cyber. 
52: 141-152, 1985. 

Hummel, Robert A. and Steven W. Zucker. "On the 
Foundations of Relaxation Labelling Processes", 
IEEE Trans. PAMI-5, No. 3, 1983. 

Kitchen, Les and A. Rosenfeld. "Discrete Relaxation for 
Matching Relational Structures", IEEE Trans. 
Systems, Man, and Cy bernetics, SMC-9, 12 , 869-
874, 1979. 

Mackworth, A.K . "Consistency in Networks of 
Relations", Artificial Intelligence, 8:99-118, 1977. 

Mackworth, A.K. and E. C. Freuder. "The Complexity 
of Some Polynomial Network Consistency 
Algorithms for Constraint Satisfaction 
Problems", Artificial Intelligence, 25:65-7 4, 1985. 

Mackworth, Alan K., Mulder, Jan A. and William S. 
Havens. "Hierarchical Constraint Propagation: 
Exploiting Structured Domains in Constraint 
Satisfaction Problems", Computational 
Intelligence, 1: 118-126, 1985. 

Mohr, R. and T.C. Henderson. "Arc and Path 
Consistency Revisited", Artificial Intelligence, 
28:225-274, 1986. 

Shapiro, Linda G. and Robert M. Haralick. "Structural 
Descriptions and Inexact Matching", IEEE Trans 
PAMI-3, No. 5, pp . 504,519, September 1981. 

Swain, Michael A. and Paul R. Cooper. "Parallel 
Hardware for Constraint Sa ti sfacti on " . 
Proceedings of the DARPA Image Understanding 
Workshop, Boston, MA, April 1988. 



I 

Waltz, D. "Understanding Line Drawings of Scenes 
with Shadows", Th e Psychology of Computer 
Vision, McGraw-Hill, 1975. 

Appendix 

Definition l: 
a node p/ has a unique unary (node) match meg to 
node p/ iff 

(i) [ A = [ B 
e g 

& (ii) V p( [ ( e ..., = f) ::J ( le A ..., = 1( ) ] 

& (iii) V ph 8 [ ( g..., = h) ::J ( 1/ ..., = 1/ ) ] 
In the candidate object graph, there some node with a 
unique label (ie. no other node in the candidate object 
has that label). In the target model graph, some node 
has the same label , and that label is unique in the 
target model as well. 

Definition 2: 
an arc r. / = (p/ , p/ 1 has a unique binary (arc) match 

nef.gh 
to arc r 8 = (p 8 p 8 ) iff 

gh g ' h 
(i) [ A -, = [ A & [ B -, = [ B 

e f g h 

(the node labels on the arcs are not equal) 
& (ii) either[(}/=1/)&(1(= 1/)l 

or [ ( 1/ = lh 8 ) & ( 1/ = 1/) ] 
(the label pairs on the ends of the arcs match 
in one direction or the other) 

& (iii) V rw/ = (p
1
/, p/) [ (ef..., = wx) ::J 

& (iv) 

( ,(l. = lw&lr=l) 1,oe=l, &lr=l)) ] 
(the label pair in the candidate object graph 
is unique) 
V r B = (p B p B) [ (gh ..., = yz) ::J 

yz y ' z 

( ..., og = ty & th= tJ I ..., o g = 1z & 1h = l) l l 
(the label pair in the target model graph is 
unique 

Definition 3: 
an arc r. / is matchable by propagation at time t if 

(i) 3 r h
8 [S r h = contending] g e ,g 

and either 
(ii) (S = bound & Sn = bound) I eg 1 

(Seh = bound & Srg = bound) 
(both ends are consistently matched, in one 
direction or the other) 

or (iii) 1 of 4 analogous situations is true. One of the 
4 cases is described as follows (the others are 
obtained from the other 4 consistent 
permutations of the e,f,g, and h parameters): 
(Seg = bound) & 
(Sfh = contending) & 
Vx [ (x..., = h & 3 rg/) ::J (Sfx = off) l (*) 

(One end is matched, the other end has a 
consistent contending match, and the 
matched end has no symmetry with respect to 

154 

propagation. In other words, Pg 8 is connected 
to exactly 1 node ph 8 which is a consistent 
contending match with re/). 

Definition 4: 
a node Pe A with label 1. A is matchable by propagation at 

time t if 
(i) 

& (ii) 

& (iii) 

& (iv) 

3 p 8 [ S = contending] g eg 

(pe A can match some node) 

3 re/, rg11
8

[ Sef,gh = bound & 
( (S111 = bound) I (le A...,= 1/)) ] 

(at least 1 connected and consistent arc 
match exists, with either the other end 
matched, or dissimilar labels on the ends of 
each arc) 
V r A 3r 8 [ (x ..., = f & S . = bound) ::J e x yz e x,yz 

(y = g & z ..., = hl I (z = g & y ..., = hl l 
(for a ll the other matched arcs connected toe, 
their matches are consistent with the match 
ofefto gh) 
V r 8 3r A [ (x..., = h & S . . = bound) ::J gx y z gx ,yz 

(y=e&z, = f) I (z = e&y,=f)] 
(for a ll the other matched arcs connected to g, 
their matches are consistent with the match 
ofefto gh) 

Definition 5: 
a graph element (node or arc) is matchable if 
(i) it is a node or arc with a unique match 
(iii) it is a node or arc matchable by propagation at 

time t, for any t 

Lemma l: The network detects unique unary (node) 
matches. 
Proof: 
After time step 0, consider node matching unit mij' If 
Pt = pi 8 is a unique unary label match, then Sii 
contending and P = 1. But a lso: 

IJ 

Vx, mxj [ (x ..., = i) ::J (Sxj = off & P xj = 0) ] 

& Vy, miy [ (y ..., = j) ::J (Siy = off & Piy = 0) l 
In other words, m is uniquely active in its row and 

IJ 

column. 
The first (propagation) substep of Time Step 1, nothing 
is changed. So, in the second (WTA) substep of Time 
Step 1: 

Vx, m . [ (x ..., = i) ::J (X .. > X .) ] 
~ ij ~ 

& Vy, miy [ (y..., = j) ::J (Xii > Xi) l 
Therefore, at the end of Time Step 1, Sii = bound. 
QED 

Lemma 2: The network detects unique binary (arc) 
matches. 
Proof: 
Consider each n r hafter Time Step la, the propagation e ,g 



phase . Recall that each n r h is connected to exactly 4 
e ,g 

mij; meg meh mfg m 01 . At the beginning of time step 1, 
each of these m had a potential of 1 (if I = L) or 0 . 

IJ l J 

Therefore, the potential X of any nef',gh is the number of 
contending valid node-node matches which are 
consistent with the arc-arc match nef.gh' 

Now, suppose n r his a unique binary match. Recall e ,g 

from condition (i) of the definition of unique binary 
match that the nodes on the ends of the matched arcs 
may not be the same. Therefore, X r 1 -, = 4. To have e ,g 1 

X r h = 3 is impossible. So, X r h must be 0,1, or 2. If •• •• 
n r his a unique binary match, then X r 1 = 2, and: e ,g e ,g 1 

either x eg = 1 & xfh = 1 
or X 1 = 1 & Xr = 1 (from condition (ii) of e 1 g 

the definition). 
But because the particular combination of pairs is 
unique by definition, all the other elements of the row 
and column containing nef,gh have X < 2 (from 
condition (iii) and condition (iv) of the definition). 
Therefore, the potential of n r h is larger than that of e ,g 

all units in its row and column, so it wins the WTA 
competition. 
And, at the end of Time Step 1, s . r.gh = bound. 
QED 

Lemma 3: If an arc r./ is matchable by propagation 
at time t and the network is still active (ie . Tt-, = Tt-l) 
then the network assigns that arc a unique consistent 
match at the end of time t+ 1 
Proof: 
Case 1 (condition (ii) of definition above is true): 

From the network topology, X.r.gh = Xeg + Xeh + Xrg 
+ X1h after the propagation substep beginning time 
step t+ 1. From condition (ii), X r h = zp. But X r h e ,g e ,g 

is the largest potential in its row: 
\;j x,y [ -i(x = g & y = h):::) (xef,gh > x . r.x) l 

because X.r.xy = Xex + Xey + Xrx + Xry· But at most 
one of these terms is p (if x = g or y = h) and the rest 
must be zero, because Pe is bound to Pg and Pr is 
bound to ph. x . r.gh is also the largest potential in its 
column, by an analogous argument. 
Therefore, after the WTA substep, S r h = bound. e ,g 

Case 2 (condition (iii) of definition above is true): 
Only the example case is proved. The other 3 
analogous cases are identical, with systematically 
varied subscripts. 

Again x . r.gh = Xeg + x.h + Xrg + Xfh after the 
propagation substep beginning time step t+ 1. But 

Xeg = .P and Xeh = Xrg = 0 therefore. Also, Xfh = 1. 
Overall, X r h = .P + 1. But this potential is 

e ,g 

greater than all others in the row: 

\;j x,y [ -i(x = g & y = h) :::) (xef,gh > x . r.x) l 

155 

because x . r.xy = x ., + Xcy + Xr, + Xry and: 
(i) suppose x = g or y = h. Then 1 term is p, say 

Xeg for x = g, without loss of generality. Then 
x .Y is certainly zero. But y -, = h, so both 
the other terms must be zero as well, from the 
implication(*) in condition 

(ii)suppose neither x=g nor y=h. Then x ., = 
Xey = 0. Because S 01 = contending, Xr, < = 1 
and Xry < = 1. So x .r.xy < .P + 1. 

Analogously, the potential x .r.gh is greater than all 
others in the column. 
Therefore, by the completion of the WTA at the end 

of time step t+ 1, s . f.gh = bound. 
QED 

Lemma 4: If a node p/ is matchable by propagation 
at time t and the network is still active (ie. Tt -, = Tt-1 ), 

then the network assigns that node a unique consistent 
match at the end of time t+ 1. 
Proof: 
If sfh is bound, it must be that s . h is off, as is sfg' 
Alternately, s .g is contending and 1. A -, = 1/, so again 
s . h and sfg are off. 
Now, after propagation X = I: X . Furthermore, eg ao ea ,go 

x .g is the largest potential in its row: 
\Jy [ (y -. = g & y -, = h) :::J X > X J eg ey 
because : 

(a) s . r.gh = bound, so x .g receives an input of 1 
from n r h and no other element in the same e ,g 

row as meg receives an input for s .r.gh (Seh 
would, but as we just saw, from condition (ii) 
of the definition, s . h = oft). 

(b) If some other m ey receives an input, then 
some ne,,yz is in state bound as well. (In other 
words, node e has another bound arc 
connected to it). But, by the consistency 
condition (iii), if S = bound, then either ex,yz 

y = g or z = g. In either case, Xeg always 
receives an input of 1 as well. 

Therefore, taken together, (a) and (b) dictate that 
Xeg is always at least 1 greater than all other x .Y in 
the same row. 
An analogous argument using condition (iv) of the 
definition holds true for all units in the same 
column as x.g· 
Therefore, X

0
g is larger than all other units in its 

row and column following the propagation substep. 
Therefore, after the WTA substep, S = bound. eg 

QED 



·1 

I 

: ·I 

A multi-paradigm development system for exploratory environments 

Anne Bergeron, Lorne H. Bouchard and Renaud Nadeau 

Departement de mathematiques et d'infonnatique 
Universite du Quebec a Montreal 

P.O. Box 8888, Station "A" 
Montreal, QC H3C 3P8 

Abstract 

Based on our experience of the problems involved in the 
development of specialized exploratory environments, we 
describe the design and implementation of a multi-paradigm 
(functional, logical and object-oriented) development system 
for exploratory environments. The presentation focuses 
mainly on how the paradigms have been integrated in the 
language, on the implementation of the language and on its 
integration into the Macintosh environment. 

1. ~he design and implementation of exploratory 
environments 

An exploratory environment is an environment, realized by a 
computer program, which allows the student to explore a 
subject or field of study. Perhaps the best known example of 
an exploratory environment is the turtle-geometry subset of 
Logo [Papert 1980] [diSessa and Abelson 1981], an 
environment in which the student explores finite plane 
geometry. The bead necklace model [Bouchard and 
Emirkanian 1986] is the seed of an exploratory environment 
for studying the structure and the operations on words and 
lists in Logo. Further examples may be found in the work of 
Ennals [Ennals 1985], where Prolog is used to model parts of 
the humanities, and in the ideas at the origin of the Smalltalk 
language [Goldberg and Robson 1983]. The common feature 
which links these efforts is the use of a programming language 
to represent knowledge of some area, the topic of the 
exploratory environment. 

The concept of an exploratory environment evolved rapidly to 
incl_u~e more specialized constructions: for example, the 
addition of knowledge to the exploratory environment and the 
inclusion of tools specifically tailored for a given subject area, 
a spreadsheet for example. The knowledge makes the 
environment smarter and hence richer and more challenging. 
The tools reduce the programming effort required on the part 
of the student without sacrificing any functionality in the area 
of study. Exploratory environments are a generalization of the 
notion of microworld [Papert 1980] [Thompson 1987] and are 
an active research topic in the field of computer-aided learning 
and intelligent computer-aided instruction. 

In this context, the interest in multi-paradigm programming 
environments developed rapidly [Borne 1983] [Drescher 
1984] [diSessa and Abelson 1986] . The problems of the 
representation of knowledge is certainly the main reason for 
this interest since in every discipline we find a collection of 
facts, rules, theories, structuring principles, and algorithms as 
well as descriptions of systems and models. Hence many 
formalisms can and indeed must be used at the same time. 

156 

Since 1985, the authors have been involved in the design of 
exploration environments and in the creation of tools to 
support the development of such environments. This work 
initially began with the design of an environment for the 
construction of animated fairy tales [Bergeron and Nadeau 
1986]. A prototype for the project was initially implemented in 
Smalltalk. In order to port the project to Logo on the 
Macintosh, an object-oriented extension for Logo was 
implemented. The software tools were then adapted to the 
construction of an exploratory environment for Newtonian 
mechanics. The more recent work has been performed in the 
context of research into the design of "off the shelf" software 
tools for education [Paquette et al. 1987]. The principal aim of 
this project is to build a number of exploratory environments 
in which traditional programming tools are enriched by the 
addition of knowledge representation and processing tools. 
The fundamental assumption of this project is that this merger 
simplifies the knowledge processing required to support 
environments that encourage active learning: e.g., free and 
structured exploration, the elaboration of conjectures, the 
generation of predictions and the objectivation of knowledge. 

The logical aspects underlying the elaboration and the 
verification of conjectures and the emphasis on knowledge 
bases in current exploratory environment research makes 
logical programming an essential part of the development 
system. This however should not be at the expense of the 
rapid prototyping facilities [Teitelman and Masinter 1981] 
[Sheil 1986] and the execution speed of functional 
programming - in this case Scheme, a dialect of Lisp [Rees 
and Clinger 1986]. Finally, the modularity offered by an 
object-oriented programming language is attractive for large 
systems. Prisme [Nadeau 1988] is a development system 
which is based on the integration of these three paradigms. 

Note that the development systems for exploratory 
environments share most of the features of artificial 
intelligence programming languages [Bobrow and Stefik 
1986] and indeed are closely modelled on them. However, the 
hardware available for the development and the delivery of 
exploratory environments is limited for economic reasons to 
microcomputers such as the Macintosh. 

We first give an example of an exploratory environment which 
is currently under development. Then, in sections 3 and 4 we 
discuss some of the design and implementation issues of 
Prisme. 



2 . Stage-setting: an illustrative exploratory 
environment 

The goal of Mise en scene (stage-setting) is to offer young 
children (6 to 10 year olds) the opportunity to describe and 
observe the behavior and the interactions of different 
characters. These animated characters may possess specific 
factual or strategic knowledge, they react to events and can 
express themselves in words and music. The child uses a 
declarative style of programming with a simplified "natural 
language" style interface. Technical problems, such as the 
animation of the scene, the synchronization of picture and 
sound, the management of the coordinate system used for 
locating objects in the scene, are all hidden from the user. 

The exploratory environment appears to the child as a 
collection of windows which either show a part of the scene or 
the text describing characters and the script, as for example in 
Figure 1. 

Nicolas 

Nicoles est un elfe. 
Pierr ~D PetitMonde 
Lucie 
Nico l 

Figure 1 

The description of a character is made using several types of 
declarations. A character is described first in terms of his 
resemblance to one or more of the other characters. For 
example: 

"Nicolas est un elfe." 
"Nicolas est un musicien" 

These declarations place the character Nicolas : he inherits the 
features of the elfe and musicien characters. Nicolas can also 
maintain relationships with other characters and with objects in 
the scene. For example: 

"Jacques est l'ami de Nicolas" . 
"Lucie aussi". 
"Nicolas a uneflute." 

Finally, the script for the characters is described, as for 
example: 

"Nicolas va chercher Lucie." 
"Nicolas et Lucie vont au bard de l'etang." 
"Nicolas joue de la flute." 
"Nicolas visite taus ses amis." 

The same system could also be used by several children to 
allow them to study character interaction. 

157 

3. The development system 

Given the number and the variety of the problems raised by 
the implementation of this project, the choice - or rather the 
construction, since none was found to exist - of the 
development system is crucial. The designer's environment 
must be highly interactive and must support the exploratory 
style of programming [Sheil 1986], since the specifications are 
ill-defined at least initially. Furthermore, the system should 
facilitate problem decomposition and offer tools appropriate to 
each type of sub-problem (imperative or declarative styles of 
programming, data abstraction, etc ... ). 

The Prisme language [Nadeau 1988] is at the heart of the 
development system. It is implemented as an interpreter for a 
language based on the harmonious integration of the three 
programming paradigms: functional, logical and object
oriented programming. Prisme is an extension of the Scheme 
dialect of Lisp [Rees and Clinger 1986] which includes Horn 
clauses [Kowalski 1979] and the definition of objects which 
are similar to actors [Lieberman 1986]. 

4. The multi-paradigm integration in Prisme 

4.1 Interaction with the interpreter 

The syntax of Prisme is almost the same as that of Scheme. At 
the top-level, a user interacts with Prisme by typing in or 
selecting forms to be processed. In general, a form is an atom 
or pair (list) of forms, where the first element of a form plays 
a special role. The primitive define is used to name values, 
objects and/unctions ; note that variable names start with an 
underscore. For example: 

(define pi 3.141592) 
(define minimum 4) 
(define 

(Surface radius) 
(product pi (square _radius))) 

and a call to the function ~ is a form which is written in 
the usual way: 

(Surface (sum minimum 4)) 

In Prisme, this form is evaluated as in Scheme. 

Procedures, called relations to distinguish them from the 
functions already described, may be defined in Prisme using 
Horn clauses. A clause consists of a list of terms, the first of 
which is called the head and the others are called the goals of 
the clause. Typically a term is a non-atomic form the first 
element of which is either a relation or a function name and the 
other elements are constants or terms. Variable names starting 
with an underscore identify logical variables. For example, 

(def clau se 
(Proposition expr ) 
(at om? _expr )) 

(def c l ause 
(P roposition 
(P roposition 
(P roposition 

(defclause 

(or exprl _expr2)) 
exprl ) 

=expr2)) 

(Proposition (not expr )) 
(Proposition _expr)) 



I 

(def ine 
(meta-eval form) 
(cond 

( (null? form) form) 
( (va riable? form) (var-value form) ) 
( (symbol? form ) (sym-eval _ form)) 
( (pair? form ) 

(rout e 
(meta-eva l (car _form)) 
(cdr form))) 

(T form)) f 

(define 
(rout e functor _arglist ) 
(cond 

( (function ? f unctor ) 
(apply f unc tor 

(apply list arglist))) 
( (procedure? functor) 

(apply functor 
(apply list argli st ))) 

( (system? functor) 
(a pply -functor 

(apply list arglist ))) 
( (clau se? fu nctor) 

(resolve 
(cons functor _arg l ist ))) 

( (object ? functor) 
(bind functor) 
(evlis- arglist) 
(unbind- f unctor )) 

(T error)))-

4.3 Interpretation of functions 

Functions are defined in Prisme as in Scheme. Also as in 
Scheme, the scope of a variable is either global or local to a 
function . Thus, when a function is defined, Prisme parses its 
definition and indexes the variables. When the function is 
caJled, a block of variables is aJlocated and stacked. All local 
variable references inside the function body are to this block. 

Extensibility of the functional part of an Prisme program is 
achieved as in Scheme by defining additional functions. But 
also, since the calling convention for Prisme functions is the 
same as that for function written in C, a Prisme program may 
be extended by linking-in procedures which have been hand
coded in C. This is particularly useful in cases where 
programming efficiency is critical or when developing 
extensions which are to be widely used. 

mnmmif0re 

ATTR I BUTS OE niar-sup i a I 
SORTE-DE: (IRCIM\fere) 

f-----------1 enve: I oppe : poi I s 
'----------1 f icondation : interne 

sang : chOYd 
respiration : poull'IOns 
reproduct ion : poc:ha-externe 

Figure 2 

158 

In developing exploration environments, the functional 
programming part of Prisme is used extensively in input and 
output tasks, in particular for managing graphic interfaces. 
Perhaps this reflects the individual bias of the authors: they 
were aJJ weaned on Lisp! Figure 2 shows a browser that 
allows the child to examine and modify a database. 

4.4 Interpretation of clauses 

The resolver is an intepreter for Horn clauses [VanCaneghem 
1986] which resolves each clause of a list of clauses until all 
clauses are satisfied. During resolution, the current goal is 
unified with the head of another clause, which means that a 
substitution of terms for variables is sought which renders the 
two expressions identical. If unification with this clause 
succeeds, the current goal is replaced by the remaining goals 
of the clause. Whenever unification fails, the resolver 
automaticaJJy backtracks to a point where another clause may 
be tried. When the resolver has exhausted aJJ goals, it returns 
the values of the variables which were assigned during the 
unification processes. 

In Prisme, variables in clauses and variables in functions are 
implemented in the same way: this means that we can 
arbitrarily nest clauses and functions and access the variables 
from the resolver or the evaluator. Some care must be taken in 
interpreting the value of a logical variable from the functional 
part, since the value of logical variables are constructed using 
structure-sharing. For example, if the evaluator accesses a 
logical variable the value of which is a list, the evaluator must 
first reconstruct the list from the structures generated by the 
resolver. 

Since relations and function may be nested, pattern-matching 
can be used for parameter passing in Prisme. Indeed, 
referencing part of list structures is a repetitive task which can 
be avoided by using the unification algorithm to "destructure" 
a list. Consider the following definition of a procedure, 
defined as a relation, which is used to process a list which 
specifies a tour of a number of places, represented as 
coordinate pairs. 

(def clause 
(Visit [[ xCoor I yCoor ) I remaining) ) 
(set ! _place (GetName xCoor _yCoor )) 
(MoveTo place xCoor _ yCoor) 
(Visit _rema ining)) 

The functional version of this procedure must explicitly use 
selectors to destructure the list and must also test for the 
terminating condition. 
In the clausal version, resolution failure stops the procedure. 

(define (Visit _coorList ) 
(cond 

( (null ? coorList) nil) 
(t (set ! - xCoor (caar coorList )) 

(set ! =yCoor (cdar =coorList)) 
(set! _place 

(GetName xCoor yCoor )) 
(MoveTo _p l ace _xCoor _yCoor ) 
(Visit (cdr _coorList))) )) 

In it is interesting to note that for this example, the clausal 
form of the procedure actually runs much faster under the 
interpreter than the functional version. 



The definition of procedures as a set of clauses in Prisme 
ope1_1s up ~he whole new world of logic programming. Of 
particular mterest for exploratory environments are deductive 
data bases, which are used to represent knowledge, and 
natura_l language processing capabilities. The simplicity and 
effecu_veness ~f the Definite Clause Grammar (DCG) 
fofI!!~hsm_[Per~1~a a?,d Warren 1980] is particularly useful for 
defmmg s1mphf1ed natural language" style interfaces The 
fo)lowing example displays a fragment of the DCG us~d in 
Mtse en scene, described in Section 2. 

(defrule 
(Sentence _meaning) 
(NounPhrase who) 
(VerbPhras e -who what _meaning)) 

(defrule 
(NounPhras e who) 
(ProperNoun =who)) 

(defru le 
(VerbPhrase who _what _meaning) 
(BeVerb) 
(Relation who what _meaning )) 

(defrule 
(Relation who what 

(create -=-link who _what)) 
(IndefiniteDet ) 
(Noun _what)) 

(defru le 
(Re lation who whom 

( relation who _whom)) 
(IndefiniteDet) 
(RelationName relation 
(Preposition) -
(NounPhrase _ whom)) 

(defrule (ProperNoun Nicolas { Nicolas })) 
(defrule (Noun elf { elf })) 
(defrule (RelationName friend { friend})) 

4.5 Interpretation of objects 

The s1-1:itcher !s the component responsible for switching the 
ex~cut1on envrronment. A local environment is represented as 
a hst of value-variable pairs. The bind and unbind procedures 
are used to update and to restore the environment. Local 
values, functions, objects and relations may be associated with 
an ?bject. The switcher simply superposes the local 
env1r_o_nment over the global environment, hence local 
defimuons temporarily hide definitions of the same name that 
are defined. 

O~jects may be )inked together and inherit properties of the 
objects the~ are hnked to. The links are specified dynamically 
once an obJect has been defined. A collection of objects may 
be_ structured or restructured a posteriori: this is one way 
Pnsme supports exploratory programming [Sheil 1986]. 

Th~ (re)definition of the symbols in an ancestor is propagated 
to _Its descendants, except when they (re)define the symbol. 
Pnsme supports multiple inheritance, e.g., an object may have 
many ancestors and many descendants. 

In ~he following example, the object nicolas is successively 
def med as a descendant of window, elf and musician. 

159 

(define nicolas (new-object window)) 
(create-link nicolas elf ) 
(create-link nicolas musician) 

The links between objects are stored in Prisme as a data base 
of clauses which may easily be consulted by a user program. 
For example, the clause 

(def clause 
(FamilyOf ancestor) 
(link _descendant ancestor) 
(Visit descendant) 
(FamilyOf _descendant )) 

will Visit each descendant of the common _ancestor. 

Objects can be used in Prisme to structure, with little 
overhead, a set of functions and relations. 

Obj~cts can be used to implement generic procedures. In 
particular, a ~echa!1ism similar to advise in Interlisp could be 
implemented m Prisme to help extend inherited functions by 
enclosing their definitions in a local wrapper. 

Objects are an elegant technique to use for implementing 
contextual data bases. For example, the adjacent Prisme 
pro~am defines a DCG which is adequate for the characters 
m Mtse en _seen~ . _However we wish to introduce linguistic 
and semantic vanat10ns from one character to another: indeed, 
the vocabulary of a musician is different from that of an 
acrobat and the meaning of "play" is strongly context 
dependent. This problem is solved by structuring the 
characters as a set of objects which share a common grammar 
but also_ own a private lexicon. This partition of the base of 
clauses improves the efficiency of the interface - since each 
lexicon is kept small - whilst permitting the expression of 
subtle shades of meaning. 

Furthermore, ~ince clause inheritance is additive, it is possible 
for many objects to share the common definition of a 
predicate, yet still be able to extend it if need be. In effect this 
allows us to achieve in Prisme something which is much better 
than the monde (world) concept which is available in Prolog 
II [VanCaneghem 1986]. 

O~jects are _ver~ useful fo~ managing animated objects. An 
animated object 1s charactenzed by local state variables such as 
its position, its speed, its orientation or a set of views. Given 
the g~neral_ definiti_on of an animated object, we can easily 
descnbe objects which are more specialized in their actions, in 
the _way that they move about or in their relationship to the 
envrronment. The approach to animation developed in Mise en 
scene appears to be sufficiently general to be usable for 
graphic simulations in science as for example, in studies of 
free fall or of collisions, etc. 

The user interface of Prisme is itself written in Prisme: in 
p~ticular, Windows, Menus and Dialogs are implemented as 
objects. 

Finally, objects are used ex tensively in a uniform 
implementation of information processing tools which 
generalize the operations found in spreadsheets and databases 
[Bergeron 1988] . 



5. Implementation 

Prisme has been implemented in C on the Macintosh. The 
choice of C makes Prisme not only portable but allows Prisme 
to be extended easily and efficiently. Indeed, since the 
Macintosh is a only a microcomputer, the system must be kept 
close to the hardware if we are to expect an acceptable level of 
performance. 

Prisme is completely integrated with the Toolbox and the 
development system makes full use of the resources of the 
Macintosh: desk accessories, text editors, graphic editors, etc. 

6. Status of the project 

The interpreter for Prisme is complete and is currently in beta
test. Compilers for the functional, logical and object-oriented 
subsets are under development as well as a project manager , 
which is a library of procedures which allows a developer to 
configure an exploratory environment which is tailor-made for 
a group of users. 

7. Conclusion 

Prisme is a development system which seems to live up to to 
our expectations, at least for the moment. Now comes the 
acid test which is to implement in Prisme a number of the 
prototypical exploratory environments proposed as part of the 
Loupe project [Paquette et al. 1987]. 

In our view, the development of Prisme is an application to the 
microcomputer environment of the research done in artificial 
intelligence (AI) on languages for knowledge representation. 
Perhaps if Prisme is used one day to support in the laboratory 
the increasing number of AI courses offered in our 
universities, then we shall consider that we have repaid part of 
our debt to AI. 

Acknowledgements 

The design and implementation of exploratory environments is 
the topic of Anne Bergeron's Ph.D. research. Renaud Nadeau 
implemented the Prisme system over a period of a year, as part 
of his Master's project, under the supervision of Lorne H. 
Bouchard. Anne Bergeron was responsible for testing the 
implementation and was the first real user of the system. 
Although Renaud Nadeau is responsible for the initial design 
of Prisme, all three authors have contributed also. 

References 

Al:dson, H et G. J. Sussrrm StruclWe au:l lnk?lprek1ion cf Computer 
Progrt111S, MITPress, 1985, 542 p. 

Bergeron, A Fnvironnemnl'> d' expkuttiJn: representation et traiem1t re 
finfonrntiJn, Proc. Fust Inteml1iond Conference on lnR?!ligent Tutoring 
Systems, Mxitreal, June 1988, (In press). 

Bergeron, A airl R Nmu. Buikling Mnuworkls in an Cl:Jju-Oiental 
Logo, Logo 86 Conference, Ba;ro MA, 1986, p. 265. 

Bolmw, D.G. airl MJ. Sm. Pers~ on Artifrial Intelligenre 
Pmgramning, p. 581-587 in. [Rm airl Waters 1986]. 

Borne, 1 Les obj1<; ems Logo, BIGRE No. J"l, Joumk {! etude sw !es L. 
0. 0., Ch 1983. 

160 

Boochard, L H airl L Fnirl<ania1. The Beai-N<rl<llre Mxlel fer Won:ls 
arx:I List<; in Logo, Logo 86 Conference, Ba;too MA, 1986, p. 35-38. 

diSessa, A nlH. Atdson. TwtleGeomet,y:Tfr! Computer a, aMedium 
for Exploring Mahemaics , TheMIT Press, Ba;m MA, 1981, 477 p. 

diSessa, A arrl H. Arelscn Boxer: A ReconstnDibe iliq,utaoonal 
:Mrlitnr1, Communimions of the ACM, Sept 1986, p. 859-868. 

Descher, G. arx:I J. Ressb'. Cl:Jju-Lisp User Mmual, Lisp .Ma:hine Ioc., 
1984. 

Fnnals, R Artifidd lnJelligeoce: App/k:aions to Logiai Rwoning au:l 
HistoricdReswr:h, EllisHcxwood, OochestrUK, 1985. 

Goklrerg, A airl D. Rotron. Smdltdk-80: The lmgUqJe au:l iJs 
lmp1Pmen1aion, Adlisoo-Wesey, ReoclingMA, 1983, 714 p. 

Kowalski, R Logic for Problem Solving , NO!fu-Holml, New-Yak, 
1979, 287p. 

I.ihnmn, H . Using Protctypal Cl:Jjus t> llll)lemnt Shanxi Behavi:r in 
Cl:Jju-Ointed Sysnrn, CXJPSLA '86 Proraxlings, Sept 1986, p. 214-
223. 

Nmu, R. lntegrr1itm de tmis pardigmes de progn:mmaion , :Mm:Jire re 
mmrise, lxpar1mmtrermdxmltques etinfonnuque, UQAM, 1988. 

Papert, S. Mind.storms: Children, CompUler.i au:l Powe,ful. ldw , Basi: 
Bcd<s, New Yak, 1980, lllp. 

Piqum;; G. et al Un environnemnt re ~ re k:>girls-outils pour 
r apprentissage µu- traiim:nt des oonnaissaoces, Propa;al t> APO Q.JtU'C, 
Aug. 1987, 45 p. 

Perrira, F. arx:I D. Warren. Ixfinil:: Oause Gramrmrs fer Language Analysis: 
A Sun,ey cf the Foornlism arx:I a Gxnµnison with Augmntal TransitiJn 
Nctwcrks,Artifidd!nR?!ligen£2, Vol 13, 1980, p. 231-Z78. 

Rees arx:I Oinger (F.ds). Revisoo Repcrt on the Algcrithmi: Language 
Schenr, SIGPLAN Notices, Vol 21, No. 2, D:c. 1986. 

Ri:h, C arrl RC. Waters (F.ds). Realings in Artif!dd lnJelligen£2 au:f 
SaftwrreEnginfil'ing, ~Kaufi:rnnn, La;AhosCA, 1986, fil2p. 

Sheil, B. Power Tools fix Prograrrrrers, p. 574-580 in. [Rm ax:! Watas 
1986). 

Slefle, G airl G.J. Sussrrm The artcftheinepren::r, Al l'vbm No. 453, 
MIT, :May 1978. 

Sm, M airl D. Bolmw. Cl:Jju-Oiental Pmgrnrrming : 1hcrm; in! 
Variatioos, Al MqJazine, Vol 4, No. 4, Wmter 1986, p. 40& 

Teitelrmn, W. airl L Mlsintt. The Interlisp Pmgramning Fnvironmnt, 
IEEECcmpuJer, Vol 14, No. 4, 1981, pp. 25-34. 

Thanpson, P. W. Matn:mfull Mnuwcrl:ls :ro Intelligent Caq,ua-
Assisted InstructiJn, p. 83-100, in Kearsly, G. P. (6:1. ), Artifidd ln!elligen£2 
&Instruaion:App/k:aions cni.Methods, Addison-Wesey, 1987, 351 p. 

VanCanegrnn, M L'AIUkJmie de Prolog, Ina- F.ditiJns, P.ris, 1986, 
191 p. 



A Hybrid Approach to Finding Language Errors and 
Program Equivalence in an Automated Advisor 

Xueming Huang and Gordon I. McCalla 

ARIES Laboratory 
Department of Con!putational Science 

University of Saskatchewan 
Saskatoon, Canada S7N OWO 

Abstract---- This paper presents a model of a language expert which 
rPcognizes language bugs and determines program equivalence in 
1 .. e context of the SCENT programming advisor being developed at 
the University of Saskatchewan. A hybrid approach, which com
h i nes the advantages of knowledge-based and theorem proving tech
niques, has been used in the language expert. Knowledge-based 
debugging is based on a debugging graph which is intended to 
recognize common program constructs and common bugs which fre
quently appear in students' programs. Empirical studies of the per
formance of the language expert show that it has achieved high per
formance in detecting and identifying language errors. 

Key Words ---- intelligent advising, language knowledge, 
automated debugging, program equivalence. 

1. INTRODUCTION 

Students' programs often contain bugs resulting from 
misconceptions in the use of the programming language. 
Moreover, a variety of language constructs can be used to pro
duce a correct language. Finding the language-related bugs (or 
language bugs for short) is essential for a program advising 
system to provide appropriate feedback to the student, while 
recognizing equivalence between programs is important for 
the system to "understand" the student's program. 

Misunderstanding of the language knowledge is not the 
only source of bugs in a program. Misunderstanding the task 
of the program and using an erroneous strategy can also gen
erate bugs. Most previous program advising systems use only 
one debugging component to detect all kinds of bugs. This 
approach complicates bug recognition because different kinds 
of knowledge have to be invoked at the same time. It also 
increases the size of the knowledge base since the same 
language bug occurs multiply in different strategies and dif
ferent tasks. Furthermore, it is difficult to find a knowledge 
representation which is ideal for all kinds of knowledge. This 
paper presents the model of a separate language expert which 
solely deals with language bugs and provides language exper
tise for an intelligent program advising system. Complete 
details can be found in [Huang 87]. 

The language expert is developed as a component of the 
SCENT advisor [McCalla 86] [McCalla 88] whose architec
ture is shown in Fig. 1. Each box in the figure represents a dif
ferent component of SCENT. Besides the language expert 
itself, of particular concern to this research is the strategy 
judge/diagnostician (SJ/Diag) component. The SJ/Diag 

161 

component determines the strategy a student is employing and 
detects buggy strategies. It provides an ideal program of the 
employed strategy for use by the language expert in its detec
tion of language bugs. The language expert in turn provides 
information about equivalence between programs to help other 
components of the advisor to understand the student's pro
gram. These components are being developed in [Barrie 88], 
[Pospisil 88] and [Escott 88]. 

The remainder of this paper presents the approach to 
recognizing language bugs taken by the language expert and 
contrasts it with related work in automated debugging. Section 
2 surveys previous automated debugging systems, focussing 
on their approaches to finding language bugs. Section 3 
presents the model of the language expert. Section 4 gives an 
empirical evaluation of this model. Section 5 concludes the 
paper with a summary of contributions of the research and 
suggestions for future research directions. 

2. RELATEDWORK 

Several different approaches have been used in recogniz
ing bugs in programs. PGM [Ruth 76] and LAURA [Adam 
80] attempt to find a representation in which programs can be 
matched against a pre-stored general algorithm. This approach 
doesn't work well due to the wide variability of programs. 
There is usually more than one possible algorithm to solve a 
non-trivial problem. 

SNIFFER [Shapiro 81] and PUDSY [Lukey 80] try to 
match a set of plans (or formulae) explicitly specified by the 
students against the dynamic behavior of a program (also 
represented in plans or formulae) obtained from execution of 
the program. This approach is not suitable for an automated 
advisor since explicitly specifying intentions is difficult for 
novices. Also, it may have trouble in recognizing equivalent 
programs which use different program constructs because 
these programs may have different dynamic behaviors. 

PROUST [Johnson 85] has made a great effort at 
automatically deciphering the student's intentions underlying 
the code of a program. It analyzes programs using a 
knowledge base in which programs are represented at three 
levels: problems, goals and plans. By figuring out students' 
intentions, PROUST can handle programs using more than one 
strategy. A main problem with PROUST is that ultimately a 
student's code is matched with plans at a low level of language 
constructs. At this low level, programs can vary in thousands 



.' ' 

Student Knowledge 

Task Experts 

SJ Diag 

Language Expert 
Blackboard 

Observers 

Program Behaviour 

Raw Data 

Fig. 1. The Architecture of the Current SCENT Advisor 

of ways, thus requires the knowledge base to have thousands 
of plans, otherwise it may miss some programs. 

TALUS [Murray 87] uses a computational logic to for
malize knowledge of a programming language. Debugging a 
program is realized by using a logic theorem prover to prove 
the equivalence between each segment of the program and the 
corresponding segment of the pre-stored reference program 
using the same algorithm. The deductive ability of a theorem 
prover enables TALUS to understand more program variations 
than PROUST. A drawback of using theorem proving in 
automated debugging is its potential inefficiency. Since deter
mining program equivalence is NP-hard, computation required 
in theorem proving is likely to combinatorially explode as the 
size of the program grows. 

The first two approaches are not suitable for an 
automated advisor. Each of the other two approaches, using a 
multi-level knowledge base and using a theorem prover, has 
some advantages over the other. It seems reasonable to com
bine knowledge-based and theorem proving techniques to gain 
the benefits of both. This is the approach taken in the develop
ment of the language expert model in this research. 

3. A MODEL OF THE LANGUAGE EXPERT 

One important property of the language expert is that it 
makes no attempt to understand the global plans (i.e. the stra
tegies) underlying the student's program. The strategy used in 
the student's program and mistakes at the strategy level are 
caught by the SJ/Diag component of the intelligent advisor. 
Thus, a canonical knowledge representation for the language 
can be used in the language expert and the size of the 
knowledge base can be minimized. Of course, it is almost 
impossible to understand a program at the strategy level 
without understanding the code. Thus, the SJ/Diag component 
has to communicate with the language expert during the stra
tegy judging process. In the SCENT advisor, a message sent 
by the SJ/Diag component to the language expert is a segment 
of the student's program paired with a segment of a pre-stored 
ideal program which at the language level correctly imple-

162 

ments a (correct or buggy) piece of strategy known by the 
advisor. This pair of program segments is the input of the 
language expert. The language expert then determines the 
equivalence of the two program segments, and outputs the 
results. These results will help the SJ/Diag component to 
determine whether the two program segments are equivalent at 
the strategy level. If they are, then any differences at the 
language level from the ideal segment are considered language 
bugs. A program segment can also be the whole program, so 
this scheme also works for finding language bugs in the whole 
student program. 

Throughout this section, the pair of programs in Fig. 2 is 
used to show the approach of the language expert. Each of 
these programs is used to solve the descendants problem 
which requires the student to collect and to return the list of all 
descendants of a given person in a family tree. The function 
children inside the programs finds the children of a given per
son in the family tree. 

3.1. The Debugging Mechanism 

The language expert accomplishes debugging by combin
ing knowkdge-based techniques and theorem proving 
techniques. It proceeds as follows: the language expert first 
consults a knowledge base to match the student's program seg
ment (or student segment for short) against the ideal program 
segment (or ideal segment for short), and tries to explain 
differences between the program segments. The match is car
ried out from the outer levels of function application to inner 
levels. Thus, as the match goes on, the program segments are 
split and become smaller and smaller. 

Any differences which cannot be explained by the 
knowledge base are sent to a theorem prover which tests the 
equivalence of the ideal segment to the student segment 
(which is usually a small part of the original segment). A set of 
general axioms and theorems may allow the theorem prover to 
recognize programs which are not understood by the 
knowledge base, and it can often do this without suffering 

( de fun descendants (people) 
(cond ((null people) nil) 

( (listp people) ( append ( append (list ( cdr people)) 
( cdr ( descendants ( car people)))) 

( descendants ( cdr people)))) 
( ( atom people) ( descendants ( children people))) 

(a) The Student Program 

(defun descendants (people) 
(cond ((null people) nil) 

((atom people) (descendants (children people))) 
(t (append (cons (car people) (descendants (car people))) 

( descendants ( cdr people)))) 

(b) The Corresponding Ideal Program 

Fig. 2. A Pair of Programs for the Descendants Problem 



inefficiency caused by combinatorial explosion of computation 
since it is usually working with small program segments. The: 
following sub-sections will discuss in detail these two parts of 
the debugging mechanism. 

3.1.1. Knowledge-Based Debugging 

Knowledge-based debugging is implemented using a 
debugging graph through which program segments are filtered, 
top-down, to see if they match program concepts, deviations 
and variations pre-stored in the graph. The debugging graph is 
intended to incorporate common Lisp program constructs 
which are frequently used in students' programs and bugs fre
quently made by students. The skeleton of the graph is shown 
in Fig. 3 and the sub-graphs for list construction functions and 
list break-down functions (whose roots, list-cons and list
break, can also be found in Fig. 3) are shown in Fig. 4 and Fig. 
5, respectively. 

Nodes of the graph are entities. They store knowledge of 
program constructs and keep procedures that match the con
structs against the tested program. Each node also has a pro
cedure to execute the match, to pass control and to return 
match results. Different levels of the hierarchy represent dif
ferent levels of abstraction. This hierarchy allows knowledge 
to be well organized and to be efficiently searched. The second 
lowest level is the primitive level at which program constructs 
are stored. Differing from other levels, nodes at the lowest 
level store common deviations and correct variations of the 
program constructs stored at the second lowest level. 

Links classify the program constructs and guide the 
match process to go from the higher levels to the lower levels 
of the debugging graph. The meaning of each match step is 
stored in a link but not in a node because matching a node has 
a determinate meaning only when a certain link was traversed 
to get to this node. For example, if a buggy program segment 
is (cons x y) (which matches the node w-cons ---- see Fig. 4), 
the bug could be either a "cons for append" or a "cons for list". 
If the match arrives the w-cons node after traversing the left
most out-link of the list-build node, however, a "cons for list" 
bug is determined. 

There are four types of links: refinement (R), implemen
tation (I), variation (V) and deviation (D) . R links denote vari
ous levels (except the primitive level) of abstraction while I 
links indicate the primitive level of abstraction. They are used 
to guide the matching of ideal program segments against 
stored program constructs in the knowledge base. V links and 
D links are used to find out and explain differences between 
the ideal segments and the student segments. 

To use the debugging graph to detect language bugs in a 
student program, the graph interpreter first matches the ideal 
program segment against the debugging graph to find out the 
program construct used in the ideal segment. This first stage of 
the match process starts at the root of the debugging graph, 
and finishes when an I link is passed. The terminal node of this 
I link (called the pit-node) contains the program construct 
being looked for. 

At the second stage of the match process, the interpreter 
proceeds to detect bugs by matching the student program seg
ment against the debugging graph. This match starts at the 
pit-node found in the previous match process. If the student 
segment is matched with the pit-node or a variation node of 
the pit-node (by passing a V link), then it is equivalent to the 
ideal segment (i.e. it is correct). If the student segment is 

163 

Fig. 3. The Top Level of the Debugging Graph 

matched with a deviation node of the pit-node (by passing a D 
link), then the student segment has an expected kind of devia
tion of the ideal segment (i.e. a common bug is found). 

A program construct stored in the debugging graph is 
normally a template represented a one-level function, (e.g. 
(cons ?xi ?x2) ), while a program segment is usually com
posed of a number of nested functions. Thus, debugging has to 
be carried out ,in several recursive loops intended to unravel 
the nestings. The interpreter matches one level of the ideal 
segment against the graph each time; then it matches the 
corresponding level of the student segment, producing a 
debugging result for that level. After that, it recurs, matching 
segments inside the outer segments just dealt with. This recur
sive process is carried on until the student segment is exactly 
the same as the ideal segment or the innermost level of the stu
dent segment has been analyzed. This analysis method is 
called the "level by level" method. It is straightforward to 
extend this level by level analysis method to deal with some 
templates which are themselves nested (e.g. (append (list ?xl) 
?x2) ). 

Sometimes, a discrepancy in the student segment can't be 
explained by the match of the current level but can be 
explained by an outer level which has been analyzed before. In 
this case, back-up occurs. The analysis of the outer level is 
redone. An example of back-up is shown in [Huang 87]. 

Since the debugging graph stores only a limited number 
of variations and deviations of each program construct, it 
could fail to be matched with the student segment. In this case, 
Li.e debugging graph is not able to explain the discrepancy 
between the student segment and the ideal segment. Then the 



.1 
I 

.J 

·I 

. :t 
I 
I 

Fig. 4. The Sub-Graph for List Construction 

theorem prover can be called to analyze this pair of program 
segments. 

3.1.2. Using the Theorem Prover for Debugging 

When the debugging graph cannot explain the difference 
between the student segment and the ideal segment, a theorem 
prover can be invoked for debugging. To date, unlike the 
debugging graph, the theorem prover hasn't actually been 
implemented in the system. In what follows it will be dis-
cussed conceptually. · 

Debugging by the theorem prover would be realized by 
proving functional equivalence between the ideal program seg
ment and the student's program segment with Boyer-Moore 
logic [Boyer 79] which is a precise formalism for expressing 
properties of inductively constructed data objects and recur
sive programs. If the student segment is functionally 
equivalent to the ideal segment, it would be considered 
correct, otherwise it would be considered buggy. The bug 
would be located by recursively replacing a piece of the stu
dent program by a piece of the ideal program, until the 
modified student program is also buggy . 

The approach of debugging programs with a Boyer
Moore logic theorem prover has also been used in TALUS 
[Murray 87]. However, proofs carried out by the theorem 
prover of the language expert should be much faster than 
proofs in TALUS since the debugging graph has already 

analyzed most parts of the program segments, usually leaving 
only small parts of them to look at. Also, the theorem prover 
would be called only if the debugging graph could not explain 
the discrepancy, so it is called less often than the one in 
TALUS. 

164 

3.1.3. An Example 

In this section, the debugging process for the action part 
of the second conditional case of the student program in Fig. 2 
is presented to demonstrate how the debugging graph is used 
to find language bugs. Assume this student segment is already 
correctly paired with its corresponding ideal segment, the 
action part of the third ideal conditional case (how to pair them 
is discussed in Section 3.2). Using the "level by level" method, 
the debugging process is divided into a number of steps shown 
in Fig. 6, where segment I is from the ideal program and seg
ment S is from the student program. 

Fig. 5. The Sub-Graph for List Break-Down 



Step a 
I: 

S: 

Stepb 
I: 
S: 

Step c 
I: 
S: 
Step d 
I: 
S: 
Step e 
I: 
S: 

(append (cons (car people) (descendants (car people))) 
(descendants (cdr people))) 

(append (append (list (cdr people)) 
(cdr (descendants (car people)))) 

(descendants (cdr people))) 

( cons ( car people) ( descendants ( car people))) 
(append (list (cdr people)) 

(cdr (descendants (car people)))) 

(car people) 
(cdr people) 

( descendants ( car people)) 
(cdr (descendants (car people))) 

(descendants (cdr people)) 
(descendants (cdr people)) 

Fig. 6. An Example of Debugging by the Language Expert 

At step a, the interpreter first matches the ideal segment 
against the debugging graph. The match starts from lisp, goes 
through a R link to built-in, then manipu, list-cons, and finally 
passes an I link, arriving at the pit-node app-build (see Fig. 3) 
which is satisfied that the outer level of the ideal program seg
ment "(append (cons .... ) (descendants .... ))" matches the tem
plate "(append ?xl ?x2) ". Then it starts to analyze the student 
segment. Since the student segment also matches the template 
in app-build, it is immediately proved correct. 

The interpreter recurses one level to step b at which it 
tries to match the first argument of the ideal segment "(cons 
.... )" against the first argument of the student segment "(append 
(list .... ))". The path of matching the ideal segment at this step 
is similar to the one at step a except that now the pit-node is 
cons-build. The student segment, however, doesn't match the 
pit-node this time. Thus, the interpreter tries V-type out-links 
of cons-build. The student segment passes a V link and 
matches the cons-vi node (see Fig. 4). Thus, this level is 
recognized as correct. 

Now, the analysis is at step c where the first arguments of 
the ideal and student programs at step b are considered. After 
going through several R links and an I link, the ideal segment, 
"(car people)", matches the pit-node first in the sub-graph for 
list break-down (in Fig. 5). Since the student segment, "(cdr 
people)", doesn't match the pit-node, an attempt is made to 
match w-cdr via a D link. The match succeeds, and a "cdr for 
car" error is found (this information is associated with the D 
link). 

The debugging process goes on to step d where the 
second argument of the ideal and student programs from step b 
are considered. The ideal segment eventually matches the pit
node app-build after passing several links, but the student seg
ment fails to match any child of app-build and app-build itself. 
So, the match backs-up to the root of the debugging graph, the 
lisp node. The interpreter tries to use the next sub-graphs of 
lisp to test if there are any function application errors in the 
student segment. None of these kinds of errors is found. The 
interpreter would finally call the theorem prover. The theorem 
prover would prove that the student segment is not equivalent 
to the ideal segment, and thus is buggy. 

165 

At step e (which considers the second arguments of the 
templates found at step a), the student segment is identical to 
the ideal segment, so it is immediately proved correct. At this 
stage, debugging for the action part of the third case is done. 
There have been two bugs detected in this student program 
segment: a "cdr for car" error (found using the debugging 
graph) and the use of "(cdr (descendants (car people)))" when 
"(descendants (car people))" is needed (found using the 
theorem prover). 

3.2. Case Splitting and Case Identification 

The above discussion on finding language bugs is based 
upon an assumption that the student program is a small seg
ment without conditional branches. When the program seg
ment is a conditional function such as a cond or an if (in what 
follows only cond' s are discussed since ifs are similar), the 
debugging mechanism cannot be directly applied since the 
order of the conditional cases could differ. Instead, the cond 
function being debugged has to be split into conditional cases 
and then each conditional case is paired with the correspond
ing conditional case of the ideal program segment. In the 
language expert, this is done by a case splitting process and a 
case identifying process. Dealing with cond' s is especially 
important when the program segment is a whole function 
definition because most recursive Lisp functions are composed 
of cond's. 

The case splitting process splits a program into condi
tional cases, dividing a case into a test part and an action part, 
attaching an identifier to each case. Then, it sends its products 
to the case identifying process. If the program has nested 
cond' s inside the cond function, each case of the nested cond' s 
can also be viewed as a case in the outer cond. The case split
ting process replaces these nested cases by their functionally 
equivalent cases in the outer cond. The test part of a created 
case is the conjunction of the test in the outer cond and a test 
in the nested cond. Handling nested cond' s in this way has the 
advantage that it enables the language expert to analyze dif
ferent implementations for a strategy with one stored ideal 
program even if some implementations have nested cond' s 
while others haven't. 

As an example, Fig. 7 shows a solution for the hard-find
b problem and the output generated by the case splitting pro
cess (where the hard-find-b problem requires the student to 
write a program which takes a list as an argument and which 
returns another list containing the B's found anywhere in the 
input list). This program contains a nested cond. The first ele 
ment in each output case (e.g, i2) is the identifier of this case. 

The case identifying process is more complicated than 
the case splitting process. Identifying a case of the student pro
gram is realized by pairing this case with the corresponding 
case of the ideal program. This pairing process is a process of 
finding the best matched ideal case with the student case, so it 
is based upon the match results generated by the debugging 
process described in Section 3.1. 

Five grades are used for measuring the match: 
(1) full match ---- which means that two conditional cases are 

entirely matched in both the test part and the action part, 
that is, no error is found in the conditional case of the stu
dent program; 

(2) good match ---- which means that one part (either the test 
part or the action part) of the student case is entirely 



(Jefun hard-find-b (I) 
(cond ((null I) nil) 

((atom (car I)) (cond 

)) 

((eq (car I) 'B) 
(cons 'B (hard-find-b (cdr I)))) 
(t (hard-find-b (cdr I))) 

(t (hard-find-b (append (earl) (cdr I)))) 

(a) The Input Program 

((i I (null I) nil) 

(i2 (and (not (null I)) (atom (car I)) (eq (car I) 'B)) 
(cons 'B (hard-find-b (cdr !)))) 

(i3 (and (not (null I)) (atom (car I)) (not (eq (car I) 'B))) 
(hard-find-b (cdr I))) 

(i4 (and (not (null I)) (not (atom (car I)))) 
(hard-find-b (append (car I) (cdr !)))) 

(b) The Output from the Case Splitting Process 

Fig. 7. An Example of the Case Splitting Process 

matched with the ideal case, while another part deviates 
from the ideal case, but the deviation is recognized by the 
debugging graph, not by the theorem prover; that is, 
although this part is buggy, the bug is a common bug; 

(3) half match ---- which is similar to "good match" except 
that it implies that at least one bug in the student program is 
not recognized by the debugging graph but by the theorem 
prover. 

(4) minimal match ---- which means that there are bugs in 
both the test part and the action part of the student case, but 
at least one of the two parts has no bug which cannot be 
recognized by the debugging graph. 

(5) no match ---- which is the worst case in which both the 
test and the action have uncommon bugs that cannot be 
recognized by the debugging graph. 

According to the above five grades, the language expert 
can pair conditional cases of the student program with condi
tional cases of the ideal program, even if there are bugs in both 
the test and the action of a conditional case. For the pair of 
programs shown in Fig. 2, for example, the language expert 
pairs the first student case with the first ideal case, the second 
student case with the third ideal case, and the third student 
case with the second ideal case. 

Note that although another automated debugging system, 
TALUS, also pairs cases of the student program with cases of 
the ideal program, it seems only to work when all test parts of 
the student program are correct. If the test part of a student 
case is buggy, TALUS may not be able to find an ideal test 
that is functionally equivalent to this student test, which would 
result in a failure of the case pairing, and would further disrupt 
debugging for this conditional case. 

166 

From the above discussion, it can be seen that there is no 
necessity to have a separate debugging process after the case 
identifying process. All debugging results have already been 
generated during this process. In fact, debugging results for the 
correctly paired cases are outputs of the language expert, while 
results for the incorrectly paired cases are cleaned up by the 
system at the end of the case identifying process. Therefore, 
debugging is also automatically done once case identification 
is done. 

4. EMPIRICAL EVALUATION 
This section gives an empirical evaluation based on per

formance results when the language expert was tested on 65 
student programs. Each of these programs was used to solve 
one of the three problems: the descendants problem, the deep
find-b problem (which requires the student to write a program 
to determine whether the atom B occurs anywhere in a list or 
not) and the hard-find-b problem. Table 1 summarizes the data 
used for the evaluation. These data were collected over the last 
two years from computational science students who were solv
ing these problems as assignments in a programming language 
course. The students were first-time Lisp programmers, but 
had experience in some other programming languages. For 
each student, the first version, the final version and an inter
mediate version of the syntactically correct program were 
chosen for analysis. 

progs. buggy progs. total bugs Jang. bugs 

desc 8 5 14 10 

d-f-b 27 16 22 11 

h-f-b 30 18 29 20 

total 65 39 65 41 

Table 1. Summary of Data Analysis 

Table 2 illustrates performance in detecting and identify
ing language bugs. Here, "detecting" a bug means that the 
language expert has found out that the program is buggy, and 
located a bug. "Identifying" a bug means that it has not only 
found the buggy code, but has also identified what the exact 
nature of the bug is. These performance results show the good 
debugging ability and the robustness of the language expert. 
Although the theorem prover is absent in the implemented sys
tem, all bugs in the 65 tested programs are detected (which is 
not surprising because the current system treats program seg
ments which are not recognized by the debugging graph as 
bugs). More than 75% of the 41 language bugs are identified 
by the debugging graph. The rate of false alarms (i.e., bugs 
detected that weren't really there) in the tested programs is 
only 9.2%. These excellent results could be improved still 
further once the theorem prover is connected to the system. 

Performance in case identification is even more 
encouraging. The results are shown in Table 3. Here, the 
column with title "unpaired progs" summarizes programs on 
which the language expert fails to identify at least one condi
tional case, although it correctly identifies other conditional 
cases. The column with title "incorrect paired" summarizes 



bugs detected identified false alarms 

desc 10 10 (100%) 9 (90%) 0 (0%) 

d-f-b 11 11 (100%) 9 (81.8%) 4 (14.9%) 

h-f-b 20 20 (100%) 13 (65%) 2 (6.7%) 

total 41 41 (100%) 31 (75.6%) 6 (9.2%) 

Table 2. Performance on Detecting and Identifying 
Language Bugs 

programs on which the language expert has made mistakes in 
case identification; that is, some conditional cases in the stu
dents' programs are incorrectly paired with conditional cases 
in the ideal programs which in reality do not correspond to 
them. It can be seen that almost 90% of programs had all their 
conditional cases correctly identified. For the rest, most of 
them had more than half of their conditional cases correctly 
identified. Unidentified conditional cases were recorded and 
reported. Only one program (1.5% of the 65 programs) had 
conditional cases incorrectly paired with the ideal program. 
System failures (bugs not identified, false alarms, unpaired 
cases and incorrect case pairing) can be attributed to: 
---- Absence of the theorem prover in the current imple
mented system. The correct program variations which are not 
recognized by the debugging graph are now inappropriately 
treated as bugs, producing false alarms. Most of these varia
tions could be recognized by the theorem prover. 
---- The incompleteness of knowledge about common bugs 
stored in the debugging graph. This incompleteness results 
in the failure to identify some common bugs. 
---- Existence of strategy bugs in students' programs. If the 
SJ/Diag level of the SCENT advisor is hooked up, the 

pollution caused by strategy bugs can be filtered out by pair
ing the student program with the "ideal program" of the 
corresponding buggy strategy. 
---- Absence of task knowledge and strategy knowledge. The 
language expert sometimes needs these two kinds of 
knowledge to determine the correctness of a program [Huang 
87], but they are currently not available. 
---- Inadequate handling of bad-cond' s. A bad-cond is a 
cond clause with some flaws (e.g. missing the outermost pair 
of brackets) . A very high percentage of false alarms and 
unpaired cases in the empirical evaluation is caused by bad
cond's. It seems that a better handling of them could greatly 
reduce the rate of system failures. 

programs unpaired progs. incorrect paired 

desc 8 1 (12.5%) 0 (0%) 

d-f-b 27 5 (18.5%) 1 (3 .7%) 

h-f-b 30 1 (3.3%) 0 (0%) 

total 65 7 (10.8%) 1 (1.5%) 

Table 3. Performance on Case Identification 

167 

5. CONCLUSIONS 

5.1. Summary of Contributions 

This research has created an independent language level 
for the automated programming advisor SCENT. Separating 
the process of recognizing program constructs (at the language 
level) from the process of identifying strategies (at the SJ/Diag 
level) enables more correct identification of bugs at the two 
conceptual levels since now a bug at one level is not 
incorrectly recognized as a bug at the other level. The separa
tion also allows a more general knowledge base in the system, 
since now the strategy level can be more language
independent and the language level can be more task
independent. The communication between the language level 
and other levels, of course, requires an intelligent control 
mechanism, which is realized by the blackboard component in 
SCENT [Ng 86]. 

The approach of combining a knowledge-based debugger 
and a theorem prover to find language errors and program 
equivalence has been used in the language expert. This 
approach ideally enables the language expert to have good 
generality and wide coverage (from the theorem prover), and 
to have high efficiency and the ability to recognize the nature 
of bugs (from the knowledge base). Using this approach, the 
system can also easily provide information about how far a 
student program segment is from an ideal program segment, 
thus supporting the case identifying process. 

Knowledge-based debugging has been implemented in a 
debugging graph. Empirical evaluation has shown that the 
debugging graph has achieved high performance in detecting 
and identifying language bugs, as well as determining 
language level program equivalence. 

The language expert has dealt with a challenging problem 
in Lisp program debugging ---- conditional case identification, 
which is not dealt with in some current Lisp debuggers (e.g., 
PHENARETE [Wertz 82] and the LISP TUTOR [Anderson 
85] [Reiser 85]) and not handled well in others (e.g., TALUS 
[Murray 86] which seems to only identify conditional cases 
without bugs in the test parts). The language expert uses a 
specific procedure to accomplish case identification, which 
allows it to handle Lisp programs with bugs in both test parts 
and action parts of their conditional cases. The empirical 
evaluation has shown that case identification in the language 
expert is very successful. 

5.2. Problems and Future Directions 

Some problems with the implemented system and limita
tions of the current model have been found. These problems 
and limitations as well as more ambitious targets suggest 
future directions of the research. 

The pure "level by level" method for matching the debug
ging graph against programs doesn't seem to be flexible 
enough to handle the variety of students' programs, since some 
program constructs might vary at several function application 
levels from their equivalent constructs. Handling these pro
gram constructs requires a more sophisticated matching 
method. 

Match patterns in nodes of the current debugging graph 
are consistent with the "level by level" match method. If 
knowledge for program constructs affecting several function 



· [ 

· I 

I 

application levels is included in the knowledge base, the 
number of variations of these more complicated constructs 
could be very large, and thus a more general representation for 
match patterns would be needed. 

Handling programs with side-effects has been a concern 
of research into program debugging for years, but a satisfac
tory way of dealing with side-effects has not been found. This 
research has been focussed on side-effect free, conditional, 
recursive programs, and hasn't dealt with the side-effect prob
lem. This problem, undoubtedly, will continue to motivate 
more research in the future. 

In spite of problems mentioned above, this research has 
achieved a considerable success in using a new approach to 
finding language errors and program equivalence in an 
automated advising system. It has shown the potential for 
combining knowledge-based and theorem proving techniques 
to help automated debugging. 

Acknowledgements 

We would like to thank the rest of the SCENT research 
group, in particular Jim Greer, Rick Bunt, Bryce Barrie, Paul 
Pospisil, and Chris Stang for their input to this research. The 
financial support of the Natural Sciences and Engineering 
Research Council of Canada and of the University of 
Saskatchewan are gratefully acknowledged. 

REFERENCES 

[Adam 80] A. Adam and J. Laurent, "LAURA, A System to Debug 
Student Programs", Artificial Intelligence 15, 1980, pp. 75-122. 

[Anderson 85] J. R. Anderson and B. J. Reiser, "The Lisp Tutor", 
BYTE, April, 1985, pp. 159-175. 

[Barrie 88] B. Barrie, A Model for Strategy Representation and 
Recognition for an Intelligent Tutoring System, Master's 
Thesis, Department of the Computational Science, University 
of Saskatchewan, in progress. 

[Boyer 79] R. Boyer and J. Moore, A Computational Logic, 
Academic Press, Inc. Orlando, Florida, 1979. 

[Escott 88] J. Escott, Similarity-Based Problem Solving and Student 
Modelling in a Programming Domain, Master's Thesis, Depart
ment of Computational Science, University of Saskatchewan. 

[Huang 87] X. Huang, Finding Language Errors and Program 

Equivalence in an Automated Programming Advisor, Master's 
Thesis, Research Report# 87-13, Department of Computational 
Science, University of Saskatchewan, September, 1987. 

[Johnson 85] W. L. Johnson, Intention-Based Diagnosis of Errors in 
Novice Programs, Ph.D. Thesis, Yale University, May, 1985. 

[Lukey 80] F. J. Lukey, "Understanding and Debugging Programs", 
Int. J. Man-Machine Studies, 12, 1980, pp. 189-202. 

[McCalla 86] G. I. McCalla R. B. Bunt and J. J. Harms, "The Design 
of the SCENT Automated Advisor", Computational Intelli
gence, vol. 2, no. 2, 1986, pp. 76-92. 

[McCalla 88] G. I. McCalla and J. E. Greer, "Intelligent Advising in 
Problem Solving Domains", Proceedings of the Intelligent 
Conference on Intelligent Tutoring Systems (ITS '88) , June, 
1988, Montreal, (to appear). 

[Murray 87] W. R. Murray, "Automatic Program Debugging for 
Intelligent Tutoring Systems", Computational Intelligence, vol. 
3, no. l, February, 1987, pp. 1-16. 

168 

[Ng 86] T. H. Ng, Dynamic Planning of Blackboard Focus Shifts in 
an Automated Debugging System, Master's Thesis, Research 
Report 87-3, Department of Computational Science, University 
of Saskatchewan, March, 1987. 

[Pospisil 88] P. Pospisil, Diagnosing Strategy Errors in SCENT, 
Master's Thesis, Department of Computational Science, 
University of Saskatchewan, in progress. 

[Reiser 85] B. J. Reiser, J. R. Anderson and R. G. Farrell, "Dynamic 
Student Modelling in an Intelligent Tutor for LISP Program
ming", Proceedings of the 9th IJCAI Conference, Los Angeles, 
Calif., August, 1985, pp. 8-13. 

[Ruth 76] G. R. Ruth, "Intelligent Program Analysis", Artificial 
Intelligence 7, 1976, pp. 65-85. 

[Shapiro 81] D. G. Shapiro, Sniffer: a System that Understands 
Bugs, AI Memo #638, MIT, 1981. 

[Wertz 82] H. Wertz, "Stereotyped Program Debugging: an Aid for 
Novice Programmers", Int. J. Man-Machine Studies 16, 1982, 
pp. 379-392. 



KNOWLEDGE ACQUISITION TECHNIQUES FOR KNOWLEDGE-BASED SYSTEMS 

Mildred L. G. Shaw 
Dept of Computer Science 

University of Calgary 
Calgary, Alberta 

Canada T2N 1N4 

ABSTRACT 

Growin~ recognition of the significance of knowledge-based 
computrng systems has focused attention on processes of 
knowledge acquisition and transfer. Commercial applications of 
expert systems are being impeded by the knowledge engineering 
bottleneck and have led to the development of rapid prototyping 
tools. These have proved practically useful but the range of 
application of existing tools is limited, and it is not clear what 
)imitations are inherent in the prototyping tools. This paper 
mtroduces the concept of knowledge support systems as the 
integration of interactive knowledge acquisition systems and 
expert systems shells. A prototype knowledge support system 
that has been implemented is described with examples of some 
?f the knowledge acquisition and application tools provided. It 
mcludes knowledge acquisition and transfer through interactive 
repertory grid elicitation; exchange techniques for understanding 
and agreement between experts; and different forms of analysis 
that have ~en widely _used for comparing data between experts 
and for rapid prototypmg of expert systems. An evaluation 
model for knowledge support systems is presented, and the 
results of ini~al validation studies are reported showing the 
extent to which experts agree with each other and with 
themselves at a later date. Preliminary results indicate that the 
measures used discriminate the differences within and between 
experts. 

KEYWORDS: knowledge acquisition, knowledge support 
systems, rapid prototyping tools, validation. 

INTRODUCTION 

Much successful work has been done in the area of knowledge 
representation, but knowledge acquisition and transfer has long 
been thought of as the bottleneck in the process of building 
expert systems. It was pos~ible that knowledge engineering 
might develop as a profession on a par with systems analysis 
and programming, and that an initial shortage of skilled 
knowledge engineers would cause problems which would be 
o".ercome ~ventually as the profession developed. However, 
this scenano now appears less and less likely. There is certainly 
a sh?rta~e of knowledge engineers and problems in developing 
apphcauons, but doubts have been cast on the notion that human 
labor is the appropriate solution to the knowledge engineering 
problem. 

The t~ch~ology is now in a mass-market situation where many 
orgamzauons see the need for expert systems. This has led to a 
growth in demand that is far more rapid than the growth in 
supply of trained and experienced knowledge engineers. In 
addltlon, the role of the knowledge engineer as an intermediary 
between the expert and the technology is being questioned not 
only on cost grounds but also in relation to its effectiveness. 
Knowledge may be lost through the intermediary and the 
expert's la~k of_kn?wle~g~ of the _technology may be less of a 

169 

detriment than the knowledge engmeer's lack of domain 
knowledge. Full exploitation of the potential of expert systems 
d~pends on the development of rapid prototyping systems 
directly usable by experts with the knowledge engineer acting 
only as manager, not intermediary. 

PERSONAL CONSTRUCT PSYCHOLOGY 

Kelly developed a systemic theory of human cognition based on 
the single primitive of a construct, or dichotomous distinction. 
For an individual, constructs are: 

"transparent templets which he creates and then attempts to fit 
over the realities of which the world is composed." (Kelly 
1955) 

He proposes that all of human activity can be seen as a process 
of anticipating the future by construing the replication of events: 

"Constructs are used for predictions of things to come, and 
the world keeps rolling on and revealing these predictions to 
be either correct or misleading. This fact provides a basis for 
the revision of constructs and, eventually, of whole construct 
systems." (Kelly 1955) 

Hence his psychological model of man is strongly 
epistemological and concerned with the way in which man 
models his experience and uses this model to anticipate the 
future. The anticipation may be passive as in prediction, or 
active as in action. 

Kelly developed his theory in the context of clinical psychology 
and hence was concerned to have techniques which used it to 
by-pass cognitive defenses and elicit the construct systems 
underlying behaviour. This is precisely the problem of 
knowledge engineering. His repertory grid (Shaw 1980) is a 
way of representing personal constructs as a set of distinctions 
made about elements relevant to the problem domain. In clinical 
psychology this domain will often be personal relationships and 
the elements may be family members and friends. In the 
development of expert systems the elements will be key entities 
in the problem domain such as oil-well sites or business 
transactions. 

Repertory grids have been widely used: in clinical psychology 
(Shepherd & Watson 1982); to study processes of knowledge 
acquisition in education (Pope & Shaw 1981); and to study 
decision making by individuals and groups in management 
(Shaw 1980). PLANET (Shaw 1982) is an integrated suite of 
programs that operationalizes Kelly ' s work and may be used for 
the interactive elicitation and analysis of repertory grids. These 
programs have been widely used internationally in clinical 
psychology, education and management studies (Shaw 1981), 
and in knc,wledge c:-:gineering for expert systems (Shaw & 
Gaines 1983). 



ts File Edit Uiew Elicit Process Debug 

D EHpert2-Elicit 

[ DK J "To eualuate spatial interpolation techniques" 

( Cancel J ~dd_in~ Characteristic to distinguish triple of 

local 
Bi cub ic sp I i nes 
Tr iangulat ion 

Prox ima l mapping 
Universa l kr ig ing 
Punctual krlging 
Nonparametric kriging 
Hand contouring 

Distance weighted averaging 
... 

Probabi I i ty mapping 
Trend surface analysis 
Double Fourier series 
Most predictab le s urface 

global 

Figure 1. A KSSO screen showing the construct local - global. 

Kelly's personal construct psychology is important because it 
develops a complete psychology of both the normal and 
abnormal, which has strong systemic foundations. In the long 
term these foundations may be more important to knowledge 
engineering than the techniques currently based on them. 
However, this paper concentrates on the repertory grid as a 
technique for eliciting information from an expert. 

REPERTORY GRIDS 

A repertory grid is a two-way classification of data in which 
events are interlaced with abstractions in such a way as to 
express part of a person's system of cross-references between 
his personal observations or experience of the world (elements), 
and his personal constructs or classifications of that experience. 

The elements are the things which are used to define the area of 
the topic, and can be concrete or abstract entities. For example, 
in the context of expertise about metal joining they might be 
types of rivet, or in expertise about medical diagnosis they might 
be symptoms. Before choosing the set of elements, the user 
must think carefully about the area of the topic and relate the 
elements to his purpose. The elements should be of the same 
type and level of complexity, and span the topic as fully as 
possible. It is usual to start with about six to twelve elements. 
The universe of discourse is determined by the elements which 
must be significant to the person in the context of the particular 
problem. 

The constructs are the terms in which the elements are similar to 
or different from each other. Each construct therefore has two 
poles, each of which has a meaning with respect to its opposite. 
Any construct or dimension of thinking which is important to the 
subject is a valid construct. For example, to distinguish between 
people by saying that x and y are blue-eyed whereas b and c 
are brown eyed may be trivial, and not concerned with the 
important qualities of x, y, b, and c. However, if you are an eye 
specialist concerned with prescribing tinted contact lenses, this 
may be a significant construct. Thoughts and feelings, objective 
and subjective descriptions, attitudes and rules-of-thumb all 
constitute valid constructs if they contribute to the conceptual 
structures of the expert. The verbal description of the construct 
and the labelling of the poles need not be a publically agreed 

170 

meaning in the outside world, but only a memory aid to the 
thinking process. The mapping of the elements onto the 
constructs produces the two-dimensional grid of relationships. 

Constructs are elicited either in triples - in what significant way 
is one element similar to another, and in the same way different 
from a third; in pairs - in what significant way do these two 
elements differ; or just as they come to the mind of the expert. 
An example is shown of elements rated on the construct local
global using direct manipulation in the area of spatial 
interpolation techniques to produce contour maps, in Figure 1. 

Figure 2 shows how the techniques are dragged on to the 
construct bar from the left. Both the construct labels and the 
technique names can be edited at any time. The placing of the 
techniques should be continued until the expert feels that their 
relative positions captures the idea he had in mind. 

The mapping of the elements onto the constructs produces the 
two-dimensional grid of relationships which can be represented 
as a numeric data structure as shown in Figure 3. This structure 
may be viewed as a component of a database in entity-attribute 
form (Chen 1980): a repertory grid has elements as entiti'!s, 
constructs as attributes and allocations of elements to pole~ of 
constructs as values. For example, Bicubic splines is rat'!d a 
1 on the construct local-global specifying local, whereas 
Probability mapping is rated a 9, specifying global. 

KNOWLEDGE SUPPORT SYSTEMS 

Knowledge support systems can be seen as integrated interactive 
knowledge acquisition systems and expert systems shells. They 
are seen as having a broad scope, encompassing both aids to 
knowledge acquisition and transfer, knowledge representation, 
and support of human knowledge processes (Shaw & Gaines 
1987). It is desirable that the tools in a knowledge support 
system are domain independent and directly applicable by 
experts without intermediaries. They should be able to access a 
diversity of knowledge sources including text, interviews with 
experts, and observations of expert behaviour and be able to 
encompass a diversity of perspectives including partial or 
contradictory input from different experts. Moreover, the 
knowledge support system should be able to encompass a 



• File Edit Uiew 

in 
Elicit Process Debug 

EHpert2-Elicit 

OK ] "To eualuate spatial interpolation techniques" 

Cancel ] Hdding Characteristic 

aatheaatical curve fitting 
~Bi cub ic sp lines 

- Double Four~r ser ies-

Most predictable s urface 
Tri angu I at ion 

kProbab i I i ty mapping 
Trend surface analysis 

Universa l kriging 
Punctual kriging 
Nonparametric kriging 

~ Di s tance weighted averag ing 
/Proxima l mapping 

LHand con tour i ng 
doesn·t fit a aatheaatical curve 

1 :42:35 

Figure 2. A KSSO screen showing direct manipulation of elements. 

Entities: 12, Attributes: 18, Range: 1 to 9, Purpose: To evaluate spatial interpolation techniques 

2 3 4 5 6 7 8 9 10 11 12 ........................................................ ........................................... 
qualitative and quantitative 8 8 6 9 9 8 8 9 4 4 4 quantitative 

local 2 9 9 6 3 5 9 9 1 4 4 4 2 global 

autocorrelation not considered 3 5 4 7 2 3 2 9 9 9 3 autocorrelation considered 

doesn't honour data points 4 2 1 3 5 9 9 1 9 8 7 7 4 honours data points 

multiple variables considered 5 9 9 9 9 9 9 9 9 9 9 9 5 usually one variable considered 

mathematical curve fitting 6 4 4 8 9 9 2 4 9 5 8 6 doesn't fit a mathematical curve 

nonparametric 7 9 6 1 l 3 6 3 8 8 7 parametric 

interval or ratio data 8 9 1 5 5 l 1 1 1 l 8 nominal data 

requires periodicities 9 6 6 9 9 9 9 6 9 9 9 9 9 doesn't require periodicities 

docsn 'l fit a trend 10 9 9 7 9 6 10 fits a trend to the data 

heavy computing load 11 7 6 7 8 9 4 4 5 3 2 3 11 no computing load 

assumes isotropic surface 12 1 4 3 8 9 1 1 9 7 6 6 12 assumes anisotropic surface 

not as susceptible to clusters 13 8 6 9 3 4 7 8 5 l 2 2 13 estimates susceptible to clusters 

doesn't incorporate geologic model 14 2 2 3 l 9 l 2 2 1 6 6 6 14 incorporates geologic model 

interpretive 15 9 9 5 9 7 9 9 7 3 4 4 15 representative 

not very important 16 4 5 2 9 I 6 7 8 9 9 16 very important 

not very effective 17 4 5 3 9 2 4 6 7 9 8 8 17 very effective 

not widely used 18 3 8 7 5 9 3 3 4 6 2 2 18 widely used 

2 3 4 5 6 7 8 l 10 11 12 

I I 
I 

Nonparametric kriging 

l Punctual kriging 

Universal kriging 

Triangulation 

Most predictable surface 

Double Fourier series 

Bicubic splines 

Hand contouring 

Proximal mapping 

Distance weighted averaging 

Trend surface analysis 

Probability mapping 

Figure 3. A conventional repertory grid of spatial interpolation techniques. 
A 1 represents the left constru.ct pole and a 9 the right. 

171 



I 
•I 

. ·I 

diversity-of forms of knowledge and relationships between 
knowledge and be able to present knowledge from a diversity of 
sources with clarity as to its derivation, consequences and 
structural relations. Users of the knowledge support system 
should be able to apply the knowledge in a variety of familiar 
domains and freely experiment with its implications. It should 
make provision for validation studies and as much of the 
operation of the knowledge support system as possible should 
be founded on well-developed and explicit theories of 
knowledge acquisition, elicitation and representation. As the 
overall knowledge support system develops it should converge 
to an integrated system. 

Clearly, these are general requirements and may not apply in 
particular cases. For example, some domain dependence may be 
appropriate for efficiency in specific knowledge support 
systems; some human intervention may be helpful or necessary 
when an expert is using a knowledge support system. 
However, in general these requirements capture the key issues in 
knowledge support system design. 

PLANET (Shaw 1982, Shaw & Gaines 1986) has been 
developed and widely used for some years for knowledge 
elicitation. This paper briefly reviews the techniques involved 
and describes the most recent developments of a comprehensive 
integrated rapid prototyping system, KSSO, which attempts to 
satisfy the above design requirements for a knowledge support 
system. 

RELATED WORK 

ETS and Aquinas (Boose 1984, Boose & Bradshaw 1987) are 
related quite closely to PLANET and KSSO, having been 
developed in response to the initial success of the PLANET 
system. KSSO and Aquinas are integrated prototyping systems 
providing knowledge acquisition tools encompassing a diversity 
of forms of knowledge and relationships between knowledge. 
KSSO can access a wide range of knowledge sources including 
text, interviews with experts, and observations of expert 
behaviour. Aquinas can present knowledge from multiple 
sources with clarity as to its derivation, consequences and 
structural relations. Both systems can encompass a diversity of 
perspectives including partial or contradictory input from 
different experts. Users of these knowledge acquisition tools 
are able to apply the knowledge in a variety of familiar domains 
and freely experiment with its implications. These systems offer 
the capability to expedite the prototyping stage of complex 
knowledge-based systems, motivating the experts to be closely 
involved in all aspects of the system development by giving 
them a supportive and comprehensible environment. All four 
systems use repertory grid techniques to elicit the expert's 
conceptual structures, and use different versions of ENT AIL 
(Gaines & Shaw 1986) to produce rules for an expert system 
shell. 

MOLE (Eshelman, Ehret, McDermott, & Tan, 1987) is an expert 
system shell that has been used effectively to build heuristic 
classification systems. It interviews domain experts, exploits 
assumptions of exhaustiveness and exclusivity to determine the 
most likely candidates among competing hypotheses, and has 
many methods for analyzing and refining the knowledge base 
for consistency and adequacy. It distinguishes between three 
types of knowledge-covering, differentiating, and combining 
knowledge-in its problem-solving, and uses a system of 
"support values" to represent uncertainty. 

CSRL (Bylander & Mittal, 1986) is another successful tool with 
a similar problem-solving approach, although it is difficult for 
domain experts to learn and use. Gruber and Cohen (1987) 
have developed a system called MUM that embodies 
architectural principles that facilitate knowledge acquisition. It 
allows experts to specify local evidence combining knowledge; 
however it is limited to a symbolic representation of uncertainty. 

172 

An innovative "learning apprentice" program, ODYSSEUS, has 
been developed by Wilkins (1987) to help experts refine and 
debug knowledge bases for the HERACLES heuristic 
classification shell. However, its use is appropriate only during 
the knowledge acquisition "end-game"; that is, it requires that a 
reasonable knowledge base has already been created. 

The following section describes the work on KSSO, a 
knowledge support system that draws on many concepts and 
techniques for knowledge engineering to begin to encompass 
some of the requirements discussed above, attempting to relate 
them all through the theoretical base of personal construct 
psychology, and build a workbench of tools around a common 
database. 

KSSO: A KNOWLEDGE SUPPORT SYSTEM 

KSSO: Knowledge Support System Zero consists of a: 
knowledge base; various analytical tools for building and 
transforming the knowledge base; and a number of 
conversational tools for interacting with the knowledge base. 
The KSSO implementation is written in Pascal and currently runs 
on a network of Macintosh workstations. The KSSO structure is 
best understood by following sequences of activity that lead to 
the generation of a rule base and its loading into an expert 
system shell. 

A typical sequence is text input followed by text analysis 
through TEXAN which clusters associated words leading to a 
schema from which the expert can select related elements and 
initial constructs with which to commence grid elicitation. The 
resultant grids are analyzed by ENTAIL which induces the 
underlying knowledge structure as production rules that can be 
loaded directly into an expert system shell (Gaines & Shaw 
1986). 

An alternative route is to monitor the expert's behaviour through 
a verbal protocol giving information used and decisions resulting 
and analyze this through ATOM which induces structure from 
behaviour using a search over a model space ordered by 
complexity and goodness of fit, and again generates production 
rules (Gaines 1977). A version of ATOM is incorporated in 
KSSO that takes a set of sequences of arbitrary symbolic data 
and generates a set of production rules that will reconstruct it. 
These can be loaded into the expert system shell to give a 
simulator of the behavioural system. 

These two routes can be combined. KSSO attempts to make 
each stage as explicit as possible to the expert, and, in particular, 
to make the rule base accessible as natural textual statements 
rather than technical production rules. The expert system shell 
being used in KSSO currently is Nexpert (Roy 1986) which 
gives a variety of textual and graphical presentations of the rule 
base enabling the expert to see the impact of different fragments 
of knowledge. 

The group problem-solving component of KSSO is particularly 
important because it goes beyond the stereotype of an expert 
and users, and allows the svstem to be used to support an 
interactive community in their acquisition and transfer of 
knowledge and mutual understanding. The SOCIO analysis 
allows members of a community to explore their agreement and 
understanding with other members, and to make overt the 
knowledge network involved (Shaw 1980, 1981, 1988). Much 
expertise only resides within the social context of cooperating 
individuals and requires elicitation across the group. The 
SOCIO analysis program supports group elicitation techniques 
in which the construct systems of a number of experts are 
compared. Grids are elicited separately but then exchanged in 
two ways: an expert can place elements on a colleague's 
constructs from his own point of view, and the analysis system 
then allows him to explore their agreement; or he can attempt to 
place them from his colleague's point of view and hence explore 
his understanding. SOCIO supports several users in seeing the 
relationship of their points of view to those of others; exploring 



differing terminology for the same constructs; becoming aware 
of differing constructs having the same terminology; extending 
their own construct systems with those of others; providing 
others with constructs they have found valuable; and exploring a 
problem-solving domain using the full group resources. 

The KSSO implementation is an initial prototype offering a 
workbench with minimal integration of the knowledge base, but 
each of the tools has already proven effective, and their 
combination is proving very powerful in stimulating experts to 
think of the knowledge externalization process from a number of 
different perspectives. 

VALIDATION OF A KNOWLEDGE SUPPORT 
SYSTEM 

A model for evaluation of a knowledge support system and 
different types of validation has been discussed by Shaw and 
Woodward (1988). There are two distinct aspects of validation, 
those concerned with objective aspects of the system and those 
concerned with subjective aspects of the system. These 
distinctions represent the various aspects of operation of 
knowledge support systems. The objective aspects are those 
concerning the performance of the expert system or knowledge 
base, elicited from the expert or experts, against objective 
criteria. A knowledge support system supports the knowledge 
processes of the expert, and allows her to develop a system 
which actually performs effectively in the real world, rather than 
merely confirming the opinion of the expert. 

The subjective aspects relate to the way in which the knowledge 
acquisition system acquires the knowledge that the expert has. It 
is clearly impossible to separate the knowledge acquisition tool 
from the expert, so the term knowledge acquisition system 
is used to mean the knowledge acquisition tool, and the expert: 

knowledge acquisition system = knowledge 
acquisition tool + expert 

Figure 4 shows the model developed for this study. Only the 
subjective aspects of validation were investigated. 

Validation 

oqjective suJ:uective 

A 
inter-subjective intra-subjective 

Figure 4. The evaluation model for the study 

It is now thought to be essential to have a group of experts 
involved in building a knowledge base, so it was necessary to 
see if there was mutual consistency and/or construing across 
experts. Also, whether there was any consistency of an expert 
over a time interval, both in the terminology used, and how it 
was used. Finally, an investigation was made as to whether the 
analysis performed by the system on each expert's knowledge 
was seen as correct, or if any of it was incorrect. 

A measure of diachronic reliability (Chow, 1987) appears most 
suitable for evaluating the replication of knowledge support 
systems. This measure reflects the degree of similarity, over 
time, of the calculated output. A knowledge support system 
reflects a high degree of replication in the sense that the output of 
the knowledge support system, the results of the algorithms, 

173 

reflect a high degree of similarity over time. Strictly speaking, 
this approach to replication is strongly influenced by the 
reliability of the user of the knowledge support system. 
However, the knowledge support system can be viewed as an 
aid to the user which helps the user maintain consistency over 
time given the same task demands. Also, knowledge support 
systems are not used in isolation but are used by individuals so 
any measure of a knowledge support system must be done with 
those who will use the system. If replication measures are low, 
the system cannot be considered consistent or helpful, unless 
this can be seen to be a product of the raw data from the experts. 

Although replication is a possible requirement of a knowledge 
support system, other basic requirements need attention. The 
knowledge support system must also demonstrate various forms 
of consistency. In this sense, consistency refers to the extent 
to which the knowledge support system produces what it is 
expected to produce. At the subjective level of evaluation, 
consistency is defined by two measures. The first is intra
subjective consistency. Based on the concepts of content 
and face validity (Travers, 1969; Campbell & Stanley, 1963), 
this type of consistency is defined as the extent to which the 
knowledge support system output is correct as judged by the 
expert. Knowledge support systems produce output which has 
a high degree of similarity with what is apparently expected. 
The absence of this form of consistency indicates that the system 
may be performing its calculation incorrectly and/or that the 
output bears little resemblance to what would be expected by the 
designer, by the user of the tool or by the domain expert. This 
result has serious implications for any subsequent use of 
knowledge support system output. 

Another, complementary, measure of consistency at this level of 
evaluation is that of inter-subjective consistency. Based 
on the concept of concurrent validity (Chow, 1987; Travers, 
1969) this type of consistency is a measure of prediction of 
events which occur at roughly the same time. If two or more 
individuals, with similar experience in an area, produce similar 
output using a knowledge support system, then the system can 
be said to afford a degree of inter-subjective consistency. The 
extent to which two or more people produce the the same output 
represents the degree of consistency. 

However, inconsistency among experts is not unexpected as 
experts may well not agree. In many areas, each expert has a 
unique perspective on the topic and often believes that there is 
only one way that the topic should be considered. This is not 
necessarily an undesirable situation, as long as the system is able 
to reflect this. If a task is carefully defined, specifically outlined 
and agreed upon as important, then a certain degree of similarity 
can be expected in the outcome of the knowledge support 
system. This suggests the selection and development of a set of 
test cases with specific task requirements. These test cases can 
then be used to determine the degree of inter-subjective 
consistency demonstrated by various experts, while using the 
system. In the same way as for replication, the knowledge 
support system can be seen as an aid to users. 

THE RESULTS 

KSSO has been evaluated against the model and the results 
reported in the two domains of spatial interpolation techniques to 
produce contour maps and in trouble-shooting and maintenance 
of valves for oil and gas pipelines. Some preliminary results are 
described on validation experiments to show the extent to which 
this system can replace standard interviewing techniques. 

Two separate studies were completed using specific task 
demands from these two separate and quite different domains. 
The first study involved three researchers in a university 
geography department each of whom is an expert in the field of 
spatial interpolation techniques to produce contour maps. In the 
second study, a trainer and an engineer in the field of gas 
pipeline valve maintenance provided their expertise. These two 



I 

I 

individuals were chosen because they were both considered 
knowledgeable in the area, but also because they brought a 
different background to the field: one from a field-operator 
perspective, the other from that of an engineer. The trainer had 
been involved in training gas pipeline operators in proper 
maintenance of pipeline valves for 15 years and the engineer 
owned a company which sold valves. Each group elicited and 
exchanged grids on the first occasion, then 2 to 3 months later 
elicited new constructs and ratings using the old set of elements, 
and elicited new ratings using the old set of elements and 
constructs. Details of the design are given in Shaw and 
Woodward (1988). 

Two measures were used in this study, consistency-with 
another and construed-by another. Consistency is 
measured using exchange grids. Do the experts see the topic 
in a similar way at the same time? By exchanging elements and 
constructs they are able to view the topic from the perspective of 
the other. To do this involves an understanding of what the 
other's elements and constructs actually mean in the domain, or 
can I construct a point of view which makes sense of 
them? Not only that, but do I agree with the other's 
construction of the topic, having understood the 
perspective of the other? So consistency is defined as 
the degree of match between one expert's ratings of his/her own 
elements and constructs and another expert's ratings of the first 
expert's elements and constructs. The patterning of the elements 
on a particular construct is matched against the patterning of the 
same elements on that same construct in the other grid. 

Consistency over time can also be measured in this way but 
using the same expert's grid on the two occasions with the 
same element and construct labels as before, but new ratings. 
Only elements and constructs with the same labels in both grids 
can contribute to this measure of consistency. Operationally, 
this measure was calculated using the EXCHANGE measure 
based on the matching algorithm that is described in Shaw 
(1980) and used in FOCUS, CORE and SOCIOGRIDS. It 
ranges from 100 for perfect match to O for maximum reversal. 
This measure is picking out the differing use of terminology in 
the two grids. The following formula was used: 

G consistency-with G' at criterion = 100 x 

(number of constructs in G matched greater than criterion by 
same constructs in G') ______ _ 

(number of constructs in G) 

Construing is akin to consistency. The entity labels must be 
the same in both grids, but separate sets of constructs can be 
used. In this case, the measure picks out the constructs in the 
second grid with the best match to the patterning of the elements 
on the one being considered in the first grid. In this case, the 
same construct may be chosen more than once in the second grid 
if it matches more closely than any other to more than one 
construct in the first. Again, the same matching algorithm was 
used. This measure is picking out the best match between the 
constructs in the two grids, regardless of terminology. The 
following formula was used: 

G construed-by G' at criterion = 100 x 

{number of constructs in G matched greater than criterion by 
any constructs in G') 

(number of constructs in G) 

Operational definitions for the various construing and 
consistency measures were used to evaluate the knowledge 
support system. Intra-subjective understanding was defined as 
the degree of construing of the earlier grid by the later one. 
Those constructs which were matched on the two grids at a 
criterion of 80 were used for this calculation, and this was 
calculated for each expert. The results ranged from 63 to 86 in 
the first study, and 83 to 100 in the second. This difference in 

174 

values between the two studies may reflect the fact that the three 
experts in the first study are academic researchers at a university, 
and hence tended to be more provisional, exploratory and 
accepting of different ways of considering the problem. They 
were at no time fixed in their views of the topic. In the second 
study, however, the experts were professionals using their 
expertise in the field, and hence much more decisive and sure of 
what they were doing and how it should be done. 

Intra-subjective agreement was defined as the degree of 
consistency between one expert's ratings of his/her own 
elements and constructs in the earlier grid with his/her ratings of 
the elements and constructs in the later grid. These scores 
ranged in the first study from 79 to 94, indicating that the 
experts were using their terminology in much the same way 
from one occasion to the other and that KSSO was able to reflect 
this consistency. In the second study both were 67, indicating 
some difference in the use of terminology. 

Inter-subjective agreement was defined as the degree of 
consistency between one expert's ratings of his/her own 
elements and constructs in the first grid with another expert's 
ratings of the first expert's elements and constructs; that is the 
extent to which the experts agree. These scores ranged in the 
first study from 8 to 33.showing that the experts disagree in 
their terminology and in how they view the topic quite 
extensively. This can also be seen by inspecting the raw data. 
In the second study the scores range from 13 to 100. Here it is 
interesting to note that the trainer could use the terminology of 
the engineer totally, but the engineer could only use a small part 
of the trainer's terminology. 

Inter-subjective understanding was defined as the degree of 
construing of each expert's grid by another expert. These values 
are much higher showing that the experts have similar 
distinctions about the topic even though they differ greatly in 
how they use the terminology. In the first study these values 
range from 31 to 71, and in the second from 67 to 100. This 
suggests that KSSO shows a facility for allowing experts to 
compare their understanding and to determine a level of 
consistency. Whether the threshold criteria are high enough to 
produce the required level of knowledge-base performance or 
too high to reach the criterion of completeness is a matter for 
further study. 

Finally, intra-subjective perspective consistency was defined as 
the degree of consistency of the rules produced by the ENTAIL 
algorithm with what the expert apparently expected. The ratings 
of these statements were then compared to the entailment output 
from the earlier grid. These show whether the expert finds the 
rules meaningful, and rates the rules as correct or significant in 
the same way as the ENTAIL algorithm (Gaines & Shaw 1986, 
Shaw & Gaines 1987). They range from 82 to 92, showing a 
high level of expected rules appearing in the KSSO output. This 
indicates a good basis for using the ENT AIL produced rules as 
input to an expert system shell. 

There are many more ways in which the data are being 
processed, especially in terms of the rules derived from the 
various grids. At this stage the similarities and differences 
between experts and within experts over a 2 to 3 month time 
interval have been investigated. Clearly, the content of these 
similarities and differences can be identified and related to 
external criteria. 

CONCLUSIONS 

Growing recognition of the significance of knowledge-based 
computing systems has focused attention on processes of 
knowledge acquisition and transfer. Commercial applications of 
expert systems are being impeded by the knowledge engineering 
bottleneck and have led to the development of rapid prototyping 
tools. These have proved practically useful but the range of 
application of existing tools is limited, and it is not clear what 



limitations are inherent in the prototyping tools, what arises from 
the shells and their knowledge representation and inferencing 
procedures, and what arises from our lack of understanding of 
the underlying processes of knowledge acquisition and transfer. 

This paper has introduced the concept of knowledge support 
systems as integrated interactive knowledge acquisition systems 
and expert systems shells. A prototype knowledge support 
system that has been implemented on a network of Macintosh 
computers has been described with examples of some of the 
knowledge acquisition and application tools provided. It 
includes knowledge acquisition and transfer through interactive 
repertory grid elicitation; exchange techniques for understanding 
and agreement between experts; and different forms of analysis 
that have been widely used for comparing data between experts 
and for rapid prototyping of expert systems. Such systems offer 
the capability to expedite the prototyping stage of complex 
knowledge-based systems, motivating the experts to be closely 
involved in all aspects of the system development by giving 
them a supportive and comprehensible environment. 

An evaluation model for knowledge support systems was 
presented, and the results of initial validation studies reported. 
Measures have been put forward which tease out differences in 
terminology between experts, and show the content of this 
difference. To a knowledge engineer, it seems that if experts 
talk about their topic of expertise in the same terms then they 
mean the same thing, and if they talk in different terms they 
mean different things. However, it can be seen from the results 
of this study that the knowledge engineer, or even another 
expert, may be mistaken. The experts in the first study were 
clearly accustomed to disagreeing on terminology, a fact which 
may not always be made explicit. The consistency measure used 
for inter-subjective agreement showed up the divergence in use 
of terminology between the experts (8 to 33), but when used for 
one expert alone for intra-subjective agreement gave much 
higher values (79 to 94). This measure, then, shows a good 
range of discrimination in the two cases within experts and 
between experts. This is not so apparent in the second study 
where the experts were professionals using their skills and 
knowledge every day in an industrial situation. A similar 
rationale can be applied in the construed-by measures ofinter
and intra-subjective understanding. 

In the first study there was clearly inconsistency among the 
experts, and this was reflected by the results from the 
knowledge support system. This was therefore a good 
population for study, as it highlighted a controversy and/or 
disagreement which would be likely to occur between experts 
and users of an expert system, even if it did not occur among the 
experts themselves. 

ACKNOWLEDGEMENTS 

Financial assistance for this work has been made available by the 
Natural Sciences and Engineering Research Council of Canada. 
The KSSO system is made available by the Centre for Person 
Computer Studies. I would like to thank my colleagues Brian 
Gaines and Brian Woodward who were jointly involved with me 
in conducting this research. 

REFERENCES 

Boose, J.H. (1984). Personal construct theory and the transfer 
of human expertise. Proceedings AAAI-84, 27-33. 
California: American Association for Artificial Intelligence. 

Boose, J.H. & Bradshaw, J.M. (1987). Expertise transfer and 
complex problems: Using AQUINAS as a knowledge 
acquisition workbench for knowledge-based systems. 
International Journal of Man-Machine Studies, 
26(1), 3-28. 

175 

Bylander, T. & Mittal, S. (1986). CSRL: A language for 
classificatory problem-solving and uncertainty handling, Al 
Magazine (August). 

Campbell, D.T. & Stanley, J.C. (1963) Experimental and 
Quasi-Experimental Designs for Research. 
Chicago:Rand McNally and Company. 

Chen, P.P., Ed. (1980). Entity-relationship approach to 
systems analysis and design. New York: North Holland. 

Chow, S.L. (1987). Experimental Psychology: 
Rationale, Procedures and Issues. Calgary: Detselig 
Enterprises. 

Eshelman, L., Ehret, D., McDermott, J. & Tan, M. (1987). 
MOLE: A tenacious knowledge acquisition tool. 
International Journal of Man-Machine Studies, 
26(1), 41-54 .. 

Gaines, B.R. (1977). System identification, approximation and 
complexity. International Journal of General Systems, 
3, 145-174. 

Gaines, B.R. (1987) Rapid prototyping for expert systems. 
Oliff, M. (Ed). Proceedings of International 
Conference on Expert Systems and the Leading 
Edge in Productions, Planning and Control. pp. 213-
241. University of South Carolina. 

Gaines, B.R. & Shaw, M.L.G. (1981). New directions in the 
analysis and interactive elicitation of personal construct 
systems. Shaw, M.L.G., Ed. Recent Advances in 
Personal Construct Technology. pp. 147-182. London: 
Academic Press. 

Gaines, B.R. & Shaw, M.L.G. (1986). Induction of inference 
rules for expert systems. Fuzzy Sets and Systems, 8(3), 
315-328 (April). 

Gruber, T. & Cohen, P. (1987). Design for acquisition: 
Principles of knowledge system design to facilitate knowledge 
acquisition. International Journal of Man-Machine 
Studies, 26(2), 143-159. 

Johnson, P.E. (1986).Cognitive models of expertise. 
Symposium on Expert Systems and Auditor 
Judgment. University of Southern California. 

Kelly, G.A. (1955). The Psychology of Personal 
Constructs. New York: Norton. 

Landfield, A. (1976). A personal construct approach to suicidal 
behaviour. Slater, P., Ed. Dimensions of lntrapersonal 
Space: Volume 1. pp. 93-107. London: John Wiley. 

Pope, M.L. & Shaw, M.L.G. (1981). Personal construct 
psychology in education and learning. Shaw, M.L.G., Ed. 
Recent Advances in Personal Construct Technology. 
pp. 105-114. London: Academic Press. 

Roy, J. (1986). Expert systems in Nexpert. MacTutor, 2(2), 
48-51 (February). 

Shaw, M.L.G. (1980) . On Becoming a Personal 
Scientist. London: Academic Press. 

Shaw, M.L.G. (1981). Recent Advances in Personal 
Construct Technology. pp. 31 -44. London: Academic 
Press. 

Shaw, M.L.G. (1982). PLANET: some experience in creating 
an integrated system for repertory grid applications on a 
microcomputer. International Journal of Man-Machine 
Studies, 17 (3), 345-360. 



.. . . J 

I 

Shaw, M.L.G. (1988). An interactive knowledge-based system 
for group problem-solving. IEEE Transactions on 
Systems, Man and Cybernetics, (to appear). 

Shaw, M.L.G. & Gaines, B.R. (1980). Fuzzy semantics for 
personal construing. Systems Science and Science. pp. 
146-154. Kentucky: Society for General Systems Research . 

Shaw, M.L.G. & Gaines, B.R. (1983). A computer aid to 
knowledge engineering. Proceedings of British 
Computer Society Conference on Expert Systems, 
263-271 (December). Cambridge. 

Shaw, M.L.G. & Gaines, B.R. (1986a). Interactive elicitation 
of knowledge from experts. Future Computing Systems, 
1(2), 151-190. 

Shaw, M.L.G. & Gaines, B.R. (1986b). Techniques for 
Knowledge Acquisition and Transfer. Proceedings of the 
Workshop on Knowledge Acquisition for 
Knowledge-Based Systems, November, Banff, 39-0 -
39-13. 

Shaw, M.L.G. & Gaines, B.R. (1987). Techniques for 
knowledge acquisition and transfer. International Journal 
of Man-Machine Studies, 27(3), 251-280. 

Shaw, M.L.G. & Woodward, J.B. (1988) Validation in a 
knowledge support system: consistency and.construing with 
multiple experts. International Journal of Man-Machine 
Studies, in press. 

Shepherd, E. & Watson, J:P., Eds. (1982) . Personal 
Meanings . London: John Wiley. 

Travers, R.M.V. (1969) An Introduction to Educational 
Research (Third Edition). MacMillan: London. 

Wilkins, D.C. (1987). Knowledge base debugging using 
apprenticeship learning techniques. International Journal 
of Man-Machine Studies, 27(3), 281-294. 

176 



Extracting Rules from Data with Exceptions 

Toshiharu Sugawara 
NTT Software Laboratories 

3-9-11, Midori-cho, Musashino-shi, Tokyo, 180, Japan 
Phone: + 81 422 59 3585 

ABSTRACT 

In this paper a method of extracting typical properties from 
a set of data containing exceptions is discussed. An obser
vational function classifies a sample, removes the minority 
elements, and extracts a general rule based on the remain
ing elements . Furthermore, the extracted rule is improved 
by statistical estimation when new data are added. This 
technique is applied to a system for aiding the construction 
of knowledge bases. 

Keywords: Knowledge aquisition, Default rule, Learning 

§1. Introduction 

Extracting a general characteristic or a rule from a 
set of fac ts is the primary motivation behind this research. 
In real situations, a set of fact s often contains elements 
which are exceptions to possible general rules. Neverthe
less the emphasis is placed on extracting typical properties 
that characterize the set. For example, the general rule 
"birds typically fly" might be extracted from a set of facts 
containing "canaries fly," "sparrows fly," "penguins do not 
fly," "swallows fly," and so on. This may be considered as 
an extraction of default rules and such an extracted rule is 
a common-sense rule. 

A number of studies on theories and application sys
tems for ex tracting a general rule from a set of facts have 
been made ( [2, 4 and 9]) . For example, in M. Gold's study, 
an inductive inference machine (Turing machine) is em
ployed. All rules ( or functions) are enumerated within it . 
The machine verifies each rule with the facts entered from 
an ex ternal source, and outputs a rule which is completely 
consistent with them as a guess. References [10 and 12] are 
well-known systems that have applied this theory. Unfor
tunately, none of t hese methods or systems are capable of 
extracting a rule if there is an exception in the data en
tered . This is a serious shortcoming that renders all these 
systems ineffective for most practical applications. 

Exceptions here are defined as data that are propor-

177 

tionally small compared to the total data within an actually 
observed range, or those that constitute a relatively small 
propor tion compared to the majority elements. It is sage to 
say "birds typically fly" because we know after observing 
the number of birds which do not fly is relatively small in 
proportion to those that do fly. Default rules that are used 
as examples today can all be explained from this perspec
tive. 

Observations are not finished in a specified amount of 
time. There is always a possibility that a new fact may 
be entered from an external source. This view point is 
the same as in Gold's inductive inference model. In other 
words, t he extracted rules may be modified when a new fact 
is entered. Therefore, the rule extracting process is infinit e. 

In this paper, a specific property rule is extracted by 
the following method. Functions f 1 , ... , f n are prepared to 
observe the properties of facts (these functions are called 
observational functions), and a set of facts {d1, ... ,dn} 
(this is called a sample) is classified by the value off;. How
ever, the number off; calculations here must be sufficiently 
small. Through this process, exceptions are eliminated by 
the constraints of the cardinality of sets and the value of 
f; is estimated from the remaining data. This method may 
not produce rules that precisely define every aspect of a set, 
but it meets the requirements of most practical situat ions 
by providing appropriate observational functions. 

Points that need to be clarified for the extraction of 
default rules are as follows: 

(1) Extract ing rules, 
(2) Identifying exceptions, 
(3) Maintenance of ex tracted rules . 

(1) is an identification process to determine if any default 
rule can be extracted when a set { d1 , . . . , dn} is classified 
by f;. (2) is the issue of to what degree minorities should be 
treated as exceptions and (3) is the issue of how to modify 
a rule when new data are added when the sample becomes 
biased and the extracted rule loses generality. These issues, 
illustrated with examples, will be the primary focus of this 
paper. 



I 
I 

·I 

' - . · 1 

We have applied the methods based on these issues 
to develop a system to aid the construction of frame-based S ample 1[ Sample - Deletion of I Rule n Classification knowledge bases (KB-CAS) . Normally, knowledge base con
struction starts with the creation of a small-scale knowledge 
base first . Then data are added to this step by step. KB
CAS uses the initial knowledge base as a sample and ex
tracts rules or similarities; for example, rules regarding slot 
values, reverse pointers and IS-A hierarchy. The extracted 
rules assist in the construct ion of the knowledge base and 
improve the efficiency of the construction process . 

§2. Related Works 

From a logical viewpoint, default logic introduced by 
Reiter [11 J is one of the notable works for representing 
common-sense rules. Default rules are expressed as follows: 

A(x): MB( x) 
C(x) 

This means if A( x) is true and ,B( x) cannot be derived, 
then C(x) is true. Especially in normal case, where B = C, 
it has been proved that a consistent extension of default 
theory exist s. T here are other studies which support this 
position, such as non-monotonic logic [6] and circumscrip
tion [5]. 

In Variable Precision Logic, introduced by Michalski 
and Winston [8], rules containing exceptions are expressed 
by Censored Production Rules [14], which are formed as 
follows: 

S=*DlC r (1 ~ r ~ 0.5) 

This means "if S then D unless C," and if S, the possibility 
that C is true is r and D is t rue is 1 - r. Exceptions are 
described by C. If "S is true and C is unknown," D can be 
derived using inference rules which are defined by variable 
precision logic , so this rule employs a default rule using 
probability. The following is an example from their paper. 

S: it is Sunday 
D: john works in the yard 
C: he reads a book 

r >> 0.5 

In variable precision logic, this rule means "if it is Sunday, 
John usually works in the yard." 

The approach in this paper, unlike in these studies, is 
intended to extract rules and mainly to modify previously 
extracted rules. For example, after the rule extraction pro
cess, if C is observed many times, then C is no longer an 
exception. In an extreme case, instead of C, D becomes an 
exception. It is natural that the rule is updated to 

S =* D V C r' or S =* Cl D r" 

178 

E xceptions I 

~ i 
Observational 

Function 

c,:, 
Enumerator 

"tl 
Rule Extraction "" "tl 

..... 
"tl 

ro _.., 
ro 
q I Carrying-out 
~ Confidence Interval 

IE-
Q) 

z 
I La Confidence Interval I 

E xaminer 

Rule Maintenance 

Oracle -
Fig. 1. Rule Extraction Model 

The main problem is to decide when to rewrite or abandon 
the rules . 

Conceptual clustering is also relat ed to this study ([3 
and 7]). It is a method for producing classification schemes 
from observed objects. If an unknown object can be ob
served, the class to which it may belong can be determined. 
However the extracted default rules in this study are used 
as follows: the class which a object belongs to is known, but 
its properties cannot be observed. Nonetheless the proper
ties that it may have can be inferred with a high degree of 
probability. 

§3. Rule Extraction Model 

A rule extraction model is shown in Fig. 1. When a 
sample is entered, the appropriate observational function 
is enumerated and the sample is classified according to the 
value of the function. The minority part is deleted as an 
exception and the remaining portion is extracted as a rule. 
Meanwhile, the confidence level of the extracted rule is com
puted using a st atistical method (interval estimation) . 

When new dat a are entered , the confidence interval ex
aminer asks an oracle. whether the rule is still applicable 
to the new data. Depending on the result given, the con
fidence of the rule is tested by the examiner. If necessary, 
it is referred back to the rule extraction section for extrac
tion of a new rule. This process is described in some detail 
below. 



§4. Rule Extraction Method 

Definition 

Assume that A is a set and S is defined as a finite 
subset of A, and is hereafter referred to as "the sample." 
Let .f : A --+ V denote an observational function , and let 
.f(S) be the image of S by .f. For v E .f(S), we will express 
.f - 1(v) as {s E S: f(s) = v }. We denote A(x) if x EA. In 
this paper , the default rule is expressed as follows: 

A(x) =} B(x), 

where A and Bare sets. This expression means that if A(x) 
then usually B ( x). 

Classifying S by the value off means deriving a set 

J( = {f- 1 (v) lv E f(S)} 

A sequence of J( elements sorted in the order of magni
tude of cardinal numbers from the largest will be set as 
D1 , ... , Du. Here, the first m Di ( m ::; u) will be retained, 
and the remaining sections are discarded as exceptions ac
cording to the specified method ( this method is discussed 
in Section 5). Consequently, the following default rule can 
be extracted: 

A(x) =} D1 U ... U Dm(x) . 

If A(x) and D1 U .. . UDm(x) are not derived contradictions, 
then we can assume D1 U ... U Dm(x ). This corresponds to 
Reiter's normal default rule. 

Example 1 

Assume that the partial logic circuit shown in Fig. 2 
can be expressed by the frames shown in Fig. 3-1 and Fig. 
3-2. Suppose that A is a set of individual frames whose par
ent frame is CONNECTION (in complete knowledge base) 
and S is a set of individual frames whose parent frame is 
CONNECTION in the knowledge base that represents only 
Fig. 2. Let f P denote the observational function on A and 
let fv( d) be the parent frame of frame d indicated by the 
value of slot OUTPUT for any d E A. In this case, 

LINE! NANDO NO'l'l 

LINES 

LINE2 

NAND l 

LINE6 

LINES 

Fig.2. An Example Logic Circuit 

NAND2 

LINEll 

179 

Jv(S) = {NAND, NOT} 

and J(, D1 and D2 can be expressed as 

J( = { {LINEl, LINE2, LINE4, LINE5, LINE?, LINElO}, 
{LINE3, LINE6, LINE9} } 

D1 = {LINEl, LINE2, LINE4, LINE5, LINE?, LINElO} 
D 2 = {LINE3, LINE6, LINE9} 

When all sets through D2 are used, the value of fp(a) 
can be estimated as NAND or NOT for a E A . In other 
words, the value can be estimated by "the value of slot 
OUTPUT in an individual frame, that represents a con
nection , is an individual frame of either NAND or NOT." 

Example 2 (Reverse Pointer) 

A slot whose value is another frame denotes a pointer 
for that fr ame. Assume A and S are the same as those in 
example 1. Suppose f rp is a observational function on A 
and fl'/,( cl) is a set of slots whose value is d, in the frame 

GATE CONNECTION 

LINEl LINE2 LINE3- -

NO'l'O NO'l' l NOT2 NANDO NAN D1 NAND2 

• ...... CLASS FRAME 

.... INDIVIDUAL FRAME 

Fig.3-1. H ierarchical Structure Representation 

NOTO: Individual 

Slots are: 

INPUT: LINE6 

OUTPUT: LINE? 

of the Logic Circuit 

LINE3: Individual 

Slots are: 

INPUT: N ANDO 

OUTPUT: NOTl 

NANDO: Individual 

Slots are: 

INPUTl : NANDO 

INPUT2: LINE2 

OUTPUT: LINE3, LINE4 

Fig. 3-2 Frame Representation Examples 



indicated by the value of slot OUTPUT in frame d. In Fig. 
2, 

f,.p(S) = { {INPUT}, {INPUTl}, {INPUT2}} 

and 

D1 = {LINE3, LINE6, LINE9}, 

D2 = {LINEl, LINE4, LINE5}, 

D3 = {LINE2, LINE7, LINElO}, 

K = {D1 , D2 , Da} . 

When all sets through Da are used, the value of frp(a) can 
be estimated as {INPUT}, {INPUTl} or {INPUT2} for 
a E A. In other words, the value can be estimated as "the 
reverse pointer of pointer OUTPUT for an individual frame 
that represents a connection is one of INPUT, INPUTl and 
INPUT2." 

Domain Refine111ent 

When the domains of observational functions f and g 
are both A, A may be further refined by an observational 
function . Set 

and 

Assume D1 , ... , Dm are derived from g by an estimation 
method similar to that used above. In this case, A is almost 
equal to D1 U . .. U Dm. Derive D;1, ... , D;k for 

by limiting f to each D;. When g- 1(v;) = Di, the meaning 
of the estimation is "when g(d) = Vi, f(d) is one of f(Dii U 
... U Dik)-" Function g, used to refine the domain, is called 
a refinement function and the estimation derived in this 
way is called "estimating the value off derived by refining 
g." 

Example 3 

Let's estimate the value of frp by refining fp· From 
example 1, fp may be refined as 

D1 = {LINEl, LINE2, LINE4, LINE5, LINE7, LINElO} 

D2 = {LINE3, LINE6, LINE9} 

Estimating the value of frp for each Di, we will have 

D11 = {LINEl, LINE4, LINE6} 

D12 = {LINE2, LINE7, LINElO} 

D21 = {LINE3, LINE6, LINE9}. 

This means "the reverse pointer of pointer OUTPUT for an 
individual frame that represents a connection is: (1) either 
INPUTl or INPUT2 when the parent frame of the value 
of pointer OUTPUT is NAND, and (2) INPUT when the 
parent frame of the value of pointer OUTPUT is NOT," 
where the value of pointer OUTPUT means the value of 
slot OUTPUT. 

180 

Domains and ranges of observational functions and 
pairs of functions to refine domains are stored in the ob
servational function enumerator section in advance, and by 
comparing the entered sample and domains, appropriate 
observational functions will be enumerated. 

§5. Extraction of Rules and Elimination of Excep
tions 

For any set P, IP I denotes the cardinal number of P. 
Suppose ISi is sufficiently large. If a rule can be found using 
the method described above in Section 3, what is observed 
first is the phenomenon that lf(S) I is considerably smaller 
than IS i. This is because when IS i is divided into segments 
using function f, many of the segments concentrate around 
the first several D;, as shown in Fig. 4. Here, D1 , ... , D,, 
is a sorted sequence described in Section 4. When this oc
curs, there is a gap in terms of size between the exceptional 
section and the rest. Furthermore, as the size of IS i be
comes large, the gap can be expected to widen. Therefore, 
it is possible to discard the minority section when a gap is 
identified by determining the size of the gap in advance. In 
KB-CAS, for the purposes of this study, the gap is deter
mined to be 10% of 1s1. 

The second phenomenon noted is that when setting 
what is left aft er eliminating the exceptions from S as S' , 
as shown above, lf(S') I becomes considerably smaller than 
IRange(f) I, which denotes the cardinal number of the range 
of function f. This is a particularly important property 
when IRange(f)I is small to start with. For example, when 
IRange(f) I = 2 and when the division of S into segments 
by f is obtained, unless ID1I >> ID2I, it cannot said there 
is a rule. In KB-CAS, lf(S') I is required to be less than 
2/3 of IRange(f) I. 

When I SI is small , the value of the gap described above 
is not correct. If assuming ISi = 10, the value of the gap is 
1 and the gap has no meaning. Moreover, if IS i is small, the 
probability that sample S is a balanced set is low and there 
would be no value in carrying out a detailed analysis. For 
the sake of convenience, those ID; I whose values are larger 
than 20% of ISi are retained and the rest are discarded 
as exceptions. Even if a correct rule is not extracted at 
this point, the extracted rule can be improved by the rule 
maintenance mechanism, to be discussed later. 

# 

t 

Fig.4. Graph of# of Di 



§6. Rule Maintenance 

P roblems 

A rule extracted from a sample must be verified using 
data entered at a later st age. However, the result may not 
be what was originally desired. These errors are thought to 
occur because: 

( 1) The sample is biased toward elements with specific 
properties. 

(2) The new data are confined to data with a specific 
property. 

In order to avoid recurrences of errors, there needs to 
be a process whereby information is obtained from the cre
ator* of the knowledge base, in the case of KB-CAS, indi
cating that the result of the application of the rule is not 
correct. The rule must then be either rewritt en or aban
doned. It is assumed that a set of data subject to rule ex
traction contains exceptions and there is a possibility that 
errors also. It is, therefore, necessary to determine to what 
extent errors should be tolerated and at what point the 
extracted rule should be rewritten. 

The method proposed here assigns a confidence value, 
using statistical estimation, to rules extracted from a sam
ple using statistical estimation. This method involves esti
mating the confidence by setting a confidence coefficient in 
advance and carrying out an interval estimation. 

Interval Estimation ((13]) 

In statistics, there is a procedure for extracting a sam
ple from a set, carrying out observation on the sample, and 
es timating an unknown parameter p (0 :::; p :::; 1) from an 
observed value x . The confidence of the estimated value 
becomes import ant here. An effective way of determining 
the confidence is to find the estimated value in an interval 
with a sufficient range, such as 

l( x ) :::; p :::; u(x ). 

By setting the confidence coefficient as O :::; a :S l , and if 

Pr{l(x ) :::; p :::; u( x )} 2: a , 

then the interval [l( x ), u(x )] is called the confidence interval 
of confidence coefficient a. Here, Pr{ A} is the probability 
that event A occurs. Thus, the confidence interval also 
represents an estimation of the range in which the true value 
of parameter p falls from the sample. How the confidence 
interval is derived is explained in the appendix. 

A pplicatio n t o R ule M aintenance 

The confidence interval is determined for the following 
two points to conduct an estimation. 

* In t his case, this creator is an oracle of the observa
tional functions 

181 

(1) T he probability (PR) that the extracted rule pro
vides the correct answer, 

(2) The proportion (Pi) of Di to the total when the 
sample is classified by the observational function. 

Every time new data are entered, a check is carried out 
to see whether the probabili ty of the rule is still within the 
range of the confidence interval or not , and if the probability 
falls out side the range, the rule is re-extracted. In this case, 
( 1) is a means to gauge the fairness of the rule, and the 
purpose of (2) is to check to see if Di is an exception or 
not . In fact , (2) converges to the correct rule as new data 
are entered when the sample contains biased data and when 
the rule for such data is in the majority in t erms of that 
particular sample but is a minority in t erms of all samples. 
In KB-CAS, t he confidence coefficient is set at 80%. 

Example 4 

Assume tha t in a knowledge base for animals, the frames 
regarding birds only contain S = {swan, sparrow, pen
guin, canary, ostrich}. Let A be a set of frames regarding 
birds that are entered into the entire knowledge base, and 
J : S ----+ {fly, not-fly} b e t he observational function whose 
value J ( s ) is the value of slot FLY of fr ame s for s E S, so 
J observes whether a bird flies or not. In this case, 

D1 = 1-1 (fly) = { swan, sparrow, canary} 

Dz= r 1(not-fly) = {penguin ,ostrich} 

This means that "birds fly or do not fly" and thus is a 
t autology. In this case, IRange(J) I = IJ(D1 U Dz)I = 2 and 
no rule will be extracted. The confidence interval for each 
can be calculated as ( cf. appendix) 

1 '.S PR '.S 1 

0.41 :S Pi :S 0.78 

0.21 :::; Pz :::; 0.59 

Furthermore, when new data "duck" is entered (IS i = 
6), cluck will belong to D1 but 

and there is no change to the rule. When four more dat a 
elements on birds that fly are entered, that value of ID1 I/IS i 
exceeds t he range of confidence interval. This time the 
rule is re-extracted. S = {swan , sparrow, canary, penguin, 
ostrich , duck, swallow, pigeon, owl, hawk} , and D1 and Dz 
can be expressed as follows: 

D 1 = J- 1(fly) = {swan,sparrow, canary, duck, 

swallow, pigeon, owl, hawk} 

Dz= J- 1(not-fly) = {penguin , ostrich} . 

In this case, Dz is treated as an exception and the rule 
"birds typically fly" is extracted. 



I 

I 
.. 1 

·. ·1 

. I 

· I 

§7. Application to a System for Aiding the Con
struction of Knowledge Bases 

The practical applications for expert systems are rapidly 
expanding. To become truly practical, however, expert 
systems require many frames, resulting in their knowledge 
bases becoming extremely complex and large. It is expected 
that the cost of constructing knowledge bases and the num
ber of errors during data entry will continue to increase. 

When the structure of frame-based knowledge bases is 
examined, it is found that there is a series of structures 
that are similar among the structures for inter-frame re
lationships and the values of slots. It is, thus possible to 
assist in the construction of knowledge bases by using an 
initial knowledge base as a sample of the large knowledge 
base. Rules can then be extracted, based on the sample 
knowledge base, which can be used to verify new knowl
edge data. This should improve the efficiency of knowledge 
base construction and cut down on the number of entry 
errors. This system is called KB-CAS. 

Currently, the rules observed in KB-CAS are as follows. 

1) Rules regarding slot values 
* Is the slot value constant? 
* If the slot represents a pointer for another frame, 

what sort of frame is this pointer for? 

2) Rule regarding relationships 
* ·when a slot represents a pointer, what is its re

verse pointer? 

3) Rule regarding multiple frames 
* Detect slots with the same value among frames 

that are linked with a certain relationship. 

After a sample knowledge base is given, construction 
of frames and storing of slot values are carried out semi
automatically based on the extraction rules, which will im
prove the construction of the knowledge base thereafter. 
For example, to connect N AND3 to LINES, in Fig. 2, 
NAND3 must first be set into the slot OUTPUT in frame 
LINES. From the rule extracted in example 1, we know 
that NAND3 is an individual frame that represents NOT 
or NAND. Therefore, KB-CAS creates frame NAND3 by 
referring this question to the knowledge base creator (in 
actual situations it is clear without inquiry that NAND3 is 
an individual frame of NAND, from a pattern generalization 
program [1] and a simple string pattern match program). 
Furthermore, based on the rule in example 3, LINES should 
be stored in slot INPUTl or INPUT2 of frame NAND3. 
After an inquiry by the creator, LINES is stored in either 
INPUTl or INPUT2 as a slot value. 

§8. Summary 
This paper has described a method for extracting a 

property or a rule from a set of data (sample) that contains 
exceptions, and for rewriting or deleting a rule after veri-

182 

fying the validity of the rule using newly entered data and 
employing statistical techniques. In short this is a method 
of extracting a default rule from a set of facts. 

It has been confirmed that in the case of small-scale ex
perimental knowledge bases, KB-CAS is an effective tool. 
In the next stage of research, KB-CAS will be applied to 
a large-scale experiment to verify the validity of the rules 
extracted and the rule maintenance method. Moreover, the 
statistical value of the threshold gap and the confidence co
efficient discussed in sections 3 and 4 will be further refined 
in a future study. 

Acknowledgements 

I would like to thank Fumio Hattori, Toru Ishida and 
Jun-ichi Akahani for their constructive comments on this 
paper. 

REFERENCES 

[1] Angluin, D. (1980). "Finding Pattern Common to a 
Set of Strings," J. Comput. Syst. 21, pp.46-62. 

[2] Dietterich, T.G. and Michalski,R.S. (1983). "A com
parative revi ew of selected methods for learning from 
examples," in Machine Learning: An artificial intel
ligence approach, RS.Michalski, J.G.Carbonell, and 
T .M.Mitchel(Eds.), Tioga, Palo Alto, Calif., pp.41-81. 

[3] Fisher, D.R. (1987). "Knowledge Acquisition via In
cremental Clustering," Machine Learning 2, pp.139-
172. 

[4] Gold, M. (1967). "Language identification in the limit," 
Inf. and Control 10, pp.447-474. 

[5] McCarthy, J. (1986). "Application of Circumscription 
to Formalizing Common-Sense Knowlege," Artificial 
Intelligence 28, pp.89-116. 

[6] McDermott, D.V. and Doyle, J. (1980). "Non-monotonic 
Logic i," Artificial Intelligence 13, pp.41-72. 

[7] Michalski, R.S. and Stepp, R.R. (1983). "Learning 
from Observation: Conceptual Clustering," in Machine 
Learning: An artificial intelligence approach, 
RS.Michalski, J.G.Carbonell, and T.M.Mitchel(Eds.), 
Tioga, Palo Alto, Calif., pp.41-81. 

[8] Michalski, R.S. and Winston, P.H. (1986). "Variable 
Precision Logic," Artif. Intel!. 29, pp.121-146. 

[9] Mitchel, T.M. (1978). "Version Spaces: An approach 
to concept learning," Stanford CS Rep. STAN-CS-78-
711. 



(10) Nix, R. (1984). "Editing by example," Proc. of the 
11th ACM Symposium on Principles of Programming 
Languages, ACM, New York, pp.186-195. 

[ll) Reiter, R. (1980), "A Logic for Default Reasoning," 
Artificial Intelligence 13, pp.81-132. 

(12) Shapiro, E.Y. (1981). "Inductive inference of theories 
from facts," Tech. Rep. 192, Dept. of Comp. Sci., 
Yale Univ., New Haven. 

(13) Hoel, P.G., Port, S.C. and Stone, C.J. (1971). "Intro
duction to Statistical Th eory," Houghton Mifflin. 

[14) Winston, P.H. (1982). "Learning by augmenting rules 
and accumulating censors," MIT AI Lab., AIM-678, 
Cambridge, MA. 

APPENDIX 

If we call the probability of the extracted rule deriving 
a correct result p, the probability of it deriving an incor
rect result is 1 - p and the probability of the rule deriving 
the correct result will be subject to a binomial distribution. 
Since binomial distributions are discrete, a randomized con
fidence interval is employee! instead of the normal confi
dence interval. This is derived using the following method. 
Among ( ISi= )n number of samples, when there are x num
ber of cases where the extracted rule derives the correct 
result, the largest integer I will be found which satisfies the 
condition 

Here, G) = 0 (k < 0 or k > n) is set. Next, pis given by 
the following linear equation 

{ C- ~ -1) xx- l-l(n - xr-(x-1-1 ) /nn 

+( n )xx+1+1(n -xr-<x+1+1)}p 
X + l + l 

+ I: (;) xk(n-kr-k ;nn =a 
x-1$k$x+I 

( O :::; p :::; 1). In this case, the randomized confidence inter
val can be expressed as 

( 
X - / - p) . ( X + / + p) 

max 0, n :::; p:::; mm 1, n (1) 

When a computer is used to calculate the randomized con
fidence interval, there is the disadvantage that the compu
tation time becomes large when the number of samples, n, 
becomes large. This is due to the large number of factorial 
calculations and calculations of large numbers. To offset 
this disadvantage, the confidence interval will be made it 
closer to the normal distribution. In other words, according 
to the Central Limit Theorem, the larger the observed value 

183 

of n, the closer the distribution of x /n is to a normal dis
tribution. Thus, the computation of the confidence interval 
will be carried out by making the distribution closer to a 
normal distribution. The method of computation is com
plex and will not be described here. However, when the 
confidence coefficient is set to a, the following confidence 
interval will be obtained. 

x + K,a/2 - JK,;X - K;x2 /n + K'&/4 
n+ K; 

< < x + Ka/2 + J K,;x - K,;x 2 /n + K,'&/4 
_ p _ 2 

n + K,"' 
(2) 

where constant K,a is a value that can be found from the 
table of normal distribution, such as n: 0 .95 = 1.96. The size 
of the calculat ion steps for (2) does not depend on n. ·when 
n is small, the confidence interval derived from the above 
formula tends to become wider compared to the randomized 
confidence interval. Therefore, the selection of either ( 1) or 
(2) involves a trade-off between accuracy and computation 
time. In KB-CAS, formula (2) is used when n exceeds 50. 



·. I 

I 

: I 

Search Strategies for Finding Partial Answers in Large Knowledge-Bases 

Jiawei Han Lawrence J. Henschen 
School of Computing Science Department of EE/CS 

Wenyu Lu 
Computer Science Department 
St. Cloud State University Simon Fraser University Northwestern University 

Burnaby, B.C. V5A JS6 Evanston, Illinois 60208 St. Cloud, Minnesota 56301 
U.S.A. CANADA U.S.A. 

ABSTRACT 

Database search techniques are designed for retrieving 
all the answers to queries in large databases; while most Al 
search techniques are designed for finding partial answers in 
relatively small databases. However, many knowledge-based 
applications require to find partial answers in large 
knowledge-bases. We examine important search heuristics for 
finding partial answers to queries in knowledge-based systems 
and propose integrated search methods which integrate the 
set-oriented database search techniques with Al best-first or 
depth-first search techniques. We demonstrate that by using 
the proposed heuristics and the integrated search methods, the 
query processing cost can be considerably reduced while the 
quality of answers can be improved. 

1. Introduction 

An important distinction between relational database sys
tems and PROLOG programming systems concerns search 
requirements. Database users usually require to find all the 
answers to a query, such as retrieving all the students 
registered in a course. PROLOG users often require to find 
only one or a few answers to a query, such as finding the next 
move in a game. Different search requirements demand dif
ferent search strategies. Database systems apply set-oriented 
search to finding all the tuples in a data relation satisfying 
search arguments expressed in relational algebra or relational 
calculus; while PROLOG systems apply depth-first search and 
backtracking to finding one answer, and the answer to be found 
is often dependent on the order of facts and rules stored in 
PRO LOG databases and the order of predicates in the query. 

Such diverse search requirements are natural in many 
applications. However, queries in many knowledge-based 
applications are unlike these two extremes. For example, to 
book a flight from Chicago to Vancouver, a customer seldom 
requires to find all the possible combinations but only a few 
good ones. To distinguish such different search requirements, 
we call conventional database queries find-all queries but 
queries for finding partial answers in a knowledge-base find
some queries. 

The existing search techniques in relational or logic pro
gramming systems may be able to process find-some queries in 
large knowledge-bases. However, it is not easy for them to do 
it elegantly or efficiently. For example, we may use database 
techniques to exhaustively search for all the possible answers 

184 

and then toss away most of them, which could be very costly. 
Moreover, searching for all the answers is difficult in complex 
recursive databases, especially those containing cyclic data 
because the testing of termination conditions could be very 
complex [7] . On the other hand, PROLOG's tuple-oriented 
depth-first search and backtracking method is inappropriate for 
searching large knowledge-bases [Zani84]. Its order
dependent characteristic also places burdens on PROLOG pro
grammers in arranging appropriate orders or using extra-logic 
features, such as "cut", to control processing flow, which weak
ens the declarative philosophy of logic programming. 

Such observation motivates us to study the integration of 
two search methods: database set-oriented search and AI 
depth-first or heuristic search. The integrated search methods 
should have the features of both set-oriented and depth-first or 
best-first search. Such search methods can be outlined as fol
lows: At each choice point, instead of selecting one path as in 
PROLOG, a set of paths are to be selected and explored in 
parallel. However, unlike searches in database systems which 
explore all the search space, some of the space is purposely left 
unexplored, which could be portions of databases or disjunc
tions of rules, as long as enough answers can be found. The 
set-oriented backtracking can be initiated for further explora
tion on the unexplored portions of search space if more 
answers are needed until the entire search space has been 
explored. 

In principle, the integrated search methods are appropriate 
for many knowledge-based applications. We confine our dis
cussion to query processing in deductive database systems [4]. 
The results can be easily extended to logic programs contain
ing substantial amount of facts (10, 15) or some other domains. 

Like most researchers in deductive databases, we assume 
that a deductive database contains an extensional database 
(EDB) cpnsisting of a set of base relations and an intentional 
database (IDB ) consisting of a set of deduction rules in safe 
(range restricted) Hom clause [4]. Moreover, we assume that 
the size of IDB is much smaller comparing with EDB relations 
(data intensive assumption). Our notational convention is 
almost the same as in PROLOG (3), except that the 
upper/lower cases for variables and constants are reversed: an 
identifier starting with a lower case letter represents a variable, 
and starting with an upper case letter a constant or a function 
name. 

Similar to the methods studied in the processing of find
all queries in deductive databases, we propose to separate the 



processing into two phases: the compilation of IDB and the 
query processing using the compiled IDB and EDB (8, 9]. 
Since such method separates deductive search from expensive 
database search, set-oriented processing and global optimiza
tion can be explored on the compiled results to reduce total 
processing costs. 

Since the compilation process of find-some queries is 
similar to that of find-all queries [ 1, 2, 7, 8, 14], our discussion 
emphasizes the dynamic aspects of compilation and query pro
cessing. Section 2 studies the general heuristics on compila
tion and query processing. Section 3 discusses the integrated 
search methods. Section 4 is on the search in multiple direc
tions. We conclude our discussion in Section 5. 

2. General Heuristics on Compilation and Processing 

Like most studies where general principles are extracted 
from the analysis of specific examples, we examine two 
application-oriented examples. 

Example 1. The same generation problem [2]. The predicate 
same-generation cousin (SG) is defined by the following rules. 

SG (x, y) :- SIB (x, y ). (1) 

SG (x, y) :- PA (x, u ), PA (y, v ), SG (u, v ). (2) 

where the predicate SG (x, y) indicates that x and y are the 
same-generation cousins, PA (x, y) is an EDB predicate indi
cating that y is x 's parent, and SIB (x, y) is a non-recursive 
IDB predicate defined by PA. The compiled formula is 

~PAk SIB CHk . 
k=O 

(3) 

where PA k indicates that there are k PA 's forming a well 
formed join expression, and CH is defined by 

CH(x,y) :-PA(y,x). 

The query, find some persons who are John's same
generation cousins and who were born in 1960' s, is in the form 

?- SG (John, y ), BirthYear(y, birth year), 

birth year~ 1960, birth year < 1970. (4) 

Example 2. The air-flight problem [6]. The connected-flight, 
Flights, is defined as 

Flights ([fiight_no _list], Departure (dep _city, dep _time), 

Arrival (arr _city, arr _time)). 

which consists of the following two rules. 

Flights (ff lfL ], Departure (d_c, d_t ), Arrival (a_c, a_t )) :-

Single _flight (f, Departure (d_c, d_t ), Arrival (i_c, i_at )), 

Flights ([fL ], Departure (i_c, i_dt ), Arrival (a_c, a_t )). 

Flights (ff], Departure (d_c, d _t ), Arrival (a_c, a _t )) :

Single _flight(!, Departure (d _c, d _t ), Arrival (a_c, a_t )). 

185 

Notice that the definition contains simple function sym
bols, e.g., Departure (dep_city, dep_time), and simple list 
manipulation functions, e.g., [flight_no_list], which can be 
implemented by extending the techniques developed in deduc
tive database research f 121. Obviously, the compilation of this 
set of rules results in a transitive closure of the base relation 
Single_jlight. The query, find some (connected) flights from 
Chicago to Vancouver, can be written as 

?- Flights (fiight_list, Departure (Chicago, d _time), 

Arrival (Vancouver, a_time) ). (5) 

Most inquiries related to these IDB predicates are partial 
queries because people are seldom interested in finding all the 
remote cousins of John in Ex. 1 or all the flights from Chicago 
to Vancouver via tiny airports in Ex. 2. The problem becomes 
how to efficiently find a small set of good answers. 

We propose the following heuristics. 

Heuristic 1. (Cluster-Oriented Compilation). The rule 
cluster-oriented compilation of an IDB may reduce unneces
sary search of large rule bases. 

A query is usually relevant to only one or a few IDB 
predicates, and an IDB predicate is defined (directly or transi
tively) by one or a few rules. We define a cluster of an IDB 
predicate P to be a set of rules which directly or indirectly 
define the predicate P. Grouping rules into clusters avoids 
unnecessary search on a large body of irrelevant rules and clar
ify the relationships among rules [7]. A rule cluster is usually 
much smaller than an EDB relation. Therefore, the cost of 
storage and access of compiled rule clusters is much smaller 
than that of EDB relations. 

Since a rule directly defining a predicate P may indirectly 
define another predicate R, it may belong to both the P- and 
R-clusters. For example, in Ex. 1, the rule defining SIB 
belongs to both SIB and SG clusters . We treat a rule belong
ing to several clusters as multiple copies of the rule, each copy 
belonging to one cluster, thus the optimization on one cluster, 
such as the elimination of an intermediate predicate, will not 
have "side-effects" on other clusters. 

Heuristic 2. (Application of User or Expert- Specified Con
straints). Expert knowledge or user search requirements are 
important constraints to reduce search space and generate 
knowledgeable answers. 

For example, in Ex. 2, a ticket agent (expert) may tell us 
(i) most customers like to choose direct flights or flights with 
fewer stops, (ii) it is preferable to have each single flight flying 
in the direction closer to the global Flights direction, and (iii) it 
is preferable to fly via big airports rather than tiny airports. 
Such heuristics usually play two roles, reducing search space 
and improving the quality of answers. These search con
straints should be specified by experts as knowledge rules or 
by user in their queries. 

Heuristic 3. (Starting at the Most Selective Points). Per
forming selection first and starting at the most selective points 
makes the search focus on the set of relevant facts and reduces 
the size of intermediate relations. 



.I 

·I 

This heuristic has been popularly used in both conven
tional database and deductive database query processing 
[2, 8, 13]. The selective points are often provided by query 
constants. When several constants are available, the most 
selective point should be distinguished by comparing the selec
tivities of the constants, e.g., John is usually more selective 
than 1960s in Ex. 1. 

Heuristic 4. (Controlling the Depth of Recursion). Search 
confined to shallow levels of recursion often produces more 
efficient and knowledgeable answers. 

Recursion in a large knowledge-base often produces huge 
sets of answers with the problems of inefficiency, meaningless 
answers and non-termination. An intersting observation is that 
search confined to shallow levels of recursion often produces 
efficient and knowledgeable answers. For example, in the 
connected_flight problem, flights with fewer stops often gen
erate preferred answers. Also, in the same-generation problem, 
people would seldom like to trace John's "remote" cousins to 
centuries ago. 

We should recognize that deep recursion is necessary in 
solving some intersting problems. Nevertheless, shallow 
recursion has its obvious advantages: (i) the expensive search 
on deep recursion can often be saved, (ii) the complicated ter
mination testing can often be omitted, and (iii) the answers 
thus derived are often expected to represent knowledgeable 
answers. In many cases, this heuristic can be taken as default 
unless explicitly deactivated when a user likes to examine 
deeper levels. 

Heuristic 5. (Selective Search of Disjunctions in a Compiled 
Formula). Search can sometimes be confined to one or a few 
disjunctions of compiled formulas and leave other disjunctions 
untouched. 

For example, in the same-generation example, suppose 
the parent rule PA is defined by two relations Father and 
Mother disjunctively. Search may follow one relation or even 
interleave between the two as long as enough answers can be 
found. If some set of disjunctions is known more important 
than others, the more important disjunction(s) should be 
explored first. The confinement of recursion to shallow levels 
can also be viewed as a preference at the selective search of the 
disjunctions of compiled formulas because different depths of 
recursion form a union in the compiled formula. 

Heuristic 6. (Selective Search of Portions of EDB 
Relations). Selective search can also be performed on por
tions of EDB relations based on different criteria, such as the 
importance of the data, user preference, and the closeness and 
easiness in accessing the data, etc. 

The importance of the data can be determined based on 
some data priority rules defined by experts or the database 
administrator or based on the statistics of queries on databases, 
such as the frequency of reference. Priority rules are usually 
defined by users or experts based on their knowledge, e.g., the 
size and classes of the airports in the air-flight problem. If 
such knowledge are frequently used in search, indexing and 
clustering should be performed on the database to cluster data 
with similar priorities together to reduce I/0 accessing cost. 
Such ordering often saves processing cost and helps producing 
knowledgeable answers. Selective search can also be based on 

186 

the closeness or easiness in accessing databases, e.g., data in 
the same index or data pages. 

Heuristic 7. (Tuning the Search Preference Based on the 
Size of Expected Intermediate Relations). Search preference 
should also be tuned based on the size of the expected inter
mediate relations which is usually determined by the size of the 
joining relations and join selectivity. 

For example, if it produces only a tiny intermediate rela
tion by joining with a portion of relation B, it is suggested to 
search more portions of B to obtain more intermediate results. 
On the contrary, if a huge intermediate relation is to be gen
erated, more constraints should be incorporated to reduce the 
size of expected intermediate results. The goal of such a 
dynamic adjustment is to obtain sufficient answers while 
reducing I/0 and other processing costs. 

Heuristic 8. (Multiple-Directioned Parallel Search). Search 
starting at different starting points and proceeding in multiple 
directions parallelly may save processing cost and speed up 
the processing. 

More details on this heuristic will be analyzed in Section 
4. 

The heuristics discussed above are often interrelated. For 
example, the cluster-oriented compilation should cluster 
deduction rules with the associated search constraints in com
pilation. However, the use of these search constraints should 
be dynamically adjusted based on the size of the intermediate 
results. Since some heuristics, such as cluster-oriented compi
lation and starting at the most selective point, are shared in 
both find-all queries and find-some queries, our discussion 

focuses on those special in find-some queries and studies their 
roles in developing integrated search methods and multi
directioned search. 

3. The Integrated Search Methods 

The major difference in search strategies between find
some and find-all queries is at the dynamic and heuristic 
aspects of search. Since set-oriented database search tech
niques have been proven superior to PROLOG's tuple-oriented 
search in handling large amount of data [16], our study follows 
the set-oriented philosophy. Nevertheless, the search for find
some queries should be different from those in conventional 
databases where the "breadth-first" search philosophy is 
adopted. We propose an integration of database set-oriented 
search with AI depth-first and best-first search. 

To simplify our discussion, we first assume that the query 
to be processed consists of a conjunction of extensional predi
cates (data relations), and each data relation is clustered and 
partitioned into several segments (nodes, in our discussion) 
according to some preference rules and/or their physical adja
cency. Among many possible combinations of database and 
AI search methods , we analyze three typical ones: set-oriented 
depth-first search, set-oriented best-first search, and set
oriented mixed search. 

In these approaches, "set-oriented" indicates that search 
proceeds within each node (segment) in set-oriented manner, 
much like conventional database processing. However, they 
adopt different philosophy at searching among different nodes. 
In the set-oriented depth-first search, the selection of nodes is 
performed in depth-first manner. In the set-oriented best-first 



search, the selection is done in best-first manner. While in the 
set-oriented mixed search, the selection is a mixture of depth
first and best-first ones: best-first among nodes within each 
data relation but depth-first among different data relations. We 
study and compare these approaches. 

3.1. The Set-Oriented Depth-First Search 

Example 3. We study the processing of find-some query on 
the compiled formula ax=a A (x, y ), B (y, w ), C (w, z ), which 

can be described as: performing selection on relation A using a 
set of values denoted by a, then performing join on B and then 
on C to derive the set of z values. Suppose each relation is 
partitioned into several nodes. For example, A 1, A 2 for A, 

B 1, B 2, B 3 for B , and Ct, C 2, C 3 for C . 

Suppose that there is no specification on the preference of 
nodes, and the search simply follows the partitioned order, i.e., 
B 1 < B 2< B 3, where B 1 < B 2 indicates that B I is selected 

before B 2· 

The set-oriented depth-first search proceeds as follows. 
We set up n node pointer queues for the n relations to be pro
cessed, each has three pointers: current (pointing to the current 
node of the queue), front (pointing to the front of the queue) 
and rear (pointing to the rear of the queue). At initialization, 
each current points to the front of its queue. The process 
proceeds until enough answers have been found or all the can
didates are processed. The database searcher processes the 
nodes pointed to by the current pointers, and these pointers are 
adjusted in depth-first manner: if the current in the deepest 
queue does not reach its rear, move it one step forward; other
wise, reset it to the front, and set one step forward the current 
of the queue next to the deepest queue, and so on. 

In our example, the complete search sequence should be 

(1)A1B1C1 

(5) A 1B2C2 

(9) A 1B 3C3 

(13) A 2B2C t 

(l7)A2B3C2 

(2)A1B1C2 

(6) A 1B2C3 

(10) A 2B 1C t 

(14)A2B2C2 

(l8)A2B3C3 

(3) A 1B 1C3 

(7) A 1B3C t 

(11) A 2B 1C 2 

(15) A 2B 2C3 

(4)A1B2C1 

(8) A 1B3C2 

(12)A2B1C3 

(16) A 2B 3C t 

Figure 1. The Complete Search Sequence of Ex. 3 
by Set-Oriented Depth-First Search 

The algorithm is summarized as follows. 

Algorithm 1. The Set-Oriented Depth-First Search. 

Input : A knowledge-base consisting of (i) a set of EDB rela
tions, P 1, P 2, ... , P n, with each relation P; partitioned into a 
set of nodes (segments); and (ii) a compiled R -cluster: 

R :- P 1, P 2, · · · , Pn. 

Output : A set-oriented depth-first search plan for the find
some query ?- R (a , z ). 

Data Structure: We set up n queues holding the node 
pointers of n data relations (Q[i] for relation i, and C~rrent[i], 
Front[i] and Rear[i] for the current, front and rear pointers of 
Q[i]). 

187 

BEGIN 
FOR i := 1 TO n DO Current[i] := Front[i]; 
WHILE NOT ( enough answer OR exhausted) DO 

BEGIN -
Process_ Currents; 
IF enough_answer 
THEN retum(True) 
ELSE Reset_Currents(n); 

END; { While ) 
IF NOT Enough_Answers 
THEN The problem is unsolvable. 

END. 

PROCEDURE Reset_Currents(i : integer); 
BEGIN 

IF Current[i] "* Rear[i] 
THEN Current[i] := Current[i] + l ; 
ELSE IF i > 1 THEN 

BEGIN 
Current[i] := Front[i]; 
Reset_Currents(i - 1) 

END 
ELSE exhausted := True 

END. ( Reset_Currents) D 

3.2. The Set-Oriented Best-First Search 

Different from the first method, the set-oriented best-first 
search assumes that there is a total ordering of preference 
among the segments (nodes) of the data relations to be 
searched. At any selection point, we always select the most 
preferred ones from among all the candidates. 

Example 4. We solve the same problem presented in Ex. 3 
using the set-oriented best-first search method. We assume 
that there exists a total ordering of preference for all the nodes 
to be searched: 

A 1#1 < B 1#2 < C 1#3 < C 2#4 < 
B 2#5 < A 2#6 < C 3#7 < B 3#8. 

The best-first rule indicates that at each selection point, 
the most preferred candidates should be selected. Therefore, 
the complete search sequence should be: 

(1)A1B1C1 (2)A1B1C 2 (3) A 1B 2C 1 (4)A1B2C2 

(5) A 2B 1C t (6) A 2B 1C2 (7) A 2B2C t (8) A 2B2C2 

(9)A1B1C3 (10) A 1B2C3 (11) A 2B 1C 3 (12)A2B2C3 
(l3)A1B3C1 (14) A 1B3C 2 (l5)A2B3C1 (16) A 2B 3C 2 

(l7)A1B3C3 (l8)A2B3C3 

Figure 2. The Complete Search Sequence of Ex. 4 
by Set-Oriented Best-First Search 

The algorithm is summarized as follows. 

Algorithm 2. The Set-Oriented Best-First Search. 

Input : the same as Algorithm 1 except there is a total ordering 
of preference for the nodes to be searched; 

Output : A set-oriented best-first search plan for the find-some 
query ? - R (a , z ). 



Data Structure : A processing stack STK (initialized to 
empty), with each stack element containing two fields : a node 
Node and its associated lists Ls. EDB relations are represented 
by a collection of lists EDB_Ls with the i-th list Li containing 
all the nodes (partitions) of relation P;. 

BEGIN 
PROCESS(The most preferred unprocessed node in 

EDB_Ls) 
IF NOT Enough_Answers 
THEN The problem is unsolvable. 

END. 

PROCEDURE PROCESS(Candidate_Node); 
BEGIN 

Push_Stk(Candidate_Node, Candidate_Ls); 
{ Candidate_Ls is calculated before pushing, and is 
the collection of the candidate lists of Ls of 
STK_TOP or EDB_Ls (when STK is empty) except 
the list containing the Candidate_Node. Note: The 
candidate lists contain only the nodes with prefer
ence number not greater than the Candidate_Node, 
and all the nodes pushed onto the STK are marked 
unprocessed. ) 

IF the associated list of the STK_ TOP = <I> THEN 
BEGIN 
IF Length of STK = n { Length of the formula to be pro

cessed ) 
THEN Generate and process the subformula consisting of 

the set of STK nodes; 
Pop the STK and mark the Candidate_Node processed in 

the STK_TOP or EDB_Ls if Empty_STK; 
END; 

WHILE NOT Empty_STK AND All the nodes of Ls of the 
current STK_TOP are processed DO 

Pop the STK and mark the Candidate_Node processed in 
the STK_TOP or EDB_Ls ifEmpty_STK; 

IF NOT (Enough_Answers OR Exhausted_Search) THEN 
{ Exhausted_Search is TRUE if there is no unpro
cessed node in EDB_Ls ) 

PROCESS (The most preferred unprocessed node in the 
Ls of the current STK_TOP or in EDB_Ls if 
Empty _STK); 

END; { PROCESS ) D 

The algorithm can be illustrated by watching a fragment 
of the execution of Ex. 4. At the moment when the last unpro
cessed node B 3 is at the bottom of the stack and A 2 is the next 
to the bottom, the stack becomes: (' *' is the processed mark.) 

Stk Node Candidate Lists 

C1#3 <I> 

A2#6 { C 1#3 , C 2#4 ) 

B3#8 { *A 1#1, A2#6) { *C 1#3, *C2#4, C3#7) 

The subformula generated is A 2B 3C 1 · The next step (with C 1 

marked processed) is 

Stk Node Candidate Lists 

C2#4 <I> 

A2#6 { *C 1#3, C 2#4) 

83#8 { *A 1#l ,A2#6) { *C1#3, *C2#4, C3#7) 

188 

The subformula generated is A 28 3C 2· The next two steps 

generate A 1B 3C 3 and A 2B 3C 3, and the process terminates. 

3.3. The Set-Oriented Mixed Search 

The set-oriented mixed search is a balance of the above 
two strategies. Since the search of the first method does not 
apply preference rules, more data segments may have to be 
explored with less knowledgeable answers expected to be 
found. The second method assumes that there is a total order
ing for all the nodes in the relations to be searched. However, 
such a total ordering may not be available in many applica
tions. It is more practical to assume an ordering of preference 

for the nodes in each data relation but not a total ordering for 
all the nodes in the database. Based on such an assumption, we 
present another integrated search method, the set-oriented 
mixed search. 

In the set-oriented mixed search, the selection of a node 
(segment) is based on a best-first rule within each relation but a 
depth-first rule among different data relations, that is, select a 
more preferred node within each relation being searched. If 
there have not been enough answers , the (continued) search 
backtracks at the last (deepest) selection point, and so on until 
enough answers are found or all the search space has been 
explored. 

Example S. We solve the same problem of Ex. 3 based on the 
assumption that the nodes are partitioned and ordered as in Ex. 
3 based on the preference rule(s) rather than being done ran
domly as in Ex. 3 or based on physical clustering. Moreover, 
we assume that the reorganization of data relations, such as 
sorting or clustering, based on such preference rules is also 
performed. Under such assumptions, the generated search 
sequence and the algorithm are the same as those presented in 
Ex. 3. However, the implications are different because the 
former implies a simple set-oriented depth-first search while 
the latter implies a mixture of depth-first and best-first search. 

3.4. A Comparison and Discussion of the Three Methods 

The three integrated methods share some common pro
perties. 

(1) They all adopt set-oriented search philosophy in search
ing each data segment, which is appropriate for large 
knowledge-bases . The set-oriented search reduces the 
expensive I/0 processing cost and the chances of back
tracking. 

(2) Since they are designed for finding partial answers, the 
methods examine only portions of data relations at a time, 
which indicates that the search may occasionally have to 
go back to the previous choice point to continue searching 
the unexplored portions of the search space. Therefore, 
backtracking, though could be considerably reduced by 
set-oriented search, is not eliminated. 

(3) Considering all the combinations of different segments, 
the search in all three methods are complete and non
redundant, i.e., all the portions of the knowledge-base to 
be searched are reachable but no portion will be searched 
more than once. 

(4) The principles developed here, though only on simple 
conjunctive formulas, are applicable to complicated rule 
clusters, such as formulas containing disjunctions and 
recursion. 



However, the three methods have their different charac
teristics. 

(1) The first method may involve more backtracking and/or 
produce less knowledgeable answers because the search is 
not guided by preference rules. The second method may 
not be applicable since the total ordering of all the nodes 
to be searched is not always available. However, when 
applicable, it is expected to produce more knowledgeable 
answers with less backtracking. The third method is a 
compromise of the previous two. It only requires the ord
ering within each relation, which is easy to be satisfied in 
many applications. 

(2) Although there are no redundant subformulas generated, 
the second method may still suffer from redundant pro
cessing of portions of subformulas. For example, in Ex. 4 
the subformulas (1) A1B1C1, (2) A1B1C2 and (9) 

A 1B 1C 3 share a subformula A 18 l· If the intem1ediate 

results A 1B 1 is not saved in the processing of (1) and (2), 
it has to be reprocessed for (9). It is costly to save all the 
intermediate relations. Such a problem will not occur in 
Methods 1 and 3. Therefore, the second method may cost 
more than the other two when backtracking occurs more 
frequently and/or the partitions are too fragmented. In 
these cases, we should modify the best-first search stra
tegy for different knowledge-bases and queries, e.g., giv
ing higher preference to later processed relations, selec
tively saving intermediate results, or even switching to 
the mixed search method. 

Our study of the three typical integrated search methods 
does not exclude other integrated search methods. Variations 
of the three methods are possible. For example, if preference 
information is available only in some of the searched relations, 
we may order the applicable ones using preference rules but 
select others randomly or according to the physical clustering. 
The resulting algorithm will be a mixture of the first and the 
third methods. 

Another interesting issue is the judgement of "enough 
answers". The enoughness can be predefined, such as 
predefining the required number of answers, however, for most 
interactive systems it is better to be judged by users interac
tively. A user may first request a set of answers, and 

repeatedly request more if not satisfied with the existing set of 
answers. The algorithms presented above are also applicable 
to such queries, and in such cases, the flag of 
"enough_answers" should be interactively set by users. 

4. The Control of Search Directions 

Starting from the most selective point is an important 
heuristic in the determination of search directions. Since a 
query often contains several query constants, search may start 
at multiple points and proceed in multiple directions. 

Different from the discussion in [11] which concerns the 
selection of application directions of rules between forward 
chaining and backward chaining, our study of search directions 
is based on the data intensive assumption (large amount of data 
and small amount of relevant rules), hence the backward chain
ing of the application of rules is always suggested, i.e., starting 
at query constants (goals) rather than at large amount of facts . 

We first study multiple directioned search for non
recursive queries. The study in query optimization in conven-

189 

tional database systems [13] indicates that selections should be 
performed before joins to reduce the size of relations to be 
joined. For the same reason, proceeding from multiple selec
tive points also benefits non-recursive deductive query process
ing for both find-all and find-some queries. For find-some 
queries, the search may be confined to portions of data rela
tions or disjunctions of compiled formulas. In such cases, it is 
important to balance the width and depth of the search to 
reduce I/0 cost and control the size of intermediate relations. 
Obviously, it is a highly dynamic process. We have 

Conclusion 1. Multiple directioned search is suggested for 
non-recursive find-some queries. 

We then examine multi-directioned search in recursive 
query processing. We consider three cases based on different 
roles of constants in recursive rules, Case 1 : constants within a 
recursive rule definition, Case 2: constants outside a recursive 
predicate, Case 3: constants in a recursive predicate. 

Case 1, constants within a recursive rule definition, is 
often formed by introducing search constraints which may con
tain some constants. For example, In Ex. 2, the constraint, 
flying via large airports only, may introduce some constants 
("the judgement of large") in the recursive rule. In this case, 
performing selection first reduces the size of data relations to 
be iteratively worked on. For example, performing selection 
on A using c in B for the recursive rule 

R(x,y) :-A(x,w),R(w,y),B(w,c). (8) 

results in an equivalent recursive rule on a smaller EDB rela
tion A' 

R (x, y) :-A' (x, w ), R (w, y ). (9) 

where A' (x, w) :- A (x, w ), B (w, c ). Therefore, we have 

Conclusion 2. Selection and simplification should be per
formed within the definitions of a recursive rule to reduce the 
size of the relation(s) to be iteratively worked on. 

For case 2, constants outside a recursive predicate, the 
processing should proceed from several directions towards the 
recursive predicate because a closure operation usually costs 
much more than conventional relational operations. For exam
ple, suppose there are query constants in A, B, C 1, C 2, D and 

E, a query on the formula 

A , B , R , (C 1 ; C 2) , S , D , E. (10) 

where R and S are two recursive predicates, should be solved 
by proceeding in multiple directions from the provided con
stants towards the two recursive predicates. After such pro
cessing, the problem becomes feeding constants into a recur
sive predicate (case 3). Therefore, we have 

Conclusion 3. Processing should be performed first using 
query constants on the non-recursive predicates of a recursive 
query to reduce the starting size of the recursive processing. 

There is no sharp distinction in multi-directioned search 
between find-some and find-all queries in the first two cases, 
but the situation is different in handling case 3. 

For a recursion involving a single compiled chain as in 
Ex. 2, two search directions can be considered: from Chicago 
''forward" or from Vancouver "backward". For find-all 
queries, searching from both directions is not as efficient as 



·.I 

I 

i 

·.1 

searching in one direction because even when there are some 
meeting points, the search must proceed until all the traversals 
from Chicago have gone to the west of Vancouver, or vice 
versa, or the most lag-behind one of one direction has passed 
over the most lag-behind one of the other, which are more 
complicated and usually involve even larger space than the 
single-directioned search. 

However, multi-direction search is encouraged in find
some queries because search may terminate as long as enough 
meeting points have been found, and by starting from two end 
points, search usually terminates much earlier than that in one 
direction only. Therefore, we have 

Conclusion 4. Search from both ends of a chain in recursive 
query processing is usually beneficial in find-some queries, but 
not so in.find-all queries. 

5. Conclusions 

We studied the distinguished features in the processing of 
an interesting and important class of queries, find-some 
queries, in large knowledge-based systems. Most previous 
work in deductive database research is on find-all queries 
[1, 2, 5, 7, 8, 15], however, we feel that find-some queries 
represent a more practical and frequently used class of queries 
in knowledge-based applications. 

Find-some queries share some general characteristics with 
the find-all queries in the deductive database query processing, 
such as cluster-oriented compilation and set-oriented process
ing. However, find-some queries have their own characteris
tics which suggest heuristics-guided and integrated search 
methods. We studied some important heuristics in query pro
cessing and three search methods integrating DB and AI search 
techniques. Our analysis shows that by incorporating heuris
tics and adopting integrated search methods, the query process
ing cost can be considerably reduced while the quality of 
answers can be improved. 

The study also shows that the best search strategy for a 
find-some query is usually data- and query-dependent and 
should often be determined dynamically. More quantitative 
and performance studies are needed to clearly identify the rela
tive importance of different heuristics and the merits of each 
integrated search method, which is also a topic in our future 
research. 

Acknowledgements 

The work was supported in part by the U.S. National Sci
ence Foundation under Grant DCR-860-8311 and the 
President's Research Grant and a research grant of Centre for 
System Science of Simon Fraser University in Canada. The 
authors wish to thank Ghassen Z. Qadah and Ning Zhuang of 
Northwestern University for their helpful discussions. 

References 

1. F. Bancilhon and R. Ramakrishnan, An Amateur's 
Introduction to Recursive Query Processing Strategies, 
Proceedings of 1986 ACM-SlGMOD Conference on 
Management of Data, Washington, DC, May 1986. 

2. F. Bancilhon, D. Maier, Y. Sagiv and J. D. Ullman, 
Magic Sets and Other Strange Ways to Implement Logic 
Programs, Proceedings of 5th ACM Symposium on 
Principles of Database Systems, Cambridge, MA, 1986. 

190 

3. W. Clocksin and C. Mellish, Programming in Prolog, 
2ed., Spring-Verlag, 1984. 

4. H. Gallaire, J. Minker and J. Nicolas, Logic and 
Databases : A Deductive Approach, Computing Survey 
16(2),, 1984. 

5. G. Gardarin, Magic Functions : A Technique to 
Optimize Extended Datalog Recursive Programs, 
Proceedings of the 13th International Conference on 
Very Large Data Bases, Brighton, England, Sept. 1987. 

6. J. Han, Pattern-Based and Knowledge-Directed Query 
Compilation in Recursive Data Bases, Computer Science 
Department Technical Report No. 629 (Ph.D . 
Dissertation), University of Wisconsin at Madison, Dec. 
1985. 

7. J. Han and L. J. Henschen, Handling Redundancy in the 
Processing of Recursive Database Queries, Proceedings 
of the 1987 ACM-SIGMOD Conference on Management 
of Data, San Fransisco, CA, May 1987. 

8. L. J. Henschen and S. Naqvi, On Compiling Queries in 
Recursive First-Order Databases, I. ACM 31 (I), , 1984. 

9. C. Kellogg, A. O'Hare and L. Travis, Optimizing the 
Rule-Data Interface in a Knowledge Management 
System, Proceedings of the 12th International 
Conference on Very Large Data Bases, Kyoto, Japan, 
Aug. 1986. 

10. L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 
1986. 

11 . R. Treitel and M. R. Genesereth, Choosing Directions 
for Rules, Proceedings of 1986 AAA! Conference , 
Philadelphia, PA, 1986. 

12. S. Tsur and C. Zaniolo, LDL: A Logic-Based Data
Language, Proceedings of the 1986 VLDB Conference, 
Kyoto, Aug. 1986. 

13. J. D. Ullman, Principles of Database Systems, 2nd ed., 
Computer Science Press, 1982. 

14. J. D. Ullman, Implementation of Logical Query 
Languages for Databases, ACM Transactions on 
Database Systems 10(3),, 1985. 

15. D. Warren, Efficient Processing of Interactive Relational 
Database Queries Expressed in Logic, Proceedings of 
the 7th International Conference on Very Large Data 
Bases, Cannes, France, 1981. 

16. C. Zaniolo, Prolog : A Database Query Language For 
All Seasons, Proceedings of the 1st International 
Workshop on Expert Database Systems, Kiawah Island, 
SC, Oct. 1984. 



A Rule-Based Framework for Controlling a Robotic Workcell 

M.E. Malowany A.S. Malowany 

Computer Vision and Robotics Labora tory 
Department of Electrical Engineering 

McGill University 
Montrea l. Quebec . Canada 

Abstract 

A hie ra rchica l approach to pe rforming assembly and re
pair tasks within a roboti c workce ll is prese nted. A rule-based 
paradigm is chosen for rea liz ing the upper levels of the pro
cess in g hie ra rchy. and an implementat ion is given for one of 
these leve ls. ca ll ed the Tas k level. New extens ions of the 

Tas k- leve l s ys tem include a non-mo notonic infe rence engin e. 
the use of s tate va riables pe rmitting a st at ic data base s ize. the 
use of non- blocking function s for a lte ring states. a parallel
process ing capab ili ty enhanced by the use of non-bloc king 
functions. and a rule set for a typical t as k (ins talling a com
ponent) which impleme nts adaptive task performance so the 
goal can be reached from a variety of initia l workcell s t ates. 
The prog ra mming of the system was carried out in Franz LISP 
on a Sun 3 works t ation running UNIX BSD vers ion 4.3. Tes t
ing of the Tas k- level s ys te m with a s imul ated robotic workce ll 
is described and implica tions of the test outcomes upon the 
feas ibility of the approach are disc ussed. 

Keywords: ex pert s ys tem. robotics. task-level program
ming. 

1. Why a Rule-Based, Hierarchical Approach? 

Programmin g robots to perform manufacturin g ta s ks the 
way humans do. with flex ibility and inte lligence. is a complex 
problem. It invo lves planning. executing. and monitoring ac
tivities in the robotic workcell. The use of a hierarchical or 
partitioned approach to this problem is attract ive s ince the 
complex ity is reduced by brea king the task into several sim
pler levels or pa rts. The parts may even be run in parallel 
on different machines . Such a hie rarchica l structure for robot 

control was fir st presented by Albus and Evans [1) in 1975. 
although the fir st rea lis tic app licat ion was not reported un
til 1984 by Hayn es et al [2). The hierarchy is illu s trated in 
the block diagra m of Figure 1. The rule-based paradigm is 
one of the s implest ways of rea li zing the high- level. device
independent as pects of directing the workcell (s uch as act ion 
seq uencing and resource sharing) in order to achieve a flex ible . 
easi ly-upd ated. and portable front-end environment for users. 
These high- leve l fun ction s are the province of the Problem 
and Task leve l processors in the hierarchy of Figure 1. 

19 1 

GLOBAL 
DATABASE 

PROBLEM 
LEVEL 

1+--~~---.1TRAJECTORY i.--~~---.1 
LEVEL 

To Rolx!I Servos 

LOCAL 
DATABASE 

LOCAL 
DATABASE 

LOCAL 
DATABASE 

LOCAL 
DATABASE 

LOCAL 
DATABASE 

Figure 1 Genera l Structure for a HierMchi ca l Robot 
Cont ro l System 

In th is section. the approaches t aken by three syste ms 
which use hie ra rchica l or pa rtitioned methods in robot control 
a re summ arized. Two of these systems (SAGE and WRAP) 
work togethe r as a team. and the third s ys tem fits into the 
hie ra rchy of Figure 1 and se rved as an insp iration for the new 
Tas k- level s ys tem which is the s ubj ect of this pape r. These 
exa mpl es illust rate the advantages of the approach as well as 
a variety of implementation s. and s ha re an emphas is on the 
concepts of s tate variab les. rea l-t ime task performance. and 
pa ra lle l process ing . 

Separating the pl an generation from the run- time execu
tion of a tas k can be viewed as a form of partitioning the 
workcell control problem. es pecially if the run-t ime execution 
s ha res part of the decis ion burden by be ing ada ptive. This 
will invo lve deciding what is to be done in the workcell and 
in what order at the plan generat ion leve l. then deciding at 
run-time how the list of act ions and seq uencing const ra ints is 
to be mapped onto the workcell . cons ide ring its present stat e . 



·l 

. I 

I 

Two systems which fit together to form such a descript ion 
are the SAGE (Sequence Ana lysis by Graph ica l Evaluat ion) 
framework of Freedman et al [3] and the WRAP (Workcell 
ReAl-t ime Programming) environment of Carayan nis et al [4]. 
Add itional details on these systems may be found in Freed
man et al [5]. 

SAGE is a fac ili ty which allows plans to be defined for 
repetitive jobs in the workcell and then automatica lly gen
erates the correspo nding minimum-time task sequence with 
the aid of a workcell model based on the theory of Petri Nets. 
SAGE 's processing takes place in the planning doma in and is 
off-lin e. SAGE was implemented as set of programs written 
in C-Prolog. It accepts input to defin e a model for t he job 
to be done in the workcel l. performs a structur al ana ly s is to 
ensure a solu tion ex ists. sea rches the prob lem task space (in 
which a node is the set of concu rrent events at a gi ven time) 
for cycles. and from these cycles bui lds task sequences from 
which the minimum-time member is selected. 

WRA P oversees the act ual pe rformance of tasks in the 
robotic workce ll in rea l t ime. WRAP is hierarchica l. accept
ing input from an off-line top level (such as SAGE) called the 
Strategy level and process in g this input with a Tact ics level 
program which communicates to a Virtual Device leve l. The 
Virtual Device level isolates the Tact ics level from the part ic
ul ar ities of the workcell elements. A table of state var iables 
is used to maintain informat ion for sequencing steps within 
tasks. Each task is described by a "b lock". wh ich resembles 
a rule in a ru le-based system in that each block conta ins t hree 
parts: pre-cond itions about the workce ll which spec ify when 
t he task is to beg in execution. act ivi ties which inst ruct the 
Virtual Device level to do somet hin g in the physica l workcell. 
and state changes which specify modifications to the state 
tab le to reflect the effects of the act ivities. The WRAP en
viro nment is implemented as a set of concurrent ly running 
processes on a set of hosts real izing true paral leli sm. The 
source code is wr itten in YACC and in "(" running under 
UNI X 4.3 BSD. RCC L on a MicroVax II under UNI X was used 
for the virtua l devices. 

Unlike t he above compan ion systems. the Task Request 
Interpreter (TRI) formu lation of Klepko [6] fi ts in to the hierar
chica l scheme of Albus and Evans as shown in Figure 1 and is 
t ruly rule-based. It is a Task-level system spec ific to assembly 
and repair of printed-circu it boards within a robotic workcell. 
It uses mu lti-task ing under UNI X to rea li ze concurrency. In 
the next section. we outl ine an approach based on Klepko's 
TRI. Another system which addresses the problem of assem
bly in a mu lti-robot. multi-sensor environment is the N NS 
system developed by Alami [7] This system is simil ar to the 
revised TRI in several respects. N NS is hierarchical. featur ing 
a two-level hierarc hy in which a Master Module (MM) con
trols the lower-level Speciali zed Modu les (SMs). The Master 
Module is implemented in a form of LISP. Each Specia lized 
Mod ule ru ns on a sepa rate processor and recognizes a set of 
commands from the Master Module that are implemented as 
Remote Procedure Calls. The N NS supports a feature for re
alizing concurrency called a "non-wait call" that is s imilar to 
t he non-blockin g function of the revised TRI. They are sim il ar 
in that both the non-blocking function and the non-wait call 
return before the ir respective act ions are completed. 

192 

2. Hierarchy and Commands 

Severa l aspects of the hierarchy, commands. and rule
writing st rategy of Klepko's orig inal TRI carry over to the 
new Task-level system. the revised TRI. wh ich is t he sub
ject of th is paper. These common aspects are discussed in 
th is section. fo llowed by a s hort discussion of t he differences 
between the two systems. 

Both the TRI and the new system fit into the hierarchy 
of Albus and Evans at the Task level as shown in Figure 
1. The Task leve l and the levels below it in the hiera rchy 
are in tended to run in real time. Only the Problem level is 
off-lin e. The Problem level is typi ca ll y an automat ic plan 
generato r dea lin g in primitives just above the level which must 
interact with t he rea l world . In the case of the TR I. the 
output of the Prob lem level is ass um ed to be a set of Task
level commands. These commands form a fixed Task-level 
vocabu lary as li sted in Figure 2. Being an interpreter. the 
TR I accepts task commands one at a t ime from the Problem 
level and breaks each command down into comma nds suit able 
for the next level be low. the Act ion level. The set of Action
level comma nds are show n in Figure 3. Further processing at 
the Action. Motion. and Trajectory levels is device-dependent 
and is procedural rather than knowledge-based. 

IN STALL (component-x) 
ALIGN ( component-x) 
RE MOVE-SO LDER (locat ion-x) 
SOLDER (locat ion-x) 
REVERSE (component-x) 
REMOVE (component-x) 

Figure 2 The Task-Level Comm and s of the TR I 

.. ~ovETO~ (loc.i;o,~, : mbot~y) I 
PICKUP (thing-x. robot-y) 
PUTDOWN (thing-x. robot-y) 
ACTIVATE (tool-x) 

Figure 3 The Action -Level Comm and s of the TR I 

Note that the Task-level commands suppo rted by the TRI 
are object-oriented rather than tool-or iented or robot-or iented 
in the way that the Action- level command s are. The Task
level commands specify what is to be done to the printed
circuit board but not how it is to be done . Specifically . which 
robots are to perform the task or what tools are to be used 
are not specified by the Task-level comma nd. Assignment 
of tools and robots to the task is decided in real t ime by 
the TR I depending on the current state of the workcell as 
modelled in the database. Then the "how" of the task is 
synthesized by the TR I in terms of Action-level prim itives . 
How such ass ignment and synthes is decisions will be made 
at execution time is embeded in the expert knowledge of the 
rules. 

The extent to which the system can hand le a divers ity of 
ini t ia l states is determined by how many possibi li ties the ex
pert rule-writer foresaw and incorporated into the rules. For 
example. the TRI uses a workcell model conta ining multiple 



robot s a nd ca uses the m to work in para lle l whenever poss ible 
fo r reaso ns of effici enc y. Howe ve r. if t he re is on ly one working 
robot ( t he ot he rs are broke n). the ru les are written so t hat 
they w ill in stru ct the s ingle robot to achieve t he tas k by it 
self. The new s ys te m ha nd les a varie ty in the initi a l ro bot 
locat io ns . t oo l loca tio ns . a nd robot-ha nd conte nt s as well as 
in the numb e r of worki ng robots . 

The rules in the previou s TR I are div id ed into ru le set s 

by tas k a nd by s ubt as k. Context li m iti ng is employed so 
tha t eac h t as k ac t ivat es its own ru le set . Fo r exa mple . the 
IN S TAL L t as k has a ru le set d is t inct from tha t of t he RE
MO VE t as k. The t as ks are furth er d ivided into s ubt as ks 
wh ich may be pe rform ed nea rl y in de pe nd e ntly. A s ubtas k 
is defined as a set of ac t io ns w hic h ca n a ll be performed 
by a s ing le robot w it ho ut cha ng in g too ls . For exa mp le . t he 
IN S TALL (comp o ne nt-x) t as k ca n be divid ed into 1) a boa rd 
s ubtas k. whe re a robot moves t he c ircui t boa rd between t he 
hotp la t e a nd t he boa rd-j ig us in g the boa rd-gra bbe r tool. 2) a 
solde r s ubt as k. where a robot dispenses solder at the com
pone nt-x locat io n on the boa rd fr om t he solder-pas t e-d is pe nser 
us ing the solde r-pas te-d is pe nser- holde r tool. a nd 3) a compo
nent s ubtas k. whe re a robot fe tc hes the compo nent-x from its 
feede r a nd places it in its loca t io n on the c irc uit board us ing 
t he component-g rabb e r too l. If th ere are as ma ny free robots 
as t he re a re s ubt as ks. the s ubtas ks may a ll s t a rt out s im ul 
ta neous ly. Orde r cons tra ints between s ubtas ks a re enforced 
by having the rules c heck st at e varia bles ma inta ined in the 
dat a base . If t he re are fewe r free robots t ha n s ubtas ks . t he 
ru les w ill have to e nforce s haring t he robot s a mong s ubtas ks . 
Det e rminin g how to divid e a tas k into s ubt as ks and how to 
best s ha re resources is treated he uris t ica ll y by the hum a n 
expert who wr ites the ru les in the case of the TR I s ys te m. 
This contras t s with the a pproach ta ken by the SAG E/ WRAP 
s ys te m whe re sea rc h a lgorithm s fo r opt ima li t y a re employed. 

In a s imu lat ion of the TR I c rea ted fo r tes t ing purposes . 
the Act ion-leve l-comm a nd o utput is pr inted on a termin a l a nd 
senso ry input is prov ided by the user via the te rmin a l. T hat 
imple me nt at io n of the TR I was writte n in Franz LI SP for a 
VAX 11/750 compute r. 

The new s ys t e m is essenti a ll y an ex tens io n of Kle pko 's 
TRI fr a mework to ut ilize the concept of non-blocking func
t ions rathe r tha n mu lt iple LI S P e nviro nments for rea li zing 
concurre ncy. In the pre viou s TRI. the d ivi s io n of t as ks into 
s ubt as ks is ma pp ed onto multip le processes at the Tas k le ve l: 
mu lti - t as king is rea lized throug h the use of the LI S P "fork" 
fac ili ty. creatin g a sepa ra te LI SP environment for each pro

cess. The extens ion of t he new s ys te m hinges on the use 
of non- bloc king fun cti o ns which a llow a s ing le LI SP process 
at the Tas k leve l to direct mult iple device contro lle rs at the 
lower le vels. Rather t ha n run sepa rate processes whic h eac h 
wa it for e ve ry ac tio n they ini t ia t e to be completed . t he new 
s ing le process uses non- blocking functio ns to a llow process
ing on othe r s ubtas ks to t a ke ove r whi le the ru les relat in g to 
one s ubtas k a re blocked . This blocking is achieved by a stat e 
va ri a b le of the assoc iat ed robot which is set to "bus y" until 
comp letio n of the act io n in t he real-time environment of t he 
workcell. Thi s is s imil a r to the way a semap hore is used in 
t he di s pat c hin g of user jobs to ide ntica l hosts o r prin t jo bs 
to printers. Res ults would be t he sa me fo r t he new system 

193 

a nd the previou s TRI if prog ra m-execut ion time was neg li gi
ble compa red to robot-mot ion time whic h is on the orde r of 
seconds. 

True para lle l process in g in the new s ys tem is ass umed 
t o ta ke place at the Act io n level. with eac h robot having its 
own controlle r. In add it ion to these contro ll er mac hines . a 
colli s ion- avoid a nce co-processor is envi s ion ed for the new 
h ie ra rc hi ca l s ys tem and is bein g develop ed as a separat e re

searc h proj ect . Th is co-processor would monito r t he robot 
traj ector ies and in te rcede before im m in ent colli s ions occur. 

Fo r s implic ity. the process ing of se nsor y feedback. or even 
s imu lat ed se nsory feedb ac k as imp le mented in the TRI . was 
not inc lu ded in t hi s imp le me nt ation of the Tas k level proces
s or. S imil a rly. error ha ndling has not bee n incorpo rat ed yet . 
a ltho ug h th is fac ili ty is essent ia l for coping with the rea l-world 
a nd could be added in the futur e wit ho ut major revi s ion of the 
s ys te m. 

3 . Imple me ntat io n of the Task Leve l 

A new rule-based Tas k- le ve l s ystem for assembly a nd re
pa ir of printed-circ uit boa rd s in a ro bot ic wor kce ll has been 
des ig ned a nd tes ted with a s imul a ted workce ll . The s ys te m 
cons is t s of fo ur pa rts . eac h of which was coded in LI S P in
s tead of us ing s ta nd a rd knowledge-e ngineerin g tools s upp li ed 
with s ys tems s uch as OPSS. The four pa rts are an infe rence 
e ngine . a datab ase . a set of ru les . a nd a set of app li catio n
s pecifi c fun ction s. These e mbo dy the t hree components of a 
class ica l ru le-based o r "p rodu ction" s yste m in Al : the cont ro l 
o r glo ba l know ledge . the dat a or decla rative knowledge . and 
the ope rat ions or procedura l knowledge (ru les and funct ions. ) 

[8) 

3 .1 Infe rence Eng in e 

The infe rence e ngine was written to be genera l. S upplied 
with a ppropri ate rules. facts. a nd fun ctions . it ca n be used to 
pe rform a wide ra nge of tasks . As in O PSS . the e ngine uses 
forwa rd chaining. 

S ince t he e ngine is des igned to perform tas ks in rea l time. 
the the state of the wor ld will alte r as the engin e operat es 
in conjunct ion with the phys ica l workce ll. Thi s implies t hat 
the world model fo und in the data base must also e volve. 
He nce. some way of retrac ting asse rt io ns ( a fo rm of non
mo not o nicity) is required . Howeve r. fo r the hiera rc hica l s ys
te m in which the engine is to ope rat e . lea rning is not required . 
It is ass um ed th at t he acti o ns to be performed to achie ve the 
tas k a re pre-defin ed . These requirements led to the use of a 
fi xed-s ize dat a base cons is tin g of s tat e varia bles. No va ri a bles 

a re added to or removed fr om the dat a base . but the values of 
t he var ia bles ca n be a ltered by t he ru les . This is t he se nse in 
whic h t he engine is non-mo not o ni c. 

The engine was writte n ass uming that it is both des ir
a ble a nd feas ible to pe rfo rm a t as k with t he engine in rea l 
t ime . Unlike a tas k-pla nnin g syste m whic h generates a pla n 
fo r future use. the e ngine . as a rea l-t ime s ystem. must oper
ate as if act io ns in the rea l world were ha ppe ning in response 
to t he fi ring of rules . It is ass umed t hat phy sica l-world ac
t io ns a re s low compared to t he comput ing t ime required by 



I 

I 

the engine. Hence. the re is a per iod of t ime following the fir
ing of an act ion-ca us ing rule when other actions affect in g the 
sa me workcel l elements should not be ordered by other ru les . 
Th is requires a mechanism to enforce sharin g of workce ll el
ements among ru les . One could have t he rules ca ll functions 
wh ich on ly return after the workce ll elements have fini shed 
their actions (blocking functions). However . the engine was 
designed to uti lize non-blockin g functions. Th is attractive 
idea invo lves funct ions which only initi ate wor ld act ions and 
set corresponding state variables before returnin g. The non
block in g-function opt ion requ ires updating of the state vari
ab les at some later time eit her by the engine or by the rules. 
In thi s implementation. it is done by the engine. The state 
var iables can be updated by compa ring elapsed system time 
aga inst heuri st ica lly pre-determined time intervals for each ac
tion or by interpret in g sensory inpu t re lated to the act ion. In 
thi s implementat ion . pre-determined t ime interva ls are used 
for simplicity. Th is contrasts with WRAP. where a dedicated 
process is respons ible for "awakenin g" a blocked task when 
t he state of the world matches the pre-cond itions . 

Since the engin e is to perform actions in the physica l 
wor ld. the rules need some kind of "procedural attac hment" 
to link t he act ion prim itives to real-wor ld actions . Th is has 
been ach ieved by having the engine eva luate the consequents. 
or right-hand sides of ru les. which are written accord ing to 
the sy ntax of LISP but may contain user-defined procedures. 
Funct ion call s res ult ing from the evalu ation of conseq uents 
man ipu late the outs ide wor ld. making it correspond with the 
wor ld model ma in ta ined in the database. 

Frequently constra ints must be enforced upon the order 
of actions to accomp li sh a task correctly. For example. in 
pc-board repa ir. there must be a board put in the board-jig 
before solder-paste is dispensed there. A set of binary tags 
is maintained by the engine to faci li tate the cod in g of rules 
for enforcing such order constrai nts. Tags are variab les that 
indicate . by their state, whether a certa in action has been 
performed . The set of tags allows the engin e to know what 
it has already done and what rema ins for it to do. It is often 
des irab le to fire a rule on ly upon the first occurrence of cer
tain cond it ions. For example. it may be req uired in pc-board 
repair to have a free robot pick up the solder-paste-dispenser 
initially. Subseq uently. the robots must be prevented from 
doing th is each t ime they become free. Such a one-shot ac
t ion is achieved by having a rule test for a tag-state in its 
pre-condit ion and set the tag to the opposite state in its con
sequent. 

The control strategy of the engine is a li near-sea rch. first
found first-fired method. The engine goes through the list of 
rules sta rtin g at the top. irrevocab ly firin g the first ru le whose 
pre-conditions are met. It then continues to check down the 
list until it finds another rule whose pre-conditions are satis
fied. Upon reaching the end of the rule list. the engine checks 
all "busy" states and updates any that have expired before 
starting over at the top of the rule list. Th is cont inues until 
the task is completed or a dead lock is detected. The fir st
found first-fired control strategy requires the use of an agend a 
for the rules. Th is means the list of rules is ordered such 
that the ea rly-firers are at the top and the late-firers are at 
the bottom. However. the fact that mu ltiple passes through 

194 

the list wi ll be made obscures the actua l run-time order of 
firing. Hence. an add itional mechanism is needed to supple
ment mere order in enforcing sequentia li ty. Tags, wh ich have 
been discussed above. prov ide th is add itiona l mechan ism. 

The inference engine is a modified version of the system 
presented by Winston and Horn [9] which was monotonic 
and suit ab le for proofs. To be suitab le for tasks. it had to be 
modified by implement ing functiona l eva luation of ru le con
sequents . changing the control strategy. and extending the 
matcher to work with the two-level-deep association-li st for
mat of the database. 

3.2 Database 

It is des irabl e to keep the database sma ll in order to min
imize the time requ ired to search it. However. there is a 
trade-off between the amount of informat ion encoded direct ly 
into the database and the complex ity of procedures operati ng 
on the database . 

Robots 
robot-1 

robot-2 
robot -3 

Tools 
Active. Burst Operation: 

soldcr-paste-d ispen ser 
grind er 

Active. Dual-State Operation. 
hotp late 

Not Active: (Grabbers) 
board -grabber 

ic-g rabber 
discrete-grabber 

Comoonents 
Discrete: 

cp001 ( a capacitor) 

rs001 ( a resistor) 

In tegrated: 
ic001 (an integrated circuit chi p) 

Boards: 
bd001 ( a ec board l 

Locations 
solder-paste-dis pe n ser-h old er. 

board -grabber-holder. 
discrete-grabber -ho lder. 
ic-gra bber-ho lder. 

grin der-hold er. board -feede r. 
ic001 -f cede r. rs001-feeder. cp001-feede r . 
horn e-station-1. horne-s t at ion-2 

horne-stat ion-3. hotplate. 
board -acceptor. boa rd -j ig 

Abstract Entities 
rule-tags 

action-ta gs 

task 

Figure 4 Eleme nts of the Workcell World Model 

The database content is illustrated in Figures 4 and 5. 
Figure 4 shows the elements of the workcell world mode l 
which are encoded in the database and the categories into 
wh ich these elements fa ll. The elements are either robots . 
tools. components. locations. or abstract entities (tags and 
task parameters .) 



Elements Properties Set of Possible Values 
Robots state ready, busy, broken 

all oc board-o ps, paste-o ps, 
grind -ops. component-ops 

holds tool-x (except hotp late) 
loca tion location-w 
fin e- loc com ponent-x-boa rd -loc, 

no-fin e-loc 
home home-station-n 
ti111 e-sta 111p second s- N 
ti111 e-interv al second s- N 

Tools: Active, holder loca t ion-w (a holder) 
Burst location loca tion-w 
Operation sta te ready . bu sy. broken 

ti111 e-s tamp seco nd s-N 
time-in te rva l seco nd s- N ·------·--

Tools: Active. sta te ready, bu sy. broken 
Dual-S tate ti111 e-s ta111p seco nd s- N 
Operation ti111 e-interval seco nd s- N 

>---· --~- -- -~ cold. hot 
Tools: Not holder loca tion -w (a holder) 
Active location loca tion-w 
(Grabbers) content s co111ponent-x. boa rd -x. 

- ~ f-----
not hin e: 

Co111pone nts: too l discrete-grab ber. ic-grabber 
Discrete or feeder com ponent-x-f eeder 

~_ In tegrated fi ne- loc com ponent-x-boa rd -loc 

Locations at ro bot -y, nothin g 
in co111ponent-x. tool-z. 

bd001. nothin g 

Abstract 
Entit ies : 
Rule- Tags ru le-n ar111 ed , fired 
Action- Tags action -n to-do. done 
Task component component-w 

tool tool-z 
fi ne- loc fin e-loc-w 
feeder location-w (a feeder) 

---------·-

Figure 5 Properti es Defined for Elements of the Work
cell World Model 

Figure 5 s how s whic h properties are defined for eac h 
workce ll-ele ment catego ry. Robots and some tools (the grinde r. 
solder-paste-di spe nser, a nd hotp la te ) a re cons idered act ive el
e me nts a nd so must be dec la red busy while performing these 
act ion s. The genera l t erm "state" is used to ind icate whet her 
act ive eleme nts a re "ready" for act ion. "busy" doing an ac
tion. or "broken" and incapa ble of act io n. S ince non- blocking 
functions a re used, a mec hani s m is needed to dec ide when 
act ive e lements are fini s hed performing an act ion in the rea l 
world. Thi s is achieved using elapsed s ys tem time in ·conjunc
tion with in itial t im ing data recorded in the database. He nce, 
each ac tive ele ment ha s a "time-sta mp" ind icat ing when its 
last action was sta rted and a "time- inte rva l" indicat ing how 
long the task takes to accompli s h. It is not necessary to 
keep track of wh ich Act ion- leve l comm an d is c urrent ly be ing 
exec uted by a n act ive e lement because the database is im
mediately upd a ted to predict the s t ate the workce ll wi ll take 
on upon completion of the act ion. The "busy" state inhibits 
us ing this predicted inform at ion unti l it becomes va lid. Such 
tim ing informat ion is not required for passive e lements. 

Figure 6 shows an example of the two- level-deep associat ion
list format for the database . The database is conta ined in a 
list ca lled "dB". Each member of "d B" is a list describing 

one element in t he world model. The first e lement of each 

195 

( setq dB '( 
(object-1 ((p roperty-1 

(property-2 
(property- n 

( object-2 ( 
(object-n ( 

va lue-1 ) 
va lue-2) 
va lue-n) )) 

) ) 
) ) ) ) 

Figure 6 Format of the Dat abase 

me mb e r- lis t in "d B" is the object-name. The other eleme nt 
of each membe r- li st in "dB" is yet a nother li st whose e le
me nts are lists of length 2 which eac h give a property of the 
e le ment a nd the associated va lue. The pair- lis ts at the dee p
est le ve l of nest ing e num e rate a ll of the properties defin ed for 

the g iven object (as specified in Figure 5) . 

3.3 Application-Specific Functions 

Each Act io n- leve l comm a nd is imp le me nted as an act ion
f unction. The fo llow ing is a gene ra l out lin e of what is done 
when a n act io n-function is evaluated. First, a message is 
sent to the appropriate Act io n- level processor. Then the start 
time for the act ion is fetc hed from the real-time clock. Fina ll y 
the workcell mod el in t he database is modified to reflect the 
new state of the wor ld wh ich s hould res ult from the activi
ties of the Act ion- level processor. Conservative time-inte rva l 
est imates are bu il t in to each action-fun ct io n for setting the 
"time- interva l" propert ies of t he relevant act ive eleme nt in 
the database. This cou ld be refined by incorpo rat ing inte ll i
gent se nsor processing into the funct ions which wou ld permit 
run-time e rror ha ndling procedures. 

A "pcb-repa ir" funct ion was wr itten as an even hig her 
le ve l of control over the ge ne ra l inference engine. The "pcb
repa ir " function is a comm a nd- inter pret in g loop which pro
cesses orders from the Prob lem level. The input is used to 
direct wh ich rule set gets loaded into the "ru les" va ria ble 
before the engine is ca lled. The a rgument of the comm a nd 
is also stored appropr iat e ly under the "task" object in the 
database. Undefin ed comm a nd inputs cause the loop to be 
started aga in at the top wh ile escape from the loop is ac hie ved 
by the comm a nd "ex it"' . Current ly, on ly the IN S TALL task 
has been impl emented w ith ru les. but the s hell is there in 
"pcb- repa ir" to dea l with the other tasks as we ll . 

3.4 Rules 

An exa mple of the format of the ru le set is given in Fig
ure 7 . The rule set is contai ned in a li s t ca lled ··ru les·· . Eac h 

member of "r ules" is a ru le which is in the form of a list with 
four e lement s, the fir s t being the word "ru le" , the second be
ing a rule name, the third being the "if" list. and the last 
being the "t hen" list. The first e lement of the "if" list is the 
word "if ' wh ile a ll subseq uent e lements are pre-cond it ions 
(no limi t on the number). The first element of the "then" list 
is t he word "then" while a ll subsequent e lements are conse-



I 

(setq rules '( 
(rul e example l 

(if (pre-condition - 1) 
(pr e-conditi o n-2 ) 
(pr e-condition- n)) 

(then ( consequent - 1) 
(consequent -2 ) 
(co nsequent - n))) 

(rule example 2 (if ... ) (then ... )) 
(rul e examplen (if ... ) (then ... )))) 

Figure 7 Format of th e Ruic Set 

quents ( no limit on t he number) . The rule set developed for 
the IN STALL task cons is t s of 47 rules in th is format. 

The pre-co ndition s of the rules must be writte n in a "mat
che r language" whic h describes s ymbolic patte rn- matc hing 
opera ti ons to be performed aga in st the database. Four main 
fea tures of this lang ua ge a re assoc iated with the s ymbol s: 
"+". ">". and "<" as we ll as t he use of consta nt pre
conditi o ns. The "+" te ll s the matcher to s kip over any in
tervenin g forms. It w ill not inhibit a match if there a re no 
inte rve nin g forms (i .e. a n instance of nothing satis fi es "+" 
as well as an in st a nce of noth ing) . A pre-cond itio n giving 
a ll three of the fi eld s for the data ba se sea rc h explic itly (i .e. 
object. property. a nd va lue a re a ll consta nts ) is a consta nt 
pre-condition a nd is pe rmi tted. The ">" te ll s t he matc her 
to match a ny atom found at th is point in t he pattern (wild
card) and to stor·e the va lue of th is ato m tagged by a va ri a bl e 
name. The construct has a list form: (> vari a ble-name) and 
the whole li s t form is matched by an atom. The .. <" is the 
inve rse of ">". It ca uses the value of the vari a ble s tored 
previously to be s ubst ituted for the form: ( < variab le-na me) 
before the matching is attempted. 

The engine does not functiona lly eva lu at e pre-cond itions 
but rath e r matches them aga inst the data base. It may be 
a rg ued th at funct io na l eva lu at ion is more effi cient in the case 
where the va lue of a prope rty is to be fetched. However . if it is 
the property that must be fetc hed given a known cons traint 
on its value. then the s ymbo lic pattern match is preferred 
s ince it a llows a sma ll er database. In such a s ituat ion. func
tion a l e va lu atio n would need reciproca l functio ns whic h would 
need reciproca l encod ings of relat ion s hips to be added to the 

database . 
The conseq uents of the rules . unlike the pre-condition s. 

are writte n in LI SP s ince t hey a re function a lly evalu at ed. The 
consequ e nts involve the app lication-s pecific funct ions. ca lled 
in a ma nner cons istent with LI SP. as wel l as functions s up
pl ied by LI SP. However. there is one non-LISP feature permit
ted in the conseq ue nts. It is the rep lace-vari a ble form "<" 
from the matcher language. Before evaluat ion begin s. these 
forms wi ll be reduced to constants by the engine . An ad
dition a l s tipulat ion for the conseque nt of a rule is that only 
one action ca n be ini tiated involving a given act ive e lement 
by the enti re right-ha nd s ide of the given rule. It wou ld not 
ma ke sense to initi ate more than one act ion per element per 
rule beca use the functions are non-blocking. They return be
fore the act io n is completed. The natura l pre-condit ion that 
the e le ment be in the ready state before it is commanded to 

196 

The first group of action s involves the 
solder-paste-dispenser: 
MOV ETO ( sold er-pa ste -di spenser-holder. 

no-fin e-loc . robot -y ) 
PICKUP (solder-pas te-dispenser. 

robot-y 
MOVETO (board-jig. 

component-x-boa rd -loc. robot -y) 

ACTIVATE ( sold er -paste-dispenser) 
M OVETO (sold er-pa ste-di spenser-holder. 

no-fi ne-loc. robot -y) 
PUTDOWN (sold er-paste-di spenser. 

______ _ ____ robo~ ____ ~.~ 
The second group of actions involves 
col!'Q_onent-x: 
MOVE TO ( component-x-grabb er-holder . 

no-fi ne-loc. robot -y) 
PICK UP (compon ent-x-grab ber . 

robot -y) 
MOV ETO (boa rd -jig. 

comp onent-x-boa rd -loc. robot -y) 
PUTDOWN (comp oncnt-x. 

robot-y) 
MOVE TO ( component-x-grabb er -holder . 

no-fin e-loc. robot -y) 

PUTDOW N ( componcnt -x-grabber. 

Th-ethirdgroup :t~ftion s involves the 
pc board: ___ ___ _ _____ ___. 
MOVETO (board-grabber-hold er . 

no-fi ne-loc. robot -y) 
PICK UP (board-grabber. 

robo t -y ) 
MOVETO (board-j ig. 

no-fin e- loc. robot -y ) 
PICKUP (bd001. robot-y) 

MOVETO (h otplate. 
component-x-board-loc . robot-y) 

PUTDOWN (bd001. robot -y ) 

PICKU P (bd001. robot -y) 
MOVETO (board-ji g. 

no- fin e- loc. robot -y ) 
PUTDOWN Jbd001 ._r:obot-y ) ________ ~ 

Figure 8 Sequence of Actions Needed for the INSTALL 
(component-x ) Task 

perform an action would no longer be satisfied after the first 
act ion is initi a t ed . This limit at ion of one act ion pe r active 
e le ment per rule leads to a large r numbe r of rules for a give n 
task than wou ld the blockin g-function implementat ion. 

The conte nt of the rules refl ects the ex pert knowledge of 
the s ys te m. The seque nce of action-funct ion s to be evalu ated 
is determined by the rules. The example for which a ru le set 
has been written is the INSTALL task . The sequence of ac
tions needed to INSTALL (component-x) is s hown in Figure 

8. The rule set divi des this seq uence among the functioning 
robots in the workcell (i .e. robot-y does not have to be the 
same robot for each action.) The rules also ensure that t he 
actions will be performed in proper order (a lthough they need 
not occu r exact ly as in the sequence of Figure 8.) It is as
sumed in the list ing of Figure 8 that a board a lread y ex is t s in 
the boa rd-jig before the first act ion is executed. The natural 
decompos it ion of the IN STALL task into three s ubta sks is 
a lso illus tra ted in this figure. 

Reca ll the constraint that a llows only one act ion per work-



( rule install -2 9 
(if (action-tags (+(action- 1 to-do)+)) 

(( > robot-y) (+(holds 
so lder -paste-dispenser )+)) 

(( < robot-y) (+(alloc paste-ops)+)) 
(( < robot-y) (+( sta te ready)+)) 
(board-jig (+(in bdOOl)+)) 
(board- jig (+(at nothing)+)) 

(then (moveto 'board- jig 
(value 'task 'fine- loc ) 
'( < robot-y)) 

( chang e 'act ion-tags 
'act ion- 1 
'done ))) 

Figure 9 An Insta ll Ru le 

ce ll object among the consequents of any g iven ru le. This 
const ra int is res pons ible for the occurrence of meta-ru les and 
following rules . The meta- rule . or initiating rule. a nd its fo l
low ing ru les form a group. The group cou ld have been ex
pressed as a s ingle ru le if blocking action-fun ct ions had been 
used. The ru les in s uch a group requ ire m a ny of the sa me 

pre-conditions a nd form a seque nce of action s whic h fo llow 
eac h other close ly in t ime. He nce. the cond itions for the group 
to fir e a re found in the meta- ru le wh ich comes fir st in the se
quence. It is us ua ll y a "big" ru le w ith man y pre-co ndit ions. 
Figure 9 s hows ru le "i ns t a ll 29" wh ich in itiates the paste
dis pe ns ing group cons isting of the fo llow ing three rules (30 -
32.) The fo llow ing ru les a re chara ct e ri zed by a pre-co nd ition 
wh ic h says . in effect. "if the ru le before me just fired." This 
keeps the sequence intact. The paste-d ispe ns in g ru le group 
c ited here imple ments the act ion s: move to the board-j ig . dis
pense the paste. move away from the board-jig back to the 
robot' s home . and de-allocate the robot. A br ief descript ion 
of the ru le group s found in the INS TALL rule set is give n by 
Fig ure 10. Owing to the use of the "bus y" state , on ly one 
ru le from a g iven ru le group is fired on eac h pass through the 
ru le set. The a llocation ru les are a n exception. s ince a lloca
t io n is not a n act ion but is a database operat ion a nd so does 
not involve the "bus y" s tat e. 

4. Testing 

For testing purposes. a s imu lat ion approac h was used 
where te rm ina l input was treated as if it were from the Prob
lem le ve l a nd te rmina l output was cons ide red to have been 

passed on to the Action level (the robot controllers ). On ly mi
nor modifications to the a pplication-spec ific fun ctions wo uld 
be needed to effect the actua l hiera rc hica l control of the work
cell. Spec ifi ca ll y. the inte rfacing of the action-fun ct ions and 
the hig hest- le vel contro l loop wh ich in terprets comma nd s from 
the Proble m le ve l wou ld be required. 

The IN S TALL(i c001) com mand was used for the testing. 
Figure 11 s hows a n excerpt of a transcript of the interactive 
tes t ing sess ion . The init ial state of the workcell for these tests 
had three functioning robots. each with noth ing in its hand 

197 

Rule 
Numbers Function 

Singleton Rules: 
1 Make sure hotplate is 011. 
2 Fill task-description fi elds. 
3 All oca te robot- > board -ops initially 

if it has board-grabber (idea l). 
4 All oca te robot-> pas te-ops initi all y 

if it has dispenser (idea l) . 
5 All oca te robot -> co 111po11 e11t -ops initia ll y 

if it has comp onent -gra bber (ideal). 
21 Free a robot for boMd-ops if 

11 0 board out in workce ll. 
22 Sa me as 21 except fr ee component -ops 

robot instea d of paste-ops. 
47 Term in ation ru le: sets ind icator 

for engin e to_ sto~ - I 
Rule Groups: 

6 to 8 All ocate robot-> boa rd -ops if it hold s I 
nothing. th en get board-g rabber. 

9* to 10 Put away un wa nted tool before 
board -ops all ocation. 

11 to 13 Allocate robot -> paste-ops if it holds 
nothin g. then get di spenser. 

14 * to 15 Put away unwan ted too l before 
paste-ops all oca ti on. 

16 to 18 All ocate robot -> co mp onent -ops if it holds 
nothin g. then get component grabber 

19* to 20 Put away unwanted too l before 
compon ent -ops all oca t ion_ 

23 to 28 Fetch a board if none out 
in workcell (boa rd -ops). 

29 to 32 Dispense solder paste 011 
board ( paste-ops J-

33* to 38b Place component 011 boa rd 
(comp onent -ops ). 

39 to 46 Move boa rd to hotp late for hea tin g 
and bac k to jig (boa rd -ops). 

Figure 10 Fun ctional Summ ary of the Ru les in t he IN
STALL Task 

a nd located at its home stat ion. The re was no pr inted-circuit 
boa rd out in the workce ll . so one had to be fetched. 

The test ing was carried out on differe nt mu lti -use r com
puters runnin g Fra nz LI SP in the Computer Vis ion and Robo
t ics La boratory . Dur ing the de bugging phase. a s mall four -rule 
test set was used on a S un 3/160 Workstat ion a nd on a DEC 
VAX 750. As ex pected. t his ru le set gave fast res ults. An in
termediate implementat ion with 27 rules was then tes ted on 
the S un and on the VAX 750. The complete 47-rule vers ion 
was run on a DEC VAX 780. The process ing t ime requ ired by 
the var ious rule sets was influe nced by the mu lt i-user s ystem 
loading which varies . The values for "time-interva l" incor
porate d into the non-blocking fun ction s idea lly would be the 
limiting factors in the exec ut ion time of the task if com puta
tion time was negligi ble. The durations ass umed by the five 
act ion-funct ion s in the INS TALL task a re give n in Figure 12. 

The observed execution times of the system dur ing test
ing were somewha t too s low for real-time application s . Re
s u lts for a s mall s yste m (47 ru les ) to com plet e a typica l t as k 
(insta ll in g a compon e nt) s uggest that it is not feasib le to use 
the t his approach in real time on the mu lti-user VAX or S UN 
compute rs. A facto r of 100 in speed improve me nt must be 
obtained before us ing the s ystem in rea l t ime becomes prac
tical. Future resea rc h directions include mod ifying the code 



. I 

(Firing RULE install-24) 
(PICKUP { bdOOl robot-3 } 

begins at : "Fri Aug 21 08 :3 1:50 1987") 
(Fi ring RULE in s tall -34 ) 
( PICKUP { i c OOl robot - 1 } 

begins at : " Fri Aug 21 08:33:09 1987") 
(robot -3 finished its action as of : 

"Fri Aug 21 08:34:00 1987") 
(robot - 1 finished its action as of : 

"Fri Aug 21 08:34:00 1987") 
(Firing RULE install-25 ) 
(MOVETO { board- jig no-fine-loc robot-3} 

begins at : "Fri Aug 21 08:36:18 1987") 
(robot-3 finished its action as of : 

"Fri Aug 21 08:37:32 1987") 
(Firing RULE install-26) 
(PUTDOWN { bdOOl robot-3 } 

begins at : "Fri Aug 21 08:39:11 1987") 
(robot - 3 fini s hed its action as of : 

"Fri Aug 21 08:40:53 1987") 

Figure 11 Excerpt of the Output from an IN STALL(icOOl) 
Task Simu lation 

-------~------ -- -- ------
Action 
PICKUP 
PUTDOWN 
MOVETO 
ACTIVATE 

DE-ACTIVATE 

Ass~rned Dura_!]~'!_~ 
20 
20 
20 
20 ( not hotplate) 
300 (if hotplate) 
200 (hotplate only} 

Figure 12 Ass umed Durati on Times for Action s 

to run on a dedicated LI SP machine (such as the Symbol
ics Model 3670) where we hope that execution times in the 
one-second range can be demonstrated. 

5. Conclusion 

A rule-based Task-level system has been implemented 
which participates in a hierarch ica l approach to robotic work
ce ll control. This control strategy has been app lied to auto
matic assembly and repair of printed-circuit boards. A rule 
set performing a typical task for this app licat ion (insta lli ng 
a component ) was formulated and tested. This implemen
tation involved developing a non-monotonic inference engine. 
Three major features. namely state variables . real-time task 
performance. and paral lel processing. were incorporated. In 
particular. the use of non-blocking functions enhanced the 
effectiveness of these three concepts. 

To address the problems associated with run-time errors 
in the workcell. sensors must be incorporated . This qualifies 
as anot her worthy avenue for future research. For such ex
tensions. the updating of busy states should be performed by 
the rules in stead of the engine. This would allow more flexible 
hand ling of any run-time errors that may be sensed in the real 
world . 

198 

The authors wish to acknowledge the financial support of 
NSERC and FCAR. 

References 

[ tJ Albus J.. Evans J .. "A Hierarchical Structure for Robot Control " 
Proc. of th e 5th Int. Symp. on Indu strial Robots. pp. 231-237. 

1975 . 

[2J Haynes L.. Barbera A .. Albus J.. Fitzgera ld M .. McCa in H .. "An 
Application Example of the NBS Robot Control System" Robotics 
and Computer In tegrated Manufacturin g, Vol. I. No . 1. pp . 81 -95 . 

1984. 

[3J Freedman P .. Malowany A .. "Sequ enci ng Tasks within a Robotics 
Workcell : from Feasibility to Optimality". IE EE Pacific Rim Con
ference on Commu ni cations. Computers . and Signal Processin g. 

Victoria BC .. pp . 137-140. June 1987. 

[4] Caraya nni s G .. Blais B .. Malowany A.S .. Lev ine M.D .. "A Real 
Time Databa se for a Robotic Workcell Programmin g Environm ent" 
IEEE Pacific Rim Conference on Communica tion s. Comp uters. and 
Signal Processin g. Victoria B.C.. pp.141 -144. June 1987 . 

[SJ Freedman P .. Carayann is G .. Malowa ny A .. "A Graphi ca l Perspec
tive on Robot Workcell Programming". to be presented at Graphics 

Interface '88 . Edmonton Alta .. June 1988. 

[6] Kl ep ko R .. Malowa ny A .. "A Rule- Ba sed Hierarchi ca l Robot Con
trol System" The Summer Computer Simu lation Conference. Mon

trea l P.Q .. pp . 646-652 . July 1987 . 

17] Alami R .. "NNS: A LISP-Based Environment for the Integration 
and Operating of Complex Robotic Syste ms". Proc. of the IEEE 
Conf. on Robotics and Automation. pp. 901 - 907. March 1985. 

[8] Nilsson N .J .. Principles of Artificial Intelligence. Morgan Kaufmann 
Publishers In corporated. Los Altos. Ca lif .. pp . 17-18. 1980. 

[9J Winston PH . Horn B.K.P .. L/SP. Second Ed ition. Addi son-Wesley 
Publi shin g Company. Don Mills . Ontario. pp . 253-284 . 1984 . 



CURVED MONDRIANS: A GENERALIZED APPROACH 
TO SHAPE FROM SHADING 

Walte r F. Bischof' & Mario Ferraro' 

'Department of Psychology 
and 

Alberta Centre for Machine Intelligence 
and Robotics 

University of Alberta 
Edmonton, AB, T6G 2E9 Canada 

and 
'Is titut o di Fisica Superiore 

Universita di Torino 
Torino, Ita ly 

Abstract 

Most shape - from-shading methods assume 
that surface reflectance is constant 
w~thin large image regions. This 
assumption is violated in natural scenes 
with ob jects made from different 
materials. We present a method for 
recovering shape and albedo under the 
assumptions that surfaces are smooth and 
albedo is piecewise constant, as would 
be the case if a Mondrian image was 
painted on a smooth curved surface. Our 
method is based on combining Brooks and 
Horn's method for shape recovery with 
the recovery of albedo using stochastic 
relaxation. 

Keywords: shape-from-shading, Mondrian 
image , stochastic relaxation. 

1. Introduction 

Computational vision aims at 
understanding how 3-D representations of 
the world can be reconstructed from 
information contained in 2- D images. 
Recent research has produced a variety 
of methods · that allow the recovery of 
such shape information, including, for 
example, shape from stereo, shape from 
motion, shape from texture, and shape 
from shading. Most of these shape 
recovery problems are ill-posed 
(Hada mard, 1923; Torre & Poggio, 1986) 
in that existence, uniqueness and 
stabi 1 i ty of solutions may not be 
guaranteed in the absence of additional 
constraints. In the case of shape from 
shading, for example, Pentland (1984) 
restricts the space of solution surfaces 
to umbilical surfaces to enable unique 
recovery of surface orientation from 
local variation of image irradiance. 
Brooks and Horn ( 1985) use a weaker 
constraint, requiring that the solution 
surface maximize some global smoothness 
measur e, but constraints on surface 

199 

shape have to be propagated non -locally. 
Both approaches are based on the image 
irradiance equation (1) 

E(x,y)=pAJl(x,y) ·R. ( 1) 

where E is the image irradiance, p the 
surface albedo, A the incident flux, l1 
the surface normal, and R. the illuminant 
direction (sun). They require that 
surface reflectance, in the imaging 
model ( 1) Lambertian reflectance, 
remains constant over a large area, and 
al 1 variations in image i r radiance a re 
attributed to variations in surface 
orientation . Further, the two 
approaches provide no means for 
detecting that this assumption may be 
violated, except in some pathological 
cases. Such is the case, for example, 
with a black area in an image with R.=~, 
the viewing direction, where surface 
orientation is computed being orthogonal 
to the viewing direction over some 
extended area, a geometrically 
impossible inference. 

The aim of this paper is to 
investigate the feasibility of shape 
inference under weaker constraints than 
those imposed by either Pentland or by 
Brooks and Horn. There is no way of 
separating the two effects of surface 
orientation and surface reflectance in 
the general case, since any change in 
image irradia nce can be attributed to a 
change in either of the two or a 
combination of both. Thus a photograph 
can be interpreted as a flat surface 
with changing albedo or as an image of a 
curved surface with or without changes 
in surface reflectance characteristics. 
In particular we will show that surface 
orientation ca n be successfully 
recovered if the surface is assumed to 
be smooth (as in Brooks & Horn) and 
surface albedo is piecewise constant (as 
opposed to globablly constant in Brooks 
& Horn) . 

Piecewise constant surface albedo 
can lead to discontinuities in image 



irradiance and thus the borders of 
"albedo patches" could be detected ?Y 
either looking for discontinuities in 

image irradiance directly (edge 
detect ion) or by looking for large 
errors in predicted image irradiance 
after an initial surface orientation 
fit. As we will show later, both these 
approaches lead to unsatisfactory 
results, inferior to our scheme in which 
surface orientation and surface albedo 
are recovered simultaneously. 

Our approach is closely related, on 
one hand to Brooks and Horn ( 1985) for 
recovering surface orientation from 
shading, and to that of Marroquin, 
Mitter and Poggio (1987) and Geman and 
Geman ( 1984) for recovering the 
piecewise constant albedo map using 
stochastic relaxation. As discussed in 
the next sect ion, the two processes run 
in parallel, each updating iteratively 
the input to the other process. 

2. Model 

We want to recover the orientation 
n(x,y) of a smooth surface satisfying 
the image irradiance equation for 
Lambertian surfaces 

E(x,y) = p(x,y)u(x,y) · R ( 2) 

over some domain n, where E(x,y) is the 
image irradiance, p(x,y) the (piecewise 
constant) surface albedo, 
n(x,y) the unit normal of the surface, 
and R the (known) direction of a distant 
single point source (sun) with l sl=A, 
the (known) incident flux. We will now 
discuss in turn how to recover the 
surface orientation map n(x,y) and the 
surface albedo map p(x,y) from 
equation (2) . 

2.1 Recovering the surface orientation 
map 

As shown in Brooks and Horn, 
recovering the surface orientation map 
n(x,y) can be put as a variational 
problem where we try to minimize (3) 
with respect ton , 

I(n)= JJn [E(x,y)-p(x,y)n(x,y) ·R) 2 + (3) 

a[n~(x,y)+n~(x,y)]dxdy. 

In (3) the first term in the integral 
captures errors in predicted image 
irradiance and the second term captures 
smoothness of surface orientation, with 

200 

a weighting the relative importance of 
this term and n , , D denoting partial 
derivatives. In term~ of regularization 
theory (Tikhonov & Arsenin, 1977; Torre 
& Poggio, 1986) the second term is 
called the stabilizing functional and a 
the regularization parameter. The 
minimization formulation (3) differs 
from that of Brooks and Horn in that the 
term for surface albedo p(x,y) is 
included and that no term is included 
for constraining surface normals to unit 
vectors (which will be included in the 
iterative formulas). The Euler-Lagrange 
equation associated with (3) is 

where 

'v 2 
L cJ2 
OX 2 + oy 2 

Q ( 4) 

is the Laplacian. Using the 9-point 
discrete approximation for the Laplacian 

v2 "" _1_ 
6€ 2 [ i 4 

-20 
4 i] ( 5) 

and solving (4) for D we arrive at the 
following iterative estimates for n: 

k + 1 
n i j 

( 6) 

( 7) 

k+ 1 
where m ij are the unnormalized surface 
normals and 

-k 
D ii 

_j__[4(n +n +n. .+n. 1 ) 20 '"-'i.j+1 '"-'i,j - 1 '"-'1+1,J '"-'1- ,) 
(8) 

After every iteration of the 
surface orientation estimation we can 
obtain an estimate of the surface albedo 
p(x,y) from (2): 

p(x,y) = E(x,y) (n(x,y) ·R) - 1 
( 9) 

except at self - shadow boundaries where 
n(x,y) · R=O. 



2.2 Recovering the surface albedo map 

Given some estimates of surface 
albedo, p(x,y), we want to fit a 
piecewise constant albedo map, p(x,y). 
That is, p(x,y) should be constant 
except at boundaries between different 
regions, and the discontinuity 
boundaries should be spatially 
continuous. This problem could again be 
cast in terms of a minimi zation problem, 
but it is unlikely that the associated 
minimization functional i s convex and 
thus can be solved using standard 
variational methods. 

A way to solve this problem may be 
provided by the technique of stochastic 
relaxation introduced by Geman and Geman 
( 1984) to restore images corrupted by 
noise . This technique is based on an 
analogy between images and lattice-like 
physical systems: pixels are considered 
the nodes of the system, grey levels and 
the presence of edges are viewed as 
states of the system; the probability of 
a state w is determined by the Gibbs 
distribution 

7T ( w) ( 10) 
~ - u(w)/T l e 

w,o 
where n is the set of all possible 
states w, u(w) is an energy 
function--described below --and T is a 
parameter called "Temperature" in 
analogy with statistical mechanics . 
Because of the equivalence between Gibbs 
distributions and Markov random fields, 
it i s possible to show that the 
a posteriori probability distribution of 
a state w (i .e., an estimate of the 
original image given the data)follows an 
energy distribution with energy of the 
form 

U(w) V(w)+D(d,w) ( 11) 

where Vis the energy due to local node 
interactions and D(d,w) depends on the 
data structure. The maximum 
a posteriori estimate of the original 
image given the data, corresponds to the 
minimum of U(w). In the present 
application the states correspond to 
different configurations of the albedo 
map, whil e the "data " set is given by 
p (x, y ) as estimated in (9) . In the 
discussion of the albedo map recovery we 
first introduce the associated energy 
functions and then discuss the filling 
process us ing stochast i c relaxation. 
The goal of the albedo recovery process 
is to determine the "true" s urface 
albedo at every node of a dense grid in 
the viewer coordinate system, Between 
eac h pair of neighbouring nodes (in a 

20 1 

4-neighbour- system) a line element 
indicates the possible presence of a 
discontinuity boundary (see Figure 1). 

0 0 0 0 

0 • 0 0 

• • • 0 

0 • 0 0 
Figure 1 

Albedo node lattice with interstitial 
(horizontal and vertical J I ine lattice 
for modelling discontinuity boundaries. 
The black. nodes indicate an "albedo 
node" with its four neighbour nodes. 

2.2. 1 Energy functions 

To model the piecewise constant 
albedo map we used a coupled node - line 
model (Geman & Geman, 1984; Marroquin et 
al. 1985) with the node process 
capturing penalties or differences 
between neighbouring albedo nodes and 
the line process capturing penalties on 
the local geometry of di scont inui ty 
boundaries. 

Node process: At every node in the 
lattice the modelled albedo , pi, should 
be as close as possible to the estimated 
albedo, p and the albedo value between 
neighbouring nodes should not differ 
unless there is a discontinuity boundary 
between them. To model the former we 
introduce the "albedo error" energy Di 

( 12) 

To model the latter we introduce an 
"albedo variation" energy. Let i and j 
be two neighbouring nodes, /ii the line 
element between the two nodes , and let 
C be set at all neighbours (the clique) 
of node i. Then the a lbedo variation 
energy Ui is defined as 

where 

- 1 
+l 
0 

( 13 ) 



·I 

where .f ii = ' on' or 'off' indicates the 
presence or absence of the discontinuity 
bounda'.y element .fi i . 

Line process: In modelling the 
spatial geometry of discontinuity 
boundaries isolated boundary fragments 
and c lustered discontinuities s hou ld be 
highly penalized, whereas "good 
continuati ons" of boundaries should be 
less penalized. 

•¢• 
-0- -0-

• ¢ • 

•¢• 
Figure 2 

Vertical I ine e lement ( 1) with 
neighbours (2 - 71. Energy functions 
defined on the two c liques (1 ,2,3,4 1 
I 1 ,5,6,7 >. 

s ix 
are 
and 

Figure 2 shows a horizontal line element 
(1) with its six neighbouring line 
elements ( 2-7 ), forming the two cliques 
(1, 2,3,4 ) a nd (1,5, 6,7 ) . The e ne rgy 
functions Vk U ) are defined for each 
clique with th~Jvalues of Vk(, ) for all 
possible configurations, 'l up to 
rotations, given in Figure 3. 

0 0 0 10 0 0 
-

0 0 0 10 0 10 
0 0.4 1. 2 

0 10 01 0 0 10 
- - - -

0 0 0 0 0 10 
1.4 2.2 2.2 

Figure 3 
S ix possib le line conf igurat ions and 
the ir assoc iated energ ies. 

Iso l ated bo undary fragments (V 5 ) and 
clusters of boundary fragments (v. and 
Vol are highly penalized. 

202 

Given some estimated albedo values 
P;, we want to find the interpretation 
I= (P, L) of albedo values P={p;} a nd 
discontinuity boundaries L=f.f;i.} that 
minimize the combined energy runction 
E (I) : 

E( I) /3, 2 Di + /32 2, U; + /33 2 V, 
i j 

( 15) 

where /3 1, /3 2 a nd /3 3 are weighting 
factors. 

2.2.2 Stochastic relaxation 

The method used to minimize the 
energy function is based on the 
Metropolis algorithm (Metropolis, 
Rosenbluth, Rosenbluth, Teller & Teller, 
1953) a nd on the annealing process 
described by Kirkpatrick, Gelatt and 
Vecchi ( 198 3). It can be briefly 
characterized as follows. At a given 
temperature Ta new value of p(x,y) for 
each pixel is randomly chosen and the 
difference in e nergy ~E=E

0
._,-E

01
a is 

computed. The new value is accepted 
with probability 

p = l exp(6E/T ) if 6E>O 

if 6ES0 
( 16) 

and the same process is repeated for the 
introduction or removal of line 
elements. The accepted value of p(x,y) 
is then used in ( 7) to compute a new 
value of ll which in turn is used to 
determine a new val ue of p ( x, y ), the 
esti mated a lbedo , usi ng (9). The 
temperature is the n l owered following 
the sc hed ul e T=T

0
ld(k/4) with k being 

t he iteration number and ld the 
logarithm to the base 2. This method 
al l ows not just c hanges that decrease 
the energy but energy increasing changes 
as well, the latter becoming 
progressively unl ikely as the process 
evolves. The process thereby avoids 
becoming trapped in local minima and 
should converge at least to states close 
to the global minimum ( see Geman & 
Geman, 1984 ; Marroquin, Mitter & Poggio, 
1987 for a discussion on the 
mathematical properties of stochastic 
relaxation process ) . It should be noted 
that in the original annealing method 
(Ki rkpatrick et al., 198 3) temperature 
is not changed until the average energy 
reaches equilibrium. We change 
temperature at every iteration 
regardless of whether equilibrium has 
been reached but compe nsate for the 
latter by us ing a conservative cooling 
sc heme. 



2.3 Combining the recovery of surface 
orientation and surface albedo 

There are several approaches on how 
to combine the recovery of surface 
orientation and albedo. Although we 
have chosen one particular approach, 
simultaneous recovery, it is useful to 
consider alternative approaches with 
their respective advantages and 
disadvantages. 

Consider first the "albedo-surface" 
approach in which albedo, or at least 
boundaries of patches with constant 
albedo are recovered first. Given the 
model assumption of surface smoothness, 
discontinuities in image irradiance can 
only occur in two ways, at points with a 
discontinuity in albedo and at occluding 
boundaries of surfaces. The latter are 
assumed to be known in the model for the 
recovery of surface orientation. Hence 
boundaries of (constant) albedo regions 
could be detected using some edge 
detection mechanism. If this can be 
done reliably, then a mechanism for 
orientation recovery could be devised 
which independently estimates surface 
albedo in each of the regions. The 
reliability of such an edge scheme 
decreases in regions near the 
self-shadow boundary where image 
irradiance changes rapidly. 
Accordingly, our experiments using only 
an edge detection scheme proved not 
sufficient for recovering boundaries of 
albedo regions reliably. However, 
information from the edge detection 
mechanism could be used, for example, 
for initializing discontinuity line 
elements in the albedo recovery 
mechanism. 

Consider next the "surface-albedo" 
approach in which boundaries of patches 
with constant albedo regions are 
detected after a full cycle of surface 
orientation recovery with a "constant 
albedo" model. Probable albedo 
boundaries can then be located using a 
surface discontinuity detector 
(Terzopoulos, 1985) or by detecting 
significant errors in predicted image 
irradiance, i.e., detecting positions 
where the first term in (3) has 
significantly large values. Given these 
boundaries and some appropriate albedo 
estimation for each region, surface 
orientation can then be re-estimated. 
One problem with this approach is that 
the performance of the discontinuity 
detectors is reduced by the previous 
smooth surface interpolation. 

The approach we have found most 
successful involves the simultaneous 
recovery of surface orientation and 
surface albedo. Surface orientation 
recovery using the Brooks and Horn 
scheme is intertwined with surface 
albedo recovery using stochastic 
relaxation . In eve r y iteration an 

203 

estL.1ate of surface albedo, p(x,y), 
produced by the orientation process is 
fed into the albedo process, which in 
turn produces an estimate of the 
piecewise constant albedo map, p(x,y), 
used in the next iteration of the 
orientation process. 

3. Experiments 

Recovery of surface orientation and 
albedo was tested on synthetic, 
noise-free images of size 64 2 and with 
2' intensity levels. Illuminant 
direction~ was c o incident with viewing 
direction and incident flux was kept 
constant A= l~l=1. Images and results of 
the recovery process are shown in 
Figure 4. The first surface (left 
panel) was a Mondrian-like sphere with 
seven patches of different albedo in the 
range 0.2-1.0, the second surface 
(middle panel) was an egg-shaped 
Mondrian-surface and the third surface 
(right panel)- - used for control 
purposes--was a sphere with constant 
albedo. 

Figure 4 
Images and resu Its of a I bedol shape 
recovery . The left panel shows a sphere 
with piecewise constant albedo, the 
middle panel an egg-shaped object with 
piecewise constant albedo, and the r ight 
panel a sphere with constant albedo 
p=0.6. 
14a) Images 
(4b) Recovered albedo map 
<4c)Discontinuity boundaries found in 

albedo recovery 
(4d) Error of z-component IQ ·~) of 

recovered surface orientation. Grey 
areas indicate correct recovery, in 
dark areas recovered surface is too 
steep, and in white areas too flat. 



.I 

., 

The images are shown in Figure 4a , 
the inferred a lbedo map in Figure 4b, 
the inferred discontinuity boundaries in 
Figure 4c, and the error of the inferred 
surface orientation in Figure 4d. The 
latter is to be interpreted as follows: 
in grey areas the z-components (n·~) of 
the inferred surface normals are 
correct in white areas too high 
( inferr~d surface orientation too flat) 
and in black areas too low (inf erred 
s urface orientation too steep ) . 

All exampl es were computed using 
the same parameter values a=0.3 (see 
( 3) ) , J3 1 = O . 0 5, J3 2 = 1 9, J3 3 = 1 3 ( see ( 1 3 ) ) . 
Initial temperature was T

0
=2 and was 

decreased according to the formula 
T =T ld(k/4) with k being the iteration 
n~mb

0

er. All results shown in Figure 4 
were obtai ned after 600 iterations. 

The ini tial solution of the surface 
orientation n was correct at the 
occl udin g boundary and n=[0,0,1) 
elsewhere. Surface albedo p(x,y) was 
initialized to a random value for the 
first iteration and was allowed to vary 
in steps of 0.2. Discontinuity line 
element s were initialized randomly (with 
probability p=0.5) to 'on' or 'off'. 

As can be seen from Figure 4 , 
recovery of s urfa c e orientation and 
albedo was perfect except in a band of 
varying width near the occ ludin g 
boundary. This effect was present with 
a relatively large range of other 
parameter values. The reasons for this 
failure will be discussed below. 

I.... 

0 
I.... 
I.... 
Q) 

0. 10 

0 .05 

0 . 00 +------.----,---,-----.-----,------1 

a lbedo 

s hape 

0 100 200 300 400 500 600 

iterat ion 

Figure 5 
Average error of est i matded surf ace 
or ientat ion, f[n,n fer red ·n t rue l , and average 
error of estimated albedo, 
f[ p . 0 - p ] , over 600 iterations for 
egg'-nJ7-{f/ped t ru e surface with p i ecew i se 
constant albedo. 

204 

Figure 5 shows average errors of 
the inferred surface orientation, 
E[ninferred · n rue], and average errors of 
the inferred surface albedo, 
E[p . f a-pt ] for the egg-shape 
Mona"r'i.'~~ su'ltace over iterations. They 
decrease exponentially, reaching an 
asymptote after about 200 iterations. 
The final errors are due to an imperfect 
fit near the occ luding boundary, whereas 
there is virtually no error in 
shape/albedo recovery in the interior of 
the regions. 

4. Discussion 

The results show that our proposed 
method is capable of simultaneously 
recovering surface orientation and 
surface albedo for surfaces with 
piecewise constant albedo using shading 
information. This is achieved with a 
much higher computational effort -- the 
results presented were obtained after 
600 interations- - than other known 
methods (about 50 iterations for the 
Brooks and Horn method and essential ly a 
single iteration for Pentland's method). 

The poor performance in recovering 
surface orientation/ albedo near the 
occludi ng boundary is related to 
observations made by Smith ( 1982). The 
smoothing term in (3) is minimized by 
spheres but it does not propagate a 
sphere - like constraint in its discrete 
approximation, partially due to the fact 
that shape constraints are propagated 
only over few neighbouring nodes. The 
smoothing term alone (i.e., using a~ 00 in 
(3)) produce s a cylinder - like shape if 
the initial solution is correct a t the 
occluding boundary (see Smith, 1982, 
Figure 11). In our c ase this leads to a 
c onsistent over-estimation of surface 
albedo p(x,y ) near the occluding 
boundaries , as can be seen in Figure 4. 
This deficiency of the smoothing term 
was not apparent in Brooks and Horn 
(1985) as it was compensated by the 
first term in ( 3 ), the irradiance 
prediction term. 

There are several possibilities to 
overcome this deficiency including the 
us e of a mult i-resol ut ion approach to 
ensure sufficient propagation of shape 
constraints or the use of alternative 
propagators of shape constraints (Smith, 
1982). We are currently working on 
improving our shape/albedo recovery 
along these lines. 

In the section on combining the 
recovery of surface orientation with the 
recovery of s urf ace albedo ( section 2.3 ) 
we discussed three different approaches 
to combining the two mechanisms, 
event uall y favouring the "simultaneous 
recovery" approach. We arg ued that the 
"albedo- surface" approach in which 
boundaries of "albedo patches" are 



localized first using some edge 
detection mechanism was not reliable 
enough for identifying regions of 
different albedo. However, this is 
throwing out the baby with the bath 
water as edge information can be used to 
initialize and/or to constrain the 
introduction of discontinuity line 
elements in the recovery of the albedo 
map. The latter can be realized by 
introducing a data term similar to ( 12) 
for the line process. We expect an 
increase in efficiency of the recovery 
process using this information and are 
currently extending our method along 
these lines. 

Acknowledgment 

W.F. Bischof was partially 
supported by grunt 81. 166. 0. 84 of the 
Swiss National Science Foundation. 
M. Ferraro was partially supported by 
the Consiglio Nazionale delle Ricerche. 

References 

Brooks, M.J. & Horn, B.K.P. (1985). 
Shape and source from shading. 
Proceedings£!. the 9th International 
Joint Conference on Artificial 
Intelligence, Los Angeles: Morgan, 
Kaufman, 932-936. 

Geman, S. & Geman, D. (1984). 
Stochastic relaxation, Gibbs 
Distribution, and the Bayesian 
restoration of images. IEEE 
Transactions on Pattern Analysis and 
Machine Intelligence, 6, 721-741. 

Hadamard, J. ( 1923). Lectures on the 
Cauchy Problem in Linear ParticaT 
Differential Equations, New Haven, 
CT: Yale University Press. 

Kirkpatrick, S., Gelatt, C.D., & Vecchi, 
M.P. (198 3 ). Optimization by 
simulated annealing. Science, ~, 
671-680. 

Marroquin, J., Mitter, S., & Poggio, T. 
(1987) . Probabilistic solution of 
ill-posed problems in computational 
vision. Journal of the American 
Statistical Associatio~ 82 (397), 
76-89. -

Metropolis, N., Rosenbluth, A., 
Rosenbluth, M., Teller, A., & 
Teller, E. (1953). Equation of 
state calculations by fast computing 
machines. Journal sf Physical 
Chemistry, 21, 1087. 

Pentland, A. "t°1984). Local shading 
analysis. IEEE Transactions on 
Pattern Analysis and Machine 
Intelligence, PAMI-6, 170-187. 

205 

Smith, G.B. (1982). From image 
irradiance to surface orientation. 
Te c hnical Note 273, Stanford 
Research Institute, Menlo Park, CA. 

Terzopoulos, D. (1984). Integrating 
visual information for multiple 
sources for the coopera tive 
computation of surface shape. In 
A. Pentland (Ed . ) Pixels to 
Predicates: Recent Advances 1n 
Computational and Robotic Visiori'-;
Norwood, NJ: Ablex. 

Tikhonov, A.N. & Arsenin, V.Y. (1977). 
Solutions £!. ill-posed problems, 
Washington, D.C.: Winston & Sons. 

Torre, V., & Poggio, T.A. ( 1986) . On 
edge detection. IEEE Transactions 
on Pattern Ana lysTs and Machine 
Intelligence, PAMI-8, 147-163. 



EXTENDING MOMENT ANALYSIS WITH DIRECTED 
ATTENTION TO HANDLE STRUCTURAL 

VARIATIONS IN CHARACTER RECOGNITION 

Dale M. MCNulty 

Department of Information and Computer Science 
University of California 

Irvine, CA 92717 
ARPAnet Address: MCNULTY@ICS .UCI.EDU 

714-856-6360 

Abstract 

A model (and instantiating program) is described 
whicl~ recursively combines the learning 
paradigms of conceptual clustering (Michalski 
198~) a_n_d learning from example to resolve th~ 
amb1gu1t1es ?fa real-world recognition paradigm. 
The mode_l 1s b~sed on neurophysiological and 
psychological evidence that the visual system is 
analytic, ~ier~chical, and composed of a 
parallel/senal dichotomy (many, including Crick, 
1984 ). Parallel processes in the model decompose 
the image into components and cluster the 
constituents in much the same way as moment 
analysis (Alt, 1962). However, the model extends 
the su~cess _of moment analysis, to handle simple 
a1ter:at1ons 11;1 stu~ture by serially investigating 
spatial relat10nsh1ps of component parts. The 
need for serial attentive resources results from a 
disagreement between the environment and the 
model on what constitutes the salient features at 
labeled level of the symbol. The model also 
overcomes other li,_nitations of moment analysis, 
such as segmentation problems and difficulties 
matching moments. 

Keywords 

Moment analysis, attention, conceptual 
clustering, learning from example 

1.0 Introduction 

~achine re~ognition is difficult in a perfect 
image envir~nment, but the difficulty is 
coi:npounded 111 a real-world paradigm where 
obJects can, _from one viewing to the next, 
undergo vanous types of transformations 
including: translation, scale, rotation, and 
structural alterations. 

The problem has been addressed from a number 
of viewpoints. One of these approaches, an image 
processmg technique referred to as moment 
analysis, is demonstrably successful at 
recogni~ing alphabetic characters independent of 
translat10n, scale, and rotation (Alt, 1962). 

206 

Unfortunately, this technique is not as successful 
when the domain of symbols includes simple 
structural variations, such as might result from 
occl~c_ling noise or sloppy printing technique. 
Add1t10nally, the approach has potential problems 
of segmentation and difficulties with the 
moments themselves. 

This paper describes a learning, recognition 
model, ZBT, (and its program instantiation) that 
extends the capabilities of the moment analysis 
technique by combining two documented 
leam~ng paradigms: conceptual clustering and 
leammg from examples. The basis of the model is 
the accumulating neurophysiological and 
psychological evidence that the visual system is 
analytic, hierarchical, and composed of both 
parallel and serial processing elements (Crick, 
1984) .. ZBT simulat~s. the biological approach by 
recur~1vely. combmmg the two learning 
paradigms m a two step process that zooms its 
attention from the most abstract form of an object 
to the most detailed aspects. 

In the first step, ZBT incorporates the successful 
clustering aspects of moment analysis. Parallel, 
preattentive processes decompose an area of the 
image . into meaningless, component blobs 
accordmg to simple, fixed primitives. Other 
parallel mechanisms then compute features of the 
blobs that are invariant to the transformations of 
translation, rotation, and scale, and use these 
f~atures to index into every level of the memory 
hierarchy looking for similar learned experiences. 

In the second step, ZBT utilizes its attentional 
abilities to overcome the limitations of moment 
analysis and resolve a potential disagreement 
between the system and the environment. The 
disagreement revolves around the features that 
constitute the appropriate measures of similarity 
at th~ label~d le:'el of an object. ZBT, by 
adoptmg the mvanants of moment analysis, has 
chosen one set of features while the environment 
is (possibly) concerned with another set. The 



second step in ZBT's process extends the 
capability of moment analysis by serially 
focusing attention on other features attempting to 
isolate the differences. 

If the attentional step does not resolve the 
disagreement, ZBT recursively applies the two 
step process, again, searching for greater detail 
that might reveal a difference and, thus, define 
some aspect of a new concept. This recursive 
search creates a multi-level-indexed, is-a/part-of 
hierarchy that avoids the problems of exponential 
growth frequently associated with the extension 
of learning systems. 

2.0 The Problem Domain 

Briefly, the problem considered by this research 
is the learned recognition that confronts vision 
systems which must cope with imperfect 
perceptual environments, and, thus, potentially 
infinite domains. The problem has been simulated 
with the corresponding problem of recognizing 
binary, raster scanned images under ce1tain 
transformations. 

The following points summarize the problem 
domain. (A more detailed explanation can be 
found in McNulty, 1988). 

(a) Input is a binary raster image of a target 
symbol selected from the English/Latin 
alphabet I. 

(b) The input can be accompanied by a label 
indicating the category, or class, of the 
input symbol that the teacher, or 
environment, prefers the system to associate 
with the target symbol. For example, the 
characters of Figure 1 would typically be 
labeled as members of Class A. (Category 
information, if provided by the teacher, is 
assumed to be consistent.) 

(c) In the absence of an assigned label, the 
system's output should indicate the 
proposed class of the character encountered. 
However, with or without category 
inforn1ation, the system should "learn" the 
symbol in such a manner that the learned 
information can be used later. 

(d) The system should not learn verbatim 
inforn1ation at every exposure. That is, it 
should learn incrementally (see Schlimmer 
& Fisher, 1986 for explanation and a 
justification concerning machine and 
biological systems). 

(e) The system must be easily extensible. This 
implies that linear extensions should not 
increase learning/recognition times 
exponentially. 

I The domain is actually more inclusive but the initial focus, and that 
reported here, is on character recognition; thus, the model was able 
Lo build on the previous work of moment analysis. 

207 

(f) The following vanat10ns in the target 
symbol should not impede recognition: 

1) Translation: A symbol's location in the 
image field can vary from one 
experience to another. 

2) Scaling: A symbol's size can also vary 
from experience to experience. 

3) Rotation: 20 rotations of less than 45 
degrees should be tolerated. 

4) Linear structural alterations: Variations 
in structural characteristics as might 
result from omissions (due to noise or 
sloppy printing) are allowed. Figure 1 
illustrates three example symbols 
selected as typical of one type of 
transformation. Objectl is a well
formed capital letter "A" composed of 
three straight-line strokes, labeled 
(only for purposes of the discussion): 
left side, right side, and brace. Object2 
is a transformation of Objectl in 
which the connection between the 
right end of the brace and the right 
side has been broken. Object3 is 
identical to Object2 except the break 
between brace and side is wider. 

AAA 
OBJECT! OBJECT2 OBJECT:J 

Figure 1 

3.0 Classification by Features - One Approach 
to the Problem 

A somewhat successful image processing 
approach to character recognition is based on 
grouping the characters according to some set of 
features (Duda & Hart, 1973). Labeled "statistical 
recognition" by some authors, the term feature 
analysis is used here to include the following 
steps: 

1) Decomposition, or segmentation, of the 
image into entities (see survey by 
Rosenfield, 1978). 

2) Description of the entities in terms of 
features or attributes. Descriptors and the 
corresponding attributes they describe are 
usually selected for their invariant qualities 
over certain classes of image manipulation 
(Hu, 1962). 

3) Classification or grouping of the objects by 
features (Duda & Hart, 1973). 

This approach has the following qualities: 

• Translational effects are negated by mapping 
the image (raster) data onto a symbolic data 
base. 



• Scaling and rotation ~a!1 a\so be ne~ated by 
applying certain cla~s1f1c_at1on techmqu_es on 
the . proper mvanant descnptors 
(discriminate analysis is an example of such 
a technique). 

• Training (learning) and, thus, extensibility is 
possible. 

One type of feature analysis e_mploys moments as 
the invariant feature descnptors (Hu, 1962). 
Space restrictions prohibit a description of the~e 
computations (see Alt, 1962) but their 
si anificance as descriptors in the raster domain 
c;n be summarized by the following points: 

• The moment sequence, Mpq, of a raster 
array, f(x,y), uniquely defines f(x,y) and 
conversely, f(x,y) is uniquely determined by 
M q (The Uniqueness Theorem) (Hu, 1962). 

• The central (normalized) moments are 
invariant to various manipulations including: 
scale, translation, and rotation (Hu, 1962). 

The technique of momen~ ana(ysis works in . this 
manner. First, the system 1s tramed, one at a time, 
on the domain of objects and their respective 
classes. During training, the system groups the 
symbols according to _the moments c_o1:1puted on 
the raster representat10ns. After trammg, when 
exposed to a symbol in the. absence of catego_ry 
information, the system will look through its 
memory for a previous, similar experience ?Y 
comparing the stored moments of each class with 
the newly calcu lated moments. A match indicates 
that the new experience is probably of the 
matched class. 

Alt (1962) demonstrated the usefulness of 
moments as descriptors by showing that it is 
possible to distinguish th~ standard 35 text~al 
characters (26 alphabetic and 9 numenc) 
independent of translation, scale, and_ rotat!on. 
There have been other successes, mcludmg: 
Casey (1970, handprinted characters), and Hall, 
Crawford, & Robe1ts (1975, interpreting medical 
x-rays), but there are limitations to the technique 
(Lambert, 1969, multiple fonts, Hall, et al., 1976, 
matching optical scenes wi_t~ ra_dar im_ag~s, _and 
Dudani, 1977, aircraft ident1f1cat1on). L1m1tat10ns 
of moment analysis are generally of three sorts: 
(a) problems of matching features tha~ are not 
invariant to certain structural alterations, (b) 
difficulties introduced by the segmentation phase, 
and (c) problems caused directly by the nature of 
the moments themselves. 
The first two classes of problems are to be 
expected since The Uniqueness T~eorem 
prescribes that different str_uctural ~orms will have 
different moments associated with them. The 
problem is illus_t.rated_b_y_Object2 who_&e__mo~ts_ 
will not typically be the same as those of 9bJectl. 
Therefore, if the system has been tramed on 

208 

Objectl (i.e., exposed to the object and told that 
the respective class is A), then it is L111likely that 
an unlabeled occurrence of Object2 will be 
associated with the class of Objectl. Further, if 
the system is then exp~sed to an ~nlabeled 
Object3 (i.e., after learmng that ObJe_ct~ a1:d 
Object2 are both members ?f Class _A), 1t 1s stil l 
unlikely that the system will assoc1~te the new 
object with either Obje~tl or 0bJect2. Thu~, 
trainina a moment analysis system to allow this 
type of structural alteration requires training the 
system on every minor,. yet accepta~le, change. 
This can be, at best, time consummg and, at 
worst, an exponential problem. 

There are also potential problems of 
segmentation. For example, if charact~rs ~re not 
segmented consistently from one v1ew111g to 
another their moments will not match. The 
problem is comparable to that previously 
described. If the computed moments are 
inconsistent then the system will not consistently 
recognize even unaltered symbols. 

Another potential problem of segmentation is 
typified by the letters "i" and "j". Normally, 
decomposition techniques do not segment these 
as whole letters (i.e., dot and stroke associated). 
The problem for the system in this cas~ is that_ if 
segmentation does not present the descnptor with 
the entire symbol, the two components of the 
symbol must somehow be reassociated later. TJ1is 
puts a burden on the later stages of processmg 
that was not intended to be part of feature 
analysis. 

The nature of moments themselves create two 
additional difficulties. An analysis of Table 1 
(reproduced from Wong tj,l Hall, 1978) reveals 
one type. The table contams the (loganth_ms of) 
seven typical moments computed on three 1ma_ges 
- the original image and two possible 
transformations, one scaled and one rotated. 
Comparing the moments, one sees that they do 
not match from one image to another. The 
variation is caused by the digital encoding of 
data. That is, a scaled or rotated image c,m vary 
from the original image in the number of and 
locations of pixels. The result is that, contrary to 
their touted characteristic, moments do not 
necessarily match precisely from_ transformat!on 
to transformation, and, thus, a simple matchmg 
procedure is not possible. Mo!11ent analysis 
systems attempt to overcome this problem by 
employing different matching techniques . that 
allow a little slack in the values (e.g., correlation), 
but this creates the opposite problem. 



Moment Original Scaled Rotated 
1 6.24993 6.22637 6.25346 
2 17.18015 16.95439 17.27091 
3 22.65516 23.53142 22.83652 
4 22.91954 24.23687 23.13025 
5 45.74918 48.34990 46.13627 
6 31.83071 32.91619 32.06803 
7 45.58951 48.34356 46.01707 

Table 1 

If slack is tolerated in the moments then it is 
difficult to distinguish the slack as~o~iated ~ith a 
variation between moments of s11111 lar obJects, 
from the natural but close variation between two 
dissimilar objects. Additionally, ~ls . 1:nore 
variations in characters are learned, the 111d1v1dual 
features of dissimilar charact~rs can overlap (e.g., 
distinguishing "6" from "b" and "I" from "1" 
across multiple fonts). Therefore, the more the 
system learns, the more difficult recognition can 
become. 
In summary, moment analysis is a useful 
recognition tool in limited domains, but the 
technique depends completely on th~ moments to 
distincruish the simi larities and differences of b 

every object and its variation. Confusion between 
objects can result despite what appear to the 
human to be very simple structural differences 
between objects. 

4.0 ZBT: Learning Levels of Features and 
Structural Detail by Directed Attention 

ZBT extends the demonstrated capabilities of 
moment analysis and overcomes its weaknes~es 
by augmenting it with a second step. In th~ first 
part of the process, ZB~ clusters ex.perienc~s 
invariant to scale, translation, and rotation. This 
much of ZBT's operation is similar to other 
moment analysis systems except that a simple 
match process is utilized instead of a more 
complex correlation procedure2. 

If a match is unique, then the category of the 
match is reported and recognition is complete. If, 
on the other hand, the match is not unique, or if 
there are labeling mismatches, then in the second 
part of the process, ZBT att~mpts to r~solve the 
problems caused by clustering experiences by 
moments. It does this by focusing on structural 
detail in the current image that might distinguish 
the two structures and resolve the conflict. This 
part of the process reassoci_ates the 
decompositions and refines the categories. 

2 Typica ll y this range (slack va lue) is plus or minus 0.2% of the 
moment value. This range has been determined empirically for this 
scanning domain. A s the resolu tion of Ll1e scanner or the size of the 
symbols to be recognized changes, the range must be adjusted 
proportional I y. 

209 

ZBT can be summarized by the following 
functional flow: 

a) In parallel, decompose the current attentive 
area of the image into component blobs. 

b) In parallel, comp ute invariants of the blobs. 

c) In parallel, reference memory with the 
invariants. 

d) If the reminds are unique and there are no 
labeling conflicts, the recognition is 
complete 

else, serially gather and compare 
spatial relations of component 
blobs with those of the reminds . 

e) If they match and there is no label conflict, 
the recognition is complete 

else, recurse. 

The following discussion elaborates the previous 
outline description of ZBT with a simplified 
example of its operation. The example is 
composed of a sequence of four images: Objectl, 
Object2, Objectl (again)3, and Object3. The first 
three images are all labeled as members of Class 
A and the latter is unlabeled. Space restrictions 
prohibit a complete description, therefore, ZBT's 
operation on the first two images is summarized 
in outline form. (See McNulty (1988) for greater 
detail, justifications, and explanation of the 
computations.) 

4.1 Learning An Aspect of the "A" Class 

Encountering the first image (i.e. the image 
containing Object!), ZBT: 

1) Decomposes (consistent with 
neurophysiological data and Julesz's, 1983, 
segregation based on local density) the 
image into a single, top-level blob that 
defines the "A" form. 

2) Computes the invariants (moments) of the 
component blob. 

3) Uses the invariants to index into memory 
for comparable stored experiences. 

4) Finds no similar experiences. (Note that if 
an experience with simi lar moments had 
been stored, ZBT would have been 
reminded of it at this time.) 

5) Stores the new experience in memory. 

Encountering the second image (an image of 
Object2 labeled Class A), ZBT: 

6) Duplicates steps 1-5 . Notice that it is not 
reminded of the previous experience 
because the moments vary between the two 
objects. As discussed previously, one of the 
shortcomings of moment analysis is that the 
invariant measures of similarity at the 
highest level of the two objects, Objectl 
and Object2, do not conform to the 

3 The redundancy is required because ZBT is an incremental 
learning system. 



. ·. ·I 

grouping that a system predictive of its 
environment should possess. That is, the 
break in the structure of Object2 - as 
compared to Objectl - causes ZBT to 
cluster the two experiences separately, but 
the environment labels them identically. 
Thus, when ZBT indexes memory with the 
moments of the first level of the new image, 
it finds no learned experiences comparable 
to Object2. 

7) Discovers that the label of the new 
experience is the same as a previous 
experience. Since Object2 has the same 
label as the unreminded Objectl, ZBT has 
encountered a mismatch situation. (The 
attributes indicate that two distinct 
perceptions have been encountered, 
however, the experiences have been 
assigned the same category.) 

8) Decomposes the single blob of the current 
experience into 3 component blobs (Figure 
2) looking for something to differentiate it 
from the stored experience. 

9) Indexes memory with the 3 component 
blobs. 

10) Finds no similar experiences in memory. 
(This is because during the initial Objectl 
experience, ZBT had no reason to 
decompose the top-level.) 

11) Serially attends to each component and its 
spatial relationship with each of its siblings. 
The following information concerning the 
relationship the brace has with the right side 
is recorded: 

LOCUS: 100 (the point on the blob 
closest to the sibling; this 
value is normalized as a 
percentage of the length of the 
major axis from the point of 
origin; in this case, the value 
100 means that it is the right 
end of the brace4) 

DISTANCE: 10 (the distance 
between LOCUS and the 
closest point on the sibling, 
again, normalized). 

12) Stores the three new experiences in 
memory. It does this by placing them in 
memory as separate experiences according 
to their respective invariants, connecting 
them via two-way pointers to the higher 
level blob of which they are components, 
and interconnecting them with two-way 
pointers to signify the sibling relationships. 
Figure 3 summarizes the resultant memory. 

4 Internally, ZBT does not use terms such as "brace" or "right side." 
These are used in the tex t for clarity. ZBT's stored experiences go 
unlabeled until a label is assigned by the environment. 

2 10 

A 
/ 

I .:. \ 
Figure 2 

A 

Figure 3: 

At this point, ZBT has no comparable structural 
information for Objectl. It can go no further, 
therefore, it terminates with knowledge of two 
comparably labeled experiences. Another Objectl 
experience will allow it to collect more 
information which will isolate the differences 
between the two experiences. 

4.1.1 Identifying A Difference 

Encountering the third image, a second occurence 
of Objectl, ZBT is reminded of the top-level of 
the first Objectl experience, but it notices the 
labeling conflict once again. It zooms on the 
current image in an attempt to distinguish the two 
experiences. It decomposes the top-level, 
references memory with the three constituent 
blobs of Object!, and is reminded of the three 
constituents of Object2. It then proceeds to 
complete the tentative match by serially attending 
to the spatial relationships of the current blobs . It 
discovers the following relationship between the 
brace and the right leg: 

LOCUS: 100 
DISTANCE: 0 

Comparing the reminded blobs with the current 
blobs, ZBT finds a difference in the distance 
value. ZBT has now detected the break in the "A" 
which distinguishes Objectl from Object2. 

If ZBT's knowledge is to be predictive of its 
environment, it must associate these two 
experiences in memory. It does this by coalescing 



the two memory structures, recording the 
differences in stru cture as cumulative statistical 
values. It records the maximum experienced 
DISTANCE value and its standard deviation (SD) 
from the previously stored DISTANCE value (see 
Figure 4). 

I\ 
y\ .y 
.~,, 
800 

'\_____,)' ~OCUS 100 l 
L ISTANCE: :o {SD=~ 

Figure 4 

4.2 Recognizing Unlabeled Objects 

ZBT begins processing the the fourth image, an 
unlabeled image of Object3, in much the same 
way as it did the third image. Because of the 
disparity between the moments of Objectl, 
Object2, and Object3, it fai ls to associate the top
level blob of Object3 with the previous 
experiences. It zooms as it did before, but this 
time the reason is not to resolve a conflict, but 
instead to attempt to recognize an unlabeled 
image. It decomposes the top-level blob as it did 
before and is reminded of the three components 
of the second level of the coalesced experiences 
of Objectl and Object2. It then serially 
determines the spatial relationships between the 
current sibling blobs and compares them with 
those of the reminded experiences . 

The comparison indicates that the DISTANCE 
value defining the critical relationship in Object3 
exceeds the DISTANCE value of the matching 
remind. ZBT handles this in one of two ways. If 
the new DISTANCE value is less than a standard 
deviation from the stored DISTANCE value (i.e. 
less than or equal to 15), it will accept Object3 as 
a member of Class A. In this case, memory will 
be updated to reflect a new maximum value and 
standard deviation. If, on the other hand, the 
break exceeds the standard deviation (i.e. the 
break is larger than 15), Object3 will not be 
recognized as a member of Class AS and a new 
memory structure will be recorded. 

2 11 

5.0 Summary 

An incremental learning model, ZBT, based on 
psychological and neurophysiological data was 
described that extends the capability of moment 
analysis by recursively combining the learning 
paradigms of conceptual clustering with learning 
from example to address the problem of rea l
world, character recognition. 

Beginning with the least level of detail, primitive 
parallel mechanisms, invariant to translation, 
scale, and rotation, cluster meaningless blobs of 
information. 111e blobs are clustered, but remain 
unclassified until the environment or teacher 
provides a label (meaning). As a conceptual 
clustering engine, ZBT's invariant measures of 
similarity at any one level, may conflict with 
those of the teacher and, thus, negate the 
grouping. That is, (assuming a consistent 
environment), the problem is really a lack of 
disagreement between those attributes the 
environment uses to classify an object and the 
attributes ZBT utilizes to cluster. 

Instead of redoing its clu sters, ZBT refines the 
approximately correct grouping by decomposing 
the current level and serially searching for 
variable structural information among the 
components. If this does not resolve the conflict, 
ZBT recursively zooms on component blobs until 
memory is matched or it exhausts the levels of 
image detail. 

ZBT is based on an apparent parallel/serial 
dichotomy in the visual system. ZBT's parallel 
processes, consistent with psychological and 
neurophysiological results, decompose the image 
along dimensions of contrast and line orientation. 
Serial focusing of attention isolates structural 
relationships between the components. The 
combination builds a hierarchy representing a 
distinction between two types of visual features . 
In the vertical direction the hierarchy varies in 
detail by clustering features which are invariant 
to the transformations of: translation, scale, and 
rotation. On the other hand, the horizontal 
direction contains information about features 
which are not invariant to those transformations. 

5 ZBT actually reports that there was a c lose match to the A category, 
but thi s aspect of ZBT's operation has no t received a great deal of 
auen lion. Work has instead focused on experimentall y verifiable 
aspects of the model. The concept formation literature has not, as 
yet, addressed the spec ific concept formation task confron ting ZBT. 
Previous experiments have largely concentrated on the perception 
of we ll-form ulated, natural concepts such as cups, bowls, birds, and 
animals (e.g., Labov, 1973). The sta ti stical approach was 
incorporated into ZBT because of evidence presented by a number 
of resea rchers that subjec ts prefer an al l-or-none concept formation 
strategy (e .g., Trabasso & Bower, 1968) and that the natural 
categories formed by people do not seem to ha ve fixed boundaries 
(McClnskey & Gl ucksberg, 1978). 



Acknowledgments 

I wish to thank Laura Yoklavich for her diligence 
and patience in proofreading this paper and 
others. 

References 

Alt, F. (1962). Dii.:;,ital P,1ttem Recognition by 
Moments. In u.L. Fischer, et al. (Eels.), 
Ootical Character Recognition. Spartan, 
Washington, D.C. 

Crick, F. (1984 ). Function of the thalamic 
reticular complex: 111e searchlight 
hypothesis. Science, R, 4586-4590. 

Duda, R.O. & Hart, P.E. (1973). Pattern 
Classification and Scene Analysis . Wiley
Interscience, New York. 

Hall, E.L., Wong, R.Y:,, Chen, C.C., Sadjadi, F., 
and Frei, W. (1970), Invariant Features for 
Quantitative Scene Analysis, Final Report. 
Image Processing Institute, Depaitment of 
Electrical Engmeering, University of 
Southern Ca lifornia, July. 

Hu, M. K. (1962). Visual ]Jattem recognition by 
moment invariants. lRE Trans. Information 
Theory, IT-8, February. 

Julesz, B. (1983). Textons, the fundamental 
elements in preattentive vision and 
perception of textures. Bell Syst Tech J, 62, 
1619-1645. 

Labov, W. (1973) . 111e boundaries of words and 
their meanings. In C.N. Bailey and R.W. 
Shuy (Eds.), New W~s of Ana~zing 
Vanations in English.eorgetownress, 
Washington, D.C. 

Lambert, P. F. (1969). Designing_ Pattern 
Categorizers with Extremal Paradigm 
Information. In S. Watanabe (Ed.), 
Methodolo~ies of Pattern Recogui_tj_Qn. 
Academic ress, New York. 

McCloskey, M.E. & Glucksberg, S. Natural 
categoriess: Well-defined or fuzzy sets?. 
Memog and Co§nition, _6_, 462-472. 

McNulty ,. M. (19 8). Recognition of directed 
attention to recursively 12artitioned images. 
UCI Information and Computer Science 
Technical Report #88-08. 

Michalski, R. (1980). Knowledge acquisition 
through conceptual clustering: a theoretical 
framework and algorithm for partitioning 
data into conjunctive concepts. Internatiorntl 
Journal of Policx Analysis and Information 
Systems, 1_, 3, 219-243. 

Rosenfie ld, A. (1978) . Survey: Picture 
Processing 1977. Com12 uter Gra12hics and 
Image Processin°, 1 211-242. 

Schlimmer, J.C. & ~isi1er, D. (1986). A Case 
Study of Incremental Concept Induction. 
Proceedinfrs Fifth National Conference on 
Artificial ntelligence, pg. 496-501. 

Trabasso, T.R. & Bower, G.H. (1968). Attention 
in Leaming. Wiley, New York. 

212 



Speaker Normalization and Automatic Speech 
Recognition Using Spectral Lines and Neural Networks 

Yoshua Bengio and Renato De Mori 
McGill University, School of Computer Sc ience 

805 Sherbrooke Str. W., Montreal, Quebec, Canada, H3A-2K6 

Abstract 

Artificial neural networks offer a new way to 
undertake automatic speech recognition . The 
Bo ltzmann machine algorithm and the error back 
propagation algorithm have been used to perform 
speaker normalization . Spectral segments are 
represented by spectral lines. Speaker
independent recognition of place of articulation 
for vowels is performed on lines. Resu lts 
depend on the coding. The best results were 
obtained with coarse, multi- level coding, 
re lative frequency and amplitude representation 
of spectral lin es with a non-linear frequency 
scale. Samples were extracted from continuous 
speech for 38 speakers. The error rate obtained 
(4.2% error on test set of 72 samples with the 
Boltzmann machine, 6.9% error with error back
propagation) is better than results of previous 
exper iments with the same data but using 
Continuous Hidden Markov Models (7.3% error on 
test set, 3% error on training set). 

Key Words : Automatic Speech Recognition, 
Neural Networks, Bo ltzmann Machine Algorithm, 
Error Back Propagation Algorithm, Spectral 
Lines , Speaker-Independent Speech Recognition. 

1. Introduction 

Speaker Normalization (SN) in 
Automatic Speech Recogn ition (ASR) is known to 
be a difficult task. 

2 13 

It is known from speech analysis and 
perception that sonorant portions of speech 
spectrograms exhibit similar images when 
different speakers pronounce the same sound or 
the same sequence of sounds. Variations among 
speakers cou ld be character ized by constra ined 
variations of the frequency and energy of 
spectra l lines as well as by insertion and 
de let ion of li nes. Such variations have been 
character ized by Hidden Markov Models (HMM) 
[14] . 

This paper investigates the use of 
multi -layer neural network models ([5][6]) for 
performing speaker normalization . Speaker
independent recognition of place of articu lation 
is performed with the Bo ltzmann machine 
algorithm and the error back-propagation 
algorithm. The results are compared with the 
ones obtained with HMMs. 

It will be shown that results depend 
on how spectral lines information is coded and 
that results better than the ones obtained with 
HMM (alone) can be obtained with a coding 
scheme that uses relative frequencies and 
amp litu des in a non -lin ear frequency sca le 
derived from know ledge about ear sensitivity, 
as well as coarse and mu lti- leve l energy coding. 

2. The Boltzmann Machine Algorithm 

Bo ltzmann Machine Algorithms (BMA) 
(see [5] and [7] for more details and proofs) 
enab le to learn the weights of connections 
involving hidden units , so as to optim ize an 
information theoretic measure of the 
performance of the network. An example of 
structure for the network of the BMA is shown 



in figure 1 ( this structure was used for our 
experiments with the BMA). 

To obtain an output the BMA parallel 
network performs relaxation searches that 
s imult aneous ly sat isfy several weak 
constra ints (the fixed inputs). The computation 
is performed by iteratively decreasing the value 
of a cost function which measures how well the 
network satisfies the constra ints. That cost 
function is called energy, was introduced by 
Hopfield in 1982 [8] and is defined as follows : 

E = - Li<j Wij Yi Yj + L i Bi Yi ( 1 ) 

where Yi is the output of unit i, Wij is the 
weight of the connection from unit j to unit i 
and Bi is the threshold or bias for unit i. 

Output Layer 

Input Layer 

Figure 1 : Input, Output and Hidden Layers for the 
Boltzmann Machine. 

Note that the connections of the network are 
symmetrica l : Wij = Wji· The units can be 
divided into visible units (input/output units, 
connected to the environment) and hidden units. 
If the task of the network is to map an input 
domain to an output domain , the visible units 
can be divided into input and output units. If the 
task of the network is simply to complete a 
pattern, each visible unit can be input or output. 

The BM is a stochastic network of 
units. They have a boo lean (1 or 0) output 
chosen depending on the cont inuous weighted 
sum of their inputs. Each unit chooses the value 
1 with a probability 

Pk = 1 / (1 + e(-~Ek / T)) (2) 

where the local energy for each unit k is 

(3) 

214 

(4) 

and T is parameter called temperature which is 
slowly decreased in the relaxation process. In 
an 1/0 cyc le, the inputs (and possibly the 
outputs) are clamped to a certain value . The 
relaxation starts at a high temperature, units 
update their output, and the temperature is 
decreased according to a cooling schedule. Th is 
cooling relaxation is called simu lated annealing 
and was introduced as a search procedure by 
Kirkpatrick & al. in 1983 [9] . 

A number of coo ling schedules were 
proposed in the literature. The most frequent ly 
used is a fixed schedu le [5][7]. A rate of coo ling 
proven to make the system reach the best 
so lution is logarithmic cooling ( i.e. T(t) = c / 
log (1+t) in Geman and Geman, 1984 [10]) . 
Instead we chose a linearly increasing inverse 
temperature : 

T(t) = start ing_temperature / (t+1) (5) 

With such a function, we obtained results 
identical to those obtained with the logarithmic 
coo ling, with a gain in speed greater than 10. 

To decide of a starting temperature, 
we computed the average energy barrier ~Ek 
that each unit has to jump to make an upward 
move . We chose as starting temperature th is 
average energy divided by 3. Th is means that at 
the beginning of the coo ling, the average unit 
will have 42% probabi li ty to make an upward 
move in the energy (58% to make a downward 
move). By choosing a starting temperature 
which depends on the energy barriers, we ensure 
that the network will start at a high enough 
temperature even if very high energy barriers 
are created during the learning. 

To stop the coo ling (reaching thermal 
equ ilibrium) , we waited for the network to 
stab ili ze. It is at this temperature that 
statistics about the co-occurrence of ON states 
are gathered, to be used in the learning phase 
when weights are updated . Statistics are 
gathered for a length of time inversely 
proportional to the average error of the system : 

len_stat = 4 / sqrt ( average_error +0.1 (6) 

Th is is because the learning is driven by the 
amount of error (discrepancy between actual 
output and desired output), and thus when the 



error is smaller, more precise statistics are 
needed. 

As suggested in the literature (Ack ley, Hinton & 
Sejnowski 1985)[7], we modified the weights by 
a constant times the SIGN of the difference 

between the two probabilities Pit and Pif (the 
probabilities, averaged over a ll environmenta l 
inputs and measured at thermal equi librium, 
that the units i and j are ON simultaneously, 
when the output units are fixed and not fixed, 
respectively} 

fi W ij = learning_rate x SIGN (Pit - Pif) (7 ) 

We also varied the learn ing rate as function of 
the average error as follows : 

learning_rate = 10 x average_error + ( 8 ) 

3. The Error Back Propagation 
Algorithm 

Figure 2 shows a model of the multi 
layer perceptron to which the Error Back 
Propagation Algorithm (EBPA) was applied . For 
this model, the units are determin ist ic and 
compute a cont inuous output value (between 0 
and 1 ). 

Output Layer 

Hidden Layer 2 

Hidden Layer 1 

Input Layer 

Figure 2 : Feedforward Layers of the Error Back 
Propagation Algorithm. 

The basic version of this model is 
made of a certain number of feedforward layers 
of units (no recurrent connections : each unit is 
connected on ly to units in the next layer ) . We 
implemented the algorithm as described in [6], 
with a momentum term in the learn ing rule : 

fiWj i (t+1) = m fiWji(t) + learning_rate Dj Yj (9) 

2 15 

with Wji the weight from un it i to unit j on a 
layer above unit i, Yj is the output value of unit 
j, and Dj is the derivative of the error signal as 
defined in [6], wh ich is backpropagated from the 
output units back toward the in put units . The 
constant m determ in es the influence of the 
past movements of Wji on the current change. 
We set it in our experiments to 0.95. Note that 
th is procedure is equ ivalent to applying a low 
pass frequency fi lter to the landscape of the 
weight space, thus filtering out high curvatures 
which might have caused very slow convergence 
(with a small learning rate) or osci llations 
(with a large learning rate). 

Note that the sigmo id funct ion g iving 
the output value Yj in terms of the we ighted 
sum of inputs Xj, f(Xj) = 1 /(1 +exp( -Xj)) does not 
permit an output value Yj=f(Xj) of O or 1 un less 
X j is infinite, i .e. some weights are infinite . 
Thus desired output values were assigned a 
value close but not equal to O and 1, i.e. 0.9 and 
0 .1. 

S in ce the network is updated 
determin istically, and we don't want it to learn 
the exact in put/output pairs "by heart" (we want 
it to be ab le to generalize), we introduced some 
noise at the input units. We added a uniform 
random variable in U[-0.05,0.05] to each in put 
value . Compar in g results with or without the 
input noise, we observed slight ly better 
performance when the inputs are noisy (actually 
best results are the same, but without noise , 
the error on the test set gets worse w ith more 
learn in g). 

4. Application to the Recognition of 
Place of Articulation 

The problem we chose to give to the 
neural nets was the recognition of the place of 
articu lat ion of sonorant sounds based on 
spectral lines . Sounds are classified into three 
categories accord in g to the ir p lace of 
articu lat ion in the mouth : back position, centra l 
position or front posit ion. The data consisted of 
144 speech samples, 72 used for the train ing of 
the networks, 72 used only for testing. These 
samples were extracted from continuous speech, 
for 38 speakers (24 males and 14 females) 
pronouncing connectedly spoken letters and 
digits . A vowel (sonorant) segment in each 
samp le was extracted and spectral lin es were 



0.5 

0 

0.1 

0.2 

0.3 

w 
w 

T w 
i w 
m w 
e V 

V 
(sec.) u 

s 
p 

1. 0 1. 5 2.0 2.5 3.0 3.5 4.0 

sss 000 uuu 
u 2 3 00 

y 33 4 25 
z 6 5 4 
0 8 yyyyyy 8 0 
0 9 11 8 5 
1 9 2 8 4 
1 9 2 7 4 
2 9 3 8 4 

2 9 3 7 5 
2 9 3 8 5 
3 8 2 6 3 
3 6 2 7 4 
3 5 2 6 3 
3 5 2 6 3 
3 4 2 6 2 
3 3 5 3 
3 2 4 1 

3 1 4 2 
3 0 3 z 
2 0 3 0 
3 0 2 1 
3 z 1 0 
2 z w z 0 
2 y w 0 
2 X w w 

2 w T w 
2 u T w 
1 T s X 
1 R V w 
0 Q Q V 
z p s V 
y 0 T s 
X M T p 
X J R N 
V H Q L 
V H 0 p 

0 0 
RRR 

R RRRRR 

Figure 3 : Spectral lines extracted from a pronounciation of the letter 'a'. Time is represented on the 
vertical axis, frequency on the horizontal axis and energy by letters and digits (9>8> .. >0>Z> Y> .. >B>A). 

frequency (kHz) 

0 
3 

6 
554 

4 4 
3 3 
5 5 
5 5 

5 
5 6 

66 6 
5 4 

6 5 
7 4 

6 4 
5 
4 3 

4 33 
3 2 
2 2 
4 2 ::£ 

2 2 N 

2 
2 

1 
z 

y 
w 

X 
w 

T 
T 

0 T 
0 

N 
N 
N 
0 

L 
J 

PPP 
HHHH 



computed in that segment. Details of 
segmentation can be found in [11 ). 

Static representation of the speech 
data is based on spectral lines, already used by 
us for speech recognition tasks [14). The 
original time signal is sampled at 20 kHz over 
·i 2 bits and its power spectrum (FFT every 1 O 
ms) and zero crossings are computed. This 
information is used to identify the sonorant 
portions of the signal that exhibit resonances. 
This segmentation is based on rough spectral 
features that elimin ates segments containing 
frication noise, silences and buzz-bars. The 
remaining spectrogram (time-frequency-energy 
pattern) is sent to the spectral lines extraction 
program . 

4.1 Spectral Lines Extraction 

To extract the spectra l lin es, the 
spectrogram is treated as an image. This image 
is processed by a thinning and a ske letonization 
algorithms, and then by a line tracing algorithm: 
these algorithms are described in (Palakal & De 
Mori, 1985)[12). 

The output of the spectral lines 
extract ion program is the description of a 
certain number (not fixed ahead of time) of 
spectra l lines, each with its frequency and 
energy, for each time frame. We used only the 
average energy and frequency of the spectral 
lines over the sonorant segment. The first line 
is called the base (or anchor) lin e and is 
selected as the line of highest energy in the low 
frequencies . The others are usually described 
RELATIVE to the base line : the difference 
between their frequency and energy and those of 
the anchor line are provided to the neural nets . 
The base line frequency and energy are abso lute. 

Figure 3 shows the spectral lin es 
extracted from the spectrogram of the letter 'a'. 
Time is represented along the vertical axis, 
each step correspond ing to 10 msec. Frequency 
is represented alon g the horizontal ax is. 
Letters and digits on the figure represent the 
ampl itude of a given spectral component. For 
example, letter A represents only half the 
energy of letter 8, letter Z represents half the 
energy of digit 0. 

217 

4.2 Cod ing 

We describe here how the spectra l 
lines and their energy/frequency description 
were coded. This cod ing has an impact on the 
efficiency (speed of learn ing and error) of the 
training process. The input nodes are first 
assigned to frequency intervals. One or several 
input nodes will represent a range of 
frequencies. The distribution of frequencies 
was inspired from an approximation of an ear 
model. Under 1 kHz (low frequencies), the 
characteristic frequencies grow lin ear ly as 
follows : 

frequency _ index 
INT[(frequency - minimum_frequency) x 

low_freq_i ndex_range/low_frequency _ range J 
(1 0) 

INT[x) represents the integer part of 
the real number x. Above 1 kHz, frequencies 
grow log ar ithmically (so that the higher the 
frequency represented by some input units, the 
larger the bandwidth they cover) as follows : 

frequency_ index = 
INT[c1 x log(frequency - 1000) - c2] (11) 

where c1 and c2 are chosen to make the 
minimum and maximum high frequency fall on 
the boundaries of the high frequency indices. 
Thus for high frequencies, the frequency index 
(on the grid) is a logarithmic function of the 
frequency. 

To represent energy we decided to use 
several nodes within a frequency range, each 
representing a certa in energy leve l. Thus the 
input nodes can be seen as po ints on a 2-
dimensional grid of frequency and energy (c .f . 
figure 4). The distribution of energies was 
chosen empirically so as to make the number of 
samp les fal ling in each range about equal. A 
typical number of levels chosen was 10. Better 
resu lts are obtained with this multi - leve l 
coding of the energy than if we use only one 
node per frequency range, cod ing the energy 
continuously. In that case the system converges 
slower and makes a larger error, as shown in 
table r . 

In addition to excit ing one node for 
each energy/frequency input, we excite 
neighbouring nodes (with intensity decreas ing 
with distance). Thus for each input spectra l 



. . , 

line , there were 12 other nodes on the grid 
which would get excited. This strategy called 
coarse coding (or neighbourhood code, [15]) gives 
better resu lts (c .f . table r ) than the simple 
excitation of one energy/frequency node per 
spectral li ne. 

Note that the energy level coded into 
the network is always re lative to the energy of 
the base line, and we don't provide the network 
with the abso lute energy of the base line. In 
fact a separate set of nodes (coding only for low 
frequencies, and no energy levels) is provided to 
represent the base line. Typically there are 15 
nodes to represent {low frequencies) the base 
line, 15 {frequencies) x 10 (energy levels) = 150 
nodes to represent low frequencies and 15 
(frequencies) x 10 (energy levels) = 150 nodes 
to represent high frequencies . Th is makes a 
total of 315 input nodes as shown on figure 4. 

1' 
en erg Y. 1+1++++++w-+++.i.1 

lllllf.Mf.JIIIII 
-------frequency~ 

base line low 
freauenci es 
(linear) 

high 
frequencies 
(l ogari thmi c) 

Figure 4. Coarse coding (neighbours get 
excited), showing base line units, low frequency 
units and high frequency units . 

The values we want to assign to nodes 
on the input layer are continuous (between O and 
1 ). However, the BMA units have binary outputs. 
To code a continuous value, we use the following 
stratagem. Since the output of a BMA unit k is 
chosen to be 1 (instead of 0) with the 
continuous probability Pk (see definition (2)), 
we can assign the desired continuous input to 
Pk· This procedure will be effective since the 
BMA operates with a long relaxation cycle (often 
10 to 100 cycles in our experiments) . This 
method also has the advantage of automatical ly 
providing some noise to the input ( something 
that we had to implement with the error back 
propagation algorithm ). 

218 

4.3 Experimental Results 

The programs were written in C on a 
VAX 8650. In some experiments with the error 
back propagation algor ithm, the network wou ld 
get stuck at local minima of the we ight space. 
In this case, we restarted the learning process, 
with new random initial values for the we ights . 

The error back propagation algorithm 
was faster but less accurate than the Boltzmann 
machine algorithm. The results obtained with 
the two methods are shown in table r r . Table r r 
shows a comparison of speeds for the best 
performances of the two algorithms . These 
results were obtained with 2x200=400 hidden 
nodes (2 hidden layers, 103600 connections) for 
the error back propagation algorithm, and 100 
hidden nodes (75490 connections) for the 
Boltzmann machine algorithm. 

Bo ltzmann Error Back 
Machine Propagation 

Experiment 1 
(coarse coding, multi 
level energy cod ing, 4.2% 6.9% 

and re lative 
frequencies) 

Experiment 2 
As before but 9.7% 9.7% 
No Coarse cod ing 
Experiment 3 
No multi-level 8.3% 15.3% 
energy coding 

Experiment 4 
Abso lute instead 

5.6% 6.9% 
of re lat ive 
frequencies 

TABLE I 
Schemes 

Error on Test Set for Various Coding 



Boltzmann Error Back 

Machine Propagation 

Speed (CPU 
time for 3 sec. 0.21 sec. 
one sample) 

Error on 
Test Set 4.2% 6.9% 

TABLE I I : Speed and Best Results for the 2 
Algorithms . 

The error shown in the tables is not 
the sum of the square of differences between 
actual and desired output values but rather the 
classification error . Even when the 
classification error reaches 0%, we can st ill do 
some learning. Every few learn ing cycles, the 
test set would be presented (and no learning 
would occur). After the error on the test set 
reached a certain low value and the error on the 
training set reached 0%, further learn ing cycles 
followed by presentations of the test set would 
resu lt in oscil lations of the error on the test 
set, with eventual ly an increase in this error. 

1.00 

0.80 

I 0.60 

I 0.40 

0.20 

0 4 

Fig ure 5 : LEARNING ; Error Rate for the Training 
Set vs Number of Full Learning Cycles, for the 
BMA . Note that the error stayed at 1.4% until the 
20th cycle, when it reached 0% error. 

Typical ly, the Boltzmann machine 
would converge to 0% error on the training set 
after about 20 presentations of the training set. 
The shape of the learning curve (error rate vs 
number of presentations of the training set) is 
shown in figure 5. Notice that initial learning is 
very fast, while the last few error percentage 
points need many more training cycles. After 

2 19 

convergence we would continue learning for a 
certain number of presentations (about 10) to 
try to get slightly better results on the testing 
set. The error back propagation network would 
converge to 0% error on the training set after 
about 10 presentations of the training set. The 
running time shown in tab le II is for the 
presentation of one speec h sample (from the 
test set). 

We can compare the results obtained 
with those of exper iments performed with the 
same data (and using the same spectral lines 
cod ing) but using Hidden Markov Models plus 
some rules (incorporating knowledge about the 
expected position of the spectral lines for each 
class) . Note that the use of empirical rules 
makes the method less generalizable. These 
results were reported in (Merlo, De Mori & 
Palakal, 1986)[14], (c.f. table III ). 

place of HMM alg. 
art icu- HMM alg. + rules 
lat ion 

Back 5% 3% error on 
Central 2% 2% 

training Front 2% 1% 
set 

average 3% 2% 

Back 16% 6% error on 

Central 2% 2% 
Front 4% 4% 

test set 

average 7.3% 4% 

TABLE II I : Comparison with HMM Algorithm, 
Same Data 

5. Conclusion 

The results reported in this paper 
using connectionist models compare favourably 
w ith experiments performed on the same 
problem using HMM. They encourage us to try to 
app ly neural networks to more difficult tasks. 
However, one weakness of these experiments is 
the smal l number of samples used for training 
the networks, espec ially with regard to the 
large number of connections in the networks, i.e. 
the memory capacity of these networks . 

Note that with our neural nets it was always 
possible to reach 0% error on the training set. 
Tt1is suggests that we cou ld get better results 



• ·· 1 

I 

on the testing set if we used a larger training 
set. The testing samples wou ld be very close to 
samples which would have been already seen in 
the tra ining set. 

Although resu lts with the Boltzmann 
machine algorithms were better than with the 
error back-propagation algorithm, the running 
time of the Boltzmann machine when simulated 
on a sequential machine is proh ibitive for large 
networks or problems that require many more 
training cycles because of their comp lexity. 

In future experiments concerning more 
complex prob lems, we consider training several 
small networks, thus each having a small 
number of connections . Each of these network 
cou ld be speciali zed to a certain set of 
properties of the speech signal, for example the 
network described in this paper could be one of 
those, spec ial ized on the analysis of spectral 
li nes in vocalic segments of the speech signal. 
The output of these trained networks cou ld then 
be combined as inputs in a hierarchy of higher 
leve l modu les, that could themselves be 
successively trained. This approach wou ld 
perm it to bypass the problem of the increasing 
training period for increasingly complex 
prob lems. 

(1] McCu lloch,W.S., & Pitts, W. (1943). A logical 
ca lcu lus of the ideas immanent in nervous 
activity . Bulletin of Mathematical Biophysics, 
5, pp.115-133. 

(2] Hebb, D.O. (1949). The organization of 
Behavior. New York : Wi ley. 

(3] Rosenblatt, F. (1962) . Principles of 
neurodynamics. New York : Spartan . 

[4] Minsky, M. & Papert, S. (1969). Perceptrons. 
Cambridge, MA : MIT Press. 

[5] Hinton, G.E., Sejnowski, T.J. , & Ackley, D.H . 
(1984) . Boltz mann machines: Constraint 
satisfaction networks that learn (Tech . Rep. No . 
CMU-CS-84-119). Pittsburgh, PA : Carnegie
Mel lon University, Department of Computer 
Science. 

220 

[6] Rumelhart, D.E., Hinton, G.E., & Williams, R.J. 
(1986) . Learning internal representation by 
error propagation . Parallel Distributed 
Processing : Exploration in the Microstructure of 
Cognition. Vol. 1 : Foundations. (pp . 318-362) 
Cambridge, MA : MIT Press. 

[7] Ack ley, D.H ., Hinton, G.E., & Sejnowski, T.J . 
(1985) . A learn ing algorithm for Boltzmann 
machines. Cognitive Science, 9, pp. 147-169. 

[8] Hopfield, J.J. (1982). Neural networks and 
physical systems with emergent collective 
computational abi lities. Proceedings of the 
National Academy of Sciences, USA, 79, pp . 
2554 -2558. 

[9] Kirkpatrick, S., Gelatt, C.D.Jr., & Vecchi, M.P. 
(1983) . Optimization by simulated annealing. 
Science, 220, pp .671-680. 

(1 OJ Geman, S., & Geman, D. (1984). Stochastic 
re laxation, Gibbs distributions, and the Bayesian 
restoration of images. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 6, 
pp .721 -741. 

(11] De Mori, R., Laface, P., & Mong, Y. (1985) . 
Paralle l algorithms for sy llab le recognit ion in 
continuous speech . IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 7, pp .56 -69. 

(12] De Mori, R., & Palakal, M. (1985) . On the use 
of taxonomy of time-frequency morphologies for 
automatic speech recognit ion . Proceedings of 
the International Joint Conference on Artificial 
Intelligence, Los Angeles, CA, pp .877-879 . 

(13] Naccache N.J ., & Shinghal, R. (1984) . SPTA : 
A proposed algorithm for thinning binary 
patterns. IEEE Transactions on Systems, Man 
and Cybernetics, 14 (3), pp. 409-419. 

(14] Merlo, E., De Mori, R., Palakal, M., & Mercier, 
G. (1986). A cont inuous parameter and 
frequency domain based Markov model. 
International Conference on Acoustics, Speech 
and Signal Processing, pp . 1597-1600. 

(15] Prager, R.W., Harrison , T.D ., & Fallside, F. 
(1986) . Boltzmann machines for speech 
recognition . Computer Speech and Language, 1, 
pp . 3-27. 

[16] Bengio, Y., (1987). Connectionist Models 
Applied to Automatic Speech Recognition. M.Sc. 
Thesis, McGil l Un iversity, Montreal , Canada. 



TOWARD THE AUTOMATED SYNTHESIS OF NONDETERMINISTIC 
PLANS USING GENERALIZED CONDITION/EVENT NETS 

Dennis R. Bahler 
Department of Computer Science 
North Carolina State University 

Raleigh, North Carolina, 27695-8206 
(919) 737-3369 

Internet: drb@rscadm .ncsu.edu 

ABSTRACT 

Existing planning techniques do not easily allow for nondeterminism 
in plan execution, and while there exist plan representations that 
accommodate nondeterminism, using these representations for plan 
synthesis itself is a lso problematic. In applications requiring the 
mutually exclusive use of scarce resources by multiple agents 
automated planning is an even more difficult problem. One majo; 
problem is that actions by one agent may make it impossib le for 
other agents to fulfill their goals; in a correct plan either such poten
tial interference must be eliminated by sequentialization or else the 
ability of one agent to perform its actions m ust "persist"' beyond the 
actions of other agents. In this paper we introduce a technique of 
both representing and automatically synthesizing such high-level 
multi-robot plans through the use of a new subclass of Petri nets we 
~all Generalized Condition/Event (GC/E) Nets. To avo id creating 
mcorrect nets, we have identified an important new property, which 
we call persistence, which is essential to plans and therefore to any 
representation of them. 

Keywords: planning, representation, algorithms 

1. Introduction 

One longstanding but stubbornly elusive goal of research in 
automated problem-solving has been the abi lity to "program" auto
nomous agents by providing only the specificat;on of desired goals, 
rather than explicit ly sett ing fortb the tasks to ac hieve a goal and a 
sufficient ordering on those tasks. Autumated planning for multiple 
agents in an app lication requiring the mutually exclusive use of 
scarce resources, such as robot co llisio 11 avoidance , is an even more 
difficult problem. In this paper we int ,,,rl,, ·, a technique of both 
representing and automatically synthes izi 11 11, suc h high-level multi
robot plans involving nondeterrn inisn•, by mode ling such plans using 
a new subclass of Petri nets we call Generalized Condition / Eve nt 
(GC/E) Nets and then constructing such nets automatically. We 
a lso show through examples the fun ctionality of our approac h for 
representing and so lving important problems in resource a llocation in 
environments containing more than one agent. 

Many modern planning systems, from Sacerdoti's NOAH sys
tem [8] to Chapman's TWEAK [2], employ partial orderings on their 
events, and thus may be modified relatively eas ily to produce plans 
intended for execution by multiple agents. However, these systems 
do not easily a llow for nondeterminism. On another track, one or 
another variant of Petri nets [7] has been suggested as a representa
tion for robot plans, including nondeterministic plans, in some recent 
work [3, 4, 5, 6J. This work, however, gives no indication of how nets 
may be emp loyed during the process of synthesis itse lf. 

Indeed, such nets con,mend themselves to plan representation 
for several reasons. First, nets are inherently parallel, in that 
enabled events that do nut , .. ,. erart may occur independently. 

22 1 

Second, although synchronization may be eas ily modeled, nets are 
asynchronous and thus independent of any particular notion of glo
bal time. Third, nets are nondeterministic and different orders of 
event execution may arise from the same net. Finally, pre- and 
postconditions of operators may be modeled naturally. 

In simp lest terms, a plan is a set of event occurrences that is 
partially ordered in (expected future) time. In a correct plan, if two 
sets of event occurrences, or sub-plans, are incomparable in the par
tial ordering, then it must be the case that they can occur in any 
order with respect to each other. Thus, if both sub-plans have all 
their preconditions established, the occurrence of one of the sub-plans 
cannot spoil the preconditions of the other. Any pair of sub-plans 
for which such destructive interference cannot be ruled out must be 
explicitly ordered by any correct plan synthesis algorithm. Because 
they fail to account for this fact, large classes of nets have properties 
which render them unsuitable as plan representations, and algo
rithms which construct nets having these properties will be incorrect. 
In formal terms, many nets have reachable states from which no 
state can be reached that satisfies the goal. To prevent this 
occurrence, we have identified an important new property of nets, 
which we call persistence, which is essential to plans and therefore 
must be preserved in synthesis . The basic idea is that the 

enablement of one sub-p lan must "persist" beyo nd the occurrence of 
the other sub-p lan. Spec ifi cally, persistence of enab led sub-order ings 
of events must be prese rved by any net-growing a lgorithm that pro
duces a plan involving nondeterm in; 1 ic mutual exclusion. 

In addit ion, this work i, th, first to our knowledge that 
attempts actually to plan with ne1,, hy constructi ng net representa
tions themselves automatically gi, e11 on ly pre- and postcondition 
specification of initial and g.,al , it.,ia• ,ons. This work and the much 
more detailed treatment in ,I , att.empt to fill this gap between 
modeling and synthes is. 

2. An Examp le Problem 

Consider a universe of two robots, each of which must move to 
a different location on a factory fl oo r. Assume that a set of discrete 
locations can be identified on the floor, and that these locations in 
turn generate a set of paths between locations. If two or more paths 
intersect at a location, then there is the possibility of collision of 
robots using these paths. For example, if robot r1 is to travel from 
location a to location b, and robot r2 is to travel from c to d, and if 
the path from a to b intersects the path from c to d' at a location z 

then there is the possibility of collision if both robots try to occupy ; 
at the same time. Any solution must prevent either robot from 
entering z (call it the "collision zone" ) whenever the other robot 
occupies that space. At the same time, a so lution should recognize 
that it doesn't matter which robot enters the zone first;. in that sense 
the so lu tion should be nondeterministic. Let us see how to con
struct a nondeterministic plan for this problem, given only the 
specification of t he floor layo ut and the initial and desired locations 
of the robots . 



. I 

I 

.j 

. 1 

I 

3. Situations 

We begin by setting forth a framework in which to address this 
kind of planning issue. The situational model presented in this paper 
is based on a simplified form of first-order logic with certain restric
tions on the structure of its formulas First-order logic was chosen 
because it provides a very general framework for expressing and solv
ing planning problems . 

We say that a literal is a (possib ly negated) predicate symbol 
(e.g., CLEAR, ON, PATH, etc.) in a first-order logic, together with 
the arguments of that symbol. Arguments may be either variables 
(X,Y,Z, etc.) or constants (a,b,c, etc. ). A situation is a conjunction 
of literals. For example, the formula 

ON(c,a) A ON(a,t) A BLUE(c) A ORANGE(a) A 
ROUND(t) A AFTERNOON 

is a description of a situation in which a blue object c is on top of an 
orange object a, object a is on a round object t, and the time of day 
is afternoon. 

For our example problem, we can specify the floor layout by 
the formula 

path(a, zone) A path(zone,b) A path(c, zone) A path( zone,d) 

The initial positions of the robots m:iy be given by 

at(rl,a ) A at (r 2,r ) 

and the initial situation is the conjun ction of the above two formulas 
with a literal safe(zone ) denoting that zon, is presently unoccupied. 

The goal situation may be represented by the formula 

at (r 1,b) :\ at{r2,d) 

It should be clear how this representation can be extended to 
more comp lex topographies and more than two robots by adding 
literals to the specificat ion of initial and goal situations. 

4. Operators 

We allow for two types of operators, propositional operators 
and predicate operators. A propositional operator may be written in 

production rule form as R: a 1, . •• , Ctn - (3 11 ••• , (3.,.. R is th• 
labe l or name of the rule. The left-hand-side a 's consist of literals 
indicating the preconditions for execution of this operator; the rig ht
hand-side f3's consist of literals indicating the postconditions which 
will be true after execution. 

To generate the set of predicate operators, we need the concept 
of a template which is subject to variable substitution . We call such 
a template a schema. An operator ·schema R is a template of the 
form 

R(vi,.,, 'vk ): ai(u1,1,.,,, U1,a.) , . . , ,an(un,1 , ... , Un.,a,.) 

- f3i{w1,1, • • ·, W1,b
1
), • • • ,f3m (wm .l, •, Wm,b.,J 

Here, R is the label of the rule; k is the number of arguments in the 
rule label; n is the number of left-hand-side literals in the rule; m is 
the number of right-hand-side literals. Each predicate a; has an 
argument vector {u;, 1 , ... , u;, • .} associated with it and similarly for 

the 13's. ak is the number of arguments of the k1h left-hand atom of 
the rule; bk is the number of arguments of the k 1h right-hand atom. 

An operator results when a ground substitution is applied to 
an operator schema. A substitution is a finite set of form 
{t 1/v 1 , · • · ,tn/vn} where the v; are variables, t; are terms different 
from the v; 's and no two elements have the same variable after the 
/. A ground substitution is a substitution none of whose t;'s are 
variable symbols. If R is an operator schema, and 
0 = {tifv 1, • • · ,t.lv.} is a substitution, then the operator R0 is 
obtained from R by replacing each occurrence of each variable v; in 
R by the corresponding t;. R 0 is called an instance of R. If 0 is 
a ground substitution R 0 is called a ground instance of R. An 
operator is a ground instance of an operator schema. Where no 
ambiguity would result, a predicate schema may be abbrev iated 

without the argument lists as R: a 1,,,, ,ci. - J:l 1 , ... ,f3m simi-

222 

lar to a propositional operator. 

Let us illustrate these not. i11 ns with a t.rivial examp le. Im agine 
a world of identical blocks on a table and a robot arm ab le to move 
these blocks around, stack them . and so on. A sc hema R for placing 
a block X from on top of a block Z to on top of a block Y might be 

PUT(X,Y,Z) : CLEAR tX). CLEAR(Y), ON(X,Z) 

- CLEAR{X), CLEAR lZ). ON(X,Y) 

Applying the substitution (:) = {a 'X,btY,ctZ} to the schema, 
an operator R 0 that places a blo, k a from on top of a block c to on 
top of a block b is 

PUT(a,b,c) : CLEAR(a), C:LEAR(b), ON(a,c) 
- CLEAR{a ), CLEAR(c ), ON(a ,b) 

Note that there is no restriction against the same literal occur
ring on the left-hand-side and the right-hand-side of the same rule. 
Consider, for example, a schema of the form 

R ( ... ,r , ... ): ... ,free(r ), ... - ... ,free(r ), ... 

to indicate that resource r must be free in order for R to execute 
and wi ll become free again after R has terminated. The status of r 

during execution of R is indeterminate, but it is incorrect to assume 
that r is free. 

Simply by considering a subset of 3-space as a resource, the 
exclusive acqu isition of which is a necessary precondition for an 
operator, we can accomplish the sort of exclusion we want in our 
two-robot example. For that problem we can employ the following 
schemata: 

enter_zone{ZONE,LOC-1,ROB): 

at(ROB,LOC-1 ), path(LOC-1,ZONE), safe(ZONE) 
in_zone(ROB,ZONE) 

leave_zone{ZONE,LOC-2,ROB): 

in_zone(ROB,ZONE), path{ZONE,LOC-2) - at{ROB,LOC-2 ), 
safe(ZONE) 

Note that these schemata are valid no matter how many loca
tions are of interest , no matter what the topography of paths and 
intersections among paths may be, and no matter how many robots 
we wish to consider. 

6. Plan Grammars and Planning Problems 

A plan grammar L consists of a set of operators, i.e., a set of 
ground instances of operator schemata, where each schema R can be 
represented as a production rule of the form given in the preceding 
section. 

What, then , is a planning problem and how may it be 
specifi ed? A problem may be thought of as a plan grammar and two 

situations: the initial situation {denoted St) and the desired final or 
goal situation (denoted S2 ). To unify the situational specification 
into the plan grammar, we append to the plan grammar two special 
kinds of rules, called situational rules. If S 1 = (3 1 A · · · A f3m 
is a situation, a situational rule for S 1 is a rule of the form : 

Similarly, if S2 = a 1 A · · · A Ctn is a situation, a situational 
rule for S 2 is a rule of the form: 

As we have seen in our running example, the plan grammar 
model is flexible enough to provide a convenient means of addressing 
some important kinds of open problems in automated planning 
research. 



6. Nets and Net Reprrsentations 

6.1. GC/E Nets 

Situations, operators , and plans all have graph ical represen ta
tions, and we now show how to combine these represe ntations t, , 
form nets. The planning process we use grows these nets automat i
cally from situational specifications, using a plan grammar. We 
introduce a type of net called a generalimed condition-eve nt 
(G C/E) net. 

Definition: A generali zed condition-event net or GC/E net is 
N = (P, T ,E ,µ) where P is a set o f places, T is a set of events, 
Pn T = 0 , E<;;; (P x T)U(T x P) is the edge relation, and 
µ <;;; P is called a marking of N. D 

A net is typically represented graphically with a set of circles 
representing places, a set of rectangles representing events, a set of 
directed arcs representing the edge relation, and a token ( • ) resid
ing in all places p E µ . 

Le< N - (P, T,E'f be a GC/E net. For X E (Pu T), 

• X -r· I 1, •• 1 EE 
is called the pre-set of x, and 

X. = y (x,y ) EE is called the post-set of x. For 

X<;;; (PU T), •X u • x and X • = U X., 
• EX • E X 

An event t E T in a net N is enab led in a marking µ <;;; P if 
• t <;;; µ . The notation µ- t - > denotes that event t is enab led in 

marking µ . An event that is not enabled is disabled. The firing of 
an enabled event t in a marking µ. leads to a marking 
µ.' = (µ. - • t) U t • . µ.' is called the s uccessor marking of µ. 
under t. µ.- t - >µ.' denotes that the firing of enab led event t in µ. 
leads to successor marking µ.'. 

The empty event sequence E is enabled in every marking µ. 
( • E = 0 ), and µ - E- > µ. . For a sequence of events w E T' and 
an event t, µ. --t w-> if and only if µ.- · t - >µ.' and µ.'-w - > . 

A marking µ.' is reachable from a marking µ. if there exists 
an enabled sequence w such t hat µ. -w->µ ' . The reachability set 
of a net N with mark ing µ., denoted lll (N,µ.) , is defined by 

R (N,µ.) = {µ.' I µ -w- > µ. ' }. where w is any sequence of events. 

We call such nets generalized condi tion-event nets because these 
definitions const it ute a significant generali zat.ion of the C/E net [7] in 
at least four ways. F irst , standard C/E nets allow no event to fire if 
any of its outp ut places is a lready marked. Includ ing this eventu al
ity makes no difference to our results; stor ing a value into a memory 
location, for examp le, has the same effect whether or not that value 
was already stored t here. Second, C/E nets exclude isolated events 
and places; again, we see no reason for this restriction. Third, C/ E 
nets are in fact strongly connected. We must relax this restriction 
because we need two net components, or chains, representing the 
situational rules of a planning problem. Later, we shall see how the 
search for a plan is in a sense a process of connecting these two com
ponents . Fourth, and by far most important, C/E nets do not allow 
so-called self loops (a pair ( u ,v) E (P U T) is a self loop if 
( u, v) E E and ( v, u ) E E ); we have seen in t he preceding section 
that allowing grammar rules with identical literals on the left- and 
right-hand-side has important representational power in many prob
lem instances. 

00000 
P(a.b) Q(1) Q(c) -, R(c) 

P(a,b) A Q(a) A Q (c) A -,Jl(c) As 

Figure 1. The Representation of a Situation 

223 

6.2. Net Representation of a 'l ituation 

Recall that a sit uation is a conjunction of li terals in a logic . A 
net representation of a situat10n will consist of a set of places, each 
marked and each labeled with one of the cunjuncts of the sit uation. 
An n-ary predicate , to11:ether with its a ra:uments , is represented bv an 

element p E P , Each place is labeled by a li tera l (i.e., a predicate 
symbol together with its arguments). A place is marked by a token 
( • ). For examp le, the truth of a formula P(a) A P(b) is 
represented by t he presence of toke ns in the place labe led by P(a) 
and in the place labeled by P ( b ). Figure l shows t he most concise 
representation of t he situation 

P(a,b) A Q(a) A Q(c) A ~R (c ) AS. (These places need not be 
the only members of a marking .) 

6.3. Net Representation of an Schema 

Associated with each operator are one input place for each 
occurrence of an a, on the left-hand side of the rule and one output. 
place for each 13, on the rig ht-hand side. For each a, with a rgu
ments {u1, .. . , u0 .), the schema has an input port labeled by the 

n-tuple <u 1, ••• , u0 , > and similarly has an output port for eac h 

13;. The relationship of net event firing and operator execution is the 
followi ng: the operator asy nchronous ly receives a token from one of 
its inpu t places at an inpu t port to which that place is connected in 
the net. When all inpu t. ports for that operator have received 
tokens, the operator can execute. When the operator has concluded 
execution, it sends a token through eac h of its output ports to the 
place connected to that port. 

Figure 2 shows a net representation of the operator schema 

CI.EAR(X) CI.EAR(X) 

ON(X.z) ON(X.Y) 

Figure 2. Net Representation of an Operator Schema 

PUT(X,Y,Z): ON(X,Z), CLEAR(X), CLEAR(Y) 

- ON(X,Y), CLEAR(X), CLEAR (Z) 

Just as a plan grammar I cons ists of a set of operators, we can 
use t he term grammar net of a grammar I to denote the collection 
of graphical representations of the operators. 

6.4. Net Representation of P lans 

. Although nets have been suggested as plan representations, this 
1s the first work that attempts the actua l automatic construction of 
such nets. Matters are comp licated, as we shall soon see, because 
many nets have character istics that render them unfit for plan 
representation. The nets we create, in which plans are embedded, 
themselves are generalized condition-event nets with a particular 
labeling on their places and events , and the algorithms used to create 
them must guard against introducing undesirable properties. 



. • •I 

I 

6.4.1. Operator N et s 

Operators are used in plans to transform one situation into 
another. If a situation has certain characteristics, an operator will be 
enab led and can be employed at that point . If an operator is exe
cuted, the resulting situation will also have certain character istics, 
perhaps different from the situation which preceded. T he relation of 
situations to operators in plans motivates the definition of a particu
lar labeling on ·a Condition-Event net. 

Definition: Given a plan grammar I and a logic, an operator net 
is a tuple (N,T),~), where 

- N = (P , T ,E ,fJ,) is a generali zed C/E net, 

- T):P - L, the (ground) literals in a set of operators, 

- ~: T - I , the operators of a plan grammar, 
- (p ,t) E E iff T)(p) occurs on the left-hand side of 

~(t) in I, 
- ( t ,p ) E E iff T)(p) occurs on the right-hand side of 

~(t) in I , and 
- fJ, <;;;,P. D 

In essence an operator net is a GC/E net in which the places 
and events have been appropriately labeled. The task of a planning 
algorithm is to construct an operator net (i.e. , ap pend elements to P 
and T) in such a way that any execution of the net will constitute a 
plan for its input problem. 

6.6. Persistence 

Some GC/E nets represent plans and some do not . To help 
illustrate the difference, we look at an example of a net that does not 
represent a correct plan . Consider a world of identical blocks a, b, 
and c lying on a tab le t, and a ro bot manipu lator arm which can lift 
one block at a time and place it on another. Assuming we have an 
operator schema 

ON(b.c) 

PUT(X,Y,Z) : CLEAR(X), CLEAR(Y), ON(X,Z) 

- CLEAR(X), CLEAR(Z), ON(X,Y) 

ON(a.b) Cl.EAR(ll) 

Pl!f(a.b.tl) 

Cl.EAR(c) a.EAR(tJ) ON(c,a) 

Figure 3. A Net That Is Not a Plan 

224 

the initial situation 
ON(c,a), CLEAR(b), CLEAR(c) ON(b,t2), ON(a,tl), CLEAR(t3) 

and a goal 
ON(a, b) , ON(b ,c ) 

then Figure 3 shows a net representation which is not a plan, because 
when executed from the initial marking it will not necessarily halt in 
a marking satisfying the goal. CLEAR( c) is in the pre-sets of both 
PUT(c,t3,a) and PUT(b,c,t2) and in the post-set of PUT(c,t3,a) but 
not of P UT(b,c,t2). Furthermore, both events a re enabled in t he 
marking shown . If PUT(b ,c,t2 ) fires before PUT(c, t3, a) the latter 
cannot fire; its enablement does not " persist" beyond the firing of 
the other event . 

The idea of persistence has to do with the structure of t he pre
sets and post-sets of events in a net. For an event u to be persistent 
with respec t to an event t, any places in the · intersect ion of their 
pre-sets must occur in the post-se t of t. The notion can best be 
defined with respect to sequences of even ts. 

Definition : Let N = (P, T ,E ,fJ-) be a net. Let w1 ,w 2 E T' be 
sequences of events such that .,, - w 1 - > and .,, - w2 - >· w2 is per
sistent with respect to w1 if and only if • w1 n • w2 <;;;, w 1 • 

Note that two enabled sequences whose pre-sets have empty intersec
tion are persistent with respect to each other. A net 
N = (P,T,E ,fJ,) is persistent if and only if for every 
w 1 * w 2 E r·, and every .,,. E lll(N,fJ, ) such that .,,, -w 1 - > and 
fJ,' - w 2 - >, w 1 is persistent with respec t to w 2 . D 

We can illustrate persistence by returning to the above exam
ple. PUT(c,t3,a) is not pers istent with respect to PUT(b,c,t2). Addi
tionally, CLEAR (b) is in the pre-sets of both PUT(b,c,t2 ) and 
PUT(a, b,tl) and in the post-set of PUT(b,c,t2) but not of 
PUT(a,b,tl), so PUT(a,b,tl) is persistent with respect to PUT(b ,c,t2) 
but not vice-ve rsa. 

7. Plan Synthesis 

The plan synthesis process we employ grows an operato r net, in 
which a strict partial ordering of operators is embedded , by append 
ing components of the grammar net assoc iated with I . This process 
continues until a net is constructed whose initially marked place is 
that labeled by S I and whose execution must result in marking a 

place p 2 labeled by the goal situat ion S2 • 

We have seen what it means for a place in a net to be marked 
and what it means for an event to fire. Since in our view planning is 
concerned with simulation of events which are expec ted to take place 
in the future, we also need notions of "potential" marking and firing. 
We thus need to be clear about what it means for a place to be 
markable, i.e., potentially marked. For a place p to be markable, 
certain properties must hold in t he subnet of which p is a root, that 
is, the net consisting of its pre-set, the pre-set of its pre-set, etc. 

We say the forward chain of an operator net is that subset of 
nodes (places and events) to which t he S1 place p1 is connected. The 
backward chain is that subset of nodes which are connected to the 
S2 place p 2 • The forward-frontier (FF) of a net is that subset of 
places of the net excluding p 2 having out-degree 0. The back
frontier (BF ) is that subse t of places excluding p I hav ing in-degree 
0. In the most general problem class , FF places can be found in both 
the forward and backward chains, but BF places occur only in the 
backward chain. See [l J for discussion of a classification scheme for 
planning problems and algorithms. 

Returning to potential marking and firing, we can say an event 
t of an operator net is firable if a ll input places of t are markable, 
and a place p of an operator net is markable if p is 

(i). in the forward chain and marked (in genera l true on ly of 
pi), or 
(ii) . unmarked and any event in the pre-set of p is firab le, or 

(iii) . in the backward chain and unified with an eligible 
forward-frontier place (in either chain) , provided no other 
place is unified with the same FF place. 

Two places are unified if t heir labelings are identical under 
some consistent substitution. Unification is shown in our nets by 
dotted lines. Note that unification can be undone. "Eligibili ty" is 



used to avoid introducing cycles, i.e., circu lar reasoning, into the net. 
See [1] for a detailed discussion of eligibili ty. 

The planner seeks the creation of a so lution for its problem, 
which can be represented by a so lution net. A so lu tion net is an 
operator net a ll of whose back-frontier places are markable. 
Equivalently, a solu tion net is one a ll of whose unmarked places have 
predecessor events in the net , or one in which the goal place p 2 is 
markable. 

8. Final Place Merger and Mutual Persistence 

Recall the two-robot co llision zone problem. Let us examine a 
solution net (Figure 4) for th is problem. (In the interes t of brevity 
we will refer to labe lings when strictly speak ing we mean places and 
events in the net.) l\iote that the net in Figure 4 contains three places 
identically labe led 'safe(zone)', shown within the dashed rectangle. 
This particular net, which is deterministic, resu lted from expan..Jing 
'at(rl,b)' before 'at(r2,d)'; other solution nets are possible. For 
example, if the algorithm had expanded 'at(r2,d)' first, the resulting 
net would have the same places and events but the edge re lation 
would differ . Denote by w 1 the event sequence 
(enter_zone(zone,a,rl ), leave_zone(zone,rl,b )) . Denote by w 2 the 
event sequence (enter_zone(zone,c,r2 ), leave_zone(zone,r2,d )). 

• w 1 = {path(zone, b) ,pa th(a,zone),at(rl,a),safe(zone)}, and 
w 1 • = {at (rl,b),safe(zone)}. • w 2 = 
{path( zone,d ),p ath( c,zone ),at(d ,c ),safe( zone)}, and w 2 • = 
{at(r2,d), safe(zone)} . Thus • w, n • w2 = {safe(zone)}. Notice 
that w 1 and w2 are mutually persistent, since ( • w1 n • w2 ) <:;; w1 • 

and ( • w1 n • w2 ) <:;; w2 • . Thus it is possible to merge the three 
identically labeled places in the so lution net as a final step in plan 
synthesis, because to do so will not destroy the mutual persistence of 
the the two enab led sequences. The merger can be accomplished by 
a straightforward isomorphic transformation from the places within 
the dashed rectangle of Figure 4 to the place within the dashed rec
tangle of Figure 5. The net of Figure 5, and hence the embedded 
plan consisting of its events, is nondeterministic in that either 
sequence w 1 or w 2 may occur before the other. It accommodates 
m utual exclusion on the collision zone because the place labeled 
"safe(zone)" is unmarked during execution of either sequence and 
thus one of the required tokens is unavailable to the other sequence. 
Note that the net contains two (intersecting) cycles. However , both 
cycles are markable and the events of each cycle are persistent with 

sQ 
t 

Rs, 

Figure 4. A Solution Net for a Spatial P lanning Problem 

225 

sQ 
t 

Figure 5. The Spatial Solution Net after Final Merger 

respect to the even ts of the other. 

The general merger rule thus is: we can merge places p; and Pi 
to form place p if and only if (i) their labe lings (T1(P;) and Tl(P; )) are 
unifiable, and (ii) merger would not create any pair of sequences in 
the post-set of p which are not mutually persistent. 

9. Conclusions 

In this paper we have been concerned with two aspects of plan
ning: modeling plans and synthesizing plans. We have shown how to 
synthesize, not merely represent, plans using a restricted class of 
labeled nets called Generali zed Condition / Event Nets. We also 
introduced the notion of plan grammar, and showed how such gram
mars allowed us to formulate problems requ iring nondeterminism for 
their so lution. We then discussed an important and necessary pro
perty of GC/E nets, persistence, which if present permits such a net 
to model a nondeterministic plan. Two event orderings are mutually 
persistent if the exec ution of one of the orderings does nothing to 
spoil the precondit ions for the execution of the other. - Finally, we 
discussed an algorithm to construct nets exhibiting the necessary per
sistence property, given only initial and goal situational specifications 
and a plan grammar. We concluded by showing how our algorithm 
would construct a net to solve our running examp le prob lem in a 
domain of simple multi-robot collision avoidance. 

10. References 

[1] 

[2] 

[3] 

D. Bahler, Net-Baaed Plan Synthesis, Ph.D. diss. , 
Dept. of Comp. Sci., Univ. Virginia, Charlottesvi lle, 
VA, 1987. 

D. Chapman, P lanning for Conjunctive Goals, Al
Tech. Rep .-802, MIT AI Laboratory, Cambridge, 
MA, Nov. 1985. 

M. E. Drummond, Refining and Extending the 
Procedural Net, Proc. IJCAI-85, 9, (1 985), 1010-
1012. 



[4J 

[5J 

[6J 

[7] 

[8] 

M. E. Drummond, A Representation of Action and 
Belief for Automatic P lanning Systems, in 
Reasoning About Actions and Plans, M. P. George ff 
and A. L. Lansky (ed. ), Morgan Kaufmann, Los 
Altos, CA, 1987. 

H. Gomaa, Programming of Multiple Robot 
Systems , Wang Inst. of Grad. Studies, Nov. 1986. 

C. A. Malcolm, Petri Nets for Representing 
Assembly Plans, DAI Working Paper No. 187, 
Dept. of AI, Univ. Edinburgh, Edinburgh, Scotland, 
March, 1986. 

W. Reisig, Petri Nets: An Introduction, Springer 
Verlag, New York, 1985. 

E. D. Sacerdoti, A Structure for Plans and 
Behavior, American Elsevier, New York, 1977. 

226 



ITERATIVE CONSTRUCTS IN NON - LINEAR PRECEDENCE PlANNFR ~ 

Sam Steel 
Dept Computer Science, University of Essex 

Colchester C04 3SQ, UK 

ABSTRACT 

Non-linear precedence planners (in the tradition of 
NOAH and NONLIN) need an iterative construct for 
achieving universally quantified goals and for 
doing certain sorts of recursion . A construct is 
suggested that can do special cases of both of 
these . It trades the generality of some other 
possible constructs for ease in deciding how to 
apply the proposed construct when it is applicable. 

KEYWORDS: Planning, iteration . 

1. Some Problems 

Here are some problems that a non - linear 
precedence planner (in the tradition of NOAH 
(Sacerdoti 1975) or NONLIN (Tate 1976)) ought to be 
able to solve with the given action repertoire. The 
difficulty is that that the problems need repeated 
application of the operator, and there is no 
standard way of specifying repetition. 

== chair painting 
given: a set of chairs, some painted red, some not. 
goal : all those chairs are painted red. 
action: paint something red 

== table clearing 
given• a table with some some blocks on it. 
goal: there are no blocks on it. 
action: take a block off the table and put it on 

the floor. 
== ladder climbing 

given: a robot is at the bottom of a ladder . 
goal: it is at the top of the ladder . 
action• ascend one rung of the ladder 

== name finding 
given: a list of names in alphabetic order; 

the robot points at some name. 
goal: the robot points at another, given, name, 

known to be in the list, and alphabetically later . 
action• mov e finger along list from one name to 

another. 
== tower demolishing 

This problem is considered by (Manna & Waldinger 
1986). 
given• a block with a tower of other blocks above 

it of unknown but finite height. 
goal• the bottom block is clear. 
action• take a clear block off what it stands on. 

2. A proposed solution. 

One wants an iterative construct that is not just 

227 

partially correct (if it terminates, its goal will 
be true) but totally correct Cit will terminate and 
its goal will be true) . That ruled out anything 
like a simple while loop of the form "WHILE goal 
not achieved DO action END" because as it stands 
there is no need for the loop to terminate. 

In program verification, the s tandard way to 
prove that such a loop terminates is to divide the 
goal to be true after the loop into two parts, the 
variant and the invariant. The variant is a 
function whose value strictly decreases on each 
cycle, but which can't decrease below a known zero; 
so the loop terminates. The invariant is a property 
which if true before any cycle of the loop is also 
true after it . The goal must be equivalent to the 
invariant being true and the variant being at its 
zero. Each cycle must maintain the invariant and 
decrease the variant. Achieving that is the problem 
of planning what happens inside the construct. Then 
if one can achieve the invariant being true before 
the construct, and the variant being not less than 
its zero, the goal must be true after the 
construct. 

The big problem about using this idea in program 
synthesis is deciding how to split the goal into 
the variant and the invariant. I shall propose 
specialized ways of doing this that loses 
generality but which (I hope) makes it much easier 
to produce totally correct loops when it applies. 

Actions will be drawn as boxes, with their 
preconds on the left and their effects on the 
right. Protections (holding periods) will be drawn 
as double lines. 

The main idea is this. Consider the whole 
iterative construct as a box that from the outside 
looks like an action with preconds and effects, 
perhaps involving quantifiers. During execution, it 
will go through N cycles, from 1 to N. Each cycle J 
will start in state J - 1 and end in state J. So the 
whole loop will start in state O and end in state 
N. Furthermore, at each iteration, the cycle will 
be acting on an operand (which may be a tuple). 
That operand will will be called "J. The set of 
objects · 1, ·2 , ... "N must be identified before 
execution of the iteration starts. The variant of 
such a loop i s of course passage through the 
sequence 1, 2, ... , N. 

In;ide, however, the construct looks like a plan 
in its own right . That internal plan will be 
executed on each iteration, and it will be made 
just like any other plan. The question is, how do 
the initial state and the goals of that internal 
plan relat e to the ov e rall preconds and effects of 



. . . I 

the whol e iterative construct? 
On e ca n unroll a n iteration into a seque nce of 

r epeated exec utions of the internal plan. These 
executions li e between the states 0,1,2 , ... ,j -
1,j, .. . , N. The validity of the iteration will be 
proved by an inductive argument, that some fact is 
true at all those states. That needs the situa tion 
calculus notation. I writ e "F@ S" for "Fis tru e 
in s tat e S" wher e Fis a sentenc e not co ntaining 
"@". It is a r e dundant nota tion; as us ual, one can 
s uppose all predications to ha v e a n extra a rgum e nt, 
the state in which it holds . Th e induction is 

1.10 

------ - 1 
I@(j -1 ) 

I@j 
1 --------------------

Vj( O=<j=< N, I@j ) 

The interest of that co nc lusion may be what it 
establi s hes about eac h of the states on the wa y to 
N; or just about its specialization to the final 
state N. 

To complete t hat induction however, other 
assump tio ns may be needed, 
* either abou t what is true i n state 0 : U@O 
* or about what is true in every state, V@j 
* or about conditionals of the form: W@(j - 1) -> X@j 

Such assumptions will assist a n induction by 
fitting i nto the proof like this 

------- 1 
I@(j - 1) V@j W@C j-1 ) -> X@j 

U@O 

IalO Iolj 
1 --------------------

Vj( O=< j=<N, Iolj ) 

I@N 

Eac h of the co nstructs below corresponds to some 
s uc h induction. It has been proved in advance a nd 
ca nn ed as a co nstruct . Nev e rtheless, the user st ill 
has to s how that the assumptions that the proof 
makes are true. That is what filling in th e 
co nstruct does . 

An externa l precond of the iteration corresponds 
to an assumption about what is true i n state 0 . It 
is drawn like this. (The situation names are 
i mpli ed by whe r e the sent e nces are placed, a nd s o 
can be omitted.) 

state j - 1 cycle j state j 

A goal of the internal pla n corresponds to the 
need to prove a n assumption abo ut what is true i n 
e v ery state. 

state j-1 cycle j state j 

V 

The making of a plan for a n i nternal goal given 
facts about the internal initial state corresponds 
to filling in this constellation: 

228 

state j-1 c ycle j state j 

w X 

In the specia l case where Wand X are the sa me, W 
is a n invariant of the iteration. 

And now for conclusions. Proving that I is true 
in all states corresponds to I bei ng tru e in the 
initial state of the typical instance of the 
internal plan. 

state j-1 cycle j state j 

And the specia li zation of that corresponds to I 
being true in the final state of the iterati on; 
t hat is, being a n effect. 

state j-1 cycle j state j 

I 

So different assumptions a nd co ncl usio ns in the 
iteration correspond to different co nstell a tions of 
facts in the iterative co nstruct . Here are t hree 
useful constel l ations. 

I, Leave things a lone 

If some set of obj ects C eac h start with a 
property T, a nd if all members of C that hav e 
property Tat the start of a cycle retain it at the 
e nd of the cycle, then e v ery member of Chas 
property Tat the end of the iteration. 

for all N, O=< N, 
If Vj CO<j=<N, VxC CCAx),TC Ax )) @j-1 

-> VxCCCAx),TCAx))@j 
a nd VxCC(Ax),T(Ax))@O 
then Vx(C( Ax ),T(Ax))@N 

state j - 1 cyc l e j state j 

~x), TC "x)) ---- -- __ Vx(CC"x)_, TC "x)) ] 

Vx(C(Ax),TC"x)) Tvxccc ·x), TC Ax )) 

II, Add an external effect 

If at eac h cyc l e j a ll operands of past cyc l es 
retain property E, and if at the end of eac h cyc l e 
the operand of that cycle has property E, then 
after the iteration ends all operands have property 
E. 

for all N, O=<N, 
If Vj(O<j=<N, Vx(O<x<j,E(Ax))@(j-1) 

and 
then 

-> Vx( O<x<j,E("x))@j 
VjCO<j=<N,EC"j)@j) 
Vx(O<x=<N,E(Ax))@N) 



state j-1 l VxCO<x<j,EC-x)) 

cycle j state j 

Vx(O<x<j,EC-x)) 1 
EC - j l 

VxCO<x=<N, EC-x)l 

III, Add an internal fact Ca fact that the 
body of the construct may rely on) 

If at each cycle j all operands of future cyc les 
retain property P, and before the iteration starts 
all operands have property P, then at the start of 
each cycle the operand of that cycle will hav e 
property P . 

for all N, O=< N, 
If Vj CO <j=< N,VxCj <x=< N,PC -x J)@(j -1 J 

and 
then 

-> Vx(j<x=<N,P(-xJJ@j 
VxCO<x=<N,PC-x)J@O 
VjCO<j=<N, VxCj<x=<N,PC-xJJ@j) 

Proofs, by induction on j. 
From now on , "cycle j" will be left out of the 

diagrams. 

3. Examples and refinements. 

Here are s ome examples of how iteration can be 
used to achieve universally qua ntified goals. (It 
can also be used for "ladder climbing", described 
later . ) It is convenient to divide quantificatio n 
into two s ort s ; restric ted and unrestrict e d. 

3.1. Restricted quantification. 

Consider painting the chairs red. The goal is 

The heuristics that work on this are as important 
as the plan construction rules above. The goal 
should be split into 

Vx( c hair( -x ), O<x=< N 
Vx( O<x=< N, red(-x) ) 

Then one s hould recogni ze that since there is no 
si ngle action that achieves either of those goals, 
an iteration must be built. 

'----·--~-----·---·- ] 
Vx (chair( -x ) , O<x=< N 
Vx(O<x=<N,red(-x) ) 

The first goal can be handl ed by the "leave 
things alone" constellation. The internal goal is 
reduced immediately. The protected fact amounts to 
a demand that the body of the iteration s houldn't 
create any more chairs than it started with. The 
external precond requires that al l chairs are 
opera nds. 

229 

Vx(chair( -x ),O <x=< N) 

Vx(chair( -x ),O <x=< N) 

Vx(chair(-x),O<x=<N)) 

VxCchair(-xJ,O<x=<N) 
Vx(O<x=<N,red(-x)J 

Actually getting the chairs painted nee ds the 
"add an external effect" constellation. 

iit::::: :::: ::~~-~ Mo::;:::::::::: ~fl 
red(-j) 

Vx( chair( -x ), O<x=< N) !~-:(-cha~-~-( - x), O<x=< N J 
I VxCO<x=<N,red(-x)J 

In order to paint the chair, one has to introduce 
an action into the internal plan. 

·---------·-----
Vx(chair(-x),O<x=<N) VxCchair(-x),O<x=<NJJ 

Vx(O<x<j,red(-x)) Vx(O<x<j,red(-x)) 

lpain~c -~ 

hav e (brush)-r-=~=e=d=-c=-=J=·=)==========-r=e=d=C==- =j -J 

VxCchairC-xl, O<x=< NJ ··r -~x CchairC -x ) , O<x=< NJ 
VxCO<x=<N,red(-x)) 

Now there is a n internal s ubgoal . That ca n be 
achieved either by introducing another action into 
the internal plan; or, as h e re, by demanding it 
from the initial state of the cycle, using the "add 
an internal fact" constellation. The quantification 
is s hown, even though it is vacuous. Aft er this, 
the internal plan is complete. 

VxCchair(-x),O<x=<N) Vx(chair(-x),O<x=<Nll 

Vx(O<x<j,red(-x)) Vx(O<x<j,red(-x)) 

Vx(O<x=<N,have(brush)) Vx (O <x=< N,have(brus h)) 

E3 
=h=a=v=e=(=b=r=u=s_h_ >_=·=·--·=·=·----- I ~ =c=-=J=· =' ------=r=e=d=c- -=J=· =) 

·---,------·----··-· Vx(chair(-x),O<x=<NJ Vx(chair(-x),O<x=<NJ 
Vx(O<x=<N,red(-x)) 

Vx(O<x=<N,have(brushl) 

So far there is no c hec k that the things affected 
by the loop are c hairs. Whatever they are, they get 
painted red. Thi s is wasteful. A refinement avoids 
it. If on e adds to the goal that requirement that 
only c hairs are co ns idered 

Vx( chair(-x), O<x=< N 
Vx( O<x=<N, red(-x) ) 
Vx( O<x=< N, c ha ir ( -x )) 

then it ca n be achieved vi a the "leave things 
a lone" constellation, giving 



\Jx(chair("x),O<x=<N) \Jx(chair("x),O<x=<N)) 

\JxCO<x<j,red( " x)I \Jx(O <x<j,red("x)) 

\Jx(O<x =<N,have(brushll \Jx(O<x=<N,haveCbrush)) 

\Jx(O<x=<N,chairC"x)) \Jx(O<x =<N,chair("x)) 

E_~nt~~-~; 
. . . . red("j) 

- =====----=----------- ==- -= 

red("j) haveCbrush) 

\Jx(chair("xl,O<x=<N) \Jx(chair("x),O<x=<N) 
\JxCO<x=<N,red("x)) 

\Jx(O<x=<N,have(brush)) 
\Jx(O<x=<N,chairC"x)) 

There is also good independent motivation for the 
new invariant. Without it, there is no constraint 
that the the internal plan should not, so long as 
it paints the operand red, cause it to cease being 
a chair. If the iteration reduced all chairs to 
heaps of red splinters it would trivially have 
achieved 

\Jx( chairC-x), O<x =< N 
\Jx( O<x=<N, red( "xi ) 

Now however any plan that destroyed a chair would 
violate the invariant just added and have to be 
dismissed. 

3.2 Unrestricted quantification 

Sometimes one wants everything to have some 
property . The goal of having a clear table is 

\Jx( - onc·x,tablel 

If one sees that as 

\Jx( true("x), -on("x,table) 

and treats it as before, one gets 

\Jx( true( "x), O<x= <N I 
\Jx( O<x=<N, - on("x,tablel 

which ultimately involves one in treating every 
object in the universe as an operand; clearly a 
disaster. Instead one should see the goal as 

\Jx( N<x, -onc·x,tablel ) 
\Jx( O<x=<N, -onc · x,table) 

Then one can build an iteration by first using 
the "leave things alone" constellation 

\JxCN<x,-onc·x,table)) 

\Jx(N<x, - on( " x,table)) 

\Jx(~_<_x_, _- _o_n_c_·_x ~~~-b_l _e _ll l 
\Jx(N<x, - on("x,tablel) 
\Jx(O<x =< N, - onc · x,table)) 

then the "add an external effect" constellation. 

230 

\Jx(N<x,-onc·x,tablell \JxCN<x,-on("x,table)) 

\Jx(O<x=<j,-on("x,table)) \Jx(O<x=<j,-onc·x,table)) 

-on( " j,table) 

\JxCN<x, - onc·x,table)) \Jx(N<x,-onc·x,table)l 
\Jx(O <x=<N, - on("x,table)) 

It is then easy to make the required internal 
plan, to take a single thing off the table. The 
external precond is the requirement that everything 
that one doesn't consider during the iteration 
isn't on the table . 

4. Using operands chained together by some relation. 

The other examples need an extra piece of 
machinery. It is the assumption that there can be 
some relation, say<<, between the successive 
operands of the loop. 

·o << ·1 << · 2 << .. . << "N - 1 << " N 

Note that a · o is assumed to exist. 
There are two things that can be done with such a 

chain, "ladder climbing" and "tower building". This 
paper discusses only the first. 

4.1 Ladder climbing 

Here the idea is that the chain is found to exist 
already. The bottom item of the chain has some 
property. At each stage of the loop, that property 
is conferred on the next item in the chain, by an 
action that relies on the chain relation and on the 
property being true of the current item. 

Formally, what happens is 

one relies on Q"O~O 

one relies on 
· o << ·1 << ·2 << . . . << "f- 1 << 

-- one achieves Q"f~f 

Each cycle of the loop must ensure that it 
* achieves Q for the current operand 

"f 

* preserves all the chain above the current operand 
* preserves any extra preconds each cycle needs 

Eg , the c hain c ould be the rungs of a ladde r; 
the chain relation << would be 

"(Rung1.)is_ below(Rung2)"; 
the property Q would be "I_am_ at(Rung)" . 
The action would be "ascend(Rung1,Rung2)" 
which would confer "I_ am_at(Rung2)" on Rung2 
because "(Rung1)is_ below(Rung2)" 

and "I_am_ at(Rung1)". 

To do this requires a new constellation . 

IV, Transfer a property 

If 
and 
then 

\JjCO <j= <N, TC " (j - 1J)~j - 1 -> TC " j)@j ) 
TC "O)~O 
TC"N)~N 

[jc · c j-1_>_> ___ . --------- ------- ; ~ 

TC " OI ~ - N)I 



Ladder climbing is, I think, a very useful 
construct since it corresponds to what one wants to 
do when one reduces a goal to a very similar 
subgoal. It should be applied when near-loops 
occur. That stru ck me in the context of tower 
demolishing. 

given, a block with a tower of other blocks above 
it of unknown but finite height . 

goal: the bottom block is clear . 
action, take a clear block off what it stands on. 

The sequenc e of planning steps is, start with the 
goal "clear(base)". Once one sees that is not 
already true, one needs to find a suitable operator 
s uch as "take_ off(A,B)" and use it. 

I take_of:;;;:.~ base) 

clear(A) 
on(A,base) 

clear(base) 

C_J 
clear(~~~ r 

Now spot that the subgoal "clear(A)" is very like 
the original goal "clear(base)", a nd consider an 
iteration, using the "transfer a property" 
constellation. 

[ clear(-(j-1)) . . cl:a-;C~~!_] 
--------·-:-i:_a_r_c--~----r - c_l_e-: r C -_-N_) __ _ 

The internal plan should involve the 
"take_off(A,base)" actio n already considered. Soo n 
one reaches 

--------·----i----··-----------·------· 
clear(-0) I clear( - N) 

Now use the "add an internal fact" constellation. 

[t-_a-k:_o-~-f --( -- J-. ::~ 

cl ear( -j) 

-- -----··-·------·-- --- ----------·---·----===-clear ( - ( j -1 ) ) ... · 1 c 1 ear ( - j ) 

on( - j, -j-1) .... 
--·-- ----·---~----

Vx(j<x=<N,on(-x,-cx - 1))) 

clear(-0) I clear(-N) 
Vx(O<x=<N,on(-x,-cx - 1)) 

Rather oddly, the "base" of the chain of operands 
will be the top of the tower, and the "top" of the 
chain will be the base of the tower. 

The preconds of the iteration amount to a demand 
that the tower being demolished hav e a top. One 
must rely on domain facts to establish that. That 
top will be a block -o which is itself clear and 
which is a certain number N of steps of "on" away 
from the base of the tower. If one uses the limited 
transitive closure, (u)<<*N(v) for any relation<<, 

23 1 

defined as 

(u)<<*O(v) = u=v 
(u)<<*(N+1)(v) = 3w((u)<<(w), (w)<<*N(v)) 

then that fact can be expressed as 

Vx(block(x), 3N(O=<N, 
3y(block(y), clear(y) & (y)on*N(x)))) 

Facts of that sort will be needed whenever ladder 
cli mbing is contemplated. 

Name-finding is another instance of the same sort 
of task. The goal of being at the right name 
reduces to being at the name alphabetically just 
before the right name• and so on. 

5 . Execution 

The execution of the construct involves doing the 
body of the loop on each successive operand. There 
is a problem about the knowledge requirement of the 
loop: when does one need to have vivid, 
operationally sufficient, descriptions of t he 
operands? Some problems that seem to be of this 
sort are, 

== When deciding to paint all chairs red, I must, 
before the loop, know of all the c hairs that aren't 
red. But I don't have to decide until the beginning 
of eac h loop which particular chair to paint. So 
when do I grasp or decide the extension of the 
function - ? 

== I also want to avoid looking again and again 
at chairs that I have painted to see if they are 
red or not, to tell whether one of them should be 
the next operand. 

== Suppose one is dosing chicks. The dosed ones 
must not be put back with the others, since dosed 
and undosed chicks are identical. One would keep 
doing the same ones, and the loop need not 
terminate. 

== What if there are several possible sets of 
objects that could be used as operands (eg 
different blocks that could be used to build a 
tower)? How do I choose which set to use as 
operands? 

These are hard problems, but knowledge 
preconditions for action are so poorly understood 
in general that loops do not, I think, worsen t h e 
problem. Consider by contrast condit ional 
constructs. For a conditional to be executable one 
must know at the moment it comes to be performed 
whether its condition is true or false. Now that is 
typically not made a n explicit precond of the 
conditional. It is assumed that one will have 
complete information when . it is needed . Here I am 
assumi ng complete information about the identity of 
the operands rather than about the truth of the 
condition ; my assumption is as bad, but not worse . 
What one really needs is a f ull, general, account 
of how action relies on knowledge. But that is 
(alas) not offered here. 

6. Other approaches 

There seem to be four other main contenders for 
an iterative construct in this sort of planning . 

6.1 Dijkstra's WHILE construct (Dijkstra 1975) 



PRO, It is simple and well understood. 
CON, If one also uses Dijkstra IFs, as one must , 
then why are there two constructs with conditionals 
in them? 
CON, The main objection, termination is not 
provable unless one splits the goal into variant 
and invariant, which is hard and which was to be 
avoided. 

6.2 Drummond's plan nets 

Drummond (1985,1986) proposes a "Plan Net" 
representation of plans, which considers a Petri
net-like pebbling of a procedural net as a model of 
its execution. Iteration is seen as the recurrence 
of some state of pebbling. 
PRO, This seems a natural representation for 
"whenever A do B'' plans. 
CON, It is not clear how to prove termination. 
CON, It is a large step away from standard 
precedence planning. 

6.3 Recursive actions 

The idea here was to draw some complex plans in 
named boxes , which could contain recursive 
invocations of themselves; that is, they could 
contain boxes with the same name as themselves, and 
with the same preconds and effects, thought perhaps 
different arguments. This would allow arbitrary 
recursion. 
PRO, Something like this is ineliminable if one 
wants to handle eg multiple recursion (eg 
quicksortl . 
PRO, The idea of the invariant arises naturally . It 
is those preconditions of the recursively invoked 
actions that are supplied, not by actions in the 
iterative construct, but from facts assumed true at 
the start of each cycle of the construct. They are 
"invariant" because no action in the construct may 
contradict them. 
CON, Unless one wants to plan eg quicksort, the 
need for general recursion seems not to arise. 
CON, The placing of the recursive call relative to 
the rest of the plan introduces an irrelevant 
choice between head/tail/middle recursion. 
CON, The main problem is this, the natural thing to 
use as a variant is some argument to the recursive 
call. Thi s should strictly decrease on each call. 
To achieve Vx( Px@n -> Qx@n ) , the natural 
argument is the set {x: - (Px -> Qxl} of things 
without the property. But this is a higher- order 
object. To say how sets changes across actions 
requires extra machinery . (Which, however, may be 
needed for eg actions that involve the destruction 
or creation of objects . But that is a big change.) 

6.4 Manna & Waldinger's deductive s ynthesis 

Manna and Waldinger (1986) apply their deductive 
synthesis method to the tower demolishing problem. 
PRO, Their method is sound, elegant and general. It 
can generate arbitrary types of recursion. In the 
long run, I guess this is the way to go. 
CON, As with all general methods, it is hard to 
control. The tower demolishing example in the paper 
is hand-generated. That is not a criticism of it; 
but they propose no heuristics to replace such hand 
guidance. In the short term, the construct proposed 
will be more manageable. 

232 

7. limitations of this approach 

There are some things this approach cannot do. 
It is iterative rather than generally recursive, 

and I can't see that it can be extended to cases 
where one has to do a multiple recursion (where 
there is more than one invocation of the defined 
function within itself) s uch as quicksort. 

The division of the task into operands sometimes 
looks rather forced . Consider cleaning a window. 
Each wipe cleans part of the window, and after all 
the wipes are done, the window is clean. The 
operands are presumably the parts of the window 
cleaned by each wipe . But no way of dividing the 
window is more natural than any other, so how how 
is any division either invented or selected? 
Similar problems can arise with any continuously 
divisible object . 

Consider the table clearing strategy whereby at 
each cycle one puts on one block and takes off two. 
The table will be cleared, but that can't be s hown 
by this approach . This approach numbers the objects 
to be operated on, which amounts to (doing 
recursion on)(having an induction hypothesis about) 
a sequence of strictly included sets . The sequence 

corresponds to the sequence of sets of objects 
waiting to be operated on 

{ -1, -2, 
{ -2, 

- N 
- N 
-N } 

To handle the one- on-two-off problem, one needs 
to be able to recurse on a sequence of strictly 
smaller sets, whether or not one of them includes 
the next. That is more general. 

8. Further work 

The main difficulty is this, making the internal 
plan leads to new subgoals. Reducing those lea ds to 
a choice• shall I introduce further actions into 
the internal plan to reduce the new subgoals, or 
shall I add facts to the initial state of the 
internal plan? Of course, adding suc h facts is not 
free. Those facts will have to be achieved for each 
operand before the construct starts, and must be 
maintained across the internal plan . So the 
question is, How much of its own work should the_ 
construct do, and how much should it rely on having 
done to start with, only worrying about not undoing 
it? 

Acknowledgements, I thank Jim Doran and Richard 
Young for their helpful comments on this paper. 



Refer e nces 

Dijkstra EW, 1975: Guarded comma nds, nond e terminacy 
and formal derivation of programs: CACM 18:8 45 3-

457 
Drummond M, 1985 : Refi ning and ext e nd i ng the 
procedural net, IJCAI 1985 1010,101 2 

Drummond M, 1986: A representation of ac tion a nd 
belief for automatic planning systems: in: 
CG e orgeff & Lansk y 1986) 

Georgeff M, Lansky A (eds ) 1986: Rea s oning about 
actions and plans: Morgan Kauffman 

Manna Z, Waldinger R, 1986 : A theory of plans, in: 
(Georgeff & Lansky 1986) 

Sacerdoti ED, 1977: A structure for plans and 
behaviour : American Elsevier 

Tate A, 1976 : Proj ec t planning usi ng a hi erarc h ica l 
non - linear planner: Tech r eport 25, Dept Artifi cia l 
Int e llige nc e, Edinburgh Univ 

233 



Context Resolution: A Computational Mechanism 
for Intelligent Backtracking 

Jia-Huai You and Yigong Wang 

Department of Computing Science 
University of Alberta 
Edmonton, Alberta 
Canada, T6G 2Hl 

Abstract 

The nondetermin istic nature of Prolog-based computa · 
tions makes intelligent backtracking an important issue in logic 
programming. The problem is particularly crucial in Prolog 
programming for artificial intelligence where some of tht' 
well-known AI problems rely heavily on automatic backtrack
ing, such as constraint-satisfaction problems. In this paper a 
resolution-based procedure, called context resolution, is 
presented, which, by associating terms with contexts, incor
porates into resolution in a very natural way the information 
needed for intelligent backtracking. The method based on con
text resolution is more intelligent than those based on data 
dependency analysis, and easier to implement than those based 
on unification analysis. In addition, the context resolution 
method provides a flexible framework for intelligent back
tracking in which the tradeoff between the overhead and the 
intelligence quotient can be easily adjusted. The resulting 
algorithm is proven to be correct; that is, backtrack points 
being pruned are only those that definitely lead to failure. 

1. Introduction 

Most Prolog interpreters use the depth-first search stra
tegy with a naive backtracking scheme. That is, from the 
viewpoint of an SLD-tree, the leftmost branch is explored first, 
and when a failure node is encountered the prover backs up to 
the parent node to search alternative branches. Backtracking 
continues in this fashion until a success node is discovered or 
the search is trapped into an infinite derivation. Very often, 
some of the ancestor nodes are known to lead to failure. A 
smarter interpreter therefore should be capable of avoiding 
backtracking to these nodes; this is called intelligent backtrack
ing. Intelligent backtracking can be realized by gathering all 
the information generated so far; based upon which the deci
sion as to which ancestor node should be backed up to can be 
made. Ideally, we would like to prune all the nodes known to 
lead to failure and continue the search from the nearest ances
tor node with an uncertain state, that is, whether it leads to 
failure or success or an infinite derivation is presently unk
nown. 

The problem of backtracking in Prolog systems has 
caught much attention in the last few years, as it is not only a 
problem associated with sequential implementation of Prolog, 
but also an important issue to be addressed in most parallel 
execution schemes (See, for example, [CoKi85]) . The problem 
is particularly crucial in Prolog programming for artificial 

234 

intelligence where some of the well-known Al problems rely 
heavily on automatic backtracking, such as constraint
satisfaction problems. Previous work on intelligent backtrack
ing can be divided into two categories based on the tools used 
in solving the problem. 

Cox [Cox84] and Bruynooghe and Pereira [BrPe84J used 
deduction trees to analyze the possibility of unification of a 
subtree. Cox's algorithm was based on finding the maximal 
subtree such that unification is possible. Bruynooghe-Pereira's 
algorithm was based on finding the minimal subtree such that 
unification is impossible. Once the subtree has been found, the 
nodes that belong to an ununifiable subtree should be avoided. 
The method based on modifying goals by Pereira and Porto 
[PePo82] is another example of unification analysis. These ana
lyses and the corresponding algorithms essentially laid out 
foundations for intelligent backtracking, by which the problem 
of backtracking can be adequately addressed conceptually. As 
indicated in [Cox84] , however, the resulting algorithms can 
only be used in some restricted applications because the com
putation involved can be intensive. In addition, it is not very 
clear how an intelligent backtracking scheme can be effectively 
incorporated into resolution procedures. 

In the second category, the main contributors are 
Conery-Kibler [CoKi85], Chang-Despain [ChDe85], and Lin
Kumar-Leung [LiKL86]. The tool used in their schemes is data 
dependency graph. Using data dependency analysis, a better 
backtrack point can be easily discovered from variable sharing 
information without performing a possibly intensive failure 
analysis. Another advantage of data dependency analysis is its 
direct support of synchronizing parallel evaluation of logic pro
grams. However, data dependency analysis, which is based on · 
computations of graph, can be expensive. In particular, when 
bindings introduced by unification include nonground tem1s, 
reconstruction of data dependency graph is often needed 
[LiKL86]. Another problem of the data dependency method is 
that it sometimes fails to locate the cause of failure directly, 
and is thus sometimes less intelligent than desired. 

The scheme independently developed by Kumar and Lin 
[KuLi87] is also based on the data dependency relation. The 
restriction of ground bindings in the previous scheme 
rLiKL861 is eliminated by a technique called ta!(!(in!(. Their 

performance results indicate that this scheme entails the least 



amount of overhead among several known schemes for a 
number of "typical" programs. However, some of the draw
backs of using the data dependency relation are still present 
(see Section 2). 

The scheme to be proposed in this paper attempts to 
alleviate the problems encountered in the unification analysis 
and data dependency analysis approaches. The scheme treats 
ground and nonground terms uniformly. It is more intelligent 
than data dependency analysis and is easier to implement than 
unification analysis. 

The main idea in our scheme is to associate each tenn 
with a context, a number indicating where the term was "intro
duced." Briefly, when unification takes place, a substituting 
term is assigned a context. When a failure is found to be asso
ciated with a symbol, the context of the symbol directly reveals 
where this failure can possibly be cured. In this way, a simple 
mechanism of maintaining contexts can be incorporated into 
resolution to keep track of the history of a computation for the 
purpose of intelligent backtracking. 

Context resolution is a method aiming at formalizing and 
validating the above idea. Consider an SLD-derivation from 
some initial goal G0 using the leftmost computation rule. Sup
pose the goal G,: f-p 1, ... , Pm is being processed. Next we will 
try to resolve p 1• When p 1 unifies with the head of a candidate 
clause, say c f-c 1, ... , en, we obtain a unifier (x1/11, ... ,x,!t, ). In 
order to record the terms that the current resolving step has 
affected, the variables x1, ... , x, are replaced by [t 1, #i ], ... , [t,, #il, 

respectively. The terms [tk, #i J are called context terms where 
#i is the context pointing to the current goal G,. The next goal 
is derived by replacing the selected literal with the body of the 
candidate clause and then by substituting these terms with their 
contexts into the resulting goal statement (all the symbols in 
the body are associated with #i, too; see Subsection 3.3). In 
doing so, the context information is embedded into the newly 
derived goal and will be propagated to further derived goals. 

In the next section, we illustrate that data dependency 
analysis sometimes fails to locate the cause of a failure 
directly. Section 3 presents context resolution. We first extend 
terms to context terms, and ordinary unification to context 
unification, upon which context resolution is based. We discuss 
how different versions of context unification can yield different 
algorithms with different overhead and degrees of intelligence. 
A prover algorithm is then presented in Section 4, which 
makes use of context information to backtrack intelligently. 
Section 5 contains final remarks. An example of using the 
prover algorithm is included in Appendix I and the correctness 
proof of the algorithm is given in Appendix II. At the time of 
this writing, an implementation of the scheme on Waterloo 
Prolog [McC187] has been attempted and partially completed. 
Preliminary performance results on a number of problems and 
their comparisons with two other schemes are provided in 
Appendix III. 

235 

2. Previous Work Based on Data Dependency Analysis 

Data dependency analysis is based on the assumption that 
two literals are said to be dependent if they share at least one 
common variable. Chang-Despain 's semi-intelligent backtrack
ing scheme rchDe85] employs static data dependency 
analysis, i.e., before the program is executed. Lin-Kumar
Leung's algorithm [LiKL86] implements a dynamic data 
dependency analysis. To carry out data dependency analysis, a 
data dependency graph is needed. As an example, suppose we 
have a clause 

p (A, B, C) f- P1(A), p z(A, B ), p 3(A, C),p4(C),Ps(B, C). 

The data dependency graph of this clause is shown as follows: 

where pi, in which the variable A appears first, is called tJ1e 
generator of the variable A and p 2 and p 3 the consumers of A; 

the variable A is called a linking variable. When a literal fails, 
the execution backtracks to the closest literal on which it 
depends; for example, the failure of p 5 will cause the execution 
to back up to p3. 

One problem with this approach is that a data dependency 
relation changes frequently during execution; this includes 
disappearance of generators, generation of new generators and 
change of previously established dependency relation (A more 
detailed analysis can be found in [YoWa87]). For example, 
suppose we have 

f- p 1(A, B ), p z(A, B ), p3(A, B ) . 

p 1(/ (X), Y) f- p4(X, Y). 

Resolving the goal yields 

f- p4(X, Y), pz(/ (X ), Y), p3(/ (X ), Y). 

Now p 4 becomes the generator of x, and p 2 and p 3 depend on /J4 

instead of p 1 initially. 

Since the data dependency method keeps track of depen
dency at the literal level, not at the variable level, thus it may 
not directly locate the literal leading to unification failure. As 
an example, consider the following goal and program: 

f- p 1(A ), pz(A, B ), p 3(A, B ). 

p 1(a i). 

P1(az). 

P2(a1, b1) , 

p z(a 1, bz). 

P2(a2, bi), 

p3(a 2, b 1), 

Clearly, the first time backtracking occurs is at the goal 
f-pJ(a 1,bi) after resolving p 1 and p 2. According to the data 



. I 

. ' 

. I 

dependency relation, we should first backtrack to p 2 because of 
the linking variable B. We thus obtain f--p3(a1, b 2) by selecting 
p 2(a 1, b2), which will fail again. It is observed that any change 
made on the second argument will not solve the conflict occur
ring at the first argument; the real cause of the failure of 
f---p 3(a 1,b 1) is only due to the first argument of p3(a1,b1) in the 
goal, because it fails to match the first argument of pJ(az, b 1) in 
the program. Thus, a more intelligent backtracking scheme 
should directly back to p 1 in this situation, based on the infor
mation that a 1 causes a conflict which was introduced at the 
time of resolving p 1• However, we must be careful with the 
situation. If we add the clause p 3(a 1, b 2) to the program, we will 
have to consider p 2 as a backtrack point. This is because the 
subgoal f--- p 3(a 1,b 1) disagrees not only at the first argument 
with the clause pJ(a 2, b 1), but also at the second argument with 
the clause p 3(a 1, b2). In this case, as the reader can see, if we 
directly backtrack top 1 when f-- p 3(a 1, b 1) fails, the backtracking 
point ignored will lead to success. Therefore, if there is more 
than one backtrack point we must choose the latest one in order 
to guarantee that no solution will be missed. 

The previous example is not really peculiar if we notice 
that the essential problem here is that the data dependency rela
tion sometimes fails to provide accurate information about the 
cause of the failure directly. The situation can be serious if we 
are solving a goal such as 

f--- P1(A, B ),pz(B, C),pJ(C, D ), p4CD , E),ps(A, E, D ). 

Suppose the variable A is bound to a and every variable in the 
goal is bound in a sequence of derivations leading to 
f--- p 5(a, b, c ) . Further assume that there is only one candidate 
clause whose head is p 5(b, b, c ). Obviously, unless the binding 
for the variable A is changed, the goal cannot be solved. Based 
on the data dependency relation, we should backtrack to p4, on 
which p 5 depends more closely than others, and then to p3, and 
so on; even though they have nothing to do with the cause of 
the failure. Even when they do contribute to the failure, for 
example, in the case that the head of the solely candidate 
clause is, say p 5(b, c, a), it is easy to see that backtracking top 1 

is inevitable. 

3. Context Resolution 

In this section we are going to answer the question: 
without an explicit dependency relation how can we discover 
the correct backtrack point when a literal fails? 

For convenience of technical representation, we will fix 
the computation rule to be used; we adopt the leftmost compu
tation rule. Our method, however, does not preclude the use of 
other computation rules. In addition, like most Prolog systems, 
our interpreter is assumed not to perform "occur checks" in 
unification. Finally, we will not consider backtracking for the 
purpose of generating multiple answers. The solution to this 
problem is simple: backtrack to the nearest ancestor goal for 
which there are untried candidate clauses. 

236 

3.1 Context Terms 

Definition. A context is a number #i which points to 
the goal G,. 

Let #i be a context. A context term is defined induc
tively as follows: 

(i) An ordinary term is a context term; 

(ii) If J is an n-ary function and t 1, •• . , '" are context 
terms, then f (1 1 •...• t") is a context term; 

(iii) If I is a context term then [t, #i] is a context term. 
Given a function symbol or a variables in a possibly 
nested context term of the form [ ... [s ,#i] ... ,#J], we 
say that s is associated with the context #k if #k = 
max(#i, ... ,#J). We will denote by context(s) the con
text associated with a given term s. In the case that s 
is not associated with any context, i.e., s is an ordi
nary term, we let context(s) = .L 
We will denote by functor(t) the leftmost function 
symbol in a nonvariable term 1 . 

A context term is called a context variable if it is 
either a variable, or a variable associated with a con
text, or inductively, a context variable associated 
with a context. D 

By definition, a context term is either an ordinary term, or 
constructed from terms, the brackets "[ ]" and contexts. Terms 
in the initial goal G 0 will be associated with a special context, 
denoted by# - !, to reflect the fact that these terms are not intro
duced during the SLD-derivation. For convenience, this special 
context will often be omitted. 

Note that a context term can be nested, for example, 
[f([a,#l]),#2]; we then say, by definition, a is associated with 
# 2. This can happen, for example, in unifying the literal 
p (X ,f ([a,# ll)) in G2 (the current context is then #2) with 
p (Y, Y), by context unification to be described next. The impli
cation of a nested context term is that a symbol therein has 
been "introduced" more than once, possibly along with some 
other symbols. The largest context happens to indicate the goal 
in which it was last introduced. 

3.2 Context Unification 

Definition. A substitution is now defined as a map
ping from context variables to context terms, 
extended to an endomorphism of the set of context 
terms. D 

Definition. Let undo be a function that maps context 
terms to ordinary terms such that, if t is a context 
term then undo (t) is the ordinary term obtained from 
1 with all brackets and contexts removed. 
Two context terms t and s are said to be unifiable if 
there exists a substitution a, such that 
undo (t cr) = undo (s cr). 

Two ordinary terms I ands (which may well be vari
ables) are said to disagree if their leftmost symbols 
disagree. Two context terms I and s are said to 
disagree if undo (1) and undo (s) disagree; in the case 
that t and s are both non variable, functor (I) and 
functor (s) are called a pair of conflicting function 
symbols. 
Lets be a finite set of context terms. The disagree
ment set of s is defined as follows. Locate the 
leftmost (function or variable) symbol position at 
which not all context terms in S have the same 



symbol and extract from each context term in s the 
context subterms beginning at that symbol position. 
The set of all such context subterms with their con
texts (if any) is the disagreement set. D 

For example, undo(ff([a,#2]),#I]) = f(a); and the 
disagreement set off ([a, #2], [g (X), # I]) and f ([Z, #4], [h (a),# 3]) 
is {[a,#2], [Z,#4]), where g and h are a pair of conflicting 
function symbols. Note that the number of terms in a disagree
ment set is at most the number of participating terms in s. 
Because of ignoring "occur checks," failure of unification can 
only be caused by the existence of a set of pairs of conflicting 
function symbols (constants are considered as 0-ary functions) . 
Unification without "occur checks" have been addressed in 
Prolog II and related work (see, for example, [Colm84]). 

The unification algorithm presented below is modified 
from the one given in [Lloy84]. In the algorithm, s contains 
the two given terms to be unified; one is a context term which 
is the selected literal to be resolved, and the other is an ordi
nary term which is the head of a candidate clause. It is assumed 
the variables in these two terms are standardized apart so that 
the two given terms do not share common variables. In this 
special case, the disagreement set of any two context terms 
consists of exactly two terms. The algorithm will be invoked 
with the actual parameter for context being i if the current goal 
is G,. The composition of substitutions is denoted by •. 

Context Unification Algorithm I: 
unify-l(S, context); 

1. Start with k = 0, cr0 = e. 
2. IfVp,q E (S)cr., undo(p) = undo(q), then stop, and re

turn cr'• which is obtained by adding #context to each 
substitute in cr •. That is, if cr. = {x1lt1, ... ,xnltn), then 
cr'. = {x 1/[t 1, #context], ... , Xnl[tn, #context]). Otherwise, 
find the disagreement set D. of (S )cr •. 

3. If there exist I and s in D. and one of them, say 1, is 
a context variable, then put 

cr.+1 = cr. • { I Is ) ; 

increment k and go to 2. 

Otherwise, unification of s fails. Let I and s be in Dk 
and f = functor(/) and g = functor(s). If only one off 
and g is associated with a context or both f and g 
are associated with the same context, then return that 
context. If f and g are associated with different con
texts, then return the larger of the two. Otherwise, 
none of them is associated with a context; in this 
case, return the context associated with the context 
variable that caused the disagreement (see the third 
example below). D 

Examples. Suppose the current goal is G5• 

S = {p (ff ([X, #2]), #4]), p (f (a))); return CY = ([X, #2]/[a, # 5]) 
S = {p((f([b,#2]),#4]), p(f(a))); return #4 
s = {p ([X, # I], [X, # I]), p (a, b)); return# I t 
s = {p([[a,#l],#3], [[b,#IJ,#4]), p(X,X)); return #4 

In the last example, the context #4 is returned. If we had 
returned the context #3 which is associated with the first argu
ment, we then might have lost the chance of possibly "correct
ing" the term b to a by using alternative clauses. This is why 
the more recent context of the two should be returned. 

t The coniext associated with X, i.e., # I, is returned since X caused UlC disagreement 

bc1wcen a and b. 

237 

Notice that for two non-unifiable terms unify-I finds the 
leftmost conflicting function symbols. Failure of unification, 
however, can result from more than one pair of conflicting 
function symbols. For example, with 

S = {p([a,# 2], [b,#3], [e,# 1], [r,#4]), p(c,d,X,X)), 

the contexts #2, #3 and #4 indicate the goals where each of 
these conflicts may be resolved, respectively. Since unless all 
of the conflicts have been resolved, unification with the same 
atom (i.e., p (c, d, X, X) in this example) cannot possibly 
succeed, the most effective way is to collect all contexts associ
ated with conflicting function symbols and return the smallest 
(in this case, #2) to backup as far as possible. Based on this 
observation, we give a fuller version of context unification 
algorithm below. The algorithm works as follows. Whenever a 
pair of conflicting function symbols are discovered, instead of 
aborting the process and reporting a context, it saves the con
text and then proceeds to find the next pair of conflicting func
tion symbols until all conflicts are collected. For each 
conflicting pair, the more recent context associated with the 
pair is obtained, and finally the smallest context among all so 
obtained contexts is returned. 

Context Unification Algorithm II: 
unify-ll(S, context); 

1. Start with S 0 =S, k = 0, cr0 = e, C = 0. 

2. Find the disagreement set Dk of (Sk)crk. 

3. If there exist I and s in Dk, then do the following: 

(i) if one of I and s, say t, is a context variable, 
then put 

crk+1=cre {tis); 
Ck+I = Ck; 
sk+1 = sk; 

increment k and go to 2; 
(ii) if neither I nor s is a context variable, then put 

O'k+l = <J1c; 

Ck+1=C. u { <t,s > ) ; 
s.+1 = sk with t and s being replaced by a 

new variable; t 
increment k and go to 2. 

4. Otherwise, Dk is empty. 

(i) If c. is also empty, unification of s succeeds. 
Let cr. {x1//1, .. ,,Xnltn ). Return unifier 
{x 1/[/ 1, #context], ... , Xn /[In, #context l). 

(ii) If ck is nonempty, unification fails. For each 
pair <t, s > in c., let 

#n = context (functor (t )) 
#m = context (functor (s )), 

and obtain a context according to 

(a) if #n ct- .l & #m ct- .l, get max(#n, #m ); 

(b) if #n ct- .l & #m = .l, get #n; 

(c) if#n=.l&#mct-.l,get#m; 
(d) if #n = .L & #m = .L, get the context associ

ated with the context variable that caused 
the disagreement. 

Let the set of all these contexts so ob
tained be C. Then return minimum(C). D 

t The purpose here is simply to hide tl1is conflict in order to find the next conflict. 



.. .. I 

The algorithm unify-II is more costly since it requires an 
extra amount of work as compared to unify-I, where failure is 
reported immediately after first conflict is discovered. If the 
returned context is not the smallest, as it may happen in unify. 
I, the conflicts resulted from some earlier context will be 
rediscovered as the cause of failure. Here we see a tradeoff 
between the overhead and the degree of intelligence. 

Further extension of context unification will be to collect 
context information whenever a variable is bound, even in the 
case that unification succeeds. Since this discussion involves 
maintenance of B-list, we will leave it to the next section. 

3.3 Context Resolution 

Context Resolution is like standard resolution, except that 
it uses context unification and the context information is car
ried over along the derivation. The procedure resolve described 
below gives the actions to be performed in a single resolving 
step. Note that we have chosen the leftmost computation rule. 

resolve(G,, cr); 

where G, is of the form t- / 1, ... , I, and cr is a unifier 
obtained by Context Unification for i I and p, p being 
the head of a clause p t- q 1, • •• ,qm. The next goal 
derived is of the form 

f- {qi, ... , qm, / 2, ... , I; }cr. 

Since the symbols in the clause p t- q 1, •• • ,qm are 
also introduced in the current resolving step, they 
should be associated with the current context #i. Let 
q'i, 1 .,, J $ m, denote the literal obtained from (qi )cr 
by associating symbols in qi with the current con
text. Then, the next goal derived is: 

G,+1: t-q' 1, ... ,q'm, l 2a, ... ,l,a D 

Example. The goal G3 below is derived from G 2 by resolving 
with p 1<J (Y), b) t- p3(Y, c): 

G2: t- P1lf([a,#l]),X), pi(X). 

J. 
G / t- pJ([[a,#1],#2] , [c ,#2]), pi([b,#2]). 

4. A Prover Algorithm 

We now present a prover algorithm that makes use of 
context information for intelligent backtracking. We have 
chosen to present the algorithm as simple as possible, similar 
to the prover in [Nils84], in order to clearly convey the main 
ideas and the mechanism. The algorithm is presented in Figure 
1 and works as follows. A failed literal in a goal statement 
either failed directly, meaning it fai led to unify with the head 
of any candidate clause, or failed indirectly, meaning it suc
ceeded at least once but finally fai led. Given a goal G, to be 
solved, we choose the leftmost literal to resolve. If there still 
exists an untried candidate clause, we then try to unify the head 
of the clause with the chosen literal. If unification succeeds, 
we go resolve the derived goal. Otherwise, unification fails. In 
this case we save the returned context in B-list, and try next 
candidate clause. At this moment, we do not know yet whether 
this will be a direct failure. By the time that all candidate 
clauses have been exhausted , if it turns out to be a direct 
failure, then all the contexts that are the sources responsible for 

238 

each failure of unification have already been saved in B-list. 
We then backtrack to the most recent context in B-list. Other
wise, it is an indirect failure; in this case, all the contexts con
tained in the current literal are put into B-list (by 
get_all_contexts (current_literal )) in Figure 1) 
and the most recent context in B-list is selected for backtrack
ing. The selected backtrack point is then deleted from B-list 
(by delete_from (backtrack_point , B-list ) in 
Figure 1). The execution continues at the restored goal pointed 
to by the selected backtrack point. A simple example in 
actions using this algorithm is included in Appendix I. The 
correctness proof of the algorithm can be found in Appendix II. 

A Prover Algorithm: 

8-list := { #-1}; 
/*the special context #-1 is in initially*/ 

prover(Gi, program) 
{ 
if (Gi = NIL) return SUCCESS; 

/*an answer has been found*/ 
current_literal := leftmost(Gi); 

/*use the leftmost computation rule*/ 
try: 

clause := candidate_clause(current_literal,program); 
/*get an untried candidate clause*/ 

if (clause '# NIL) 
{ /*there is still some untried candidate clause*/ 
substitution := unify({current_ literal, 

head(clause)}, i); 
if (substitution is a context) 

{ /*unification fai led*/ 
B- list := un ion ({substitution}, B-list); 

/*save a potential backtrack point*/ 
goto try 
} ; 

if (substitution is not a context) 

} ; 

{ /*unification succeeded*/ 
Gi+1 := reso lve (Gi, substitution); 
return prover(G. 1, program) 
} I+ 

if (clause= NIL) 
{ /*no more candidate clause*/ 
if (failed directly) 

backtrack_point := max(B- list); 
if (failed indirect ly) 

{ 
B- list := union (B-list, 

get_all_contexts(cu rrent_ literal)); 
/*add all contexts to B-list*/ 

backtrack_point := max(B-list); 
} ; 

if (backtrack_point = #-1 ) return FAILURE; 
/*failure due to the initial goal*/ 

B- list := de lete_from(backtrack_point, 8- list); 
B-subgoal := reset_subgoal(backtrack_point); 

/*restore the goal pointed to by backtrack_point*/ 
return prover(B-subgoal, program) 

} } 

Figure 1: A prover algorithm. 

The B-list used in the algorithm is global. In [LiKL86, 
KuLi87]. one B-list is attached to each clause. By using local 
B-lists, some of the irrelevant information can be further 



eliminated. This approach can be adopted in our algorithm 
without any difficulty. See [KuLi87] for details of manipulat
ing local B-lists. 

The reason to include all contexts when a goal fails 
indirectly is due to the fact that context unification did not 
return context information when unification succeeded. This 
may introduce redundant backtrack points since not all con
texts are relevant to the failure. Actually, when unification 
succeeds relevant contexts are those that are contained in the 
substitutes of the unifier. Thus a remedy to this problem would 
be to return, in addition to a unifier, the contexts contained in 
the substitutes of the unifier. This is another tradeoff between 
the overhead and the degree of intelligence. Adding this pro
cess into unification would be beneficial only in the case that 
solving a goal involves a large mount of indirect failures. 
Incidentally, if we add this process into the context unification 
algorithm unify-II, the resulting algorithm becomes very close 
to the schemes based on unification analysis, such as Pereira 
and Porto's selective backtracking method [PePo82], which is 
more intelligent than ours. Our scheme using either unify-I or 
unify-II is therefore essentially a simplified version of theirs. 

5. Final Remarks 

By comparing the existing approaches and analyzing the 
problems therein, we have proposed an intelligent backtracking 
scheme, based on the concept of context resolution. The 
advantage of our scheme is that it naturally embeds the context 
information into resolution; as a result, it can locate the cause 
of failure directly. The overhead in the resulting algorithm 
includes maintenance of B-list and an association process built 
into unification. Each activation record on the stack will con
sume a little more space to keep several extra pointers. Back
tracking to the goal pointed to by a context is easy as long as 
we have a good scheme for keeping the traces of execution. In 
addition, we have seen how tradeoffs between the overhead and 
the degree of intelligence can be made and analyzed around the 
notion of context unification. 

An implementation of the scheme proposed here has been 
attempted for Waterloo Prolog [McC187]. Intelligent back
tracking is considered an add-on feature on top of the system, 
providing the user with several options that differ in the 
entailed overhead and the degree of intelligence. In the case 
where the computation is determinate or involves little back
tracking, the user can simply ignore this add-on feature as a 
whole or on a per-clause basis. At the time of this writing, the 
implementation is not yet fully completed. We can only pro
vide in Appendix III some very preliminary performance statis
tics and a comparison with two other schemes. 

The mechanism of intelligent backtracking will later be 
combined with a mechanism of computing with constraints (in 
particular, with equations [YoSu86]), another feature we plan 
to implement on top of Waterloo Prolog. It is our hope that 
constraint generation and propagation can significantly reduce 
the need of backtracking, resulting in an execution mechanism 
similar to that of means-ends analysis [Rich83]. 

239 

Acknowledgments. 

This work is supported in part under NSERC operating grant 
number A9225. We would like to thank Brian Wong for 
implementing the scheme and providing the performance 
results. Referees' comments are useful and have helped 
improve the presentation of this paper. 

REFERENCES 
[BrPe84] Bruynooghe, M. and L.M. Pereira, "Deduction revi

sion by intelligent backtracking," in Implementa
tions of Prolog, pp. 194-215, Ellis Horwood Lim
ited, 1984. 

[ChDe85] Chang, J.-H. and A.M. Despain, "Semi-intelligent 
backtracking of Prolog based on a static data depen
dency analysis," Proc. of IEEE Symposium on Logic 
Programming, pp. 10-21, Boston, Mass., July, 
1985. 

[Colm84] Colmerauer, A., "Equations and inequations on 
finite and infinite tree," in Proc. of International 
Conference on Fifth Generation Computer Systems, 
pp. 85-102, Tokyo, Japan, November, 1984. 

[CoKi85] Conery, J.S. and D.F. Kibler, "AND parallelism and 
nondeterminism in logic programs," in New Gen
eration Computing, Vol. 3(1985), pp. 43-70. 

[Cox84] Cox, P.T., "Finding backtrack points for intelligent 
backtracking," in Implementations of Prolog, pp. 
216-233, Ellis Horwood Limited, 1984. 

[KuLi87] Kumar, V and Y. Lin, "An intelligent backtracking 
scheme for Prolog," Proc. of IEEE Symposium on 
Logic Programming, San Francisco, September, 
1987. 

[LiKL86] Lin, Y., V. Kumar and C. Leung, "An intelligent 
backtracking algorithm for parallel execution of 
logic programs," Proc. of IEEE Symposium on 
Logic Programming, pp. 55-68, SLC, Utah, 1986. 

[Lloy84] Lloyd, J.W., Foundations of Logic Programming, 
Springer-Verlag, New York, 1984. 

[McC187] McClurkin, D.J., "WUP Version 3.0 User's 
Manual," Logic Programming and Artificial Intelli
gence Group, Department of Computer Science, 
University of Waterloo. August, 1987. 

[Nils84] Nilsson, M., "The world's shortest Prolog inter
preter?," in Implementations of Prolog, pp. 87-92, 
Ellis Horwood Limited, 1984. 

[PePo82] Pereira, L.M. and A. Porto, "Selective backtrack
ing," in Logic programming, eds. K.L. Clark and 
S-A. Tarnlund, pp. 107-114, Academic Press, 1982. 

[Rich83] Rich, Elaine, Artificial Intelligence, McGRAW
HILL Book Company, New York, 1983. 

[YoSu86] You, J.-H. and P.A. Subrahmanyam, "Equational 
logic programming: an extension to equational pro
gramming," in Proc. of 13th POPL, pp. 209-218, 
St. Petersburg, Florida, January, 1986. 

[YoWa87]You, J.-H. and Y. Wang, "Intelligent backtracking 
by finding the cause of failure," Dept. of Comput
ing Science, University of Alberta, June, 1987. 



Appendix I: An Example 
Program: 

Goal: 

Po(A ,B, C) f- P1(A), P2(A ,B ),p3(A, B). 
p 1lf (D )) f- p4CD ). 
pia). 
pib). 
P2lf (a), b ). 
P2lf (b ), b ) . 
p 3(f (b ), b ). 

f-Po(X,Y,Z). 

SLD-derivation: 

#0: f-Po(X, Y,Z). 
cr1 = {X /[A, #0]. Y l[B, #0], Z/[C, #OJ} 
B-list = {#- !) t 

#I: f-P1([A,#Ol), P2([A,#O] , [B,#0]), p3([A,#O], [B,#0]) . 
cr2 = { [A , # 0]/[f (D ), # 1 l} 
B-list = {#- !) 

#2: f-pi [D, # I]), pi([f ([D, # 1]), # l], [B, #0]), 
p3([f ([D, # ll), # l], [B, #0]). 

0"3 = {[D , # l]![a , #2]) 
B-list = {# - !) 

# 3: f- P2([f ([a, #2]), # !], [B, #0]), 
p3([f([a,#2]),#l], [B ,#0]). 

0"4 = {[B , # O]l[b, # 3l} 
B-list = {#- !) 

#4: f-pJ( [f([a,#2]),#1],[b,#3]). 

Fails because of the disagreement between a and b. This is a 
direct failure. The conflict between a and b caused context :: ~ 
to be added to B-list. So, B-list = (#2, #-1) and max({# 2, #- 1) , 
= #2; the execution backtracks to #2. 

#2: f-pi[D,#1]), pi([f([D,#1),#1],[B,#0]), 
p3([f ([D, # !]), # l], [B, #0]). 

cr2 = {[D, # l]/[b, #2]} 
B-list = {# - 1) 

/*#2 is deleted after backtracking*/ 

#3: f-P2{f/{[b,#2]),#l],[B,#0]), 
pJ([f ([b, #2]), # !], [B, # OJ). 

0"3 = {[B , # O]l[b, # 3l} 
B-list = {#- !) 

# 4: f- p 3{[f ([b , # 2]), # l], [b, # 3]). 

Succeeds after one more step. 

Appendix II: Correctness Proof 

We will first determine the relationship between a failed 
literal and the goal it backtracks to. First a definition. 

Definition. Two literals p and q are said to be at the 
same level if they appeared simultaneously in a 
derived goal during SLD-derivation. 
A literal p is the ancestor of a literal q if q is an 
instance of a literal occurring in the body of the 
clause whose head unifies with p . D 

In the following derivation, p 1, p 2 and p3 are at the same 
level, and so are p3 and q 1. But p2 and q 1 are at different levels, 
and so are p 1 and q 1• In addition, p 2 is the ancestor of q1. 

t Recall (Section 4) !hat the context #- 1 is initially in B-list and new contexts are 

added to B-lisl when a chosen literal fails either directly or indirectly . 

240 

f- q1,p3. 

Notice that a literal and its ancestor must be at different 
levels. In what follows, context unification refers to unify-I 
described in Subsection 3.2; however, the results can be easily 
extended to unify-II. 

Lemma 1. Let p be the leftmost literal in the current 
goal that fails. If q is the leftmost literal at the goal 
pointed to by #k, #k = max(B-list), then q is either at 
the same level asp or the ancestor of p. D 

Proof: 
Let the symbol f be associated with #k. Assume that q and p 
are at different levels (otherwise p and q are at the same level). 
Show q is the ancestor of p. Let q' be the ancestor of p. We 
will then encounter the following two goals: 

#i : f- q'' s , .. . 
#i+l : f- ... ,p, ... ,s, ... 

where q' unifies with the head of q" f- ... , p' ,.. . and p is an 
instance of p'. From the condition that #k is the largest in B
list and/ is introduced by resolving q (which is at a different 
level from p ), f must be introduced at the point #i or before. 
Furthermore, since p contains f, either p' itself contains f or a 
variable in p' is bound to a context term containing f by unify
ing q' with q"; in the first case, according to context resolution, 
f is associated with #i. In the second case, f is also associated 
with #i by context unification, because #i is the largest at the 
point #i. Therefore, #i must be equal to #k and q must be q'. 

D 
Theorem 2. Let p be the leftmost literal in the current 
goal that failed. If #k = max(B-list) is tried next, no solu
tion can be missed; i.e., all the backtrack points between 
#k and currently failed goal will definitely lead to failure. 
D 
Proof: By Lemma 1, the leftmost literal of the goal 
pointed to by #k is either at the same level as p or the 
ancestor of p. Therefore, the leftmost literal in any 
derived goal between #k and the current goal must be at 
the same level as p : 

#k+l: f- q, ···,Pk+I, ···· 

#j: f- ... , {/l1-1)B1-1, .... 

#I: f- (/l1-1)B1-t, .... 

where for any j, k+I 5.J 5. 1-1 , e1 is the unifier associated 
with the resolving step at the j-th goal, (p1 )B1 = PJ+I • and 
(p,_1)B1-1 = p. We show that no refutation can be found by 
backtracking to any of these goals. 
If new bindings produced by re-resolving q and all subse
quent literals before p do not change p at all, obviously p 
will fail again. If they do, there are two cases depending 
on whether p failed directly or indirectly. 

case a: p has not previously succeeded (i.e., failed 
directly). 
In this case, the head h1 of each candidate clause has failed 
to unify with p. Note that since p = (pk+i)B.+1• · · · •B1-1, h, is 
in fact unifying with (pk+1)Bk+i• · · · •B1+ Let/ and g be a 
pair of conflicting function symbols in unifying p and h,, 
and #n, be the context returned accordingly. Note that #n, 

;<; #k. Note also that since "occur checks" have been 



ignored, failure of unification can only be caused by 
conflicting function symbols. We first show that neither/ 
nor g was introduced by the substitution ek+1• · · · ·8,- 1; 
hence they must have already existed in Pk+1 or been 
drawn from h1 • 

By unify-I, if/ is associated with a context but g is not, 
then g is a function symbol originated from h1 and / is 
already in Pk+i because #n1 ~ #k . If both/ and g are asso
ciated with some context respectively, then / and g are 
already in Pk+l because #n1 is the larger of the two contexts 
but no larger than #k. If the context returned is associated 
with a context variable, then this context variable must 
occur (at least twice) in Pk+i and/ and g are symbols in h, . 
(Note that the context variable must be changed from 
multiple occurrences of the same variable to distinct vari
ables or other terms in order to unify with h1 . ) It follows 
that for any substitution T], (pk+i)TJ cannot be unifiable with 
h1, 

Since the above is true for each candidate clause, it fol
lows that new bindings generated by backtracking to any 
goal after #k will not be able to resolve p and thus 
definitely lead to failure. 
case b: p has previously succeeded at least once (i.e., 
failed indirectly). 
In this case, all the contexts in p are included in B-list. If 
new bindings generated by backtracking to any point after 
#k, say #i, affect p, then #i must be in p already and there
fore in B-list at the point when p failed; this contradicts 
the assumption that #k is the largest in B-list. 
We therefore conclude that backtracking to any goal 
between #k and the current one having p as the leftmost 
literal will fail to solve p . D 

Appendix III: Performance Results 
Our intelligent backtracking scheme is tested on a variety 

of problems. The same set of problems is used in the evalua
tion of the backtracking schemes of [BrPe84] and [KuLi87]. 

The run time of a program is obtained by measuring the 
amount of time spent inside the interpreter alone. This is done 
by calling the UNIXt times command which returns the CPU 
time used while executing instructions in the user space of the 
program. times is called just before entering the interpreter and 
it is called again just after leaving it. Thus the amount of time 
spent in the interpreter can be determined. 

The results are obtained by running the programs on an 
idle Sun-3/50 work station. All the programs have very short 
running times, except for the simple map-coloring program. 

Thus to obtain a more reliable timing measurement, they are 
queried several times and the total time spent is recorded. 
Then the same programs are run on an unmodified interpreter 
and the two sets of times are compared to give the results. In 
each table entry, the percentage change of CPU time of the 
intelligent scheme with respect to the naive scheme is entered. 
Thus a negative percentage means a speed up and a positive 
percentage means a slow down. The number of machine cycles 
executed in the scheme of [KuLi87] is also included in column 
three, since the authors of [KuLi87] think that the CPU time 
taken by their simulator may not be accurate. 

Among the three schemes, [BrPe84] is the most intelli
gent in the sense that their scheme eliminates the largest 
amount of search space in theory. In terms of run time. 
however, their scheme is not as practical as ours because of the 
substantial overhead involved in the unification analysis. The 
scheme of [KuLi87] sometimes fails to pin point the cause of 
failure directly. During the generation of a B-list, whenever a 
predicate P fails, they will consider the generators of all the 
variables that occur in the argument of P and backtrack to the 
most recent one. This backtrack point may not be the one that 
caused the unification failure. Thus P may fail again. 

Our scheme gives similar or better speedup when a pro
gram backtracks heavily. In addition, it gives a small overhead 
(around 10%) for programs which do not benefit much from 
intelligent backtracking. (That is, programs which are deter
ministic or where backtrackings are done to the nearest non
deterministic ancestor node. For example, the tree and the 
clever 6-queen programs.) Since the backtracking scheme is 
controlled by a high level Prolog predicate, the user can turn it 
on and off at any time. For those programs where intelligent 
backtracking only creates overhead, the user could turn off the 
scheme. When the scheme is turned off, no overhead will 
entail. 

At the present time our modified interpreter cannot handle 
Prolog programs with assert, retract, or prove unless we turn 
the scheme off. Although a full scale implementation is not 
finished, the present results seem promising. 

t UNIX is a trademark of Bell Laboratories. 

Comparison of execution times 

Query 

ata ase query 
5-queen simple 
5-queen clever 
binary tree 
mapcolor clever 
ma color sim le 

Bruynooghe & Pereira 
CPU 

• 0 

-36.0% 
+99.0% 
+44.0% 
+63.0% 
-99.7% 

241 

- • 0 

+165.2% 
+92.6% 
+11.6% 

+8.9% 
-99.2% 

• 0 

+16.6% 
+7.5% 
+5.9% 
-3.6% 

-99.9% 

• 0 

-73.8% 
+9.1% 

+11.1% 
+ 11.3% 
-92.6% 



I 

LEW-P: Learning by Watching in the Planning 
Domain. 

Patrick Constant*, Stan Matwin§, Franz Oppacher+ 

*Ecole Nationale Superieure des Telecommunications, 46 r. Barrault, 75016, and 
Cognitech, Inc., Paris, France. 

§Dept. of Computer Science, University of Ottawa, Ottawa, Ont. KlN 9B4, Ca~ada. 1 

+school of Computer Science, Carleton University, Ottawa, Ont. KlS 5B6,Canada.l 

Abstract 

This paper describes LEW (Learning by Watching), a novel 
learning technique implemented in Prolog, and discusses its 
application to the learning of plans. LEW is a domain
independent learning system with user-limited autonomy that is 
designed to provide robust performance in realistic knowledge 
acquisition tasks in a variety of domains. It partly automates the 
knowledge acquisition process for different knowledge types, 
such as concepts, rules and plans. The inputs to the system, 
which we call cues, consist of an environmental component 
and of pairs containing a problem and its solution. Unlike 
traditional forms of 'Learning by Example' (e.g.[Winston 
1984]), in which the system uses the teacher's answer to 
improve the result of a prior generalization of an example, LEW 
treats the problem-solution or question-answer instances, i.e. 
the cues themselves, as the basic units for generalization. 

Keywords: machine learning, knowledge acquisition, 
planning, learning by watching. 

1. Introduction 

This paper describes LEW (Learning by Watching), a novel 

learning technique implemented in Prolog, and discusses its 

application in the planning domain. Our approach is presented 

more rigorously in [Constant et.al. 1988], and its use in the 

construction of knowledge-based software advisor systems is 

described in [Constant et.al. 1987]. LEW, a domain

independent learning system with user-limited autonomy, is 

designed to provide robust and reliable performance in realistic 

knowledge acquisition tasks. It partly automates the knowledge 

acquisition process for different knowledge types and in a 

variety of different domains, and may thereby help overcome 

the so-called 'knowledge acquisition bottleneck' phenomenon 

[Boose, Gaines 1986]. 

1 The work described here has been partially supported by NSERC grants 

No.A2480 and A0313, and by a grant from Cognos Inc., Ottawa, Canada. 

242 

The inputs to our system - which we call cues - consist of 

an optional environmental component (see below) and of pairs 

containing a specific problem and its specific solution. Unlike 

traditional forms of 'Learning by Example' (e.g.[Winston 

1984]), in which the system uses the teacher's answer to 

improve or modify the result of a prior generalization of an 

example, LEW treats the problem-solution or question-answer 

instances, i.e. the cues themselves, as the basic units for 

generalization. 

Most of the learning systems described in the current 

literature are vehicles for exploring theoretical issues in learning 

and only few are robust enough to support knowledge 

acquisition for practical knowledge bases [Michalski et al. 

1986]. Even the systems used to facilitate realistic knowledge 

acquisition tasks suffer from various restrictions. Most of them 

work only in domains characterized by a small number of 

dimensions (for an exception, see [Lebowitz 1986]). Some 

have very limited representation languages such as feature 

vectors or monadic predicate logic [Quinlan 1986]. Others, i.e. 

the ones that function incrementally, require noise-free data 

[Winston 1984]. Alternatively, noise-resistant systems 

[Quinlan 1986] require extensive statistics and initial availability 

of all positive and negative instances. Still others presuppose 

complete and formalized theories of their domains [Mitchell et 

al. 1986; DeJong, Mooney 1986]. 

Only few, if any, systems seem capable, without major 

modifications, of learning different types of knowledge, such 

as concepts and rules as well as plans. 

Section 2 briefly explains the design goals that have 

influenced the construction of LEW, and section 3 presents the 

basic learning algorithm. 



Section 4 illustrates LEW's functioning as a plan learner with 

several examples and compares LEW briefly with some other 

knowledge acquisition tools. Section 5 concludes by 

mentioning some possible extensions and enhancements. 

2. Design Goals 

It is our main goal to create a practically useful, robust, and 

domain-independent knowledge acquisition and refinement 

tool. This goal implies the following criteria on which the 

design of LEW is based. 

• The system should be capable of learning different types 

of knowledge. 

• Leaming should be incremental. 

• Learning should be order-independent. 

• The system should be noise-resistant. 

• The representation language should be unrestricted. 

• The system should be able to learn 'from scratch', i.e. starting 

with an empty knowledge base. 

• System performance should degrade gracefully. 

• The growing knowledge base should be kept efficiently 

indexed. 

LEW combines aspects of Learning by Example and of 

Learning by Analogy in order to realize its objective of 

knowledge refinement, i.e. to pack a maximum amount of 

knowledge into a minimal number of cues. 

Knowledge refinement is achieved by keeping the 

knowledge base organized into similarity clusters, i.e. groups 

of closely related cues. These clusters serve as indices into the 

knowledge base and make learning by analogy feasible: given a 

new question, the clusters facilitate access to and matching 

against old cues with relevantly similar questions. Once such a 

cue is found, its answer is transformed in accordance with the 

similarities established by the match and given, as well as 

remembered, as the answer to the new question. 

The structural similarity that the cues in each cluster bear to 

one another is not only the basis for our indexing scheme but 

also supports generalization. Since successful generalizations 

243 

have the effect of collapsing two or more clusters into one, the 

efficiency of the indexing scheme is enhanced by the quality of 

the obtained generalizations. A more efficient indexing scheme, 

in turn, increases the chances for more powerful subsequent 

generalizations. 

LEW's learning behavior is, thus, reminiscent of the 

functioning of dynamic memory based approaches [Schank 

1982; Kolodner 1984; Lebowitz 1986]: the continuous 

reorganization of the knowledge base in terms of previous 

generalizations facilitates the detection and exploitation of fresh 

structural analogies; the latter may lead to new generalizations 

which trigger further re-indexing. 

LEW could be used as an autonomous learner but we have 

decided, for practical reasons, to impose on it a protocol of 

interaction with an expert. This protocol allows LEW to make 

only relatively reliable generalizations by itself and to prompt an 

expert to validate the rest (see [Constant et.al. 1988] for more 

detail). 

3. The Learning Algorithm of LEW 

As remarked above, a cue consists of a question-answer 

pair with an optional environmental component, and is 

represented as follows: 

cue(Cluster_Index, Cue_Index, Environment, Question, 

Answer). 

The Question consists of a marker indicating the question 

type - such as 'How do I' or 'Why' - and a phrase representing 

its propositional content. Both the Answer and the Environment 

are lists of phrases. In certain cases, the Answer may comprise 

a list of lower-level questions, the answers to which are taken 

to jointly constitute the given Answer. The Environment, if 

nonempty, can specify domain knowledge to constrain 

generalization or, in planning applications, describe the initial 

environment that is consulted to see if an action's preconditions 

are met. 

When LEW is supposed to learn plans, it is also provided 

with a basic repertoire of actions which have the following 

form: 



I 
. I 

I 
. I 

action(Action_Index, lnput_Environment, Action, 

Output_Environment). 

Each action predicate is to be interpreted as asserting that 

performing Action in the Input_Environment yields a state 

described by Output_Environment. Input_Environment and 

Output_Environment are lists of phrases, while Action is a 

single phrase. (The Action_Index will be omitted in several 

illustrations below). 

A similarity cluster is a set of cues each of which is linked 

to at least one other cue in the cluster by virtue of having a 

question or an answer in common with it or of being 

synonymous with it or of belonging to the same type (see 

below). The generalization procedure is only applied within one 

such cluster because, intuitively, generalizing on sets of less 

similar cues would lead to a proliferation of far misses. 

Domain-specific synonyms are supplied by the expert or 

inferred on the basis of single differences between cues. Thus, 

LEW creates a synonym in the following two situations: either 

two cues have the same question (answer) and the two answers 

(questions) differ by only one word and the two environments 

are identical or differ by that same word, or two identical cues 

have environments that differ by only one word. In either case, 

LEW assumes such cues themselves to be synonymous and 

collapses them into one. 

Types are either specified by the expert before learning 

begins or created by LEW as a result of learning. A type is 

created whenever two questions differ by only one word, the 

two corresponding answers differ by only one other word, and 

the two corresponding environments differ by at most these 

two words. Naturally, learning proceeds more smoothly and 

generalizations are more powerful in the presence of a well 

developed, hierarchized type structure supplied by an expert. 

But it should be noted that useful learning takes place even 

without any prespecified type information (see [Constant et.al. 

1988]). 

Learning and knowledge refinement occur whenever the 

assertion or retraction of a cue by the expert, i.e. its 

presentation as a positive or negative example, triggers the 

process of knowledge base reorganization (KBR for short). 

Since KBR is a costly process, it is only performed at times 

when there are no other demands on the system; in practice, 

244 

this amounts to storing expert-supplied cues (e-cues, for short) 

until the expert puts LEW explicitly into KBR mode. 

In KBR mode, each e-cue can bring about a complete 

reorganization of memory, according to the following 

algorithm: 

• Compute minimal environments. 

(This process of computing minimal environments is described 

in detail in section 4.) 

Use negative examples to specialize. 

Negative examples serve to prune overgeneralization. If e

cue is presented as a negative example that does not yet 

occur in the knowledge base, it is put on a list of rejected 

cues that is consulted by LEW to prevent wrong 

generalizations. If e-cue is presented as a negative example, 

but is already asserted in the knowledge base, it is removed 

from its similarity cluster. This cluster is then restructured 

from scratch (see below). 

• Determine the extent of the memory reorganization 

required by a positive e-cue. 

• Introduce e-cue in as many different similarity clusters 

as possible. 

Thus, e-cue is put in each cluster containing at least one 

cue that has a question or an answer in common with e

cue or is synonymous with it or belongs to the same 

type. 

• Collapse the modified similarity clusters into one 

cluster. 

The clusters modified by the recent introduction of e

cue have, of course, e-cue in common, and constitute 

by definition a unique larger cluster. This new cluster is 

the only one affected by the next step. 

• Restructure the new cluster from scratch. 

• First, forget all acquired synonyms and types. 

Convert all cues in S to non-compact form by replacing 

all synonyms and types with their values. 

• Second, construct new synonyms. 

Each cue in the unpacked cluster S is compared to all 

others, and all possible synonyms are created. The 

propagation of the new synonyms throughout S 



constitutes one form of learning in LEW. 

• Third, construct new types. 

Type construction constitutes another form of learning 

in LEW. The overriding concern in type construction is 

to obtain a maximally compact cluster, i.e. one that both 

has a minimal number of cues and preserves all prior 

knowledge. Such a cluster is determined as follows: 

different knowledge-preserving clusters will result, 

depending on what types are built on what cues. From 

these temporarily created clusters LEW first selects 

those that have a minimal number of cues. From this 

set, it then selects a cluster whose effective creation 

leads to the construction of a minimal number of new 

types. This choice criterion has the double effect of 

condensing the knowledge base and of reducing the 

number of cues that are submitted to the expert for 

validation. 

The above steps are repeated for all intermediate results of 

generalization until no further changes happen. 

The first step of the process of KBR and its role in the 

acquisition of plans is described in the next section. 

4. Plan Learning 

In order to learn generalized sequences of actions, i.e. 

general plans as quickly as possible, LEW determines for each 

basic action A which parts of the description of its 

Input_Environment and Output_Environment (EiA and EO A for 

short) are relevant to performing the action. Since (a part of) 

an environment description is irrelevant to the execution of an 

action if it is the same in EiA and EO A, the following formula is 

used to compute the relevant, i.e. minimal Input_Environment, 

min_Ei A, for each action A: 

min_Ei A = Ei A - [Ei A n EO Al. Similarly, min_Eo A = 

EOA - [EiA n EOA], 

For example2, in the case of the action 

action(l, [cube(A) ontop cube(B), cube(B) ontop table], 

2 In these examples, cube(A) denotes a logic term with a variable A, 

and cube( a) denotes a fully instantiated logic term. 

245 

put cube(A) on table, [cube(A) ontop table, nothing ontop 

cube(B), cube(B) ontop table]), 

'cube(B) ontop table' is superfluous, and LEW will actually 

enter into its knowledge base the following action and its 

associated cue (we do not elaborate here how parts of the cue 

other than the environment are obtained): 

action(}, [cube(A) ontop cube(B)], put cube(A) on table, 

[cube(A) ontop table, nothing ontop cube(B)]), 

cue(l,l, [nothing ontop cube(A), cube(A) ontop cube(B)], 

"how do i drop cube(A) on table?", "put cube(A) on 

table"). 

Once the minimal environment, min_EA, of each basic 

action A is determined as above, the minimal environment, 

min_Ec, for any cue C can be computed with the following 

algorithm. 

First, compute EOc of cue C: 

Let C be cue(_,_, Ei, Question, Answer), where Answer is 

"action 1, action2, .. . , actionn"· Since LEW has to consider 

min_EiA and min_Eo A for each actioni in Answer, we assume 

that the knowledge base at this point contains: 

action(Ei1, action1, E01), action(Ei2, action2, E02), ... , 

action(Ein, actionn, EOn), where Eij, EOj, 1 ~ j:,,; n, are 

minimal. Then 

Eoc = [ .. . [[[[Ei - EiJ] u EOJ] - Ei2] u E02] u ... - Ein] u 

Eon), 

Second, compute min_Ec, using E0c: 

Let C be as above, and let E1 = [Ei - EiJ], E2 = [[[Ei - Ei1] 

u E01] - Ei2], .. . , En= Eoc = [ .. . [[[Ei - EiJ] u E01] - Ei2] u 

... - Ein-ll u E0nJ, Then 

min_Ec = Ei - (nj=l,n Ej), 

The examples below illustrate the concept of a minimal 

environment and some of the uses to which it is put by KBR in 

the learning of plans. 

Example 1: Suppose that we have 

action(l, [cube(A) ontop cube(B)], put cube(A) on table, 

[cube(A) ontop table, nothing ontop cube(B)]), 

action(2, [nothing ontop cube(D)], put cube(C) ontop 

cube(D), [cube(C) ontop cube(D)]), 

and that the expert enters the cue C1 

cue(_,_,[cube(D) ontop table, cube(C) ontop cube(B), 



I 

!, . 

cube(B) ontop cube(A), cube(A) ontop table], "how do i put 

cube(D) on cube(B)?", "put cube(C) on table, put cube(D) 

ontop cube(B)") . 

Then min_Ec 1 = Ei - [E1 n E2], where Ei is the 

Environment of C1, E1 = Ei - Ei1 = [cube(D) ontop table, 

cube(C) ontop cube(B), cube(B) ontop cube(A), cube(A) ontop 

table], E2 = [[E1 u E0 1] - Ei2] = [cube(D) ontop table, 

cube(B) ontop cube(A), cube(A) ontop table, cube(C) ontop 

table, nothing ontop cube(B)]. Thus, the environment of C1 is 

updated to min_Ec1 = [cube(C) ontop cube(B)]. 

Example 2: Assume the same two actions as in Example 

1 and their associated cues 

cue(l,l,[nothing ontop cube(A), cube(A) ontop cube(B)], 

"how do i drop cube(A) on table?", "put cube(A) on table"), 

cue(2,l,[nothing ontop cube(C), nothing ontop cube(D)], 

"how do i place cube(C) ontop cube(D)?", "put cube(C) ontop 

cube(D)") . 

At this point, LEW does not have enough information to 

answer, for instance, a user's question "how do i put cube(c) 

on table?" in the particular environment [cube(a) ontop cube(b), 

cube(b) ontop cube(c), cube(c) ontop cube(d)] . But with just 

one further e-cue, say, 

cue(3, 1, [cube(A) ontop cube(B), cube(B) ontop cube(C)], 

"how do i put cube(B) on table?", "put cube(A) on table, drop 

cube(B) on table"), 

LEW can now put any element of any tower of cubes on the 

table. Since the question of cue(3, 1, ... ) matches the above 

user's question and its environment is included in the 

environment specified by the user, LEW can answer the user's 

question with "put cube(b) on table, drop cube(c) on table", 

and, if more detail is wanted, with "put cube(a) on table, drop 

cube(b) on table, drop cube(c) on table" . 

Example 3: This example illustrates how LEW comes to 

be able to solve the Towers of Hanoi problem. Omitting 

notational details, the following description of the figure below 

is entered by the expert in the knowledge base: 

Ei = [nothing ontop area2, nothing ontop area3, b ontop 

area t, nothing on top a, a on top b, a smaller_than b], 

Question = "how do i move towerb to area3?" (where 

246 

towerx represents a tower consisting of the block x and all the 

blocks above x), 

Answer= "move a to area2, move b to area3, move a to 

area3", and 

EO = [nothing on top area 1, nothing ontop area 2, b on top 

area3, nothing ontop a, a ontop b, a smaller_than b]. 

_& 
area 1 area2 area 3 

_& 
area 1 area2 area 3 

Next, the user asks question Q1 = "how do i move towerz 

to area3?" in the context of environment E1 (again represented 

graphically for brevity). 

area 1 area 2 area 3 

area 1 area2 area3 

Finally, the user problem is matched against the knowledge 

base as follows: 

a) An environment E2 is found such that E1 includes E2 

and E2 is the largest such environment. In our example, E2 = 

Ei. The necessary name conversions are done during matching, 

e.g. x ~ a, y ~ b. 

b) A question Q2 accompanying E2 in a cue in the 

knowledge base is identified, and again the necessary name 

conversions are done as in a). 

c) Q1 is divided into (Q2, Q3, Q4), where Q3 moves what 

remains of E2 in area1 to area3, and Q4 moves the result 

(output environment) of Q2 to area3: 

Q1 = "how do i move towerc to area3?", Q2 = "how do i 

move towerb to area2?", Q3 = "how do i move c to area3?", 



Q4 = "how do i move towerb to area3?". 

d) Q2, Q3 and Q4 are answered by fetching answers A2, 

A3, and A4 from the knowledge base and, for A2 and A4, 

converting the directions of moves accordingly, e.g. area2 

replaces area3 and conversely in A2, and area2 replaces area 1 

and conversely in A4. 

As this example shows, LEW learns to solve the Towers of 

Hanoi problem and similar tasks efficiently and with a 

minimum of background information. It achieves this by 

breaking a problem or question Pi into two problems: an 

existing problem P2 and the "remainder" P3. P2 is a 

subproblem of Pi in the following sense: the environment of 

P2 is contained in the environment of Pi, and a solution to P2 

will contribute to obtaining a solution to P1. Candidates for P2 

are selected and compared on the. basis of their environments, 

and the one with the maximal environment is chosen as P2. 

Answers to P2 and P3 are combined into the answer to Pi. 

The problem P 1, including its environment, problem statement 

and answer is stored in the knowledge base for future use when 

solving problems larger than P1. 

From the preceding description of the basic algorithm and 

the examples it should be clear that LEW has severnl unique 

features. 

The underlying learning technique does not, unlike 

traditional forms of 'learning by example' [e.g. Winston 1984, 

ch. 11], use a teacher's answer to improve the result of 

generalizing an example but treats the question-answer or 

problem-solution pair as the basic unit for generalization. 

As new knowledge is added to the knowledge base, an 

increasingly efficient indexing scheme is maintained and 

updated through the ongoing processes of generalization on 

cues and the formation of similarity clusters. The efficiency of 

this indexing scheme depends on the quality of the 

generalizations obtained: a poor choice of question-answer 

pairs yields a less compact knowledge base, rather than leading 

to incorrect generalizations. Moreover, the generalizations 

themselves lead normally to a condensation of knowledge. This 

condensation effect is often quite dramatic (see [Constant et al. 

1987]). 

247 

Incrementally learning systems presuppose that the inputs 

are presented to them in a carefully chosen order. Different 

sequences of inputs may lead to the learning of different, and 

even wrong, concepts. By contrast, LEW, although an 

incremental learner, enjoys the property that its results are not 

influenced by the order in which the cues are entered (see 

[Constant et al. 1988]). Moreover, unlike other incremental 

systems, LEW retains all cues provided by the expert, thereby 

facilitating the construction of reliable knowledge bases. 

Some incrementally learning systems, i.e. those relying on 

explanation-based generalization (see, e.g., [Mitchell et al. 

1986; DeJong, Mooney 1986]), presuppose that they are 

supplied with a goal concept and a comprehensive, fully 

formalized theory of the domain before any learning on the 

basis of examples begins. Explanation-based generalization 

assumes that the domain theory is sufficiently strong to prove 

that the example instantiates the goal concept. Since the theory, 

with the example as an additional premise, deductively implies 

the inferred generalization, the results of explanation-based 

generalization are guaranteed to be correct relative to the theory. 

This strong property of explanation-based generalization can be 

achieved only in those relatively rare domains for which 

complete and consistent theories are available . However, 

explanation-based generalization does not address the question 

how such theories might be acquired in the first place. 

Our decision to confine learning to near miss situations 

co_unsels learning in small steps. The latter policy is referred to 

in [Winston 1984, p.401] as Martin's Law: 'You can't learn 

anything unless you almost know it already'. It seems to us that 

this common-sensical law is often misinterpreted to mean that 

you can't learn anything unless you already know a lot. While 

we agree that learning should proceed in small steps, i.e. avoid 

far misses, we don't subscribe to the view that to learn 

anything one already has to know a lot. On the contrary, we 

wish to emphasize that LEW can learn useful things even in the 

absence of prior domain knowledge or background information 

in the form of a type hierarchy. In fact, it can even learn an 

initial type hierarchy from scratch (see [Constant et al. 1988]). 



·I 
I 

. I 

' ·I 

5. Concluding Remarks 

We have described a Machine Learning method that has 

been designed as a realistic knowledge acquisition tool, rather 

than an autonomous learning system. Our method is 

incremental, relatively noise-resistant, and does not impose any 

serious restrictions on the representation language. It uses both 

generalization and specialization to generate a knowledge base 

that can subsequently be used by an expert system. It is 

applicable in domains for which no axiomatization of the 

domain knowledge, such as is often required by explanation

driven methods, is available. It relies on the participation of a 

cooperating expert who provides the problem-solution pairs, 

but the knowledge can be entered from scratch, i.e. starting 

with an empty knowledge base. Moreover, in this paper we 

show that LEW is applicable to the learning of plans, and we 

have demonstrated with an example that it outperforms some 

other recently reported methods proposed for this task (e.g. 

[Anzai 1987]). 

248 

References 
Anzai, Y., Doing, Understanding, and Learning in Problem 
Solving. In [Klahr et al. 1987], pp.55-97. 
Boose, J.H., Gaines, B.R., eds, Proceedings of the 
Knowledge Acquisition for Knowledge Based Systems 
Workshop. Banff, 1986. 
Constant, P., Matwin, S., Szpakowicz, S., Question-Driven 
Approach to the Construction of Knowledge-Based Software 
Advisor Systems. Proceedings of the Third Conference on AI 
Applications, pp. 29-37, Orlando, 1987. 
Constant, P., Matwin, S., Oppacher, F., LEW: Learning by 
Watching. A Machine Learning System for Knowledge 
Acquisition. Forthcoming 1988. 
Delong, G., Mooney, R., Explanation-Based Learning: An 
Alternative View. Machine Learning 1, pp.145-176, 1986. 
Klahr, D., Langley, P., Neches, R., Production System 
Models of Learning and Development. MIT Press, Cambridge, 
Mass., 1987 . 
Kolodner, J., Retrieval and Organizational Strategies in 
Conceptual Memory. Lawrence Erlbaum, Hillsdale, NJ., 1984. 
Lebowitz, M., Concept Learning in a Rich Input Domain. In 
[Michalski, Carbonell, Mitchell 1986], pp.193-214, 1986. 
Michalski, R., A Theory and Methodology of Deductive 
Learning. In [Michalski, Carbonell, Mitchell 1983], ch. 4, 
1983. 
Michalski, R., Carbonell, J., Mitchell, T., Machine Learning, 
Volume 1. Morgan-Kaufmann, 1983. 
Michalski, R., Carbonell, J., Mitchell, T., eds., Machine 
Learning. Volume 2. Morgan - Kaufmann, 1986. 
Mitchell, T., Keller, R.M., Kedar-Cabelli, S.T., Explanation
Based Generalization: A Unifying View. Machine Learning 1, 
pp.47-80, 1986. 
Quinlan, J.R., The Effect of Noise on Concept Learning. In 
Michalski et al., pp.149-166, 1986. 
Schank, R., Dynamic Memory: A Theory of Learning in 
Computers and People. Cambridge University Press, 1982. 
Winston, P.H., Artificial Intelligence, 2nd edition, Addison
Wesley 1984. 



Generic Strategies and Representations 
for Communications Networks Sales 

Innes A. Ferguson 
Daniel R. Zlatin 

Artificial Intelligence Exploratory 
Bell-Northern Research Ltd. 

Ottawa, Ontario, Canada KJY 4H7 

ABSTRACT 

This paper focuses on our research into identifying several 
generic tasks and knowledge types in the networks sales 
domain, and describes the architectural approaches that have 
been used to model each. This is done by looking at ENS 
(Expert Network Selector), a knowledge-based tool which 
gives advice on the design and sales of customer networking and 
communications facilities. A multi-paradigm knowledge 
representation scheme has been successfully implemented in 
Pro log to define the various types of knowledge and information 
typically handled by communications networks sales staff. 

Keywords: knowledge-based systems, expert systems, tele
communications, networks design, design tools, networks 
sales. 

Cet article rend compte de nos recherches pour identifier 
plusieurs methodes generiques et types de connaissances dans le 
domaine de la vente des reseaux, et decrit !es approches 
architecturelles qui ont ete utilisees pour modeliser chacun 
d'eux . Ceci est fait en considerant ENS (Expert Network 
Selector), un systeme a base de connaissances qui conseille la 
conception et la vente aux clients de moyens de communications 
et de mises en reseaux. Une classification multi-paradigmes de 
la representation des connaissances a ete implantee avec succes 
en Prolog pour definir differents types de connaissances 
couramment manipulees par le personnel de vente des reseaux de 
communications. 

Mots cles : systemes a base de connaissances, experts systemes, 
telecommunications, conception de reseaux, outils de con
ception, ventes des reseaux. 

1. Introduction 

The aim of this paper is to present the architectural principles 
and generic concepts which we have identified in our chosen 
sales domain and subsequently modelled in the Expert Network 
Selector (ENS). ENS [1] is a knowledge-based tool which is 
currently being developed to assist Bell Canada networks sales 
people in their daily operations, i.e. in the design and sales of 
communications networks. The tool employs a multi-paradigm 
knowledge representation scheme to translate a customer's 
communications and networking requirements into fully
configured solutions. Implemented in Prolog, frames and rules 
have been successfully combined in ENS to create an intelligent, 
user-friendly tool for sales staff who may not possess some of 
the in -depth technical knowledge required to operate 
"conventional" design tools. 

249 

Communications networks design is a complex, iterative 
task which involves determining from a large search space the 
"best" available carrier service meeting a customer's needs. 
Typically, a sales person or engineer (either or both, depending 
on the complexity of the problem being solved) will gather a set 
of customer requirements, and from these produce a functional 
specification of the design to be used. The parameters which 
make up this description will normally be analyzed using one or 
more network design tools - in most cases, several iterations of 
customer requirements specification and analysis will take place 
before a fully-configured solution is produced. Certain aspects 
of network design make this already complex problem harder 
still. Most notably, services and facilities (whether owned by 
the computer manufacturer, the customer, or the telephone 
company itself) constantly change, making it increasingly harder 
for sales staff to produce optimal and up-to-date quotations. In 
addition, relevant knowledge and information about network 
design is usually distributed among various sales, engineering, 
and product experts, which at times can contribute to incomplete 
or conflicting interpretations of the overall design process. In 
human terms, this makes the design task time-consuming and 
thus expensive. 

Artificial Intelligence (Al), and in particular, Knowledge 
Based Systems (KBS) technology, provides attractive means for 
managing the complexity of the network design process [1,2]. 
This is achieved by facilitating the use of heuristic (rather than 
algorithmic) problem solving techniques, as well as declarative 
languages for the explicit representation of the more "volatile" 
knowledge types generally associated with this domain. Interest 
has grown steadily in the application of KBS technology to the 
problems of network configuration and design. Notable 
examples of work in this area are XCON [3,5], which con
figures VAX- J J 1 and PDP-111 computer systems; and 
DESIGNet2[4], which produces topological designs (backbone 
networks and terminal clusterings) for wide-area data networks. 
Both tools are aimed at skilled designers or analysts, and 
consequently have limited usefulness for less technical sales 
representatives. A ware of this, the same team that created 
XCON later developed XSEL [5], a rule-based, higher-level, 
interactive front-end to XCON. Requiring less detailed input, 
XSEL allows sales staff to quote prices on orders at their point 
of sale, and can assist less experienced personnel in filling out 
order forms by displaying relevant, legal field values. ENS 
differs from XSEL in that, besides performing sales tasks 
similar to those found in XSEL (such as selecting the network 
components to be configured), it also performs various 
configuration tasks which are more akin to those performed by 
XCON. 

The generic concepts which are discussed in this paper, 
namely sales tasks and knowledge types, can be split into three 
categories: those which are essentially knowledge representation 



issues, those which form part of the tool's problem solving 
strategy, and those which relate to the user interface component 
of ENS. Details of these, together with a brief introduction to 
the chosen sales domain and some thoughts on the lessons 
learned and future directions, make up the remainder of this 
paper. 

2. The Sales Domain 

ENS [l] was originally designed to assist data network sales 
representatives in gathering a customer's data communications 
requirements, choosing a set of technically viable data services 
according to various selection criteria (see fig. 1 ), and then 
configuring and costing the services for presentation to the 
customer. Due to a positive response from Bell Canada's sales 
support organization, we were encouraged to further enhance 
and generalize this prototype system. 

Input 

Gather 
___. customer's 

communications 
requirements 

+ 
Select services 
according to: 
codes, proto
cols, response 
time, usage, 
trafffic rates, 
line speeds, 
topology, etc. 

Configure par
tially designed 

services 

Cost configured 
solutions ---1 

Quotation 

fig. I : Data communications networks designflow. 

Data network sales representatives are faced with several 
challenging tasks. One of these is having to cope with the vast 
body of information about the various services and facilities they 
sell. In addi tion, much of the information (e.g. rates, tariff 
structures, service descriptions, customer equipment speci
fications, etc.) is of a rapidly evolving nature. Existing design 
tools are focused on isolated aspects of the network design 
process, and are therefore better suited to experienced designers 
or analysts. These tools provide little guidance for more naive 
users, as designers are expected to possess a fairly strong 
technical background. Many sales representatives must deal 
with a large number of customers and thus do not have the time 
to use tools that demand substantial user input. 

On selecting the data communications design domain, and in 
particular, in aiming to assist the sales representatives in this 
field, we felt that a successful solution would have to satisfy 
some important requirements. Namely, that it: (i) minimize the 
amount of user input required during a consultation; (ii) abstract 
the level of dialogue to a point at which the sales staff would feel 

250 

comfortable; (iii) take into account more experienced sales 
persons' heuristics, which they use to speed up the design 
process; (iv) be able to handle qualitative and subjec tive 
customer requirements, since these cannot always be defined in 
purely technical terms; (v) provide adequate means for updating 
knowledge as service-specific parameters change in time; and 
(vi) allow the sales person to quickly explore alternative 
customer recommendations by means of a high-level, interactive 
simulation or what-if facility. 

ENS constitutes an environment for solving various network 
sales and design tasks, as outlined above. By making use of 
various knowledge representation techniques, technical, heuris
tic, and volatile knowledge can be represented in a declarative 
and easi ly modifiable manner. Besides automating various 
repetitive and time-consuming sales tasks, ENS provides several 
useful fea tures which can help simplify and shorten the overall 
design process. It will be shown below how specific know
ledge representation, abstraction, explanation, and simulation 
techniques have been combined in the tool in an attempt to 
achieve this. 

3. Knowledge Representation 

Knowledge in ENS is represented as both frames and rules, 
with Prolog as the chosen implementation vehicle. After much 
experimentation with various data structures and paradigms for 
representing our domain knowledge, we were able to home-in 
on some suitable techniques. The top-level appearance of 
customer networks - independent of the actual technology or 
services used - was found to be very similar in each case we 
studied, and could therefore be represented using a fairly static 
structure. However, this structure would also have to provide 
mechanisms for easily replicating - through either copying or 
inheritance - certain sub-network components which invariably 
appear repeated in a single customer network (e.g. nodes or 
links). For this reason, frames have been chosen. Application
specific design information, on the other hand , is reasonably 
volatile, and may change each time a network service description 
changes. This type of knowledge, we have found, is more 
adequately represented as production rules. 

For the purpose of describing how each representation 
paradigm is being used, the following main knowledge cate
gories can be identified: 

• a hierarchy of frames to represent the customer's network 
requirements, 

• a rule base of design/selection criteria to generate partial 
designs from these requirements, and 

• frame-like design plans which are used to generate and 
represent fully-configured solutions. 

The remainder of this section will describe each category in 
more detail. 

• Customer Requirements Hierarchy 

For the purpose of creating a design, ENS views a network 
as consisting of a hierarchy of sub-network design components. 
Networks are represented as a collection of customer applica
tions (e.g. process control, remote job entry, file transfer) 
running on a set of network links (see fig. 2). Each link, in 
turn, can be described by its two node locations, where each 
node can be described by the type of termination equipment it 
represents. Each of these design components is represented as a 
frame whose slot values are obtained either from the user or 
from a knowledge base of stored defaults. The structure of the 
design component hierarchy is essentially fixed by ENS; 
however, since certain network components often appear 
repeated any number of times (e.g. a customer's links), 



instances of the frames corresponding to these will be added to 
the hierarchy dynamically. Likewise, the existence of certain 
frame types will not be known until run-time, so these must also 
be inserted dynamically. For example, the Customer
Termination and Customer-Application frames inherit their 
default values and properties from libraries (implemented as IS
A hierarchies) of previously-defined termination and application 
classes (see fig. 3). 

~ 
Set-of 

Customer-Application 

Set-of 

Part-of Part-of 

$ 
Instance-of 

~ 
Instance-of 

fig. 2: Customer Network Requirements hierarchy. 

Batch 

Automated Teller 
Machine 

Low Security 

Public Database 
Retrieval 

Process 
Control 

fig.3: New network application types can be defined 
using inher.ited defaults, and then stored in a 
hierarchical library for future use. 

• Design Criteria Rule Base 

The second knowledge category is formed by the rule 
base of service-specific design and selection criteria. 
Each Criterion (be it technical, qualitative, or heuris
tic) is composed of two parts: a Design - Task and a 
Constraint-Set (see fig . 4). The first of these generates 

25 1 

a minimal set of partial design data that will be used to detem1ine 
which network carrier services are viable for the customer, and 
those which are not. The results (rejections or recommen
dations) will be recorded in special slots of the Customer
Application frames, which will later be used by the user interface 
module (see below) to explain the reasoning behind the 
decisions made. The second part of the rule, as its name indi
cates, is a set of design constraints which are ordered according 
to our domain experts ' own heuristics, and which become 
activated each time a Design-Task has finished executing. 

Criterion: Packet-switched-Host-Access 

Design-Task: 

Determine-Incoming-Links(N) , 
Worst-case-Bit-Rate(B), 
Select-Access-Speed (B, S). 

Constraint-Set: 

{N * B <= S; 
Redo(Select-Access-Speed(B, S)) }, 

{Valid-Host-Access-Speed (S) ; 
Redo(Determine-Incoming-Links(N))}. 

fig. 4: An example selection/design criterion. 

Each design constraint in a Constraint-Set can be 
viewed as consisting of two sub-parts: a boolean operation 
which is performed on a specific set of design parameters 
appearing in the associated Design-Task, and an instruction 
on what to do should this boolean operation fail. These 
instructions provide a certain degree of intelligent backtracking 
information, as they essentially point to design tasks which 
should be re-done in order to satisfy the failed constraint. The 
example Criterion in fig. 4 is used to design host access 
lines for a packet-switched carrier service. The Design
Task determines the number of incoming terminal lines, the 
worst-case bit-rate required by any one of these lines, as well as 
a "first guess" as to what access line speed should be chosen. 
The first constraint dictates that the number of incoming links 
times the worst-case bit-rate must not exceed the chosen access 
line speed. If it is exceeded, then a new access speed must be 
found and the constraint re-satisfied. Once this constraint can be 
satisfied, the next one will be attempted, and so on. By 
allowing the backtracking direction to be controlled in this 
manner, we can avoid making an exhaustive search at this time. 
It should be pointed out, however, that if a constraint cannot be 
satisfied after exploring all avenues within the current design 
criterion, ENS will backtrack (naively) to the previous 
Criterion and attempt to re-do its Design-Task. In the 
worst case, thus, an exhaustive search would be performed. 

• Design Plans 

The third and last category of knowledge consists of a 
library of frame-like design plans. ENS regards a customer's 
links as the basic building block in the communications 
networks it helps design . In view of this, every different 
communications service link type known to ENS will have an 
associated template Design-plan. These frame-like struc
tures (see fig. 5) have two basic parts to them: a Props slot 
that indicates which sub-link components originating from the 
partial design produced thus far will take part in the configured 
solution, and an Event-Sequence method that will dictate 
the sequence in which these components actually get configured. 
Once each Design-plan has been fully executed, ENS will 
attach them to their corresponding Network-Link frames so that 
they can later be used to generate a detailed , printable cost 
quotation . 



. ,. .I 

I 

I 

Design Plan : Packet-Switched-Type-1 

Props: 

PAD(Node l, Pl), PAD(Node2 , P2 ), 
Access-Speed- Cost (Node l, Sl , Cl), 
Access-Speed-Cost(Node2, S2 , C2), 
Usage -Charge (C3). 

Event-Sequence: 

Configure -Access(Node l, Sl, Cl), 
Configure -Access(Node2 , S2 , C2), 
Det e rmine-Us age (Node l, Pl, Node2 , P2 ), 
Compute-Cos t(Cl, C2 , C3) . 

fig. 5: An example design plan. 

4. Problem Solving Strategy 

As mentioned above, ENS's problem solving methodology 
is based on partial design plan generation with constraint 
propagation. That is to say, the total design space for a given 
application is divided into partial design stages, with either 
technical or heuristic constraints being applied to the appropriate 
design parameters at each of these stages. Constraints applied to 
parameters at a higher level (e.g. at the Network level) will 
propagate down to - and constrain - all parameters at levels 
below it (e.g. at the Link and Node levels). Constraints, which 
can be supplied either by the user (certain input fields implicitly 
become constraints) or the expert (these would already reside in 
the knowledge base), are used for two different, but comple
mentary, purposes. The first of these is to ensure that 
technically viable design plans are being chosen at each stage in 
the design process. The second is to provide some intelligent 
backtracking information when a design failure occurs due to a 
constraint being violated. These constraints can be regarded as 
heuristics whose role is to direct the search for the associated 
design parameter which, upon re-calculating, will most likely 
ensure the constraint is not violated a second time. In this 
respect, our approach is similar to the advice mechanism 
described by Mittal and Araya in [6]. 

At the program level, ENS's design strategy can be seen to 
consist of three main stages. During the first of these, the data 
structure representing the customer's requirements (see fig. 2) is 
constructed. The "building blocks" for this will be obtained 
from either the user or from a knowledge base of stored, 
heuristic defaults. Once completed, this data structure is passed 
through to the second design stage where it is processed by the 
rules representing the service-specific selection criteria - this 
helps determine which communications services can be used to 
configure each of the applications running on the customer's 
network. This involves applying the Design-Task and 
Constraint-Set parts of each selection Criterion 
(see above) to the relevant slot values within the data structure. 
When completed, ENS is able to present the user with the partial 
design results achieved so far: a list of all technically viable 
communications services found, plus detailed justifications for 
those which were rejected on technical or qualitative grounds. 

The third design stage amounts to a detailed configuration 
and costing of the partial designs produced thus far. Here, ENS 
"tags" each logical link in the customer's network according to 
its geographical node locations, termination node types, etc., in 
order to associate with each one a set of executable template 

252 

design plans. Before executing these, however, the dollar costs 
of the link components appearing in each of the Props slots 
(see fig. 5) are first determined. Costing figures are currently 
held in an entity-relationship database to which ENS provides an 
interface. This interface is capable of generating optimized 
database queries based on the items found in each Props slot. 
After performing these queries, the returned cost figures are 
converted into Prolog facts, which are used by the Event
Sequence blocks of each of the design plans involved. On 
completion, each link's attached Design-plan shows the 
detailed component-level configuration produced - logical links 
can then be viewed as physical links. 

Note that any of the design parameters defined during a 
session can be changed by simply returning to the user interface 
form in which it was originally defined, or by making use of the 
what-if facility. In the latter case, ENS effects a "snapshot" 
mechanism which effectively allows the freezing of any number 
of parallel customer scenarios, thus permitting the user to change 
design parameters at will and compare different network 
scenarios in a quick and cost-effective manner. In order to 
determine what gets affected by changing a specific design 
parameter, each of these editable parameters is associated with 
the Design-Task in which it first appeared. Similar 
(explicit) associations are made between this task, and any 
other tasks that should be re-visited whenever a certain type 
of change occurs . Once each relevant Design-Task 
and Constraint-Set pair has been re-satisfied, the new 
recommendations will be shown to the user. 

5. User Interface 

Besides being a very knowledge-intensive domain , 
communications networks design is also highly interactive. 
Because of this, the user interface portion of ENS occupies a 
large part of the system's total code (approximately two thirds). 
The latest appearance and functionality of the interface have been 
reached after numerous consultations with the tool's end-users -
Bell Canada's sales representatives and support staff. In order 
to deliver a tool consistent with the computing environment with 
which they were familiar, a mainframe-based forms interface is 
being used. Implemented as frames, ENS treats forms and 
menus (the latter are just a special case of forms) as states in a 
Finite State Machine (FSM). This FSM consists of a set of 
states, together with appropriate inter-state transition arcs (these 
correspond to the function key settings which are made available 
to the user in each form), and a state-transition table consisting 
of a set of NextState(CurrentState, PFKey, NextState) Prolog 
facts. This generic FSM model has greatly simplified the 
prototyping effort of the user interface module by allowing 
efficient experimentation with different state definitions and 
state-transition table entries. 

Besides simply providing a forms-based interface, our 
survey of the sales community has shown the need for providing 
several other important functions. These include a facility for 
storing and retrieving customer scenarios; libraries of 
commonly-used and generic network termination and application 
types from which user-defined types can inherit default values 
(see fig . 3); a facility for printing fully-detailed, costed 
quotations reflecting the design solutions that were finally 
arrived at; and a template-based, English-text explanation 
function (beyond the context-sensitive help mechanism also 
provided) to indicate why some network service types were not 
recommended, and why others were (see fig . 6) . ENS also 
provides mechanisms for directly querying its own knowledge 
base on specific network services and rates facts. Our 



experience with the Bell Canada data networks application has 
demonstrated that, in many cases, factual knowledge can be 
easi ly re-used when rules are broken down and coded as a 
control-part plus facts. 

Perhaps the most useful facility that ENS can provide sales 
people with is a high-level what-if mechanism for quickly 
exploring real or hypothetical alternative customer con
figurations. Once a customer's network has been configured for 
the first time, ENS's users can quickly access and change most 
pieces of information provided by the customer. This facility 
immediately allows the sales person to see the effect on the 
customer's network after adding certain carrier service options, 
or after increasing the traffic, usage, and/or response time 
requirements on a particular network link. 

• Datalink3 was excluded for the process-control applica
tion for the following reason(s) : 

- one of the nodes host-vax-4 or teirn-vtl00-7 on 
link 9 (most likely the lower speed terminal) can't 
support the appropriate line speeds. 

(a) a typical rejection explanation. 

• Since the customer expressed a desire for controlling 
access to the network, Datapac3 is well-suited since 
it provides several features and options for ach ieving 
this: 

- built-in features: reverse charge. 
- optional features: call blocking, SVC bar call. 

(See PSMM pp. 730:14, 18-20, 21-26 for details). 

(b) a typical recommendation explanation. 

fig. 6: Two examples of generated explanations . 

6. Lessons and Current Status 

A prototype version of ENS has been under development for 
just over two years. After numerous interviews and testing 
sessions with both sales representatives and network designers, 
we have learned to appreciate the wide range of sales and design 
tasks (and hence knowledge types) that have to be considered. 
Early versions of our system were largely rule-based, but our 
experience has shown that certain types of knowledge are more 
adequately represented using frames. Examples include 
knowledge that will be modified at run-time or whose structural 
component will be shared and refined to create other similar 
structures; and perhaps more interestingly - since this type of 
effort is generally underestimated - specifications of user 
interface forms or menus which, as mentioned above, constitute 
a significant part of the total program code. We have found 
Prolog a suitable vehicle for implemen ting both frames and 
rules. 

As pointed out in section 2 above, any useful tool aimed at 
assisting communications networks sales staff would have to 
satisfy at least six basic requirements. It's worth summarizing at 
this stage which features of ENS have helped in satisfyi ng these 
requirements: 

(i) Minimizing user input has been achieved through the use of 
libraries of stored network termination and application types, 
as well as numerous stored default design parameters. 

253 

(ii) Abstracting the level of user dialogue to an appropriate level 
has been arrived at by careful consideration of both the sales 
persons' vocabulary, as well as their knowledge of the 
network design process. ENS's frame/FSM user interface 
model allowed fruitful rapid prototyping of this information. 

(iii) Experienced sales persons' heuristics have been modelled in 
a very declarative style in the form of both design rules and 
constraint statements. The use of Prolog as the implemen
tation language certainly contributed to this. 

(iv) Qualitative and subjective customer requirements are cur
rently interpreted in order to qualify any recommendations 
made by the tool. Eventually they will be used directly in 
the selection process, in much the same manner that 
technical requirements a.re today. 

(v) The separation and subsequent representation of generic and 
application-specific tasks has greatly reduced the effort of 
updating the knowledge base whenever service- and 
application-specific info1rnation changes. 

(vi) A quick and effective means for altering design data - while 
sti ll maintaining a consistent network design - has been 
achieved through the provisioning of a what-if facility that 
is fully-integrated with the ENS concepts of design plans 
and constraint sets. 

Encouraged by potentially large time-savings, a more 
consistent and unified approach to network design, and the 
prospect of being able to spend more time satisfying both new 
and existing customers, Bell Canada is showing a positive 
interest in ENS. Having embarked on a joint Bell Canada - Bell 
Northern Research plan to productize ENS, our major 
development activities are two-fold. On the one hand, we are 
continuing the process of extendi ng the tool's functionality, 
adding more carrier services to our data communications 
application (currently Bell Canada's five major data services are 
handled), as well as considering voice and integrated voice and 
data (IVD) services. In addition, we are interested in further 
separating generic design tasks from those which are considered 
application-specific. Ideas are already emerging in this area 
[6,7,8,9), some of which are of particular interest to us . These 
include extending our present method of combining constraint 
propagation with heuristic (and user-provided) advice to aid 
backtracking on design fai lure, as well as further formalizing 
and enhancing our current use of design plans. 

7. Conclusions 

Requirements of sales-oriented design tools are very 
different from those of engineering tools. In particular, the latter 
tend to focus on isolated aspects of the design process, require 
substantial user input, and assume a strong technical back
ground. Sales-oriented tools [1,5), among other things, must 
attempt to reduce the data-entry and knowledge overload of their 
users, handle qualitative customer requirements, and consider 
network design flexibility and evolution . Our research has 
identified both the specific sales tasks that must be addressed by 
a design tool, as well as the different knowledge types that are 
associated with these tasks. 

We have implemented ENS, a prototype knowledge-based 
tool to assist sales staff in designing networks, and have 
discussed some of our research concerning the extraction of 
various tasks and knowledge types which we regard as being 
generic to the networks sales domain. The tool's architecture 
and problem-solving strategy make use of both frames and rules 
to represent these various knowledge types which, among other 
things, include design plan hierarchies and the heuristic and 
technical constraints used for pruning the design search space. 



·., 

Exercising our tool on services other than data (in particular, 
voice and IVD) should further help us in refining our ideas on 
generic strategies for the networks sales domain . Our work so 
far has shown that ENS can successfully be used both to reduce 
design turnaround time for sales staff, and to generate more 
unifo1m and consistent design solutions. 

8. Acknowledgments 

The ENS project would not have been possible without the 
helpful assistance of various members of the network planning, 
sales, and design groups at Bell Canada: James Kennedy, Garth 
Mitchell , George Smith, and Louis LePage, in particular. From 
BNR I would like to thank Suhayya Abu-Hakima for providing 
valuable development support, and Dick Peacocke for suggest
ing useful changes to earlier drafts of the paper. 

9. References 

[!] Ferguson, I., Rabie, S., Kennedy, J. and Peacocke, D., 
"A Knowledge-based Sales Assistant for Data Communi
cations Networks", Proc. of the IEEE International Conj. 
on Communications, June, 1987. 

[2] Kai-Ii, K., "Expert Systems in Telecommunications 
Network Planning and Design", Proc. of the 1st 
International Conj. on Applications of Artificial Intelli
gence in Engineering Problems, pp. 1161-1164, vol. 2, 
April, 1986, Sriram, D. and Adey, R. (eds.), Springer 
Verlag (1986). 

[3] McDermott, J. , "R.1: A Rule-based Configurer of Com
puter Systems", Artificial Intelligence (19)1, pp. 39-88, 
January, 1982. 

[4] Mantelson, L., "AI Carves Inroads: Network Design Test
ing and Management", Data Communications 15(8), 
pp. 106-123, July, 1986. 

[5] McDermott, J., "Domain Knowledge and the Design Pro
cess", Proc. of the Eighteenth IEEE Design Automation 
Conj., pp. 580-588, June, 1981. 

[6] Mittal, S. and Araya, A., "A Knowledge-Based Frame
work for Design", Proc. of the Fifth National Conj. on 
Artificial Intelligence, pp. 856-865, vol. 2, August, 1986. 

[7] Chandrasekaran, B., "Generic Tasks in Knowledge-Based 
Reasoning: High-Level Building Blocks for Expert System 
Design", IEEE Expert 1(3), pp. 23-30, Fall, 1986. 

[8] Chandrasekaran, B., "Towards a Functional Architecture 
for Intelligence Based on Generic Information Processing 
Tasks", Proc. of the International Joint Conj. on Artificial 
Intelligence, pp. 1183-1192, vol. 2, August, 1987. 

[9] Brown, D. C. and Breau, R., "Types of Constraints in 
Routine Design Problem-Solving", Proc. of the 1st 
international Conj. on Applications of Artificial Intelli
gence in Engineering Problems, pp. 383-390, vol. 1, 
April, 1986, Sriram, D. and Adey, R. (eds.), Springer 
Verlag (1986). 

1 V AX-11 and PDP-11 arc trademarks of Digital Equipment Corporation. 
2 DESIGNet is a trademark of Boll Beranek and Newman Inc. 
3 Datapac and Datalink arc trade marks of Bell Canada. 

254 



Qualitative Modeling: Application of a Mechanism 
for Interpreting Graphical Data 

Sheila A. Mcllrai th 
Advanced Technologies Department 

Alberta Research Council 
Calgary, Alberta 

Abstract 
This paper describes the notion of Qualitative 
Modeling (QM) for interpreting graphical data. The 
need for qualitative modeling arises from the difficult 
task of modeling complex systems mathematically, 
and the resulting method used by experts of modeling 
observed data by visual interpretation. Given a set of 
observations, physical attributes of the system may be 
determined by plotting the data and comparing it 
qualitatively to representations of known physical 
models. As with many qualitative reasoning 
theories, the concept of Qualitative Modeling arises 
from formalizing and implementing the qualitative 
reasoning performed by experts in a particular field, 
in this case, well test interpretation. QM 
incorporates techniques from numerical analysis, 
qualitative reasoning, and syntactic pattern 
recognition to abstract observed data and to fit it 
qualitatively to a characteristic form. Following an 
introduction of the material, and presentation of the 
problem of well test interpretation, discussion deals 
with the application of syntactic pattern recognition 
to qualitative representation and the mechanism 
employed for qualitative modeling. 

Keywords: qualitative reasoning, blackboard, graph 
interpretation 

Introduction 
Application of artificial intelligence to engineering 
problem solving has resulted in a generalization and 
formalism of techniques for reasoning qualitatively 
about physical systems, broadly referred to as 
Qualitative Physics. Qualitative reasoning tasks 
include diagnosis of the cause of aberrant behaviour, 
prediction of future behaviour, and the capturing of 
certain commonsense reasoning processes [Bobrows, 
1985]. Most qualitative reasoning applications 
commence with the discrete representation of 
continuous processes by a set of qualitative 
descriptors which capture the behaviour of the 
system. This abstraction of the often complex process 
is then used to reason qualitatively about the 
functioning of the system. 

255 

Much of the work to date in Qualitative Reasoning 
has been done in such areas as Qualitative 
Simulation [Kuipers, 1986], Qualitative Analysis 
[Williams, 1985] and Qualitative Process Theory 
[Forbus, 1984], all of which attempt to predict or 
explain the behaviour of a system based on its 
qualitative abstraction. This paper describes the 
notion of Qualitative Modeling (QM) for visually 
interpreting graphical data. The technique involves 
quantization of a domain to a discrete representation. 
However, instead of using this representation for 
predicting or explaining behaviour, it is used as a 
description for modeling other collected data. Given 
a set of observations, it is common to summarize the 
data by modeling it, or fitting it to a predefined form. 
Simple data fitting can often be performed using 
quantitative techniques such as least squares curve 
fitting, to identify parameters defining a model. 
However, in many cases, models are represented by 
formulae or, when dealing with physical systems, 
the interaction of several models defined by complex 
formulae. In cases such as these, interpreters often 
attempt to visually extract features pertaining to 
specific models or to almost intuitively identify a 
model based on the shape of the plotted data. QM 
attempts to capture this implicit reasoning strategy. 

As with many qualitative reasoning theories, the 
concept of Qualitative Modeling is the result of 
formalizing and implementing the qualitative 
reasoning performed by experts in a particular 
domain [Yip, 1987], in this case, well test 
interpretation. This paper describes the 
incorporation of Qualitative Modeling into a prototype 
expert system for well test interpretation. Following 
a description of the problem of well test interpretation 
and the design of a suitable expert system 
architecture, the author describes techniques for 
qualitative domain abstraction, and model 
identification. Further discussion identifies related 
work, describes the implementation and speculates 
on extensions to the system. 

The Problem 
The purpose of a well test, also known as a pressure 



. . . / 

I 

transient test, is to evaluate the state of the ground 
formation surrounding a well through the analysis 
and interpretation of the pressure -time data 
resulting from a test. When performed correctly, a 
well test and interpretation should provide a physical 
explanation for the collected data including such 
qualitative physical features as formation 
permeability, extent of wellbore damage or 
stimulation, reservoir pressure, and possibly 
reservoir boundaries and heterogeneities. 
Characterization of the well from pressure-time data 
is a complex and somewhat inexact science; it forms 
the basis of well test interpretation. Well test 
interpretation is achieved by fitting the pressure-time 
data to complex, enhanced models of fluid flow 
through porous media. For ease of understanding, 
and brevity, many technical details have been 
omitted, and only those portions of the interpretation 
procedure pertinent to this paper are discussed. 

Briefly, the well test engineer interprets the well test 
data by plotting different functions of pressure versus 
functions of time, and matching them in two 
different ways against classic pressure-time plots. 
The goal is to find a suitable model representing the 
physical features of the formation, and then to find 
parameter values corresponding to the quantitative 
measure of some of those features. In the second 
matching process, performed to determine 
parameter values, each plot can be visually divided 
into 3 regions: early-time, middle-time, and late
time. Each of these intervals represents a transition 
in reservoir fluid activity at an increasing distance 
from the wellbore, as well as a visual transition. 

f(p) / f(p) 

f(t) 

The first step in the interpretation process is to select 
a model that accurately reflects the physical 
characteristics of the formation. In order to identify 
physical characteristics of the formation, the well test 
interpreter views a plot of pressure-vs-time, looking 
for characteristic curve shapes that identify physical 
features. Figure 1, reproduced from [ERCB, 1979], 
illustrates a small subset of characteristic shapes 
recognized by a well test engineer for a gas well. 
These are simple "ideal" plots. In reality, a 
formation can have a combination of those features, 
one for early-time, one for middle-time, and one for 
late-time. Once the physical features are identified, 
the mathematical models that reflect those features 
are selected . 

Now the well test engineer has one or more general 
models to explain the observed well test data. Specific 
parameter values for those models must be selected. 
Each model has a family of solutions dependent on 
realistic values of the variable parameters. These 
models are very complex, eliminating mathematical 
curve fitting as a modeling technique. Consequently, 
to determine the values of the parameters further 
defining the model, the well test engineer attempts to 
match the test data with one of a family of type 
curves. Each member of a family of type curves is 
represented by a curve of plotted data: the solution to 
the enhanced fluid flow model for particular 
parameter values. The matching process between 
the test data and the model generated data is again 
performed visually. 

A further complication to the curve matching process 

ftp)/ 
f(t) f(t) 

i) Ideal ii) Positive skin, Wellbore 
storage & Partial penetration 

iii) Negative skin 

f(p) f(p) f(p) / 
f(t) f(t) f(t) 

iv) Naturally fractured v) Stratified layers vi) Well in bounded reservoir 

Figure 1. Charact.eristic Shapes for Gas Well Buildup Curves 

256 



is that early or late data may be missing from the test 
sample because of testing techniques or insufficient 
testing time. To compensate for this, well test 
engineers perform a type of heuristic curve matching 
where middle-time data is prioritized and matched 
followed by early- and late-time data. Heuristics are 
identifiable by the well test engineer, depending on 
the model in question. 

The interpretation process continues with parameter 
specific model confirmation both by another similar 
curve fitting process and by checking the 
hypothesized formation characteristics against 
existing formation information. This may include 
the geology of the region in which the well was 
drilled, results of core samples, log results, and the 
treatment history of the well. Conflicting 
information will not cause the well test engineer to 
reject a hypothesis but rather to associate a lower 
certainty with the hypothesis. 

The visual interpretation process is currently done 
with the assistance of plotting programs. Pressure
time plots may be rapidly displayed, and type curve 
matching performed by displaying the type curves, 
and shifting the observed data with the arrow keys 
until a good overlay is found . 

Well Test Interpretation 

KS 

B 

L 

A 

C 

K 

B 

0 

A 

R 

D 

The Archit.ecture 
To address the full problem of well test interpretation, 
an expert system was proposed. Figure 2 illustrates 
the design of the expert system kernel. The kernel is 
connected to a user interface and some existing well 
test software not illustrated in this diagram. The 
expert system design is a modification of a general 
blackboard architecture [Erman, Hayes-Roth et al, 
1980], proven to be successful in past applications 
involving diverse sources of knowledge. There are 9 
knowledge sources (KSs) in this blackboard system. 
As illustrated below, they have been partitioned into 
Visual Interpretation KSs, Auxiliary KSs, and the 
Well Test Interpretation KS. The Well Test 
Interpretation KS is an explicit controller. It invokes 
certain KSs and ultimately evaluates competing 
hypotheses much the way a well test engineer would. 
The Auxiliary KSs exist to provide information and 
expertise when requested. They do not react 
opportunistically, but rather are invoked by the Well 
Test Interpretation KS to substantiate or refute an 
interpretation provided by the Visual Interpretation 
KSs. Finally, the Visual Interpretation KSs perform 
the task of interpreting the plotted data. Each of these 
KSs deals with the data at a different level of 
abstraction, reacting opportunistically to facts and 
hypotheses on the blackboard. Qualitative Modeling 

Logs 

Drilling 

Geology 

Fractures 

Auxiliary 
KSs 

Curve Characterization 

Smoothing 

Labelling 

Regionalization 

Visual 
futerpretation 

KSs 

.Figure 2. Expert System Kernel 

257 



:I 

·. I 

.I 
. I 

is performed in the Visual Interpretation KSs. 

The Approach 
In his paper on Qualitative Simulation [Kuipers, 
1986], Kuipers restates earlier findings that symbolic 
manipulation of qualitative descriptions is a plausible 
model of human expertise. The Visual Interpretation 
KSs were developed using a combination of 
techniques from numerical analysis, syntactic 
pattern recognition, and qualitative reasoning in an 
attempt to reproduce the qualitative visual 
interpretation expertise of a well test engineer. 
Numerical analysis provides a mechanism for 
approximating and mathematically characterizing 
graphical data. An extension of concepts from 
qualitative reasoning and syntactic pattern 
recognition offers a means of representing and 
reasoning about graphs at a high level of abstraction. 

QM performs several tasks through the Visual 
Interpretation KSs. 1) It qualitatively represents 
curve shapes and qualitatively matches observed data 
against these shapes, or combinations of these 
shapes . 2) It heuristically matches observed data 
with model solutions. An initial qualitative match is 
performed to reduce the number of curves to be 
matched, and then a quantitative match is 
performed. 

Model Representation 
In order to reason qualitatively about the models and 
observed data, a qualitative abstraction of the curves 
into a set of discrete symbolic descriptors must be 
performed. The quantity space (+,0,-} [Bobrow, 1985] 
and associated landmarking concepts used by Forbus 
and others are not amenable to this application 
because they do not capture the character of the 
curves. Consequently, syntactic pattern recognition 
was examined for assistance in defining the discrete 
symbol set. 

Syntactic pattern recognition techniques [Fu, 1977] 
were developed to represent and reason with visual 
objects abstracted to high level symbolic descriptors. 
These descriptors were used to represent the 
structural relationship between pattern primitives as 
well as the primitives themselves. 

Just as a grammar may be defined for a language, 
one may be defined for a picture description 
language. The grammar is composed of a set of 
easily identifiable pattern primitives or terminals, a 
set of conceptually high level non-terminals, start 
symbols, and a set of production rules governing the 
composition of terminals and non-terminals into 
legal patterns. The syntactic approach enables the 
description of many different patterns using easily 
identifiable building blocks, or pattern primitives and 
a set of production rules. 

The curves in the well test interpretation domain are 

258 

generally similar in nature to those illustrated in 
Figure 1. To characterize changes in system 
behaviour, many qualitative reasoning applications 
use landmark or transition boundaries. Similarly, 
QM uses regions to identify transition boundaries or 
changes in the character of the curve; curve changes 
are often indicative of behaviour changes. The 
difference is that the regions, not the transition 
boundaries, yield the description of the behaviour. 

Curves are defined as the concatenation of regions. 
Each region in turn is a portion of the curve with 
homogeneous shape; regions are defined in terms of 
symbols. Proceeding top-down in describing these 
symbols, the following is an example of some general 
production rules represented in BNF notation. 

<curve> ::= <region> <curve> 
<curve> ::= <region> 
<region> ::= <region-type> <length> 
<region-type> ::= <curve descriptor> <curve> 
<region-type> ::= <slope grade> <line> 
<curve descriptor> ::= <curve rate> <curve shape> 
<curve rate> ::= <gradual> I <rapid> 
<curve shape> ::= <concave> I <convex> 
<slope grade> ::= <gentle> I <moderate> I <steep> 
<length> .. - <short> I <normal> 
etc. 

At this point, simple BNF-like production rules are 
augmented by the use of variables. This is the way in 
which much of the symbolic smoothing of data is 
performed. In this pseudo code example, variables 
are represented by the suffix "-x" on the non
terminals. This notation indicates two symbolically 
identical instances of a line or a curve. 

<curve-x> ::= <curve-x> <curve-x> 
I <curve-x> <line-y><short> <curve-x> 
I <line-y><short> <curve-x> 
I <curve-x> <line-y><short> 

At the next level, symbolic descriptors are augmented 
by or transformed into quantitative numeric 
descriptors . Lines and concave/convex curves are 
determined by analysing the observed data points in 
sequence looking for points of inflection or changes in 
the character of the data curve. These line or curve 
segments are characterized symbolically and 
quantitatively. <gentle>, <moderate>, <steep>, 
<gradual>, and <rapid> are determined by a 
mapping from the quantitative descriptors. <short>, 
and <normal> are determined by the relative length 
of the region and the number of data points involved. 

To further illustrate the use of this representation 
scheme, the following production rule describes the 
shape of Figure 1 (ii), "Positive skin, Wellbore storage 
& Partial penetration". In this particular curve, the 
physical features listed depend on the existence of a 
gradual concave curve during early-time data. The 



region that follows is of little importance in 
determining the existence of these features. 
Consequently, the following description suffices. 

<Figure 1 (ii)> ::= <identifying region> <region> 
<identifying region> ::= <gradual> <concave> 

<length> <curve> 

The description language developed herein is 
sufficient for many applications including well test 
interpretation. It may easily be modified or extended 
for other graphical interpretation problems. 

Quantization of the Domain 
Abstraction of the characteristic curve forms, 
families of model solutions, and observed data, from 
lists of data points, is performed by the 4 Visual 
Interpretation KSs. A syntactic pattern recognition 
approach is taken to both the generation of the 
representations and to some of the matching. Data 
that is input to the Visual Interpretation KSs has 
been mathematically reduced to remove noise caused 
by measuring instruments and to reduce the number 
of data points. 

Each knowledge source deals with the data at a 
different level of abstraction. The Regionalization KS 
segments the curve at points where the character of 
the curve changes, thus partitioning it into 
preliminary regions. At this point the regions are 
simply identified in terms of their direction and rate 
of change; these are the pattern primitives or 
terminals of the grammar. The Labeling KS 
mathematically characterizes each region with curve 
fit parameters. The result is a mathematical 
characterization of each region in terms of shape and 
length; the concatenation of the regions describes the 
original curve. Included within the Labeling KS is a 
mapping from the mathematical characterization 
into the symbolic pattern language characterization 
described above. Thus, regions are described at both a 
mathematical level and a symbolic level. 

The Smoothing KS performs a heuristic smoothing of 
the regions based on human-like methods of visual 
smoothing. A set of production rules is defined using 
the non-terminals for identifying anomalous regions 
and amalgamating them with one or both adjacent 
regions, depending on the shapes of those regions. It 
does not replace mathematical noise reduction, but 
rather compensates for over zealous mathematical 
regionalization. So, for example, a concave curve 
followed by a small spike (two short lines) and 
another concave curve would be smoothed into one 
continuous concave curve. Similarly, part of curve 
that was mislabeled as a line, thereby breaking the 
curve into regions of curve-line-curve, would be 
corrected to a single curve. As soon as the smoothing 
routine invokes a change in the regionalization of a 
curve, the Labeling KS reacts to relabel the regions . 
The Smoothing KS then reacts to the newly asserted 

259 

labeling. This opportunistic interplay continues until 
the curve representation is in a steady state. Finally, 
the Curve Characterization KS takes the string of 
labeled, smoothed regions and, depending upon what 
has been requested from the Well Test Interpretation 
KS, either matches it to one of a family of model 
solutions, or simply identifies features of the well 
from the characterizing shapes of the regions. 

Both the characteristic curve forms and the families 
of model solutions are static information. They are 
represented using the aforementioned descriptors 
and exist permanently in the knowledge base. The 
families of curves are represented as a hierarchy of 
frames. A model or family of solutions has 
particular parameter solutions, which in turn are 
composed of regions each of which is described both 
at a mathematical abstraction and a symbolic 
abstraction. The inheritance property of frames 
enables a concise representation of pertinent 
information. The characteristic curve forms make 
some use of frames but generally are represented as 
further production rules in the previously defined 
grammar. Justification for this implementation of 
the representation is included in the next section. 

Qualitative Dat.a Modeling 
Qualitative data modeling is performed by qualitative 
curve matching procedures. Two distinct types of 
curve matching are executed in the Curve 
Characterization KS: identification of characteristic 
curve forms in observed data, and matching of 
observed data to one of a family of model solutions. 

The identification of characteristic curve forms is 
performed by extending the production rules of the 
grammar to encode combinations of high level non
terminal region shapes which imply physical 
attributes of the well or formation. This was 
illustrated by the <Figure 1 (ii)> production rule in 
the section on model representation. If a curve 
description parses, then a match occurs. Note that 
more than one production rule may fire, indicating 
the existence of several physical features. By using 
this technique the characteristic form of the curve is 
captured without imposing a strict physical template 
matching process. Figure 1 illustrates some 
characteristic curve forms and their associated 
physical features . In some cases observed data will 
incorporate a combination of several characteristic 
shapes, in other cases, part of the well test data may 
be missing resulting in only a partial shape. These 
constraints may all be incorporated into the 
production rules of the grammar which yield a 
representation more all encompassing than the 
previously illustrated forms . The result of the 
characteristic curve matches is some proposed 
physical attributes of the well or formation; "positive 
skin, wellbore storage and partial penetr ation" is one 
example of the result of a match. The Well Test 
Interpretation KS takes this asserted fact and 



I 

proposes a model or several models that incorporate 
these physical attributes into their model. The Curve 
Characterization KS in turn attempts to match the 
observed data with one of these models. 

One family of solutions, representing a specific model 
with different parameter values often consists of 
more than ten individual curves. Figure 3 illustrates 
a subset of a typical family of buildup curves. 
Attempting to perform a mathematical match of each 
curve in turn is computationally inefficient. 
Consequently, a two stage heuristic curve match is 
performed to reduce computations and to incorporate 
the rules of thumb a well test engineer uses for 
matching curves of this nature. The first stage of the 
curve match is a symbolic matching of the qualitative 
shape of the regions of the observed data with the 
shape of the regions of the solutions to the model. 
Dealing again with the problem of missing data 
either at the beginning or the end of the test, weights 
are associated with the existence of different regions 
of the curve, just as probabilities are associated with 
stochastic grammars used in syntactic pattern 
recognition [Fu, 1973]. A set of weighted production 
rules are incorporated into the grammar for 
implementation of this match. Using this type of 
qualitative match, several curves are often found 
which have the same qualitative shape as the 
observed data. 

These hypothesized matches then proceed to the 
second stage of curve matching in which a more 
stringent mathematical matching of data is 
performed. Heuristics from well test engineering are 
used for matching the regions of the curve based on 
the model being used and the quality of the observed 
data. This results in a prioritized and weighted least 
squares curve fit being performed. As an example, 

f(p) 

ftt) 

in many of the models, regions corresponding to 
middle-time data are matched first since they 
represent unobstructed formation flow. If the match 
is successful then remaining regions are matched 
and weighted in order of importance . Successful 
matches are spawned as a context or interpretation of 
the data. A measure of belief is associated with the 
interpretation based on the degree of match of the 
least squares technique. The Well Test 
Interpretation KS reacts to the hypothesized 
modeling of the data by requesting substantiation 
from the Auxiliary KSs, or from another type of 
visual model too similar to warrant individual 
description. Measures of belief are adjusted 
accordingly and a final best interpretation is selected. 

To summarize, the problem of visual interpretation of 
graphical data currently being performed by well test 
engineers has been addressed using concepts from 
qualitative reasoning, syntactic pattern recognition 
and numerical analysis. The result is a method for 
qualitatively modeling observed data in a manner 
that yields interpretations at the level of an expert. 

Relat.ed Work 
Throughout this paper, passing comparisons have 
been made to work in syntactic pattern recognition by 
K.S. Fu, and to work in qualitative reasoning by 
Kuipers, Forbus, and De Kleer and Brown. The 
discussion would not be complete without mentioning 
work by Elisha Sacks on piecewise linear reasoning 
[Sacks, 1987] and Kenneth Yip [Yip, 1987] on 
extracting qualitative dynamics from numerical 
experiments. Both of these authors employ a phase
space representation for their qualitative reasoning 
work. Sacks' work on a technique called piecewise 
linear reasoning attempts to analyse dynamic 
systems describable by finite sets of ordinary 

Figure 3. Sample Family of Curves 

260 



differential equations. Yip's work uses phase-space 
representation to reason about nonlinear dynamical 
systems . This work is more theoretically founded 
than the application of QM, but all three techniques 
share the goal of qualitatively representing solutions 
to models of physical systems. 

Implementation and Extensions 
A prototype Qualitative Modeling environment was 
developed for the domain of well test interpretation, 
as part of the aforementioned expert system design. 
Performance of the QM with the well test data 
provided was at the level of the well test engineer. The 
modeler was implemented in ART and Common 
LISP on a Symbolics 3670. ART provided a rapid 
prototyping environment for implementation of much 
of the blackboard architecture. Furthermore, ART's 
forward chaining production rule system was ideal 
for representing the grammar. Representation of 
models and competing hypotheses was facilitated by 
the frame representation and viewpoint mechanism. 
The Symbolics was satisfactory, but is not the ideal 
environment for the extensive mathematical 
calculations which might be found in a production 
system. 

QM provides the theory for qualitatively modeling any 
graphical data that has been noise reduced to a 
reasonable extent and that has a characteristic form 
when viewed in 2-D. To date, it has been applied to 
the domain of well test interpretation and will 
presently function for any other graphical data 
definable by its descriptors. The representation 
symbol set may easily be extended to provide for more 
complex graphical data without interfering with the 
existing reasoning mechanism. Potential 
applications of the technique include other domains 
within engineering problem solving, and in the 
domain of statistical analysis and economic 
forecasting. In the future, the author would like to 
extend the implementation and attempt to further 
formalize some of the concepts identified in this 
paper. Work in grammatical inference and learning 
might also be incorporated into this application. 

Concluding Remarks 
In this paper I have described a mechanism for 
visual interpretation of graphical data: Qualitative 
Modeling (QM). It incorporates techniques from 
numerical analysis , qualitative reasoning and 
syntactic pattern recognition to abstract observed data 
and to fit it qualitatively to a characteristic form. The 
need for qualitative modeling results from the 
difficult task of modeling complex systems 
mathematically. This is of particular importance 
when dealing with real physical systems which often 
do not reflect a single mathematical model. The 
work presented herein describes the notion of 
syntactic pattern recognition grammars for 
quantization of the domain to a discrete and usable 
symbol set. This symbol set is then employed to 

261 

qualitatively model the data. The techniques 
described in this paper are applicable to a wide range 
of graph interpretation problems. Incorporation of 
domain specific knowledge to substantiate or refute 
hypothesized interpretations strengthens the 
modeling environment. 

References 
[Bobrow, 1985] Daniel G. Bobrow. Qualitative 
Reasoning about Physical Systems: An 
Introduction. In Daniel G . Bobrow, editor, 
Qualitative Reasoning about Physical Systems, pages 
1-5, MIT Press, 1985 

[De Kleer and Brown, 1985] Johan de Kleer and John 
Seely Brown. A Qualitative Physics Based on 
Confluences. In Daniel G. Bobrow, editor, 
Qualitative Reasoning about Physical Systems, pages 
7-83, MIT Press, 1985 

[ERCB, 1979] Energy Resources Conservation Board 
(ERCB). Guide 3: GAS WELL TESTING Theory and 
Practice, 4th edition, 1979 (metric) 

[Erman, Hayes-Roth et al, 1980] D.L. Erman, F. 
Hayes-Roth, V.R. Lesser and D.Raj. Reddy. The 
HEARSAY-II speech understanding system: 
Integrating Knowledge to Resolve Uncertainty. ACM 
Computing Survey, 12: 213-253, 1980 

[Forbus, 1984] Kenneth D. Forbus. Qualitative 
Process Theory. Artificial Intelligence, 24: 85-168, 
1984 

[Fu, 1973] K.S. Fu. Stochastic Languages for Picture 
Analysis. Computer Graphics and Image 
Processing, 2: 433-453, 1973 

[Fu, 1977] K.S. Fu. Introduction to Syntactic Pattern 
Recognition. In K.S. Fu, editor, Syntactic Pattern 
Recognition, Applications, Springer-Verlag, 1977 

[Kuipers, 1986] Benjamin Kuipers. Qualitative 
Simulation. Artificial Intelligence, 29: 289-338, 1986 

[Sacks, 1987] Elisha Sacks . Piecewise Linear 
Reasoning. In Proceeding AAAI-87 Sixth National 
Conference of Artificial Intelligence, pages 655-664, 
1987 

[Williams, 1985] Brian C. Williams. Qualitative 
Analysis of MOS Circuits. In Daniel G. Bobrow, 
editor, Qualitative Reasoning about Physical 
Systems, pages 281-346, MIT Press, 1985 

[Yip, 1987] Kenneth Man-kam Yip. Extracting 
Qualitative Dynamics from Numerical Experiments. 
In Proceeding AAAI-87 Sixth National Conference of 
Artificial Intelligence, pages 665-670, 1987 



. I 

• < 

I 

Exploiting fine-grained parallelism in Production Systems 

Bruce T. Smith 
Department of Computer Science 

University of North Carolina at Chapel Hill, NC 27514 

David Middleton 
Institute for Computer Applications 

in Science and Engineering, 
NASA Langley Research Center, VA 23665 

Abstract 
Fine-grained parallelism is attractive since it 

offers large increases in execution speed if it can 
be effectively exploited. However, recent studies 
in implementing OPS5 have shown that straight
forward parallel implementations may perform 
little better than clever sequential ones. This 
has led to conjectures that no useful fine-grained 
parallelism exists in the OPS5 language. The 
large majority of computation in an OPS5 pro
gram lies in the matching phase which searches 
for patterns in a data-base of facts. The RETE 
algorithm enables sequential implementations of 
OPS5 to reduce the costs of matching by stor
ing partial matches from previous phases. We 
present a matching algorithm which exploits the 
fine-grained parallelism available within RETE 
itself, by using abstract node processors to em
ulate the RETE network directly. These node 
processors operate concurrently and internally 
exploit low-level parallelism, such as associa
tive search. Each abstract node processor can 
be implemented by a group of fine-grained pro
grammable processors such as is provided by the 
FFP machine. 

1 Introduction 
The speedup to be gained by using paral

lelism in an application depends on the number 
of processors that can be simultaneously applied. 
The desire for very large increases in speed in ex
pert systems in general and the OPS5 language 
in particular leads to the search for fine-grained 
parallelism. Apparently though, straightforward 
fine-grained parallel implementations of OPS5 
perform little better than some sequential im
plementations. These sequential implementa
tions use the RETE algorithm for the pattern 
matching phase, which consumes .the vast bulk 
of processing time. The RETE algorithm reuses 
partial matches from prior matching phases in
stead of recomputing them, enabling the ma
jority of OPS5 programs, those in which the 

This work was supported in part by NSF 
Grant No. MIP-8702277, ONR Grant N00014-
86-K-0680 and NASA Contract No. NASI-18107. 

262 

working memory changes very slowly, to per
form the matching process as rapidly as those 
implementations exploiting fine-grained paral
lelism [Gupta 84, Stolfo et al. 84, Quinlan 85, 
Forgy et al. 86]. This led to conjectures that par
allelism was only of limited use in accelerating 
OPS5 programs. 

The RETE algorithm itself, however, contains 
many opportunities for exploiting fine-grained 
parallelism, such as associative searches, and it is 
towards exploiting this parallelism that we pro
pose special purpose node pro·cessors for imple
menting the RETE algorithm. These abstract 
node processors may in turn be implemented us
ing the virtual machines supported by the FFP 
Machine, a fine-grained MIMD computer origi
nally designed for executing Backus's Functional 
Programming languages. 

Section 2 describes the OPS5 language and 
the matching process which is the bottleneck in 
its operation. The RETE algorithm, one im
plementation of this process, involves compiling 
the patterns of an OPS5 program into a dis
crimination network, a data-flow graph of simple 
comparisons. During execution, tokens percolate 
through the RETE network, being combined into 
tuples which finally match the patterns. Sec
tion 3 describes the virtual machines supported 
by the FFP machine, independent variably-sized 
groups of fine-grain processors created during ex
ecution. Section 4 describes abstract node pro
cessors which support the execution of the RETE 
network graph and which can be implemented 
using virtual machines. Parallelism is extracted 
from the RETE algorithm by having many node 
processors executing concurrently, each employ
ing internal parallelism. Section 5 summarizes 
the possibilities of this approach and the factors 
which might affect the usefulness of the paral
lelism. 

2 OPS5 
OPS5 is a production system language for 

building expert systems. Our descriptions of 
OPS5 and the RETE algorithm relate to the 
network of node processors described in Section 



(p match-boxes 1: (box ·name Crate! ·width 10 · height 15) 
(box ·width <x> ·height< 12 ) 2: (box ·name Crate2 ·width 10 ·height 10) 
(box ·width 10 ·height < <x> ) 3: (box ·name Trunk ·width 20 ·height 10) 
--> (remove 1)) 

a) Example rule b) Example working memory elements 

Figure 1. Fragment of an OPS5 program with data. 

4, rather than traditional descriptions. Con
ventional, more comprehensive, descriptions of 
OPS5 and RETE exist elsewhere [Brownston 85, 
Forgy et al. 87]. 

An OPS5 program is a set of rules which ma
nipulate e lements of a working memory. The left 
hand side of each rule is a pattern which can be 
matched by a tuple of working memory elements; 
actions in the rule's right hand side create, delete 
or modify working memory elements according 
to matches that are found. Figure 1 shows a 
sample OPS5 rule and a working memory with 
three elements, each containing a unique identi
fier, the element's type and a list of attribute
value pairs (the attributes having been defined 
in the type declarations ) . Each working mem
ory element represents a specific box. The rule 
match-boxes has two condition elements in its left 
hand side and one action in its right hand side. 
The first condition element matches any work
ing memory element whose height is less than 12 
and assigns the value of its width to the variable x. 
The second condition element matches any work
ing memory element whose width is 10 and whose 
height is less than the value ofx (for each working 
memory element matching the first condition el
ement ) . This entails a comparison between pairs 
of working memory elements. Finally, the action 
of match-boxes would remove the element match
ing the first condition element in the chosen in
stantiation from the working memory. 

The RETE algorithm is an incremental 
method for performing the matching process. 
The left hand sides of rules are compiled into a 
discrimination network, a directed acyclic data
flow graph whose nodes perform tests specified in 
various condition elements. The tokens that pass 
through this network represent tuples of work
ing memory elements that simultaneously match 
part of the left hand side of some rule. When a 
working memory element is created, one or more 
new tokens with that working memory element as 
a singleton enter the "top" of the network . There 
is a separate output from the network for each 
rule; tokens leaving an output represent tuples 
of working memory elements completely match
ing the rule's left hand side. The conflict set 
comprises all the tokens that have come out the 
"bottom" of the RETE net, each labeled with its 
particular exit point. (These labeled tokens are 
complete rule / tuple instantiations) . 

263 

Notice that the restrictions in a condition el
ement can be divided into two types: those that 
involve a single working memory element and 
those that compare one working memory element 
with others. These restrictions are implemented 
in the RETE net by one-input and two-input nodes, 
respectively. The leaves of the RETE network, 
one for each condition element, are one-input 
nodes which perform those tests that apply to 
a single working memory element. (That is, a 
one-input node performs all tests not involving 
variables set in other condition elements). When 
a new working memory element is created, a sin
gleton token is distributed to each of these leaf 
nodes. The nodes act as filters, passing to the 
interior of the network only those tokens whose 
working memory elements satisfy their condition 
elements' restrictions (including its type) . 

The two-input nodes in the interior of the tree 
perform tests that involve more than one work
ing memory element. Input tokens arriving from 
the two subtrees represent sequences of working 
memory elements that could become part of an 
instantiation. Two-input nodes store these to
kens in a token memory to participate in compar
isons with future arriving tokens. (This mem
ory is often divided into a left-memory and right
memory corresponding to the two paths along 
which the tokens arrive). The node only makes 
comparisons when a new token arrives: if the new 
token arrives from the left subtree, it is compared 
against each token stored in the right-memory, 
and vice versa. When the node finds matching 
left and right tokens, that is, ones that satisfy 
the constraints, it produces an output token that 
includes the working memory elements from both 
input tokens. 

Keeping tokens in this way saves the match
ing work done in creating them, from being re
peated in later execution cycles . For most OPS5 
programs, fewer than three working memory el
ements change (on average) between rule firings, 
even in a working memory with many thousands 
of elements [Gupta et al. 83] . It is by storing 
partial matches in the node memories that the 
RETE matching algorithm d erives speed from 
this stability. 

Figure 2 shows a RETE network for the sam
ple rule from Figure 1 . The numbers along the 
left and right input arcs to the two-input node 



I 
i 

I 

eight ID type name width h 

1: box Cratel 10 1 

2: box Crate2 10 1 

3: box Trunk 20 1 

5 

0 

0 

left 

[3] 
[2] 

' 
[1] 

Atype=OOX 

Aheight<12 

[3] 
[2] 

• 

[3] 
[2] 
[1] 

Atype=OOX 

A width=lO 

[2] 
[1] 

right 
[3] A height < A width [2] 
[2] [1] (in right token) (in left token) 

[3 2] 

' 
[3 1] 

Figure 2. RETE network for example fragment. 

are the identifiers of the (singleton) tokens arriv
ing at the node (to be stored in the left-memory 
and right-memory, respectively) . The pairs on 
the output arc from the two-input node are to
kens containing full matches to the left hand side 
of the rule match-boxes. 

When a working memory element is removed 
from the working memory (as in our sample 
rule's action), all tokens that represent partial 
matches including that working memory e lement 
must also be removed. This can be accomplished 
by dropping a killer token into the RETE network. 
As killer tokens propagate through the network, 
they delete the appropriate tuples from left and 
right memories. If we were to follow the progress 
of the RETE network in Figure 2 after choosing 
instantiation (match-boxes 3 2), the action (re
move 1) would generate a killer token for working 
memory element 3. It would remove tuples con
taining working memory element 3 from the left 
and right memories of the two-input node and 
from the conflict set. 

In OPS5, a rule's left hand side may contain 
negated condition elements which disable any in
stantiation for that rule if a matching working 
memory element exists. It is sufficient to note 
that removing a working memory element may 
cause new instantiations to be created when that 
working memory element matched a negated con
dition element. Thus, nodes in the RETE net
work may need to create new tokens on receiving 
a killer token, and to create killer tokens on re
ceiving an ordinary token. 

264 

As with other implementations of RETE, the · 
parallel one described here relies on an exten
sive compilation phase in which the rules are an
alyzed, optimisations are made and correspond
ing networks are constructed. Common compile
time operations include the following: extra 
space is allocated to each working memory ele
ment to hold a unique identifier; attribute names 
and variables are translated into numeric offsets 
specifying the position of the designated value in 
a token. 

Some optimisations that are effective for se
quential implementations, such as only sending 
new tokens to particular one-input nodes and 
distinguishing between left and right memories, · 
may or may not be of any use in this implemen
tation of RETE. In particular, we do not discuss 
the sharing of RETE subtrees which greatly im
proves sequential implementations. RETE allows 
the order of evaluation of condition elements and 
the tests within them, to be swapped. 

This system does perform further operations · 
during compile-time analysis, often creating new 
attributes at the same time. The left/right flag 
described below is one such, and in the case of 
tests involving expressions with several attribute 
values, a new attribute would be added whose 
value represents the suitable combination. For 
example, a rule describing airline luggage size 
limitations might require that the sum of three 
attribute values be less than some constant. The 
compiler, on encountering such a condition ele
ment, would allocate an extra attribute field for 



the working memory element, and cause the ap
propriate node processor to store in this field the 
sum of the other three attribut e values, before 
propagating the new token. 

3 Virtual Machines in the FFP machine 
The FFP Machine is a fine-grained MIMD 

parallel computer [Mag6 et al . 84, Mag6 85, 
Mag6 et al. 87], which has been designed to ex
ecute the functional programming languages of 
John Backus [Backus 78]. It contains a very large 
number of simple programmable cells, each hav
ing a few hundred bytes of local storage for in
structions and data. These cells are organized as 
a linear array, the L array of L cells, in which pro
grams and data, represented as strings of sym
bols, reside and are manipulated . L cells com
municate through a tree-structured network of 
message processors. 

The marked difference between the FFP Ma
chine and similarly fine-grained machines lies in 
the concept of partitioning . The FFP Machine 
can be divided, at run-time, into arbitrary dis
joint groups of contiguous cells, called virtual ma
chines. The division is done rapidly, without 
preparation, according to syntactic structure in 
the strings of symbols in the L array. The cells 
of each virtual machine can communicate among 
themselves, but they are disconnected from, and 
unaffected by, communication among the cells in 
other groups. Furthermore, the sizes of the vir
tual machines are independent, being determined 
dynamically by the needs of the different compu
tations that arise. 

Some noteworthy aspects of the partitioning 
can be seen in Figure 3, which shows part of a 
physical machine partitioned to support several 
virtual machines (running FP programs, in this 
case) . Virtual machines are not aligned with the 
physical tree structure in the FFP Machine; this 
avoids wasting resources through fragmentation. 
Empty cells may be interspersed among the sym
bols of the programs and data; such cells do not 
affect the virtual machines formed around groups 
of symbols and they aid storage management (to 
be described below ) . The virtual machines are 
defined syntactically by the presence of inner
most pairs of parentheses ( which derives from the 
innermost reduction rule used in FP languages 
[Backus 78]) . In the example shown, the sum
mation of the inner product does not become in
nermost, and so executable, until all of the indi
vidual products have been computed. This syn
tactic definition provides a natural, inexpensive 
scheduling mechanism; tasks can be scheduled by 
altering the arrangement of parentheses residing 
in the L array. 

Each virtual machine has exclusive u se of a 
set of message processors (proportional to the 
number of its L cells ) . These message proces
sors provide each virtual machine with a tightly
coupled synchronised network which can perform 

265 

various simple operations such as sorting and 
counting. Each message processor merges two 
sorted streams of messages according to one or 
two keys contained in the messages and, in the 
case of collisions, combines messages according 
to an included operator. The time needed to 
communicate one set of messages within a virtual 
machine is linearly proportional to the number of 
messages sent and logarithmically proportional 
to the number of cells in the virtual machine . 

A virtual machine a lso has the remarkable 
ability to change in size during its operation, in 
order to acquire empty L cells to hold more data. 
To enable such storage allocation, the contents 
of L cells in the entire L array are shifted hori
zontally by various amounts, all the while main
taining their linear ordering, in such a way that 
empty L cells are absorbed, and gaps of the ap
propriate size are created among the L cells that 
are to support the virtual machine making the 
request. Following the subsequent partitioning 
operation in which new sets of message proces
sors are allocated to the newly positioned vir
tual machines, the virtual machine spanning the 
gap will be able to store data in these newly ac
quired cells. The time required for this storage 
management operation is linearly proportional to 
the largest distance traveled by (the contents of) 
any L cell. Interleaved empty L cells reduce the 
interaction between separate requests and so im
prove behavior. This situation occurs when suffi
ciently many empty cells are interspersed among 
active cells so that separate storage requests do 
not interact and so aggregate. Empty cells are 
created when virtual machines finish their oper
ation and need fewer cells to represent the result 
than they contain; the remainder are erased and 
so become r e ady for any subsequent storage al
location. 

The single restriction on virtual machines is 
that they consist of a contiguous set of the L cells. 
This is necessary so that the tree network can 
be partitioned into non-interfering subnetworks. 
More importantly, the specification and creation 
of partitions within a tree is much simpler (and 
hence cheaper in time and hardware) than it 
would be for richer n e twork structures. This re
striction surfaces as a constraint on the program
mer: to avoid communication contention, con
current processes must be mapped onto the L 
array in a way that preserves the locality in the 
computation. 

Partitioning the physical machine into virtual 
machines is of negligible cost: it involves pass
ing control messages of three bits from nodes 
to their parents, performing a few logica l oper
ations and setting three switches that configure 
internal communication channels. (Each internal 
node may need to support up to three distinct 
virtual machines and is designed to do so simul
taneously). 



·I 

Figure 3. FFP Machine partitioned to support_ separate virtual machines 

Virtual machines are rarely balanced, how
ever their depth is typically only a few levels 
deeper than necessary for the number of cells 
they contain. Virtual machines suffer no align
ment constraints. A virtual machine may begin 
at any point in the linear array of cells and no 
fragmentation arises from its having an arbitrary 
length. Thus, for example, a tree with a thou
sand cells can support two virtual machines, one 
containing four hundred cells and the other six 
hundred. 

This flexibility in size and placement enables 
the processing power of a virtual machine to cor
respond more precisely to the needs of a particu
lar computation, specifically, the amount of data 
being manipulated by a particular function. This 
flexibility should overcome some of the difficul
ties cited for DADO implementations of OPS5 
[Gupta 84]: The number of DADO processors 
assigned to each rule corresponded to a physi
cal subtree in the machine ( thus being a power 
of two), this size was the same for all rules and 
was determined before execution began. The po
sition and size of individual virtual machines as 
described here are independent of each other ( ex
cept for the single overall limit of the number of 
L cells), and are determined entirely during execu
tion according to their individual requirements . 

The principal costs in machine operation lie 
in the communication and storage management 
phases. The costs of partitioning, loading pro
grams into the L cells and executing local in
structions in the cells are assumed to be negli
gible. 

266 

4 Virtual machines supporting 
the RETE network 

The RETE network described above is im
plemented in a straightforward way by a corre
sponding network of abstract node processors. 
The node processors and their communication 
with each other are supported by a series of 
different sets of virtual machines created from 
the same L cells by partitioning. By using a 
series of virtual machine groupings, as demon
strated in Figure 5a, different stages of com
putation can be optimised individually: global 
communication can be supported by a few large 
groupings while concurrent operations can ex
ploit many small independent groupings [Mid
dleton et al. 86]. The cells supporting a given 
node processor can, when necessary, be further 
divided into several virtual machines to support 
distributed operations such as associative search. 

The Abstract Node Processors. 
In keeping with the "logic in memory" philos

ophy of fine-grained systems, the node processors 
are described according to their data structures, 
the node's processing power being distributed 
evenly among the data. For brevity, only the 
simple two-input node in the RETE network is 
described; the operation of other nodes can be 
inferred from it. This two-input node, shown in 
Figure 4, checks every pairing of left tokens with 
right tokens, to see whether they satisfy the tests 
specified in some rule's left hand side. It does 
this incrementally, comparing each newly arrived 
token against all the tokens that have already ar
rived from the other side, and saving that token 
for comparison with subsequent new tokens. 



"id 3 "id 2 "idl 3 

"type box "type box "id2 2 

"side left "side left +3rd "side 

"name Trunk "name Crate2 "namel Trunk 
"width 20 "width 10 "widthl 20 

"height 10 "height 10 <5th "heightl 10 

"name2 Cratel 

"id 2 "width2 10 

"type box "heie:ht2 10 

"side right +3rd 
"name Crate2 

"width 10 >6th 

"height 10 

Figure 4. Data storage for the associative two-input node processor. 

The two-input node processor contains four 
structures: the head holding information describ
ing the particular tests of the corresponding node 
in the RETE network; the list of new tokens, ones 
which have recently arrived at this node; the list 
of old tokens, which corresponds to the combined 
left and right memories of a RETE node; and 
the output area for holding the tokens created by 
the matching process. Tokens are stored simply 
as lists of attribute values; there are no pointers 
being used to build more complex structures. 

The node processor matches one new token 
against all the old tokens using five steps (for 
which approximate estimates of the time spent 
are given). 

(1) A new token is selected from the new 
token list, taking a small constant time, 
Cselect, independent of the number of 
new tokens or their sizes. 

(2) The new token is broadcast to the old 
tokens as a sequence of attribute val
ues. The L cells holding the old to
kens, having local copies of the tests 
relevant to their particular attribute 
values, can extract and compare at
tribute values from this stream of mes
sages with their own attribute values. 
This takes a time proportional to the 
size of the new token, O(token_size), 
plus the depth of the communica
tion network, which is approximately 
O(lg(node_memory_size)). 

267 

(3) Each group of L cells holding one old 
token determines if all the tests were 
satisfied. (For this step, the L cells 
of the node processor are further par
titioned in order to avoid communica
tion contention between cells holding 
different tokens). This take a time ap
proximately proportional to the size of 
a token (ignoring size differences be
tween left tokens and right tokens), 
O(lg(token_size)). 

( 4) For each old token in which a ll the 
tests succeeded, an output token is cre
ated combining that token with the 
new token. Assuming there are S 
successful matches, this takes O(S x 
token_size) for storage allocation and 
0 ( S x token_size + token_size) for com
municating the old tokens and new one 
respectively. 

(5) The new token is converted to an old 
token by broadcasting the tests stored 
in the head to it. Each attribute in the 
new token saves the tests that apply to 
it in a form suitable for its later use. 
This communication operation takes 
0( token_size + lg( node_memory_size)). 

Combining the five approximate costs for these 
steps, the time for the matching operation 
is dominated by the term O(S x token_size + 
token_size). The size of the node, predominantly 
the L cells holding the new and old tokens, ap
pears as a logarithmic factor which is dominated 



I 

by the other terms. Thus the time taken by a 
node is relatively independent of the number of 
tokens in its memory. 

Each test consists of two selectors and a pred
icate . The selectors specify attribute values 
within the left and right tokens as arguments to 
the predicate. Since a token is a list of work
ing memory elements each of which is a list of 
attribute values, a selector contains a pair of in
dices, although compilation might flatten tokens 
into simple lists of attributes and thus change 
the selector to a single value. 

The left and right memories of a RETE node 
having been merged into the old token list, a 
l eft / right attribute is added to each token to 
distinguish which of the two RETE subtrees sent 
it. Two tokens may match if their left/right at
tributes differ, this constraint being imposed in 
the same way as the explicit tests derived from 
left hand sides. Old tokens contain, as well as a 
list of attributes, the set of tests to be performed. 

Figure 4 shows the node processor for the two
input node in Figure 2, after it has received and 
saved two tokens containing working memory el
ement 2 in its o ld token list: one received from 
its left subtree and the other from its right sub
tree. On receiving the token containing element 
3 from the left subtree, it compares it with all old 
tokens, trying to satisfy two constraints: first , 
that the left / right attribute in the new and the 
old token differ, and second, that the height at
tribute in the right-hand token is less than the 
width attribute in the left-hand one. 

If a test fails, the L cell sets a veto flag. In 
a subsequent communication stage, the cells of 
the node processor are further partitioned into 
smaller virtual machines, one for each old token. 
The machines containing each old token can de
termine, in parallel, whether their token is con
sistent with the newly-arrived token, by the ab
sence of any veto flags. 

At this point, the new result tokens (possibly 
zero or many) are created in the output region 
of the node processor. The number of matches is 
counted and the number of cells needed to hold 
the results is computed and allocated in this re
gion. The cells holding the new token and those 
holding old tokens which match transmit their 
contents to the newly allocated cells which re
ceive and store these symbols in such a way that 
the output tokens result. Simple manipulation 
of values by the cells in the output area occurs 
at this point. For example, the left/ right at
tribute in the created token would be set to in
dicate whether this node is the left or right child 
of the node receiving these resulting tokens, as 
determined during rule compilation. 

Communication between Node Processors. 
Newly formed tokens are now transferred 

from the output areas of node processors to the 
input areas of the parents (in the RETE net
·work ) of those nodes. The grouping of L cells 

268 

into node processors is suspended, and the L cells 
are re- grouped to support transferring tokens be
tween node processors. Partitioning the L cells 
into many groups at this stage avoids contention 
between independent transfers ( or at least mini
mizes it, depending on the mapping of the RETE 
network ) . 

Figure 5 shows two RETE networks contain
ing three two-input nodes, and a corresponding 
embedding of the network in the L array. For 
both networks, the sequence of cell groupings is 
shown; the first three groupings correspond to a 
single matching cycle and the subsequent group
ings support the communication between nodes. 

Figure 5a shows a conventional, skew tree of 
nodes. The depth of such a tree, and conse
quently the pipeline delay through a sequence of 
node processors, is equal to the number of con
dition elements in the corresponding rule. How
ever, such a tree can be embedded in the linear 
L array so as to allow all communication arcs in 
the RETE network to be active simultaneously. 
Figure 5b shows a balanced tree of nodes which 
might be more suitable for parallel processing 
since the pipelined delay is logarithmic in the 
number of condition elements. However, such a 
tree can no longer be efficiently embedded in the 
L array. Several groupings of L cells are neces
sary to support tokens traversing RETE network 
arcs: as many as the depth of the tree. 

L cells are allocated in the parent node's new 
token list and the output tokens in the children 
nodes are broadcast, after which the cells in the 
output regions can be reclaimed. Since this com
munication and storage allocation is expensive 
and is performed twice for all created tokens, a 
reasonable optimisation is to discard the output 
area from nodes, and create tokens directly in 
the new token lists in their parent nodes. 

Token deletion. 
Deleting working memory elements and to

kens from the network has so far been ignored. 
There are two ways that dele tion may occur 
( other than the natural firing of rules which re
moves the winning token from the conflict set ) . 
An action may remove ( or modify) a working 
memory element, in which case all the tokens 
containing that working memory element must 
be removed, or an action may create a working 
memory element which, by matching a negated 
condition element in the left hand side of a rule, 
prohibits any combination of working memory el
ements (which might previously have provided a 
legal match for that left hand side) from enter
ing the conflict set. As with the conventional 
RETE algorithm, working memory elements in 
this system have unique identifiers which are in 
fact timestamps of their creation; these are used 
for deletions. Lack of space precludes a detailed 
description of how tokens are deleted, however 



A I It 1l 11E 1l I Cl 1111 
F 

1 I 111 I 11°il I , n I 111 I I i, I , t I I I r I I 111 I , T ii 11 I - - - - - ---- -- step1&2 

1111111 1111 1111 II 11111 II 1111 II II II 1111 111 111 step 3 - - - - - ---- -- step4&5 

token transfer 

a) Skew RETE tree needs one communication cycle b) Balanced RETE tree needs several cycles 

Figure 5. Virtual machines to support RETE network of node processors. 

it should be noted that various associative tech
niques similar to those used above allow such to
kens to be found and deleted in parallel. The L 
cells holding these e lements and tokens immedi
ately become available for storage management. 

5 Conclusions 
Recent debate has suggested that the Rete al

gorithm, implemented with limited if any paral
lelism, is the best way to support pattern match
ing in OPS5, and, by implication, probably in 
other production-system-style languages as well. 
The matching process described here is intended 
to show that a large amount of useful fine-grained 
parallelism is available in the matching process, 
specifically in combination with the advantages 
of the RETE algorithm itself. 

This matching process exploits parallelism in 
several ways . First, all nodes in the RETE net
work can run in parallel if they contain a token in 
their input queue. The pipelining aspect of the 
operation, that each node passes on matches in
volving one new token before starting to match 
the next new token, is intended to exploit this 
parallelism between nodes. Other parallel im
plementations of RETE a lso exploit this paral
lelism using some dozens of processors sharing a 

269 

common memory to contain the working mem
ory elements. Communication between nodes in 
this scheme, occurring between very tightly cou
pled processors, should be no slower than mes
sage passing between powerful processors, which 
often requires significant operating system inter
vention. Since the tokens passing between nodes 
are much larger (they contain complete working 
memory e lements rather than just pointers to a 
single shared memory), this scheme uses copying 
instead of sharing to avoid contention for access 
to such a memory. 

This scheme exploits parallelism within each 
node, an opportunity which cannot be taken 
by approaches using coarse grain processors . 
Matching a given new token is relatively inde
pendent of the number of old tokens stored in 
the node, as shown in Section 4: matches can be 
performed in a natural associat ive fashion since 
a node's processing power increases directly with 
the size of its token memory. All the nodes 
in the RETE network can match one of their 
new tokens in basically the same time; the single 
principal difference arises with different success 
rates in different nodes. This counters one of the 
arguments against fine-grained implementations : 
that the significant variance in node processing 



I 

times, due to the different sizes of token memo
ries, justifies using a few powerful processors. 

Working memory elements can be deleted 
from the entire RETE network in a single opera
tion. Ordinary and "killer" tokens can be deleted 
from each node memory in a single associative 
operation in that node, while the propagation of 
effects from such an operation will depend on the 
depth of the RETE network. 

It is unclear what factors limit the effective
ness of this fine-grained approach to pattern 
matching in OPS5. Storage allocation takes lin
ear time in the number of tokens created ( cer
tainly, for each node, and in the worst case, for 
all the nodes together) and the constants of pro
portionality are greater than those for conven
tional memory allocation. This system implic
itly stores tokens with one attribute value per 
L cell, which may require more processors than 
is practical. Possible optimisations include pack
ing several attributes in a single cell, propagating 
only those attributes used later in the RETE net 
work and sharing common condition elements, as 
sequential RETE algorithms commonly do. 

There are two factors which prevent this sys
tem from being amenable to more detailed anal
ysis. Most importantly, the behavior of an OPS5 
program with regards to these factors is very 
heavily dependent on the nature of the partic
ular rules and input data. Secondly, the be
havior of storage management in the FFP Ma
chine depends heavily on the particular distribu
tion of storage requests in relation to the empty 
cells that have arisen during the computation. 
Therefore, the next step is to determine through 
simulation to what extent these constraints limit 
the speed improvements provided by the concur
rency. 

Acknowledgements 
We are grateful to Dave Nicol and Sherry 

Tomboulian for comments they made following 
an early presentation of this work . 

References 

J. Backus, "Can programming be liberated from 
the von Neumann style? A functional style 
and its algebra of programs", Communica 
tions of the A CM, Volume 21 No. 8, pp. 
613-641, August 1978 . 

L. Brownston, R. Farrell, E. Kant and N. Mar
tin, Programming Expert Systems in OPS5, 
Addison-Wesley, 1985. 

C. L. Forgy and A . Gupta, "Preliminary Ar
chitecture of the CMU Production System 
Machine", Nineteenth Hawaii Internat i onal 
Conference on System Sciences, pp. 194-200, 
Honolulu, January, 1986. 

C. L. Forgy and S. J. Shepard, "Rete: A fast 
match algorithm", A I Expert, pp. 34-40, 
January 1987. 

270 

G. Mag6 and D. Middleton, "The FFP Machine 
- A Progress Report", Proceedings of the 
International Workshop on High-Level Com 
puter Architecture, pp. 5.13-5.25, May 1984, 
Los Angeles, California. Reprinted in IEEE 
Tutorial on Compute,· Architecture by D. 
Gajski, V. Milutinovic, H. Siegel and B. 
Furht, and in the IEEE Selected Reprints on 
Datafiow and Reduction Architectures by S. 
Thakkar. 

G . Mag6 and D.F . Stanat, "The FFP Machine", 
UNC-CH Computer Science Technical Re
port 87-014. To appear in Topics in High
Level Language Computer Architecture, by V. 
Milutinovic, Computer Science Press . 

D. Middleton and B. T. Smith, "FFP Machine 
support for Language Extensions", Nine
teenth Hawaii International Conference on 

System Sciences, pp . 59-66, Honolulu, Jan
uary, 1986. 

J. Quinlan, "A Comparative Analysis of Com
puter Architectures for Production System 
Machines", CMU Technical Report CMU
CS-85-178 . 

S.J . Stolfo and D.P. Miranker, "DADO: A Paral
lel Processor for Expert Systems", Proceed
ings of the 1984 International Conference on 
Parallel Processing, pp. 74-82, August 1984. 

A. Gupta and C. L. Forgy, "Measurements on Production Systems" 
CMU Technical Report CMU-CS-83-167. 

A. Gupta, "Implementing OPS5 Production Systems on DADO", Pro

ceedings of th e 1984 International Conferen ce on Parallel Pro

cessing, pp. 83-91, August 1984. 

G. Mag6, "Making Parallel Computations Simple: The FFP Machine", 

Proceedings of COMPCON '85 , pp. 424-428, 1985. Reprinted in 

Comput ers for Artificial Int elligence Applications, IEEE Com
puter Society, 1986. 



An Expert Advisor for Fourth Generation Software 

Douglas Skuce 

Department of Computer Science, 
University of Ottawa 

Ottawa, Canada 
doug@uotcsi2 .bitnet 

Abstract 

A prototype "advisor" system which answers typical "how" 
and "why" questions about a fourth generation report writer 
has been developed using commercial expert system tools . 
The system features natural language input, both forward and 
backward reasoning, a "causal" reasoner specialized for 
reasoning about user's code, and a code synthesizing 
component. KEE, ART, and Prolog have been used, and we 
provide a discussion of their relative merits. We make a 
distinctio~ between "shallow" and "deep" knowledge 
representations; both approaches were used in the project. We 
conclude that such tools can be used directly (the shallow 
approach) for a useful but not penetrating coverage of typical 
questions, but that even this would require a number of 
person-years to develop a reasonably useful system. 

Keywords: expert system; human interface; question 
answering 

Introduction 

This paper describes a project undertaken by the University 
of Ottawa in collaboration with Cognos, Inc., one of 
Canada's leading software companies. The Advisor Project 
was begun in the fall of 1985 to explore the potential of 
incorporating state-of-the-art expert system technology into 
certain of Cognos' future fourth generation languages 
(4GL).The aim of the Advisor project was to create a 
prototype software advisor or assistant for the user of a 
typical 4GL1 . For the prototype we chose QUIZ, Cognos ' 
fourth generation report writer, as the experimental subject, 
because it is a mature and well understood product, it is 
typical of such 4GL languages, and there is a large body of 
users with a well documented history of problems 
encountered using the product. This documentation was used 
extensively as a guide to the kinds of questions the system 
ought to be able to answer. A secondary goal was to explore 
a number of different approaches to implementing such a 
system that are currently available. These may be partitioned 
in several ways: base language (e.g. Lisp or Prolog) vs 
higher-level tool (e.g. KEE [KEE 86]); natural language (nl) 
oriented vs rudimentary natural language ability; shallow 
vs deep semantic representation. We have carefully 
considered all of these alternatives, and have experimented 
with most of them. We offer some conclusions from these 
comparisons. 

1 Skuce [87], Skuce and Tauzovich [87), Tauzovich [87), 
Skuce, Stanley and Tauzovich [88), Szpakowicz [87), 
Constant et al [86), and Delisle [87) give further details. 

27 1 

QUIZ is the report writer of POWERHOUSE Cognos' 
applicati_on development system [QUIZ 85]. 'A QUIZ 
progra~ 1s a declarative specification of the desired report. It 
starts with an ACCESS statement which declares the files to 
be used and the_ linkages between them. Other major 
statement types mclude the REPORT statement which 
defines what is to be reported, and the SELECT statement 
which specifies the data selection criteria. A GO statement 
indicates that the specification is complete, and that execution 
can begin. A report-writing module then produces the actual 
report. 

Approach 

We consulted the records of Cognos' telesupport group for 
documentary evidence of typical problems encountered by 
QUIZ users. These queries were from real end users of 
QUIZ, who were attempting to use it to solve their data
processin~ problems. _Their calls to the telesupport group are 
hence typ1~al of questions that any advisor should be capable 
of answenng. We screened the questions for obvious 
irre.levancies, and then classified them according to a system 
~hie~ we ~eveloped_. [Constant et al 87] The questions fell 
mto six mam categories as follows: 

HDI (how do I do such-and-such?) 51 % 
WHY (why is such-and-such happening?) 20% 
SYN (what is the syntax for ... ?) 13% 
ERR (what does this .... error message mean?) 7% 
HYP (what would happen if I ... ?) 4% 
DEF ( what is the meaning of...?) 4% 

Since the HDI questions alone accounted for more than half 
the q~estions, it "."'as decide~ to make answering this type of 
question one maJor sub-proJect. A second sub-project was 
initiated for the second most frequent category, WHY. Only 
these two categories were considered of real interest to AI 
researchers, since the others can be handled in 
straightfo1ward ways . 

We made a _detail~d analysis of some 2000 questions. 
Cogn?s technical wnters were a secondary beneficiary of this 
exercise. They received a weighted list of six topics that 
clearly gave many users difficulties, and which therefore 
required an improved treatment in the reference manuals. In 
addition, we derived lists of technical terminology that was 
not clearly or consistently used in the manuals, a major 
source of confusion both for users and ourselves as 
knowledge engineers. We reduced this set to a representative 
set of some 220 questions by eliminating irrelevant or 
difficult questions. 



I 

I 

·j 

I 

We then used these questions as a guide in designing our 
question answering strategy. The main thrust of this strategy 
was to use each question type as a focus for knowledge 
encoding. The concepts and rules needed for this and similar 
questions were added incrementally to the knowledge base. 
By "similar", we mean questions obtained by substitutions of 
other noun and verb concepts which were semantically 
similar. At present, we have thus covered about 30% of the 
220 questions. The process of extending this coverage tends 
to go progressively faster, since less and less new concepts 
need to be added (questions overlap), and more "landmarks" 
exist to provide clues as to where to add new knowledge. 

The project was divided into three subprojects. Each was 
treated relatively independently during the initial stage, 
termed Pl, which was at 14 months from the beginning of 
the project. This stage was a major watershed in the project 
and is the focus of this paper. In the HDI subproject, we used 
a "shallow" approach, whereas the WHY module was built 
using a "deep" approach. We use these terms as follows. In a 
shallow approach, no attempt is made to design a specialized 
knowledge structure to thoroughly represent all the essential 
detail of the system being modeled. Rather, a simple, general
purpose representation, in our case frames, is the main 
knowledge structure. It contains only those details which are 
necessary to support the rules needed to answer the 
questions. In a deep approach, a knowledge representation 
structure adequate for virtually all aspects of the subject is 
selected first, which necessarily will have such features as 
logical adequacy (expressive power at least similar to first 
order logic), the ability to make definitions, and facilities to 
accomodate natural language phenomena such as ambiguity 
and anaphora. Another way of stating this difference is that in 
our shallow approach we directly used the facilities of KEE in 
which the frames support the rules, whereas in our deep 
approach, the knowledge representation was more complex 
than just a frame system, and the deduction more general than 
that of KEE or similar expert systems. The relative merits of 
these approaches are discussed in the final section of the 
paper; a more complete discussion of some of these 
comparative issues is given in [Skuce 87], [Skuce and 
Tauzovich 87], and [Skuce, Stanley and Tauzovich 88] . 

The three subprojects were: 

• a parser capable of parsing a simplified version of any 
question asked by the user of the system, coupled with a 
simple user interface; 

• an HDI question-answering system, implemented in KEE 
using a shallow approach; 

• a WHY or causal question-answering system, 
implemented in Prolog using a deep approach. 

Each of these is described in the following sections of the 
paper. Figure 1 show the overall architecture of the system. 

The Parser and User Interface 

The parser was written in Quintus Prolog and runs on a 
SUN/3 workstation. LESK (Language for Exactly Stating 
Knowledge), the subset of English that the parser is designed 
to accept, is based on earlier work [Skuce 83] on simple 
English-like knowledge acquisition languages. The unit of 
input to the question-answering system is termed a query, 
consisting of a question accompanied by zero or more 
assumptions, which could include a fragment of QUIZ code 
and/or a QUIZ error message. LESK is sufficient to cope 

272 

with a rewording of the assumptions and questions that were 
present in the question set. The parser outputs a successfully 
parsed query in the form of a parse tree for each statement, 
represented either as· Prolog lists or as Lisp s-expressions, 
depending on the type of question (HDI questions were 
handled by a separate system, using KEE and Lisp; see 
below). If the parser fails to parse an input fragment, an 
interactive dialogue is initiated with the user to attempt to 
resolve the problem. The user is given the choice of 
respecifying the fragment or of undertaking a more detailed 
dialogue via which a new word can be defined in the parser's 
lexicon. The design of the parser is based on definite clause 
grammars and is capable of parsing any input fragment in less 
than 0.5 seconds. 

The user interface, also written in Prolog, initializes all the 
communications mechanisms, controls the Lisp machine (see 
below) as a slave, and allows the user to enter, edit, and 
submit all the various components of a query to the 
appropriate question-answering system. This interface is 
adequate for research needs, but would have to be redesigned 
in any real advisor. 

The HDI Question-Answering Subystem 

The How-Do-I question-answering subsystem (HDI) was the 
one into which the most effort has been directed, mainly 
because we wished to explore the capabilities of available 
large-scale AI tools, and also because it was the most 
common question type. We chose KEE (Knowledge 
Engineering Environment, [KEE 86]) on the Xerox 1186. At 
the time the choice was made (May 1986), KEE was the only 
such tool running on the hardware we had, SUNs and 
1186s. Below we will discuss the advantages and 
disadvantages of this tool, and will compare it with its close 
competitor, ART [ART 86] · ART became available on the 
SUN too late (February 1987) to use in the project. 

We used KEE's major features in the HDI part of the system: 
frame -based representation of knowledge; a 
forward/backward-chaining, rule-driven inferential system; 
and object-oriented methods written in Interlisp. These three 
mechanisms were combined in various proportions to answer 
a submitted query in two main stages. Figure 2 show the 
steps in HDI question answering. 
Stage 1 

The first stage of KEE processing (box 1 in Figure 2) was 
termed the semantic interpreter. Only methods were used, 
mapping the query (a set of assumptions plus a question) into 
a set of units representing the semantic structure. These units 
correspond to a particular meaning of each noun and verb. A 
major problem was the determination of the roles (cases) in 
general, and the role structure for each verb, since there does 
not seem to have been adequate study of this problem in the 
literature. We desired to keep the semantic processing in this 
stage as generic (independent of subject) as possible, but 
often found it necessary to invent roles which were specific to 
QUIZ; our roles are hence either generic or QUIZ-specific. 
The semantic interpreter attempts to map phrases which 
modify a verb into appropriate case roles, descending into 
subclasses to find the most specific interpretation. We 
experimented with various approaches to resolving 
ambiguities, from taking unannounced defaults to explicitly 
querying the user. Which is best depends on who the user is. 

We represented plural noun phrases as classes in KEE, and 
singular noun phrases as instances of classes. The meaning 
of, e.g. 'every' or 'a', depends on its context, and rules in 
the stage which follows the semantic interpretation must 



either take special action or rely on a default interpretation. 
For example, the default treatment for a plural noun was to 
treat it as a number of "typical" instances, e.g. "how do I 
print every sort key" will show how to print a typical two or 
three, followed by "etc ... ". 

Stage 2 

The second stage, termed the code knowledge stage (box 2 
in Figure 2), which follows the semantic interpretation, is 
comprised virtually entirely of forward rules. These are 
triggered by acts and objects (our terminology for KEE units 
representing verbs and nouns) generated in the semantic 
interpretation stage. They create KEE units representing the 
syntactic components of the desired QUIZ program. We 
developed a three-phase approach to developing the answer, 
termed generic answering. A generic answer is one that does 
not give all the detail - actual QUIZ code - but gives enough 
hints that most users could supply the detail. For example, a 
human when asked the question "how do I report an item 
only after a subtotal?" might reply "use a FOOTING AT 
statement". If the asker were still unclear, the answerer 
would provide more detail. We do the same. A question is 
first answered with a "use ... with ... option" type of answer, 
which we term generic. This is often sufficient, and it is 
much easier to write rules to generate such answers than to 
supply all the actual minutiae of the code. 

For some of our generic answers, we have gone further and 
supplied rules that actually synthesize the QUIZ code 
required, a second phase of code knowledge. The user may 
request this by a mouse action, which we term completing the 
answer (box 3 in Figure 2). However, given a certain number 
of weeks or months of an expert's time to develop rules, we 
would prefer that they be spent more on the generic answer 
rules, so that more user's questions can be handled in less 
detail (but nevertheless satisfactorily for most users) . The 
detailed code synthesis rules can always be added later. When 
all components of QUIZ code in a completed answer have 
been generated as KEE units, methods attached to each are 
called to display a normal linear version of the program in 
correct syntax. 

The third phase of code knowledge is termed extending the 
generic answer (box 4 in Figure 2). Usually, a question is 
about some lower syntactic level of QUIZ, e.g. a part of a 
statement. By extending, we mean a generic or complete 
answer about the whole statement that would be necessary, 
given the current assumptions, or even the whole program 
(all statements). The user may request such extension 
information by mouse action. 

We found it useful to partition the rules into a number of 
substeps, activated sequentially, which is a common 
technique in forward chaining programming. For example, 
first we activate rules for disambiguation of the query, 
followed by rules that create non-referenced objects as KEE 
units (i.e. representations of certain QUIZ objects that are 
participating in the situation but were not explicitly referred 
to). Next, we activate rules that construct the generic answer. 
Finally, if the user wishes, we activate rules that construct the 
units representing the actual code, i.e. syntactic objects 
(boxes 3 and 4). 

The Pl Prototype 

An initial prototype, Pl, was developed in five months, 
before a true QUIZ expert was brought in, by Al people who 
knew the basics of QUIZ. This was to develop the strategy 
for processing the questions, together with the necessary 

273 

coding, so that the expert would arrive with a stable 
methodology in place. The expert inherited the Pl approach 
in March 1987, and extended it considerably without 
changing the methodolgy, while the remainder of the team 
explored new directions (see below). After a four month 
learning curve, she was able to add new knowledge to the 
system directly, but still required assistance in making major 
decisions on how to structure the hierarchy and in writing 
Lisp code. 

We feel that this approach, in which the expert is brought in 
only after a stable design has been arrived at by the 
knowledge engineering group acting initially as pseudo
experts, is desirable in applications where the experts are 
scarce, and the knowledge engineers can become pseudo
experts. 

Pl was capable of answering tens of queries on the topics of 
accessing files, reporting and sorting. The emphasis was 
entirely on developing the methodology; no attempt was made 
to enter sufficient knowledge to answer all the questions. 
Figure 3 lists some of these queries. Achieving this required 
approximately 85 KEE units, representing both nouns and 
verbs, plus about 30 QUIZ syntactic component 
specifications (also units), supported by some 70 rules and 
about 10 KEE methods. This was developed in about 15 
person-months, beginning with no knowledge of KEE or the 
Interlisp environment. The latter consumed probably 40% of 
our learning effort, since KEE cannot be used effectively in 
this type of application without Lisp programming. (Pl uses 
some thirty pages of Lisp functions). Although performance 
was not an issue for this prototype, it took the KEE/Interlisp
based mechanisms typically 10 to 20 seconds to answer a 
question on the 1186. One of the issues that we intend to 
address is the question of what sort of response might be 
considered reasonable for an advisory system. 

We turn next to the second sub-system, the QAUZ system. 

The QAUZ Causal Reasoning Subsystem 

The primary role of the QAUZ subsystem is to provide 
explanations of unexpected or puzzling features of QUIZ 
reports, since most "why" questions arise as a result of unmet 
expectations. Queries normally include background 
information consisting of partial QUIZ code and a number of 
LESK statements that describe the problem. In order to take 
advantage of as much information contained in a query as 
possible, the system explores the individual elements of the 
query and tries to establish causal links among them. The 
elements of the query are first converted into an asssertional 
form suitable for the subsequent deduction process by a 
"compiler". The system parses the QUIZ statements in the 
query and then uses forward chaining rules to determine the 
effects the givens in the query have on the result. When 
analyzing descriptions of the report however, it performs 
backward deduction to determine the features of the code, or 
other possible or stated assumptions, that could have caused 
the result. Reasoning in both directions is performed 
whenever both code and descriptions of results are present in 
the query. 

QAUZ has an unusual ability for most expert systems: it can 
di scover contradictions in queries and deal with them 
effectively. This ability to handle negative knowledge is 
necessary in an application where questions are often about 
failure to obtain an expected result, or where a naive user will 
often give inconsistent assumptions. The details of the query
answering algorithms are given in [Tauzovich 87]. Figure 4 
diagrams the QAUZ subsystem. We believe that approaches 
based on causal reasoning in this manner will become 



increasingly important as the demand for robustness and 
apparent "intelligence" increases [Brown 84]. 

Reasoning forward from the QUIZ code is done by 
associating each statement in a QUIZ program with a rule that 
describes its causal effect on the appearance of the resulting 
report. To be able to reason about these causal relationships, 
we developed an Augmented Syntax Language, which 
incorporates the syntax-describing conventions from the 
QUIZ manual (keywords, arguments, optional and repeated 
entries) into causal rules that define the semantic effects of the 
syntactic components. 

Reasoning backward from the results obtained, described by 
LESK statements, we use rules which specify a result as the 
causal "conclusion", having LESK descriptions of the 
internal state of QUIZ (caused in tum by the user's code) in 
their premises. Thus we may go entirely backward, from 
results to code, entirely forward, from code to results, or, in 
a typical query, combine both. The system takes appropriate 
action if the code and described results do not properly 
correspond, attempting to explain to the user where the 
discrepancy lies. While processing a question, the QAUZ 
system constructs an internal representation in the form of 
assertions which model the actual state of the QUIZ system. 
This is to detect all the various dependencies and causal 
mechanisms that may be contributary factors to answering the 
"why" question. Even if a focused answer cannot be reached 
by the system, a browsable display of the internal 
representation of the problem frequently yields sufficient 
information to enable the user to answer the query. 

In November 1986, QAUZ could answer questions from 
every kind of WHY question in the question sample. Figure 
6 lists some of these. 

We have classified the approach used in QAUZ as "deep" 
because the knowledge representation was developed 
specifically for this purpose, in Prolog, rather than attempting 
to fit the problem into a given structure such as KEE 
provides. As a result, the frame structure and deduction 
engine had to be coded from scratch, using Prolog purely as a 
programming language. We discuss further the relative merits 
of this in the final section of the paper. 

Related Work 

Very little work has been done on software advisors. The 
article [Carroll and McKendree 87) discusses general design 
goals for advisors, and cites most of these systems up to 
about 1986. We know of no work that specifically uses an 
expert system tool or that performs rule-based causal 
reasoning as we have done. Perhaps the best known 
software advisor is the Unix Consultant [Wilensky et al 86). 
This system emphasizes natural language understanding, and 
answers questions of similar syntactic difficulty to ours about 
how to do common operations in Unix. It is not rule-based, 
since it does not use expert system techniques; its causal 
reasoning uses frames and semantic nets. Its strength lies in 
its ability to understand linguistic speech acts, i.e. to model 
the goals and intentions of the user. Its knowledge of Unix 
seems to have a comparable depth to that in our system. 

DCL [Shrager and Finin 82) is an advisor that helps a novice 
learn the VAX/VMS operating system. DCL does not answer 
questions directly, rather it _monitors the user:s actions and 
gives advice when appropnate. The system 1s based on a 
catalog of inefficient plans novices often use. The DCL 
network represents causal knowledge as triples: a user goal, a 
commonly-used inefficent method, and a better method that 
has the same effect. As well, Digital Equipment Corp. has 

274 

been developing a methodology for operating system 
consultants [Billmers and Carifico 85]. Their first research 
system, TEACHVMS, helps novices who are familiar with 
TOPS20 learn VMS. It is a forward-chaining system, 
implemented directly in C. It accepts TOPS20 commands, 
and produces the equivalent VMS commands. A second 
system, TVX, builds on the first to produce a generic "shell" 
for encoding knowledge about any operating system. It 
separates "generic" operating system knowledge from 
"specific" knowledge for one system, e.g. VMS. It uses a 
backward rule-based approach to synthesizing plans to 
accomplish the user's goal. It does not explicitly represent 
causality, nor does it have a significant natural language 
ability. 

A somewhat broader category of system might be generically 
termed "intelligent front ends", though the term "assistant" is 
often used as well. We take this term to be quite general, 
encompassing any system that acts as an interface to some 
other system such as a database. The FRED system 
[Jacobson et al 86] is a database front end. Their 
methodology is similar to our HDI system, though they do 
not mention using an expert system tool; apparently rule
based knowledge is a relatively small part of the system. The 
articles by [Berry and Broadbent 86/87), [Bundy 85), [Spark 
Jones 85], and [McKeown 84) are all general discussions of 
the problems in integrating natural language and expert 
system technology in intelligent front ends. 

There are a number of systems that may be termed 
"programmer's assistants", i.e. which help in the program 
development process. The function of these is more similar to 
that of the HDI component of the Cognos Advisor than to the 
QAUZ component, in that they perform code synthesis rather 
than analysis. Typical of these is the Programmer's 
Apprentice [Waters 86), which acts as a "clerk" to a 
programmer. The PROUST system [Johnson 85) can 
identify novice-level semantic errors in a Pascal program. It is 
based on a catalog of typical plans and goals, and performs 
causal reasoning about the user's intended goals. The Unix 
Computer Consultant [Douglass and Hegner 82] is another 
Unix assistant. The front end accepts a natural language 
query which is translated into a formal query language 
similar to "logical" database query languages. These systems 
typically use a deep representation. 

Discussion and Conclusions 

Our primary conclusions have been the following: 

1. A major distinction has to be made between problems that 
can be adequately handled with a shallow model, e.g. the 
frame and rule structures that today's expert system tools 
supply, and those that need a deep model, which these 
systems, with the possible exception of ART, can't 
adequately support without using Lisp or Prolog extensively. 
In our project, a useful variety of questions was supportable 
by KEE plus Lisp (the parser in Prolog could easily be 
rewritten in Lisp), and indeed, a shallow advisor based on the 
Pl approach has been shown to be feasible. However, it 
would probably not be economically sensible to use a tool 
like KEE for this purpose. Cheaper tools that require less 
resources are now available that, while not as flexible, are 
probably adequate. The primary role of a system like KEE 
then is probably one of prototyping, for which it was 
certainly very useful, but for delivery purposes, the resouces 
it requires are still extensive, even in 386-based versions. 
This situation will improve considerably in the next few 
years, of course. 



Prolog systems today are more advanced (e.g. windowing) 
than two years ago, but to build a system such as ours 
entirely in Prolog one would still have to code many of the 
facilities that good expert system tools provide from scratch. 
We know of no expert system shell written in Prolog that 
remotely approaches the capabilites of KEE or ART. For 
example, forward chaining in Prolog, except for small rule 
bases, would require writing a serious forward chaining 
engine, a major problem. 

How then does one decide in advance whether one has a 
shallow problem, committing to a system such as KEE or 
ART used without much enhancement, vs a deep problem, 
that either needs considerable enhancement to an existing 
tool, or the use of no tool at all, i.e. coding directly in Lisp or 
Prolog? Clear guidelines for this problem would be very 
valuable. We offer the following "rules". 

• any problem in which more than trivial natural language 
input is desired is probably a deep problem. Advisors can 
easily fall in this category. 

• any problem in which the most thorough representation of 
domain-specific knowledge is clearly essential to 
acceptable performance is definitely deep. 

• any problem that involves reasoning about sets, more 
complex mathematical concepts such as logical 
relationships, temporal relations between events, or 
procedural knowledge is very probably deep. 

• any problem which requires some form of deduction 
which is not supported by existing tools, as in our QAUZ 
module, is definitely deep. 

• any problem which does not require natural language and 
for which experts are content to express their knowledge 
in the language of a KEE or ART-like notation is 
probably shallow. 

2. The two approaches used in the HDI and QAUZ modules 
are difficult to compare. A proper comparison would require 
that two equally qualified groups undertake the exact same 
task to allow a more precise comparison. While this would 
clearly be an interesting experiment, few could afford it. The 
two modules were similar enough however that we feel 
confident in drawing some conclusions. The particular 
reasoning needs of the QAUZ module were sufficiently 
unique that they could not be met with the built-in deduction 
mechanisms provided by existing expert system tools, with 
the possible exception of ART. (ART's capabilities border 
between shallow and deep.) Hence a deep approach was 
necessary. If we rebuilt the QAUZ system in ART, which has 
more powerful deductive abilities than KEE, its deduction 
engine might be sufficient. We could of course make use of 
the frame system directly, plus other benefits such as 
graphics, truth maintenance, and viewpoints. Thus we 
possibly could have implemented QAUZ in ART, but 
probably not in KEE. However, the excessive resource 
problem would remain. 

The reasoning needs for the HDI module (~hallow appro~c~) 
were met with a tool like KEE. Had we implemented 1t m 
Lisp or Prolog directly, we would ha~e had t<? reinvent much 
of the machinery that these tools provide, partI_cularly ~orward 
chaining, a questionable prospect: Ho"'."ever 1f one w1~hes to 
take a deep approach, without usmg Lisp or Prolog directly, 
among the expert system tools, only ART ~eems adequat~ as 
a platform. We do not recommend attemptmg a d~ep vers1~n 
of a HDI-type advisor, except as a research proJect, at this 
time. 

275 

In the HDI module , we used methods in the semantic 
interpreter stage, and rules in the code knowledge stage, to 
gain experience with both. Our general feeling is that rules 
are much easier to understand and maintain than methods, 
which contained often complex Lisp code. However some of 
our rules had considerable LISP code in the conclusion, 
making them a kind of hybrid: a "pattern-invoked" function. 
This was necessary because we found that while the rule 
pattern language in KEE was adequate for most rule 
premises, it was not for many conclusions. (A similar 
comment applies, to a lesser degree, to ART rules.) Hence, 
were we to redo the semantic interpreter in KEE, we would 
replace the methods with rules, some of which would be 
quite "hybrid". 

3. We have also been impressed with the relative difficulty of 
representing natural language semantics with respect to 
programming language semantics. We spent many hours 
debating what the role structure for our verbs should be. This 
is, of course, one of the key problems in natural language 
semantics research. 

A closely related problem derives from how carelessly people 
use natural language, even in supposedly well-written 
documents like technical manuals. We were often 
frustrated by imprecise, ambiguous, inconsistent, and even 
illogical technical terminology in the QUIZ manual, which 
nevertheless reflects the actual usage of these terms as they 
have evolved over a number of years without anyone 
seriously attempting to control them. (It should be pointed 
out, however, that Cognos manuals are considered excellent 
by contemporary standards.) This project has impressed us 
with the need to take terminological control very seriously. 
The question of what tools and techniques to use for this, 
which involves establishing and controlling terminology 
uniformly throughout a large organization, is an interesting 
one which we are investigating. It seems clear that techniques 
such as described by Sowa [Sowa 84], may be beneficial. 

4. Turning away from the problems of tools and natural 
language, we would suggest that the development of software 
advisor systems of the kind described here, using a shallow 
approach, should be a thrust of expert system research. We 
believe that such systems are certainly attainable in the near 
term. Such systems would be very useful, and would 
enhance the productivity - and hence marketability - of 
virtually any complex software product. We expect more 
activity in this area; the two last international expert syst.ems 
conferences in Avignon had only one paper on the subJect: 
our own [Szpakowicz et al 86]. 

5. Our experience allows us to estimate that a shallow system 
which could handle many hundreds of simple user questions 
for a product of the complexity of QUIZ would involve about 
500 KEE units, in the order of 1000 to 2000 rules, and a 
simple parser with a vocabulary of about 1000 nouns and 100 
to 200 verbs . Developing such a system would take a 
number of person-years. 

Finally, we believe that the marriage of natural lan~uage ~nd 
expert system technology is inevitable, and that a wide vanety 
of systems, not only front ends or advisors, can be be based 
upon it. 

Acknowledgements 

The Advisor project was a industry-university project 
between Cognos Incorporated and the University of Ottawa, 
funded by grants from the National Research Council of 
Canada, The Natural Sciences and Engineering Research 
Council of Canada, and the Ontario Ministry of Colleges and 
Universities, and Cognos itself. 



, . I 

REFERENCES 

ART86 
ART Reference Manual (version 3.0), Inference Corporation, 
Los Angeles, CA. 

Berry and Broadbent 86/87 
Berry, D. and Broadbent, D., Expert Systems and the Man
machine Interface Expert Systems, 3 pp. 228-233 and 4 pp. 
18-27 (two parts} 

Billmers and Carifco 85 
Billmers, M.A., and Carifco, M.G., Building Operating 
System Consultants, Proc. Second IEEE Conference on 
Artificial Intelligence Applications, Miami Beach, pp. 449-
454. 

Brown 84 
Brown, J.S., The Low Road, the Middle Road, and the High 
Road. In: Al Business, P.H. Winston, K.A. Pendergast 
(eds.), the MIT Press, MA, Cambridge. 

Bundy 85 
Bundy, A. Intelligent Front Ends. In: Bramer, M. (ed .) 
Research and Development in Expert Systems, Cambridge 
University Press, New Rochelle, pp. 192-203. 

Carroll and McKendree 87 
Carroll, J. and McKendree, J., Interface Design Issues for 
Advice-Giving Expert Systems. Comm . ACM 30, pp. 14-
30. 

Constant et al 87 
Constant, P., Matwin, S., and Szpakowicz, S., Question
driven Approach to the Construction of Knowledge-based 
Software Advisor Systems. Proc. Third Annual Conference 
on Artificial Intelligence Applications, Orlando, FL. 

Delisle 87 
Delisle, S., A Natural Language Interface for an Expert 
Advisor System. M.C.S. thesis, Department of Computer 
Science, University of Ottawa. 

Douglass and Hegner 82 
Douglass, R. and Hegner, S., An Expert Consultant for the 
UNIX System: Bridging the Gap Between the User and 
Command Language Semantics, Proc. Fourth National Conf. 
of the Canadian Society for Computational Studies of 
Intelligence, Saskatoon, pp. 92-96. 

Jacobson et al 86 
Jacobson, G., Lafond, C., Nyberg, E. and Piatetsky
Shapiro, G. An Intelligent Database Interface. IEEE Expert, 
Summer 1986, pp. 65-78. 

Johnson 85 
Johnson, W.L., PROUST: A System Which Debugs Pascal 
Programs, Proc. Expert Systems in Government 
Symposium, McLean, VA, p. 157 (October). 

KEE86 
KEE Reference Manual, Version 3.0, Intellicorp, Mountain 
View, CA, (1986). 

276 

McKeown 84 
McKeown, K. Natural Language for Expert Systems: 
Comparisons with Database Systems. Proc. COLING 1984, 
pp. 190-193. 

QUIZ85 
Quiz Version 5.01 User's Guide, Cognos, Inc. Ottawa, 
1985. 

Shrager and Finin 82 
Shrager, J., and Finin, T., An Expert System that Volunteers 
Advice, Proceedings of the National Conference on Artificial 
Intelligence, pp. 339-340. 

Skuce 83 
Skuce, D. The LESK Tutorial. Department of Computer 
Science, University of Ottawa, Tech. Report TR-83-03. 

Skuce 87 
Skuce, D., A Comparison of Conceptual Graphs and Frame 
Systems. To appear in: Conceptual Graphs for Knowledge 
Systems , Sowa, J., Foo, N., and Rao, A. (eds.), Addison 
Wesley, Reading, MA, 1987. 

Skuce and Tauzovich 87 
Skuce, D. and Tauzovich, B., Causal Reasoning in an 
Advisor for Fourth Generation Software. To appear in: 
Expert Systems. 

Skuce, Stanley and Tauzovich 88 
Skuce, D., Stanley, R., and Tauzovich, B. An Expert 
Advisor for Commercial Fourth Generation Software. To 
appear in: International Journal of Expert Systems. 

Sowa 84 
Sowa, J. Conceptual Structures: Information Processing in 
Mind and Machine, Addison Wesley, Reading, MA. 

Spark-Jones 85 
Spark-Jones, K., Natural Language Interfaces for Expert 
Systems: An Introductory Note. In: Bramer, M. (ed.), 
Research and Development in Expert Systems. Cambridge 
University Press, New Rochelle, pp. 85-94. 

Szpakowicz et al 86 
Szpakowicz, S., Matwin, S. , and Skuce, D., QUIZ Advisor: 
A Consultant for a Fourth Generation Software Package. 
Proc. of the 6th International Workshop on Expert Systems 
and Their Applications, Avignon, France (1986). 

Tauzovich 87 
Tauzovich, B., Causal Reasoning in a Software Advisor. 
Ph.D. thesis, Department of E lectrical Engineering, 
University of Ottawa (1987). 

Waters 86 
Waters, R.C., KBEmacs: Where's the AI? The Al Magazine 
7, pp. 47-56. 

Wilensky et al 86 
Wilensky, R., Mayfield, J., Albert, A., Chin, D., Cox, C., 
Luria, M., Martin, J., and Wu, D., UC - A Progress Report, 
Report No. UCB/CSD 87/303, Computer Science Division, 
University of California, Berkeley, (July) . 



USER 1 1 
INTERFACE 1-------l.i PARSER 

1. SUN/PROLOG 

2. XEROX/LISP-KEE 1 
LEXICON 

QAUZ l 
Q~ SUBSYSTE 

_. answer 

(Prolog) 

0 

HDI 2 
SUBSYSTEM _. answer 

query 
repres 

Figure 1: Advisor System Architecture 

1 

SEMANTIC 
INTERPRETATION 

CODE 3 
-

entation (KEE units) . COMPLETION 

·Ir 
RULES 

2 
generic 

GENERIC 
CODING 

answer 

RULES (LESK) 

CODE 
4 

~ EXTENSION . 
RULES 

Figure 2: The HDI Subsystem 
Stages 3 and 4 Optional 

code 
~ 

code 
~ 

hdi report a record item at a sort key to a subfile? 

hdi print an average of an item at a control break? 

hdi average an item in a footing? 

hdi output a page skip at a control break? 

hdi print an item at the beginning of a line? 

hdi sort in descending order? 

hdi sort on some record items? 

hdi sort on 2 record items and 1 or more defined items? 

hdi link two files? 

x is a subfile. hdi link x to x? 

hdi access a file using 2 keys? 

Figure 3: Some "how do I" questions. 

query I p ARSE 

(LESK + Iii' QUERY 

1---~-~_sc_~)-·~I COMPILER I 
(Prolog) . _ 

QUIZ code + error message) I ~s serti ons 
i(Prolog) 

user 
control DEDUCTION 
~a ~~~ENGINE 
interface 

answer 

FIGURE 4: 
THE QAUZ Subsystem 



. I 

.1 

> What happens if I use the code 

ACCESS EMPLOYEES ALIAS STAFF LINK TO BILLINGS OPTIONAL 
SELECT IF DATAEJOINED GT 810101 
REPORT ALL 

{24 lines of assertions are produced} 

> CODE: REPORT ALL 

Why is the column heading is set to the dictionary heading? 

{a 23 line backward trace explaining this is produced} 

> When is the column heading set to the dictionary headings? 

{a simi lar 31 line backward trace ultimate ly showing 
code tl1at will do this is produced} 

> CODE: ACCESS EMPLOYEES 
SELECT EMPLOYEES 
REPORT 

Why is nothing reported? 

{th·e error in the code is diagnosed} 

> ASSUMPTIONS: an alias is specified 
CODE: ACCESS EMPLOYEES 

<any question here> 

{the inconsistency between the assumption and the code is noted} 

> ASSUMPTIONS : 'X' is an item 
the type of 'X' is string 
'F' is the field of 'X' 

> Why is 'F' not truncated? 

{a backward trace which shows that something is NOT true 
is given as the reason} 

APPENDIX 
A selection of typical QUAZ queries. The fu ll 
answers are not shown because they are long. 

278 



Refinement of Scene Interpretation 
for Object Recognition and Location 

K. D. Rueb and A. K. C. Wong 
Systems Design Engineering 

University of Waterloo 

Abstract 

This paper presents a methocJ for identifying and 
precisely locating modelecJ objects through analys is 
of single or multiple perspective images. The system 
provides reliable and efficient, scene interpretation 
through incremental refinement of the hypothesized 
measurement conditions and 3-D environment . Au
tomated visual detection of camera viewpoints per
mits use of unconventional view in g conditions , such 
as multiple views per image due to reAective sur
faces or mirrors , and removes the need for precise 
camera positioning. Automatic integration of any 
number of arbit rary viewpoints permits detection of 
objects occluded from certain views , as well as pro
viding varying image resolution and wider coverage 
of the visible workspace. 

1 Introduction 

Development of reliable and flexible methods for automated 
assembly is primarily limited by the need for precise posi
tioning of the componPnts used. Current assemb ly methods 
require use of complex and Pxpensivejigs or fixtures to sup
ply and position parts manipulated by the robot arm. One 
approach to simplifying robotic assembly is to locate the 

required parts visually. This approach is currently used 
under very constrained viewing cond itions [lJ. Attempts to 
achieve such capabi lity under natural conditions (no spe
cial lighting or constrained camera viewpoints) must deal 
with missing or extraneous features due to glare or shadow, 
partial or total occlusion by other objects or even the robot 
arm itself, as well the fundamental ambiguity resulting from 
projection to a 2-D image from the original 3-D scene. 

In spite of these difficulties, somP progress has been 
made, in particular, with new methods to deal with partial 
occlusion of objects. In general, success has been achieved 
through a technique commonly referred to as hypothesis 

verification. A hypothesis of object identity, position and 
orientation maps an object model in to the image. If a 
unique combination of object features remains visib le, such 
recognition is possible even in the presence of severe image 
noise and occlusion of object features. 

279 

Such hypothesized object positions may be used directly 
through voting or clustering to determine ol,j <'Ct position 
and identity [2,3J. More commonly however, the hypothe
sis is used to test known 3-D models against. detected im
age features. This technique has been demonstrated in the 
analysis of 3-D scenes [4- 7J as well as 2-0 scenes with ex
tensive occlusion of object features [8-JOJ. F'or 3-D scenes 
ambiguity of feature identification under perspectivP trans
formation prevents rapid analysis and typically requires on 
t he order of one minute of processing time per im age. 

Our goal is to provide a prac:t.ical system for industrial 
use. Under suc h conditions , total processing for each image 
must be completed in at most a few seconds. We have found 

that to meet such requirements, it is necessary to exp loit 
the natural constraints of the app lication environ mf'nt. The 
key to such an approach is to use three-dimensional con
straints which provide a more natural expression of the 
environment restrictions independent of I.he camera v iew
point. For example, analysis of an image of a robot. wo rkcell 
shou ld be constrained such that a ll objects are above or on 
the surface of the workspace or tab le. This immediately 
constrains the scale of valid image features and limits the 
candidates for selected object features. 

To app ly such constraints we have developed a method 
of analysis that we characterize as hypothesis refinement. 

In contrast to previous approaches which essentially use 
image features t.o generate possible hypotheses, we initially 
specify a poorly constrained set or hypotheses that are then 
refined on the basis of detected image features until spe
cific testable hypotheses are obtained. The ini tia l set of 
hypotheses reflect the constraints on the po::;it.ion and orien
tation of different objects appropriate for the given applica
tion. As additional images are acq uired, more information 
may be applied. As explained later , this approach also pro
vides improved measurement accuracy an d interpretation 
reliability. 

2 Hypothesis Refinement 

Image analys is or interpretation may he viewed as a search 
of interpretation hypotheses which sper. ify the possible lo
cation and orientation of modeled objects within the 3-D 



I 

scene. Hypoth es is re[i11ement, search es t.h e space of' µossible 
scene inter preta tion throu gh refinement of' an initi a ll y spec
ified se t of hypotheses whi ch represent the na tura l 3-D con
st ra ints oft.he app li cation Pnviro nm ent. Some of t he most 
common ly encountered cons tra int conditions for roboti c as
semb ly I.asks are lis tC'd in Tab le 1. 1 ~:a.c h constrain t is 
furth e r pa rtit ioned int.o a set ol' charact.C' ris t.ic views (spec i
fied object orienta tions from whi ch a simi lar set of feat ures 
is visibl e). T his provides t he initi a l se t. o l' interpret.a.Lion 
hypotheses . 

Type Co nstraint Applicat io ns 

Known Pos it.ion : Objec t pos itio n and orienta· Mo nito r obj ect with known 
tio n arc co nst ra ined to a given pos ition , verify success of 

i range. : robot pi ck or place operat io n , 
' check for presence of part in 

pa. rt feede r. 

Flat Support Ohjec:t is suppnrtc<l by a Rat , Lucate obj ects o n a wo rkspace 

Bin Picking 

, s urface. Vertica l ori entatio n of t he robo t wo rkce ll or sup· 
and posi t io n arr cons trained . po rted by other objects, only 

, O bj ect must br. in stabl r. min o r overla p of components 
s upµ nrt con l1 gur,1t io n (vr. rtica l permit.Led. 
projer.L io n .nf cente r nf gravity 
mns t li e wir.hin the co nvt-x hull 
of s urface co ntact point,s ). 

Object is conta ined with in a Select ion and location of part~-
parts bin. Object pos it.io n in bin fo r assembly tasks . 

is constraineJ wi thin known 
limit.s , o rientation is uncon
strain t>d . Object identity is 
know n. Se lec t mos t vis ible nf 
many parts in bin . 

Table L: Const raint Conditions 

T he con straints of each hy pothes is a re t. hen app lied to 
select candid ate im age featu res corresµo11ding to key l'ea
tures of t he object mod e l. F igure l illus t.rat.es t he selection 
of candida tes for a model feature und er Ha t support co ndi
t ions . Note t ha t th e constrain t is t h ree-dimensional - the 
local image characteristics of selected features are depen
dent on their locat. iou in t he scene and th e corresponding 
pers pect.ive project.ion of t.h e mod e l feat.11 re. 

Selected image features 

F igure 1: Selec tion of candidate image features 

The precise na t ure of' s uch 3-D cons t,ra. ints pe rmits the 
fil ter to se lec t only 5 candid ates from th e 90 co rner fea tu res 
present in th e image. T he fi lter wi ll select any features with 

identical 3-D con figuration as well as any fea tures on ly ap
parently s imila r in the 2-D image project ion. Note tha t 

1 
In t he current syst em , only flat, supp ort a nd kn own position con

st.rain ts have bee n i111plem e11ted . This is sufli cient, fo r only a li 111 ited 
class of assembl y operat ions. 

280 

par ti t ioning the ini t ia l hypotheses inio characteris tic views 
does not increase search complex ity as th e fi lter will se lect 
different candidate features for different object or ient.at.ion. 
Consequently, se lec t ion of characteris t ic views s tream liJJ es 
the interpreta tion by li miting a nalys is Lo t h<' set of vis i
b le features without requiring expensive a nalys is of feature 
visibi lity. 

Se lection of approp ri ate cons traints a lso has a n impact 
on the accuracy and reli ab ility of a na lys is . l<'or examp le, 
a fa lse pos itive in persp ective scene ana lys is occurs due 
to random a lignment of im age features in a confi guration 
matc hing a project.ion of th e object model. Jn genernl, 
such a ma tch wi ll have a ny random or ie11tat.ion or pos i
t.ion. The tight cons traints or the interpretation eliminate 
a ll such m atches; indeed they are never even cons idered by 
the analysis s ince th ey are not wit hin th e constraints of 
the initial hypotheses . Mos t errorn wh ic h do occur are be
tween objec ts with s imilar 3-D sh a pe and appeara nce. T he 
greater th e to lerance to partial object occlus ion (ach ieved 
by p erm itting a large set of missl'd feat ures ), th e great er 
the poss ibility of fal se recognition. 

Second ly, th e avail a ble cons traints can improve mea
surement acc uracy. For exarnµI<-!, depth meas ure.ment is 
limited by the image s ize of t he projec ted object. 111 con
trast , position meas urement perpend icu lar to the camera 
axis is on ly dep end ent on the resolutio n of th e image. As
s umptions s uch as a fla t support p lan e map hori zonta l pos i
tion into limits on object depth improving deµt h resolution . 
Hence, the constraint of a fl a t s upport surface can prov ide 
precise positioning of sma ll obj ects (eg. a bo lt or screw) 
that would be imposs ible judging solely by object appear
ance. 

3 The Knowledge-directed Search 

T he process of refin ing an interpreta t ion hypothes is can 
genera ll y be describ ed by an ordered sequ ence of well-d efin ed 
steps or s t ages. In actua l prac t ice, process in g is more com
p lex . Input to the system may consist of mu lt ip le images or 

viewpoints, and additiona l workspaces may be defined with 
mu ltip le objec t. mode ls and re finement strategies. An a lys is 
of th e broad range of poss ibilities is managed through a 
knowledg e- direct ed search. The search is direc ted by the 
knowledge or contex t of t he task or environment. 2 T he 
know ledge-directed search is gn ided by a rul e network con
s isting of a network of rule nodes . Each step by step re
finement process, or refinement stra tegy, is represented as 
a path through a set of nodes in the network . 

At each step of the refin ement strategy, new in terpreta
tion hypotheses are produced. Such hypotheses determin e 
the cons t raints on the object pos ition , an d specify an as
sumed cor res pondence between mod el and image features. 
T he refin ement of a new hypothes is is dependent on i) the 
search ru les (or processes) and domain know ledge associ
ated with the rule node of the search p ath , ii) th e ass umed 
model, feature correspondences, and position cons traints 
of the current hypothesis (referred to as t he context of the 



search), and iii) th e obs<~rved data that i::; se l<-'.cted l.o in
fer a more prec ise characterization of t.h<-' hypoth es is. The 
know ledge-d irected search represe11 t.s a ll s uch in format.ion 
as a set of search ac tiva tions (refer to Figure 2). 

Each search activation is a relation that uniquely 
assoc ia tes a nod e of th e rule network, a set of 
obse rved data, and the interpretation hypot he
sis ( or context) of the sear(' h . 

Search begins at 
initiation nodes 

Rule Network 

Search activations identify 
observed data. a ru le node, 
and the context al the search. 

Observed Data 

Figure 2: Rule network and search a.ct. ivat. ion8 

Each node is a instance of a cl ass of rule nodes which 
perform a spec ific task (eg . acquire a n im age, detect im
age features or spec ify an object model, cons traint and re
fin em ent strategy) . The rule node classPs emp loyed in the 
present system are lis ted in Table 2. 

- Image Acquisition 

Line Detect ion 

Camera Position 

Obtain im age fr om spec ified source (camera or disk fi le) 
and set camera parameters (focal length, imaging plane, 
focus sett ing) . 

Obtain li ne fe atures accordin g to specified limitations 
{li ne length, contrast, s traightness , resolution ). 

Obtain camera position and orientation relat ive to posi
t ion target reference. 

Feature Detect ion Obtain image features (line end points, corner features 1 

'T' junctions). Index according to image location. 

Model Definiti on Defin e 3- 0 objec t model and interpretation constraints 
(i .e. search strategies). 

Hypothesis Refin ement Refine object position and orientation to verify poss ib le 
hypotheses . 

System Contro l Sei;~t appropri a1e search :; trat('g ies an<l obj ec t models. 
Construt.:t a con!'; iste nt world model from refin ed and ver
ifi ed interpretation hypotheses. Control low level pro
cess ing and feat ure detection. In teract with other pro-

cesses (eg. co ntrol robot arm) . ·---··------·---J 

Table 2: Ru le node classes 

Each class has an assoc iated set of processes a nd defined 
structure for input search context. Each instance of a rule 
node acts 011 a n input context to produce any number of 
output context records . In addition, eac h instance of a ru le 
node has a private internal memory to record spec ifi c pa
r ameters of the ins tanti a tion of the rule node or to compi le 
a history of res ults or informa tion acquired . 

2This is s in1ilar in spiriL t.o th e "kn owlcdge-direcl;ed image analysis,, 
of Ball a.rd , Brown and Feldma n in which im age undersl.a.11di11 g was 
direct.eel by a search qu ery fro m the person usin g !,he sys t.em !HJ. 

28 1 

As context information is transmit.ted through t he net
work additional inforrnat.ion is sup pli('d by each nod e 1,o 
eventually provide an interp retat.ion of t.he work[ viewed 
by the various cameras of' t he vis ion system. 

In ge neral , process ing is in the sequ ence: acquire im
age, de tect line f'eatures, locate camera posit.ion , es tab lis h 
point or corner features, initi ate mod el search s trategies, 
refin e a nd tes t inte rpretation hypoth eses, a.nd construct a 
cons is tent world mode l. The struclure of th e associated 
rule network is illus trated in Figure 3. The network lay
out is fl ex ible. Any number of instances of ea.c h class of 
node may be defin ed . For example, t here may be any num
ber of image nod es, each image can be assigned s peciali zed 
edge or feature detec tors, and various models or refinement 
s trateg ies may be defin ed. 

Figure 3: Structure of rule net.work 

3.1 Establishing Camera Position 

The pos ition of eac h camera is determ ined by visua ll y lo
cating a predefined target pattern. The precise coordinates 
of the chosen target pattern and the defined reference co
ordinate system are s hown in Figure 4. The sca le of the 

(0,12) 

Reference Coordinate System 

(-8,0) 

Figure 4: Ta rget pattern 



• I 

I 

· 1 

paltern is va ri ed to s uit. pa rtic ul a r appli cations and camera 
view points. T he uniqu e charac ter is ti cs of t he chosen targe t. 
pa ttern permit. rapid detection des pite the lack of ava il a ble 
co nst raints. Including necessary feature detection , the t ar
get, may be t racked a t. a rate of a pproxim ately two images 
per second . 

Once t.he ta rget pos it.ion has bee n obta in ed , one or more 
works paces may be defin ed. Each worksp ace defines a po
tenti a l s upport. reg ion wit.It int.he robot. workce ll. A works pace 
is a fl a t reg ion with s pec ifi ed pos it.ion , ori entation a nd area . 
Ea.c h workspace produces a n assoc ia ted search contex t to 
be propagated through I.he rul e network. In th e a bse nce 
of confticting ev idence, such cont.ex t a re reta ined. As a re
sult , th e targe t. pattern may be removed on ce all camera 
pos itions have bee n identifi ed. 

If more than one target is visible in an image, mul t iple 
v iewpoint hypotheses and associated workspaces are cre
ated. Since t. lte co rrec t trans form a tion ol' t.h e target cross 
p attern is known, scene inte rpretation is poss ible und er any 
a rbitrary v iewin g conditions. For example, if the t a rget 
image is reflec ted in a mirror, th e generated viewpoint will 
provide the correct. transform a tion bet.ween left and righ t 
handed coordin ate system s (the ' mirror image ') as well as 
adju sting for a ppa rent pos ition and orienta tion. As a re
s ult , the reversal of object coordinates in th e refl ected im
age is transpare nt to the s ubsequent. scene interpretation . 
Conseciu ently, it. is possibl e to provide more complete vis ual 
coverage of the workspace by pl ac ing mirrors to view areas 
hidden by other objects in the environmenL 

3 .2 System Control 

Scene interpre t. a t.ion throu gh hypoth esis refin ement culmi
nntes in th e produ ction of verified hypoth eses of object 
identity and posit.ion. This interpretation is represented 
by t he context information of a set of unre la ted search ac
tivations. Som e informa tion will be redund ant clue to vari
ous search strategies arriving a t a similar res ult or through 
overlapping views of different camera view points. The pri
m ary role of system control is to co ll ect a ll s uch context 
information an d co nst ruct a co here nt scene inter pre ta ti on. 
This interpre l.at ion of the 3-D environment provides addi
tional informa tion for ana lys is o f' a ny furth er images of the 
environment. 

The current scene int.erpreta t.ion is the primary source 
of known position hypotheses. Such hypotheses may be 
used to test 'th e current. scene interpret.a.lion in s ucceeding 
images or to verify ex tern a l ac tion s uch as t.h e pl ace ment of 
an objec t by th e robot. a.rm . Tn ad diti on, location of objects 
in the scene will defin e additiona l hypot.hesi,.ecl workspaces 
if any of the object s urfaces are capa ble of providing sta ble 
support for oth er objects in th e enviro nment. 

System co ntrol may a lso be used to limit the complex ity 
of the ana lys is . For exam ple, it may limi t search to only 
those parts req uired in th e current s t. age of roboti c assembly 
or m ay place a limit on the number of in s tances of each 
object de tect.eel , as requi red by the needs of the cur rent 

tas k. 

282 

4 Current System Implementation 

Our current vision sys tem provides analysis of sin gle or 
multipl e pers pPct ive images to locate pa rts vis ible in the 
works pace of a robot workcell. In it,s prese nt. configura
tion , the sys tem con s ists of a S lJ N 3/ 160 works ta tion , a 
Matrox v ideo fr ame g ra bber , and f'rom one to three SONY 
CCD video cameras (see Figure 5). Eac h digitized video 

fr a me can be direc tly accessed by programs rnnnin g on th e 
SUN workstation. Approximate ly ten 512x480 images may 
be acquired each second. No addition a l spec ia l purpose 
hardware is required. Image process in g , feature detection , 
and a na lysis a re implemented in soft.wa re in porta ble 'C' 
code and can be run on va rious computer systems (without, 
modification on systems supportin g th e Xwindow gra phics 
environment). The sys t. em is capa ble of process ing multiple 
cam era/v iewpoint input in a few seconds. 

SUN 3/160 
workstation 

Matrox 
frame 
grabber 

CCD video cameras 

L-------1--t --....::~ 

Position 
reference 
target 
pattern 

Figure 5: Sys tem configuration 

5 E x p erimental R esults 

ln this section, a selec t.eel set of' imagf's 1s presented to 
demonstrate key features of the vision sys tem . In eac h case, 
input is from one or more 512x480 pi xel CCD cameras. 

The firs t examp le illustra tes integration of multipl e cam
era input,. In this case , the sys tem has been s uppli ed a set 
of simp le block mod els. Two views of the sce ne are avail
able as shown in Figures 6 (a ) and 6(b). Neither viewpoint 
has access to the entire scene because of an occlucl ing ob
ject . Figure 6 (c) is the res ulting interpretation oft.he firs t 
image. 3 F igure 6(d) presents th e second scene. Note tha t 

the viewpoint is radically different , both in viewing direc
tion and choice of a 'close-up' of th e worksp ace. Although 
not shown , the pos ition target was ini t ia lly displayed to 
calibrate the pos itions of eac h camera. Consequ ently, it 
is possible to integrate the scene interpretations. The re
sulting interpret ation is s hown as viewed from above th e 
workspace (F igure 6 (e)) and from the side (F igure 6 (f)). 
The works pace is shown as a grid of 2x2 cm squares. Note 
tha t the occluding object is not detec ted as no mode l of the 
object is ava il a ble . 

3 The o bject model is superimposed o n the det.ected edges a.ncl iden
tified by (;he objec t. model na.me. A II lines of t he object model are show n 
givin g the e ffect. o f a. wirefra.111 e or Lrans pa.reul, o bject. . 



( a) s ta nd a rd view (b) near view 

/~ 

(c) s ta nda rd sce ne (d) near sce ne 

At---

l_ 
. 
I ,Je l e,., l o :k 

" ..-s.· -, 
' ~ '- , 1 ; ·11 ... 1 block 

~-- .);1 

---. r--.. 
'~- In , par rov g ·e, n block 

'"""10' 

(e) overhead v iew (f) side view 

F igure 6: Integrat ion of mu lt ip le v iews 

283 



I 

The set of object models is then extended to include th e 
two components of an a udio cassette case (the transparen t 
cassette top and black plast ic case). Figu re 7(a) is a typical 
image of a scene contain ing the modeled components. Fig
ure 7(b) is th e resulting scene in terpretation. f<' igure 7(c) 
illustrates the scene interpretation as viewed from above 

the workspace . 
In the fin a l examp le, a mirror is placed behind t he 

workspace to permi t detect ion of hid den or severely oc
cluded objects (F igure 8 (a )). T he scene interpretation is 
shown in F igure 8(b) . Note the detect ion of th e block hid
den by the stacked block and cassette case in the foreground 
of t he image. Figures 8 (c) and 8(d} show an overhead view 
of t he scene interpretation and a view from the opposite 
s ide of the workspace (as viewed from 'behind ' or 'thro ugh ' 
the mirror) . T he mirror is purpose ly inc lined relat ive to 
t he table surface so that reflections of symmetri cal objects 
are not mistaken for objects behind or ' in side' the mirror's 

surface. 

6 Summary 

In this paper , we have presented a method for locat in g ob
jec ts in a 3-D scene through ana lysis of s in gle perspec tive 
images. As demonstrated in this pape r, such ana lysis can 
be completed in a few seconds , permitting practical use in 
a robot wor kcell . This performance is ac hieved thro ugh ex
ploitation of the natural t hree-dim ensiona l constrai nts of 
the appl icat ion dom ain. Const ra ints on object posit ion are 
represented as interpretat ion hypotheses which are refin ed 
to produce a final scene interpretation. Camera pos it ion 

is determ ined visua ll y throug h location of a position ref
erence target permi tt ing s imple and reli ab le integ rat ion of 
different viewpoints. This permits t he use of mirrors or in
put from multiple camera pos it ions to prov ide detect ion of 
objects occ luded in th e ini t ia l view. 

7 References 

I. Schroeder , I-I.E ., "Practical Illumin ation Concept and 
Tec hnique for Machine Vision App licat ions", Robots 

8, Detroit , June 1984, pp.27-4:t 

2. Thompson, D.W. , Mundy, J .L ., "Three-dimens ional 
Model Matching from an Unconstrai ned Viewpoiut", 
Proceedings of 1987 IEEE Int ernational Con/ ere nee 
on Robotics and Automation, vo l. l , 1987, pp.208-
220. 

3. Ballard, D.Il., Sabbah, D., "Viewe r Independent Shape 
Recognition", IEEE Transactions on Pattern Analy
sis and Mac hine Int elligence, vo l. PAMI-5, no. 6, 
1983, pp .653-660. 

4. Walter , L, Tropf, II., "3-D Recog ni t ion of Random ly 
Oriented Parts", SP!Evol. 449, part 1, 1984, pp .171.-
178. 

284 

(a ) original image 

(b} scene interpretation 

b{ 

-b /J l ~ 
l J ) ~ 
1 !,le\,! w; Ol pc, V "'.,e _t top 
= I/ I< \ \ I 

"' \ ~ 

u /. - ' ;: / , \ '\.. '\ c assette ca 
11"1 ! \ r- ->. :->\ / 

~ I ff 
1 l I 

I I c;~ " tte top 

C S e'l'.:/e C "f 

' 1= 1--f-- I 
\_ 

(c) overhead v iew 

F igure 7: Location of cassette case 



5. Lowe, D.C:., "Thn!e- Dirnensiona.l Obj<'cL Recognit ion 
from Sing le Two-Dimensional Im age,;", Technical Re
port No. 202, Cou rant. ]nst.it u te of' Mat hemat ical 
Sc iences, New York University, New York , February 
1986. 

6. Hora ud, R., "New Methods for Mat.citin g 3-D Objects 
with Single Perspective Views", f P,EE' Transactions 
on Pattern A na.lysis and Machin1i fntelligence, vo l. 
PAMf-9, no. 3, May 1987, pp.40 1-4 12. 

7. Crimson, W.E.L. , Loza.no-Perez, T., "Localizing Over
lapp ing Parts by Searching the Interpretation Tree", 

IEEE Transactions on Pall. em Analysis and Ma.chine 
Intelligencl'. , vol. PAMI-9, no. 4, .July l987, pp.469-

482. 

8. Kno ll , T.F., Jain, R.C., "Recognizing Partiall y Vis i
ble Objects lfs in g l<'ea.l.ure Ind exed T[ypot.hes,-•s", IEEE 
Journal of Robotics and Automation, vo l. H.A-2, no. 
1, March 1986, pp.3-13. 

9 . Kalvin , A., Sr. honberg, E., Sr. hwa.rtz, J.T. , Shar ir , M ., 
"Two-Dimensional, Model-Based, Boundary Match
ing Using Footpr in ts", The International .Journal of 
Robotics Research, vo l. 5, no. 4, Winte r 1986, pp .38-
55. 

10. Koch, M.W., Kas hyap, JLL., "Us ing Po lygons to Rec
ogn ize and Locate Partiall y Occ luded Objects", [J_i,'EE 
Transactions on Pattern Analysis and Machine fnt el
ligence, vo l. PAMI-9, no . 4, Ju ly 1987, pp.483-494. 

11. Ball ard, D. IJ., Brown , C.M., Feldman, .l.A., "An Ap
proach l,o Knowledge-dircc.tcd Image Analys is", Com
puter Vision Syslem.s, ed. A.Hanson a nd E.R.iseman, 
New Yor k: Ar.ademic, 1978, pp.27 1-28 l. 

(a ) original image 

285 

-I 

(b) scene interpretat ion 

j__ ,k;~ 
\ I,-- ~ ; - / \\. 

!::=: le!" lll "1- ~= -~ 
'"" 7 

block 

I/! // ( as ~et te case 

1<......:::...)-..J 

1~, ~ 

/ j ·( · ,..,- ~\ 
(, /,,' - ~ / 

green 

-

(c) overhead view 

(<l) view 'th rough' mirror 

Figure 8: Detect ion of occlu ded object, in mirror image 



Author Index 

Aha, D ........................................ 110 Schaeffer, J .............................. 133 
Aleliunas, R ................................. 67 Schubert, L.K. ............................ 39 
Bacchus, F .............. .................... 59 Selman, B ................................. 1 02 
Bahler, D.R ............................... 221 Shaw, M.L.G ............................. 169 
Bengio, Y .................................. 213 Skuce, D ................................... 271 
Bergeron, A. ............................. 156 Smith, 8.T ................................. 262 
Besnard, P ................................ 117 Steel, S ..................................... 227 
Bibel, W ......................................... 1 Sugawara, T ............................. 1 77 
Bischof, W.F .............................. 199 Wang, Y ..................................... 234 
Bouchard, L.H .......................... 156 Wong, A.KC . ............................ 279 
Cercone, N ................................. 30 You, J-H .................................... 234 
Cohen, R ..................................... 22 Young, M.A. ................................ 22 
Constant, P ............................... 242 Zlatin, D.R ................................. 249 
Cooper, P .................................. 148 
Dawson, M.R.W ....................... 140 
De Mori, R ................................ 213 
Dean, T ...................................... 125 
Delgrande, J.P .................... 75, 85 
Ferguson, I.A ........................... 249 
Ferraro, M .................................. 199 
Goodwin, S.D ............................. 46 
Hall, G .......................................... 30 
Hamilton, S.J .............................. 75 
Han, J ......................................... 184 
Henschen, L.J .......................... 1 84 
Hofstadter, D.R ........................... 94 
Huang, X .................................... 161 
Kanazawa, K. ........................... 125 
Kautz, H ..................................... 1 02 
Kibler, D ..................................... 11 o 
Klingbeil, N ............................... 133 
Knudsen, E ................................... 7 
Lu, W .......................................... 184 
Luk, W.S ...................................... 30 
Maida, A.S ................................... 53 
Malowany, A. S ......................... 1 91 
Malowany, M. E. ....................... 1 91 
Matwin, S .................................. 242 
McCalla, G ................................ 1 61 
McFetridge, P ............................. 30 
Mcllraith, S ................................ 255 
McNulty, D.M . ........................... 206 
Mercer, R.E. ................................ 1 4 
Middleton, D ............................. 262 
Miller, S.A ................................... 39 
Mitchell, M ................................... 94 
Nadeau, R ................................. 156 
Oppacher, F .............................. 242 
Rueb, K.D .................................. 279 




