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Chairman's Message 

As Confere nce Chairman, I take great 
pleasure in welcoming you to Victoria and 
this Third Biennial CSCSI Conference. 
This conference is particularly signifi
cant in that it is being held in cooper
ation with the Canadian Man-Computer 
Communications Society and the Canadian 
Image Processing and Pattern Recognition 
Society. It is hoped that the arrange
ment is rewarding for all parties, and 
will continue in future conferences. 

The program committee, chaired by 
L.K. Schubert a~d assisted by D.R . Bar
stow, J. de Kleer, A.K. Mackworth, 
T.A . Marsland, R.C. Perrault and 
J.R. Sampson have put together an out
standing program. I would like to thank 
them for their efforts. In addition, I 
am also grateful to N. Cercone, c. Suen 
and M. Wein for their contributions to 
the MCCS and IPPR portions of the pro
gram. 

Local arrangements have been handled 
by the University of Victoria, Housing 
and Food Services, with assistance pro
vided by H. Widdifield, A. Tweedale and 
C.H. Morgan. You have my gratitude for 
your most welcome assistance. 

The assistance of NSERC for pro
viding financial help with speakers' 
travel and the Province of British 
Columbia for a financial contribution 
to the Salmon Barbeque is also 
acknowledged. 

Lastly, but not least, it is 
necessary to acknowledge the assistance 
of the University of Alberta: J. Tartar 
for allowing the use of the facilities at 
the u. of A. and particularly Sandra 
Wilkins for making sure that everything 
ran so s moothly . 

Wayne· A. Davis 
Conference Chairman 
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Message du president 

En tant que president de la 
conference, j'ai le grand plaisir de vous 
accueillir a Victoria, pour la troisi~me 
conference biennale du SCEIO . Cette con
ference est particulierement importante 
en ce sens qu'elle a eu lieu en coopera
tion avec la Canadian Man-Computer 
Communications Society et la Canadian 
Image Processing and Pattern Recognition 
Society. Nous esperons que toutes les 
organisations seront recompensees de cet 
arrangement et que celui-ci se poursuivra 
lois de futures conferences. 

Le comite charge du programme, 
preside par L.K. Schubert, et assiste par 
D.R. Barstow, J. de Kleer, A.K. Mackworth, 
T.A. Marsland, R.C. Perrault et 
J.R . Sampson, a realise un travail re
marquable. J'aimerais les remercier pour 
leurs efforts. En outre je suis tres 
reconnaissant envers N. Cercone, c. Suen 
et M. Wein, pour leur contribution aux 
parties MCCS et !PPR du programme. 

L'Universite de'victoria, Housing 
and Food Services, avec !'assistance de 
H. Widdifield, A. Tweedale et C.H. Morgan, 
s'est chargee des arrangements locaux. 
Vous avez toute ma gratitude pour votre 
assistance qui a ete des plus bienvenues. 

Je mentionnerai aussi !'assistance 
du NSERC, qui a subvenu aux frais de 
voyage des conferenciers, et de la 
Province de Colombie bri t tainique, pou·r 
sa contribution -financiere au Salmon 
Barbeque. 

Pour finir, il est necessaire de 
faire part de !'assistance qui n'a pas 
ete la moindre de l'Universite d'Alberta: 
tout d'abord celle de J. Tartar pour 
avoir permis !'utilisation des locaux et 
de l'equipement de l'Universite d'Alberta, 
et particulierement celle de Sandra 
Wilkins pour avoir permis que tout aille 
pour le mieux. 

Wayne A. Davis 
President de la Conference 
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CONSULTATION SYSTEMS FOR PHYSICIANS: 
The Role of Artificial Intelligence Techniques 

Edward H. Shortliffe 

Departments of Medicine and Computer Science 
Heuristi c Programming Project 

Stanford University School of Medicine 
Stanford, California 94305 

ABSTRACT 

Computer systems for use by physicians 
have had limited impact on clinical 
medicine. When one examines the most 
common reasons for poor acceptance of 
medical computing systems, the potential 
relevance of artificial intelligence 
techniques becomes evident. This paper 
propose s design criteria for clinical 
computi ng systems and demonstrates their 
relationship to current research in 
knowledge engi ne erinp,. The MYCIN System 
is used to illustrate the ways in which 
our research group has attempted to 
respond to the design criteria cited. 

1. INT RODU CTI ON ------

Although computers have had an 
increasing impact on the practice of 
medicine, the successful applications have 
tended to be in domains where physicians 
have not been asked to interact at the 
terminal. Few potential user populations 
are as demanding of computer-based 
decision aids. Thi s is due to a variety of 
factors which include their traditional 
independence as lone decision makers, the 
seriousness with which they view actions 
that may have life and death significance, 
and the overwhelming time demands that 
tend to mak e them impatient with any 
innovation that breaks up the flow of 
their daily routine. 

This paper examines some of the 
i ssues that have limited the acceptance of 
programs for use by physicians, 
particularly programs intended to give 

1Thi s article i s base~-~~ a longer paper 
to be published as a book chapter by 
Academic Press [Shortliffe 1980) . 

2or. Shortliffe is recipient of research 
career development award LM00048 from the 
National Library of Medicine. 
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advice in clinical settings. My goal is to 
present design criteria which may 
enco urage the use of computer programs by 
physicians, and to show that AI offers 
some particularly pertinent methods for 
responding to the design criteria 
outlined. Although the emphasis is 
medical throughout, many of the issues 
occur in other user communities where the 
introduction of computer methods must 
confront similar barriers. After 
presenting the design considerations and 
their relationship to AI research, I will 
use our work with MYCIN to illustrate some 
of the ways in which we have attempted to 
respond to the acceptability criteria I 
have outlined. 

1. 1. The Nature Of Medical Reasoning 

It is freq uently observed that 
clinical medicine is more an "art" than a 
"science" . This statement reflects the 
varied factors that are typically 
considered in medical decision making; any 
practitioner knows that well-trained 
experts with considerable specialized 
experience may sti ll reach very different 
conclusions about how to treat a patient 
or proceed with a diagnostic workup. 

One factor which may contribute to 
observed discrepancies, even among 
experts, is the tendency of medical 
education to emphasize the teaching of 
facts, with little formal advice regarding 
the reasoning processes that are most 
appropriate for decision making. There 
has been a traditional assumption that 
future physicians should learn to make 
decisions by observing other doctors in 
action and by a~quiring as much basic 
knowledge as possible. More recently, 
however, there has been interest in 
studying the ways in which expert 
physicians reach decisions in hopes that a 
more structured approach to the teaching 
of medical decision making can be 
developed [Kassirer 1978, Elstein 1978) . 
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Computer programs for assisting with 
medical decision making have tended not to 
emphasize models of clinical reasoning. 
Instead they have commonly assigned 
structure to a domain using statistical 
techniques such as Bayes' Theorem 
[deDombal 1972) or formal decision 
analysis [Gerry 1973). More recently a 
number of programs have attempted to draw 
lessons from analyses of actual human 
reasoning in clinical settings [Wortman 
1972, Pauker 1976). Although the other 
methodologies may lead to excellent 
decisions in the clinical areas to which 
they have been applied, many believe that 
programs with greater dependence on models 
of expert clinical reasoning will have 
heightened acceptance by the physicians 
for whom they are designed. 

1.2 . The Consultation Process 

Accelerated growth in medical 
knowledge has necessitated greater sub
specialization and more dependence upon 
assistance from others when a patient 
presents with a complex problem outside 
one 's own area of expertise. Such 
consultations are acceptable to doctors in 
part because they maintain the primary 
physician's role as ultimate decision 
maker. The consultation generally 
involves a dialog between the two 
physicians, with the expert explaining the 
basis for advice that is given and the 
nonexpert seeking justification of points 
found puzzling or questionable. 
Consultants who offered dogmatic advice 
they were unwilling to discuss or defend 
would find that their opinions were seldom 
sought. After a recommendation is given, 
the primary physician generally makes the 
decision whether to follow the 
consultant's advice, seek a second 
opinion, or proceed in some other fashion. 
When the consultant's advice is followed, 
it is frequently because the patient's 
doctor has been genuinely educated about 
the particular complex problem for which 
assistance was sought. 

Since such consultations are accepted 
largely because they allow the primary 
physician to make the final management 
decision, it can be argued that medical 
consultation programs must mimic this 
human process. Computer-based decision 
aids have typically emphasized only the 
accumulation of patient data and the 
ge ne ration of advice [Shortliffe 1979). 
On the other hand, an ability to explain 
decisions may be incorporated into 
computer-based decision aids if the system 
is given an adequate internal model of the 
logic that it uses and can convey this 
intelligibly to the physician- user. The 
addition of explanation capabilities may 
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be an important step towards effectively 
encouraging a system's use. 

2. ACCEPTABILITY ISSUES 

Studies have shown that many 
physicians are inherently reluctant to use 
computers in their practice [Startsman 
1972). Some researchers fear that the 
psychological barriers are insurmountable, 
but we are beginning to see systems that 
have had considerable success in 
encouraging terminal use by physicians 
[Watson 1974 ) . The key seems to be to 
provide adequate benefits while creating 
an environment in which the physician can 
feel comfortable and efficient. 

Physicians tend to ask at least seven 
questions when a new system i s presented 
to them: 

(1) Is its performance reliable? 

(2) Do I need this system? 

(3) Is it fast and easy to use? 

(4) Does it help me without being 
dogmatic? 

(5) Does it justify its recommenda
tions so that I can decide for myself what 
to do? 

(6) Does use of the system fit 
naturally into my daily routine? 

(7) Is it designed to make me feel 
comfortable when I use it? 

Experience has shown that reliability 
alone may not be enough to insure system 
acceptance [Shortliffe 1979); the 
additional issues cited here are also 
central to the question of how to design 
consultation systems that doctors will ·be 
willing to use. 

The design considerations for systems 
to be used by physicians can be divided 
into three main categories: mechanical, 
epistemological, and psychological. 

3 . 1. Mechanical Issues 

It is clear that the best of systems 
will eventu ally fail if the process for 
getting information in or out of the 



machine is too arduous, frustrating, or 
complicated. Someday physician-computer 
interaction may involve voice 
communication by telephone or microphone, 
but technology is likely to require manual 
interaction for years to come. Thus, 
careful attention to the mechanics of the 
interaction, the simplicity of the 
displays, response time, accessibility of 
terminals, and self-documentation, are all 
essential for the successful 
implementation of clinical computing 
systems. 

3.2. Epistemological Issues 

As has been discussed, the quality of 
a program's performance at its decision 
making task is a basic acceptability 
criterion. A variety of approaches to 
automated advice systems have been 
developed, and many perform admirably 
[Shortliffe 1979]. Thus the capturing of 
knowledge and data, plus a system for 
us ing them in a coherent and consistent 
manner, are the design considerations that 
have traditionally received the most 
attention. 

Other potential uses of system 
knowledge must also be recognized, 
however. As has been noted, physicians 
often expect to be educated when they 
request a human consultation, and a 
computer-based consultant should also be 
an effective teaching tool. On the other 
hand, physicians would quickly reject a 
pedantic program that attempted to convey 
every pertinent fact in its knowledge 
base. Thus it is appropriate to design 
programs that convey knowledge as well as 
advice, but which serve this educational 
function only whe~ as ked to do so by the 
phy si ci an-user. 

As has been mentioned, physicians 
also prefer to understand the basis for a 
co nsultant's advice so that they can 
decide for themselves whether to follow 
the recommendation. Hence the educational 
role of the consultation program can also 
be seen as providing an explanation or 
ju stif ication capability, When asked to 
do so, the system should be able to 
retrieve and display any relevant fact or 
r easoning step that was brought to bear in 
considering a given case , It is also 
important that such explanAtions be 
expressed in terms that are easi ly 
compr ehensible to the physician. 

Since it would be unacceptable for a 
consultation program to explain every 
relevant reasoning step or fact , it is 
important that the user be able to request 
justification for points found to be 
puzzling. Yet an ability to ask for 
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explanations generally requires that the 
program be able to understand free-form 
queries entered by the user. A reasonable 
des ign consideration, then, is to attempt 
to develop an interface whereby simple 
questions expressed in English can be 
understood by the system and appropriately 
answered. 

It is perhaps inevitable that 
consultation programs dealing with complex 
clinical problems will occasionally reveal 
errors or knowledge gaps, even after they 
have been implemented for ongoing use . A 
common source of frustration is the 
inability to correct such errors quickly 
so that they will not recur in subsequent 
consultation sessions. There is often a 
lapse of several month s between "releases" 
of a system, with an annoying error 
recurring persistently in the meantime. 
It is therefore ideal to design systems in 
which knowledge is easily modified and 
integrated; then errors can be rapidly 
rectified once the missing or erroneous 
knowledge is identified. This requires a 
flexible knowledge representation and 
powerful methods for assessing the 
interactions of new knowledge with other 
facts already in the system. 

Finally, the acquisition of knowledge 
can be an arduous task for system 
developers. In some applications the 
knowledge may be based largely on 
statistical data, but in others it may be 
necessary to extract judgmental 
information from the minds of experts. 
Thus another design consideration is the 
development of interactive techniques to 
permit acquisition of knowledge from 
primary data or directly from an expert 
without requiring that a computer 
programmer function as an intermediary. 

3.3. Psychological Issues 

The most difficult problems in 
designing consultation programs may be the 
frequently encountered psychological 
barriers to the use of computers among 
physicians [Startsman 1972, Croft 1972]. 
Many of these barriers are reflected in 
the mechanical and epistemological design 
criteria mentioned above. However, there 
are several other pertinent observations: 

(1) It is probably a mistake to 
expect the physician to adapt to changes 
imposed by a consultation system. 

(2) A system's acceptance may be 
greatly heightened if ways are identified 
to permit physicians to perform tasks that 
they have wanted to do but had previously 
been unable to do [Mesel 1976, Watson 
1974]. 



(3) It is important to avoid 
premature introduction of a system while 
it is still "experimental". 

(4) System acceptance may be 
heightened if physicians know that a human 
expert is available to back up the program 
when problems arise. 

(5) Physicians are used to assessing 
research and new techniques on the basis 
of rigorous evaluations; hence novel 
approaches to assessing both the 
performance and the clinical impact of 
medical systems are required. 

4, KNOWLEDGE ENGINEERING 

In recent years the terms "expert 
systems" and "knowledge-based systems" 
have been coined to describe AI programs 
that contain large amounts of specialized 
expertise that they convey to system users 
in the form of consultative advice. The 
phrase "knowledge engineering" has been 
devised [Michie 1973] to describe the 
basic AI problem areas that support the 
development of expert systems. There are 
several associated research themes: 

(1) Representation of Knowledge. A 
variety of methods for computer-based 
representation of human knowledge have 
been devised, each of which is directed at 
facilitating the associated symbolic 
reasoning and at permitting the 
codification and application of "common 
sense" as well as expert knowledge of the 
domain. 

(2) Acquisition!.?.~ Knowledge. 
Obtaining the knowledge needed by an 
expert program is often a complex task. 
In certain domains programs may be able to 
"learn" through experience or from 
examples, but typically the system 
designers and the experts being modelled 
must work closely together to identify and 
verify the knowledge of the domain. 
Recently there has been some early 
experience devising programs that actually 
bring the expert to the computer terminal 
where a "teaching session" can result in 
direct transfer of knowledge from t he 
exoert to the system itself [Davis 1979]. 

(3) Methods of Inference. Closely 
linked to~he issue of knowledge 
representation is the mechanism for 
devi si ng a line of reasoning for a given 
consultation. Techniques for hypothesis 
generation and testing are required, as 
are focusing techniques. A particularly 
challenging associated problem is the 
development of techniques for quantitating 
and manipulating uncertainty. Although 
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inferences can sometimes be based on 
established techniques such as Bayes' 
Theorem or decision analysis, utilization 
of expert judgmental knowledge typically 
leads to the development of alternate 
methods for symbolically manipulating 
inexact knowledge [Shortliffe 1975]. 

(4) Explanation Capabilities. For 
reasons I have explained in the medical 
context above, knowledge engineering has 
come to include the development of 
techniques for making explicit the basi s 

This 
methods 

for recommendations or decisions. 
requirement tends to constrain the 
of inference and the knowledge 
representation that is used by a complex 
reasoning program. 

(5) The Knowledge Jnterface. There 
are a variety of issues that fall in this 
general category. One is the mechanical 
interface between the expert program and 
the individual who is using it; this 
problem has been mentioned for the medical 
user, and many of the observations there 
can be applied directly to the users in 
other knowledge engineering application 
domains. Researchers on these systems 
also are looking for ways to combine AI 
techniques with more traditional numerical 
approaches to produce enhanced system 
performance. There is growing recognition 
that the greatest power in knowledge-based 
expert systems may lie in the melding of 
AI techniques and other computer science 
methodologies [Shortliffe 1979], 

Thus it should be clear that 
artificial intelligence, and specifically 
knowledge engineering, are inherently 
involved with several of the design 
considerations that have been suggested 
for medical consultation systems, In the 
next section I will discuss how our 
medical AI program has attempted to 
respond to the design criteria that have 
been cited. 

5, AN EXAMPLE: THE MYCIN SYSTEM 

Since 1972 our research group at 
Stanford University 1 has been involved 
with the development of computer-based 
consultation systems. The first was 
designed to assist physicians with the 
selection of antibiotics for patients with 

1several computer scientists, 
physicians, and a pharmacist have been 
involved in the development of the MYCIN 
System. These include J. Aikins, 
S. Axline, J. Bennett, A. Bonnet, 
B. Buchanan, W, Clancey, S. Cohen, 
R. Davis, L. Fagan, F. Rhame, C. Scott, 
w. vanMelle, S. Wraith, and V. Yu. 



serious infections. That prof(ram has been 
termed MYCIN after the suffix utilized in 
the names of many common antimicrobial 
agents. MYCIN is still a research tool, 
but it has been designed largely in 
response to issues such as those I have 
described. The details of the system have 
been discussed in several publications 
[Shortliffe 1976, Davis 1977, Scott 1977) 
and may already be well known to many 
readers. Technical details will therefore 
be omitted here, but I will briefly 
describe the program to illustrate the 
ways in which its structure reflects the 
design considerations outlined above. 

5. 1. Knowledge Representation and 
Acquisiti<?_I! 

All infectious disease knowledge in 
MYCIN is contained in packets of 
inferential knowledge represented as 
production rules [Davi s 1976). These 
rules were acquired from collaborating 
clinical experts during detailed 
discussions of specif ic complex cases on 
the wards at Stanford Hospital. More 
recently the system has been given the 
capability to acquire such rules directly 
through interaction with the clinical 
expert 1. 

MYCIN currently contains some 600 
rules that deal with the diagnosis and 
treatment of bacteremia (bacteria in the 
blood) and meningitis (bacteria in the 
cerebrospinal fluid). These rules are 
coded in INTERLISP [Teitelman 1978) , but 
routines have been written to translate 
them into simple English so that they can 
be displayed and understood by the user. 
For example, one simple rule which relates 
a patient's clinical situation with the 
likely bacteria causing the illness is 
shown in Fig. 1. The strengths with which 
the specified inferences can be drawn are 
indicated by numerical weights, or 
certainty factors, that are described 
further below. 

5 .2. Inference Methods 

5.2 . 1 . 

Production rules provide powerful 
mechanisms for selecti ng those that apply 
to a Riven consultation. In MYCIN's case 
the rules ~re only loosel, related to one 
another before a consultation begins; the 

-------------------------
1This capability was implemented in 

rudimentary form in early versions of the 
system [Shortliffe 1976) but was 
substantially broadened and strengthened 
by Davis in his Teiresias program [Davis 
19791. 
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RULF:300 
-~~-[-This rule applies to all cultures 
and suspected infections, and is tried in 
order to find out about the organisms 
(other than those seen on cultures or 
smears) which might be causing the 
infection) 

If: 1) The infection which requires 
therapy is meningitis, and 

2) The patient does have evidence 
of serious skin or soft tissue 
infection, and 

3) Organisms were not seen on the 
stain of the culture, and 

4) The type of the infection is 
bacterial 

Then : There is evidence that the 
organism (other than those seen 
on cultures or smears ) which 
might be causing the infection 
is staphylococcus-coag-pos (.75) 
streptococcus-group-a (.5) 

Figure 1 - A Sample MYCIN Rule 

program selects the relevant rules and 
chains them together as it considers a 
particular patient . Two rules chain 
together if the action portion of one 
helps determine the truth value of a 
condition in the premise of the other . 
The resulting reasoning network, then, is 
created dynamically and can be seen as a 
model of one approach to the patient's 
problem. 

MYCIN's strategy in rule selection is 
goal-oriented. The program "reasons 
backwards" from its recognized goal of 
determining therapy for a patient. It 
therefore starts by considering rules for 
therapy selection, but the premise portion 
of each of those rules in turn sets up new 
questions or subgoals. These new goals 
then cause new rules to be invoked and a 
reasoning network is thereby developed. 
When the truth of a premise condition is 
best determined by asking the physician 
rather than by applying rules (e.g., to 
determine the value of a laboratory test), 
a question is displayed. The physician 
enters the appropriate response and the 
program continues to select additional 
rules. Once information on the patient is 
obtained, some rules will fail to be 
applicable; in this way the invoked 
applicable rules will provide a customi zed 
patient-specific reasoning network for the 
case under consideration. 

Portions of a sample consultation 
session are shown in Fig. 2. The 
physician's responses are in capital 
letters and follow a double asterisk. 



Note that the physician can indicate that 
he does not know the answer to a question 
(Question 13) and MYCIN will proceed to do 
the best it can on the basis of the data 

- -~-- --PATIENT- 538- -------
1) Patient's name: 
•• PT538 
2) Age: 
•• 45 
3) Sex: 
•• MALE 
4) Race: 
•• CAUC 

:CAUCASIAN 
5) Are there any cultures for Pt538 

which may be related to the present 
illness, and from which organisms 
have been grown successfully in 
the microbiology laboratory? 

** NO 
6) Are there any pending cultures? 
** YES 

=ROD 

- -------CULTURE-1- -------
7) From what site was the specimen 

for CULTURE- 1 taken? 
** CSF 
8) Please give the date and time 

when the pending csf culture 
(CULTURE-1) was obtained, 

•• 11/28/78 
9) Was a smear examined at the time 

that the specimen for the pending 
csf culture (CULTURE-1) was 
obtained? 

** YES 
10) Were any organisms seen on the 

smear of the specimen submitted 
as the pending csf culture 
(CULTURE- 1)? 

** YES 

- - -~- - - ORGANISM-1 - -------
11) The stain (Gram, India ink, 

or Ziehl-Neelsen acid- fast) of 
ORGANISM-1: 

** GRAMNEG 
12) Is ORGANISM-1 a rod or coccus 

(etc,) : 
** ROOD 

13) What is the form of the 
individual organisms (e,g, 
Lancet - shaped for cocci, 
fusiform for rods, etc.)? 

• • ?? 
Expected responses are: FUSIFORM, 
PLUMP or DUMBBELL-SHAPED 
Enter HELP for list of options. 
** UNKNOWN 

14) Any other organisms noted on the 
smear? 

** NO 

Figure 2 
The B~ginning Ofl\Sample Consultation 
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available. Typographical or spelling 
errors are automatically corrected 
(Question 12) with the presumed meaning 
printed at the left margin so that the 
physician knows what assumption has been 
made. Note also that the physician's 
responses are generally single words. 

In Fig. 3 the form of MYCIN's final 
.conclusions and therapy recommendations 
are demonstrated. Note that the program 
specifies what organisms are likely to be 
causing the patient's infection and then 
suggests a therapeutic regimen appropriate 
for them. There are also specialized 
routines to calculate recommended drug 
doses depending upon the patient's size 
and kidney function. 

My therapy recommendations will be 
designed to treat for organisms that 
either are ve ry likely or, although less 
likely, would have a significant effect 
on therapy selection if they were 
present. It is important to cover for 
the following probable infection(s) and 
associated organism(s): 

INFECTION- 1 is MENINGITIS 

+ <ITEM-1> 
+ <ITEM-2> 
+ <ITEM- 3> 
+ <ITEM-4> 

E.COLI 
PSEUDOMONAS-AERUGINOSA 
KLEBSIELLA-PNEUMONIAE 
DIPLOCOCCUS-PNEUMONIAE 

41) Does Pt538 have a clinically 
significant allergic reaction to 
any antimicrobial agent? 

** NO 
42) Do you have reason to suspect that 

Pt538 may have impaired renal 
function? 

** NO 
43) Pt538's weight in kilograms: 
•• 70 

[REC-1] My preferred therapy 
recommendation is: 

In order to cover for Items <1 2 3 4>: 
Give the following in combination: 
1) AMPICILLIN 
Dose: 3,5g (28.0 ml) q4h IV 

[calculated on basis of 50 
mg/kg] 

2) GENTAMICIN 
Dose: 119 mg (3,0 ml, 80mg/2ml 

ampule) q8h IV [calculated 
on basis of 1, 7 mg/kg] plus 
consider giving 5 mg q24h 
intrathecally 

Since high concentrations of penicillins 
can inactivate aminoglycosides, do not mix 
these two antibiotics in the same bottle. 

Figure 3 
Example of MYCIN's Recommendntions 



'i.2.2. Management of Uncerta_!!J_.!:y_ 

The knowledge expressed in a MYCIN 
rule is seldom definite but tends to 
include "suggestive" or "strongly 
suggestive" evidence in favor of a given 
conclusion. In order to combine evidence 
regarding a single hypothesis but derived 
from a number of different rules, it has 
been necessary to devise a numeric system 
for capturing and representing an expert's 
measure of belief regarding the inference 
stated in a rule. Although this problem 
may at first seem amenable to the use of 
conditional probabilities and Bayes' 
Theorem, a probabilistic model fails to be 
adequate for a number of reasons we have 
detailed elsewhere [Shortliffe 1975]. 
Instead we use a model that has been 
influenced by the theory of confirmation, 
and have devised a system of belief 
measures known as certainty factors. 
These numbers lie on a - 1 to +1 scale with 
- 1 indicating absolute disproof of an 
hypothesis, +1 indicating its proof, and O 
indicating the absence of evidence for or 
against the hypothesis (or equally 
weighted evidence in both directions). 
The relationship of the mode l to formal 
probability theory and the methods for 
combining evidence from diverse sources 
(rules and user estimates) have been 
described [Shortliffe 1975]. Although the 
system has served us well to date, it does 
have several recognized inadequacies 
[Adams 1976) and can only be seen as a 
first step towards the dev.elopment of a 
coherent theory for the management of 
uncertainty in complex reasoning domains. 

5.3. Explanation 

Perhaps the greatest advantage of the 
rules used in MYCIN is the way in which 
they facilitate the development of 
mechanisms for explaining and justifying 
system performance. These capabilities 
also contribute greatly to MYCIN's 
educational role [Clancey 1979]. Th e 
explanation program has two options, one 
of which is limited in scope but fast and 
easy to use. This option is used during a 
consultation session and allows 
examination of the reasoning steps that 
have generated a specific question. The 
second option is more powerful but it 
involves lanr,uar,e processing a nd is 
therefore less reliable and more time 
consuming. This question-a~swering 
capability is designed to allow full 
access to all system knowledge, both 
static ( i.e:-;- facts and rules obtained 
from experts) and dynamic (i.e., 
conclusions reached by the program for the 
specific consultation session). Each 
system is briefly described below. 
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5, 3. 1. Answers To Questions About The 
B_~soning Status - -- --

During the consultation, MYCIN may 
ask questions which the physician finds 
puzzling, either because they appear 
irrelevant or because the details of their 
applicability are unclear. When this 
occurs, the physician can digress 
momentarily and seek an explanation of the 
question 1. Instead of answering the 
question MYCIN has asked, the user enters 
the word "WHY" and the program responds 
with a translation of the rule which 

35) Is this a hospital-acquired 
infection? 

** WHY 

[i.e. WHY is it important to determine 
whether the infection was acquired while 
the patient was hospitalized?] 

[2.0] This will aid in determining the 
organisms (other than those seen on 
cultures or smears) which might be causing 
the infection. 

It has already been established that 
[2:1] the infection which requires 

therapy is meningitis, and 
[2.2] organisms were not seen on 

the stain of this pending 
csf culture, and 

[2.3] the type of the infection is 
bacterial, and 

[2.4] neurosurgery is not one of 
the relevant items from the 
history of pt538, and 

[2.5] the age of pt538 is greater 
than 10 days 

Therefore, if 
[2.6] the infection was acquired 

while the patient was 
hospitalized 

then: 
there is evidence that the 
organism (other than those 
seen on cultures or smears) 
which might be causing the 
infection is e.coli (.75) 
staphylococcus-coag-pos (.3) 
pseudomonas-aeruginosa (.3) 
klebsiella-pneumoniae (.5) 

[back to question 35 ..• J 
•• 

Figure 4 
Examp~ .'?! _the -WHY Command 

1The mechanisms for examining the 
reasoning status using "WHY" and "HOW" 
commands were largely the work of Davis in 
his Teiresias program [Davis 1979] , The 
techniques he developed are general in 
their applicability and have been 
implemented in nonmedical domains as well. 
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generated the question. An example of 
this feature is shown in Fig. 4. Note 
that MYCIN begins its response by phrasing 
in English its understanding of the "WHY 
question" asked by the physician. It then 
displays the relevant rule, specifying 
which conditions in the premise are 
already known to be true and which 
conditions remain to be investigated. In 
many cases this single rule displayed is 
an adequate explanation of the current 
line of reasoning and the physician can 
then proceed with the consultation by 
answering the question. 

The user can alternatively continue 
to investigate the current reasoning by 
repeating the "WHY" command several times. 
Each additional "WHY" is interpreted by 
MYCIN as a request for display of the next 
rule in the current reasoning chain. For 
example, in Fig. 4 another "WHY" would be 
equivalent to asking "Well then, why are 
you trying to determine the organisms 
which might be causing the infection?" 
After responding to each "WHY", MYCIN 
returns to the current question and awaits 
the physician's response. 

The "HOW" command is used in 
conjunction with the "WHY" command. Note 
that MYCIN places a unique number before 
each condition in the premise of a 
displayed rule (Fig. 4). If the user does 
not understand how a specified condition 
was met (or willbe met), the "HOW" 
command, followed by the identifying 
number of the premise clause in question, 
can be used. Hence "HOW" requires an 
argument as shown in Fig. 5. This example 
follows immediately on the "WHY" example 
in Fig. 4; thus the argument "2.3" refers 
to the third condition in the premise of 
RULE545 in Fig. 4 and "2.5" refers to the 
fifth. MYCIN' s responses to "HOW" 
commands are self-explanatory. Note also 
that components of all explanations are 
given identifiers so that, in Fig. 5, the 
command "HOW 3.1" would have resulted in a 
display of RULE526. 

Other features of the capability to 
asses s the reasoning status during a 
consultation are described elsewhere 
[Davis 1977, Scott 1977, Davis 1979]. Two 
points require emphasis here, however. 
First, these features require no English 
language processing since the user gives 
simple single-word commands; hence the 
capability is fast, efficient, and 
reliable. On the other hand, questions 
are limited to the immediate reasoning 
environment surrounding the question asked 
by MYCIN. Hence general access to other 
system knowledge or other conclusions 
previously made by the program is not 
possible. To provide a more general 
explanation capability, MYCIN must be able 
to respond to questions expressed in 
simple English as described below. 

B 

[back to question 35 .•• ] 
u HOW 2.3 

[i.e. HOW was it established that the type 
of the infection is bacterial?] 

The following rules concluded about the 
likelihood that the type of the 
infection is bacterial: 

[2.7] 
[2,8] 
[2.9] 
[3.0] 
[3.1] 
[3.2] 
[3.3] 

Rule 
RULE148 
RULE500 
RULE501 
RULE502 
RULE526 
RULE504 
RULE524 

.s;ertainty 
(. 19) 
( .51) 
( .95) 
( .97) 
( .98) 
(. 97) 
< .98) 

Thus, it has been established that the 
type of the infection is bacterial. 

[back to question 35 .•. ] 
u HOW 2.5 

[i.e. HOW was it established that the age 
of pt538 is greater than 10 days?] 

In answer to question 2 you said that the 
age of pt538 is 34 years. Thus, it 
has been established that the age of 
pt538 is greater than 10 days. 

[back to question 35 .•. J 
•• 

5.3.2. Answers To Questions About The 
Consultation And Knowledge Base 

MYCIN's general question-answering 
feature is automatically made available to 
the user at the end of each consultation 
session. After a therapy recommendation 
has been given, the physician may still 
have several questions regarding details 
of the consultation and the basis for 
diagnostic and therapeutic advice. Fig. 6 
shows an example of a simple English 
question which MYCIN understands ann 
attempts to answer. Our approach to 
natural language understanding is very 
simplistic [Scott 1977] but often adequate 
if questions are kept short without 
subordinate clauses. In many cases 
questions are best answered simply by 
retrieving relevant rules and displaying 
them in a format suitable for the question 
being asked. In Fig. 6 MYCIN offers a 
detailed explanation of how it had decided 
that the patient might be infected with an 
~ coli. All rules are specified by 



number so that the physician can have them 
I displayed if full details are desired. 

•• WHY DID YOU TREAT E.COLI? 

ITEM-1 is E.coli associated with 
meningitis. I decided to treat ITEM-1 on 
the basis of clinical evidence only. 

The following rules concluded abo ut: 
the likelihood that e.coli is one of the 
organisms (other than those seen on 
cultures or smears) which might be causing 
the i nfection ' 

RULE545 was used to conclude that e.coli 
is one of the organisms (other than 
those seen on cultures or smears ) 
which might be causing the infection 
( . 74). 

RULE557 was used to conclude that e.coli 
is one of the organisms (other than 
those seen on cultures or smears) 
which might be causing the infection 
< .93). 

The parameters most frequently used in 
these rules: 

the infection which requires therapy 
whether a smear of the culture was 

examined 
whether organisms were seen 
the type of the infection 

Figure 6 
Response To ~ Free Text Question 

Fig. 7 demonstrates the way in which 
a physician can ask general questions of 
the knowledge base ( static knowledge ) ; 
neither the questions nor MYCIN's 
ryesponses refer to any specific 
Jonsu ltation session. Note that MYCIN has 
~ sense of its limitations and makes it 
'cl ear that it has no knowledge specific to 
pneumonia. Also, a large dictionary 
includes synonyms and hence permits MYCIN 
to recognize that "pneumococcal" refers to 
"pneumococcus", which in turn is the same 
as "diplococcus-pneumoniae" . 

Despite their utility, the language 
understanding features demonstrated in 
Figs. 6 and 7 have significant 
limitations . The associated computer code 
is large, complex, and very slow. 
Furthermore, we have found that it takes 
novice users several sessions before they 
learn the best ways to phra ., e questions so 
that MYCIN will interpret them properly. 

5. 4. Evaluating MYCIN 

As work on MYCIN has progressed, we 
have begun to devise techniques for 
~naly zing formally the system's 
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•• HOW DO YOU DECIDE THAT AN ORGANISM IS 
AN E.COLI? 

The following rules conclude about: 
the likelihood that the identity of the 
orp,anism is E.coli 

555, 304, 243, 3 
Which of the rules do you wish to see? 

** NONE 

•• WHAT IS THE TREATMENT FOR 
PNEUMOCOCCAL PNEUMONIA? 

The MYCIN system currently can treat the 
following infections: BACTEREMIA 
MENINGITIS CYSTITIS. Because the knowledge 
base is incomplete, all other infections 
will be treated like bacteremia. 

For treatment of DIPLOCOCCUS-PNEUMONIAE 
in BACTEREMIA, the drugs of choice (ranked 
by relative efficacy, assuming 
sensitivity) are: 

1st choice: 
PENICILLIN or AMPICILLIN 

2nd choice: 
NAFCILLIN, CEPHALOTHIN, 
ERYTHROMYCIN, or CLINDAMYCIN 

3rd choice: 
TETRACYCLINE, CHLORAMPHENICOL, or 
VANCOMYCIN 

•• WHAT DOSE OF ERYTHROMYCIN DO YOU 
RECOMMEND? 

When ERYTHROMYCIN is given for BACTEREMIA, 
the recommended dosage is: 
if age is> 12 yrs then 12 mg/kg q6h IV 
else if age> .08 yrs then 5 mg/kg q6h IV 
else if age> .02 yrs then 5 mg/kg q12h IV 

Figure 7 
Requests For MYCIN's General Knowledge 

performance. It must be emphasized, 
however, that the decision making 
performance is only one aspect of overall 
system acce~tability; as I have 
discussed, many of the most significant 
problems occur when attempts are made to 
encourage physicians to use a program, 
even after it has been shown to reach good 
decisions. 

The details of the evaluation studies 
will not be presented here1, but a number 
of specific points are of interest. First 
any evaluation is difficult because there 
is so much difference of opinion in this 
domain, even among experts. Hence, it is 
unclear how to select a "gold standard" by 
which to measure the system's performance. 

-------------------------
1see [Yu 1979a] for the details of 

the bacteremia evaluation, and [Yu 1979b] 
for the data on MYCIN's performance 
selecting therapy for patients with 
meningitis. 
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Actual clinical outcome cannot be used 
because each patient of course is treated 
in only one way and because a poor outcome 
in a gravely ill patient cannot 
necessarily be blamed on the therapy that 
had been selected. 

Second, although MYCIN performed at 
or near expert level in almost all cases, 
the evaluating experts in one study [Yu 
1979a] had serious reservations about the 
clinical utility of the program. It is 
difficult to assess how much of this 
opinion is due to actual inadequacies in 
system knowledge or design and how much is 
related to inherent bias against~ 
computer-based consultation aid. In a 
subsequent study we attempted to eliminate 
this bias from the study by having the 
evaluators unaware of which 
recommendations were MYCIN's and which 
came from actual physicians [Yu 1979b]. 
In that setting MYCIN's recommendations 
were uniformly judged preferable to, or 
equivalent to, those of five infectious 
disease experts who recommended therapy 
for the same patients. 

Finally, those cases in which MYCIN 
has tended to do least well are those in 
which serious infections have been 
simultaneously present at sites in the 
body about which the program has been 
given no rules. It is reasonable, of 
course, that the program should fail in 
areas where it has no knowledge. However, 
a useful antimicrobial consultation system 
must know about a broad range of 
infectious diseases, just as its human 
counterpart does. Even with excellent 
performance managing isolated bacteremias 
and meningitis, the program is therefore 
not ready for clinical imrlementation. 

There will eventually be several 
important questions regarding the clinical 
impact of HYCIN and systems like it. Are 
they used? If so, do the physicians 
follow the program's advice? If so, does 
patient welfare improve? Is the system 
cost effective when no longer in an 
experimental form? What are the legal 
implications in the use of, or failure to 
use, such systems? The answers to all 
these questions are years away for most 
consultation systems, but it must be 
recognized that all these issues are 
ultimately just as important as whether 
the decision making methodology manages to 
lead the computer to accurate and reliable 
advice. 

6. CONCLUSION 

Although r have asserted that AI 
r e~earch potentially offers solutions to 
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many of the important problems confronting 
researchers in computer- based clinical 
decision making, the field is not without 
its serious limitations. However, AI has 
reached a level of development where it is 
both appropriate and productive to begin 
applying the techniques to important real 
world problems rather than purely 
theoretical issues . The difficulty lies 
in the fact that s uch efforts must still 
dwell largely in research environments 
where short term development of systems 
for service use is not likely to occur . 

It is also important to recognize 
that other computational techniques may 
meld very naturally with AI approaches as 
the fields mature . Thus we may see, for 
example, direct links between AI methods 
and statistical procedures, decision 
analysis, pattern recognition techniques, 
and large databanks . As researchers in 
other areas become more familiar with AI, 
it may gradually be brought into fruitful 
combination with these alternate 
methodologies. The need for physi cian 
acceptance of medical consultation 
programs is likely to make AI approaches 
particularly attractive, at least in those 
settings where hands- on computer use by 
physicians is desired or necessary. This 
paper has attempted to explain why the 
wedding of AI and medical consultation 
systems is a natural one and to show, in 
the setting of the HYCIN system, how one 
early application has responded to design 
criteria identified for a user community 
of physicians. 
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ABSTRACT 

In this paper I describe ACTG, a production system language 
designed to model the learning process. The language 
incorporates a propositional network for storing declarative 
knowledge. and employs five interacting learning mechanisms to 
generate new condition-ac tion rules on the basis of experience. I 
focus on one of these, a teclin ique for finding common paths 
through the propositional network. The mell1od is applied to 
learning simple procedures for algebra and inlcgration, inducing 
mean ing to sentence mappings, and discovering complex 
fu nctions. 

1. Introduction 

In recent years, Artificial Intelligence researchers have 

developed a number of programs capable of expert behavior in 

limited domains (e.g ., DENDRAL [3], INTERN IST (10]) . Each of 

these systems has drawn upon a larg·e store of knowledge about 

its specialty, and for this reason considerable effort has been 

involved in their construction. More recently, researchers like 

Mitchell [BJ and Michalsk i [7] have considered how such systems 

might acqu ire their own knowledge bases. 

In this paper I focus on the task of learning procedures and 

other forms of rules from examples. I begin with an example of 

such learning in the domain of algebra. Next I describe a 

programming language, ACTG. designed for the construction of 

learning systems. Aller this, I consider one of ACTG's learn ing 

mechanisms in detail, the discovery of common paths through a 

propositional network. Finally, I consider the generality of this 

technique. along with some of ils limitations. 

3x+2=8 
3x+2-2=8-2 

3 X: 6 
3x/3=6 /3 

X : 2 

Table 1. Sample solution to an algebra problem. 

1This work wo, s11ppo1 IP<I in pail by NSF G1011I Sf' l-7914852. in µ011 by NSF 
Gron! ISl lfl lB;.>66. nnd in pa,1 by AIW/1 G,:ml F4~02ll -7~ CU074 . I would like to 
tlianlo. John f\/lrlPrson, Pn11I Kline. H A. 811nnn. om.I llobe1t Ncch!'s toi discussions 
lt•od1 ny to llu: idens p1C!~11ted in this paper . 
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2. Learn ing Algebra from Examples 

Imagine a student presented with the worked-out solution 

to an algebra problem like 3 x + 2 = 8, as presented in Table 1. 

Given this information, the student might formulate a set of 

· specific condition-action rules like that shown in Table 2. Each of 

these rules corresponds to a step in the solution process, and the 

possession of these rules would let the student resolve the 

sample problem. Next, imagine that an analogous problem like 

2 x + 1 = 9 is presented. along with its solutions. The solution 

steps for these two problems are isomorphic; they differ only in 

the numbers which are used. Thus. this example would lead to a 

second set of rules like those In Table 2, struc tu rally similar but 

containing different numbers. 

If you have just written 3 x + 2 = 8, 
thenwrite3x + 2 ·2 = 8·2 . 

If you have just written 3 x + 2 · 2 = 8 • 2, 
then write 3 x = 6. 

If you have just w ritton 3 x = 6, 
thenwrilo3x/3 = 6/3. 

If you have just written 3 x / 3 = 6 / 3, 
thenwrilex = 2. 

Table 2. Specific rules learned from the sequence in Table 1. 

At this point, the student might realize that he has two very 

similar sets of rules. and attempt to generalize. The result might 

be a set of rules like that shown in Table 3. Here the numbers 

which <iiffered in the specific rule sets have been replace<i by 

variables which can match any number; all variables start with the 

letter v. Note that two of the general rules include conditions 

which were not found in their specific counterparts. These 

conditions are necessary to determine the values of some of the 

_variables found in the action si<ies. The mechanism leading to 

the discovery of such con<iitions is discussed in Section 4. 



The interested reader should see Neyes [9] for a fuller 

treatment of the task of learn ing algebra from examples. 

Although I will be using examples from algebra throughout the 

paper, that domain is not the focus of the present research. 

Rather. the goal is to develop a small set of general mechanisms 

which can lead to learning in many domains .. As a result, these 

techniques will be data-driven instead of model-driven, and will 

have a more syntactic than semantic flavor. Section 5 is devoted 

to testing the generality of one of these methods. 

If you have just written v1 x + v2 = v3, 
then write v1 x + v2 • v2 = v3 • v2. 

If you have just written v 1 x + v2 · v2 = v3 · v2, 
and v2 + v4 = v3, 

then write v1 x = v4 . 

If you have just written v1 x = v4, 
thonwritev1 x/v1 = v4/v1. 

lfyouhavejustwrittenv1 x/v1 = v4/v1, 
andv1xv5=v4, 

then w rile x = v5. 

Table 3. More general rules for solving algebra problems. 

3. An Overview of ACTG 

ACTG is a production system language designed to model 

learning processes. Below I summarize the features that ACTG 

shares with other production system languages. After this I 

discuss some of its unique characteristics, including its 

propositional network, its conflict resolution scheme, and its 

automatic learning mechanisms. 

3.1 . The ACTG Production System 

ACTG has a number of simi larities to earlier production 

system languages. A program is stated as a set of 

condition-action rules, or productions, like those in Tables 2 

and 3. If the conditions of one of these rules are true, then the 

associated actions may be carried out. These conditions and 

actions may refer to descriptions of the environment, or to purely 

internal structures like goals. A production system operates in 

cycles. Each cycle a true production is selected and its actio"s 

are applied; these actions change the slate of the world so that 

other rules become true. and the system iterates. 
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The ACTG language draws on Forgy's [4] techniques for 

the efficient storage and matching of production conditions. 

These are stored in a discrimination network which takes 

advantage of common tests for the presence of symbols and for 

shared variables. A separate discrimination net is created for use 

by the generalization process discussed below. Approximately 

half of ACTG consists of MACLISP code borrowed from Forgy's 

[5] OPS4 production system language. 

3 .2. The Propositional Network 

ACTG differs from many of its predecessors by 

incorporating a long-term propositional network. While 

productions are ·used primarily to represent procedural 

knowledge. propositions are used to store declarative or factual 

knowledge. Although ACTG propositions may be arbitrary list 

structures, all examples in this paper will be simple lists. A 

proposition is composed of two types of symbols: content 

elements and syntax elements. For example, a number fact 

might be stored in a proposition like 3 + 2 = 5 , where 3, 2, and 

5 are content elements and + and = are syntax elements. The 

user may specify different syntax elements for different domains; 

all non-syntactic elements are treated as content elements. 

During a given cycle, some subset of the propositional 

network may be considered active. It is against this set of active 

propositions that the conditions of productions are tested. The 

act ivation of a proposition decays by a user-modifiable factor 

after each cycle. If its activation drops below a user-controlled 

threshold. it is deleted from active memory. When this happens, 

all matches relying on the proposition are removed from the set of 

potentially applicable rules. or conflict set. 

Once a proposition has been stored in the network, it may 

be retrieved through a process of spreading activation. When 

a proposition is added to active memory, its activation is divided 

equally among its various content elements. All propositions 

containing a given element are found, and the activation 

associated with that element is divided among these propositions 

according to their trace strengths. The trace strength of a 

proposition is a function of the number of times it has been added 

to active memory. If the activation spread to a proposition in this 

manner exceeds the threshold mentioned above. ii is added to 

memory and contributes to the match process. 
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3.3. Conflict Resolution 

In many cases. morn thun 011e production will I.Ju rnutchud 

by the contents of active memory, or a single production may 

have multiple true instantiations. Normally a set of 

domain-independent heuristics are used for determining the 

order in which these instantiations are applied. McDermott and 

Forgy [6] have considered a number of such conflict resolution 

rules. Early languages simply ordered productions an_d selected 

the true rule with the highest priority. More recent languages, 

such as Forgy's OPS4, have used recency information to order 

the conflict set. 

ACTG uses the related strategy of computing the total 

activation of an instantiation. This is found by summing the 

activations of the propositions matching a production's 

conditions. Although simi lar to recency-based approaches, this 

heuristic also provides a preference for special case rules, since 

productions with more conditions will tend to have a higher total 

activation. ACTG also associates a strength with each 

production, which may chunge over time. On each cycle, the 

product of the strength and total activation of each instantiation 

is calculated, and the act ions of the instantiation with the highest 

product are carried out. 

3.4. The ACTG Learning Mechanisms 

One advantage of the production system formalism is the 

simpl icity and relative independence of the condition-action 

rules. This suggests that production systems shou ld be 

well-suited for modeling incremental _learn ing. ACTG draws on 

five interacting learning mechanisms in addressing this issue, 

most of which it shares with Anderson, Kline, and Beasley's [1) 

ACTF language. The most basic of these is the designation 

process. This allows the creation of a new pr"oduction as one of 

the actions of an exist ing production. Usually, the production 

responsible for designation is a very general one, while the 

productions it creates are quite specific. The productions shown 

in Taule 2 are examples of rules which would be built t_hrough the 

designation process. 

A second mechanism leads to the strengthening of 

productions through firing, or upon their recreation through any 

of the learning processP.s. Since the strengths of productions 

play a major role in conflicl resolution. productions which have 

prover! useful in the pust will tend tu IJe preferred, as will those 

which have been relearned many times. Since some rules may be 

in error. an inverse process of weakening can occur when a 

production is identified us the source of a bad result . In addition, 
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the discovery of an error can lead to a call on the disc rimlnallon 

process. Here the recent firings of the responsible production 

are examined. If some proposition is found to have been present 

at the successful firings, but absent at the errorful ones, this 

proposition is added as an extra condition in a new, more 

conservative version of the rule. Taken together, the 

strengthening/weakening · process and the discrimination 

mechanism give learning systems written in ACTG the potential 

for error recovery, though this aspect of the language has not 

been explored in detail. 

A fourth process leads to generalizations like the first and 

third rules in Table 3. ACTG creates such a general rule 

whenever a new production is added that is isomorphic, or 

identical in structure, to an existing production. This general 

production has variables in place of those constant terms which 

differed in the two specific ru les. Occasionally, there may be 

more than one mapping between two rules, so that multiple 

generalizations can result. Syntactic elements are never 

replaced by variables, and must be identical for two rules to be 

considered isomorphic. 

Now consider the second and fourth rules in Table 2, and 

suppose two rules are added which are isomorphic to them. A_s 

described above, the generalization process would lead to a pair 

of general rules with unbound variables in their action sides. In 

other words, there would be variables in the actions which are not 

mentioned in any of the conditions. The application of such a 

ru le would leave ACTG in confusion. not knowing what actions to 

take. A filth learning mechanism, designed to deal with such 

situations. is described in the next section. 

4. Finding Common Paths 
Upon finding a generalization with unbound action terms, 

ACTG looks for additional conditions which will determine the 

values of those terms. This problem can he cast as a search for 

· analogous paths through the propositional network, connecting 

the act ions of the specific productions to their respective 

conditions. Vere [ 11 J has discussed a similar notion of finding 

recurring relations. In this section I consider the details of the 

pnth-finding process. Below I provide some definitions which 

should clarify later discussions. Next I present some techniques 

for constraining the search for common paths. Finally, I discuss 

the merits of two alternate organizations for this search. 



4.1. A Definition of Analogous Paths 

One of the central notions in propositional networks is 

adjacency. Two propositions may be considered adjacent if 

they share one or more non-syntactic symbols. For example, the 

propositions 5 + 4 = 9 and 4 + 3 = 7 are adjacent only 

through the symbol 4, provided one treats the symbols + and = 
as syntact ic elements. A<1jacency is important in determining the 

spread of activation , but it is also necessary for the path-finding 

process. A path through the propositional network may be 

defined as a sequence of one or more propositions. in which each 

proposition is ad jacent to its predecessor in the sequence. For 

example. the sequence [5 + 4 = 9, 4 + 3 = 7, 3 x 2 = 6] 

wou ld const it t1te a path of length three; I will use this notation for 

paths throughout the rest of the paper. 

Upon examin ing various pairs of adjacent propositions. one 

finds that some pairs are adjacent in analogous ways. For 

exa111ple. the propositions 3 + 2 = 5 and 2 + 4 = 6 are 

adjacent in an analogous manner to the pair considered above. 

This is because the symbol 2 occurs in the same positions in 

these propositions as 4 occurs in the earlier ones; I will represent 

a pair of elements x and y which occupy analogous positions as 

[x, y]. Similarly, one can define analogous paths as a pair of 

paths through the network which have analogous adjacencies 

between their successive propositions. For example. the path [3 

+ 2 = 5, 2 + 4 = 6, 4 x 2 = 8] is analogous io the path shown 

above. Finally, one can compute a generalized path in which 

the differing terms in two analogous paths have been replaced by 

variables. The generalized path for the above pair would be [v1 

+ v2 = v3, v2 + v4 = v5, v4 x 2 = v6], where variables start 

with av. 

4 .2 . Constraining the Search 

In order to find additional conditions on a rule with 

unbound action terms, ACTG searches for analogous paths as 

defined in the last sect ion . The search originates from those 

symbols which dilfer in the conditions of the specific rules, and 

cont inues until analogous connections have been found to all of 

the actions leading to unbound variables. Once a set of 

analogous paths have been discovered. the resulting generalized 

paths are added to the general ru le as an extra set of conditions. 
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Naturally, paths containing multiple propositions must 

sometimes be handled. If the propositional network has a high 

connectivity, as it does in the storage of arithmetic facts, then the 

branching factor of the search may be quite high. In addition, 

multiple action terms may have to be connected. so that many 

paths must be found. ACTG uses four techniques for directing its 

search down useful paths. I discuss these in some detail below. 

• ACTG extends analogous paths only through 
symbols which differ. Suppose the system is 
considering the analogous paths [ 1 + 2 = 3] and [ 1 
+ 5 = 6], where the original conditions differed by 
the pair (3, 6]. Then extending the paths through 
[2, 5] into [1 + 2 = 3, 2 x 3 = 6] and [1 + 5 = 6, 
5 x 6 = 30] would be allowed, while going through 
thepair[1, 1)to[1 + 2 = 3, 1 + 4 = 5]and[1 + 
5 = 6, 1 + 7 = 8] would be prohibited. 

• ACTG extends paths only through symbols not bound 
earlier in those paths. Suppose · the system is 
considering the length two paths given above. The 
newest propositions differ in all three of their content 
elements. giving the pairs [2, 5] . [3, 6]. and (6, 30]. 
However, since the first two of these are mentioned 
earl ier along the paths, extensions may occur only 
through the last pair. 

• ACTG searches for generalized paths which lead to 
unique mate/Jes. For example, suppose the original 
conditions differed by the pair [2, 3], while the 
actions differed by the pair [6, 9] . Consider the two 
analogous paths of length one. [2 + 4 = 6] and [3 
+ 6 = 9). These would lead to the generalized path 
[v1 + v2 = v3], where only v1 was bound in the 
original condition. Given a value for v 1 (say 2), this 
condition will match any of a number of propositions 
(e.g., 2 + 1 = 3 or 2 + 5 = 7), so that the action to 
be taken is not uniquely determined. Based on this 
knowledge, ACTG would reject this particular pair of 
analogous paths. 

• ACTG considers on ly propositions wl1ich were in 
active memory at the creation time of the production 
with which the path is associated. Since production 
designation is usually based on data found in active 
memory, activation has a chance to spread from 
these data before a .production is created. The more 
closely a proposition is associated with the data 
leading to a new production, the more likely it will be 
activated. Thus. this is a useful heuristic for filtering 
out irrelevant information. 

Taken together, these techniques should reduce tht:1 

combinatorics inherent in the search for analogous paths, as well 

as limiting the search to paths which have some usefulness to the 

system. 



4.3. Two Search Strategies 

Although I have proposed a number of techniques for 

eliminating certain paths from consideration, a large number of 

paths remain which must be systematically explored. The two 

basic strategies for exhaustive search, depth-first and 

breadth-first search, presented themselves as likely 

candidales. Routines.for both strategies were implemented in 

ACTG. and experiments were carried out. The main attraction of 

depth-first search was its ease of implementation in a recursive 

language such as MACLISP. In addition, the activation level of 

propositions provided a heuristic for directing the search down 

potentially useful paths. This mechanism was implemented in 

high hopes. Although I expected considerable search and 

backup to be involved, I fully expected the appropriate paths to 

be found. 

However. this was not the case. Consider two specific but 

isomorphic algebra rules: 3 x + 2 = 8 -+ 3 x = 6 and 2 x + 1 

= 9 -, 2 x = 8. The only analogous unbound pair of action 

symbols is [6, 8], whi le the analogous pairs of condition symbols 

are [3, 2), [2, 1], and [O, 9). Using a depth-first search strategy 

with a maximum depth of five propositions, ACTG successfully 

found an analogous pair of paths connecting the pair (8, 9) to 

the pair [6, 8). These paths were [3 + 5 = 8, 2 + 3 = 5, 2 x 2 

= 4, 2 + 4 = 6] and [3 + 6 = 9, 3 + 3 = 6, 2 x 3 = 6, 2 + 

6 = 8). 
Unfortunately, the resulting rule is completely spurious, 

even though all of the constraints mentioned in the last section 

were used in finding it The rule may be stated as: 

If you have written v1 x + v2 = v3, 
and 3 + v4 = v3, and v5 + 3 = v4, 
and 2 x v5 = v6, and 2 + v6 = v7, 

then write v1 x = v7 

or, in a somewhat simpler form . v 1 x + v2 = v3 -• v 1 x = 
2x(v1 . 6) + 2. This ru le predicts the correct actions for the two 

examples on which ii is based. However. if the new rule is given 

an entirely new example (e.g., 5 x + 2 = 7), it may give an 

incorrect answer (e.y., 5 x = 4). Changing the order in which 

propositions were considered led to a different but equally 

spurious rule. 

Fortunately, the breadth-first search scheme was more 

successful. This considers all analogous paths of length one first, 

then P.xlenrls these into length two paths. and so on. Since in this 

cas!., a l<in\Jlh one pillh 1><ur exislP.d ((6 + 2 = BJ and (0 + 1 = 

9)). lunger paths were never examined. In surnrnary, although 

the breadth-first strategy may have to consider many alternatives 

for rules of any complexity, the guarantee of finding the shortest 

possible path seems a decided advantage in its favor. 
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5. Generality of the Path-Finding Process 

In this section I consider some domains to which the 

path-finding mechanism can be applied. The first of these, 

learning integration from examples, is quite similar to the algebra 

example. The second domain, learning simple mappings from 

meanings to sentences, shows the technique is not restricted to 

finding numerical relations. Next, I show that the method can be 

used to discover ra!her complex functions, like that describing 

_Balmer's series. Finally, I consider some difficulties which arise in 

applying the technique to learning rules for factoring algebraic 

expressions. 

5.1. Learning Integration 

Consider two spe/i ic rules /or simpli/ing integral 

expressions: / 6x 2 -+ 2 3x2 and · 8x 1 -+ 4 2x 1 . When 

ACTG attempts to generalize from this pair of isomorphs, ii finds 

two unbound terms in the action of its new production. These 

result from the analogous action symbols [2, 4) and [3, 2). As in 

the algebra example, ACTG searches through its network of 

numerical relations, which includes such propositions as 

1 + 1 = 2 and 2 x 3 = 6. As before, it ignores connections 

through such syntactic symbols as +, x, and = .. 

The first pair of useful analogous paths are (2 + 1 = 3) 

and (1 + 1 = 2); these facts tell ACTG the coefficient it should 

retain within the scope of the integral. The second pair of 

· relations are [2 + 1 = 3, 2 x 3 = 6) and [ 1 + 1 = 2, 4 x 2 = 
8). which extend the initial paths; these facts tell the system what 

coefficient goes outside the integral, where the pair [3, 2) 

corresponds to the already bound internal coefficient. The 

resulling rule rnay be stated as: / 

If you have written v 1x • 2
, 

and v2 + 1 = v3, 
and v3 x v4 = v1, / 

then write the expression v4 v3x• 2
. 

Note that not all of the terms in the new conditions havr? been 

replaced with variables. The number 1 was retained because it 

occupied analogous positions in both paths. 

5.2. Learning Meaning/Sentence Mappings 

The path-finding process can also be employed to let ACTG 

learn mappings from descriptions of the world to English 

sentences. For example, suppose the system has a set of facts in 

its knowledge base about various subset relations, anrl the words 

for different concepts. Assume these are represented as 

separate propositions, say (Sam is-the-word-for •sam) and 

(• ball· 1 ls-a • ball), where concepts are preceded with a • and 

words are not. Now suppose a propositional description of an 



event enters active memory, ("throw agent •sam recipient 

"dog-1 object • ball· 1). accompanied by the sentence Sam 

throw s the ball to the dog. Assume that the relations 

is-the-word-for, is-a, agent. recipient, and object are all 

syntact ic elements. If the appropriate designating production 

exists, this data will lead to the first production in Table 4, which 

reproduces the sentence whenever the event recurs. 

Next, suppose that a similar event occurs, and is 

represented in act ive memory by an analogous proposition, 

( " give agent "Mary recipient •cat -1 object •string-1). In 

addition , let this proposition be accompanied by a sentence of the 

same form as the first, Mary gives the string to the cat. This 

leads to the second production in Table 4, and at this point ACTG 

would attempt to generalize from its two rules. However, the 

general rule in its initial form has four unbound action terms, so 

the path-finding process is ca llerl . In this case, four independent 

paths are required, each connecting one action term to a 

different term in the condition side. These paths are: [(throw 

is-the -word -for •throw)] and [(give is -the -word -for 

"give)]; [(John is··the-word -for "John)] and [(Mary 

is-the-word -for "Mary)]: [("dog-1 is-a "dog),(dog 

ls -the-word -for · "dog)] and [(•cat-1 is-a •cat),(cat 

is -the -word-for • cat)]; and [(•ball· 1 is-a • ball),(ball 

is -the-word-for • ball)] and [("string-1 is-a •string),(strfng 

ls -the-word-for •string)]. The resulting production is 

presented below its specific precursors in Table 4. 

If you see 
("throw agent " Sam recipient •dog-1 object "ball-1), 

then say Sam throws the ball to the dog. 

If you see 
(•give agent •Mary recipient • cat-1 object • st ring-1 ), 

then say Mary gives the string to the cat. 

II you see 
(vaction agent vagent recipient vrec object vobject), 
and vword1 is -the-word -for vaclion, 
and vword2 is -the-word-for vagenl, 
and vrec is-a vconcepl1, 
and vword3 is-the-word -for vconcept 1, 
and vobject is-a vconcept2, 
and vword4 is-the-word-for vcon r")pl2, 

then say vword2 vword1 s the vw or<.14 lo the vword3. 

Table 4. Productions mapping meanings onto sentences. 
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5.3. Discovering Balmer's Law 

A third application of the path-finding mechanism is the 

discovery of complex functions, such as that describing Balmer's 

series for the hydrogen spectrum. This series2 may be stated as 

9/5, 16/12, 25/21, 36/32, _ . To find one of the fractions, 

take the square root of the numerator in the preceding fraction, 

add one to this number and square the result to determine the 

current numerator. The denominator of a fraction is always four 

less than its numerator. If p is a fraction's position in the 

sequence, then the fraction may be expressed as 

(p + 2)2 /[(p + 2)2 · 4]. 

Suppose that upon receiving successive entries in the 

series. n desi\]nating production creates specific rules predict ing 

a fraction in terms of its predecessor. such as 9/5 - 16/ 12 and 

16/12 - 25/21. Since the ru les have identical form, first the 

generalization process, and then the path-finding process are 

evoked. Searching through the same numerical data base as was 

used in the algebra and integration examples, ACTG arrives at the 

general rule presented in Table 5. The last four conditions in this 

production correspond to the information given verbally above. 

Using these constraints, the rule will correctly predict the fraction 

for any position in terms of its predecessor. 

If the last fraction was v1 / v2, 
andv3xv3 = v1,andv3 + 1 = v4, 
and v4 x v4 = vs, and v6 + 4 = v5, 

then the next fraction will be vs/ v6. 

Table 5. General rule for Balmer's series. 

5.4. A Failure of the Method 

In factoring algebraic expressions, the goal is to find a set 

of simplified expressions which, when multiplied together, give 

the original expression. Suppose ACTG creates two specific 

factoring rules from examples it has been given, say 6x 2 + Sx · 4 

- (2x . 1 )(3x + 4) and 3x 2 + 2x · 8 - (3x · 4)(1 x + 2). Since 

these are structurally similar, the system ·would attempt to 

generalize, but would generate unbound action terms based on 

the pairs [2, 3), [1, 4], [3, 1), and [4, 2]. The path-finding 

process would try to connect these to one· or more of the 

analogous condition symbols [6 , 3), [5, 2), and [4, 8). Ideally, 

2tn Incl, AAlrnrn had only d~cimnl values to exn111inn Acco,ctin11 to Annttl (2), 
much of Huhnor's insight was the 1cnliznlion that th,•s,, munh<,r8 nppro•imnted the 
ratios of integers given above. ACTG's path -lindiny process has nothing to say 
about this ospoct ot Bolmer's discovery. 
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ACTG would find the following tour pairs of analouous paths: [2 

x 3 = 6) ;:rnd [3 x 1 = 3]; [1 x 4 = 4] and [4 x 2 = 8]; [5 + 3 

= 8, 2 x 4 = 8] and [2 + 4 = 6, 3 x 2 = 6); and [5 + 3 = 8, 

1 x 3 = 3] and [2 + 4 = 6, 4 x 1 = 4]. Unfortunately, a 

difficulty arises in reaching this goal. 

Taken together. the resulting generalized paths satisfy the 

uniqueness criterion discussed earlier. However, none of the· 

generalized paths do so individually. Moreover, if this criterion 

were abandoned, then the first two paths would be sufficient to 

bind all four action terms. But the resulting rule would be overly 

general, leading to actions like 6x 2 + 5x . 4-, (6x . 2)(1 x + 2), 

since there are multiple factorings for 6 and 4. Thus, the 

uniqueness criterion remains useful, but its implementation in 

ACTG seems overly restrictive. In the context of breadth-first 

search, the system could be modified to link paths together for 

add itional. constraints. However, the combinatorics would allow 

this only if a small number of paths were being considered 

simultaneously. This problem clearly requires more thought, and 

a search is underway for other learning situations in which this 

difficulty arises. 

6. Summary 

In this paper I described ACTG, a production system 

language designed for the study of learning systems. This 

language incorporates a declarative propositional network, a 

· spreading activation mechanism, and a unique conflict resolution 

scheme. ACTG also supports a number of automatic learning 

mechanisms, including the ability to strengthen or weaken 

existing rules, and the ability to form discriminant and general 

versions of these rules. The conflict resolution scheme of ACTG 

shou ld interact with these learning techniques to allow recovery 

from errors. but this prediction has not been tested. 

Alter summarizing the main characteristics of ACTG, I 

focussed on one of the learning mechanisms. This was a 

path-finding process which was called upon when generalization 

led to unbound variables in the action side of a rule. Once a pair 

of analogous paths had been found, a generalized version of 

these paths was incorporated into the condition side of the new 

rule. In its pure form, this network search would have been 

computationally intractable, so four techniques were used to 

direct the search along useful paths. Finally, I considered 
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applications of this method to the learning al mathematical 

procedures, the induction of meaning to sentence mappings, and 

to the discovery of complex functions. Future work will 

concentrate on testing this technique in more complex domains, 

and on studying its interaction with the other ACTG learning 

mechanisms. 
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Abstract 

BACON.4 is a production system that discovers empirical laws. It 
is not intended as a detailP.d model of human discovery 
processes. but instead attempts to model some of the general 
proce~ses that can IP.ad to discovery in a number of domains. 
BliCON.4, like its predecessor BACON 3. uses a few simple 
heuristics to handle a broad ran11e of tasks. These heuristic rules, 
which are easily implemented in a production system format, 
detect constancies and trends in data, and lead to the formulation 
of hypotheses and the definition of theoretical terms. No hard 
dist inctions are made between the data and the hypotheses that 
explain them, so that laws can be d iscovered involving an 
arbitrary number of variables. BACON.4. unlike BACON.3, can 
discover re levant propert ies of objects that have been input in 
nominal form. Numerical va lues of these properties, consistent 
with the data, are assigned to each of the nominal values. These 
quantities can then be used in new hypotheses to discover 
empir ical laws based on the discovered propert ies. BACON.4 has 
shown its generality by rediscovering Snell' s Law, Black's Law, 
the law of gravi tational attraction, and one form of the law of 
conservation of momentum. 

1. Introduction 

Centuries ago. physicists like Kepler and Gali leo began to 

discover laws that described the physical world. Such discovery 

is presently being modeled in Artificial Intelligence with a number 

of systems. These include DENDRAL [1], meta-DENDRAL [2] , 

and AM [3]. Fach of these discovery systems draws on a larqe 

a111ount of k11owledye al>out tile domains i11 which they worked . 

Another approach. represented by Langley's BACON.3 

program 14). models the discovery process without requiring a 

large body of domain-specific knowledge. This approach uses a 

few weak, but general, heuristics that may be applied to discover 

laws in many domains. BACON.3 showed its generality by 

rediscovering such laws as the ideal gas law, Kepler's third law, 

Ohm's law, and Coulomb's law. Although BACON.3 could 

include variables taking symbolic value" into its laws (e.g., the 

type of metal used in a battery). such variables could only be used 

1This resenrch was supported in part by NIMH Grant MIi onn. in part by NSF 
Grant Sf'I 711 14052. m par I by NSr Grant 1ST-79t82Gli. and in port by ARPA Grnnt 
F446?0 73 C0074 We would like to thank Glenn Iba for discussions about ideas 
presented in this paper. 
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in that system as conditions restricting the scope of numerical 

laws.2 BACON.4 can move beyond this by hypothesizing a 

numerical property of a nominal or symbolic variable, associating 

an appropriate numerical constant with each nominal value, and 

using these numerical constants to discover a more general law 

which includes th is new property. We will call the numerical 

variables intrinsic prope rtios of the nominal variables. 

In this paper, we first discuss how such an intrinsic 

property is postulated during the discovery of Snell's law. Next, 

we review the operat ion of BACON.3. and discuss BACON.4's 

added heuristics, which allow ii to propose intr insic properties. 

Next we discuss BACON.4's generali ty as a discovery system by 

showing how it finds several other laws. Finally, we show some 

limitations of the present version of BACON. 

2. An Example: Discovering Snell's Law 
Snell's law relates the ang le of incidence, i , and the angle 

of relraction, r, of a ray of light as it meets a smooth. transparent 

interface between two media. The general form of Snell's law is: 

Sine i/Sine r = n 1/n 2 

where n 1 and n2 are indices ol refraction for each medium 

relat ive to a common reference medium. Vacuum is the usual 

reference medium. with an incfex of relraction arbitrarily assigned 

as 1.0 With such a standarci, water has an index ol refraction of 

1.33, oil 1.47. quartz 1.54 . and ordinary glass 1.66. 

Suppose one is given experimental control over the angle 

of incidence (a numerical variable)3 and the types of the two 

media (wtiich are nominal variables) , and one gathers data by 

varying first the angle of incidence, fol lowed by the first medium, 

2 A nominal or symbolic vR, ioble is a var ioble that tnk<1s on names or labels as '3 

values . Thus. o nominal vn1iol.Jle. "mnte1iol." mny take on values like lead, water, 
etc.; ft nominal voriuhle "object," mny take on valu<?s liko "OhjP.ct A", "Object 8, " 
end so on. Values of nume1ic11I properties mo~· sometimes be nss!rioted with 
values of nominal vnr iables. l hus: "the density ot lead is 13.34 gr tcm ; "the mass 
of Obioct A is 3 grams"; etc. 

3
The present version of BACON c.onnol calculale sine vahres from angles. 

Thus sine values nre prO\lided to the p1og1om. This se1vcs lo simplify the prob/om 
tor BACON.4 by mducing the space through which it must search. 



followed by the second medium. Table 1 shows some of the data 

obtained in this manner when the second medium is vacuum. 

The index of refraction of a medium is an intrinsic property of the 

medium that is not apparent at the beginning of the experiment. 

Without being given prior knowledge of the existence of such a 

property. BACON.4 discovers it as it tries to describe the data. 

SECOND FIRST Sine i Sine r Sine I 
MEDIUM MEDIUM Siner 

Vacuum Water .5000 .3759 1.33 
Vacuum Water .7071 .5317 1.33 
Vacuum Water .8660 .6511 1.33 
Vacuum Oil .5000 .3401 1.47 
Vacuum Oil .7071 .4810 1.47 
Vacuum Oil .8660 .5819 1.47 
Vacuum Quartz .5000 .3247 1.54 
Vacuum Quartz .7071 .4592 1.54 
Vacuum Quartz .8600 .!>623 1.54 
Vacuum Glass 5000 .3012 1.66 
Vacuum Glass .7071 .4250 1.66 
Vacuum Glass .8660 .5217 1.66 

TABLE 1 DATA OBEYING SNELL'S LAW 

Consider the first three rows of Table 1. As sine 

increases. sine r increases. Since a function of the form sine i / 

sine r = k would lead to such a trend . BACON.4 calculates the 

values of the ratio sine i / sine r (see Section 3 for a review of 

BACON.4's discovery heuristics). In fact, the values of this term 

have a constant value 1.33 whenever the first medium is water 

and the second medium is vacuum. Constancies with different 

values occur for vacuum paired with oil, vacuum paired with 

glass, and vacuum paired with quartz. 

At this point the data cannot be summarized further 

numerically. However, since the nature of the first medium 

influenced the value of sine i/sine r, and because values of the 

first medium are interchangeable with values of the second 

medium. BACON.4 assumes that there exists some property of 

the two media (which we will call the index of refraction) that 

affects the experimental outcome. Because the values of sine 

i/sinc r are solely dependent on the values of the first and 

second medium. BACON.4 assumes that the values of the ratio 

reflect the different values of the property. We can assign to each 

of the values of the second medium the value of the ratio sine 

i/sine r. Thus the index of refraction for water is 1.33, oil is 

1 .4 7. and so on. 

Because the first medium has remained the same, an 

appropriate value for vacuum cannot be specified. There are 

several potential ways to find an appropriate index of refraction 

for vacuum. The first way might be to conduct a second 

experiment where vacuum appeared as one of the values of the 
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second medium. The relation between vacuum and the other 

media would allow us to calculate an appropriate index. A 

simpler approach, which is used by BACON.4, is to exclude 

vacuum from further experiments, and simply use media for 

which BACON.4 already knows the appropriate indices of 

refraction. 

SECOND FIRST Sine i Sine r ~I::~ MEDIUM MEDIUM 

Water Oil .5000 .4523 1.11 
Water Oil .7071 .6398 1.11 
Water Oil .8660 .7835 1.11 
Water Quartz .5000 4318 1.16 
Water Quartz .7071 .6 107 1.16 
Water Quartz .8660 .7479 1.16 
Water Glass .5000 .4006 1.25 
Water Glass .7071 .5665 1.25 
Water Glass .8660 .6938 1.26 

TABLE 2. NEW DATA OBEYING SNELL'S LAW 

Table 2 shows data BACON.4 · collects after the 

index-of-refraction property has been postulated. In this table, 

the second medium is water, while the first medium takes on the 

values oil, glass, and quartz . The program again calculates the 

values of sine i /sine r, which again have constant values for 

water paired with oil, water paired with quartz. and water 

paired with glass. 

SECOND FIRST Index of ~ nf~i~!r MEDIUM MEDIUM Refraction r 

Water Oil 1.47 1.11 .752 
Water Quartz 1.54 116 .752 
Water Glass 1.66 1.25 .752 
Oil Water 1.33 0.90 .680 
Oil Quartz 1.54 1.05 .600 
Oil Glass 1.66 1.13 .680 
Quartz Water 1.33 0.86 .649 
Quartz Oil 1.47 0.95 .649 
Quartz Glass 1.66 1.13 .649 
Gloss Water 1.33 080 .602 
Glass Oil 1.47 0.89 .602 
Glass Quartz 1.54 0.93 .602 

TABLE 3 SECOND LEVEL SUMMARY OF SNELL'S LAW 

Table 3 shows the second level summaries generated by 

BACON.4, including the indices of refraction for the first media. 

The first three rows summarize the data shown in Table 2. At this 

point, BACON.4 detects a monotonic increasing relalionship 

between the term sine i / sine rand the value of n 1 , the index of 

refraction for the first medium. It therefore defines a new 

theoretical term, sine i /n 1 x sine r which has a constant value 

of 1.11. Other values of this term are calculated as BACON.4 

collects further data. and these values are shown in the remaining 

rows of Table 3. Notice that this term takes on constanl values for 

each value of the second medium. These constancies are shown 

in Table 4. 



SECOND Index of sine I n2. sine I 
MEDIUM Refraction n1. s,ner iiT:"ilniir 

Water 1.33 .752 1.00 
Oil 1.47 .680 1.00 
Quartz 1.54 .649 1.00 
Glass 1.66 .602 1.00 

TABLE 4 FINAL SUMMARY OF SNELL'S LAW 

In Table 4, only the· second medium plays the role of a 

condition, so BACON.4 introduces the values of n2 , the index of 

refraction for the second medium. Now BACON.4 notes that the 

value of sine i/n 1 xs ine r varies inversely with the index of 

refraction of the second medium. Based on this, BACON.4 

defines a new theoretical term, n 2 xsine i/n 1xsine r, which has 

a constant value 1 .0. This relationship is equivalent to sine 

i/sine r = n 1 /n 2 , which the reader will recognize as Snell's law. 

3. BACON.3 and BACON.4 
In the las! section, we summarized BACON.4's discovery of 

Snell 's law. BACON.4 is an extension of BACON.3, described by 

Langley (4). Ye! BACON.3 cou ld have discovered Snell's law only 

if it was explicitly provided with the index of refraction for each 

medium. In th is section, we will review the two programs, and 

consider the reason for the difference. 

3.1. A Review of BACON.3 

BACON.3 represented its data in terms of conjunctions of 

attribute-value pairs called descriptive clusters; clusters 

corresponded to rows like those in Tables 1, 2, 3, and 4. The 

program used a small set of heuristics called regularity 

detectors for finding constancies and trends in the data. in 

data. The central heuristic could be stated: 

II the dependent variable a has the value v 
in a number of clusters at level L, 

then create a cluster at level L + 1 in which a is v, 
and which has all of the conditions 
held in common by the lower level clusters. 

Once createrl. a hiuher level oescription could contribute to yet 

higher level regularities. Much of BACON.3's power derived from 

this ability to recursively treat hypotheses as new data. 

The program used another set of heurstics for noting 

trends in numerical data. One of these may be summarized as: 

II the values of dependent variable al increase 
as the values of variable v2 decrease 
in a number of clusters at level l, 

then note a monotonic decreasing relation 
bet ween a 1 and a2, 
and calculate the slope of a1 with respect to a2. 

Additional rules further analyzed these data, and defined 

theoretical terms based on the results. If a constant slope was 
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found, BACON.3 defined new terms for the slope and intercept of 

the line. Otherwise, the product or the ratio of the variables was 

considered. depending on the direction of the relation and the 

signs of the numbers involved. Once defined, a theoretical term 

could be used in formulating hypotheses or in specifying yet more 

complex definitions. 

BACON.3 was well-suited for discovering purely numerical 

laws. However, since it could incorporate nominal variables only 

as conditions on such laws, it would fail to make much progress 

on Snell's data. Below we describe BACON.4's solution to this 

dilemma. 

3.2. BACON.4 and Intrinsic Properties 

BACON.4's trend detectors can only operate on numerical 

variables. At the start of an experiment, the only relevant 

information known about certa in variables might be that these 

variables take on symbolically different (i.e,, nominal) values. 

BACON.3 could only use such variables to limit the scope of a 

law. 

However, an experimenter has knowledge about the 

variables being used in an experiment. In the case of Snell's law, 

the experimenter knows that values of the first and second media 

are both drawn from a common set: the set of transparent media. 

In the present terminology, the first and second media are 

interchangeable: one set of values can be substituted for 

another. It should b~ obvious that the values of the second 

medium and lhe angle of incidence of the first medium are drawn 

from different sets, and so are non-interchangeable. When 

BACON.4 is told that two variables can take on interchangeable 

values, it considers defining a new property associated with these 

variables. 

BACON.4 contains only three more OPS4 productions [5] 

than the BACON.3 system upon which it was built. The first of 

these postulates a property associated with a set of variables. It 

may be paraphrased in English as 
II v2 is an independent nominal variable 

and II the values of the numerical 
dependent variable v 1 change 
as the values of variable v2 change, 

then propose an intrinsic property 
associated with v2 and 
with variables whose values 
can be interchanged with v2 . 

The second production is responsible for associating numerical 

values with nominal ones, after an intrinsic property has been 

defined. The third production adds the values of the new 

property to descriptive clusters when they will be useful. 

Although all of the examples in the present paper deal with 
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exactly two variables which can take on interchangeable values, 

BACON.4 is implemented to deal with en arbitrary number of such 

variables, as well as with multiple sets of them. The program can 

also deal with the simpler case of associating numerical values 

with isolated nominal variables. 

4. The Generality of BACON.4 

In an earlier section. we outlined BACON.4's discovery of 

Snell's law. Below we present evidence for the generality of tho 

program and its heuristic for postulating intrinsic properties. First 

we summarize the system's discovery of Black's law for 

temperature mixtures and the concept of specific heat. Next we 

discuss Cavendish's experiment on gravitational attraction, 

followed by an experiment exploring conservation of momentum, 

in which BACON.4 postulates two notions of mass. 

4.1. Postulating Specific Heat 

In the IBGO's, J.oseph Black began systematically to mix 

liquids of different temperatures together, and to observe the linul 

temperatures of these mixtures. II we let t1 and t 2 represent the 

initial temperatures of the two liquids, m1 and m2 stand for their 

masses, and t1 be the final temperature, then Black's law may be 

stated as: 

lr : (c,m,t, + C2m2l2)/(c1m1 + C2m2), 

The symbols c1 and c2 represent the specific heats of the 

liquids being mixed. The specific heat is a numerical value 

associated with a particular liquid that summarizes the role the 

liquid plays in Black's equation. For example, if we let the 

specific heat of water be 1.0. then the value for mercury is 

0.0332, and the value for ethyl alcohol is 0.456. 

BACON.4's discovery of Black's law results from a 

straightforward application of the techniques discussed earlier. 

The system starts with experimental control of 11 , t2, m 1, m 2, and 

the two liquids being used. The first four of these variables take 

on numerical values, while the last two take nominal ones. The 

single dependent variable is 11. the final temperature. Upon 

varying the values of t2, the program notes a linear relationship 

between this term and t1. Accordingly, BACON.4 defines 

theoretical terms for the slope and intercept of this line, s11 ,12 and 

111 ,12. Later, BACON.4 will discover a relation between these 

terms and the other variables. Although the program does not 

express things in this manner, the values of the intercept may be 

calculated as c 1m 1t 1t1/(c 1m 1t 1 + c2m2t2), and the slope may 

be found from (t1• l)/t2. 

When the values of 11 are varied as well, the program finds 

that the values of 111 ,12 change, but that the values of s1,.ti are 
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unaffected. A ratio term, i11,1/1 1. is defined and lound to have a 

constant value for the current values of m 1, m2, and the two 

liquids. Upon altering the values of m2. the values of this new 

term are affected, but so are those of the original slope term, 

s11 •12. Since the values of s11,12 increase as those of 111,1/t1 
decrease, the product of these terms is considered. This 

theoretical term is not constant. but varies directly with the mass, 

so that the term t 1s11 ,12 /m 2111 ,12 is defined. This term has a 

constant value dependent on the values of m 1 and the two 

liquids. When m 1 is varied. BACON.4 finds a monotonic 

decreasing relationship between m 1 and the new term, leading to 

the product m1t1s11 ,1/m2f11 ,12, which has a constant value 

dependent only on what two liquids are used. 

At this point, BACON.4 can do nothing except associate the 

values of this constant product with the liquids with which they 

are associated. The program defines a new intrinsic property, 

which we may call specific heat. It designates a specialized 

version of this concept for each of the two original nominal terms, 

which we may call c 1 and .c2. Upon incorporating the values of 

c2, BACON.4 finds a monotonic increasing relationship and 

defines the term m 1t 1s11 ,1/c2m 2111 ,12. This has a constant 

value dependent only on the first liquid used. When the values of 

c 1 are related to these summary data, a decreasing relation is 

found. The resulting term, c 1m 111s11 ,1/c2m2i11 ,12, has the 

constant value 1.0 under all circumstances. Substituting in the 

definitions of the slope and intercept terms discussed earlier, one 

finds that BACON.4's summary of this fact is equivalent to Black's 

law. 
4.2. BACON.4 and Gravitational Mas, 

in the late 1790's, Henry Cavendish designed an apparatus 

to measure the value of G, the unive~sal constant of gravitation. 

This apparatus consisted of 1) an object attached to an arm 

which is suspended from a quartz fiber, 2) a second object which 

moves toward the suspended object, and 3) a mirror and light 

source which measures the resultant torque produced by 

attraction between the two objects. BACON.4 can use data 

collected in this experiment to find the law of gravitational 

attraction. If we let m 1 be the mass of the suspended object, m2 

be the mass of the movable object, D be the distance between 

their centers of mass. and F be the observed force between the 

two objects, the law of gravitational attraction may be stated as: 

F = Gxm 1xm2 /D2 

If BACON.4 is given only nominal values for a number of pairs of 

objects m 1 and m2 , it cnn discover mnss as a nroperty during the 

exJ,Jeriment as well. Table 5 shows the values ol data collected in 

this experiment when the suspended object is object A. 



SUSPl'NOED MOVEAOLE DISTANCE FORCE F'D F·o 2 

OOJlCT OBJECT (rne1ers) (nr 100) (nt -m· 100) (nt-m· 1CJOi 

A B O.Ql 2.001 .0200 1 .000200 
A B 0 .02 0.500 .01000 .000200 
A B 0 .03 0 .222 .00666 .000200 

A C 0.01 2.501 .02501 .000250 
A C 0.02 0 .625 .01250 .000250 

A C 0.03 0.276 .00834 .000250 
A D 0.01 3.001 03501 .000300 
A D 0.02 .0.750 .0 1500 .000300 
A D 0.03 0.334 .01002 .000300 
A E 0.01 3.501 .03501 .000350 
A E 0 .02 0 .875 .01750 .000350 
A E 0 .03 0.389 .01 167 .000350 

TABLE 5. DATA OBEYING GRAVITATIONAL LAW 

In the first three rows of Table 5, the gravitational force 

decreases as the distance increases. This leads BACON.4 to 

calculate the product FxD. Because the new term does not have 

a constant value. and because FxD decreases when D increases, 

BACON.4 calculates a second product. FxD2. This has a 

constant value of 0.000200 when the suspended object is object 

A and the movable object is object B. BACON.4 finds similar 

constants for the pairs of objects A and C, A and D, and A and 

E. The values of these constants are dependent upon values that 

BACON.4 knows are interchangeable. Th.us BACON.4 postulates 

a property, gravitational mass, of the two ol:>jects, and 

associates the values of the FxD 2 column with values of the 

movable object. These values, associated with objects B, C, D, 

and E, are the true masses of each object multiplied by a 

constant, Gx M • . Thus all mass values are values relative to the 

mass or the suspended object used in the initial experiment. 

SUSPENDED MOVEABLE MASS OF F·D2 F.D2 
OBJECT OBJECT OBJECT M

2 M2 

110·3kg) 

[l C .0025 .00333 1.333 
B D .0030 .00400 1.333 
B E .0035 .00467 1.333 
C B .0020 .00333 1.666 
C D 0030 .00500 1.666 
C E .0035 .005B3 1.666 
D B .0020 .00400 2.000 
D C .0025 .00500 2.000 
D E .0035 .00700 2.000 
F ll .IXl20 .00467 2.335 
E C .00:t~ .00583 2.335 
E D .0030 .00700 2.335 

TABLE 6. SECONO LEVEi. SUMMARY OF GRAVITATIONAL LAW 

Next. BACON.4 collects more data where the suspended 

object is object B, C. D. or E. Again it finds values of Fxo2 to be 

constant for each pair of objects. These values are summarized 

at a higher level of description, shown in Table 6. At this level, 

BACON.4 can use the values of the mass of the movable object to 
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define a new term, FxD 2 /m2 . These values are constant for 

each value of the suspended object. This will cause BACON.4 to 

generate a third level of description, shown in Table 7. 

SUSPENDED MASS OF F·D2 F·D2 

OBJECT OBJECT M
2 ~ il?l'2 

B .00020 1.333 6 .667 X 105 

C .00025 1.666 6.667 x 105 

D .00030 2.000 6.667 X 105 

E .00035 2.333 6.667 x 105 

TABLE 7. FINAL SUMMARY OF GRAVITATIONAL LAW 

This level of description can be completely summarized by 

utilizing the mass of the suspended object to define a final term 

FxD2 /m 1xm2 . This term has a constant value 6.663 x ta5, 

which is equivalent to the 1 / GxMa 2. The final form of the law 

cou ld be expressed in terms of usual mass values as: F x o2 / 

G2MA 2M 1M2 = 1 / GMA 2. This is equivalent to the normal form 

of the law. The peculiar values of the masses assigned to each 

object derive from the heuristic BACON.4 uses to assign 

numerical values to objects. BACON.4 does not know the actual 

masses of each object. If it did, BACON.4 could discover the 

usual form of the law. Instead it associates va lues of the masses 

B. C. D, and E which are relative for a common reference mass, 

mass A. If relative values were inappropriate, the method would 

fai l (see Section 5 for an example and further discussion on this 

issue). 

4.3. BACON.4 and Inertial Mass 

BACON.4 can discover mass in a second kind of 

experiment. Consider the case where two masses, m 1 and m2 , 

are connected by a perfectly elastic spring which has no inertia. 

If the objects are pulled apart and then re leased. the two masses 

will enter into harmonic oscillation . One can measure the velocity 

of the two objects at several points in their period. This situation 

is a special case of conservation of momentum, where 

m 1 xv 1 /m 2 x v2 = 1.0. For this experiment, BACON.4 has 

experimental contro l over nominal values for the first and second 

masses. a:; well as over the times at which the observations ar.e 

made: it observes the dependent values of v1 and v2 under 

various combinations of the independent values. 

In discovering this law, BACON.4 varies the times at which 

the velocities are measured. and notes that the velocities v 1 and 

v2 increase together. Accorcl1ngly, it defines the term v 1 / v2 , 

which does not vary with the time of the observation. Next the 

program defines a property of the objects, inertial mass. The 
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values of this property for m2 are discovered to vary directly with 

v1 /v 2 . so BACON.4 defines the term v 1 /m2 xv 2 . This has a 

constant value dependent upon the first object. BACON.4 finally 

incorporates moss values of m 1, finds these are directly related to 

v1 /m 2 xv 2 . and summarizes the data as m 1 xv 1 /m2x v2, which 

has a constant value 1.0. 

We have shown how BACON.4 can discover mass in two 

separate experiments. The discovery of mass has been shown to 

be a necessary step in the discovery of Newtonian mechanics [6]. 

Mass is a general property that is used in many laws. However, 

instead of rediscovering mass in several different experiments, 

BACON.4 can use a property discovered in one experiment to 

facilitate discovery of a different law. 

In the two previous sections, we have shown how two 

different forms of mass were discovered: inertial mass and 

gravitational mass. However, ii the program that discovered mass 

in solving the gravitational attraction experiment was told that 

objects in the conservation experiment were interchangeable 

with gravitational objects, and if the same objects were used, then 

the program would already have available mass values for the 

objects. It would discover that gravitational mass could be used 

to predict the momentum of the system. In this case, two 

separate notions about mass would never have been postulated. 

Similarly, if the order of experiments were reversed, BACON.4 

would incorporate inertial mass values into the gravitational 

experiment. without postulating gravitational mass. This again 

reflects the data driven nature of BACON.4 The program will only 

begin to infer properties of objects when no further 

summarization ol the existing data is possible. 

5. Limitations of BACON.4 

In this section, we discuss a case where the present 

technique of postulating properties is not applicable. Alter this, 

we mention some more general limitations of BACON.4 as a 

discovery system. 

5. 1. BACON.4 and Friction 

In an experiment to determine the force required to cause 

one object to slide on the surface of another, one might vary the 

composition of the sliding object, the composition of the surface, 

and the weight of the sliding object. Since the sliding object and 

surface material are interchangeable. BACON.4 would postulate 

a property of such materials, which might be thought of as the 

roughness of a surface. 
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However, it is well known that the coefficient of friction, µ., 

is associated not with a single type of material. but with pairs of 

materials. In this case, the values of surface roughness would not 

lead to finding constancies in the data, and BACON.4 would fail to 

summarize the data. In the present system, no provision is made 

to deal with such a circumstance. There are undoubtedly other 

cases in the literature of chemistry and physics which are similar 

to this example. In all such cases, BACON.4 will fail to find the 

generally accepted laws. 

The friction example illustrates an important assumption in 

the present property discovery process. BACON.4 assigns 

numerical values to one of the interchangeable variables when it 

does not know the effect of the other interchangeable variable. In 

the case of gravitational mass discussed earlier, for example, the 

mass value assigned to object B was equivalent to mass B x mass 

A x G, the value assigned to object C was equivalent to mass C x 

mass A x G, and so on. Since mass is a transitive property, the 

relationship between the values assigned to objects B and C is 

the correct one. II. as in the friction example. the property is not 

transitive, the values assigned to object B and C will be 

inappropriate ones. Of course, the1e is no way of knowing in 

advance wh~ther or. not the assumption will hold. 

5.2 . Guiding BACON.4's discovery 

In the present version of BACON.4, the program is supplied 

with a certain amount of information about the experiment at 

hand. The information includes: 1) the variables that the program 

. has to manipulate; 2) appropriate levels of these variables to use; 

and 3) dependent variables the program can measure. Also, by 

excluding irrelevant variables, we are reducing the space of 

potential laws the program must search. Undoubtedly we are 

guiding the discoveries of BACON.4 by these means. Let us look 

at each ol these problems in turn . We will start by looking at the 

problem of irrelevant variables. 

BACON.3 employed a simple heuristic for dealing with 

irrelevant variables: ii an independent variable is manipulated, but 

has no effect on the dependent variable(s). it is classified as an 

irrelevant variable, and its level is held constant. BACON.4 

incorporates the same heuristic, so that including irrelevant 

variables would not prevent it from discovering any of the laws 

presented here. However, the program would systematically vary 

the irrelevant variable(s). and so would require more time to 

discover the laws. Thus the program can be slowed by including 

extraneous variables. but it cannot be disrupted by them. Our 

primary interests have not been in this area, so we have no 

statistics on the extent to which discovery is slowed by 

introducing one or more extraneous variables. 



The question ol how to decide which variables to include in 

an experiment, both independent and dependent, is undoubtedly 

a serious one . However, this question is outside the realm of the 

present projec t. an1 we h.:we little to sny about the matter. The 

only provision in the present version of BACON which relates to 

this issue is BACON.4's abi lity to keep track ol properties of . 

vuriubles it has discovered, and to utilize such properties when 

they are useful. Perhaps some other approach wiil be more 

fruitful in addressing the issue ol selecting potential variables. 

The final concern . that ol choosing appropriate levels for 

independent variables. might perhaps be addressed in a future 

version of BACON. In order to choose such levels, additional of 

·knowledge must be included in the program. Such knowledge 

would include: 1) costs associated with achieving different levels 

of a variable; 2) the potential range a variable might assume; and 

3) extraneous effects ol a variable in the experiment (i.e., one 

cannot study water at -20°c). Again this has not been a major 

thrust of our project. 

5.3. BACON.4 and Noise 

BACON.4 has only primitive facilties for dealing with noise 

in its data. Suppose the program is comparing two numbers, n1 

and n 2, to see if they are approximately equal. The system takes 

the larger of these values and multiplies its absolute value by a 

noise factor I (0 .001 in all of the reported runs). The resulting 

product is both added to and subtracted from n 1 to create an 

· Interval. If the smaller number n2 fallswithin this interval (that is, 

if n 1 • qn 11 < n 2 < n 1 + qn 11), the two num.bers are treated as 

identical. 

This technique was adequate for dealing with the roundoff 

errors BACON.4 produced while calcu lating the values of 

theoretical terms. However, the introduction of realistic noise into 

the data may require major modifications in the system's control 

structure. In particular, the regularity detectors may not be 

powerfu l enough to propose unique paths through the space of 

theoretical terms and hypotheses. One alternative is to enable 

BACON to entertain many hypotheses at once, rejecting some as 

disconfirming evidence becomes available, but generating more 

as variants of those that are retained . Such a beam search 

through the space of hypotheses should be sufficiently robust to 

deal with substantial noise in the data. 

The limitation:; shown in this section are serious ones, and 

their solution wi ll requ ire considerable time and effort. However, 

our present experience suggests that most' of these problems can 

be solved by direct extensions of the present program. 
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6. Summary 
In summary, BACON.4 is a production system that can 

rediscover a number of laws from the history of physics. In the 

process, the program notices regularities in data, defines 

theoretical terms, postulates properties of symbolic variables, and 

summarizes its data at various levels of description. We showed 

how the ability to postulate properties COllld be used to discover 

properties such as mass, index of refraction, and specific heat. 

Thus we have evidence that the technique is a general one. 

Further evidence of the generality of the BACON system of 

programs is evident in that only three productions were added to 

to create BACON.4. Th is is due, in part, to the great flexibility 

afforded by the production system format. It is also due to the 

generality of the heuristics included in the program. This 

suggests that the production system format is a suitable one for 

formalizing discovery programs. 

Limitations of the present system include the fact that 

potentially re levant independent variables must be given to the 

program, values for these variables must be supplied , the 

dependent variables must be specif ied, and the program has only 

a limited ability to compensate for no_ise in the data. We hope to 

be able to overcome some of these problems in future versions of 

BACON. 
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INCRtMENTAL DEDUCTION IN A REAL-TIME ENVIRONMENT* 
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S1k~ll'1.t.lt is a system for identifying objects 
detected by sensors on ooard naval vessels and for 
int~ractively explaining the identification 
process. The system operates in a continuing 
environment where later information may supercede 
earlier data. New techniques are described for 
facilitating and revising deductions in this kind 
of developing situation. Other interesting 
features of the confidence and explanation 
mechanisms are discussed. 

INTHODUCTION 

A ship at sea has a broad range of data 
collection devices which can be utilized to aid 
assessment of the current situation in its 
immediate vicinity. These devices include 
on-board sensors like radar and sonar, and 
communication links with other ships and land 
bases whicn can serve as information relays from 
off- ship sensors. Even with these resources at 
their disposal, naval personnel can find it hard 
to maintain an accurate picture of' the existing 
tactical sit uation. At the lowest level · the 
amount o!' data availaole can oe staggering, while 
converting the low level data to useful higher 
level concepts is an art at best. 

A rule- based inference system called 
S'l'At'.Mettl 1, 2) has been devised to nelp fill the gap 
between the availaole information and higher level 
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concepts which are more useful in ta~ticaJ 
situation assessment. STAMMEH applies it r rulPf 
to a data base of assertions about ships ana 
aircraft. Relatively static information about 
facts like ship names and characteristics i~ 
'available to the system at initialization. Fro,r. 
time to time, messages containing information from 
sensors and communication links are received, and 

.assertions representing the information are addec• 
,to the data base . Typical messages indicate the 
detection of an object at some location at some · 
tl~e ( e.g. blip spotted at 57.4N, 13 .23W at time 
0·115), but way also report on weather conditic-1s 
or other factors of interest. when rules fire, 
tney add their conclusions to the data base, and 
.5TAM1"£1i reports to the user botn in text form .-.110 
witn a grapnical situation plot. 

An aooreviated transcript containing only tht 
messages (indented) and conclusions follows: 

riAIJAtt contact at (6j.75 -2:;.95) Time: O 

11.t.PU!t'i: CO!',TACT 1 was sighted in 
merchant lane LANE2 

S~AR contact at (63.75 -24.09) Time: 15 

A0300: CONTACT1 is somewhat likely (. 15) 
to be a PATROL 

SONAR contact at (63.75 -24.14) Time: 20 

A0300: CON1'AC1'1 is somewhat likely ( . 28) 
to be a PATttOL 

SONAR contac~ at (6 3.75 -24 . 1g) 1ime:2) 
.':>(1'1A t\ ~ontact at (E,3 . ·15 -24 .24) Ti~IE': :,~ 



SUNAH contact at (63.75 -24,33) Time:40 

A05'/ 0: CON'J'ACl 1 is probably not ( -. 54) 
a MJ:,.rlCl:JANl 

SUNAfi contact at (6~.75 -24.42) lime:50 

A0':>'/0: C01,1AC11 is very probably not (-.8) 
a Mi,.HChANT 

One of the major conclusions that Sl'AMM£H reaches 
is the identification of a vessel's type from its 
actions. 

upon receipt of a report from the system, the 
user may query the data base, trace paths of 
reasoning, or manipulate the graphic display to 
help satisfy himself as to the nature and scope of 
the situation and the appropriateness of the 
system's reasoning. 

The unsolicited nature of data entry swi;gests 
a data-driven approach to rule evaluation. Por 
this reason, the rule interpreter operates 
primarily in a bottom- up, forward-chaining mode. 
Whtrn coml>i ned witn a facility for user definition 
of rules, this approach has the additional 
advantage of permitting the creation an.J 
activation of demons to monitor messages for 
particular situations of interest. 

n1e de:;ign of the rule interpreter has been 
strongly influenced by two considerations. First, 
the form of the rules should be kept simple. To' 
meet this objective, it was decided that 
conditions of rules should refer as much as 
possible to states of the external world, rather 
than internal states of the system. In 
particular, details such as confidence management 
and control of repetitious firings are the 
responsibility of the interpreter, not of the 
rules themselves. Second, the interpreter should 
be highly efficient. As the data base becomes 
large, it is essential to avoid redoing work th~t 
has already been done. The potential for 
duplication of effort is especially great in thi~. 
environment, because rule-firing attempts recur 
after every message. lt is necessary to suppress 
atlempts in circumstances that have occurred 
before. 

-i·n., data base in SlAM~11i;l1 may be viewed as a 
set 01 · assertions. An assertion is essentially an 
N-tuple, where the first element is a relation 
name, J:,.J<.Al'IPLE: (Sl1.i11'l'ING S 1 CONNOLE) asserts 
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that S1 is a sighting of the CONNOLE. The rules 
in STAMMER are primarily inference rules, which 
are executed by the interpreter to modify the data 
·base. Besides being executed, the rules may be 
used by other components of STAMMJ:,.H, such as the 
explanation system. Tne internal form of the 
rules is neutral toward the various uses. Each 
rule has a condition part and an action part. The 
condition part is a conjunction of conditions. 
for inference rules, the action part is a 
conjunction of conclusions. The conditions and 
conclusions of ~he inference rules have the form 
of assertions in which some of the arguments are 
r ep laced by variables. This allows them to 
Junction as assertion patterns or templates, with 
'the variables serving as "wildcard" entries. An 
example of a rule is: 

(SIGHTING •x •y) (STORM •z) (INSIDE •x •z) -> 
(NOT~JERCHAN'l' *Y) 

·The variables are distinguished by an initial 
asterisk. The rule may be paraphrased as saying 
that, if •xis a sighting of *Y, and •z is a 
storm, and •xis inside •z, then this is evidence 
that *Y ls not a merchant (ship). ~uch a rule is 
founded on the presumption that merc hants tend to 
·avoid storms more than other ships. 

Conditions of rules may also be Boole~n 
combinations of the elementary forms. L1 
audition, an lJ r.Lt,;:;.:; operator is provided. 

The tasl< of the rule interpreter is to 
maint.ain the following situation: during 
quiescent periods \i.e. after the system has 
finisned responding to new information), for every 
combination of assertions in the data base 
matching the conditions of a rule, the 
corresponding conclusions must also be present in 
the data base. Moreover, these must have 
appropriate confidences, based on the current 
confidences in the conditions. 

The notation for rules resembles that of 
PAOLOG [10], and has a similar natural declarative 
sense. However, PROLOG executes rules top-down, 
whereas the interpreter here is bottom-up , and 
includes a confidence mechanism. 

lncremeotJll Deduction 

ln a bottom-up (forward-chaining) system, an 
oovious problem is to prevent ru-les from firing 
repeatealy on the same data. One sol ution is to 
have tne rules alter the data base· in such a way 
as to invalidate one or more of' their conditions. 
The rules in such a system might appropriately be 
referred to ·81' "while-do" rules, since their· 
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behavior resembles that of a WHILE statement in a 
conventional programming language. A disadvantage 
of this approach is that the rules are cluttered 
with additional conditions and conclusions that 
_play essentially a book-keeping role. In 
addition, the rules no longer have a natural 
declarative meaning. A second solution i~ to 
incorporate an ad hoc mechanism that retains a 
'record of prcv ious firings and intervenes to 
,prevent duplications. Unfortunately, this does 
notning to eliminate the wasted effort involved in 
repeatedly matching initial segments of' rules. An 
example will make this clearer. Consider once 
again the rule: 

(Sluh'l'lNG IIJ( •1) (S'l'uttM 11l) (INS11JE •x *l) -> 
(NOll'll!.ilCHAN1 •1) 

If the sys tem currently knows about m sightings 
and n storms, then it had to do (at least) m•n 
retrievals of the INSIDE relation. Now suppose a 
new sighting is received. The rule is again 
potentially applicable. A naive system might now 
do (m+1) 11n retrieval s of INSIDE, representing all 
of the possible combinations. However, only n of 
these are new; the rest are redone in unchangec 
circumstances. This is wasted effort. If m is 
large, the cost may be substantial. Clearly, we 
would wish that only the new sighting should be 
used in conjunction with each of the known storms. 
Similarly, if a report of a new storm is received, 
then only that storm should oe considered in 
relation to eacu of the known sightings. 'ft1e 
proulem i s to find a mechanism to achieve this. 

Suppose, ror the moment, that we could .delay 
a rule rrom being considered until all the 
information tnat might match its conditions is 
present in the data base. ror the example above, 
thi s would be at a point when we could be sure 
there would be no more late reports for the 
time-span of interest. Assume "executing" a rule 
means systematically trying out, without 
repetition, all the possible matches for 
conditions by items presently in the data base . 
Then it is only necessary to execute the delayed 
rule exactly once, and the redundancy feared does 
not occur. It is not feasible, in general, to 
delay execution in this manner. A viable 
alternative, however, is to distribute a single 
execution over time, interleaved with the other 
business of the system. Portions of the execution 
ar e suspended until needed information arrives. 
The effect, in terms of CPu time (ignoring 
overh ead) , iz the same as if the information had 
oeen µr esent from tne beginning . We call this 
technique "incremental deduction." 
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A somewhat related procedure, 
"s.pJitting," is outlined in Rieger [14]. 

called 

S.tr:~ 

To explain the functioning of the system more 
fully, it is beneficial to introduce a construct 
Lhat has been used in experimental programming 
.1 anguages [ 11, 12) (Landin[ 13) first described the 
idea.). A ~ may be regarded as a 
di.stinguished sequence of values, produced in the 
c ,urse of a computation. l•or example, the history 
oi' successive values of a variable constitutes a 
:s ·;ream. By providing certain operators, we may 
mr.1nipula te streams to our advantage. ln S'lAMMER 
~~ have implemented a mecnanism wnicn allows tne 
creation of' explicit streams. These may bP. 
nianipulated by a MAPSTREAM operator analogous to 
t ne normal i'lAPC of LJ.SP. The following imaginary 
J. lSl' session illustrates how these work: 

_(SelQ S (N!i;WSTHJ::AM)) 
( (NIL) NIL) 
_(PUTSTREAM S 1) 
,~IL 
_(MAPSTJll!;AN S 'PRINT) 
1 

.UL 
_(PUTSTREAM S 3) 
j 

NIL 

... create an empty 
stream S 

... put 1 into stream S 

... attach the function 
"print'' to stream S 

... "print" acts on new 
element 

_(MAPSTHi:;AM S '(LAMbUA(X)(PRINT 2*X) 
2 

b 

NlL 
_(PUTSTttl!.AM ;:, ':,) 
J 
10 
NlL 

... new function applies 
to all previous stream entries 

... both functions act 
on new entry. 

Tne function Nl!.wS'l'Rt:AM returns a structure that 
serves as the means of addressing tne stream. A 
MAl'STtt~II.Med function will immediately be called on 
the elements already in the stream. In addition, 

-a demon will be attached to the stream structur e , 
so that any subsequent elements will also get 
acted upon by the function. This provides a 
natural form of parallellism in an otherwise 
sequential language. In fact, MAPSTREAM may be 
regarded as initiating a parallel process that 
hangs while waiting for input from the stream . 

Streams may be viewed as an example of 
embedding control information in data structures . 
Kowalski [9] discusses the role of control in 
algorithms, contrasting it with that of logic. 



Assume now that the assertions in the data 
,base are organized into streams, with new 
:· infonnation added to the appropriate streams. A 
simplified definition of the interpreter may be 
given as follows ( in pseudo- ALGOL - the II for each 

in stream .. 11 represents a MAPSTREAM): 

PROCEIJUR E interp( conds ,a.ctions ,bindings) 
if conds is NIL then execute (actions,bindings) 
else for each x in stream matching first cond do 
interp(other conds,actions,new bindings); 

l'he new bindings consist of the old ones plus 
those determined by the match on x. 

An obvious way to implement streams is by 
means ol' corout,ines. 'l'he demand s on space, 
however, are so onerous that it is preferable to 
build special purpose mechanisms for particular 
applications. A stream addressing structure may 
be considered to nave two parts: a history list, 
containing elements previously put in the stream, 
and a list or "suspensions," representing the 
demons waiting for future items to be placed in 
the stream. In our case, a suspension can be 
represented economically by a pair consisting of a 
context (set of bindings) and the "tail" of the 
rule. Structur e sharing may be used heavily to 
reduce the space occupied by contexts. Apart from 
the context, the overhead required by a suspension 
is a single word. 

The suspensions saved are associated with 
conditions of rules. A new item of information 
may "arouse" a suspension and cause the 
interpreter to move through a few rule conditions 
before suspending again. This has done part of 
the wor1< toward a future firing of the rule. This 
amortization of tne cost ot' rule firing over 
several messages is appropriate in the present 
tas1<, where there may oe considerabl e idle time 
between significant occurrences. 

An i.nplication of tnis approach is that the 
proolero of rule :ielec tion disappears, since each 
rule is "executed" exa,ctly once. The task of 
determining which suspensions are relevant to a 
new item of information is handled automatically 
by tne stream mechanism. 

Pulsars 

So far, we have ignore~ the role that 
confidences play in the interpreter, A potential 
deduction is suspended at a condition even though 
a matc hing item is in the data base , if the 
.confidence in that item is below a threshold 
·value. If the confidence subsequently changes, it 
may be necessary to revive the deduction at that 

29 

point. Since tne item is already in tne relevant 
assertion stream, it cannot be placed tnere again 
to trigger the suspension. We avoid this 
difficulty by associating a stream of pulses, 
called a pulsar, with each assertion already in 
the data base (actually, the pulsar mechanism 
differs somewhat from that of a normal stream) . 
When the confidence changes, a pulse is added, 
reviving the suspended deductions. 

lr:.iJ.tJl Mainten~ 

An assertion which is not believed (i.e. 
with low confidence) may l:ater be believed due to 
fresh information. In addition, the uNLESS 
operator, which permits inferences based on 
absence of information, gives the logic a 
non-monotonic cnaracter [4]. Thus, assertions 
which are currently believed may later cease to be 
believed. Nessages may be overturned. The effect 
of' all tnese is two-folu: rules which failed to 
fire at one point should later fire, and rules 
which fired earlier should in some sense be 
"withdrawn . " '!'nis is tne issue of truth 
maintenance (3,5,6,8]. The first problem is dealt 
wi tn in STAMMER by the pulsar· mechanism discussed 
earlier. The second requirement is handled by 
delayed computation of confidence. When a rule 
fires, a derivation record is constructed, but no 
confidence is computed for the conclusion. When a 
confidence is needed, it is computed using the 
existing derivation records . Then, when computing 
the contribution of confidence due to a previous 
rule application, the current degree of belief in 
the conditions is taken into account. Thus, "dead 
derivations" are in effect with drawn from the 
system, although their structure remains . 

One type of truth maintenanc e that i s 
described in i>oyle [8] is net handl ed by .S'l'AMMt:;H. 
This is the "conflict ·of evidence" situation where 
Doyle's system will attempt to find a culprit and 
revise tne beliefs accordingly. At present 
.S'lAMM!::il merely sums evidence algebraically, 
following tne approach of l'IXCII'< L7 j. 

uAlA BASt. 

STAM~ilirl's data base is a collection of assertions, 
each of which is a statement that some relation 
holds among some objects. For example, the 
assertion 

(LATlTUDE S1GH1'ING27 54.52) 

states that the latitude of sighting27 is 54.52 
(north). LA TIT UDE, S1GHTING27, and 54. 52 are all 
assertion elements. 

-number of objects, 
Assertions may involve any 
though each relation has a 
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fixed number ot' ObJect slots. 

while the data base is a collection of 
assertions, the assertions are organized into 
streams. Retrievals produce a stream structure 
that references assertions, rather than a simple 
list of assertions. 

Hetrievals are performed by specifying some 
or all of the assertion elements which form the 
desired assertions, with the remaining places 
"wildcarded." Using "*" for a wildcard, the 
following retrieval specifications would identify 
streams containing the sample assertion given 
earlier: 

1. (LATl'l'Ui!t: SIUH1lliu27 54.52) 
2. (LA1l'l'UDE SIGH1'ING27 *) 

3, (LA1'1Tl.JDE • 54.52) 
II . (LA'fl'fU[JJi: tr •) 

5, (* ~luH1INu27 54.5~1 
b. ( • S1UH1'1NG27 •) 

7 , ( " • 5ll.52J 
tl. ( • • • I 

lne first retrieval specification totally 
specifies an assertion, while the rest are partial 
specifications. Analysis of the rules presently 
used has shown that the specifications 5-b are 
never needed in this application, so they are not 
stored. 

The sample assertion would thus be stored in 
four distinct streams. We accept this redundant 
storage in return for quick access via hashin~ 
based on the retrieval specification. This method 
permits retrieval in constant time. 

CONr' IDENCES 

All assertions in 
confidence associated 

the 
with 

system 
them. 

have a 
The basic 

confidence calculation is that of MYClN, where the 
confidence in an assertion is taken to be the 
difference oetween the measure of oelief (Mb) and 
the measure of disoeliet (MD) in tne assertion. 
Hules have a similar singular measure, called the 
strengtn of a rule, which indicates what the 
confidence in the conclusion would be if the 
confidence in all conditions was 1.0. More 
precisely, tne contribution of confidence to the 
conclusion of a rule is given by: 

MB = M:S(conditions) x STHENGTH(rule) 
ML> = l'ID(conditions) x STR!!;NGTH(rule) 

Note, however, that if MD> MB then the rule does 
not apply. Ground assertions (those that are not 
derived from rule applications) have measures of 
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belief and disbelief associated with them directly 
by whatever creates them. Derived assertions get 
tneir measures of belief and disbelief calculated 
dynamically upon acces1i oy tracing through the 
derivation to ground assertions and combining the 
measures of oelief and disbelief as in MYCIN. 

~xtensions to the general MYCl11 scheme fall 
into three areas. l"irst, a new logical operator 
( UNLESS) is introduced which provides 
non-monotonic capabilities [4] by allowing rules 
to be based on the absence of information. We 
interpret a non-existent assertion as equivalent 
to an identical ground assertion wth a confidence 
of 0.0. Informally, the semantics of UNLESS 
permit it to be satisfied by assertions with 
negative or zero confidence. The formal semantics 
of the UNLESS operator is given by: 

MB = 0 if' MB-MD > 0 • 0 
1 otherwise 

MD= 1 if Ml:S-MD > 0.0 
0 otnerwise 

l'ne second and third extensions grow out of 
the retained derivation record and the dynamic 
demand-driven calculation of confidence . When the 
derivation record is retained, it may contain 
cycles. for example, a rule like 

could be used to infer (FRIEND MARY JOHN) if given 
(FRIENL> JOHN MARY). However, once (FRIEND MARY 
JOHN) is in the data base, the rule may fire 
again, providing (seemingly) new evidence for 
(FRIEND JOHN MARY) ·, in an instance of cyclic 
reasoning. Our solution to this problem is not to 
restrict the rules but rather to cope with cycles 
in calculating confidences. 

The confidence computation algorithm handles 
loops in the derivation structure as follows. As 
it descends recursively, it marks nodes it has 
seen. This allows it to detect loops. Assume the 
node A is discovered to begin a cycle. Then A 
appears twice in the descent path . Hules may 
supply positive or negative evidence for their 
conclusions. ll' the cycle represents positive 
evidence for A, then the computation proceeds as 
though the lower appearing A had a confidence of 
- 1. If the cycle indicates negative evidence for 
A, then the lower A is regarded as having a 
confidence of +1. we are essentially using the 
well known mathematician's tricK of assuming not X 
when trying to prove X. 



More explicitly, the following six types of 
cycles may occur: 

A --> A A --> not A 
not A --> A not A --> not A 

unless A --> A unless A --> not A 

Note tnat no rule concludes "unless A." ln the 
leftnand column each lower or antecedent A is 
given a confidence of - 1. ln the righthand column 
each lower A is given a confidence of +1. These 
assignments yield the appropriat~ confidence in 
the consequent, as can be easily checked. 

The following symbolic example illustrates 
the confidence calculation. Assume that we have 
the rules: 

R1: A-->B 
R2: B-->not C 
R3: C-->B 
R4: D-->C 

witn strengths s1, s2 , s3, and s4, respectively. 
vraphically tne situation is: 

s1 
A---> h 

s2 
---> not 

Sj 

<---

sl! 

C <--- D 

Assume also that the measure of belief in A and D 
are a and d respectively (with zero measures of 
disbelief). Moreover let xily denote 1- (1-x) (1 -y ). 
Then the confidences are given by: 

conf(B) = (s 1*a )/l(s3•s 41 d) 

i.e. as though the situation were 

s1 s3 s4 
A ---> B <--- C <--- D 

and cont'( CJ= s4•d - s2*[(s1*a)ils3] 

i.e. as tnough we had 

s1 s2 
A---> h --->not s4 

Js 3 
·r 

C <--- D 

wherE, T has confidence 1. 
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ii'inal ly, rec al cula ting confidence in an 
assertion whenever the confidence is requested 
provides an automatic update facility for those 
assertions derived from others whose confidenc~s 
have changed. This updating of confidence in t ,1e 
conclusion does not require a reevaluation or 
refiring of the rule. 

EXPLANATION SYS 1'EM 

As important as the ability to make 
deductions is STAMMER's ability to explain it!' 
reasoning. The explanation facility is a part of 
the user -interaction subsystem . As system 
builders have little icnowledge about the form of 
interaction users will find convenient, a 
production system architecture was chosen for 
defining tne interaction subsystem. About two 
dozen productions were required, divided nearly 
equally between those interpreting user's commands 
and tnose interpreting his queries. 

ttecall that STAMMEtt functions by processing 
each message, reporting to the user all but the 
most minor conclusions (this is controllable by 
the user), and then prompting him for any 
questions he may have. Typical questions that a 
user might have are: 

WHAT is the COURSE of SIGHTING3 
Is RADAR the SOURCE of SIGHTING32 
TELL me about SIGHTINGS 
WHEHI> was CONTACT2 at time 115 
WHY is A00345 (an assertion) 
HOW does rule ID-LANE apply to A0435 
WHOSE TYPE is MERCHANT 
WHO is HOSTILE 

These questions forms are redundant, cut add to 
the naturalness ·Of the interaction. In 
particular, the "Tl>LL me " command could be 
used in nearly all cases, but it often retrieves. 
too much information, overloading the user. To 
illusLrate now simple it is to ado or modify these 
language forms, tne internal LlSP form of the 
above "HOW.. " query is: 

(HOW "does rule" !kULE (: RUL) "apply to" 
!AS::icllTION (: NODE): (RUL.E.XP RUL NODE)). 

ln the above questions, the user only types 
the capitalized words. The system "guides" t' ~ 
user by typing the lower-case wo'r·,1s. This 
guidance aids both the system and thP usJr. The 
user gains the sense that the system is paying 
attention to him, anticipating hirn, and relieving 
him of some typing. The system need not have the 
capability to disambiguate such sentences as: 
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what is tne course of sightingj? 
Sighting3 was on wnat course? 
Signting3 was travelling in which direction? 
The heading of sighting3 was? 
etc. 

Tnis fonn of interaction guarantees that the 
system will comprehend the question and be able to . 
answer it. The user is not frustrated by finally. 
phra s ing a question in an ;cir.ceptable form, and 
then having the system respond in some nonsensical 
inanner. Of course there are means by which the 
user can abort his typein, change it, or determine 
the possible legal responses. 

Most of the questions above deal with simple 
retrieval of information from the growing data 
base. Only the "WHY II query asks the system to 
explain or justify some assertion. Assertions are 
created by five di!terent mechanisms. Ground 
assertions are those assertions which require no 
rule firings. uround assertions might be i) facts 
from the technical llase, such as "the maximum 
speed or vessel V is speed S, 11 ii) facts received 
from messages, such as "the position of ooject U 

.is latitude LA and longitude LU," iii) predicates 
requiring a simple computation, sucn as "}( is less 
than )'., 11 and iv) default assumptions, such as 
"vessel V is outside all merchant lanes" if the 
position of Vis unknown. The explanation system 
clearly delineates all of the above types of 
assertions. 

The explanation of a non-ground assertion or 
inference is more interesting. Associated with 
each inference is the collection of rules which 
bear upon it, together with the particular 
instantiating conditions of each rule. The same 
rule may be applied more than once, by having 
different bindings of its conditions, to yield the 
same conclusion. Since each condition of a rule 
is itself an assertion, the user can ask for a 
justification of any condition. This process can 
go as deep as the user likes until a ground 
assertion is reached. 

He turning, for tne moment, to the example 
given in tne introduction, we could see the 
following interactions occurring after time 30. 

~uestion? wht is AU510 
S1'AMMt:H appliea tne rule(s) 
SPEtJ:J-CHANG,t;D SPE.t;lJ-CHANvED OUTSIDE-ALL-LANES 

Question?PRINT rule SPEED-CHANGED 
CUli!JlTlUNS: 

*SHlP is a contact 
•SIGHTING is a sighting of •SHIP 
•slGHTlNG is the successor of •SIGHTING2 
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•sn;1ID1 is tile speed of •Sh.ittTlr.u 
*61'1::lill2 is the speed of *S1Gtt'11Nl.i2 
• UNU;.:,.:,• 

•sPEtill2 is roughly tne same speed as •SPEED1 
AC'l'lUN: 
•sttH' is NOl a ~ierlL;HAN'!' 
(;ONFIDENCe: +.:; 

Question? HOW does rule SPE£D-CHANGeD 
apply to A0570 

Which occurrence? 1 
The rule was applied with the assertions: 
A0237:CONTACT1 is a contact 
A0504:SIGHTING12 is a sighting of C01~TACT1 

STAMMER gives the bindings of the assertion s 
to the conditions. 

At one point in time, STAMMEH may infer an 
.assertion, say A0001, which it later Del ieves to 
be false, as the result of later contrary 
evidence. This unbelieved assertion is not erased 
from tne data base, for that would not allow the 
user to asK about it. The system informs the user 
tnat AOU01 is no longer held to be true, al though 
it once was. The user can find out why the 
assertion was believed by asking about the rules 
tnat led to its conclusion. 

ln addition to provided textual explanation, 
STAMl'l.Ell can (if the terminal allows it) provide 
auxiliary graphic explanation. Maps can be drawn 
which indicate land masses, mercnant lanes, 
storms, and ships. Although STAMMEil will 
·automatically give graphic data when appropriate, 
the user may always command the system to enter 
the pictorial mode. Once within this mode, the 
user can change the center of attention and change 
t he scale of magnification. 

Other commands that complete the user 
interaction subsystem allow the user to add rules, 

.modify confidences, save states, enter INTERLISP, 
or receive a recapitulation of STAMMER' s 
conclusions. 

ln summary, the user interactior. 
easily modiried and easily used. 

system is 
lt gives the 

semolance o!' a natural language front-end wi tnout 
requiring 
time, or 
infonnation 

a great deal of code space, programming 
execution time. Although some 
is with held from tne user (i.e. 

µnreachable by any sequence of questions), such as . 
the current suspended state of· many rule firings 
or tne order of rule firings, the user can; 
determine any assertion and derivation that 
pertains to a conclusion of STAMMER. 



CLOSING RJ:.t,JAHKS 

S'fA1'1Mt:H is written 
about 140K of core on a 
lNlr.itLl~l' makes it a 
language to code in. 

in lN'l'tHLJ..::if' and runs in 
KL-10. The environment of 
pleasant ano convenient 

In this paper we have shown how streams can 
be used to define a clean and efficient rule . 
interpreter f'o r a forward-chaining product ion 
sysLem. Naturally occurrlng rules demanded the 
use of the non- monotonic operator UNLESS, whose 
semantics with respect to confidence calculation 
were defined. To support truth maintenance, the 
ideas of pulsars and delayed computation of 
confidences were introduced. Finally, derivation 

. records were used to aid in the in-depth 
explanation of STAMMER's reasoning . The user 
interface was designed to provide convenient 
interaction while preventing ambiguity. 

while the "suspension" interpreter is time 
efficient, it requires a great deal of space. A 
forgetting mechanism will be needed to discard old 
or inactive or unimportant suspensions. 

Although the confidence mechanism appears to. 
work, all of us hope that a method will be 
developed for evaluating evidence which is more 
natural or reason based. 

l'inally, and perhaps most critic ally, STAMMER 
needs to mix its data driven method for deriving_ 
conclusions with a goal directed understanding of 
events. 
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ABSTRACT 

This paper describes a frames based system 
for reasoning in a petroleum resources domain . 
By extending the notion of frames to include 
rule frames, which can then be interpreted and 
applied, expertise of various kinds can he di 
rectly encoded into the frame representation. 
Frame based rules are useful in encoding con
straints, performing actions, noticing complex 
situations, and deducing solutions. By varying 
the interpretation of a rule frame, the same 
competence knowledge can be used in performing 
each of t~ese tasks. Rules are able to use the 
frame based representation in finding other 
rules, avoiding most pattern-directed invokation. 
Making rules part of the frame based semantic 
structure may provide a natural way to encode 
plans and metaknowledge. 

The Infonnation Methodology Research Pro
ject has, as one of its focuses, the goal of 
developing intelligent information systems for 
dealing with energy resources in the United 
States. A first step in this process is the 
development of a smal l test bed system within 
a petroleum domain to provide capabilities cur
rently either unavailable or performed by human 
analysts. In this paper I shall describe some 
of our results in using a frame representation 
methodology for capturing essential features of 
our petroleum domain. After describing our 
concept of a "friendly" representation I sha 11 

focus on the use of frames as rules, and the 
several ways this has proved to be a helpful 
and effective extension of the frame concept. 

Our goals are ultimately quite practical; 
namely the transfer of A.I. "technology" into 
a real world domain. This imposes certain con
straints on the design . Over 200 databases 
dealing with energy resources are already main
tained by DOE . Our representation scheme must 

Prepared for the U.S. Department of Energy, 
Technical Information ·Center, under contract 
W-7405-EMG-48. 
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be able to use this existing knowledge. Simi
larly, there are limits on the types of informa
tion which can be collected. (For example, in 
the controversy over the recent U.S. oil short
age, not enough relevant information existed to 
determine the cause.) Of the data available, 
there are problems with validation, with in 
formation gaps, with variable definitions of 
terms, etc. 

Several of our colleagues (Krishnan & 
Cahn 1979) are developing precise formal model s 
for the flow of energy resources. Any repre
sentation must capture the features of such 
models so that existing databases on energy re
sources can be mapped into it. Real data in 
these databases is often "messy." Crucial in 
formation is sometimes missing, incomplete, or 
invalid. To be useful, the representation 
scheme should provide help with these problems. 
Methods such as default procedures, cross vali 
dation checks, caveats, and constraint monitorinq 
are necessary to augment the raw data. We use 
FRL {Frame Representation Language) as the basis 
for our representation. In FRL, a frame can 
make use of inheritence, default values, pro
cedural attachments, etc. This augmented notion 
of what a data object is allows us to create the 
types of "friendly" representation we need. 

A "friendly" representation takes the bur
den of performing routine, if sometimes compli
cated, functions, from the reasoning component 
or user. It is able to massage or augment the 
data to provide more complete information. Some 
of these functions are quite simple, such as 
providing aggregated information, or default 
values. Some are complex, such as adjusting 
the representation by changing deduced conse-



quences whf!n erroneous facts are corrected. 
Some we don't know yet how to do, such as hand
ling fuzzy information. The net effect of such 

a friendly system is to allow a user or reason
ing component to focus on doing higher level 
tasks, while leaving lower level information 
processing to the· representation system. In 
effect, we propose that in manY, domains, semantic 
representations must function dynamically, draw
ing on interlaced procedural and world knowledge 

to provide a solid basis for higher level rea
soning. An essential feature of such represen
tations is the existence of semantic knowledge 
in a useful procedural form. In FRL, the aug
mentation of an attribute/value relation with 
procedural attachments provides this feature. 
Thus, if-added attachments can be used to en
code and execute constraint relations between 
frames. For example, in the portion of a frame 

for Iran shown below, the if-added attachment 

on the carryover slot automatically updates 
aggregation information on world supply. The 
default predicate on the production slot provides 
a typical value when this data is reported late. 
The ability of human experts to fill in informa
tion gaps, assess credibility, etc. forms a 
central aspect of their expertise. Consequently, 
developinq suc h a flexible representation forms 
a basis for developing expertise in our domain. 

production 
carryover 

$default (use- last -month - value) 
$if-added (add -to-world -supply) 

The basic semantic system is constructed 
using FRL (Roberts and Goldstein, 1977). FRL 
is a Frame Representation Language based on 
Minsky's (1975) notion of frames. Goldstein 
and Roberts have developed this into the work
ing frame system which forms the basis for our 
knowledge representation. FR' is a sophisti
cated, higher level language designed for the 
representation of knowledge in a variety of 
domains (e.g. NUDGE (Goldstein & Roberts 1977)). 
It provides a hierarchically organized, frames
based semantics with inheritance and procedural 
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attachments among other features. FRL is in 
turn written in LISP, hence is compatible with 

normal LISP code. 
FRL extends the traditional characteri

zation of properties as attrib11te/value oairs 
by allowing properties to be described by com
ments, abstractions, defaults, constraints, in
direct pointers from other properties, and at
tached procedures. A value of a property be
comes one of a range of potential descriptors. 

A frame can be thought of as a named collection 

of slots which form the semantic definition of 
a concept. These slots define the properties 

of the frame (i.e., they form a list of such 
properties). Each property can have many values. 
A slot(= property) can be specified further 
through the use of an arbitrary number of as
sociated user and system defined "facets." One 
of these facets will be the tradit i ona 1 "value" 

of attribute/value pairs in property lists. 

Useful system defined facets are: Value, which 
contains the value of that slot; Default, which 
specifies a default value; Require, which speci
fies procedural constraints on the values for 
that slot; If-Needed, which specifies procedures 
that compute a value for the slot; and If-Added 
and If-Removed, which specify actions to be taker, 

whe" a value is added or removed. Notice that 
many of these facets are procedural attachments. 
Each slot can have associated orocedures which 

can perform calculations when required. Thus 
a frame in FRL is more than a simole datastruc

ture. 
FRL allows concepts (represented as frames) 

to be arranged in ~n inheritance hierarchy u~inq 
the AKO (A Kind Of) slot. The value of this 
slot is a generic frame of which the current 
frame is a specialized instance. Thus the 
frame system forms a tree structure. Generic 
information is stored higher up in the hierarchy 
and shared by frames lower down; specialized 
frames specify new distinguishing knowled~e. 
The generic knowledge, including computational 

procedures, is inherited automatically. The 
inheritance can be restricted, if desired. 

A small testbed model provides a useful 
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domain for extending the scone of a "friendly" 
system throuah the development of frames based 
reasonino. Information is organized around the 
m~,ior semantic categories of site, area, and 
company. These represent the primary physical 
loci where we wish to track petroleum (Rosenber9, 
1979). A sit~ represents any actual physical 
location at which oil is handled or consumed, 
such as a city, port, tank farm, refinery or 
oil field. (Foreign countries are currently 
treated as single sites.) Areas, such as 
states, are considered to consist of a set of 
sites physically located within their boundaries. 
Comoanies represent ownership of either a col
lection of sites in arbitrary locations, or 
other companies. 

The testbed serves as a domain for develop
ing a frame based rule interpreter for reasoning 
about energy scenarios. Supoose, for example, 
an overseas supplier of crude oil, such as Iran, 
decreases supplies to U.S. sites. Figure l 
below, shows a portion of the petroleum flow 
network. In it, Iran and Dallas supply the site 
of Ne1~ark. If Iran reduces production, are 
there alternate supplies of petroleum? In 
dealing with this and other questions, we will 
need to do several things. First, we need to 
model this reduction in the shipment of oil . 
This ch~noe in production will alter some of 
the constraints we have set in our database. 
We must then notice when problems such as re
duced production occur. Next, we will need to 
find alternate sources. 

Senti nel l ===> Sentinel 2 ~ Alert 

/ I ~.,. I 1 ~,~"~<-:: 
a I N~1ark I 

I ran 9en "'-- / \'-... -
t """6 refinery 2 

Dallas J \ ""-... 

"-demand 
constraint 

FIGURE 1 
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To deal with these four problems of encoding 
constraints, driving our model, noticing the 
development of important situations, and de
ducing solutions, we have found it useful to 
extend the concept of frames to include rules. 
By creating a class of frames called rules, and 
varying our interpretation of these rules, we 
can do a11 four of these tasks. All knowledge 
is represented as frames. Rules are expressed 
as productions (Newell & Simon 1972) . 
The rule syntax is: 
(Rule type (vars) 

((Frame Slot Tests) 
(Body) (Body) ) ) 

More complex conditions can 
e.g.: 

; Condition 
; Action 

aJ.so be expressed, 

(Rule type (vars) ; AND form 
( (and 

(Frame Slot Test) 
(Frame Slot Test)) 

(Body) (Body))) 
These productions are in turn translated 

into rule frames with condition and action slots. 
The only indication that such declarative know
ledge is a rule consists in the value of the 
generic pointer (e.g. = AKO rule). Thus rules 
are semantically defined but represented as de
clarative knowledge in the frame tree. All 
features of the hierarchical frame representation 
are available, such as the use of inheritance, 
the ability to use semantic relations in deter
mining an appropriate rule, and so on. Rule 
frames contain competence knowledge. To use 
rules, a rule frame is interpreted as a pro
cedure, with the slot values controlling the 
interpretation. Thus a condition slot causes 
a condition to be tested; the action slot speci
fies the action to be performed and so on. 

The type slot on a rule frame holds in
formation about the way the rule can be used. 
By changing this value, we can vary the inter
pretation of a rule. Variable interpretation 
allows us to use the competence knowledge ex
pressed in a rule frame in different ways. 

Thus Rules come in various flavors. Some 
always erase themselves after success. Others 
do not. Some trigger on the removal of informa
tion, others on the addition of new knowledge. 



Some function as expectations, others fail if 
the infonnation does not already exist in the 
database. And so on . These flavors are all 
useful for different purposes. By using vari
able interpretation of rule frames, all these 
variations are controlled by the application 
of the type knowledge in a rule frame. By 
modifying this value, the same rule can be used 
in different variations, depending on our goals. 

Many of the relations between semantic en
tities in our model can be encoded as constraints. 
For example, a refinery fire will alter the 
amount of oil a consuming site needs. This in 
turn affects its relation to its suppliers. 
Changes in information can cause propagation of 
these constraints to occur (although in a much 
simpler fonn than Doyle (1978) proposes.) 
Simple constraints can be encoded directly as 
procedural attachments to frames. A change in 
the information content of one frame triggers a 
simple predicate which then modifies the informa-: 
tion available at another frame. (For example, 
the if-added procedure in the Iran frame.) Some 
constraints either are generic (i .e. apply to a 
large class of items) and/ or require some de
ductive capabilities. These are encoded as 
(antecedent) rule frames, with triggers in one 
frame, and the ability to modify other frames. 
Figure 2 presents the constraint of Figure 1 in 
more detail. Here, a generic constraint exists 
whose purpose is to see that the petroleum need
ed by a site is equal to the amounts its suppli
ers intend to provide. This constraint places 
a trigger in the generic site frame. Hence it 
monitors all sites. If a particular site, such 
as Newark, changes its monthly needs, this trig
ger is inherited, and fires. The constraint then 
tries to adjust supply among the suppliers to 
Newark to correspond to demand. These values 
are used in turn in "shipping" oil properly . 
Drastic .breakdowns in supply.'1emand relations 
are treated as alerts, rather than constraint 
violations. 
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Site ~ Constraint: Adjust Supply / d~a!" "" 
ConslM1lf!r Site - - Producer Site ".. 

/ ~', I "' 
S.F. Newark, Iran 

I 
demand 

II 
assert new demand 

FIGURE 2 

Xc.tions such as "shipping" oil, are performed by 
using rules as agents. An agent consists of a 

(set of) rule (s) together with an environment, 
usually a single frame (although sometimes a 
cluster of frames). In Figure 1, an agent is 
shown "attached" to Iran, which ships the oil. 
Like the constraint just discussed, this agent 
could have been attached to a generic frame, 
such as the site frame, and taken responsibil
ity for shipping all oil. By monitoring produc 
tion and carryover in the Iran Frame the agent 
determines when to ship oil. At the right time 
the oil is allocated among the sites supplied, 
and relevant information is modified on the 
various frames involved, to indicate this. (i.e. 
agents function as state change operators.) 
This action can in turn trigger a new agent. Us 
ing rules as agents provides a method for driving 
our model to simulate the changing state of our 
domain. 

Given a database of changing infonnation, 
we want to provide some capability to monitor 
important developments, and alert us when nec
essary. (For instance, drastic changes in sup
ply are beyond the scope of constraints.) Many 
subtle problems can arise in providing such a
lerts. For example, small reductions in supply 
by various producers, together with changes in 
demand at several sites can result in a severe 
shorta~e at one particular site. However the 
change at any one other site is not significant 
in itself. Such dynamic noticing is done by 
treating rules as Sentinels (Rosenberg, 1979) 
which leave active expectations in the data 
base. 



Sentinels are created by varying the in
terpretation of rules to encode expectations. 
Sentinels draw on the information available 
about the frame organization to place data dri
ven triggers in appropriate semantic locations. 
Thus, only input with a high liklihood of ful
filling the conditions triggers a sentinel. 
Frame-based sentinels function as instance dri
ven demons. Consider a demon attached to the 
instance slot of a particular frame. Whenever 
a new instance which inherits from that frame 
occurs, the demon matches its pattern against 
that nevi frame. However, it does not consider 
any other new frames which do not inherit from 
the frame it is attached to . Such a demon or 
antecedent rule, if attached to the top-most 
frame in the heritage tree, is equivalent to a 

. traditional demon (Charniak, 1972). Otherwise 
the demon will match against only a selected 
subset of new input. By choosing the appropri
ate frame to attach such demons to we insure 
that they match against only likely candidates 
with precise semantic relations to the expec
tation frame. Sentinels are a type of rule, 
and can be created and manipulated by other 
rules or Sentinels. This provides a flexible 
mechanism for monitoring complex conditions and 
providing alerts. 

Sentinel 
Site ,/I 

1 ==:, Sentinel 2 ===> Alert 

/Vr;d~c;;~ / 

Producers 

/l, 
Iran ' , 

production~ 

assert reduced production 

FIGURE 3 

~ 
refinery 

~ 
Newark 

For example, suppose we wish to be warned 
whenever a consuming site such as Newark, will 
experience a severe shortfall in supply. In 
addition, we would like to have as much advance 
warning as possible. Figure 3 above shows in 
more detail the Sentinels from Figure 1 which 
do this. By taking advantage of the semantic 
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structure a frame hierarchy provides, we can 
create a sentinel which places a trigger in 
the generic producer site frame. This trigger 
will be inherited by all production site in
stances. Reductions beyond some local criterion 
expressed on the individual sites will trigger 
the sentinel. Thus the assertion of reduced 
production into the Iran frame causes the condi
tions of this Sentinel to succeed. A reduction 
in production by one producer however, (or even 
several ) does not necessarily mean a shortage 
of oil at a site. What sites are dependent on 
this producer? How large a proportion of their 
requirements are met by this producer? Are 
their other normal suppliers capable of making 
up the slack? Can suppliers who do not normally 
ship to this site do so? Are there surpluses 
elsewhere which can be rerouted? Before a short
age warning can be issued, questions such as 
these must be considered. The first sentinel 
will examine the sites supplied by Iran, and 
try and determine if any are .excessively af
fected. If, for instance, Newark was solely 
dependent on Iran for oil, a reduction in Iran
ian production can reliably be used as suffici
ent evidence for a warning. If there are 
several suppliers to Newark, the best choice may 
be to monitor Newark's supply more closely. In 
this case, Sentinel! creates another sentinel, 
Sentine12, to monitor both shipments to Newark, . 
and der,iand at Newark, directly. Irani an produc-
tion is also monitored. If production returns 
to nonnal in Iran, this Sentinel will erase it
self. The ability of sentinels to manipulate 
their own conditions, create new sentinels, and 
call on deductive procedures provides a flexible, 
powerful mechanism for encoding noticing. In 
some cases the triggering conditions form a pre
cise scenario. In this case, Sentinels can be 
thought of as frame (or script) instantiation. 
Its slots serve to define the expectations the 
sentinel searches for. In other cases, the sit
uation is less well structured, and Sentinels 
simply provide a way to use rules in encoding 
complex sets of expectations, some of which 



are determined based on the success of prior 
ones. If Sentinel2 does notice a drastic supply 
imbalance at Newark, it will give an alert. 

Once an alert has been given, one of the 
uses for rules in our testbed is in answering 
questions such as those posed earlier about 
possible alternative supplies. What alternative 
supply sources are available for Newark? We 
are exploring the uses of frame based rules for 
goal directed reasoning. Such consequent rea
soning is transformed into antecedent reasoning 
by treating the assertion of a condition as an 
implicit goal. While appropriate rules can be 
found by some variant of pattern matching {e.g., 
planner, or production systems) we take ad
vantage of the organized semantic structure to 
have alerts assert information into a location 
where it can directly trigger the appropriate 
rule(s). 

adjust supply 
buyer $value Newark-Rulel 
supplier 
new supplier· $value Alaska-Rule2 

Rule l: Condition : buyer 
Action: (if((carryovcr(normal suppliers)) 

> ( demand buyer)) 
=>(adjust-supplies)) 

(else (or (check other suppliers) 
(try supply-increase)))) 

Rule 2: Condition: New-supplier 
Action: Allocate new supplies 

Rule 3: Supply - Increase 

~ 1--------Rule 4: Spot Rule 5: Borrow Rule 6: Share 
Market from other shortage 

sites 

FIGURE 4 

Figure 4 shows part of an adjust-supply frame. 
Sentinel2, on noticing an oil shortage in New
ark, can assert Newark into the buyer slot of 
this frame. Other slots on this frame can 
serve either to encode more complex conditions 
or as buffers. The addition of this information 
triggers a Rule, Rl. By contrast, the asser
tion of a new supplier would trigger a different 
Rule, R2 . Rl first collects all normal sup
pliers to tlewark, and if these have sufficient 
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stocks, adjusts supply using these stocks. 
Otherwise, it can try two alternatives; checking 
other suppliers which do not normally ship to 
Newark, and trying alternative methods for in
creasing supply. We show in more detail only 
this second alternative. (Try supply-increase) 
will cause all rules which inherit from the 
supply-increase frame in figure 4 to be evalu
ated. Thus, although we do not know which spec
ific rule might be relevant, we use the frame 
hierarchy representation to allow rules to call 
on other classes of rules known to be helpful 
in achieving their goals. In effect, the use 
of frames such as adjust-supply, and a rule 
hierarchy, allows us to create small contexts 
of relevant rules and pertinent information . 
The rules collected through [R3: Supply in
crease] are [R4: buy on spot market] [RS: 
borrow from carryover stocks at other consuming 
sites] and [R6: Reroute shipments to share the 
shortage equally]. Any or all of these rules 
might succeed. However it is obvious that even 
so, these provide only a first order solution. 
For instance, buying on the spot market can 
drive up the price of oil . At some point this 
becomes less desirable than reducing demand 
by restricting gas station hours. Similarly, 
we may always want to "share" a gas shortage 
across all sites in the U.S. Considerations 
and interactions like these are difficult to 
capture directly in simple rules. 

A first order solution is to augment rule 
frames with caveats that must be satisfied in 
order to use the rule. (Goldstein & Grimson, 
1977) For instance, the caveat for buying on 
the spot market might require paying a price 
lower than a maximum set by DOE. However such 
a solution does not handle more complex inter
actions among sets of rules. Fortunately, there 
is an obvious place for such planning or meta
knowledge. Since Rules are organized in a sem· 
antic hierarchy, more generic frames, such as 
the supply-increase frame , provide an appr9pri 
ate place for planning information. If the 
Rule hierarchy is deep, several layers of plan-
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ning information might be accessable. We are 
just beginning to explore the feasibility of 
this method of using planning knowledge. 

To conclude, we have found that extending 
the notion of frames to include rules has pro
ven useful in capturing much of the common sense 
reasoning that occurs in our domain. 
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Abstract 

Many large systems, such as the economy, present an analyst 
with a large amoun t of numeric information. I discuss the 
hypothesis that an important component of an analyst's 
expertise in explaining the behavior of such systems is the 
ability to dl'scribe features and structure in data that is 
represented graphica lly. Symbollic descriptions of graphs form 
a basis for qualitative reasoning about numeric data and 
interface with th e me of knowledge-based models of complex 
systems. I present a method for describing graphic information 
at mu lt iple scales of detail. Descriptions are represented in a 
frame based representation language (FRL). Some extensions 
needed for a program that can find meaningful relationships 
between syntactic forms in graphs are also described. 

Introduction 

It is currently impossible to construct a complete model of a 

system like the economy. A reasonably complete model with all 

the relevant data would still be very hard for a human e1<pert 

to understand - almost as hard as to understand the real 

economy. So how does an expert reason in such a situation? 

What does an explanation of a large amount of numeric data 

look lake and how can we construct one? How is data 

summarized and described? I am investigating these issues in 

the context of explaining graphic data about a sector of the 

corn supply system. In this paper I propose that qualitative 

descriptions of graphic data are a central component of the 

process. I describe a method for producing descriptions at 

multiple levels of detail and explain how these will fit into the 

design of an expert system. 
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Manipulating descriptions of graphs provides a different 

emphasis from other work on qualitative reasoning about 

systems. Rieger (1976] has applied a vocabulary of causality 

primitives to describe some simple mechanisms such as a 'steam 

boiler. The descriptions were used to simulate the behavior of 

the mechanism through a .series of time ticks. A program by 

De K leer [1978] reasoned about a description of a simple 

electronic circuit to determine the change in voltages and 

currents for a given perturbation. Both systems used complete 

descriptions of the mechanism and both attempt to predict what 

will happen next. The systems being processed are well

understood . In contrast, the corn supply system is large and 

incompletely understood. Rather than proJecting a completely 

described state forward into a deterministic future an analyst 

navigates through a large amount of graphic data to arrive at 

a set of partial qualitative hypotheses about what happened. 

These suggest further examination of the data for corroborative 

evidence, or refutory facts. 

Qualitative reasoning about graphs 

Information about the grain market from sources such as 

government reports and commercial newsletters is of two broad 

types; tables of figures, and commentary. Tables give values 

over time of variables such as stocks, prices, and shipments. 

Meta-information can be associated with the tables giving 

typical values, describing what constitutes anomalous behavior, 

showing which figures are available, and relating the tablel to 

each other. Commentary performs two functions. It points out 

some important features of the figures and it attempts to relate 

the by means of a causal argument. 

Commentary relies heavily on a vocabulary of qualitath t 

concepts for describing the behavior of quantitative variables. 

This includes terms like "increasing", "decreasing", 

"accelerating", "large", "fast", "sharp", and "moderate" which 

describe the structure of data and approximately quantify it. 

The number and variety of qualitative terms and the way in 
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which they mix with other concepts ls evidence that qualitative 

reasoning about numeric variables and their changing form is 

a central part of human reasoning. Trading may be frantic or 

slack, there may be a glut of supplies, rainfall can be heavy and 

a drought can be severe. Although this large set of descriptive 

terms can be condensed into a few neutral ranges such as, small, 

moderate, and large, most terms apply only to particular claues 

of concept and have special overtones of meaning. "Frantic 

trading" implies a rush for time. "Severe drought" refers to the 

harm caused by the lack of rain. 

Graphic representations are an Important tool for analyzing 

and describing complex systems. Ar, Important· reason is the 

visually striking way they display certain features of the data. 

As a visual representation, graphs allow direct access to 

absolute size, proportion, shape, peaks and troughs, gradient, 

and time relationships as well as to non-localized properties 

such as smoothness, sharpness, waviness, randomness and 

regularity. The visual system highlights important structure in 

an otherwise uniform array of numbers. These qualitative 

conctpts are experienced through other than visual channels. 

Kinesthetic fetdback allows us to drive a car smoothly and we 

rtcognlzl' sounds with a great variety of structure. The ability 

to describl' thl' form of a changing variable and to relate the 

description to others and to a stored body of knowledge must 

be a significant component In our natural rea~oning. How do 

we manage the interface between numeric variables and logic? 

Designing a program to produce descriptions and explanations 

of the behavior of the corn market from graphic data is a way 

to Investigate the general problem in a particular domain. 

The domain 

The domain concerns the movement of corn from farmers 
through the transportation system to domestic users and 

exporters. It is considered from a standpoint of broad patterns 

rather than exact dt'ta ii. This is how an expert must reason 

about the domain as a whole. A finer grain of detail requires a 

smaller area of attention. Graphs of stocks, flows and prices are 

provided for a selection of strategic and representative locations 

and figures are given for exports from major regions and for 

new export sales for the US as a whole. Samples of these 

variables are given for weekly intervals over a period of Just 

over a year. The time span includes a variety of significant 

events and the sampling Interval provides enough data to 

characterize each event. 
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As an example, figure I shows graphs of total barge shipments 

to Gulf coast ports, and exports from these ports. We would 

expect in general that shipments would follow exports quite 

closely. However, other factors affect the relationship. These 

effects can be hypothesized and supported by data in other 

graphs. It is clear from the figure that the grain market 

showed considerable structure during this time period. This is 

quite typical. Here are some events that occured. 

A period of high exports caused large flows of grain along the 

rivers. 

Severe freezing of the rivers caused a transport blockage. Thi~ 

· backed up stocks inland, and tightened supplies at Gulf 

Coast ports, raising prices at the coast and depressing them 

inland. Alternative transport routes were strained, and the 

uncertainty discouraged new export orders for a while. 

Seasonal opPning of the Lakes siphoned off some of the supply 

so that less corn moved to the Gulf from Northern 

prooduction centers. 

Onset of harvest allowed a high flow of gram without raising 

the price. 

The domain hu many valuable properties. It us~s real data 

about a real situation of definite interest to analysts. At the 

same time it is well circumscribed. This is because of the 

abstraction away from details and because the domain is open 

in many places. It follows that some large-sca le features of the 

data, and many detailed fluctuations, are unexplainable. Even 



a human expert facts this. An appropriate success criterion for 

an expert program is to notice and explain some typical 

situations and some which are clearly anomalous. There will be 

a middle ground of mundane situations or situations for which 

the program should either admit lack of data or knowledge, or 

recognize that the data is too ambigous. A further property of 

the domain is easy of extensibility. Some choices are to cover a 

longer period and include seasonal information, to consider 

severa l crops and the interactions caused by competition for 

storage and transport, and to increase the number of places in 

the model. 

Graph Description 

In the case of systems whose behavior is to a large extent 

represented by graphic data, I hypothesize that symbollic 

descriptions of thl' features present in the data, their rough 

proportions, and their positional and subpart relationships, are 

a prerequisite for recognition, comparison and meaningful 

reasoning about thE' behavior of the systems. While statistical 

techniques, and correlations can provide information, they are 

not sufficiently logical to handle the interactions and exceptions 

that occur in a complex domain. The purpose of the graph 

description program is to take part of a graph and return a 

symbollic description of the features present for use by the 

domain expert. These descriptions are constructed from FRL 

frames [Roberts, 1977) which represent the features and 

assertions about them. Primitive syntactic features of graphs 

include segments of various kinds and special points such as 

peaks, lows, and points of maximum or minimum gradient. 

Frames for the~e can be modified with properties such as 

increasing, decreasing, concave, convex. They may also have 

numeric information giving the ordinate and abscissa and rate 

of change. Thesl' numbers are then quantized into five ranges 

according to the typical values the graph takes. Quantization 

Intervals can be provided externally as a property of a graph or 

type of graph. For instance, the price of corn might be 

considered high when it is over SlOO. Alternatively, they can be 

calculated from thl' data by examining the distribution of 

values and gradients. Quantization is context dependent. 

Typic.11 in tervals for the time period between 1970 and 1980 may 

be difftrent from intervals obtained for a different time period. 

Knowledge about seasonal information will be incorporated 

eventually. Similarly, a given price may be considered 

abso lutely high but low for the time of year. For such 

contextual quantization, the assertion that a variable has a 
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quan tization x must be annotated with information about the 

con text. 

Primitive descriptive elements are combined to generate a small 

vocabulary of larger structural types. An increasing segment is 

a concatenation of increasing atomic segments. Basic types are 

the TREND, the HILL, and the VALLEY. These can be 

modified with properties such as sharpness, width of shoulder, 

ancl asymmetry. A related vocabulary was developed by 

Hollerbach in connection with the analysis of Grecian urns 

(1975). The following frames describe a trend in Chicago corn 

prices which contained several hills and valleys all lying within 

a narrow band of increasing price. 

TREND-1 
AKO: TREND 
VARIABLE: PRICE-2 
VARIABILITY: 80 cents 
BEGINNING: May 1973 
ENDING: Jan 1975 
GRADIENT: 5 cents/month 
PARTS: HILL-3, HILL-4 , HILL-5 

VALLEY-10, VALLEY-11 
PARTOF: GRAPH-6 

PRICE-2 
AKO: PRICE, VARIABLE 
COMMODITY: CORN 
LOCATION: CHICAGO 
GRAPHS: GRAPH-6 

HILL-3 
AKO: HILL 
VARIABLE: PRICE-2 
QUALITIES: SHARP-10 
PARTOF: TREND-1 
PARTS: SEGMENT-7 

SEGMENT-8 
BEGINNING: Mar 1973 
ENDING: Oct 1973 
PEAK-AT: Aug 1973 
MAXIMUM-VALUE: 13.00 
HEIGHT: 80 cents 
FOLLO~ED-BY: HILL-4 

There is no unique way to parse a graph into these larger 

structures since multiple descriptions are reasonable. Figure 2 

shows a case where an export graph can be described as three 

consecutive hills. The same approach applied to the graph of 

barge shipments to the Gulf gives two hills. The hills in the 

two descriptions do not correspond. An alternative description 

of the shipments as a hill followed by a valley followed by a hill 

does result in an appropriate match . An ana lyst program 

would explain the first and third sections of this iituation as 
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barge shipments following export highs. It would look for 

possible causes of the anomalous middle section and find that a 

fall in river capacity restricted transport to the Gulf preventing 

shipments from following exports as otherwise expected. 

/ 
/ 

/ 

EKports 

·-----------------------.-., 
Figure 2. 

Noise interferes with the description process. An exports trend 

is likely to be broken during some weeks so it cannot be found 

simply by noticing consecutive changes in one direction. Noise 

can also seriously mislead a reasoner which attends to every 

detail. A troublesome situation is shown in figure 3. Exports 

increase and shipments to the Gulf follow roughly, but in some 

weeks the two move in opposition. It is a mistake to try to 

explain these cases since they are really too transitory at this 

resolution and without more detailed knowledge. For these 

reasons excess noise must be smoothed from the data . 

Smoothing is done by convolving the graphs with a Gaussian 

mask. Figure 4 shows the previous example with effects smaller 

than one week smoothed away. The ups and downs have 

disappeared and the graphs are sufficiently clean to trigger 

rules that will produce a simple explanation. 

....... 

--------------·-···-- -----"12' 

Figure 3. 
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Figure 4. 

An expert attends to large scale features before small scale ones. 

Th, broad description is a helpful framework for examining 

details. I use the smoothing mechanism to handle multiple 

levels of detail by employing smoothing masks of various scales. 

The process was suggested by analogy with edge-detection in 

vision processing where an image ls convolved with Gaussian 

filters of different scales [Marr & Hildreth, 1979). Gaussian 

filters are the optimal compromise between a spatially locali1ed 

filter and a frequency localized filter. In my case, spatial 

corresponds to the time axis of a graph and frequency to the 

period of change of its value. A single frequency filter, used to 

pick out effects of say a one week period, would sum effects 

from the entire time period considered. In other words, it 

would have zero spatial locali1ation. Commodity supply 

analysts use simple moving averages or sometimes moving 

averages with ad hoc weighting. These are not optimal. 

Though not perfect, the analogy with edge-detection suffices. 

Edge are fairly sharp phenomena whereas underlying causes in 

the corn system may be gradual. Nevertheless, there are causes 

at every different sea le of resolution. 

As the smoothing mask grows to cover more of the time·axis, 

the higher frequency features of the graph smooth away 

gradually. Figure!'> shows three stages in this process. A large 

scale hill with several perturbations will gradually lose its 

perturbations. They do not disappear suddenly, nor at the 

same time. Individual features have their own fade out scales. 

It is impossible to make an a priori selection of scales that 

results in a set of cleanly smoothed graphs each with features 

only of that scale or larger. How then should we proceed? 
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My approach is to consider each feature independently and 

determine how it fades . For this purpose, features are 

considered to be segments of the graphs with only positive or 

only negative gradient , and segments which are concave 

upwards or are concave downwards. These segments are 

delimited by points at which either the gradient crosses zero or 

the second derivative crosses zero. They are turning points or 

points of in flexion . Figure 6 shows a three-dimensional 

representation of this. The surface ls composed of a set of 

graphs placed side by side. Each graph is the second 

derivati ve of the origina l smoothed with a filter of scale sigma. 

Sigma decreases as we move into the page. This representation 

clearly shows how the features fade away as sigma becomes 

larger. Figure 7 shows is a contour map showing where the 

second derivative is zero. One axis is the lime axis and the 

other axis is sigma, the scale of smoothing. At any particular 

Figure 6. 
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sea le, the segment between two adjacent zeros represents a 

segment of the original graph which is concave or convex 

vertically. As the sea le increases, some of these features fade 

away completely. Each feature has an approximately triangular 

contour. I call the tip of the triangle a vestigial point since the 

last vestiges of the feature disappear at that scale. In fact, the 

fe:uure loses its significance before then. To examine this one 

must look at the rate at which the value changes sign as it 

crossl's the zero. 

. , 

. .a. -, 

FigurEl 7. 

This technique leads to descriptions of features which cut across 

all scales. By representing the shape of the triangle with a few 

parameters we describe just how prominent the feature is at 

different scales in a single description. The representation is 

feature oriented rather than scale oriented. It can be used to 

find the most global feiltures needed for an explanation at low 

level of detail. Thl'n, more detailed perturbations can easily be 

accessed. 

For presentation purposes, figure 6 shows more levels of scale 

than are really nel'd to construct a multi·scale description. It is 

possible to do even less processing. Once features are located at 

a fine sea le, their zero crossing contours can be followed around 

the triangular outline so that at large scales, smoothed values 

need only be calculated close to the contour. Since these are the 

ones which require most computation, the saving is large. 

Similarly, the inlerval between scales is really logarithmic. At 

large scales, intervals need not be as close. 

A further method also reduces computation. Since convolution 

is associative and the convolution of two gauuians is a 

gaussian with larger scale than both we have the follow mg 

result where ,:, is the convolution operator. 

GRAPH ,:, LARGE-GAUSSIAN 

• (GRAPH t.• (SMALL-GAUSSIAN o SMALL-GAUSSIAN) 

• (GRAPH,:, SMALL-GAUSSIAN)* SMALL-GAUSSIAN 



Convolving with the small gausslan first returns a graph whose 

values are used many times each in the second convolution. 

This results in increased efficiency by saving repeated 

calculations. 

Graph organisation 

Besides a frame description of the structure of a graph there 

must be assertions which relate graphs to their meaning. 

Typically, some graph might represent the price of corn at 

Chicago between time-a and time-b at weekly intervals and 

smoothed with a scale of two weeks. This Information Is 

needed to access graphs and in deciding what to do with their 

descriptions. There are also relations between graphs. Since St 

Louis barge shipments are a part of total barge shipments, we 

may construct a new graph showing the proportion or the two 

with respect to time. Or we may subtract them to calculate the 

amount of grain shipped from points other than St Louis. 

Most analysis situations have a number of operations that may 

represent the information In a more suitable form. Graphs 

produced in this way must have assertions relating them to 

their sources. 

Representation 

An analysis module is to be written to take these graph 

descriptions and interpret them with qualitative explanations. 

Descriptions will trigger rules expressed as frame structures and 

implemented in a system of stntinels. The remainder of this 

paper discusses the representation scheme and the sentinel 

system. Since the goal is to develop an expert program and not 

to investigate representation problems per se, the approach Is to 

use what is available rather than to investigate the many 

representation issues recognized. Most of the descriptions, 

assertions and rules are easily represented using FRL. Some 

issues, however, required extensions. 

An FR L frame is effectively an item with a property list of 

properties and values but also has facets, tnherttanct, and 

proctdural attachment. Each property of a frame has a slot 

associated with it. The values of the property fill only one part 

(or facet) of the slot. Other facets contain different types of 

Information about the slot. Inheritance works by using the 

AKO slot. If FRAME! has an AKO property whose value Is 

FRAME2, FRAME! will inherit all the property value pairs of 
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FRAME2. Procedures can be stored In special facets of a slot. 

An important type triggers whenever a new value is added to a 

slot. Since procedures are inherited, those that describe generic 

concepts can be. applied to all Instances whenever the required 

information is asserted. 

An important convt>ntlon for using FRL frames, suggested by 

Roberts, Is followed in this work. Suppose we wished to assert 

that farmers sold corn heavily on July 15th. On one hand, we 

need a convenient way to retrieve the assertion starting from a 

frame that represents the farmers. It is reasonable to give 

FARMERS a SELL slot whose value is some instance of corn. 

But we also need to represent the time of the SELLING and 

the fact that was heavy, so we need a separate frame for it. 

The solution Is to have both the SELL slot and the SELLING 

frame and to annotate the farmers sell corn assertion with the 

SELLING frame. 

FARMERS-! 
SELL: CORN-2 ISELL-31 

SELL-3 
SUBJECT: FARMERS-! 
OBJECT: CORN-2 
BE: HEAVY 

Figure 8 shows how this can be represented with a diagram. 

The method allows us to have a frame for the farmers and a 

frame for the sale with equal status. 

SOLO 
FARMERS 

OCI 
) CORN 

HEAVY 

Figure 8 

An annotation represents the. assertion made by the 

corresponding frame- slot-value triple. Access to them is critical 

for representing many types of statement and for recording 

logical dependencies between statements. Figure 9 shows how 

annotations can represent that one event caused another. 

Notice in this example, that is Is the fact that the selling was 

heavy that was caused by the harvest progress. Annotations 

allow us to focus on an assertion and say something about it. 



SOLD OF 

FARMERS BE :f-!-_ c_o_R_N ___ PAI CE 

~ -.-:,J BE 
CAUSE 

HEAVY FALLING 

Figure 9 

It is important to distinguish between those assertions in a 

frame which describe the concept the frame itself represents and 

those which say something about that concept. "l'he price of 

corn at St Louis increased yesterday" asserts a fact about a 

concept which is itself described by assertions. Figure 10 shows 

this pictorially with internal assertions separated from external 

ones. I implement this with partitions [Hendrix 1975), attaching 

a special partition to a frame to describe its internal structure. 

A partition should be a frame object just like any other frame. 

Another use of partitions is to represent an entire statement 

such as the whole of Figure 9. This statement may then 

suggest or justify some other statement. A hypothesis, situation, 

belief structure, or argument may then be represented using a 

partition of such statements. At this point there are three levels 

of partition, each used for a different conceptual purpose. 

- - ... 
/'.,,. PR I CE -~':"', -----1-+--=,--, I NCAEASI NG / i \AT\ BE VESTE:: 

, CORN ST- LOUIS I 
I ... - -

Figure 10 

Sentinels 

A sentinel [Rosenberg 1978, Stansfield 1978) is a form of 

production rule which triggers when a set of assertions in the 

frame data base matches the condition of the rule. The sentinel 

system described here overcomes d1,iiculties in writing these 

rules directly with the if-added mechanism of FRL. Several 

issuse arise. One concerns the use of variables and the other 

concerns control. There is also an interaction between the 

inheritance hierarchy and productions which had to be catered 

for by the system. I next consider these problems. 
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Suppose we are using if-added procedures and want to notice 

when assertions are found that match two template assertions. 

Templates are frame·sloJ·value triples and might contain 

variables. A value is added that causes the if-added procedure 

for the first template to trigger. It binds a variable and creates 

a new If-added procedure to watch for values matching the 

second template. The variable bindings must be consistent 

with the first assertion. A value that triggers the second 

assertion may not be asserted yet, so the new if-added may not 

execute immediately. In any case, it Is unlikely that it will run 

in the environment it was created in. This means that we 

cannot use a fluid variable in the code of the second If-added 

to refer to the value that triggered the first. Most Lisps use 

nuid variables. My sentinel system um lexically bound 

variables. 

If-added procedures in FRL force control to follow a depth first 

route and to build inappropriate run time stacks if they are 

used as much as required for a rule-based system. Suppose an 

if-added triggers and makes an assertion. Immediately the 

assertion is made, if·addeds that match it also trigger. While 

new assertions are created, the triggering will continue and will 

build an unnecessary control stack. Triggering should not 

require the return of control to the process that created the 

trigger fact. Because of this, all triggerings in my sentinel 

system are placed on a queue which is serviced at top level. 

This effectively decouples the search through the production 

rule space from the Lisp control structure. Control can then be 

added at will by the use of explicit control statements, for 

example through a COAL frame [De Kleer et al. 1977). 

An sentinel which triggers whenever "heavy farm selling" is 

asserted looks like this. 

(SENTINEL 
( (NIL 

(&SELL 
(NIL 
(&BE 
(NIL 

(FARMERS INSTANCE &FIi 
l&F SELL &Cl I 
l&C AKO CROPI I 
(&SELL BE &HI I 
(&H AKO HEAVY) I 

••• then eMecute the body ••• ) 

This sentinel executes its body whenever a set of assertions u e 

made that match the triples in the condition. Each triple may 

be associated with an annotation vartablt. If present, this 

variable is bound to the annotation frame that represenu the 

triple. In the example, farmers sold a crop and the annotation 

frame for selling was bound to a variable so lt could be 
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examined further . A sentinel body Is arbitrary lisp code 

although there is a lexical environment associated with It. This 

allows it to define other sentinels which use the variables no 

matter when they are executed. In this way, it is easy for rules 

to define rules. 

There are both generic and individual sentinel triggers. The 

first trigger of the example sentinel is generic because it looks 

for instances of the generic frame, FARMERS. These may 

occur anywhere down the inheritance tree from the FARMERS 

frame. The second trigger is individual. It watches over the 

SELL slot of a particular farmer discovered by the generic 

trigger. Individual triggers are fairly simple. A complication 

with generic triggers arises when we allow new Inheritance 

links to be asserted during running of the system. A new link 

may complete an inheritance chain allowing a trigger at the top 

of the chain to fire on a whole set of new instances. Since some 

of these instances may already have an alternate inheritance 

path up to the top, the set has to be pruned and only the new 

instances allowed to fire the trigger. 

Conclusion 

Q.ualitative reasoning is an important mode of reasoning in 

large domains which cannot be grasped in their entire detail. 

Information about such domains can often be presented 

graphically and this assists an expert in reasoning about the 

data . The process of describing graphs symbollicly Is a 

prerequisite for interfacing graphs and reasoning. I have 

presented a dumain which is ideal for investigating graphic 

reasoning and have described a method for producing frame 

descriptions of graphs at multiple levels of detail. These 

descriptions will eventually form part of a larger system which 

will apply production rules to derive explanations of graphs 

from the domain. A sentinel system implements these rules in 

an extension of FRL. 
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ABSTRACT 
A connection graph is a representation of an 

~nsatisfiable set of clauses in which all potential 
resolvents are indicated by links between compl e
mentary literals. Kowalski has shown that connec
tion graphs have many advantages in the organiza
tion of resolution theorem proving problems. This 
paper shows that it 1s possible to predict the 
complexity of the graph which would be produced 
when any one of the potential resolvents is acti
vated. The search for a proof is simplified by 
activating those potential resolvents which reduce 
the size of the graph. When no further reduction 
is possible, a minimal expansion may be attempted, 
or some alternative search procedure may be em
ployed. Using graph reduction -and minimal expan
sion for complete searches for proofs produces 
exceptionally efficient searches with a test 
collection of problems. 

l. INTRODUCTION 

In the following, theorems are represented 
by statements of first order predicate calculus. 
These statements, in negated form, are written as 
sets of clauses. Robinson's resolution rule [1] 
is used to construct refutations for unsatisfiable 
sets of clauses. Kowalski [2] has developed the 
connection graph as a means of displaying a reso
lution theorem proving problem. A connection 
graph is a representation of a set of clauses in 
which all potential resolvents are indicated by 
links between complementary literals as in Figure 
1. 

.In the search for a refutation, a link is 
activated by replacing it with the resolvent which 
it indicates. A new graph is formed by deleting 
the activated link from the old graph, and then 
linking the literals of the resolvent to the 
literals of the rest of the graph. In the resolv
ent, the literals descend from literals in the 
parent clauses. In a similar way, links to the 
resolvent descend from links to the parent clauses. 
In Figure 1, the link labelled X in the top 
graph is activated to form tht: middle graph. 

Clearly, the clauses of the middle graph, 
with one resolution forbidden, are unsatisfiable 
if and only if the clauses of the top graph are 
unsatisfiable. But in the middle graph there is 
one literals which does not have a link to it. 
Robinson's purity principle [l] implies that any 
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clause containing an unlinked literal can be 
deleted from a set of clauses without affecting 
its unsatisfiability. Deleting this clause and 
its linkage results in the bottan graph of 
Figure 1. The deletion of pure clauses will be 
considered to be part of the activation of a 
link. Thus the bottom graph is assumed to be 
deduced directly from the top graph. 

The purpose of this paper is to present a 
method for assigning a precedence for the order 
of activation of the links in a connection graph. 
The precedence is assigned so that the complexity 
of the graph will be reduced or, at worst, 
increased as little as possible. The graph 
reduction is bound to simplify the search for a 
proof. Continuing the search by minimal expan
sion, although it has given encouraging. results, 
is difficult to justify. 

In the top graph of Figure 2, the links of 
Figure l have been assigned precedence numbers. 
The calculations involved are outlined in Section 
3, and are illustrated in Figures 4, 5 and 6. 
The second graph of Figure 2 is the result of 
activating the four outer links of precedence +4 
and deleting one subsumed clause. Each succeeding 
graph is obtained by activating the link of 
highest precedence number. Note that in the 
fourth graph there is a new kind of link, a merge 
link between literals of the same clause. 

-----------------
F i + 4 

1- 3 

A!.iAoE - 3 EFG_:_LG 

1 ··1 _7, 1-' 
I - DE FH_!_i_ H 

------------------- -···-
\ I 

Ii 
V 

+ 4 F 

D<=! E '" 'Ptie:~," 
Figure 2. 

50 

For simple problems, these precedence rules 
seem to find short proofs with a small search. 
In this example, the search size is 17, and the 
proof size is 14. Using SL resolution [3] or 
SNL resolution [4], selecting the right-most 
literal, the search size is 21 and the proof size 
is 17. These sizes count the number of clauses 
involved, including the input clauses. 

2. CONNECTION GRAPHS 

A connection graph has literals as nodes. 
Any pair of nodes may be connected by one of four 
different kinds of link. The first kind is a 
clausal link. It connects adjacent literals of a 
clause. These links are not usually displayed, 
but are indicated by a close spacing between 
adjacent literals. The second kind of link is a 
resolvent link, and indicates a potential 
resolution. It joins two literals in different 
clauses which have the same predicate letter, one 
being negated and the other not, and whose argu
ments are simultaneously unifiable. The unifying 
substitution may be thought of as labelling the 
link. 

The third kind of link is a factor link. 
This is like the resolvent link except that the 
two literals are in the same clause and have the 
same sign. Such a link indicates the potential 
of factoring. The fourth kind of link is a loop. 
This is like the third kind of link in that it 
links literals of the same clause, but the 
literals are of opposite sign. This kind of 
link indicates the potential of resolution bet
ween two copies of the same clause. The unifying 
substitution must assume that there are distinct 
variables in the two clauses. 

The activation of a resolution link generates 
a new connection graph. This new graph is con
structed from the old one in four steps. First 
the activated link is deleted. Next, if any 
clause contains a literal which is not linked to 
any other literal, then that clause is deleted 
together with all of the links to its literals. 
Third, the two clauses, whose literals' link was 
activated, are resolved together. Finally, the 
literals of the resolvent are linked in all allow
able ways by links to the other literals of the 
graph. This includes the possible insertion of 
factor links between literals of the resolvent. 
To avoid redundancy, these factor links should 
only be between literals descending from different 
parents. 

It should be noted that except for factors, 
these new links descend from resolution links or 
loops in the old graph. If the literal L' in 
the resolvent descends from the literal L in 
one of the parent clauses, then L' has a 

-resolution link to a literal M only if there 
was a link from L to M , and then only if L' 
and M are unifiable. 

The activation of a factor link is much the 
same as the activation of a resolution link, 
except that there is only one parent, and a 



factor rather than a resolvent is generated. 
Clausal links and loops are not intended to be 
activated. 

3. THE GRAPH REDUCTION SEARCH PROCEDURE 

It is proposed to activate links in a 
connection graph in such a way that the graph 
becomes less complex or increases in complexity 
by as little as possible. The complexity of a 
connection graph can be indicated by a triple 
containing the number of clauses, the number of 
literals and the number of links. The top graph 
of Figure 3 has complexity [9, 16, 9]. 

After activating the left-most link, the 
resulting graph has complexity [8, 14, 8]. The 
reduction in complexity can be represented 
(1,2,1) . That is, one clause, two literals and 
one link have been deleted. The total reduction 
is represented by the sum of these individual 
reductions, so the total reduction is 4. 

F 1-- 1 

I 
A -- A 6 E7 E F G -- G 

I _ I _ 
DE FH--H 

FI --1 

I - -
DE -- E 

I -
rG - G 

D E F H-- H 

Figure 3. 

The generalisation of the preceding example 
is shown in Figure 4. In the illustrated initial 
subgraph , the non-unit clause is assumed to have 
m+l literals with a total of n+l links to them. 
Thus, the whole subgraph has two clauses, m+2 
literals and n+l links, giving it a complexity 
of [2, m+2, n+l]. Whenever a link can be 
identified with the initial subgraph, that link 
is given a reduction estimate of four. This is 
only an estimate because the unifying substitution 
may make some other links fail, and factor links 
may appear when two non-unit clauses are resolved. 
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initial resulting 
subgraph subgraph 

~}n 
·{ CT}, 

complexity complexity 
[2,m+2,n+l] [1,m,n] 

Figure 4. 

In order to mechanize the search procedure, 
there should be a non-pictorial representation of 
the initial subgraph. In Figure 4, a literal 
with only one link, in a unit clause, is joined 
to another literal with only one link in a non
unit clause. This description can be abbreviated 
to the quadruple [one, unit, one, non-unit] or 
luln. Of course, lnlu also describes the same 
configuration. In a connection graph, whenever a 
link can be described as luln or lnlu , then 
the link is labelled with the reduction estimate 
of + 4. 

As with all search procedures, the highest 
priority should be given to a link between two 
unit clauses. Activating such a link produces 
the null clause, and the search is completed. 
Such a situation has link descriptions lulu , 
lusu, sulu and susu, where the s stands 
for several links. Since all clauses, literals 
and links are irrelevant when the null clause is 
produced, the graph reduction is arbitrarily 
assigned the number + 99. 

In less trivial configurations, one can 
make a reduction estimate only by counting the 
number of other literals in the non-unit clause, 
and the number of links to them. As illustrated 
in Figure 5, the resulting subgraph contains not 
only the resolvent, but the non -unit parent. 
Here the purity principle only applies to the 
unit parent. Although the unit literal and its 
link have been deleted, m literals and n links 
are duplicated, so the reduction estimate is 
2-(m+n ) . 

initial resulting 
subgraph subgraph 

ir' }n ~~>{~" 
complexity complexity 

[2,m+2,n+k+l] [2,2m+1,2n+k] 

Figure 5. 
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In this case there is a 1-link unit connected to 
a several-link literal in a non-unit, so the link, 
description is lusn or snlu . Any link with 
one of these descriptions has a reduction estimate 
of 2- (m+n) . 

For this initial subgraph, a special 
reduction estimate could be used when the unify
ing substitution is empty. Then the resolvent 
would subsume the non-unit parent. However, to 
simplify the rules, such special cases are not 
listed. 

Factor links are assigned a precedence in 
much the same way as resolvent links, except that 
a link description does not seem appropriate. 
iheir activation is delayed beyond that of most 
resolution systems. 

Finally, loops are arbitrarily assigned a 
reduction estimate of - 99 , although the in
crease in complexity could be calculated for each 
case. This ~ffective ban on the activation of 
loop links is not as restrictive as it may seem. 
Actually, the activation of these links is only 
delayed until some other .clause resolves with the 
self-resolving clause. Then the link which 
descends from the loop is a normal resolution 
link between the resolvent and the self-resolving 
clause. This strategy prevents a general axiom 
from resolving with itself until it is needed to 
prove a theorem. 

The surrmary of all rules for calculating 
reduction estimates are displayed in Figure 6. 
It should be noted that links described by rule 
should always be activated irrmediately to 
terminate the search. Links described by rule 2 
always reduce the graph. Those described by rule 
3 never reduce the graph, and usually expand it. 
Links described by rule 4 are never activated. 

Theorem proving by graph reduction labels 
each link of a connection graph with its reduction 
estimate. Then the link with the highest 
reduction estimate is activated. If two or more 
links have the same highest reduction estimate, 
then some sort of tie-breaking rule is needed. 
Although it is somewhat foreign to the graph 
reduction methodology, the most reliable tie
breaking rule seems to be a preference for a link 
one of whose literals' clauses has the conclusion 
of the theorem as an ancestor. This is essenti
ally the set of support strategy. Next in 
preference is a link to a condition of the theo 
rem. If a tie remains after using these tie
breaking rules, then some arbitrary choice must 
be made. 
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rule Tlnk reduction 

lulu 

1 lusu +99 

sulu 

susu 

luln . 

2a lnlu +4 

lnln 

suln 
2b +2 

lnsu 

lusn 

snlu 
3a 2- (m+n) 

lnsn 

snln 

susn 
3b - (m+n) 

snsu 

3c factor -(m+n+k+l) 

3d snsn -(ml+nl+m2+n2) 

4 loop -99 

Figure 6. 

4. EXAMPLES 

There are several advantages to the use of 
connection graphs. They allow an easy combin
ation of top-down and bottom-up search, or even a 
middl e-outward search. They do not allow the 
repetition of deductions, and they always allow 
the un ification of complementary units. These 
advantages are ably pointed out by Kowalski [2]. 

Any subgraph is easy to reduce if its links 
have positive reduction estimates. The difficult 
portion of the graph is characterised by links 
with numerically large negative reduction 
estimates. A partly easy, partly difficult 
problem is the geometry theorem 

AB 11 CD & AB=CD + ACsBD 
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Figure 7. 

This can be proved using the following axioms: 

uv=yz & <uvw=<xyz & vw=xy + auvw=.axyz. 

uv II wx +<uvw=<vwx· 

6UVW:6XYZ + uw=xz. 

xy=xy. 

Figure 7 above illustrates the initial connection 
graph for this problem. The negation of the 
theorem produces three clauses. The conditions 
of the theorem, and later their descendents, are 
underlined with dashes in the connection graph. 
The conclusion of the theorem and its descendents 
have solid underlines. Conmas are used to sepa
rate the literals of a clause. All predicates are 
represented as infix relational symbols, with a 
stroke through the symbol signifying negation. 
The links are labelled with their reduction 
estimates . The double links are those which should 
be activated to fonn a proof. 

The top portion of the graph of Figure 7 can 
be reduced easily. The graph resulting from the 
activation of the top two +4 links is the top 
qraph of Figure 8. In all of the graphs of this 
figure it should be noted that the links needed 
for the proof have consistently higher reduction 
estimates. This is an easy search since each 
activation produces a positive reduction. Thus 
the problem becomes easier as the search continues. 
The search is 100% efficient in that only the 
proof links are activated. 
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5. CONCLUSIONS 

Although it is difficult to form an objective 
judgement of the usefulness of a deductive system, 
a comparison of its perfonnance relative to other 
systems can indicate that it is sometimes useful. 
Wilson and Minker [5] have solved 152 problems 
using six resolution inference systems. Of the 
first thirty, the ten simplest have been solved by 
connection graph reduction. The testing of the 
remaining problems will have to wait for the 
completion of the computer implementation of the 
procedure. The current results appear in the 
following table. 



The inference system abbreviations stand for REFERENCES 
unrestricted resolution, linear resolution, set 
of support, Pl , SL, linear plus set of support, 1. Robinson, J.A., A machine -oriented logic 

'-- and connection graphs. The first six use diago- based on the resolution principle. 
nal search, while the la~t uses graph reduction. J. ACM 12, (Jan. 1965), 23-41. 
The problem names and the statistics for the 

2. first six columns are those of Wilson and Minker. Kowalski, R.A., Proof procedure using 
For each problem, the top line of statistics is connection graphs, J. ACM 22, 4 
the proof size, the second line is the search (Oct. 1975), 572-595. 
size and the third line is their ratio, the 
efficiency of the search. A question mark for 3. Kowalski, R., and Kuehner, D., Linear 
proof size indicates that no proof was found. In resolution with selection function, 
calculating the proof and search sizes, all Artificial Intelligence 2, (1971) 

·resolvents and input clauses were counted. The 227-260. 

I 
line labelled "average" is the average of the 

4. efficiencies for each inference system. The Kuehner, D., Some special purpose resolution 
average of 90% for connection graph reduction systems, In Machine Intelliaence 7, 
seems significantly better than the next best B. Meltzer and D. Michie, Es., 
average of 65%. Edinburgh U. Press, Edinburgh, Scotland, 

1972, pp. 127-128. 
INFERENCE SYSTEM 

UNR LIN sos Pl SL L+S CG 5. Wilson, G.A ., and Minker, J ., Resolution, 
Problem refinements and search strategies - a 
Name comparative study, IEEE Transactions on 

Computers C25, 8, (Aug. 1976). 
ANCES 18 ? 19 19 18 18 13 

47 2668 45 251 84 337 13 
.38 .00 .42 .07 .21 .05 1.00 

8 8 8 8 8 8 8 
9 9 9 9 12 9 8 
.89 .89 .89 .89 .67 .89 1. 00 

EWl 14 13 13 13 13 13 11 
15 41 13 15 22 23 11 

I .93 .32 1.00 .81 .59 .57 1.00 
.I 

. . . . I EW2 12 11 12 11 11 12 11 
12 118 14 11 22 23 11 
1.00 .09 .86 1.00 .50 .52 1.00 

EW3 21 ? 21 19 18 ? 13 
360 852 360 40 58 800 16 

I .06 .00 .06 .48 .31 .oo .81 

I MQW 8 9 8 10 11 9 8 
I 16 68 11 24 65 55 12 

.50 .13 .73 .42 .17 .16 .67 

I NUMl 12 12 12 12 12 12 11 

I 
19 34 17 16 32 30 17 
.63 .35 .71 .75 .38 .40 .65 

QW 9 ? 9 9 ? ? 10 
19 1298 19 30 1348 1720 11 
47 .00 .47 .30 .00 .00 .91 

. ·! ROB1 9 9 11 9 11 11 9 
10 13 41 10 11 41 9 
.90 .69 .27 .90 1.00 .27 1.00 

LS5 9 9 10 10 9 9 7 
13 25 11 12 13 17 7 
.69 .36 .91 .83 .69 .53 1.00 

AVERAGE .65 .28 .63 .65 .45 .34 .90 
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Abstract 

An approach to program synthesis based upon 
modifying an existing procedure is described. The 
particular synthesis problem studied involves syn
thesizing a procedure from example computations. 
The paper focuses on the kinds of errors introduced 
during synthesis, the way errors can be detected 
by comparing a procedure to examples and describes 
several rules for modifying a procedure in order 
to correct certain kinds of errors. 

1. Introduction 

Program synthesis, in a general sense, invol 
ves the formation of a program from descriptions 
of an algorithm or its properties. A conmon para
digm within this approach entails a user present
ing one or more descriptions to a synthesizer 
which, in turn, constructs a procedure . Then, 
should the user present additional descriptions, 
the new descriptions as well as previous ones, 
are used to form a new procedure. The initial 
procedure (or most recent) is discarded. 

1n this paper an approach to program synthe
sis is described which attempts to take advantage 
of the most recent procedure - essentially at
tempting to alter it when new descriptions are 
presented. This same paradigm was utilized by 
Sussman [4] in developing a program which improved 
its performance by expanding procedures already 
existing to solve more complex problems. Such an 
approach may be more difficult, but may suggest 
approaches to more powerful synthesis systems or 
may provide insight into more fundamental problems 
of how systems can cope with errors, how errors 
can be analyzed and utilized. 

The particular synthesis problem investigated 
here involved the formation of a procedure from 
examples of its computation (see (1,2]). Examples 
of computations are basically traces of executions 
on specific values. In the approach adopted here, 
the user presents a number of examples to an 
initial synthesizer ·which, in turn, produces an 
initial program and, possibly, some additional 
information. This information may simply be the 
original examples or may be a summary of assump
tions made during the synthesi~ process. Deter
mining what kind of information to keep will 
depend on how successful (or unsuccessful) the 
synthesis process i s when given a program and 
additional examples. In the work described in 
this paper, no additional information was kept. 

The user may then, or at some later point, 
present additional examples of the same procedure. 
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Now, the synthesizer, given new examples, attempts 
to construct a new program. The first step of 
this process is to compare the existing version 
of the program with the examples . The purpose 
of the comparison process is to detect inadequa
cies within the program, i.e., discrepancies bet
ween the program and the examples. These discrep
ancies constitute "errors" in the program. Should 
no "errors" be discovered, then the examples, in 
essence, provide no new information and .the 
program is left unaltered. 

However, assuming that some discrepancies do 
exist, the next step involves determining the in
correct portions of the program. These portions 
must be removed and, using the examples, correc
tions made and a new program produced. The 
removal and insertion of code must be done (1) so 
that the resulting procedure can be compared and 
modified, if necessary, with subsequent examples 
and (2) in such a way that the code corresponding 
to previously presented examples remains correct. 
Once again, it is conceivable that certain "com
ments" about the modification could be produced. 
In the work reported here, this was not investi
gated. 

2. An overview or the initial synthesis process 

Programs are represented as rooted, labelled 
digraphs in which the successors of each node are 
ordered (in figures, counter-clockwise). Examples, 
basically sequences of instructions executed, are 
represented as trees. A program has an associated 
list of formal parameters and an example has an 
associated list of inputs (actual parameters). An 
example may include specific uses of the inputs, 
say as replacements for variables or included in 
temporary assignments to variables. Variables 
from example to example need not be the same. 
Figure 1 contains an example of a procedure and 
Figure 2 presents two examples which could be used 
to describe that procedure. A more complete 
description of procedures and examples can be 
found in Bauer (1,2]. 

SUM(N) 

S + 0 
~ 

I + 0 

/~~ 
EQF,N)~ I: I+l / 

RETIJRN(S) "--s + ~ 
Fig. 1: A procedure to sum the first N integers. 



SUM(Z) 

S + 0 
.. 

I + 0 ,, " EQ(l,Z) I+I+l .. 
S+ S+I 

/ " EQ(I,Z) Id+l .. 
S +S+l 

.. 
EQ(l,2) .. 

RE11JRN(S) 

N ... 1 .. 
X ... 0 .. 
J + 0 

/ 
EQ(J,N) " . J + J+l .. 

X + X+J 
.. 

EQ(J,N) .. 
RE11JRN ( X) 

Figure 2 . Thu examples. 

Given a nwnber of examples, as trees, the 
initial synthesis process must (1) detennine a 
graph whose nodes are labelled by instructions and 
(2) determine a parameter list. The formation of 
a graph is accomplished by a grouping process 
which attempts to group nodes from the examples. 
Each group represents a node of the synthesized 
procedure and is valid if it satisfies a nwnber of 
constraints. First, each instruction within a 
group nu.1st be an instance of a single general 
instruction (similar to the least generalization 
of a Predicate Calculus foTIIUlla, see Plotkin [3]). 
Second, connectivity between groups is detennined 
by the connectivity between individual nodes of 
the examples. If nodes v1 and v2 are placed 

in the same group, then each pair of their corres
ponding successors (i.e., the first successor of 
each, the second of each, etc.) must also be in a 
single group. In addition, there are two remaining 
types of con~traints - one on possible variable 
renamings and the other on replacement and use of 
actual parameters. 

The result of the grouping process is a 
procedure body, i.e. , a rooted digraph in which 
each node is labelled by an inst1uction. Given 
the procedure body and the information computed 
durin:~ the grouping process, the next step is to 
fonn a parameter list. This precess also re Hes 
on a number of constraints based upon (1) the 
actual arguments within the examples, (2) any 
renaming of variables and (3) any deleted instruc
tions (essentially added assignment statements 
which assign an input to a variable). Should this 
phase of the synthesis process fail, the grouping 
process is resumed and the search for a new proce
dure body continued. If a parameter list is 
forn~d, then the construction is completed and the 
resulting procedure is guaranteed to be correct 
with respect to the given examples (Bauer [2]). 
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An overview of the initial synthesis algo 
rithm follows: 

1. Input the examples . 

2. Find a procedure body • 

(a) Form an acceptable grouping of nodes not 
yet tried. The grouping must satisfy 
connectivity and instructional con
straints. If no acceptable grouping can 
be fotmd - halt with Failure • 

(b) Construct a procedure body P • 

(c) If P is consistent with the information 
in the examples, then continue with 
step 3; otherwise reject P and go to 
step 2a. 

3. Find an acceptable parameter list, 
(X1, ... ,~) - one consistent with the vari -
ables of the examples. If none can be con
structed, then reject P and go to step 2. 

4. Find parameters to replace any constants in 
P , if possible. 

S. Halt with procedure P(X1, ... ,~). 

3. Errors: Sources and Detection 

Given examples of a synthesized procedure, 
the first task must be to compare the examples 
and the existing version of the program. This 
comparison should identify portions of the proce
dure which conflict with one or more of the 
examples. Once this is done, the task of 
correction can proceed. 

In the existing environment, "errors" 
introduced into a program originated with its 
synthesis or modification. Moreover, "errors" 
could only be introduced (barring implementation 
problems, bad data, etc.) at points in the 
synthesis process where one of a nlllllber of 
alternatives was selected, i.e., choice points. 
Whenever a choice is made, a nlllllber of reasonable 
alternatives may have been available. If the 
ntunber of alternatives could always be constrained 
to one, then, of course, one no longer has a 
choice, but an algorithm for computing the 
appropriate result. In synthesis, one typically 
has partial information and may, therefore, have 
a ntunber of coo ices. This provides a general 
rule: ''F.ach class of choices gives rise to a 
class of potential errors". 

In the synthesis algorithm described at the 
end of the previous section, one can identify 
three classes of choices: 



1 . Group membership - Al though there are con -
straints dealing with the connectivity of 
no<lcs and similarity of instructions, it may 
be possible that a node could be put into two 
or more groups. 

Consider the following portions from two 
examples: 

X + X-1 
.j. 

1. EQ(X,O) a. 

Y + Y-1 
/ ', 

EQ(Y,O) Z + Z+Y 
.j. 

Y + F(Y) 
.j. 

Y + Y-1 
.j. 

b. EQ(Y,O) 

Assume that nodes 1 and a can be grouped 
together (this implies that X and Y are 
renamings of the same variable). Node b 
might or might not be grouped with a - both 
are plausible . 

2. Selecting Parameters - Given a number of 
variables within a procedure body and even 
th:lugh there are constraints on the variables 
in the constructed procedure, it may be 
possible to put some variable in one or more 
parameter positions . 

Suppose that a procedure was to have two 
formal parameters and that the argument lists 
of the two examples being used to synthesize 
it were (3,3) and (4,4). After synthesizing 
a procedure body, assume that X and Y were 
potential parameters. Based upon the inform
ation available, the parameter list (X,Y) 
is as likely as (Y,X) . 

3. Replacing Constants - A constant appearing 
within an instruction of the procedure might 
be replaced by two or more parameters. 
Obviously if it is replaced, one must ch:lose 
amJng the potential candidates. Suppose a 
node in the above synthesized procedure body 
was Z +Z+3. In this case, the 3 could 
actually be a constant, or it could be X or 
Y . Without more information , choosing one 
of X or Y could very likely be a wrong 
choice. Note that if one left 3 as a con
stant, then in some situations that too would 
be an error. 

Having identified these classes of choices, 
one can examine the consequences of, the choices 
on the resulting procedure . T1 .1s will provide a 
general classification of the possible errors 
within a synthesized procedure. 

Suppose that an error in group membership has 
occurred . This means that (1) the connectivity of 
nodes within the procedure is incorrect and/or (2) 
two variables identified as the renaming of 
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another are actually renamings of distinct vari
ahles. The first of these is a structural error 
and the second is a renaming er ror. If a variable 
·involved in the renaming error 1s a parameter 
which has not been assigned to, then one has a 
parameter error. 

In the case of an inappropriate choice of 
parameters, one may have, as above, both 
parameter errors and renaming errors. 

Finally, in the case where one has replaced 
a constant by an incorrect variable or if the 
constant should not have been replaced, then one 
has another parameter error. 

Two important problems with which one must 
deal are (1) a single choice may yield a number 
of possible errors and (2) one class of errors 
is not necessarily associated with a single class 
of choices. 

The comparison process begins by finding a 
common starting node in the procedure and each 
of the examples. This is not necessarily the 
first node in the procedure or in the examples. 
Rather, it is based upon the first node in each 
having a predicate or function (see (2) for a 
more complete definition). Once this set of start 
nodes has been formed, nodes of the procedure are 
grouped with nodes from the examples. Since the 
successors of a' node are ordered, the comparison 
process simply follows the ordering. Each set of 
grouped nodes is·called a match. 

Suppose that in the following procedure and 
examples that the set of start nodes was {2,c,b'}. 

1 a a' 
.j. .j. .j. 

2 b b' 

c,-,, "..:~ 
.j. I \ 
C c' d' 
.j. .j. 

5 \6 7 d e' 
' 1, .j. .j. 

\i 9 e f' 
.j. .j. 

10 f g' 
.j. 

11 I '\ .j. 

g h h' 
.j. 

i 
.j. 

j 

Then the next matches would be {3,d,c'l and 
{ 4, d'} . Beyond this, the nodes of each example 
would be matched with nodes of the procedure 
independently, since each represents a different 
conqmtation path. 

The resulting matches would be: 



- 1 

I 
I 

I 
I 

· 1 

{2,c,b'}, {3,d,c'},{ 4,d'}, {S,e}, {7,e'}, {3,f}, 
{8,f'}, {5,g},{ 10,g'},{6,h}, {11,h'}, {10,i}, 
{11,j}. 

The detection of errors is based upon an 
examination of nodes in a match. Nodes within a 
match must satisfy local and global constraints. 
The violation of a constraint signifies an error. 

3.1 Structural Errors 

Consider the following portions of a 
procedure and an example: 

1. X + HY) a. A+ f(B) 

h \ / \ 
2. GT(i,Z~4. Y+tX) b. GT(A,X) c. B+rA) 

. L RETURN(Y) S. X+h(X) d. A+h(A) 

~ l 
e. GT(A,X) 

l 
f. B+ g(B) 

! 
g. RETURN(B) 

Assume that {1,a} is a match. Any match 
must satisfy two local constraints - they nu.1st be 
struct~rally similar and corresponding variables 
." d constants must be consistent. This is deter
mined by a computation similar to that of comput
ing the least generalization of a predicate 
calculus formula (see (1,2] for a precise descrip
tion). Intuitively, this means that the instruct
ions must involve the same functions, predicates 
and constants and that the variables involved 
must be used in similar ways. Given {l,a} the 
instructions are identical except for variable 
renarnings and there is a unique renaming: X +-+A, 
Y ++ B . Once established, the pairing of a 
variable in an example to one in a procedure must 
be preserved throughout the matching_process. 
This forms one of the global constraints (see 
Section 3.2). 

The next matches are {2,b} and { 4,c}. In 
{2,b} the pairing X+-+A is still intact and 
thepairing Z++X isformed. From {4,c}, the 
previous pairings are preserved. 

The next match is {S,d}. Note that the set 
{3}, which follows from {2,b} is ignored, since 
it only contains nodes of the procedUTe. After 
{S d} t he next match is {2,e}. Hence node 2 of 
th~ p;ocedure occurs in an additional match. This 
will happen if the procedure contains loops. 

The set {3,f} forms the next match. The 
instructions are no longer similar. The match 
{3,f} has revealed a structural error. 
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This situation might arise.when a node within 
an example (in this case one of the form 
GT (V, W) ) should not have been grouped with a 
similar node, but it was because of lack of 
examples, in this case a subsequent computation 
involving the function g . 

Other structural errors can be detected in 
matching nodes even if the instructions are 
similar. Consider {X + f(Y,Z), A+ f(B,H)} 
In forming the pairings, one has X++A, Y++B 
and Z ++ B . Since Y and Z are interpreted 
as distinct variables, Y and Z cannot both be 
paired to B - hence no match is possible. 

Similarly, consider {X +f (3), Y + f(6)}. 
Here the 3 is a constant in the procedure and 6 
is a constant in the example (i.e., does not 
appear in the argument list). Once again, no 
match is possible and an error is detected . 

3.2 Renaming and Parameter Errors 

Assuming nodes in a match are locally consis
tent, i.e., do not reveal a structural error, the 
variable pairings are examined with respect to 
previous variable pairings. 

Given a variable within the procedure, it 
.may be paired with at most one variable in any 
example and with at most one input value in any 
example. For example, consider the following: 
1 X~Y a. A +Z 

. / ~ / \ 
2. pfX)~(X) b. p(A) /A: f(A) 

4. RE11JRN(X,Y) S. Y+g(Y) d. p(A) e. Z+g(Z) 
t 

g. p(A) 
t 

h. RETURN(A,Z) 

Assume that {l,a} is a match. The variable 
pairings are X +-+ A and Y ...... Z . Matches and 
pairings are formed as follows: 

{2,b} 
{3,c} 
{ 2,d} 
{S,e} 
{l,f} 

X+-+A 
X+-+A 
X+-+A 
Y+-+Z 
X+-+A, A++B 

Since Y had been previously paired with Z , 
the matched set {l,f} reveals an error - a 
renaming error. 

As an example of a parameter error, consider 
the following portions of a procedure and example: 



P(X, Y ,Z) P(cl ,c2,c3) 

1. A + f(Y) a. X + f(c2) 

I~ I \ 
2. p(A) 3. A+h(A,Y,Z) b. p(X) c. X+h(X,c3,c2) 

Assume that {1,a} is a match . Then {3,c} is 
a match with pairings A++ X, Y ++ c3 and 
Z ++ c2. Assuming that Y has not been assigned 
to on the path from the root of P to node 3 , 
if c2 # c3, then Y, which is the second 
parameter of the procedure, has been paired with 
an input other than the second - a parameter 
error. 

As in the case of structural errors, it is 
easy to construct examples in which the. synthe
sized procedure actually contains such errors. 

4. Eliminating Errors 

When an error has been discovered, the 
comparison process is interrupted and an attempt 
is made to correct the error. Once corrected, 
the comparison process is restarted with the 
modified procedure and the examples. TI1is per 
mits multiple errors to be detected and corrected. 
As noted, the detection of an error in a partiCll
lar match does not determine uniquely the ch:>ice 
in the construction which produced that error. 
Hence the elimination of an error requires (1) 
isolating of one or more instructions so that 
changes can be made without affecting correct 
computations (if possible), and (2) deleting 
erroneous instructions and inserting correct ones. 

In the approach adopted here, the isolation 
of nodes once an error is discovered is relatively 
independent of the particular error. The correc 
tion, of course, will depend upon the kind of 
error. 

4.1 Isolating Instructions 

Consider the following portions of a proce
dure and example: 

a a' 

t\ b( \c' 

:,/ f 

e' 
f 

e 
f f' 
f 

Assume that the matches are {a,a'}, {b,b'}, 
{c,c'}, {e,e 'l, {f,f'} and that the set {f,f'} 
has revealed an error. Obviously, one would not 
wish to simply remove f (and its successors) 
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from the procedure since they may belong to cor
rect computations from node b. To avoid making 
changes which introduce errors, one 11Ust isolate 
the co~tation path in the procedure which was 
matched to nodes of the example. 

This isolation is accomplished by three graph 
transformations which can be applied to subgraphs 
of an existing graph. 

1 . Transformation SPLIT(G,pi ,n1 ,n2) - G': 

G: r G': r ... 
. 

P1 pi Pn pi pi Pn 

\-1-/ '"<?/~., nl 

~ =--- ~ ~ 
Gl G1 G1 
i i2~ nz 

where: 

1. r is the root of G, p1, ... ,pn are prede
cessors of ~ 

2. there are at least two distinct paths from r 
to n1 in which n1 occurs once in each and 
pi is a predecessor of n1 in one of these 
paths. 

3. G1 is the smallest subgraph of G such that 

if n is reachable from n1, n2 is reach
able from n, (n,m) is an edge of the path 
from n to n2 and m ; n2 , then m and 
the edge (n,m) are in G1 . 

4. n' 1 is a copy of n1 
5. G' l is a copy of Gl, where if m c G1 then 

m' c G1, m' a copy of m and for any 

m c G1 , n i G1 such that (m,n) is an edge 
of G then (m,n) is an edge of G'. 

Intuitively, SPLIT duplicates a portion of a 
procedure between two instructions, n1 and n7 
through one particular predecessor of n1 . In 
use, n2 will be the node of the procedure which 

has occurred in an error, n1 and pi would be 
nodes of the procedure which have been matched 
prior to the error. 



. • 1 

I 

. ..: I 

I 

2. Transfonnation UNWIND(G,n1) =- G': 
r r 

-

where 

1. r is the root of G, p1, •.• ,pn are the 
predecessors of n1 which can only be 
reached on paths from r which include an 
occurrence of n1 prior to its predecessor 

2. G1 is the subgraph of nodes and edges reach
able from n1 , excluding p1 , ... ,Pn 

3. Gi is a copy of G1 , ni is a copy of n1 . 

UNWIND provides a way to isolate portions 
of a graph by unwinding loops. One can show 
that both transformations preserve computational 
equivalence of G and G' . The combined 
effect of using SPLIT and UNWIND on nodes along 
a particular path is that an erroneous node can 
be isolated and changed in the transformed proce
dure without affecting other computations. 

3. Transfonnation COPY(G,n1) ~ G': 

G: r G': r 

nl - n' 
1 

~~ .u. 
Gl G' 

1 

where 
1 . r is the root of G 

2. G1 is the subgrap}:l of nodes reachable from 

nl 

3. Gi is a copy of all nodes and edges of G1 . 

This final transfonnation is used to create 
a copy of the subgraph reachable from a particu
lar node. Once again, this can be used to dupli
cate portions of a graph fa order to isolate 
changes. 

Given a node which is involved in an error, 
there is a path from the root to that node 
corresponding to the path in an example. One 
can, by using these transfonnations, form a new 
procedure, equivalent to the original in which 
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there is a unique path from the root to the pred
ecessor of the erroneous node. In this case say 
that the erroneous node has been isolated. 

4.2 On Error Corrections 

The previous transfonnations can be used to 
isolate a portion of the procedure which can then 
be modified. Corrections take the form of code 
deletion or changes within instructions. Inser
tion of new code is accomplished by an algorithm 
similar to the synthesis process. Hence, a 
modified procedure can itself be altered since 
identical classes of errors arise. 

A formulation of all error corrections has 
not yet been completed. However, the following 
examples will illustrate the notions involved in 
the correction process. 

4.2.1 Structural Errors 

Assume that a match has revealed a structur
al error in a procedure P. Let n be the node 
of P in that set and let n be the predeces
sor of n along the matched path. Assume that 
n is the k-th successor of n1 . This provides 
the basis for the following: 

The Correction Rule for Structural Errors: 

1. Transform P into P' such that n is 
isolated in P' 

2. If ~ has m successors, delete edges from 
n1 to successors k through m and any 
nodes and edges no longer reachable from the 
root of P' . 

Note that only code is deleted. New code is 
inserted by an algorithm similar to the initial 
synthesis algoritnn described earlier. 

As an example, consider the following 
procedure and example: 

G: 1. Z + h (Y) a . Y + a 

l 1 
2, X+a 

/~ 
3. pf,~if(X,Y) 

5. q(Y)~ Z+/(Z) 

7. RE'IURN(Z) 

g. 

b. Z + h(Y) 

1 x\ c . 

I 
d. p(X,Y) 

e. Z+f(X,Y) 
! 

f. p(X,Y) 

------ ! q(Y) h. Z+g(Y) 

! 
i. RETURN(Z) 



where the following matches have occurred: 
{l,b}, {2,c}, {3,d}, {4,e}, {3,f}, {5,g}, {6,h}. 
Since the set {6,h} reveals a structural error 
(they involve different ftmctions), the above 
correction rule is invoked. 

The first step is to isolate node 6 based on 
the path 1 -+ 2 -+ 4 -+ 3-+ 6 . To do this, the 
procedure is transformed using SPLIT(G,4,3,6) 
resulting in: 

5. 

1. Z + h(Y) 
1 a---. 2. X + 

I 
3. ;(X,Y) ~1-!JX,Y) 

q(Y)~Z + h(Z) 3'. p(X,Y) 

'\. 1- \:::-----' ' 
7. REWRN (Z) ----..___,; 

Now the set {3,d} has become ( 3',d} and 
there is a unique path from the root to node 3'. 
Then the edge from 3' to 6 is deleted. In the 
final phase, nodes h and i of the example 
~ould be incorporated into the procedure produc 
l.Jlg the correct change. 

4.2.2 Renaming Errors 

When a renaming error is discovered, the 
following information is available: (1) the 
node of the procedure, say, n, in which the 
error occurred , (2) the incorrect pairing, say 
X-<: B , (3) the pairing which had previously 
existed, say X +-+ A and (d) perhaps a pairing 
Y +-+ B . The correction rule is: 

Correction rule for Renaming Errors: 

1. Form P' = COPY(P,n) • 

2. In the copies subgraph, replace all occurren
ces of X by W, where W is Y if a 
pairing Y +-+ B existed, otherwise W is a 
new variable not occurring in P. 

The copy operation arises from the fact that 
if a renaming error occurred then the nodes used 
in the group corresponding to that node when the 
procedure was constructed would have had to have 
nearly identical computation paths from them. 
In fact, t~ey would be identical except for vari
able renaml.Jlgs - hence the necessity of copying. 

4.2.3 Parameter Errors 

. A parameter error, though similar to a re
nammg error, involves a different kind of 
correction. The information available is (1) 
the node n of the procedure in which the error 
lo/as detected and (2) the incorrect pairing 
~- t , where t is either a variable A or an 
mput argument c • The correction rule is: 
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Correction rule for Parameter Errors: 

1. If a unique parameter Y of P can be paired 
with the input c or A, then replace X 
innbyY. 

Unlike the previous correction rules, this one is 
conditional. This is the case since an arbitrary 
replacement may replace one erroneous parameter 
by another. Hence, it is possible that, although 
the error is detected, it cannot be corrected 
without additional input. It seems that in this 
particular instance the pairings of parameters to 
inputs from previously used examples "°uld be 
useful . Nevertheless, the uniqueness of Y can 
often be determined by using the information 
within the previous pairings and from the usage 
of inputs within all the examples. In practice, 
these errors seem to occur infrequently. 

5. &.uranary and Conclusion 

Based upon experience with the rules and the 
synthesis process, structural and renaming errors 
appear to be the most corrunon. Moreover, the 
described correction rules seem to cover most of 
the "common" cases. This is certainly the case 
for structural errors. In the case of both re
naming and parameter errors, the rules are in 
complete. 

Parameter errors are interesting in that the 
correction rules seem to be of a conditional form 
(if one wishes to avoid replacing one error by 
another). In the case of structural and renaming 
errors, if the error is detected then enough 
information exists to make the correction. It 
appears that to guarantee this for parameter 
errors, some additional information must be kept, 
e.g., previous inputs. Beyond this, there seems 
to be little need to keep all previous examples. 

Multiple errors are handled by correcting 
one error at a time, when discovered, and re
starting the comparison process. This can lead 
to a proliferation of duplicate instructions. A 
more realistic, but apparently more difficult 
approach, 'I\Quld involve collecting information 
about a number of errors and making a minimal 
number of changes. 

As alluded to, the final phase of the syn
thesis process involves a process similar to the 
initial synthesis algorithm. By constraining this 
algorithm, a modified procedure can be altered by 
examples and yet be guaranteed to 'I\Qrk on the 
input of previous examples - this forms the basis 
for the iterative paradigm. Without these con
straints, one may face new classes of errors 
arising from the introduction of errors into 
already incorrect code. 
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ABSTRACT 

This paper describes a scheme for handling 
both exceptional objects and classes and 
exceptional conditions that arise in the execution 
of programs, within a knowledge representation 
formalism . The scheme consists of two mechanisms: 
the excuse, which allows the justification of 
specified constraint violations in instances of a 
class through membership in a second class within 
designated contexts, and the mapping, which 
permits the specification of similarity 
relationships between the definitions of two 
objects, so that arbitrary elements of these 
definitions may be copied or inherited (a flexible 
1S- A) . Exceptions in programs are handled through 
an extension of the excuse mechanism. 

1.0 INTRODUCTION 

In order to perform intelligently , a system 
must possess a model of its world and be able to 
use it to deal with the often unexpected 
situations that arise. The knowledge in this 
model (knowledge base ) is organised in terms of a 
system of categories. The cathegories may be 
explicit, as in frame systems [Minsky 74), or more 
implicit as in logical formalisms. Exceptions in 
r epresentation systems arise as a result of (1) 
the somet i mes unpredictable nature of the world, 
which produces atypical situations, and (2) the 
inadequacies of current representation formalisms 
in dealing with "natural" concepts (as used by 
peopl e ). These exceptions manifest themselves 
through the violation of some constraint during 
the lifetime of the knowledge base. 

A simple classification of excepi ~onal 
conditions will help in finding ways to deal with 
them. Generic exceptions can first be 
distinguished fron individual exceptions, as the 
former pertains to constraints violated in the 
definition of a category rather· than in particular 
i ndividual objects. Individual exceptions can be 
further subdivided into~ exceptions, which 
arise while the systems is attempting to 
i nstantiate or recognize an object (basic 
operations at the top-level), and dynamic 
exceptions, which are encountered dur ing the 
, xecution of a user defined program . 
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This paper sumarizes an exception handling 
system develloped for the PSN representation 
formalism [Levesque 79), which is explained in 
details in [Lesperance 80). The seminal ideas for 
the system came from [Minsky 74), where two ways 
of recovering from failure in a frame system are 
suggested. First, it may try to create an excuse 
for the exceptional condition with an appropriate 
reason. In this approach, the failure is seen as 
arising from the fact that the defective object is 
really an instance of two frames which interact, 
thus the object does not satisfy perfectly the 
ideal defined in one of the frames. The knowledge 
necessary to make the repair should be attached to 
a higher thematic context frame. The second 
approach involves using the local advice embedded 
in a similarity network to replace the defective 
frame by a more appropriate one. 

The two approaches reflect the distinction 
between individual and generic exceptions. In the 
first case, we do not wish to create new 
categories for every single exception, thus an 
~ mechanism has been devised to allow the 
handling of both static and dynamic exceptions and 
the maintenance of the consistency of the 
knowledge base. The excuse mechanism has been 
influenced extensively by exception handling 
mechanisms develloped for programming languages, 
[Levin 77) in particular. These mechanisms allow 
the mainline of the program to be expressed 
without cluttering it with the code required to 
handle exceptional conditions. Moreover, the 
handling code for the condition is attached to the 
caller or user of the program module which raised 
the exception, allowing for a context dependent 
recovery from the exception. This facility 
permits the use of a procedure even if the 
conditions for which it was designed are not 
satisfied, as long as the exceptions that will be 
raised can be handled by its caller or user. For 
generic exceptions, the problem lies in the 
insertion of the category into the existing 
hierarchies, especialy when the inheritance of 
only part of the definition of the category is 
desired. This has been done through a i•ppiog 
mechanism inspired from [Moore 73), which makes 
explicit the inheritance process or definition 
elements and gives control to the user over it 
when this is needed. 

The developpement of this system is seen as a 
step in the direction of improved flexibility for 
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Fi~ure 1 - Example of excuse for static exception. 

representation formalisms, both for practical 
purposes and modelling adequacy. The system can 
be readily adapted to most other semantic network 
or frame based formalisms. The approach taken 
emphasizes the knowledge base definition aspect, 
but generality has been preserved . Before the 
system can be explained, an overview of its host 
formalism must be given. 

2.0 OVERVIEW Qf. PSN 

The PSN formalism grew out of a desire .to 
develop a facility for defining semantic network 
knowledge bases with well defined semantics. The 
formalism is basicaly procedural, as the semantics 
of classes, which represent generic objects, are 
defined in terms of four attached programs, which 
prescribe the behavior of the class under the 
operations of instantiation, removal of an 
instance, testing for membership and fetching of 
all instances. Classes are represented graphicaly 
by their external name in capitals, for example 
"HUMAN" or "EXCEPTION-CLASS" in figure 1. 
Whenever an individvql ~ is made an instance 
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of a class, the appropriate attached program is 
executed, this allowing the desired inferences 
(antecedent theorems) to be added to the knowledge 
base. Similar action is taken in the case of the 
three other operations. Simple token objects are 
represented in the graphic notation by their 
external name in lower case, for example 
"Capt'n-Kidd" in figure 1. The INSTANCE assertion 
is represented by an unlabled single line arrow. 
Incidental relationships between objects (the 
links in traditional semantic networks) are 
represented by a class of objects called 
relations, whose semantics are also defined by 
four programs. The instances of relations are 
assertions of the relationship between two 
specific objects. 

This basic procedural PSN is augmented with 
declarative facilities which help in the 
organization of the knowledge base. The defining 
properties of a class are grouped together to form 
the structure of the class , which consists of a 
set of~ which can have a type, restrictions, 
default, etc . . The structure of a class is 
represented by a box under the name of the class, 
for example "HUMAN" in figure 1, and slots by 



EXCUSE-CLASS PROGRAM EXCEPTION LINK EXCEPTION-CLASS 

---- ~l\----------1.\i--!----~- - -i 
IND-ALTERNATIVE XCUSE-CLASS-l--; RRANGE-TRIP-, ESERVE-SEAT exception-link-1 NO-SEATS-LEFT 

parameters just-slot parameters j parameters 

flight. justification. I flight. 

exc.-slot 

returns 

-l . 
[flight$seats-left>O] 

1 
i 

·· ,...... ~ · 
"-,., 

~ustification 

',.""' 
no-seats-left-1 

Figure 2 - Example of excuse for a dynamic exception. 



I 

their name with a node written in the box, for 
example "legl 11 • These slots can then be filled 
·with values when an instan~e of the class has been 
created. This is represented by a link with the 
name of the slot as for the "leg 111 of 
"Capt'n-Kidd" is "wooden-leg-1" in figure 1. The 
closure of these structural property value 
relationships forms the PART-OF hierarchy. The 
classes can also be organized in an ~ or 
apecialization hierarchy (represented by unlabled 
double line arrows, see figure 2). This 
facilitates the definition of the subclasses as 
the structure of the superclass is inherited by 
them. The slots can be refined but are required 
to satisfy the IS-A constraints, which guarantee 
that the subclasses are effectively 
specializations. 
Slot values, in particular the four programs 
defining the semantics of classes, can also be 
inherited if necessary. 

The instance hierarchy is not restricted to 
two levels and classes can be instances of 
,metaclasses. This is used extensively in the 
definition of the formalism itself and many 
'aspects of its behavior arise as a result of the 
definition of the metaclasses: CLASS, RELATION, 
OBJECT, PROGRAM,etc .• A metaclass can constrain 
the structure of its instances through its 
metastructure [Kramer 80), as the slots of the 
instance must be instances of the metaslots in the 
metastructure. Programs are represented as 
classes in the formalism, and thus benefit from 
ell the declarative facilities. In figure 2, the 
~rogram "ARRANGE-TRIP" calls another program 
"RESERVE-SEAT". Metaslots have been used to 
partition the slots into different categories: 
parameters, locals, etc •. To specify the desired 
parameter bindings and evaluations, a form is used 
(the box with no heading under "RESERVE-SEAT"). 
The programs are executed by creating processes 
which are instances of the programs, 
"arrange-trip-1" and "reserve-seat-1" in the 
example. The formalism also provides a context 
mechanism [Schneider 78, Schneider 80). An object 
which is visible in a context is called a ~
Context are used to implement inheritance, 
structures being essentialy special forms of 
contexts. A slot is inherited because it is 
visible (a view) in the structure of subclasses. 

The only differences with some previous 
versions of PSN are the use of yaluers to 
implement manifestations (ex: John as a taxpayer) 
as in [Schneider 78), which are needed for the 
proper treatment of dynamic exceptions, and the 
ability to refer to most systems assertions 
(INSTANCE, type, etc.). This feature can be 
simulated without any extension to PSN by 
replacing the single link assertion reference by a 
triple link reference to the relation and its 
arguments. 
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3.0 EXCUSES 

3.1 STATIC EXCEPTIONS 

The~ mechanism takes care of objects 
which are instances of a class while violating 
some of the constraints associated to its slots. 
The exceptions which are raised by these 
violations must be handled by the class of the 
object which has the defective object as one of 
its parts (slot value), thus one level up on the 
PART-OF hierarchy. This provides a basic form of 
context sensitivity to the mechanism. The handler 
attached to the "situation" is restricted to being 
a class of which the defective object must also be 
an instance, thus retaining Minsky's idea of frame 
interaction in a context. 

Let's explore the mechanism in more detail by 
considering an example of static exception 
handling represented graphicaly in figure 1. 
Here, we have an object "Capt•n-Kidd", which would 
be a legal instance of the class "HUMAN", except 
for the fact that the value of its slot "leg-1", 
11 wooden-leg-1", violates the type constraint of 
the "leg-1 11 slot definition in the class 11 HUMAN 11 • 

The violation is precisely that "wooden-leg-1" is 
not an instance of "HUMAN-LEG". To characterize 
this type of constraint violation, an 
exception-class called "NO-REAL-LEG" is created. 
Then this class is associated to the type of the 
slot "leg-1" using an exception-link. When the 
system, attempting to fill the value of "leg-1" 
for "Capt'n-Kidd" will detect the type violation, 
it will find the exception-link and then, if the 
predicate of the link is satisfied, it will create 
an instance of the exception class "NO-REAL-LEG". 
The exception "no-real-leg-1" is attached to the 
INSTANCE link between "Capt'n-Kidd" and "HUMAN", 
which thus becomes an EXCEPTIONAL-INSTANCE link. 
This is done by making the exception an instance 
of an exception-class created especialy for the 
link. Many exceptions could be raised on the 
instance in the same way. 

The rest of the mechanism concerns the 
handling of the exception where the system tries 
to build an excuse for the exception. For that, 
it climbs up one level in the PART-OF hierarchy 
and looks at the corresponding class to find an 
excuse-class. In the example, this corresponds to 
following the "main-character" assertion to 
"story-1", then looking at its class 
"PIRATE-STORY" and then finding 11 EXCUSE-CLASS-1". 
This excuse-class must have been attached to the 
slot whose value is the exceptional instance. For 
the excuse-class to be usable, it must be 
associated to the exception-class of which the 
exception is an instance. If this is the case, 
then the system tries to make the exceptional 
object an instance of the class which is the value 
of its "by" slot, which is "DISABLED-PERSON" in 
this case. Any desired checking for evidence for 
this type of excuse can be done at this stage. If 
the instantiation has been succesful, then an 
excuse is created, which associates the 
justification to the exception. In the example, 
this is "excuse-1". The excuse marks the 
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succesful handling of the exception. If all the 
exceptions attached to an exceptional-instance 
link via its exception-class have been excused, 
then the link becomes an EXCUSED-INSTANCE link. 

Exception-classes in this system have a 
two-fold function: they are abstract descriptions 
of the violations that arise and they allow an 
economical interface betw~en the excuse-classes, 
which handle the violations, and the violations 
themselves, assuming that some violations will be 
treated in the same way. The use of the PART-OF 
hierarchy as a kind of context mechanism for 
exceptions is new to PSN, but resembles that of 
NETL [Fahlman 79). The excuse mechanism also 
works nicely for ' cases of non-existant slot 
values. In this case, the special object 
"nothing" is given as a value. This can be 
treated as a type violation and be handled in the 
normal way. 

3.2 DYNAMIC EXCEPTIONS 

The excuse mechanism can be used to handle 
dynamic exceptions with a few extensions. It is 
natural to see exception-classes as the interface 
between the program context raising the exception 
and the one which will be selected to handle it. 
As these two belong to different levels of 
abstraction, it is necessary to provide parameter 
passing facilities with exceptions. These are 
defined as slots in the exception-class. The 
raising of an exception is similar to a procedure 
·call, with the difference that the actual 
:procedure to be invoked has to be selected by the 
system using the information provided by the 
excuse-classes. The scheme chosen requires the 
exception handling program to return control to 
the raiser of the exception after it has 
completed, as in [Levin 77). This requires the 
definition of a returns slot in the 
exception-clAss. 

In the example represented graphicaly in 
figure 2, a type violation has occured in the 
process "reserve-seat-1", which was invoked by 
"arrange-trip-1". The violation is on the 
prerequisite slot "p1", which checks whether some 
seats are available on the flight. As the value 
returned was "false", an instance of the 
exception- class "NO-SEATS-LEFT" is created 
("no-seats-left-1") and attached to the INSTANCE 
'iink of the process. In the case of dynamic 
exception handling, the exception-link does not 
point directly to the exception-class, but to a 
form which is a subclass of it, allowing the 
parameter bindings to be indicated by "eval" 
assertions. A more important difference is the 
presence of a return slot value indicating which 
slot of the raiser should recieve the result of 
the evaluation of the exception handler. 

After the creation of the exception, the 
system looks for an excuse-class (having the 
appropriate exception-class) attached to the slot 
that was being evaluated in the .Q.llller. of the 
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process that raised the exception. The dynamic 
hierarchy is used instead of PART-OF as it fills a 
similar role in dynamic objects like programs to 
that of part-of in static objects. Thus the 
"dynamic" assertion is followed from 
"reserve-seat-1" to "arrange-trip-1", where the 
"EXCUSE-CLASS-1" is located, from the 
"reservation" slot that was being evaluated. 
Then, the form which is the value of the "by" slot 
and a subclass of the "FIND-ALTERNATIVE" program 
is instantiated (executed), as the exception 
handler. Here again, a form is used to allow for 
the binding of parameters. The instance of the 
"by" class "FIND-ALTERNATIVE", is a manifestation 
of the same object "reserve-seat-1" that raised 
the exception. The explicit representation of the 
valuers (the ovals containing the value 
assignements to the slots) makes the separation of 
the two manifestations clear. The exception 
handling process thus appears as a tailoring of 
the process "reserve-seat-1" to fit the particular 
situation at hand. Once the instantiation has 
completed, an excuse is created ("excuse-1") for 
the succesfuly handled exception. Then, the 
"result" of the handler, that is the value of its 
slot which is an instance of the "returns" 
metaslot, can be passed back to the exception and 
to the process which raised it. This amounts in 
this case to set the local slot "substitute" to 
this value. Then, the process resumes after the 
point of interuption. A process can trigger an 
exception voluntarily by returning the special 
value "fail" in the same way as "nothing" in the 
static case. 

3.3 INTERACTIONS WITH THE HIERARCHIES AND SEMANTICS 

The immediate father in the PART-OF (dynamic) 
hierarchy is not always the best class to provide 
an excuse for an exception, but the scheme 
requirea the exception to be reformulated in terms 
of the father class before it can be passed up 
higher, so as to preserve the abstraction 
structure. This is done in the static case by 
considering the unexcused exceptional object as 
violating the type of the father. In the dynamic 
case, the handler ("by" class) can also raise a 
new exception of its own, as it is treated as a 
part of the caller's context. 

Even if it does not appears so by the 
examples given, it is intended that 
exception-links and excuse-classes be inherited 
with the slot they are attached to down the is-a 
hierarchy. They can also be refined and have to 
satisfy the is-a constraints (that their parts be 
identical or is-a, including the exception-class 
and the "by" class). Thia can be enforced by the 
formalism if these objects are defined as classes 
with slots representing the links, as in [Kramer 
80). However this solution is not totaly 
satisfactory. A default exception-class called 
"GENERAL-EXCEPTION-CLASS" is provided by the 
formalism to every slot defined, through the 
inheritance mechanism. 



The excuse mechanism can be considered to be 
simply a syntactic extension of the original PSN 
formalism. The attachement of an exception-link 
and exception-class to a slot can be seen as the 
creation of a class which only differs from the 
original class by the required presence of the 
:violation which would raiee the exception. The 
attachement of an excuse-class to a slot effects a 
modification of its type, generalizing it to 
include some of these "violation" classes. 

4.0 MAPPINGS 

Our goal in designing the mapping mechanism 
was to define a very general construct which would 
(1) provide a facility for describing similarities 
that exist between objects and (2 ) allow the 
definition~ classes .ill.~~ .2.t.h.el: classes, 
including the copying of parts of their structure 
on a piecemeal basis to enhance expressive 
efficiency. The motivation for this came mainly 
from the lack of flexibility of the current IS-A 
construct, which is heavily felt whe dealing with 
natural concepts. In fact, IS-A should appear as 
a particular specialization of the general mapping 
construct and as such, it cannot be used in its 
definition. 

An example of application of this more 
general mapping construct would be defining the 
alass "PENG UIN" in term of the class "BIRD" by 
specifying a mapping from "PENGUIN" to "BIRD" 
which includes, as a sybmapping, sayin~ that the 
"beak" slot of "PENGUIN" has a type which is a 
·particular specialization of that of the "beak" of 
"BIRD". This is represented graphicaly in figure 
3, where "Pb- MAP" is such a mapping (more details 
.later). In this definition process, the user 
creates a mapping and expects the mapping 
.instantiation program to create all objects and 
views not already existing and have them form the 
class being defined in terms of the other, as a 
side-effect of the mapping instantiation. Two 
aspects of the definition of mappings can thus be 
identified: their structure, which is concerned 
with the description of the relationship between 
the two objects, and their side-effects, which 
include object creation and manipulation of the 
structure hierarchy (contexts ) to effect 
inheritance . The rest of the presentation 
concerns mainly the structural aspect as the other 
~till needs to be worked out in details. 

The main influences on the mapping mechanism 
have been the mappingi!J of MERLIN [Moore 73), where 
the recursive aspect of their definition is taken, 
the "cables" of KLONE [Brachman 79), for the idea 
of structured inheritance, and the similarity 
networks of [Winston 75). · 

The main idea on which the mechanism is based 
i s that any mapping of an object must also involve 
the mapping of its type (s), as it is an essential 
part of its definition. This requirement causes 
the structure of mappings to mirrors closely that 
of the INSTANCE hierarchy. If we return to our 
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example in figure 3, the mapping "P/B-MAP" between 
the clases "PENGUIN" and "BIRD" is also a class 
and an instance of "CLASS-MAP". It contains a 
slot-mapping slot, "beakp/beakb", from the "beakp" 
slot of "PENGUIN" to the "beakb" of "BIRD". The 
type of this slot, "PB/BB-MAP", is another mapping 
class from the type of "beakp", "PENGUIN-BEAK", to 
the type of "beakb", "BIRD-BEAK", "PB/BB-MAP" 
would itself be expanded in the same way to map 
the slots of both classes. Now at the token 
level, there is an instance of "P/ B-MAP", mapping 
"penguin-1" to "Tweety". It has as slot value a 
mapping between both "beak" slot values, which is 
an instance of "PB/BB-MAP". Thus, the mapping at 
the class level allows us to map the instances of 
the class. The structure of the mappings is 
exactly parallel to that of the classes mapped. 

However, to satisfy completely our 
requirement, the types of the classes "PENGUIN" 
and "BIRD" must also be mapped. This is 
accomplished by "CLASS/CLASS-MAP", which maps the 
class "CLASS" into itself, Note that both 
"P/B-MAP" and "PB/BB-MAP" are also instances of 
t his metaclass. The type of "CLASS" itself, 
"METACLASS", would also need to be mapped, but 
eventualy this will stop as "METACLASS" is only an 
instance of itself. 

The classes that define mappings 
{"CLASS-MAP", "METACLASS-MAP", etc.) also allow us 
to create a taxonomy~ mappings and differentiate 
between identity mappings, IS- A mappings and 
general similarity mappings. This is done by 
gradualy adding more constraints on the structure 
of mappings {e.g. the "interval" of "CLASS-MAP" ) , 
mainly on the metaslot controling slot mappings 
{"slot-map-slot"). This produces a pseudo-IS-A 
hierarchy of mappings. In the example, the 
"PB/ BB-MAP" is an instance of "IS-A-CLASS-MAP" and 
its argument classes would satisfy the IS-A 
constraints. "CLASS/CLASS-MAP" is an instance of 
"IDENTITY-CLASS-MAP" as it maps a class to itself. 

The mapping construct allows the 
representation of similarities of similarities, as 
mappings are simply objects like everithing else. 
It is also a powerful tool to study relationships 
involving the parts of objects as well as the 
objects themselves, An interesting question 
raised by the characterization of IS-A as a class 
of mappings is whether its set-inclusion aspect 
{instances of subclasses are instances of 
superclasses) is simply a side-effect of the IS-A 
constraints or a supplementary relationship. A 
mapping class can also be devised which exibits 
the constraints of the INSTANCE relationship. 
However, this abstract comparison of existing 
structures should not be confused with the 
INSTANCE assertion itself, which is the result uf 
an external recognition process starting from 
sensory features and whose existence is assumed by 
the mapping mechanism. 
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5.0 COMPARISON .IQ.~ SCHEMES 

The only other representation formalism to 
give significant attention to the static and 
seneric exception problems is NETL [Fehlman 79). 
Ita solution is much simpler than ours, being 
based on the insertion of "CANCEL" links in the 
virtual copy hierarchy to cancel inheritance when 
,ieeded. Thia may be considered analogous to a 
mapping mechanism based on differences. There is 
~o need for excuses as NETL neither does include a 
meparate instance hierarchy nor programs. The 
mechanism is defined at a lower level of 
·abstraction than ours (the user is concerned with 
the inheritance process) and is affected by the 
emphasis on retrieval. It does hot offer the 
descriptive facilities of our solution and does 
not enforce any consistency or justification 
requirement. 

The excuse mechanism for dynamic exception 
handling has many points in common with those of 
[Kramer 80) and [Mylopoulos 79). However, it 
differs essentialy with that of [Kramer 80) on the 
question of where control should be returned after 
the completion of the exception handler. We 
require the resumption of the process which raised 
the exception, rather than return control to its 
caller. This makes it easier to ensure that the 
model is not left in an inconsistent state, is 
more efficient and promotes a more natural view of 
abstractions. 

A more logical approach to exceptions has 
recently been proposed. Exceptions are seen as 
entities for which some default inference rule 
does not hold [Reiter 78](e.g. birds fly unless 
we can prove otherwise, for penguins the rule does 
not hold). Systems based on this principle 
maintain justifications for their assertions and 
reevaluate them as new facts are learned, which 
may contradict existing defaults deductions [Doyle 
79). If a satisfactory (non-monotonic) logic can 
be found to characterize these systems, it could 
improve greatly our understanding of the nature of 
exceptions and how to deal with them. 

6.o CONCLUSION 

Some work remains to be done to achieve the 
full potential of the excuse mechanism . It should 
be possible to extend it so as to accomodate 
"structural" exceptions that arise on objects 
shared among many program contexts, which need to 
be propa11;ated along the user hierarchy instea·d of 
the dynamic hierarchy [Levin 77). This would 
involve a better integration of static and dynamic 
exception handling. The side-effects aspect of 
the mapping mechanism also need to be worked out 
in details. 

It is certainly necessary to experiment with 
both mechanisms on a larger scale, to see whether 
t hey are really useful and suggest improvements. 
This would show in particular whether the 
whole-to-part style of object definition (where 
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the object is created before its parts), which is 
necessary to take full advantage of the excuse 
mechanism, is practical . 
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Abstract 

Contexts play an important part in PSN 

(the Procedural Semantic Network 

formalism). This paper discusses some of 

the problems that have been encountered 

with contexts in PSN and gives an informal 

presentation of the current definition of 

contexts in PSN. Particular attention is 

paid in this presentation to the notion of 

inheritance along the context hierarchy 

and its implications. 

1. Introduction 

PSN (the Procedural Semantic Network 

for the formalism ) is a formalism 

representation of knowledge. The basis of 
PSN (a s described in (Levesque 1977] and 

(Levesgue and Mylopoulos 1979)) is the 

notion of a class with four attached 

procedures. These procedures are 
responsible for adding instances to, 

deleting instances fro~ , recognizing 
instances of, and enumerating the 

instances of a class. 

PSN also contains several traditional 

semantic network concepts in addition to 
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this procedural basis. These concepts 

serve in part to impose order on the 

heterarchical nature of the procedures. 

In fact, throughout the remainder of this 

paper the procedural base of PSN may be 

largely ignored since the paper talks 

about these organizational principles, in 

particular contexts. 

The main organizational semantic 

network principles in PSN include the 

INSTANCE-OF relationship, the IS-A 

relationship, and properties of objects 

(also known as the PART-OF relationship). 

The INSTANCE-OF relationship relates an 

object to 

of. The 

the 

IS-A 

classes it is an instance 

relationship relates a 

sub-class to a super-class and thus is 

concerned with the specialization and 

generalization of concepts. Properti~s 
may be associated with any class and 

define the kinds of information that can 

be incorporated into the instances of the 

class and thus are concerned with the 
aggregation of information. All of these 

organizational principles are well 

described in the papers mentioned above 

although an extension to properties has 

been added to PSN and is discussed in 

[Kramer 1980]. 



. . I . , 

One non-standard aspect of PSN is 

that everything in PSN is an object and a 

member of a class. This means that 

classes themselves are members of other 
classes, notably the meta-class "CLASS", 

and thus may have properties as defined by 

"CLASS" (such as cardinality). So in PSN 

a typical object such as "John" is an 
instance of a class, namely "PERSON", 

which is in turn an instance of "CLASS". 
"CLASS" itself must be an instance of a 

class but with a little inspection it 
should be clear that "CLASS" itself is the 

appropriate class thus eliminating the 

need for ever more higher meta-classes. 

2. Contexts 

There is a fourth organizational 

principle in PSN which has been less 

investigated and much less understood than 

the above two. This principle is the 

ability to group objects into contexts, 

much like the contexts of CONNIVER 

[Sussman and McDermott 1972] or the 

partitions of Hendrix's partitioned nets 
[Hendrix 1975, 1979]. Recently a formal 
investigation of the properties of 

contexts in PSN has turned up some 

surprising aspects of contexts as they had 

been developed as well as clarifying many 
points concerning contexts and their 

interaction with the other organizational 

principles of PSN. This resulted in a 
formal definition of contexts [Schneider 

1979]. This paper presents contexts in 

PSN in a much less formal manner than 

[Schneider 1979) and concentrates on 
inheritance between contexts. 

Contexts in PSN are most often used 
to represent alternate views of the 

knowledge base. For example, one context 
could be used to represent the real world. 
This context, perhaps called "reality", 
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would have all the knowledge pertaining to 

the real world. Another context could 

then be used to represent the well known 

alternate world where fairies exist. This 
context, perhaps called "fairy world", 

would have the same information as 

"reality" in most areas but would not 

correspond to "reality" in other areas and 
would have some additional information in 

yet others. 

3. Contexts and Views 

When contexts are considered it no 

longer suffices to think of objects in 
isolation. Instead, it is necessary to 
look at an object as seen in a context, 

such as "John" in "reality" or "FAIRY" in 

"fairy world". It is also possible to 

consider an object in two or more 

different contexts such as "John" in 

"reality" versus "John" in "fairy world". 

In these different views "John" may have 

different properties but the views are 

still views of the same object. 

So far this is fairly 
straightforward. However, in PSN contexts 
are objects (because everything in PSN is 

an object). But objects and thus also 

contexts cannot be considered as objects 
in isolation but only as objects as seen 
in a context. For example, "fairy world" 

as seen in "fairy world" is different from 
"fairy world" as seen in "reality". This 

interaction requires a change in the 

definition of contexts. 

The redefinition of contexts in PSN 
proceeds as follows: First a view in PSN 

is defined to be an object as seen in a 

context. Then a context is defined to be 
a special type of view in which the view 
is an instance of the object "CONTEXT". A 

little inspection of this definition shows 



that there is no way of creating any 
non-infinite views (or contexts) since any 

view must contain another view. This 

corrected by creating a single 

context, the universal context. 

is 

base 

The 

universal context is thus the only view 

(and context) not consisting of an object 

as seen in a context and must form part of 

every view (and context) in PSN. 

This makes it possible to create 

contexts and views of varying complexity. 

For example, the object "John" as seen in 

,the universal context is a perfectly 

ordinary view, essentially corresponding 

to "John" in PSN without contexts. The 

context "reality" in the universal context 

is an ordinary context and "Bill" as seen 

in this context is a view corresponding to 

a view in other approaches to contexts. 

This situation (plus others mentioned 

below ) is illustrated in Figure l.* 

In PSN an object may be part of 

several views (as is "John" in Figure 1) 

and if an object forms a view in a context 

then that object can be referenced in the 

context. Each view of an object may have 

different values for its properties, may 

be an instance of different classes, and 

thus also may have different properties. 

*In each figure the largest box represents 

the universal context and the names each 

represent a view with those names that are 

attached to boxes representing contexts. 
The containment r~lationship in the figure 

represents the 'as seen in' relationship 

between objects and contexts in PSN. Also 

unlabelled single arrows represent the 

instance relationship, unl ~belled double 
arrows represent the IS-A relationship, 

and labelled single arrows represent 

property values with the labels being the 

property names. Property definitions are 

not shown in the figures. 
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The views of "John" in "reality" in the 

universal context and in "fairy world" in 

the universal context in 1 

illustrate these possibilities. 

Figure 

Also an 

object 

context. 

"reality" 

view in 

need not 

(For 

in the 

Figure 1 

form views in every 

example, "Bill" in 

universal context is a 

but "Bill" in the 

universal context is not.) If an object 

does not form a view in a context then it 

cannot be referenced in that context and 

definitely cannot exist in that context. 

This is, of course, also allowed in other 

context mechanisms. 

However, there is no prohibition 

against having more than one view of an 

object being a context. This situation is 

illustrated 
two contexts 

in Figure 

using the 

1 where there are 

object "fairy 

world". The context "fairy world" in 

"reality" in the universal context may be 

quite different from the context "fairy 

world" in the universal context. For 

example, instances of "FAIRY" in "fairy 

world" in the universal context may not be 

able to perform magic whereas instances of 

reality fair world 

PERSON FAIRY 

/ 
John age ) 28 

)-,...__ 
~.t' . .(~DROW 

27( 
~ age John 

Bill 

I fairy 
world 

Figure 1 



·FAIRY" in "fairy world" in 
the universal context may. 
additional ability of this 

"reality" in 

This shows one 
approach to 

contexts over the other, more traditional 
approaches which may be of use in 
deductive mechanisms or natural language 

interfaces that consider the different 
views of an object as being related. 

4. Inheritance in Contexts 

If the contexts "fairy world" in 
"reality" in the universal context and 
"reality" in the universal context were 

rpart of a knowledge base they would 

contain a lot of information not related 

to fairies and thus the two contexts would 
have many objects and much information in 
common. 
context 

This indicates 
should inherit 

that the former 
this shared 

knowledge from the latter. However, not 
all the objects in the latter would be in 
the former and there may be other 
differences between the contexts and thus 
this inheritance should not be strict. 

To facilitate talking about the 

inheritance between contexts in PSN a 
context hierarchy exists in PSN. This 
hierarchy is defined by the following 
rule: If a view of an object in a context 
forms another context then its parent in 
the context hierarchy is the context in 

which it is seen. Thus the parents of 
"reality" in the universal context and of 
"fairy world" in the universal context are 
both the universal context. Further, the 
parent of "fairy world" in "fairy world" 
in "reality" in the universal context is 
"fairy world" in "reality" in the 
universal context and its parent is 

"reality" in the universal context. This 
gives rise to a tree hierarchy where 
inheritance between contexts goes down the 
hierarchy (similar to inheritance between 
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classes down the IS-A hierarchy). 

This inheritance differs from 
inheritance down the IS-A hierarchy in 
several ways. First, the things inherited 
are different. Definitions of properties 
and values of properties are inherited 
down the IS-A hierarchy whereas everything 
in PSN including objects, properties of 
objects, and definitions of properties for 
objects are inherited down the context 
hierarchy. Second, the inheritance down 
the IS-A hierarchy is very strict in some 
aspects: as far as definitions of 
properties go only additions of new 
definitions and specializations of 

existing definitions are allowed from a 

class to a sub-class. Inheritance down 

the context hierarchy is not nearly so 
strict and any change can be made between 
a context and its children in the context 
hierarchy. 

The inheritance proceeds as follows: 
if an object A in context c is a view and 

if B in c is a context then A in Bin c 
will be a view unless explicitly deleted 
by Bin c. The same is true of A being an 
instance of a class inc. The properties 
of A in Bin care defined, as before, to 
be those properties defined in the classes 
of which A in Bin c is an instance and 
the property values for these properties 

are inherited in the same fashion as views 

and instances except that properties are 
single valued so any new value for a 
property will override the inherited one. 

For example, if "John" in the 
universal context is a view and "fairy 
world" in the universal context is a 
context then by context inheritance "John" 
in "fairy world" in the universal context 
is a view. However, this may be 
overridden so that "John" in "fairy world" 
in the universal context is not a view. 



Further, even if it is a view then "John" 

could be an instance of a different class 

in the two contexts, perhaps "PERSON" in 

Jne context and "FAIRY" in the other (as 

in Figure 2). Here it is not necessary 

for "FAIRY" to be an IS - A descendant of 

"PERSON" as would be the case with IS - A 

inheritance. 

with "John" may 

contexts, such 

Other properties associated 

change between the two 

as "John"'s "height", and 

some may in fact disappear or appear, such 

as "John"'s "tribe", if the sets of 

properties defined in "PERSON" and "FAIRY" 

are different. Note that "John"'s "age" 

is not changed in "fairy world" in the 

universal context and thus will be 

inherited from the universal context. Of 

course this is not much different from 

othe r context schemes such as Hendrix's 

(Hendrix 1979) or Fahlman's [Fahlman 

INTELLIGENT BEING 

I life 
PERSON- --------~70 

1 
expectency 

age~ 28 
John-----

~5'6'' 

fair world 

life 
INTELLIGENT-------~200 

BEING expectency 

i 'PERSON 

II life 
FAIRY.---------350 

/ 

expectency 

~5 , i • _ ...._r...__w_o_r;..:l=-;;d 

John~. 
:t::i.be 

DROW 
FAIRY 

Figure 2 
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1979]. 

The situation is more complicated for 

classes because of the interaction with 

IS - A inheritance. Views of classes and 

the IS-A relationship are inherited in the 

same fashion as views of normal objects 

and the instance relationship. The same 

is true for properties of classes but for 

property values there are two possible 

places to inherit from, the IS - A parents 

in the same context and the view of the 

class in the parent context. The solution 

adopted is to inherit from the parent 

context if possible, and only if this 

fails to produce a value inherit from the 

IS - A parents. This reflects the opinion 

that different views of an object are more 

likely to have the same property values 

than a class and its parents in the IS-A 

hierarchy. This situation is illustrated 

in Figure 2 where the "life expectancy" 

for "PERSON" in "fairy world" in the 

universal context is inherited from 

"PERSON" in the universal context and not 

from "INTELLIGENT BEING" in "fairy world" 

in the universal context. 

Property definitions have the same 

problem of where to look in inheritance 

with the extra added problem of the 

strictness of IS-A inheritance of property 

definitions. The solution is to inherit 

as follows: First inherit the property 

definitions from the IS-A parents . Then 

if there are changes to the property 

definitions in the view of the class in 

the parent context, they will modify, but 

only to specialize, the IS-A inherited 

property definitions. Any modifications 

that would violate the IS - A inheritanc l 

rules are not carried out. Finally any 

modifications in the class itself serve to 

override the modifications inherited from 

the parent context as long as they do not 

violate the IS-A inheritance rules. If 



there are property definitions introduced 

in the view in the parent context that are 

not in the IS-A parents then these are 

inherited and can be changed in the class 

itself. These inheritance rules serve to 

retain the strict IS-A inheritance of 

property definitions while allowing 

non-strict inheritance down the context 

hierarchy. Again, this is not much 

different from other context mechanisms, 

at least as far as the context inheritance 

9oes. 

5. Inheritance of Contexts 

The new aspects of this approach 

surface if different views of contexts and 

inheritance of contexts down the context 

hierarchy are considered. In other 

context mechanisms, contexts are second 

class citizens because thPy, as opposed to 

regular objpcts, do not exist as seen in a 

context. 'L;us they cannot have different 

views and cannot be inherited between 

contexts. 

The context mechanism in PSN allows 

both of these situations. For example, 

consider the context "fairy world" in the 

universal context as shown in Figure 2. 

Objects, such as "John", can form views in 

this context. However, "fairy world" is 

an object and so it too can form a view in 

the context "fairy world" in the universal 

context, namely the context "fairy world" 

in "fairy world" in the universal context. 

This cannot be done in other context 

mechanisms and the advantage to doing this 

is that there may well be properties 

attached to "fairy world" in the universal 

context such as cautions that unusual 

things may occur in it and these 

properties will be inherited by "fairy 

world" in "fairy world" in the universal 

context although as with all context 
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inheritance this may be overridden. 

Further, these two contexts are different 

views of the same object and this may be 

of use to deduction mechanisms and natural 

language interfaces. 

Note that context inheritance would 

also create the context "fairy world" in 

"fairy world" in "fairy 

universal context and 

deeper ad infinitum. 

regression of contexts 

problem since at some 

cease to be of interest 

not be explicitly stored. 

more become of interest 

available automatically. 

infinite regression 

world" 

then go 

This 

is not 

in the 

on ever 

infinite 

really a 

point they will 

and so they need 

If at any time 

then they will be 

However, this 

does 

calculating all inheritance 

preclude 

beforehand 

(which is not a good idea in any case). 

Another advantage of this approach to 

contexts is illustrated in Figure 3 where 

one of the views shown represents "FAIRY" 

in "fairy world" in "John's beliefs" in 

the universal context. In this figure 

fairy world 

FAIRY 

John's beliefs Bill's beliefs 

fairy world fairv world 

FAIRY FAIRY 

Figure 3 



there are three views of the object "fairy 

world", namely "fairy world" in the 

universal context, "fairy world" in 

•John's beliefs" in the universal context, 

and "fairy world" in "Bill's beliefs" in 

the universal context and all three of 

these views are, in fact, contexts. Now, 

the last two of these inherit from the 

first because properties of objects 

including the views in a context are 
inherited down the context hierarchy (from 

the universal context to "John's beliefs" 
in the universal context and "Bill's 

oeliefs" in the universal context). 

the two lower (in the diagram) views 

Thus 

of 

the object "FAIRY" are inherited from the 

upper view and unless explicit changes are 

made will have the same properties as the 

upper view. 

Even if explicit changes are made to 

the lower views they will inherit the 

unchanged information from the upper view 

and will be generally the same as the 

other lower view (unless massive changes 

are made). This cannot be done by using a 

context that is a sub-context of both 
"John's beliefs" and "Bill's beliefs" 

since the sub- context , method can only 

represent situations where some knowledge 

is exactly the same in two contexts. 

This inheritance of contexts does 

cause some complications to context 

inheritance because it introduces more 

than one context that can be inherited 

from. The context "fairy world" in 
"John's beliefs" in the universal context 

can inherit views and 
.from "John's beliefs" 

context (its parent 

other information 

in the universal 

in the context 

~ierarchy) and also from "fairy world" in 

the universal context (a slightly less 
involved view of itself). Both of these 

are reasonable sources for inheritance. 
The solution is to inherit information 
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from both places. This causes problems if 

the two sources are contradictory, such as 

two different values for a property, and 

in these cases no information would be 

inherited. The actual resolution of these 

problems 

cases and 

is tedious 

will not 

because of the many 

be discussed here. 

Note, however, that the simple presence of 

information versus its absence is not a 

will problem 

simply 

present. 

because the 

be inherited 

This 

information 

from 
more 

where it is 
complicated 

inheritance mechanism still retains the 

non-strict nature of context inheritance 

by allowing all context inherited 

information to be overridden while also 

retaining the IS-A inheritance 

restrictions. 

6. Conclusion 

The main contribution of contexts in 

PSN is the formation of the context 

hierarchy which provides a fourth 

organizational principle for structuring 

knowledge in PSN. Unfortunately, contexts 

and the context hierarchy have been less 
understood than they should have been. 

The discussion in this paper of some of 

the aspects of the formal definition of 

PSN contexts given in [Schneider 1979] 

will help to alleviate this problem. 

The most significant aspects of the 

treatment of contexts proposed here are 

the additional possibilities inherent in 

it over more traditional treatments. 

These come about because contexts are not 

second class citizens in PSN. Instead, 

they are formed from objects just like any 

other view in a PSN knowledge base. Thus 

they are instances of classes (in fact 

they are defined as the instances of the 
class "CONTEXT") and can have properties 
and participate in relationships just like 



other views in PSN. This is achieved in 
other systems, if at all, by extra 

~achinery, such as associating contexts 
with super-nodes (as in Hendrix's 

~artitioned Networks [Hendrix 1979]). 

Also the objects which form contexts 
may form different views each of which may 

be a context. These different contexts 
are still views of the same object just as 
a regular object may have several 

different views. This allows contexts, 

along with regular views, to be inherited 

down the context hierarchy. This 

inheritance, although it causes some 

complications in inheritance between 

contexts, allows large chunks of knowledge 
to be inherited and shared between 
contexts with modifications to portions of ' 
it still possible while retaining its 

ability to be referenced as an entity, 

something no other context formulation 

allows. 

There is still work remaining to be 
done on contexts in PSN. Their formal 

definition does not take into account the 
procedural 

extended 
aspects of PSN and needs to be 

in this direction hopefully 

leading to a complete formal definition of 
PSN. Also, contexts should be integrated 

into the existing implementation of PSN at 

the University o( Toronto (as described in 

[Kramer 1980]). However, even with these 
shortcomings contexts have much to add to 
PSN. 
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Ab;,tract 

The procedural semantic network (PSN) 
formalism for representing knowledge has as a 
basic concept the use of programs to define the 
semantics of classes of objects. This paper 
investigates a means of representing programs 
based on work done by the author ([Kramer 1979), 
[Kramer 1980)). Included as an important part of 
representing programs is an extension of PSN 
which provides a means for categorizing the 
properties of objects. 

,. Introduction 

The representation of programs as objects of 
the knowledge base has always been an important 
part of the procedural semantic network (PSN) 
formalism ( [Levesque 1977), [Levesque and 
Mylopoulos 1979), [Schneider 1978a), [Schneider 
197Bb)). This work has been continued in the 
development of the language TAXIS ([Mylopoulos et 
al. 1978), [Wong 1980)) which embodies many of 
the concepts of PSN although its emphasis is on 
the design of interactive information systems 
rather than knowledge bases. The behaviour of 
programs in TAXIS is used in [Kramer 1980) and in 
this paper as a new basis for representing 
programs in PSN. The contributions of TAXIS are 
a new mechanism for associating the statements of 
a program with the program and a general 
exception handling mechanism. 

The new proposals for the treatment of 
programs in PSN are discussed in more detail in 
[Kramer 1980). This discussion includes some 
work on the handling of exceptions in the dynamic 
environment of programs. Exception handling in 
PSN, however, involves more than the correction 
of such exceptions. A different kind of 
exception is that which occurs in the maintenance 
of an object in the knowledge base which fails to 
meet some restrictions. For more details on the 
handling of both kinds of exc~~ tions the reader 
is referred tc [Lesperance 1980). 

2. Overview S2!. ~ 

Programs enter into PSN 
describing the behaviour of 

as entities 
classes and 
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relations. Every object is an in;,tance of a 
~; the programs of the class specify how an 
object might be made such an instance, how an 
instance should be removed from the class, a test 
for membership in the class, and a mechanism for 
fetching all instances of the class. Binary 
relations are represented by classes known as 
relation;,. The instances of a relation are 
assertions that pairs of objects belong to the 
relation. The four programs for a relation add 
assertions, remove assertions, test that a pair 
of objects is a member of the relation, and given 
an object "x", fetch all objects "Y" for which an 
assertion of the relation between "x" and "Y" 
holds. 

In addition to the basic mechanism for 
describing their behaviour, classes are provided 
with a means of defining the properties which 
instances may have. For example, one might 
define the class "PERSON" whose instances are 
people, and include in the definition a 
description of the property "eye colour". 
Instances of the class may then have values for 
these properties; thus the object "John" might 
have the value "blue" for the property "eye 
colour". This mechanism is similar to the binary 
relations. For example, an alternative to 
defining "eye colour" as a property in "PERSON", 
one could define a relation "EYE COLOUR" whose 
domain is "PERSON" and range is "COLOUR". The 
former mechanism is used for properties which the 
designer of the knowledge base considers to be 
definitional: properties which characterize the 
objects. For example, one might consider a 
person's social insurance number and sex as 
definitional properties. Once assigned, the 
values of such properties may not be changed. 

The four programs associated with a class or 
relation are attached as property values of that 
class or relation. The definitions of these 
properties are provided in the classes "CLASS" 
and "RELATION". Thus "CLASS" contains 
definitions of the properties "to add", "to 
remove", "to test", and "to fetch" and "RELATION~ 
provides similar defini tlons for relations. 
Classes such as "CLASS" and "RELATION~ which have 
classes as instances are known as meta¢lasses. 

The definition of a property in a class is 
represented by an object associated with the 
class . Such an object is called a .sl.Qt and is 
said to exist in a class. Slots, being objects, 



will themselves have property values. These 
values serve to provide the constraints on the 
property values of instances of the class. An 
important exam~.e is the "type" property of a 
slot. A property value of an instance of a class 
must be an instance of every member of the set of 
classes which is the type of the corresponding 
slot. If the type of the slot "eye colour" in 
the above example were "COLOUR", only colours may 
be the corresponding property values, and for 
·"John" to have "eye colour" "blue" it is required 
that "blue" be an instance of "COLOUR". The 
exact mechanism used for defining the properties 
of slots is one of the concerns of this paper. 

In continuing the example, there may arise a 
need to discuss more specialized classes of 
colours. For example, in discussing eye colours 
one might wish to distinguish a class of brown 
eye colours such as brown and hazel from a class 
of blue eye colours. One would then use the 
classes "BROWN COLOURS" and "BLUE COLOURS". It 
is however desirable that any instance of these 
classes remains an instance of the class 
"COLOUR". This specialization can be represented 
through the PSN supplied relation IS-A. If IS-A 
holds between "BROWN COLOURS" . end "COLOUR", 
"BROWN COLOURS" is a subclass or IS-A child of 
"COLOUR" and "COLOUR" is a superclass of "BROWN 
COLOURS". Now, if "brown" is an instance of the 
subclass, it is automatically an instance of the 
superclass. 

It is the responsibility of the four 
programs associated with the classes to insure 
~hat IS-A behaves in the proper manner. If "B" 
!ls a subclass of "A", the program which adds an 
instance to "B" must also make the object an 
instance of "A". In other words, once the add 
program of "B" has been run with an object "b" as 
a parameter, the test program of "A" must 
recognize this object as an instance of "A", the 
fetch program should fetch it, and the remove 
program should remove from "A" (and at the same 
time from "B"). The representation of programs 
ln PSN provides a relationship between programs 
which constrains the assignment of programs to 
subclasses of a class. When this relation holds 
between the programs "p" and "q" where "q" is the 
add program for "A", "P" will be a valid add 
program for "B". 

Another aspect of IS-A which is relevant 
here is the inheritance of structure (the set of 
slots in a class). When one defines a class 
"BROWN EYED PERSON" as a subclass of "PERSON", 
the slot "eye colour" is automatically contained 
in the new class. The properties of the slot may 
be modified in this process of inherftance. In 
the example, one would constrain the type of the 
"eye colour" to be "BROWN COLOUR" so that all 
instances of the new class may have only eye 
colours which are instances of "BROWN COLOUR". 
In general, when a property of a slot ia modified 
in inheritance, the new value must be an IS-A 
descendant of the inherited value (as "BROWN 
COLOUR" is a subclass of "COLOUR"). 

80 

3. Programs 

Each PSN program consists of three groups of 
sto.tements: the preregui111tes, the ~. and the 
returns statement. Thia division of programs 
into parts is intended to simplify the writing 
and understanding of programs. In earlier 
versions of PSN, a fourth group of statements was 
included to handle cases where failure occurred 
in the execution of the body. This has been 
replaced by a more general exception handling 
mechanism based on that of TAXIS. TAXIS programs 
too include a fourth group of statements called 
results or~ conditions which have not yet 
been incorporated into PSN. 

The execution of a program begins by the 
evaluation of the prerequisites. Should any of 
these not return true the exception handling 
mechanism is invoked. Thia involves the creation 
of an object called an exception which describes 
the circumstances of the failure. The process 
which failed is terminated. The calling program 
may provide a procedure to handle this exception. 
The value returned by this exception handler is 
used in place of the value which the failed 
program might have returned. Thus a program for 
division might have as a prerequisite a check 
that the divisor is not zero. If this 
prerequisite fails, the calling routine could 
replace the division by a program which simply 
returns an arbitrary value, for example zero. 

Once the prerequisites have succeeded, the 
statements of the body are executed. These 
statements perform the major functions of the 
program, possibly modifying the knowledge base. 
Once the statements of the body have all been 
executed, the expression in the final group is 
executed returning the value which is to be 
returned by the program. 

The statements of the body of the program 
may cause changes in the contents of the 
knowledge base. Such changes fall into two 
categories: the first is the set of changes 
caused by the interpreter as it executes the 
program; the second is the set of changes a 
statement is intended to perform. The first 
category of changes is generally not permanent: 
that is, when the execution of the program is 
complete, the state of the knowledge base will be 
unchanged except for the changes in the second 
category. The second category of changes is 
known as the set of .11.1.de. effects of the program. 
As an example, one side effect of an add program 
will generally be a link joining an object to a 
class. 

Not all of the side effects of a statement 
in the body remain when the program is completed. 
It is possible, for example, that a statement 
near the beginning of execution will assert a 
relation between two objects and that a later 
statement will undo this assertion. The~ .sJ..de. 
effects of a program are those side effects which 
remain when execution is complete. In other 
words, the set of net side effects of a program 



ie the set of differences between the knowledge 
base before execution and the knowledge base 
·after execution. A function is a program which 
has no net side effects under any conditions (for 
.any set of parameters in any state of the 
knowledge base). Functions are the only programs 
Mhich may be invoked when the returns statement 
of a program is being executed. The 
prerequisites must also invoke only functions. 
·Thus the side effects of any program must be 
performed by the statements of the body, 

The side effects of a program are further 
constrained by the fact that all of the 
statements in any group, that is prerequisites or 
body, are to be executed simultaneously. Thus if 
more than one prerequisite fails, a number of 
exceptions will be raised. In the case of the 
body, this implies that the side effects of one 
statement may not depend on those of another. 
For example, one may not include two statements 
~here the first creates an object and the second 
asserts that .this object participates in some 
relation because one cannot guarantee that the 
new object exists when the assertion is 
attempted. This restriction will become 
significant when the specialization of programs 
is considered. 

4. Programs 11.s. Classes 

When representing programs in . PSN one would 
like to use the tools for organizing knowledge 
already existing in the formalism. Thus the 
relation representing specialization of programs 
tecomes lS-A And clRsses represent programs. By 
associating the statements of a program with the 
slots of a class, the existing inheritance 
mechanisms provide restrictions on the 
epecialized programs. Also, using classes as 
programs allows the use of instances of these 
classes to represent activations of a the 
programs. Such instances of programs are known 
as processe;i. 

Consider as an example a program which will 
compute the reciprocal of its argument. It will 
have a parameter, say "x", which is a number, a 
prerequisite which checks that "x" is not zero, 
and a returns statement which divides one by "x". 
This program can be represented in PSN as follows 
(the details will be explained as the text 
develops the representation): 

(invert INSTANCE-OF PROGRAM 
STRUCTURE 

(x INSTANCE-OF parameters 
PROPERTY-VALUES type NUMBER) 

(not-equal-zero 
INSTANCE-OF prerequt•ites 
PRO~ERTY-VALUES 

eval 
(#1-not-equal 

INSTANCE-OF PROGRAM FORM 
IS.::A not-equal 
STRUCTURE 

(left 
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INSTANCE-OF 
action_parameters 
PROPERTY-VALUES eval xl 

(right 
INSTANCE-OF 
quote_parameters 
PROPERTY-VALUES quote Oll 

exception [new ZERO-DIVIDE)) 
(divide-arg INSTANCE-OF returns 

PROPERTY-VALUES 
eval 
(#1-divide 

INSTANCE-OF FORM PROGRAM 
.I.S.:A divide 
STRUCTURE 

(lert-d 
INSTANCE-OF 
quote_parameters 
PROPERTY-VALUES quote 1) 

(right-d 
INSTANCE-OF 
eval_parameter 
PROPERTY-VALUES eval 
x )))). 

The notation used to illustrate the program 
represents an object by a list enclosed in 
parentheses or by an external llllJlle. which acts as 
a reference to the object. In the list 
representation of an object, the first string is 
the external name which will be used to refer to 
that object. The remainder of the list consists 
of keywords followed by references to objects. 
The INSTANCE-OF keyword is followed by a list of 
the classes of which the object is an instance; 
for example, "invert" is an instance of the 
metaclass "PROGRAM". The .I.S.:A keyword is 
followed by the classes of which a class is a 
subclass; in the example, "#1-not-equal" is a 
subclass of "not-equal". The STRUCTURE keyword 
is followed by a list of objects contained in the 
structure of a class. The structure of "invert" 
contains the slots "x", "not-equal-zero", and 
"di vide-args". Finally, the keyword 
PROPERTY-VALUES precedes a list of pairs of 
objects of which the first object is a slot and 
the second the corresponding property value. In 
the example the object "divide-ergs" has as its 
"eval" property value the object "#1-divide". 

The illustrations of objects will in general 
include only relevant and non-redundant detail. 
For example "PROGRAM" is a subclass of "CLASS", 
therefore "invert" is an instance of "CLASS", but 
only "PROGRAM" is mentioned in the INSTANCE-OF 
list. In the case of structure, inherited 
objects are shown only if their property values 
differ from those they have in an IS-A parent. 

The nature of a PSN program is determined by 
its slots and their properties. One role that 
any slot in a program plays is that of a location 
for storing a value. The value stored for a 
given slot in a given activation is the property 
value bound to the process representing the 
activation. In the language of PSN, · the slot 
plays the role or a variable, although it is not 
truly variable in that a property value of an 



object, once bound, may never be changed. This 
may at first appear to be a severe restriction 
for programs requiring iteration. It is, 
however, possible to implement iterative control 
structures using recursion. Such an 
implementation of a FOR loop is illustrated in 
[Kramer 1980). 

The parameter "x" of the program "invert" 
illustrates the use of a PSN variable. The 
object "fl-divide" is an expression in the 
program; the use of "x" as the "eval" property 
value of the slot "right-d" indicates that the 
value of the property "x" will be used in the 
division. The variable binding mechanism which 
results is static: the use of "x" in the 
expression "fl-divide" will always mean "x" in 
the program "invert". 

Such a reference to a variable in an 
expression of a program may be to any dot in any 
program in the knowledge base. The interpreter 
will have to decide from which instance of the 
program containing the slot the binding should be 
taken. This situation is similar to that 
occurring in recursion in other programming 
languages. The use of a variable "X" in a 
recursive ALGOL program refers to the value 
stored in the most recent activation of the 
procedure. The PSN mechanism provides the same 
effect. 

What is required is a mechanism for 
maintaining a record of the order of activation 
of programs. This is done through assertions of 
the relation "dynamic" between processes. For 
example, ·the execution of "invert" will be 
represented by a process, say "invertl". At some 
point in the execution, the program "divide" will 
be invoked. An instance of "divide", say 
"divide 1" will be created and linked to "invert 1" 
with an assertion of "dynamic". Now, when a slot 
is referenced as a variable the interpreter 
searches the chain of "dynamic" links for the 
first process that is an instance of a program 
containing that slot. Thus, when the reference 
to "x" occurs in 11 divide1", the interpreter will 
search along the "dynamic" assertions starting at 
"dividel". Since "invertl" is an instance of 
"invert" which is the class containing "x", the 
value of the variable is associated with 
"invertl" . 

The second role played by slots in a program 
is that of statements of the program. A 
statement consists of a slot and an associated 
I.Q.c.m, a PSN object which represents an 
expression. Examples of forms in "invert" are 
"fl-not-equal" and "fl-divide". When the 
statement is executed, the value resulting from 
the execution of the form becomes the value of 
the slot in its role as a variable. For example, 
if the process "invertl" had value "5" for the 
property "x", it would receive value "true" for 
the property "not-equal - zero" after the execution 
of the form "fl-not-equal" (five does not equal 
zero). 

The expressions associated with the slots in 
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programs are objects which provide a value, 
either as calls to other programs as in the slot 
"not- equal-zero", or as references to the values 
of other slots as in the slot "left" of 
"fl-not-equal", When used as a call to another 
program, the form provides a mapping between the 
parameters of the program to be called and 
variables in the scope of the calling programs 
(or expressions in such variables). In 
programming languages this binding is usually 
represented positionally. For example, in ALGOL 
a procedure of two arguments called "FOO" is 
called by the form "FOO(X,Y)" where "X" and "Y" 
are variables known in the oalling program. The 
values are bound to the parameters appearing in 
the same position in the definition of "FOO". 
PSN, however, performs this binding by including 
explicit links from the parameters of a copy of 
the program to variables or other forms. This 
copy of the program is an instance of the class 
"FORM" and at the same time an IS-A child of the 
program. It therefore inherits the structure of 
the program, and in particular the parameters 
slots of the program. The bindings of the 
parameters are represented by "eval" property 
values of these slots. 

Often in a form one will wish to use a 
constant instead of another expression. In such 
cases, the value provided for a parameters slot 
is taken, not from an "eval" property value, but 
from a "quote" property value. Thus there are 
two ways of binding the parameters of a program 
to produce a form. A PSN form is either a slot 
or a subclass of a program whose parameters are 
bound by either an "eval" property to another 
form or by a "quote" property to any object. In 
the example, the "quote" property is used in the 
form "fl-not-equal" to bind the parameter "right" 
to the value "0". 

5. Metastcuctuce 

When the various constructs in a program are 
represented by slots there must be a mechanism 
for distinguishing the functions of these 
objects. The interpreter must be able to decide 
whether a given slot is, say, a prerequisite or a 
parameter. Also, it will be necessary to fetch 
all the prerequisites or all the slots of the 
body. In addition, a mechanism is required for 
associating expressions with slots. The 
metastructure concept is introduced to enable 
these operations. 

The objects in the structure of a class are 
categorised because they must be instances of 
classes. These classes are contained in the 
structures of metaclasses. If "A" is a class and 
B is the set of metaclasses of which it is an 
instance, then each object in the structure of 
"A" must be an instance of some object in the 
structure of some member of B. The metaclasses 
therefore organize the structure of the class. 
For example, the metaclass "PROGRAM" contains the 
objects "prerequisites", "body", and "returns", 
therefore the slots of a program may be 



distinguished by the classes of which they are 
instances. In the program "invert" of the 
previous section the slot "not-equal-zero" is an 
instance of "prerequisites" and the slot 
"divide-arg" is an instance of "returns". 
Objects in a metaclass whose instances are slots 
are known as metaslots and the subset of the 
structure containing metaslots is called the 
metastrycture of the class. 

Since they have instances, metaslots must be 
classes. As classes, they may define the 
properties of their instances. The prime example 
of a metaslot in this role is the class "slot" 
which has all slots as instances. This class is 
a part of the metastructure of the metaclass 
"CLASS" thereby allowing any class to contain 
slots. The structure of "slot" consists of 
definitions for the type, default, and 
restriction properties of slots. It is 
interesting to note that the structure of "slot" 
·is made of instances of itself. This works 
because it is an instance of "CLASS" as well as 
being a member of the structure of "CLASS". 

The class "slot" is important in PSN because 
only instances of this object define properties 
of instances of classes. Thus any metaslot must 
be · a subclass of "slot". One reason for 
specializing "slot" is to provide more properties 
to a class of slots. For example, the metaclass 
"PROGRAM" contains a met as lot called 
"action_slot" which defines a new property called 
'"eval" . The value of the "eval" property of a 
slot is the associated expression necessary in 
the definition of programs. Since "action_slot" 
is a subclass of slot, any instance of the 
metaslot will have all of the properties of 
regular slots. 

In inheritance, all elements of a structure 
are treated uniformly. Slots and metaslots are 
inherited in the same way. If "8" is a subclass 
of "A" and C is the set of classes of which "8" 
is an instance, 11 8" will inherit all objects in 
the structure of "A" which are instances of some 
object in the structure of some member of C. 
When objects in a structure are inherited, 
property values may be modified subject to the 
rule that the new values must be IS-A descendants 
of the old. (Where the values are not classes 
they must remain unchanged.) 

A new aspect of inheritance is that the 
inherited object may be made an instance of more 
classes so long as it remains an instance of each 
class of which it was an instance in the IS-A 
parent. For example, the parameters of certain 
subclasses of programs may be of one of two types 
represented by the subclasses "a~tion_parameters" 
and "quote_parameters" of the metaslot 
"parameters". When a program is specializ.ed, 
parameters slots which are simply "parameters" in 
the IS - A parent may become instances of one or 
the other subclasses of "parameters". This is 
illustrated by · the slot "left" of the form 
"#1 - not-equal" as shown in the example of section 
four. In the program "not-equal" from which it 
is inherited, the slot would be an instance of 
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the metaslot "parameters". In the form 
"#1-not- equal" it is an ins~ance of 
"action_parameters". The specialized slot will 
however also remain an instance of "parameters" 
and thus satisfy the rules of inheritance. 

The class "slot" in particular, and 
metaslots in general, must be instances of 
objects in the structures of higher levels of 
classes. The class "METACLASS" containing the 
metaclass "metaslot" is introduced for this 
purpose. "METACLASS" is an instance of itself, 
as is "metaslot". In this way one avoids the 
introduction of an endless chain of class es each 
providing the means for the definition of 
structure in its instances. "metaslot" is an 
instance of an element of the structure 
"metaslot" - -- of a class --- "METACLASS" --- of 
which its containing class is an instance. 
"METACLASS" is the class of all metaclasses and 
"metaslot" the class of all metaslots. However, 
an instance of "METACLASS" is a true metaclass 
only if it is a subclass of "CLASS", and 
similarily, an instance of "metaslot" must be a 
subclass of "metaslot" to be a true metaslot. 

In many cases it will be desirable to limit 
the number of instances of a given metaslot in a 
class by specifying upper and lower bounds on 
this number. For example, programs may have only 
one slot whose associated expression which 
computes the value to be returned. PSN 
introduces the slot called "interval" to the 
class "metaslot", ("metaslot" may have slots 
because it is itself a class and metaclass.) The 
interval of a metaslot is an ordered pair of 
numbers which specify the minimum and maximum 
number of that kind of slot which may appear in a 
class. This pair is used by the add program of 
"CLASS" as the last operation: for each metaslot 
in each parent class it will fetch the instances 
of the metaslot in the newly created object and 
check that the number of such instances falls in 
the interval of the metaslot. The metaslot 
"slot" has an interval [O,•) where the • 
represents infinity meaning that any class may 
have any number of slots. 

One can now discuss how the various aspects 
of programs can be represented as slots. All 
programs will be instances of the metaclass 
"PROGRAM" which has . a metastructure describing 
the various parts. Hence there are metaslots 
called "parameters", "prerequisites", "body", and 
"returns". Any slots which are not instances of 
these metaslots may be used as local variables. 
The metaslots now provide the mechanism for 
distinguishing the purpose of the slots of a 
program. For example, if the interpreter needs 
the prerequisites of a program it can search tPe 
set of slots making a list of all those which are 
instances of the metaslot "prerequisites". 

An earlier example showed the definition of 
the property "eval" which is used for associating 
expressions with slots. This definition is 
contained in the metaslot "action_slot" in the 
metaclass "PROGRAM". The various categories of 
executable slots acquire this property because 
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the metaslots "body", "prerequisites•, and 
"returns" are subclasses of "action_slot", 
inheriting its structure. Two other special 
properties are defined for executable slots in 
:the same way. These are the "exception" property 
which is an expression which may be evaluated to 
create an exception should evaluation of the slot 
fail, and an "exception_action" property which 
specifies exception handlers to be used should an 
;exception be created. 

In p:eneral a program mAy have an arbitrary 
number of statements in each class. Hence the 
intervals for the parameters, prerequisites, and 
body are [O,•). However, the "returns" slot must 
be unique, so the interval for "returns" is [1,1 ) 
so that a value to be r.eturned is always 
computed. 

6. Specialization 

A primary reason for representing programs 
as classes is the consequent ability to 
specialize programs through the use of IS-A. 
This allows uniform treatment of the inheritance 
of property values between IS-A related classes. 
In general, the property values of a subclass 
should be IS-A descendants of the corresponding 
property values of the superclass. Since 
programs are property values of classes, the use 
of IS-A is clearly indicated. 

The structural constraints imposed by IS-A 
on related programs are however not sufficient to 
:insure that the four programs of a subclass act 
~orrectly with respect to IS-A. It is necessary 
to consider programs in terms of their side 
effects and the values returned. 

A first consideration is the add program of 
a class. An object is made an instance of a 
class through the side effects of the add program 
of the class. If a subclass of this class has an 
add program whose net side effects include those 
of the original add program, any object of the 
subclass must surely be an instance of the 
superclass. Thus one constraint on the 
specialization of programs is that the net side 
effects of the specialization include the net 
side effects of the original. 

The structural 
inheritance combined 

constraint 
with the 

of IS-A 
simultaneous 

execution of body slots goes a long way towards 
this goal. Any new slot added in inheritance may 
not undo the side effects of an inherited slot 
because one cannot be sure that the new action 
will be performed after the inherited action in 
any execution of the program. One cannot remove 
en object from a class before it has been made an 
instance of the class. 

The net side effects of an inherited program 
can, however, exclude some of those inherited 
because there exists in PSN a way of causing 
forms to be executed sequentially. This is done 
through the use of the program "BEGIN". This 
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program takes two arguments called "arg1" and 
"arg2" of types "OBJECT" (that is any object) and 
"FORM" respectively. Evaluation is simple: if 
the second parameter has aa value the object 
"NULL_FORM", the program returns the value of the 
first parameter, otherwise it applies the 
interpreter to the value of "arg2". The value 
returned in the latter case is the result of the 
evaluation of the form. If a chain of forms 
calling "BEGIN" is formed with the first 
parameter of each form having as an "eval" 
property a form and the second parameter having 
as a "quote" property value the next subclass of 
"BEGIN", one has a chain of forms which will be 
executed sequentially. The object 

(begin-chain 
INSTANCE-OF FORM PROGRAM 
lS.::A BEGIN 
STRUCTURE 

(arg1 
INSTANCE-OF action_parameters 
PROPERTY-VALUES eval F1) 

(arg2 
INSTANCE-OF quote_parameters 
PROPERTY-VALUES 

quote 
(begin-chain2 

INSTANCE-OF FORM PROGRAM 
lS.::A BEGIN 
STRUCTURE 

(arg1 
INSTANCE-OF 
action_parameters 
PROPERTY-VALUES eval F2 ) 

(arg2 
INSTANCE-OF 
quote_parameters 
PROPERTY-VALUES quote 
NULL_FORM)))) 

for example, is a form which calls "BEGIN" in 
which the form "F1" will always be executed 
before the form "F2". This results because the 
execution sequence begins by the creation of an 
instance of "begin-chain" for which parameter 
values are supplied by evaluating the value of 
"arg1" thus evaluating "F1", and taking the value 
of "arg2" as is. "F2" is evaluated only when the 
interpreter is applied to "begin-chain2" after it 
is discovered that the value of "arg2" is not 
"NULL_FORM". 

When inheriting such "BEGIN" structures, one 
may have a problem with side effects. Any form 
may be a subclass of "NULLJORM" .(because it has 
no structure). Thus one can modify an inherited 
"BEGIN" chain by adding more calls to "BEGIN" at 
the end because any form (eg. a call to "BEGIN" ) 
can be a subclass of "NULLJORM". Thus the 
structural IS-A constraints will be satisfied. 
However these additional forms will always be 
executed after the inherited forms in the same 
"BEGIN" chain and therefore may undo the side 
effects intended by the inherited forms. For 
example, a valid IS-A descendant of "begin-chain" 
is represented by 



(subclass-of-begin-chain 
INSTANCE-OF FORM PROGRAM 
lS.=A begin-chain 
STRUCTURE 

(arg2 
INSTANCE-OF quote_parameters 
PROPERTY-VALUES 

quote 
(subclass-of-begin-chain2 

INSTANCE-OF FORM PROGRAM 
IS..:A. begin-chain2 
STRUCTURE 

(arg2 
INSTANCE-OF 
quote_parameters 
PROPERTY-VALUES 

quote F3). 

The IS-A constraints are satisfied in 
"subclass-of-begin-chain2" because the only 
change is a modification to a property value of 
"arg2" in which the new value, "F3", is an IS-A 
descendant of the old value. The new form "F3" 
will always be executed after "F1" and "F2" and 
therefore may with certainty undo some side 
effects performed by the original forms. 

The PSN solution to this problem is to 
provide an additional constraint on the use of 
IS-A for specializing programs. IS-A may hold 
between two programs only if in any possible 
knowledge base the set of net side effects 
produced by the specialization must contain the 
set of net side effects which would be produced 
by the IS-A parent if run with the same 
parameters. 

A final constraint on the use of IS-A for 
:programs results from consideration of the values 
returned by the programs. In particular, the 
.results of test programs are interesting. If 
class "B" is a specialization of class "A", and 
"Pb" and "Pa" are the respective test programs, 
one finds that if "Pb" returns true, "Pa" mu.st 
return true because an instance of "B" is always 
an instance of "A". However, "Pa" may return 
true for an instance of "A" which is not an 
instance of "B". The relation between the values 
re turned is logical implication: the value 
returned by "Pb" implies the value returned by 
"Pa". Now nothing in the structure of programs 
obviously relates the values returned. 
Therefore, a program "P2" may only be a 
specialization of "P1" if, when returning Boolean 
values under identical conditions, the result of 
"P2" implies that of "P1" and when not returning 
Boolean values, the results of the two programs 
under identical conditions are identical. 

The two extra conditions on programs cannot 
be tested in a knowledge base Jystem. However, 
i f an effort is made to minimi ~e the changes to a 
"returns" slot and to avoid adding statements 
causing side effects to "BEGIN" chains, it should 
be possible to write programs for which IS-A may 
.properly be asserted. 
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7. Conclusion 

The representation of progr ams as objects in 
the PSN formalism has several useful 
consequences. Most important is the interaction 
with the IS-A hierarchy. Programs themselves 
participate in a strictly controlled IS-A 
relationship which constrains the programs which 
play the various roles in the definition of a 
class in a way that insures that classes related 
by IS-A behave in the appropriate manner. In 
addition, the inheritance resulting from IS-A and 
the separation of programs into separately 
inheritable statements provide a powerful and 
flexible programming tool. In specializing 
programs one may add and modify parts of a 
program and automatically inherit the unchanged 
parts. 

The representation of programs as objects 
within the formalism allows the manipulation of 
programs by other programs. One can therefore 
write programs which create or modify programs, 
and, as in LISP, one can write an interpreter for 
the formalism as such a program. The explicit 
representation of program activations provides 
similar flexibility. Programs may themselves 
alter the flow of control to produce back 
tracking and concurrent processes through 
manipulation of the assertions of the relation 
"dynamic". 

A final result is the introduction of 
metastructure. Metastructure provides a means of 
organizing and constraining the slots in the 
structures of classes. This has found immediate 
use in organizing the slots of a program to 
provide the different functional divisions. It 
is anticipated that metastructure may find uses 
in other representation formalisms. 
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Abstract 

This paper is concerned with content-oriented 
retrieval of Information from a potentially very 
large semantic net, such as would be needed to 
support a natural language system with an 
unrestricted discourse domain. Spec if ica I ly. the 
paper focuses on three issues. The first is the 
organization of propositions embedded within modal 
opera tors such as propos i tiona 1 attitudes and story·· 
operators. A subnet structure is described which 
permits recursive embedding of various "conceptions 
of the world", and a previously developed topical 
access mechanism is extended to operate within this 
structure. The second is the associative access1nq 
of concepts within subnets accord ing to their type. 
The third is the design of data structures and 
mechanisms for the inheritance of parts 
relationships from generic to lmorei particular 
concepts. The proposed methods have been 
implemented and their effectiveness demonstrated 
with the aid of a query system. 

1. Introduction 

Our long-range objective is the design of an 
Eng li sh conversational system with a theoretica ll y 
unlimited domain of discourse. Such a system must 
be able to store a very l arge knowledge base. and to 
use the stored knowledge without succumb ing to 
combinatorial catastrophe during routine inferencing 
In support of l anguage comprehension, consistency 
checking, and simple question answering. 

Consequent ly we have concentrated our recent 
efforts on the design of a semantic net organization 
permitting fast, content-d irected insertion and 
access of concepts end propositions in an 
arbitrari ly large net. The methods we have 
developed ere more than "book-keeping" methods. 
Because the insertion and retrieval mechanisms are 
sensitive to conceptua l content and utilize an 
Inheritance scheme , they rapidly estab li sh logica l 
connections which would ordinarily require search 
and nontr iv fal inference. Thus they should go a 
long way towards "keeping the lid on" combinatoria l 
exp losions. 

In pr·evious work on our system, Goebel 11977) 
Implemented a net structure with the expressive 
power of higher-order modal logic , and added 
taxonomic structures and algorithms for topic· 
orienten Insertion and retrieva l of propositions. 
traversal of "topic access ske letons" enabled 
selective retrieva l of exactly those proposition~ 
about a giv£>n concept I such as "Clyde" or "zebra'·) 
which pertain to a more or less specific topic (such 
as "colouring" or "appearance"), An ear li er version 
of the system , without a topical access structure 
but with a simple English front end had been built 
by Cercone ( 1975 ). These connected eftorts are 
motivated, sunmarized and extended conceptually in 
Schubert et a l . ( 1979 1. The recent changes and 
additions to the system are fully described in 
Covington ( 1980) . 

The first of the followir- sections (Sec . 2 1 
out I i nes the net f orma I ism and t, ,e mod a I c l a use form 
In which propositions are currently represented. 
Maximal "structure sharing" is used to economize 
storage and to simplify the recognition of logical 

• This research was supported in part by Operating 
Grant AB818 of the Natural Sciences and Engineering 
Research Council of Canada . 
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relationships (especially equivalence I among 
different sentences. 

The original semantic net system permitted fast 
topical retrieval of the system's "knowledge about 
the world", but not of propositions belonging to 
a lternative conceptions of the wor ld, such as those 
making up some person's "mental world", or those 
making up a fairy tale. This was not due to any 
lack of expressive power • modal propositions were 
readily represented but rather to a lack of 
organizing principles for grouping and accessing 
modally embedded propositions. Sec. 3 describes the 
first part of the so lution to this problem. All the 
propositions which make up a particular individua l' s 
(or particular story's ) conception of the world, 
such as Alice's beliefs, hopes. intentions, etc., 
are placed in a subnet. Subnets, like the main net, 
have logical dictionaries and contain "virtual 
concepts" as access points to the propositions 
making up their conception of the world. They may 
be recursively nested, and the insertion routines 
ensure that clusters of propositions s uch as those 
describing Tom's conception of Alice's mental world 
are organized as coherent subnets . 

Sec. 4 then describes the so lution of the 
generalized retrieval problem. based on the use of 
topic access skeletons within subnet s and on 
extensions of the topica l c la ss i fication and 
accessing a lgorithms to process nested modal 
sentences. A greatly improved "descendant bracket" 
representation is used within the current 
implementation of topic hierarchies, reducing time 
and storage requirements. 

Topical accessing so lves the problem of finding 
the propositional knowledge which is immediately 
relevant to a question (or other task), given the 
conceptua l referents of the question. However, 
question-answering (and prob lem-solving) often 
requires the "inverse" of this type of access, 
called associative access: concepts must be found on 
the basis of certain given propositions about them. 
An efficient method for one important kind of 
associative accessing is described in Sec. 5. The 
method uses "concept access ske letons" attached to 
subnets and implemented in much the same way as 
topic access ske letons. 

Both topical accessing and concept accessing can 
be regarded as weak but fundamenta I ly important 
kinds of inference. The former answers quest ions of 
the form "What properties of such-and -such a type 
does object I or predicate I x have?" , and the I a tter 
quest ions of the form "What objects within a given 
conception of the world are of such·and·such a 
type?" A third and somewhat stronger Kind of 
inference which also permeates a ll forms of 
cognition is property inheritance, or more 
general ly, relationship inheritance. Thi s involves 
the transfer of the properties of a generic concept 
(such as "bird" I and of relationships among entities 
functional ly dependent on that concept (such as the 
parts of a birdl to a particularization of tha t 
concept (such as a generic or a particu lar robin and 
its parts I. Previously proposed mechanisms for 
relationship inheritance suffer from logical and 
technical difficulties. These are overcome in an 
approach described in Sec. 6, based on indexing the 
nodes (variables ) functionally dependent on a given 
node (variable ) In a function table attached to that 
node. Relationship inheritance is then obtained by 
table look-up for concepts in a type hierarchy (or 
lattice! . 
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Sec. 7 contains a sketch of a query system which 
serves to demonstrate the retrieval and inheritance 
mechanisms based on the network organization. The 
concluding section suggests extensions of the subnet 
structure, concept accessing mechanism and function 
table organization, as well as other directions for 
further work. 

2. Net logic and normal form 

We use semantic net termino logy in referring to 
our propositional representation without, however, 
attaching a great deal of significance to that 
terminology. Essentially, the network syntax 
provides for the representation of formulas in 
higher-order moda l logic, wit h constant s, functions, 
existentia lly and universally quantified variables, 
and the usual truth - functional connectives. Of the 
modal operators, only the necessity operator a is 
predefined, propositional attitude operators (such 
as "hopes" and "believes") and other modal operators 
being treated as higher-order predicates. 

Semantic nets are computer-oriented 
representations of sets of propositional formulas . 
They are designed to show the access paths from 
propositions to their participating concepts and 
from concepts to the propositions about them 
explicitly. We call these paths "forward links' and 
"back links' respectively. Examples of propositions 
expressed In the network representation of Schubert 
( 1976) are shown in Figs. 1- 3. 

Fig . 1. "Tom gives Alice the book" 
( Tom gives Al ice book 1 I 

Fig. 2. "Every dog likes some human' 
Vxlyf fx dog]•>l (y human]&lx likes y]JJ 
The broken circle indicates 
quantification, and the dotted arrow 
precedence (scope inclusion). 

universal 
quantifier 

~ PRED 

Fig . 3 . 'Mary wants to marry a millionaire" 
(Mary wants lxl!Mary marries xl&lx millionaire]]] 
The dotted arrow indicates operator-quantifier 
precedence, and would be missing in the 
transparent reading, "There Is a millionaire whom 
Mary wants to marry". 
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No explicit back links are shown; these are easily 
visualized as the inverses of the forward links. 
Back links could be implemented as linear lists of 
pointers, but In our implementation the pointers are 
attached to tree-structured "access skeletons" 
(Sec. '11. The graphical representation is derived 
from the network formalisms of Quillian ( 1968), 
Shapiro ( 1971), and Rumelhart et al. ( 1972). Its 
correspondence to standard predicate calculus 
notation is particularly clear. Some of the 
features illustrated in Figs. 1-3 are n·ary 
predication, with n>2 (Fig . 1), quantification and 
scope inclusion (Figs. 2 & 3), and modal predication 
(Fig. 3). The figure captions give standard 
predicate calculus renditions of the sarrp le 
sentences. However, note that we are using infix 
notation: a sentential formula is a list In square 
brackets headed by the first argument of the 
sentence predicate or operator, followed by the 
predicate or operator symbol, followed by any 
additional arguments . 

The representation logic also provides a special 
syntax for functions and for time. The lexical 
notation for functions is LISP - like . For exarrple, 

I (height-in-cm John) • 1821. 
states that the height In cm of John Is 182. The 
corresponding graphical notation is described in 
Schubert et al. ( 1979). The lexical and graphical 
notation for moments or Intervals of time can also 
be found there. 

In order for a system to be able to reason in a 
human·liKe fashion, it must be ab le to represent 
belief strengths (e.g., see Colby et al., 1969, 
Schank & Rieger, 1974). We currently attribute 
degrees of belief to the system and to other 
entities by means of explicit propositions such as 

II John loves Maryl has·credlbi lity . 91 , 

!Mary believes !John loves Mary] di 
& Id exceeds .5], 

where d represents a numerical degree of be l ief. We 
could equally well use non-numerical degrees of 
belief. Hopefully, degrees of belief can be 
Interpreted within a formal framework such as that 
of Moore (1979). 

In the following discussion of propositional 
normal form and on many subsequent occasions, we 
will make reference to "type predicates". By this 
we mean predicates of the kind conrnonly used in 
taxonomies of.entities, such as "human being " , 
"tree·, 'nation", "poem', etc. Examples of non - type 
predicates might be "grey", "happy", "vi ll ain " , etc. 
Though somewhat arbitrary, the distinction is 
nevertheless very useful . 

In the early stages of our work on the network 
system, it was unclear whether internally stored 
propositions shou ld be unrestricted in form, with 
arbitrary quantifier and operator ent>edding, or 
should be cast in some normal form . We are now 
firmly committed to normalization, because 
normalization simplifies topical classification 
(Sec . 41 and pattern matching (such as that required 
for property inheritance, Sec. 61 and qu ick l y 
reveals many log1cal equivalences which wou ld 
.otherwise have to be inferred. ., 

Uncovering logical equivalences is important for 
storage economization as well as inf~renGe. For 
exarrple, in a knowledge base containing both 

!Eve loves Tomi II Ann loves Tomi 

(where I is the logical "or " ) and 

!Tom hopes II Eve loves Tom] I !Ann loves Tomi] I. 

the shared formula need be stored only once: 
second proposition would slrrply point to 
formula. This would not be the case if the 
formula were represented equivalently as 

the 
this 

first 



~(Ann loves Toml => [Eve loves Tom]. 

Furthermore, this latter r epresentat ion ~ould make 
it harder to estab l ish that Tom's hopes were 
fulfil led . Our revised imp lementation makes maximum 
use of subformu la sharing, maintaining a formu la 
hash table for determining whether a given 
subformula is a l r eady in the semantic net . 
(Subformulas which are the s ame except for the 
variable nodes they ref erence are not treated as 
identi cal : ways to minimi ze the number -----.=if distinct 
variab le nodes and hence maximi ze s ubformula sharing 
are mentioned below. I 

A particularly convenient normal form for the 
purposes of topical classification is clause form , 
in which formulas are reduced to se ts of purely 
disjunctive clauses with implicit quantification. 
In Schubert e t al. (19791 a kind of implicative 
normal form quit e similar to clause form was 
proposed. However , universa lly and existentia l ly 
quantified variables were to be shared within type 
hierarchies to facilitate property inheritance . 
This scheme ha s proved to be logically flawed and 
unsuitable with regard to topical accessing !see 
Schubert, 1979 and Covington, 1980/. 

We have theref0re chosen a normal form which is 
closer to c lause form than the origina l ly proposed 
form. In fact, the only difference from clause form 
(for non-moda l propositions) is tha t universa lly 
quantified variables are shared among 
generalizations about ent ities of the ~ type . 
For example, all c lauses con taining ~[x robin] among 
their disjuncts, where x is some universally 
quantifi ed variable, use the ~ univer sa lly 
quantified node for x. On ly one mod ification of 
this ru le i s requir ed, for clauses such as 

~[x e lephant] 1~[y e lephant ] I [x likes y ] 

(i.e ., e lephants like themselves and each other I, 
containing two or more negated type predications 
with identical type predicates but distinct 
variables. In such cases one of the variables is 
arbitra rily chosen as the variable (node I to be 
shared with all other generalizations about entities 
of that type, while the remaining variab les (nodes ) 
are kept distinct from the shared variable. 

No spec ial rules are required for clauses 
involving distinct type predicates, such as 

~ [x e lephantJ [~(y mouse)[ [x afraid-of y]. 

Here the shar ed "elephant variable " wou ld be used 
for x and the shared "mouse variab le" for y. By 
thus minimi z ing the number of distinct universa l ly 
quantified variables, we conflate numerous type 
predications, saving storage and facilitating 
inference. 

We have extended the normalization procedure to 
app ly to modal propositions in the following sort of 
way . Consider the propos ition 

(Ann hopes lx[ I x carJ&(Tom owns xi i 

(i . e., Ann hopes that Tom owns a earl. To convert 
this proposition to "modal c lause form", we first 
rep lace x by a new constant c embedded in the 
cont ext (Ann hopes ... ). Symbolizing this embedding 
relation is a problem in the lex ical syntax, but not 
in the network syntax. As in Fig, 3, we simp ly run 
8 scope incl us ion link from the embedding 
proposition to the embedded constant. Not e that 
omission of the link would yield the nonequivalent 
proposition that there i s a .§l'l~c ific car which Ann 
hopes Tom owns. Next we s e,>arate the moda l 
proposition into a pair of moda l propositions, each 
contai ning "ha 1f" of the embedded conjunct ion. The 
resu lt could be written as 

(Ann hopes (c earl], (Ann hopes (Tom owns c ) I, 

if it were not for the fact that c is errbedded 
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within the context (Ann hopes ... ] . The only correct 
lexical representation of these propositions i s the 
orig inal CCJl!l)OUnd proposition with an explic it 
existential quantifier. (A lexical syntax capable 
of representing modal clause form could be des igned, 
but we haven't done so. ) 

In general, a sentence whose top-level operator 
is modal (with one sentential argument I is converted 
to modal clause form by recursive ly converting the 
errbedded sentential formula to modal clause form, 
inserting scope inclusion links from the top - leve l 
sentence node to universal and existential nodes 
whose quantifiers lie within the modal context, and 
distributing the modal opera tor over the embedded 
clauses. Modal c lause form prepares the way for the. 
recursive net organization described in Secs . 3 & 4, 
in which the tabular and taxo11omic organizing 
structures used to access top- level propositions are 
carried over into modal contexts. 

3 . Modal subnets 

The modal predicates we have chosen to consider 
are those which take an individual as first argument 
and a propos.ition as second argument. This format 
appears to accommodate not only propositional 
attitudes but also stories. For examp le, the story 
of Cinderella might be represented in the form 

(c is · a·story·in·which lulvlw . .. I (u girl]& 
Iv stepmother-of ul& lw pumpkin)& ... I ], 

where the story itself is treated as an individual 
which is related to i ts propositiona l content by the 
moda 1 rel at ion "is·a·story· in -which". The treatment 
of s tories as individuals also a l lows other kinds of 
sta tements to be made about them, such as statements 
about their name and origin . 

To understand what goes on in people's minds and 
in stories, an understanding system must be able to 
access and manipulate modally embedded propositions 
in much the same way as top - level propositions. We 
have therefore extended our network sys t em by 
introducing subnets, which provide access to 
alternative conceptions of the world and may be 
recursively nested. Similar kinds of subnet 
organization were previously proposed by Hendr i x 
( 1975, 19791 and Cohen & Perrault ( 19761, among 
other s. What is distinctive about our subnet 
organization is the principle according to which 
propositions are collected into subnets (discussed 
below ) and the topical and associative access 
structures supported by subnets (discussed in 
Secs. 4 & 5 respectively!. 

Automatic creation and maintenance of subnets 
requires computable criteria for decicting which 
modal propositions "be long together". Our initi a l 
inclination was to associate a distinct subnet with 
each moda 1 context, such as "John be 1 ieves ... ", 
"John wants ... " , "Mary hopes ... ", "I n the story of 
Snow White . . . ", e tc . The modal context would then 
be spec ifi ed uniquely for each subnet and wou ld not 
have to be repeated for each propos ition within the 
subnet. However, this advantage is offset by the 
space inefficiency of having a separate s ubnet for 
each mental attitude of each individua l , with its 
own dictionary and concept access skeleton (Sec. 51. 
Most important ly the beliefs, hopes, wants, dreams . 
etc., of an individual are so closely bound up with 
each other that they should be accessible together. 
For examp le, the answer to the question why John 
plans to paint the fence may be that he believes it s 
present colour to be ug ly, or that he wants it to be 
white. It should not be necessary to jump from 
modal subnet to modal subnet to collect t; ,-,, 
information required about a particular concept, 
s uch as the information about the appearance of the 
fence in John' s mental world. 

Thus we have chosen to associate at most one 
modal subnet with each individual concept in the 
main net and, recursively , in each subnet . 
Propositions ,belonging to a subnet are stored in 
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full; for exa,rple, the modal context 'John believes 
that , . . • is repeated for each of John's beliefs 
(however, the associated degrees of belief are in 
general different!. 

Subnets differ from the main net in one irrportant 
respect: their nodes are 'virtual nodes' serving 
exclusively as knowledge access portals, never as 
propositional constituents. For exarrple, John's 
belief that Mary loves him would be stored as a main 
net proposition accessible froni the virtual nodes 
for John and Mary in t-he subnet of John's men ta 1 
world, as well as from the node for John in the main 
net. Since a11 prepositions are stored in the main 
net, subnets do not affect structure sharing . For 
exarrple, since all the nodes participating in the 
propositions 

~(Mary loves John), (John wants (Mary loves John)) 

belong to the main net, the conrnon subproposition 
can be shared between them. 

Like the main net, subnets contain node 
dictionaries. More irrportantly, subnets and their 
virtual nodes hold the same kinds of taxonomic 
access structures as the main net and its nodes. 
These are described in the next two sections. 

4. Tgpical classification and accessing 

When a very large, heterogeneous knowledge base 
1s used to support language understanding or problem 
solving, it is essential that retrieval be highly 
selective. For exall'ple, a question answering system 
confronted with the question 

?lx(Clyde afraid-of xi 

('ls Clyde afraid of anything?"! would be courting 
c01Tputational disaster if it treated all of its 
knowledge about Clyde and about being afraid as 
1mnediately relevant to the question. Facts about 
Clyde's appearance, food preferences, pastimes, 
etc., are unlikely to be helpful, as are the 
majority of known instances of one thing being 
afraid of another. such as Myrtle's being afraid of 
spiders. The system would do better to confine its 
attention, at least initially, to its knowledge ( if 
any I about Clyde's fears, or if that is unhelpful. 
about Clyde's emotional attitudes and dispositions 
1n general, or if that is still unhelpful. about 
these sorts of properties as they pertain to members 
of Clyde's ~ind I type I. This topic - specific 
information cou d be conibined with general knowledge 
about being afraid le .g . . that if x is afraid of y, 
then x will try to avoid yl in trying to infer an 
answer to the question . 

These kinds of exarrples suggest the need for a 
topical classification of the knowledge available 
about each concept. This need is also indicated by 
questions which are explicitly topical. e.g., 'What 
does Clyde look like?", or ''What do you know about 
Clyde's emotional make-up?'. Further motivating 
exa,rples can be found in Goebel (19771 and Schubert 
et al. I 19791. Reder & Anderson I 19791 offer some 
psychological evidence for a topical (thematic) 
organization of knowledge about individual concepts, 
although they appear to have in mind a single-level 
taxonomy. Rychener I 19791 proposes a single - level 
taxonomy for knowledge associated with concepts in a 
COITpuler-aided design system. 

To be of any use, a topical organization lllJSl 
meet three requirements: the topical taxonomy on 
which it is based must be coherent in the sense that 
it brings closely related topics (i.e., those 1 ikely 
to be relevant to the same sorts of questions or 
problems! into close proximity: the topical category 
or categories of any sentence must be readily 
conputable ; and topic-specific knowledge about a 
given concept lllJst be readily accessible . 

Schubert et al. 119791 supplied a hirly 
c01Tprehensive and intuitively coherent taxonomy of 
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knowledge about physical objects (with en,:,hasis on 
static properties as opposed to behaviour) . The 
taxonomy 1s hierarchic, apart from some minor 
violations of hierarchy which are easily eliminated. 
A fragment of the hierarchy is shown in Fig . 4. The 
pairs of numbers attached to the topic nodes are 
explained below. 

12, 12 l 
olouring 

{]

orm 

appearanc 13,131 
1, 15) ranslucency 

14, 14 I 
ex ternA 1 lex ture 1 

... -quality· our (15,151 
( 10,20) 6, 16) texture2 

I 18, 18 I 
tactile-quality-Ehardness 
(17,201 (19,19) 

resilience 
(20,201 

Fig. 4. Topic hierarchy fragment 

The requirement that the topical categories of 
arbitrary sentences be effectively computable is 
readily met for the sample hierarchy. Some basic 
classification mechanisms were reported in Goebel 
(1977), and extensions of theGe to deal more 
adequately with a wider range of sentential forms 
were proposed in Schubert et al . l 19791. These have 
now been implemented, with generalizations to allow 
for nested modal sentences. 

The classification algorithm assigns clauses to 
topics relative to each of the predicates and 
existentially quantified variables occurring in 
them. For exarrple, the clause 

~(x spider II !Myrtle afraid-of xi 

(Myrtle is afraid of spiders) might be classified as 
an ·emotional attitude" proposition relptive to 
~. and as an 'emotional effect" proposition 
relative to "spider'. The classification algorithm 
relies on 'indicator links' attached to predicate 
nodes, on the position and quantification of the 
arguments of the clause, and on the signs !negation 
or none) of the predicates used in the clause . For 
example, the topical categories of the above clause 
are based on indicator links from "afraid-of" to 
'emotional attitude" and 'emotional effect". on the 
position of 'Myrtle" in the "afraid-of" predication, 
and on the negation of "spider' and the universal 
quantification of Its argument. For details of the 
classification algorithm see Schubert et al. 119791 
and Covington ( 1980). 

One difference between the current algorithm and 
earlier versions Is that modal propositions are 
appropriately classified as beliefs, goals, 
narrative assertions, imperatives. etc.. assuming 
that the requisite indicato~have been supplied. 
More irrportantly, the new algorithm recursively 
classifies the clauses modally embedded within the 
input clause. Insertion and access within a 
particular subnet uses the classification at the 
appropriate level of modal embedding. Modal 
operators such as necessity, credibility, and 
causation are ignored at present, i.e.. the topic 
categories of the embedded sentence are transferred 
to the embedding sentence. 

The third requirement for a topical organization, 
that propositions involving a particular concept and 
pertaining to a particular topic be readily 
accessible, may seem hardest to meet. Note that the 
problem is not to taxonomize the knowledge stored in 
the semantic net as a whole. but to do this for 
every concept. The storage requirement& of such a 
scheme could be prodigious . 

The topical organization developed by Goebel 
(1977), Schubert et al. ( 19791 and Covington ( 19801 
does provide concept-centred topical access. yet 



avoids excess ive storage costs. The data structures 
used include a represent at ion of the gener.a l topic 
hierarchy in the main net and tree -structured 1QQJ.£ 
tccess ske letons attached to al l concept nodes 
othe r than universally quantified nodes I within the 

main net and all subnets. The access ske letons can 
be thought of as the smallest fragments of the 
genera l topic hierarchy needed to ta xonomize the 
propositions actua lly availab le about each concept. 

An example wi 11 clarify the method. Suppose that 
the topic hi e rarchy includes the fragment previous ly 
shown in Fig. 4, and that the semantic net contains 
propositions to the effect that a ball is round and 
resilient. The two propositions, say p and q, would 
be c lassified as "form" and "resilience" 
propositions re lative to "ball". If these are the 
only "external-qua lity" propositions about "ball", 
then the part of the access ske leton of "ball" 
corresponding to the hierarchy fragment of Fig. 4 
would have the form shown in Fig. 5. 

external (12,1 21 

{

form (pl 

... -qua 1 ity 
( 10, 20 I 

resilience (qi 
(20,201 

fig. 5 . Path -contracted access skeleton 
fragment corresponding to Fig. 4. 

Note that only paths leading to propositions have 
been retained in the access ske leton. Furthermore, 
linear path segments have been contr·acted, so that 
every non-terminal node has at least two direct 
descendants : in particular, the "appearance" and 
"tacti le -quality" nodes have been e liminated by path 
contraction. It is the pruning and contracting of 
paths which makes possible concept-centred, topic
oriented accessing of knowledge with modest storage 
overhead. 

A version of path contraction was proposed in 
Schubert et al . ( 19791 and was shown to yield access 
skeletons whose storage cost is only twice that of 
the unstructured linear back · link lists which they 
supplant. The current implementation improves on 
that proposal by retaining the lowest instead of the 
highest node of a contracted path, thus avoiding the 
need to recompute the classification of accessed 
propositions. 

A more important innovation in the new version of 
the topical organization is the use of pairs of 
numbers to characterize nodes in the general topic 
hierarchy, as indicated in Fig. 4. These are 
assigned and used as follows. The first of each 
pair of numbers, ca ll ed the identification number 
(!NI of the corresponding topic, is the number 
ass igned by a pre-order Ii .e . , depth-first) 
numbering of the topic hierarchy . The second 
number, the "highest descendant" (HDI, is the 
maximal IN among descendants of that node . Then all 
descendants of a node have identifi cat ion numbers 
within the "descendant bracke t" I IN, HDJ determined 
by the pair of numbers at that node. The topic 
access ske leton nodes are not explicitly numbered . 
but contain pointers to the topic hierarchy nodes 
they represent. 

Without descendant brackets, access to 
propositions subsumed under a particular topic 
within a particular topic access ske leton requ1red 
an initial ascent in the general topic hierarchy and 
involved c0ff'4)1ications due to path contraction . 
With descendant bracke ts, the initial step is merely 
a look -up of the IN of the desired topic: this is 
followed by a descent in the . acess skeleton such 
that the descendant bracket of t he node selected at 
each step contains the desired IN. For example, the 
"exter nal -quality" branch in Fig. 5 would be chosen 
when accessing the "form" proposition p because the 
IN of "form" is 12 and this lies within the bracket 
I 10,20] of "ex ternal-quality" . The design of 
efficient algorithms for expanding access skeletons 
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when inserting new propositions, and for finding all 
propositions subsumed under a topic access skeleton 
node deleted by path contraction, has also proved to 
be quite straightforward; for detai Is see Covington 
( 1980]. 

As we have emphasized, the "virtua l " nodes of 
subnets serve exclusive ly as knowledge access 
porta l s. More specifica lly, each virtual node 
points to the root of a topic access skeleton. The 
propositions et the terminals of an access ske leton 
are "about" the concept referenced by the virtual 
node, at the level of modal embedding appropriate to 
the level of the subnet. In this way subnets 
provide concept -centred, topic -oriented access to 
propositions decribing alternative conceptions of 
the wor ld . That 1s half of their function; we now 
turn to the other half. 

5. Concept accessing 

People can readily recall objects associated with 
stories they know, given some of their key 
properties. What animals are there in "Little Red 
Riding Hood", what veh icles in "Cindere ll a", what 
CO!T'4)Uters in "2001"? The identification of entities 
with specified properties is often called 
associative access (or retrieval I . It i s of direct 
use in answering questions such as those just given. 
and may also be important in determining remote 
referents of noun phrases in story understanding. 
(For exarrple, the centra l narrative in Hemingway's 
The Old Man and the Sea contains widely separated 
references to "the boy", who is nevertheless easily 
identified as the old man's young friend Manolin. I 

The methods usually suggested for implementing 
associative accessing without Specia l hardware 
involve enumerating all known entities with the 
desired properties and checking whether they belong 
to the current context, (e.g., Scragg, 1975, Hayes, 
1977), or enumerating a ll entities in the current 
context and checking whether they have the desired 
properties (e.g ., Brown & Burton, 1975, Hobbs, 
1975 ) . The latter type of method seems more natural 
and potentially more efficient than the former; 
however, efficiency depends on the search context 
being small, and this is not a lways the case . For 
example, the search for "vehic les" in the Cinderella 
story is likely to be quite time-consuming if 
implemented through exhaustive testing of al l 
entities mentioned in the story. PLANNER (Hewitt, 
19711 permits pattern-directed retrieval of 
assertions, but still relies on enumerative search 
if no explic itly matching assertions exist in , the 
data base. 

We have implemented a non -enumerative method of 
accessing instances of any given type of concept 
within a story subnet, or any other kind of subnet. 
The method uses concept access skeletons, first 
proposed for this purpose in Schubert et al. ( 19781. 
However, the proposal there was to attach concept 
access skeletons to all concepts, which we now 
believe to be both impractical and unnecessary. 
Instead, concept access skeletons are associated 
with subnets . Each is a tree which echoes fragments 
of a type (generalization, JS-Al hierarchy and whose 
nodes point to c lauses containing unnegated type 
predications at the appropriate level of embedding. 
For example, the subnet for the story of Little Red 
Riding Hood would contain a concept access skeleton 
with a "wolf" node pointing to the clause 

ILRRH 1s -a·story-i n·which lw wolf II, 

where w is a 'modally embedded constant" as 
described ih Sec. 2. 

The construction and use of concept access 
skeletons is entirely analogous to that of topic 
access skeletons. A · general type hierarchy, 
analogous to . the general topic hi era rchy (and in 
fact structurally united with it in the current 
implementation), resides in the main net. In effect 
this hierarchy duplicates the collection of main net 
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pred I cat 1 ons of the form ( c P J or ( [ x PI • > [ x OJ J , 
where P and O are type predicates, but uses a 
simplified representation geared toward efficient 
concept accessing. Like the topic hierarchy nodes, 
the type hierarchy nodes are labelled with numeric 
descendant brackets. The concept access skeleton of 
a subnet contains the paths needed to access the 
type proposinons relevant to that subnet, where 
these paths have again been contracted to eliminate 
linear segments. As in the case of topic access 
skeletons, access to a proposition via a concept 
access skeleton requires only a look-up of the 
identification number of the desired type concept, 
followed by descent in the appropriate concept 
access skeleton with the aid of the descendant 
brackets associated (via pointers to the general 
type hierarchy) with access skeleton nodes. Thus 
descent towards ·anima l" propositions within the 
story net for Little Red Riding Hood, for example, 
would lead directly to the "wolf" proposition, even 
though the wolf has not been explicitly described as 
an animal in the story. This is because the 
identification number of ·wolf" is included in the 
descendant bracket of "animal" . 

6. £.c.Qp_ll!:.!Y_a..!:!f!. re 1 at i onsh in i nh_er it ance 

A system possessing knowledge about entities in a 
taxonomy of types will often have to combine 
knowledge about a given entity with knowledge 
inherited from higher - leve l entities . For example, 
in a system knowledgeable about birds in general and 
owls in particular, the fact that an owl's beak is 
curved might be an exp licit piece of owl -knowledge, 
but the fact that the owl can use its beak to seize 
food is more likely to be implicit in its bird
knowledge. To interpret both properties as 
properties of the ~ beak, the system must 
recognize the correspondence between the bird's beak 
and the owl's beak. 

As already mentioned in Sec. 2, a •variab le 
sharing" method proposed by Hayes (1977) and 
Schubert et al . (1979) has proved unworkable. A 
logically and technically satisfactory alternative 
Is to use parts functions. For example, If f is a 
function which picks out a bird's beak, then bird 
knowledge and owl knowledge will take the form 

~(x bird] I [ ( f x) beak-of x], ... 

~(y owl I I ( ( f y) curved), 

where x and y are the primary variables (nodes) 
associated with "bird" and "owl" respectively (see 
Sec. 2) . Establishing the correspondence between (f 
x) and (f y), once x and y have been matched, Is 
then just a matter of locating the nodes 
representing the values of f for argument nodes x 
and y . 

In Schubert ( 1979) a " function table" scheme was 
suggested for locating values of functions quickly. 
This scheme has now been Implemented. The "scope 
inclusion" field of any (non-virtual I node may 
contain a pointer to a hash table. The table is 
lnde >ed by function name, and the value tabulated 
for a given function name is a pointer to the node 
repre5enting the value of that function applied to 
the concept to which the table is attached. limit ed 
provision has also been made for inverse access from 
11 functionally dependent node to the node on which 
it depends; however, the inverse pointer is 
avai labl e for only one functional dependence of the 
node, and only if the node does not itself have 
functionally dependent nodes. 

With the help of function tables, properties and 
relationships are easily mapped downward to a 
concept and its parts from more general concepts, 
irrespective of the number of intervening concept 
levels . For example, the fact that Clyde's head 
joins his neck is easily obtained from the "animal" 
concept. using functions which yield those parts; 
this is no more difficult than obtaining a property 
of his proboscis by referring to elephant knowledge, 
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even though ·animal" might lie several levels higher 
than "elephant·. 

However, 11 requirement in both of these examples 
is that the names of the functions determining 
Clyde' & head, neck, proboscis, etc., be known and 
usable as keys in Clyde's function table . In the 
current implementation this information is supp li ed 
"by hand", using utility routines for inserting 
entries in function tables and setting up inverse 
dependency pointers. For statements of the form 
¥x1y[ ... J the Skolem function(s} introduced for the 
existentially quantified variablelsl are 
automatically inserted in the function table(sl of 
the appropriate universally quantified variable(&). 
But again hand-coding is needed to make the Skolem 
functions introduced by !J!(Q such statements 
identical, unless the statements have been supplied 
as an explicit conjunction sharing the same 
universally quantified variable. In other words, we 
have not attempted to deal here with the general 
problem of automatically inferring that a node is a 
value of some function already known to the system. 
(For some proposals with regard to this problem see 
Schuber t , 19 7 9 . I 

The use of func tion tables has been integrated 
with the topical accE,ssing mechanism in such a way 
that topic -oriented retrieval of knowledge about a 
(given part of a) given concept wi 11 automatically 
"pull down" relevant information from concepts 
dominating the given concept in the ta,onomy of 
types . This combination of topical retrieval and 
property Inheritance is illustrated in the next 
section . 

7. Querying the semantic net 

In addition to the structure building routines, 
the system implementation includes a limited query 
language which can be used to demonstrate topical 
access, concept access, and property inheritance. 
Some examples of queries follow, with rough English 
translations and with the responses they might 
elicit, assuming that the requisite knowledge has 
been placed in the semantic net. 

(1) ?(Clyde animal] 
" Is Clyde an animal?" 

Yes. 

(2) ?s m(Clyde ?p(tp.appearance)J 
"What do you know about Clyde's appearance?" 

(Clyde handsome), I Clyde big ) , [Clyde grey). 

(3) ?mlClyde likes?,), 
"What (or whom) does Clyde like?" 

[Clyde likes John). (Clyde likes Dumbo). 

(4) ?m(?x ?p(tp.gen:elephant) I, 
"What elephants do you know?· 
Clyde, Dumbo. 

(5) ?s m(John believes !Clyde 
?p(tp.appearance)J J, 

"What does John believe about 
appearance?" 
(John believes (Clyde ugly) I , 
(John believes (Clyde pinKI I. 

(6) ?s m[LRRH is -a-s tory - in -which 
[?x ?p(tp.gen : animal)] I . 

Clyde's 

"What animals are there in the story of Litt le 
Red Riding Hood?" 
(LRRH is -a-story-in -which [w wolf]) . 

Queries are propositional schemas preceded by a 
question mark and possibly the· flags s or m. A 
proposition a 1 schema i s either an atomi c proposition 
with constant arguments (as in (1} I, or such a 
proposition with its predicate and/or some of it s 
arguments replaced by query variables la s in ( 2 1-
(4}), or another propositional schema embedded 
within an unquantified modal predication (as in 151 
& (6}). Query variables are prefixed with ?; they 
match any node unless fol lowed by a topic or conceot 



restriction enc losed in braces. Topic restrictions 
take the form tp.<top ic> and concept restrictions 
the form tp.gen:<concept>. 

The response to { 1) is obtained by accessing 
genera li zat ion Ii .e .. type) pr ed icat ions about Clyde 
and if necessa ry, about concepts which genera li ze 
Clyde. The response to 121 1 ists the monadic 
predications attached to the "appearance" node and 
its descendants in the topic access skeletons of 
Clyde and the concepts which generalize Clyde. If 
the s l subhierarchyl f lag were missing from query 
121, only the nonspecific appearance propositions 
dire0..!.Y attached to "appearance" nodes in the 
appropriate topic access ske letons would be 
accessed. Thus on ly the first of the propositions 
in the response to 121 might be returned, assuming 
that the others are attached to the appearance 
subtop ic s "size" and "colouring". If the m (many I 
f lag were mi ss ing, the search would terminat e with 
the fir st matching proposition found. The response 
to 131 is found via the topic access skeleton of 
Clyde or concepts which generalize Clyde . The 
respons e to 141 is obtained via the concept access 
ske leton of the main net. The response to 151 i s 
obtained much as tor i£1. except that the topic 
accezs skeletons and generalization propositions 
uti l ized are those be longing to the subnet 
associated with John. The response to 161 is 
obtained via the concept access ske leton of the LRRH 
subnet. lw is a constant embedded in the moda l 
context IL RRH is-a -s tory - in-which . . . J. I 

All of the previous examp les may involve property 
inher itance of a simp le sort. The proposition 
IC 1 yde grey I in the response to query 12 I , for 
example. may be obtained by ascent to "elephant" (a 
genera li zat ion of Clyde), access of appearance 
propositions about this concept, and matching of the 
query against the accessed proposition 

- I x e lephant JI I x grey ]. 

Property and re lationship inheritance for ~. 
which makes use of function tab les, is illustrated 
by the fol lowing queries and responses. 

(71 ?m lCneck connected-to ?xi, 
"What i s Clyde's neck connected to?" 

ICneck connected-to Ctorso l, 
ICneck connected-to Chead l . 

(81 ?s mlCtrunk ?p{tp.appearance} I 
"What do you know about the appearance of 
Clyde's trunk?" 
ICtrunk long I , ICtrunk tapered]. 

191 ?s mlCtrunk ?p{tp.phys-rel} Cmouth] 
"What is the relationship between Clyde's 

trunk and his mouth?" 
ICtrunk in-front-of Cmouth J , 
(Ctrunk next-to Cmouth J . 

Here it is assumed that 
consta nt nodes already 
referenced in a function 
for Clyde. 

Cneck, Ctrunk, etc., are 
existing in the net and 

table attached to the node 

The processing of query 171 begins with a topical 
access to physica l relationships about Cneck and an 
attempt to match the accessed clauses to the query. 
Then a check is made for functiona l dependency of 
Cneck , yielding its functional dependence on Clyde. 
The function found is looked up in the function 
tables of the genera li zations of Clyde, and the 
nodes thus loca ted are examined for further physica l 
relationships matching the query. Thus the response 
to 17) may be based on knowl edge about Clyde and/or 
know ledge about generalizations of Clyde . In much 
the same way responses to 181 o d 191 may be based 
on knowledge reached at severa l l eve l s of 
generalization with the aid of function tables. 

Finally we should mention that topic-oriented and 
concept-orient ed retrieval of time-dependent 
Information, such as the events of a story, presents 
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no special problems. 
( 19801. 

For examples see Covington 

B. Concluding remarks 

We have described knowledge organizing principles 
which permit fast topical and -associative retrieval 
of knowledge from an arbitrari ly large network 
containing recursively nested "conceptions of the 
world". As the examp les of the last section showed, 
the retrieval mechanisms incorporate a rudimentary 
inference capability, based on property and 
relationship inheritance and on structura l and 
conceptua l matching of queries to c lauses. We 
believe that the eff ic ient implementation of these 
essential processes in our system provides a firm 
foundation for further work on mechanized inference 
and c~rehension. 

However, most of the inference mechanisms remain 
to be bui l t, and even some of those built do not 
ful l y achieve their purpose. We mention some of the 
modifications and extensions which seem immediately 
feasib le. 

First, we need to decide on a suitab le normal 
form for sentences invo lving modalities other than 
stories and propositional attitud~s. such as causal 
constructions and counterfactual conditionals. 
These permit di str ibution of the moda l operator over 
a conjunct ion of consequences lwi th _the aid of 
"embedded constants" I but not over a conjunction of 
premisses. The classification and access mechanisms 
should be extended to handle such propositions. 

Subnets need to be attached to type concepts as 
well as individual entities. These would contain 
conceptions of the world characteristic of entities 
of those types. For example, knowl edge about a 
particular person's menta l world or about a 
particu lar fairy tale would be obtained not only 
from the subnets of those individua l entities but 
also from subnets for humans and fairy tales in 
general. Clearly, much of our knowledge of what 
goes on 1n people ' s minds lor in fairy tales I is 
general rather than specific. 

It also seems desirable to introduce subnets for 
certain sets of propositions which are not modally 
embedded, such as the propositions making up a true 
story, or a general pattern of events !script?), or 
the propositions relating to the parts of a system . 
After al l , subnets have no logical significance. 
serving only to aggregate knowledge into co· 
accessible, topical ly and associatively organi zed 
clusters. Thus they may be suitab le as context 
structures for contexts other than menta l worlds and 
stories. 

The present concept accessing mechanism 
presupposes a hierarchical taxonomy of types , which 
may be hard to design for some kinds of objects. 
For example, artifacts are best categorized by their 
purpose, but some artifacts are multipurpose (e.g . , 
a knife can be a cutting tool or a weapon!. 
However, it appears to be possibl e to extend our 
current methods to deal with mild infractions of 
hierarchy or with sma ll numbers of alternative 
hierarchies. Another l imitation of concept 
accessing is that it provides access only on the 
basis of a sing le type specification. Thus it does 
not help to locate object s on the basis of non-type 
properties such as being an "antagonist" of a story , 
except to the extent that non - type predications 
imply ty~e constraints le .g. , antagonists are 
usually animate beings). Al so, concept accessing 
does not obviate the need for "intersec tion 
searches" for objects satisfying multiple 
constraints such as commonly occur in PLANNER·liKt 
problem so lving systems. a l though it may provide an 
initial set of candidates of a suitable type . 
Finally, concept accessing may be ·useless for 
accessing parts of entities, given the type of part, 
such as "nose", "rudder", or "department head" , 
since parts tend to form hierarchies "orthogonal" to 
type hierarchies (Hayes, 1977 1. Parts accessing may 
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call for separate "parts access skeletons". 

The organization of function tables needs to be 
modified to allow multi-argument functions, composed 
functions (e .g., the fingernail of the index finger 
of the left hand of John), and entities which are 
the value of more than one function or of the same 
function applied to more than one argument. The 
most natural way to allow for multi-argument 
functions appears to be lo detach function tables 
from concepts, making them indexable · by the 
arguments as well as the names of the functions. 

More radical than these extensions will be the 
introduction of partitioning lattices to represent 
both taxonomies of types and parts structures, 
coupled with special inference mechanisms such as 
those proposed in Schubert ( 19791. The standard 
sort of representation of type and parts 
relationships used at present (exemplified by "All 
elephants are ma1TY11als" and "A ll ma1TY11als have a 
head") make reasoning about types and parts 
unnecessarily difficult. Also computationally 
convenient representations of syts of entities, such 
as groups of people or an anima 's set of legs need 
to be intrOduced. 

With these extensions most of the substrate for 
higher-level "combinatory" inference and 
comprehension processes will be in place. 
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ABSTRACT 

This paper discusses a technique whereby an 
a ttribute grammar can be used to formally define, 
calculate, and propagate semantic information 
within the conte xt of a network-based knowledge 
representation scheme. The goal here is to 
produce a set of (stored ) descriptions, coded as 
collections of attribute/ value pairs, which can 
serve to ·characterize the semantics, at least from 
the viewpoint of certain inference tasks, of the 
entities and relationships represented by the 
network. The descriptions are generated in a 
s traightforward mechanical fashion by applying an 
appropriate attribute grammar to node/link 
expressions formulated' in a given knowledge 
,specification language. 

l . INTRODUCTION 

~etwork- based representation schemes * l* have 
proved to be useful tools in organizing, building, 
and utilizing knowledge bases [3] pertaining to a 
variety of problem domains and tasks. Ultimately, 
however, the effectiveness of a representation 
depends upon the ease with which semantic 
information can be associated with the various 
objects and relationships depicted within the 
network. One way to facilitate this is to look 
for a formal method by which arbitrary semantic 
properties of these constituent elements can be 
mechanically derived from their syntactic 
characterizations. Ideally such a method will 
include: (1) A definitional component for 
statically introducing semantic properties and for 
e xpressing the rules gover ning the assignment of 
v a lues to properties . ( 2 ) A calculational or 
p ropagational component for dynamically evaluating 
s emantic rules to yield values for the properties 
bound to various syntactic constructs . In 
general, this may entail relating the properties 
of a subject phrase to those of its syntactic 
ancestor, descendant, and (even ) sibling phrases. 
(3) An inferential component fo r utilizing these 
derived property values to e f. . ect certain search 
and deduction operations. 

* l * The tenn 'networ k - based representation' is 
intende d to to embrace both s emantic networ ks 
[1] a nd frame systems [2]. 
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The approach taken in this 
attribute grammar [4,5] to 
of a particular knowledge 
e.g., KRL [6] . As an 
technique is exercised on 
in [7], which defines what 
system. 

paper entails using an 
fonnalize the semantics 
specification language, 
extended example, the 
the language introduced 
is essentially a frame 

2. REPRESENTATION SCHEME 

A semantic network (or a frame system) permits the 
conceptual primitives of a highly structured 
problem domain to be conveniently represented as 
an interlinked collection of descriptions. Often, 
a single formalism can be used both (1) for 
statically characterizing the objects, activities, 
and relationships which underlie the domain and 
( 2 ) for dynamically instantiating pieces of 
problem specifications and their solutions. This 
uniformity of representation can greatly 
facilitate the integration of static and dynamic 
infonnation where appropriate. 

For this discussion, the knowledge structures of 
interest are composed of descriptive blocks, here 
called entities. Each entity has a number of 
identifiable components, each with certain 
properties, . and participates in various 
relationships, both explicit and implicit, with 
other entities. An entity is defined by a set of 
named slots, which elaborate its properties via 
sets ~(nested) descriptive clauses. The 
ordering of slots within an entity or of cla uses 
within a slot is irrelevent, in that it should not 
influence the eventual overall effect produced by 
their processing. 

For the purpose of exposition, consider a fragment 
drawn from the specification language used in [ 6], 
as defined by the grammar shown in Fig. l. In 
coding these productions, metasymbols beginning 
with an asterisk denote tenninals, a list of 
<xxx> phrases is denoted by <xxx-1 . . N>, and a n 
optional phrase is enclosed within squa ~e 
brackets. The principal constructs of the 
language are (1) names, ( 2 ) numeric and string 
values, (3) relational expressions, (4) entity 
references, possibly qualified by lists of slot 
constraints, (5) slot references, and (6) 
specia lization constraints. For simplicity, it is 
assumed that no two entities have the same name 
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<entity> : , ... 
<Slot> : , ... 

<clause> : : "' 

<Val spec> : : • 

<entref> : ,., 
<entcon> : :• 
<slotcon> : :• 
<slotref> : '"' 

<*ent-name > <Slot-1 •• N > 
<*slot-name> <Clause-! •• N> 
spec <entref> 
<*relop> <Valspec> 
is <entref> 
T*value> 
<alotref> 
<*ent-name> [ <entcon> ] 
with <slotcon-1 •• N> 
<*slot-name> <clause> 
~ <*slot-name> of <entref> 

Fig l. ~ Sample Grammar 

and that 
same name; 
[1]). 

no two slots within an entity have the 
this is not absolutely essential (see 

Explicit linkage within the network is used to 
build specialization hierarchies (spec edges) and 
reference relationships (is and slot edges) among 
domain elements. Specialization "'ciiains represent 
successive refinements or restrictions of domain 
classes into nested subclasses. In general, an 
entity possesses two kinds of descriptive 
attributes. Each child entity inherits all ·of the 
attributes (slots) belonging to its parent (some 
of which are further constrained by the terms of 
its specialization), and synthesizes any new ones 
required for defining the characteristics of its 
subclass. Each parent entity, therefore, 
constitutes a factoring of constraint information 
which must be satisfied by each of its 
descendants, including entities dynamically 
created during a specific problem solving session. 
Each reference declares a slot of the referring 
entity as being logically bound to (a possibly 
constrained version of) the referent entity or one 
of its slots. (Note: In many cases references are 
bi-directional, ~e sense that each entity has 
a slot which nominates the other.) 

Fig. 2. diagrams some of the kinds of structures 
developed within the system discussed in [7]. 
Displayed here are portions of six entities, their 
slots, and their interrelationships within a pair 
of specialization hierarchies. Specialization 
relationships are indicated in two ways here: (1) 
a dashed line connects each child entity with its 
parent and (2) those slots of the child which are 
constrained by the terms of the relationship are 
so indicated. Therefore, the existence of a spec 
slot as suggested by the syntax is formal rather 
than actual. Reference relationships, on the 
other hand, exist as actual values and are 
depicted by solid arrow. 

One hierarchy imposes a ~onomy over a set of 
device descriptions. The top-level DEVICE entity 
defines two slots, MODE and ASSOC. Although no 
constraint is imposed upon the MODE slot h~re, the 
ASSOC slot must contain a reference to a DEVICE FN 
entity or one of its descendants (see below). The 
SENSOR entity is a descendant of DEVICE (actually 
through several levels of specialization). It 
defines a SIGNAL slot without constraints, a 
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DEVICE FUNCTION 

MODE I NPUTS ;? l 

ASSOC !!_ DEVICE _FN - 0 UTPUTS ;? l 

I 
I 
: . 
I 
I 

SENSOR 

MODE m'INPUT' 

SIGNAL 

MIN VAL ~ 0 

MAX VAL > !!£!. 
MIN VAL 

of SENSOR 
I 

--
I 
I 

ART_PR_S ENSOR 

SIGNAL 'ANALOG' 

MIN_VAL -0 

MAX VAL -250 

J 

TYPE 

i 
I 

DEVICE FN 

TYPE • 'DEVICE' 

ASSOC is DEVICE 

AI 

INPUTS 

OUTPUTS 

ASSOC _ ............... ... 

I 
I 

SAMPLE 

.. 1 

.. l 

is SENSOR 
with SIGNAL 
• 'ANALOG' 

SAMP _SIZE ;? 1 

Fig, 2. Sample Entity Structures 

MIN VAL slot which must be filled with a 
non;egative number, and a MAX VAL slot which must 
be filled with a number larger than the contents 
of the MIN VAL slot. The ART PR SENSOR entity is 
used to represent the subclass of arterial blood 
pressure sensors. Although it does not define any 
new slots, it specifies that its SIGNAL, MIN VAL, 
MAX VAL slots must respectively contain the values 
'ANALOG', O, and 250. 

The other hierarchy is concerned with describing a 
class of processing functions. At its top level 
is the FUNCTION entity, which defines three slots: 
INPUTS/OUTPUTS slots which indicate that a 
function must have at least one input and one 
output, and a TYPE slot which here is 
unconstrained. One of its descendants, the 
DEVICE FN entity, represents the class of 
functions which service devices, as opposed to 
those that say perform arithmetic operations or 
data transformations. Thia entity constrains its 
inherited TYPE slot to contain the value 'DEVICE'. 
It also defines an ASSOC slot which must contain a 
reference to a DEVICE entity or one of its 



descendants. At a still lower level, the 
AI SAMPLE entity is used to represent the subclass 
of- analog input sampling functions. It states 
that it has exactly one input and one output, and 
further that its ASSOC slot must contain a 
reference to a SENSOR entity which itself has the 
value 'ANALOG' in its SIGNAL slot. (Note: 
ART PR SENSOR and its descendants satisfy ""tiirs 
latter- constraint.) AI SAMPLE also defines a 
SAMP SIZE slot which must-be filled with a number 
whose value is at least one. 

As an aside, it is easy to imagine several schemes 
for arbitrarily extending the set of defined 
relationships : (1) New edge types could be 
explicitly introduced into the language, each with 
an accompanying syntactic construct. (2) New 

, kinds of relationships could be represented 
implicitly by introducing dedicated linkage 
entities and using these to capture the attributes 
and referents of each relationship. For instance, 
either of these techniques could be used to 
implement an entity-level notion of connectivity 
or flow among the various elements of a system. 
In [7], CONNECTION entities indicate data and 
control flow among device/function elements in an 
instantiated user application. 

3. SEMANTIC ATTRIBUTES 

An attribute grammar is a context-free granunar for 
which fixed sets of synthesized and inherited 
attributes are associated with each nonterminal X. 
Also, bound to each production 

is a set of semantic rules which define how to 
calculate the values of the synthesized attributes 
of X and the inherited attributes of the 
nonterminals appearing in B. 

Typically, the parse (tree) which results from the 
successful syntactic analysis of a piece of text 
is used to drive its semantic processing. Each 
node of the tree corresponds to a phrase in the 
text and to the application of a single production 
in the parse. One can view each node as being 
serviced by the appropriate set of semantic rules 
which compute its attribute values. In order to 
perform these calculations that rule set requires 
the values obtained at the parent and child nodes 
to respectively handle inherited and synthesized 
attributes. Therefore, observed as a whole, the 
evaluation process ca1Jses attribute values to flow 
up and down the tree. 

The remainder of the paper is devoted to 
developing sets of attributeR and semantic rules 
for the syntactic grammar gi ven in Fig. 1. The 
goal here is to be able to associate with each 
phrase, Q, information pertaining to the 
entity/slot context which constitute its 
environment, the nature of the constraint which it 
imposes upon that environment, and the degree to 
which static analysis has been able to resolve 
those constraints. An important point to note 
here is that in addition to providing a semantic 
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characterization of the network, attribute 
evaluation can serve both a consistency-checking 
and a binding function with respect to the rather 
loosely-coupled elements out of which it is 
fashioned. In the discussion which follows, 
semantic rules are developed relative to these 
semantic attributes: 

Inherited Attributes 

enx(Q): internal index of entity context 
~- for evaluation of Q. 
slx(Q): internal index of slot context 
~- for evaluation of Q. 

Synthesized Attributes 

~(Q): resolution status derived from 
Q; an element drawn from the 
ordered set of symbolic values 
RESOLVED>PARTIAL>UNDEFINED>CONFLICT. 

val(Q) : value(s) resulting from the 
~- semantic evaluation of Q. 
con(Q) : constraint type(s) associated 
- with val(Q). 
found(Q): result of the search, if any, 
~~,pecified· within Q. 

The ensuing description is organized into a number 
of sections. Each section contains (1) a name 
which identifies a type of construct, (2) a 
syntactic production, (3) its associated semantic 
rules, coded in pseudo-Algol form, and, where · 
appropriate, (4) a set of conunents on those rules. 
For brevity, Land R (possibly subscripted) are 
used to denote, respectively, the nonterminals 
appearing in the left-hand and right-hand sides of 
the production. Also, any attribute which does 
not explicitly receive a value during an execution 
of a rule set is deemed to have been implicitly 
assigned the value NULL. 

ENTITY SPECIFICATION 

<entity> ::E <*ent-name> <slot-1 .. N> 

enx(R) + ENTINDEX(<*ent-name>) 
stat(L) ... MIN(~(R[l. .N])) 

Conunent: Remember identity of entity; process its 
slots. 

.2!£!. SPECIFICATION 

<slot> ::• <*slot-name> <clause- 1 •• N> 

SLID<+ SLOTINDEX(enx(L),<*slot-name>) 
slx (R[ 1. --:i'r) + SLNX 

ATTR + CONMATCH(<con(R),val(Rl,stat(R)>) 
<con(L),val(i:J:"stat(L)> + ATTR 
- SLOTBIND(SLm<,ATTR) 



COMMENTS, Remember identity of slot1 process each 
of its clauses, use CONMATCH to 
consistency-check and resolve clauses, record 
result. 

SPECIALIZATION SLOT 
<slot> 1 1• spec <entref> 

stat(L) + stat(R) 
""eii'x (R) + enx (L) 

IF stat (R'f""i" PARTIAL THEN 
SPECBIND(.!!!!!_(L) .~(R) •ill(R)) 

Comments: Process entity reference, establish and 
record specialization relationship. 

CLAUSE SPECIFICATION 

<clause> ::• <*relop> <valspec> 

CASE stat (R) OF 
[ RESOLVED: [ IF INCOMPAT(<*relop>,val(R)) 

THEN stat(R) + CONFLIC~ 
ELSE IF°'7*relop> • ' • ' 

THEN stat(R) + RESOLVED 
ELSE iitat(R) + PARTIAL; 

con(L) + <*relop>; 
val (L) + ill(R) ] 

PARTIAL: PARTIAL1 
UNDEFINED: UNDEFINED1 
CONFLICT: CONFLICT] 

Comments: Process value spec, check operator/value 
conformance; record value, constraint, and 
status. 

CLAUSE SPECIFICATION 

<clause> 1 :• .!!_ <entref> 

con(L) + 'ENT' 
val(L) + found (R) 
stat(L) + stat(R) 

~ SPECIFICATION 

<valspec> ::= <*value> 

val(L) + <*value> 
stat (L) + RESOLVED 

~ SPECIFICATION 

<Valapec> 1:• <alotref> 

val (L) + val (R) 
atat(L) + stat(R) 
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ENTITY REFERENCE 

<entref> 1 :• <*entname> [ with <entcon> ] 

ENTNX + enx (R) + ENTINDEX (< *entname>) 
IF LENGTH(ENTNX) • 0 
THEN stat (L) + UNDEFINED 
ELSE JF"'NoENTCON 

THEN [ stat(L) + RESOLVED; 
found(L) + ENTNX ] 

ELSE [ vai('i;') + val (Rl ; 
ii'tat (L) + stat (R) 
found (L) + found (R) ] 

~ REFERENCE CONSTRAINT 

<entcon> ::• <slotcon-1 •• N> 

enx (R[ 1. .NJ) + enx (L) 
stat(L) + MIN(stat(R(l..N])) 

IF stat(L) ? PARTIAL~~ 
THEN[val (L) + val (R) 1 

found (L) .;:--
~~+ INTERSECT(~(R[l .• N))) ) 

Comments: Resolve individual slot constraints; 
find their (most specialized) intersection. 

~ CONSTRAINT 

<slotcon> 1:• <tslot-name> <clause> 

SLNXl + SLOTINDEX(enx(L),<*slot-narne>) 
IF LENGTH (SLNXl) • 0 -
THEN stat(L) + UNDEFINED 
ELSE r-sE°NX2 + SPECINDEX(enx(L),<*slot-narne>) 

ATTRL + SLOTFETCH(SLNX) ,SPECFETCH(SLNX2); 
ATTR + <con(R),val(R),stat(R)>1 
ATTRN + CONMATCH (ATTRL ,ATTR) ; 
ENTNX + MOSTSPEC(enx(L),ATTRN); 
SLNX + SLOTINDEX(ENTNX,<*slot-narne>) 
IF LENGTH (ENTNX) ? 1 
THEN stat(L) + CONFLICT 
ELSE [ ATTRS + SLOTFETCH(SLNX ) ; 

ATTRQ + CONRES (ATTRN ,ATTRS) ; 
stat(L) + STATUS(ATTRQ); 
val (L) + <SLNX,ATTRQ> 1 

found (L) + ENTNX ] J 

Comments: Check for existence and binding of slot; 
check consistency of binding with new clause, 
find moat specialized entity which fits; 
determine residual constraint over and above 
its binding, 

§!£!:_ REFERENCE 

<alotref> 1 :• !!£!. <*slot-name> 2f <entref> 

SLNX + ENSLMATCH(found(R),SLOTINDEX(<*alot-name>)) 
IF LENGTH (SLNX,--;;-0 



THEN stat(L) + UNDEFINED 
ELSE IF stat(R) • RESOLVED 

THE~ATTR + SLOTFETCH(SLNX); 
IF LENGTH(ATTR) = 0 
THEN stat(L) + UNDEFINED 
ELSE ~(L),val(L),stat(L)> 

--+ ATTR] --

ELSE stat(L) + ~ (R) 

Comments: Process entity reference; select proper 
slot and get its binding . 

4. ~ EVALUATIONS 

Fig. 3 exhibits the parse trees for the clauses 

> slot MIN VAL of ART PR SENSOR - - - -
and 

is SENSOR with SIGNAL= 'ANALOG'. 

Attribute evaluation will now be performed 
relative to these parse trees. In each case, the 
calculation and flow of attribute information is 
traced node by node. For brevity, nodes are 
referenced by tag number. Motion between nodes is 
explicitly indicated via a trace line. The 
general scenario at each node is: (1) compute 
inherited attributes, (2) begin computing 
synthesized attributes until a descendant node's 
attribute values are need, (3) process descendant 
node(s), (4) resume computing synthesized 
attributes. 

•==•== BEGIN CASE-1 ====== 

*** > ~ MIN_ VAL 2!_ ART_ PR_ SENSOR *** 

MOVING TO NODE 1 =••••• 

MOVING TO NODE 2 
For convenience, each nonterminal node is labelled 
with a number and a phrase symbol, and each val (2) + ~(3) 

2:<valspec> 

3: <slotref> 

4:<entref> 

SENSOR 

l:<clause> 

2:<entref> 

3:<entcon> 

5:<clause> 

*** 

Fig. 3. Sample~~ 

terminal node contains the appropriate token. 
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=•=••• MOVING TO NODE 3 

SLNX + ... found(4) ... 

...... MOVING TO NODE 4 •=•=== 

ENTNX • e(ART PR SENSOR) 
***•entity-index*** 

stat(4) • RESOLVED 
foundW-• e (ART_PR_SENSOR) 

•••••• RESUMING NODE 3 ==--•• 

SLNX = s(ART PR SENSOR.MIN VAL) 
*** D slot index ••• -

ATTR = <'=',O,RESOLVED> 
con(3) • '=' 
7a1(3) • 0 

stat(J) • RESOLVED 

••••=• RESUMING NODE 2 =•..,.=• 

va1(2) • 0 
stat (2) • RESOLVED 

•••••• RESUMING NODE 1 ==•=•• 

stat(l) - PARTIAL 
--c-on (l) • '>' 

val(l) • 0 

END CASE-1 

!!. SENSOR ?!.!!h. SIGNAL - I ANALOG I 

----- MOVE TO NODE 1 -••== 

con(l) • 'ENT' 
val (l) + ~(2) 

*** 



I 

I 

I 
·I 

.I 

---- MOVE TO NODE 2 mm 

l''!T!'!X = enx (3) • e (SENSOR) 
.!!!!. ( 2) ... .!!!!. ( 3) 

•••••• MOVE TO NODE 3 ••••.., 

enx(4) • e(SENSOR) 
stat(3) + stat(4) 

====•• MOVE TO NODE 4 •===== 

SLNXl = s(SENSOR,SIGNAL) 
SLNX2 • p(SENSOR,SIGNAL) 

***•spec index*** 
ATTRL"' NULL 

*** no binding*** 
ATTR + <,£2!!.(5), ,,,> 

••••-- MOVE TO NODE 5 =•s•• • 

.£!.!!!. ~ (6) ... 

••••am MOVE TO NODE 6 ••=--• 

val(6) • 'ANALOG' 
stat(6) • RESOLVED 

==•--- RESUMING NODE 5 =••--• 

stat(S) • RESOLVED 
--con (5) • '•' 
val (5) = 'ANALOG' 

•••••• RESUMING NODE 4 ==•••= 

ATTR • <'=','ANALOG',RESOLVED> 
ATTRN • < '•' , 'ANALOG' , RE.SOLVED> 

ENTNX • e(BLOOD PR SENSOR) 
*** • parent of ART-PR-SENSOR*** 

*** abbreviate BPS*** 
SLNX • &(BPS.SIGNAL) 

ATTRS • <'x', 'ANALOG' ,RESOLVED> 
ATTRQ • NULL 

*** no residual constraint*** 
!!!1(4) • PARTIAL 

*** PARTIAL because BPS• subclass, *** 
*** so reference not fully resolved*** 

va1(4) = <s(BPS.S),NULL> 
- ~(4) • e (BPS) 

• •••=• RESUMING NODE 3 • ==••• 

stat(3) = PARTIAL 
val('j'f"':" <s(BPS.S),NULL> 
- found(3) = e(BPS) 

• •=....., RESUMING NODE 2 ....... 

va1(2) = <s(BPS,S),NULL> 
- stat(2) = PARTIAL 

found(2) • e(BPS) 

...... RESUMING NODE 1 ...... 

val (1) • e (BPS) 
stat(l) • PARTIAL 
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• • ---- END CASE-2 .. a•a • 

S. CONCLUSIONS 

This paper has explored the idea of employing an 
attribute grairanar as the basis for formally 
defining, calculating, and propagating arbitrary 
amounts of semantic information within a broad 
class of network-based knowledge representation 
schemes. This approach gave rise to a 
straightforward mechanical procedure for 
generating structured collections of 
attribute/value pairs, which could then aid in 
efficiently characteri zing the contents of the 
network. 
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Abstract 

Ten thorny problems in the study of language 
comprehension are discussed anrl shown to depend 
upon arbitrarily detailed world knowledge and 
access to context. A "selective inferencing 
system" is sketched for formalizing context and 
the use of world knowledge, and it is shown how 
each of the ten problems reduces to the single 
problem of how the system selects the appropriate 
inferences, This spawns a new set of subproblems, 
but they are problems of a very different flavor 
from the original problems. 

1. Some Linguistic Problems 

ProblemA nnrl solutions oftnn ~ut the world in 
di ff'etent w1Jyo. lleAe11rch in lsn111mtr.e ftequently 
takes the fotm of choosine a particular linguistic 
problem, like pronoun resolution, or compound 
nominals, or metaphor, and seeking a solution, 
But there is no guarantee that solutions will 
partition the linguistic space in the same way 
that problems do. The solution of a particular 
problem may require a number of components, but 
each of these components may generalize over many 
other problems as well. In this paper I want to 
propose just such a repartitioning of linguistic 
space, in which many traditional problems collapse 
into a single problem, that of selecting the 
appropriate inferences, which in turn decomposes 
into several subproblems with a flavor quite 
different from the original problems, 

I want to look specifically at ten problems 
in laneuage comprehension: 

1) Q_ompoun~ !!_Ominals: First let us consider 
.noun-noun combinations, like "wine glass", To 
comprehend this, a language user must discover the 
relation implicit between the two entities, some 
unspecified portion of wine and the glass. Levi 
(1978) proposed that the implicit relation must be 
one of a small fixed set of primitive predicates, 
including FOR, IN and PRODUCT, Her work is an 
example of an attack on a single problem, and the 
"solution" is particular to that problem, in that 
it solves no other problems on the side. 

nut there are several difficulties with her 
proposal. Fixst of all, it fail s to capture the 
complexity that usually characterizes the implicit 
relation. Thus, "wine glass" is not just a glass 
FOR wine, but a glass FOR wine to be IN, and that 
is a simple case. In Hobbs ; 1979b) I analyzed my 
favorite compound nominal, from a ~wsweek 
article, "veto pitch", which is a bill Congress 
"pitches" to the President and which is easy for 
him to veto just as a pitched baseball might be 
easy for a batter to hit, We could weaken the 
claim to say that the implicit relation must be 
one of the primitive predicates ~ some level _of 
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gener~~. but that l eads to the second 
difficulty -- the set of predicates are so general 
they almost cover the world, There is little they 
exclude, so the proposal lacks empirical content. 
The relation in "veto pitch" would be perhaps 
"pitch PRODUCES veto", but that would be 
unilluminating at best . The proposal does make 
one prediction however, and that is that the 
relation cannot contain negation, Thus, a wine 
glass cannot be a glass that is not for wine. But 
here's the third difficulty -- ~he prediction is 
wrong. On a Gray Line tour of Vancouver last 
December I learned about the monkey tree, A 
monkey tree is a tree with spines pointing 
downward so.that it is the only tree that a monkey 
can NOT climb. 

Downing (1977) gives further examples of 
nrhitrary, hi~hly context- dependent relations 
between the nouns of compound nominals , For 
example, in a particular context, "apple-juice 
seat" ia the seat at the dinner table that has the 
apple juice at it. The implicit relation can be 
anything, and what it is is very dependent on 
context and arbitrarily detailed world knowledge. 

2) Denominal verbs: Clark and Clark (1980) 
give several thousand examples of nouns used as 
verbs, such as 

The paper boy porched the newspaper. 

Like Downing, they argue that virtually any 
relation can obtain between the noun that has 
surfaced as a verb and the explicit arguments of 
the verb , For example, suppose we both know my 
cousin Max has a habit of sneaking up behind 
people and Iubbing the back of their legs with a 
teapot. Then you will understand me if I say 

Oh no, Max just teapotted a policeman, 

Again, arbitrarily detailed world 
sensitivity to the context is 
interpretation. 

knowledge 
required 

and 
for 

3) Metonymy, ~ indirect reference: We 
commonly refer to one thing as a way of referring 
to something related to it. For example, we can 
say 

T points to a binary tree, 

as a way of saying 

T points to the root node of a binary tree . 

Nunberg (1978) has investigated this phenomenon 
extensively and produced a wealth of examples that 
lead to a similar conclusion. Consider for 
example, 



I 

John sold hie Ford for $3000. 
John sold hie Ford for 57 3/8. 

In the first, we mean 

John sold hie ~a..!_ manufactured El. Ford 
for $3000, 

In ·the second. we mean 

John sold his _!toe~ issued El. Ford 
for 57 3/8, 

Nunberg shows that recovering 
function that will take us from 
referent to the intended referent 
arbitrarily detailed world knowledge 
dependent on context. 

4) Met~ho~: Consider 

the implicit 
the explicit 
can require 

and is highly 

John is a real hog. 
John is a real hog. 

let me talk. 

He weighs 300 pounds. 
He wouldn't shut up and 

How do we pick out the features John and hogs 
share? In the first case, it is physical 
char~cteristics; in the second, the 
ovetconsumption of a limited resource. For the 
interptetation of metaphors, again world knowledge 
and context. 

Now some coreference resolution problems: 

5 ) ~finite no~ .E_hrase resolution: In a text 
we will work again and again, 

(1) John can open Bill's safe, He knows the 
combination, 

how do we know what "the combination" refets to? 

6) Pronoun resolution: In (1) how do we know 
whether .,,..h~refers to John or Bill? Knowing the 
combination can be inferted both from being able 

. to open and owning. 

7) Resolution of omitted arguments: In (1 ), 
the combination of what? And how can we find out? 

Finally, some ambiguity problems: 

8) Lexical ambiguity: In (1 ), what sense of 
"combination is being used, the combination of a 
lock or the combination of several objects? And 
how do we know? 

Syntactic ambiguity: 

9) _!h~ ~_!~tional phrae_e_ ~blem: In 

I drove down the street in a cAr, 

we need to know about streets, care, and dtiving 
to be able to parse the sentence correctly. In 
the old favorite, 

T RttW the mttn in the park with thn telA8Cope, 

it ie not enough 
and telescopes. 
situation. Once 
apply H? 

to know about seeing, men, parks, 
We need specific knowledge of the 
we have that knowledge, how do we 
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10) Very compound nominals· Compar e "Stanfotd 
Reseatch Institute" and · "Cancer Research 
Institute". In the first "Stanford" bears some 
direct relation to "Institute", not to "Research", 
In the second, "Cancer" bears the direct relation 
to "Research", not to "Institute", Thie kind of 
ambiguity infects the syntactic analysis of 
complex texts almost as much as the ptepoeitional 
phrase problem. 

All these problems point in the same 
ditection. Atbitrarily detailed world knowledge 
is required to solve them, and the interpretation 
has to be done ar,ainet a very · specific context. 
Linguists frequently see in this observation the 
hopelessness of finding solutions. Workers in 
natural language processing (NLP) tend to be a bit 
more brash and see in it a challenge. It ie a 
challenge I propose to take up for the rest of 
this paper, 

First we should be cleat about the nature of 
the solution we ate looking for. For many of the 
ptobleme, thete are efficient methods that work on 
the majority of the cases, Fot example , there is 
a fairly simple algorithm for ptonoun resolution, 
wotking strictly on the patse ttees of the 
sentences in the text (cf , Hobbs 1976a), that is 
correct mote than 90% of the time in published 
texts. But it doesn't work everywhete, fot 
instance, on the kinds of examples Charniak (1974) 
came up with, 

For many compound nominals, such ae "wine 
glass", the computationally efficient solution is 
simply to stick it into yout lexicon as a phtase. 
This is even principled in cases like "wine 
glass", for there ate things we know about wine 
glasses, e.g., they have stems, that can't be 
deduced from our knowledge of wine and glasses. 
But this method does not help with novel 
combinations, like "turpentine jar", 

On a highet level, if we have sttong sctipt
like knowledge about what we'te trying to 
comptehend and our understanding need not be de ep, 
the solution to many of these problems simply 
falls out or becomes unimportant in script-based 
ptoceesing (Schank and Abelson 1977, Schank, 
Lebowitz, and Birnbaum 1980). Suppose for example 
I'm skimming reviews of TV shows, I know the show 
has a title, a topic, and some actots, and that 
the reviewer will evaluate the show. The title is 
in bold-face: the topic will come immediately 
after and will be a description of a sequence of 
telated events; the actors' names will be 
capitalized: and the evaluation iA likely to be 
expteesed in terms of evaluative Hdjectives used 
literally. This ie my script, and using it, I can 
ptocese the text quite IApidly and understand 
enough for me to decide whether to watch the s how . 
But if I want to understand something about the 
source of the reviewer's opinions and how much hie 
evaluation would coincide with my own, neithet 
this TV-review script OI any other TV - review 
script will suffice. Single-script processing 
does not help us when we are trying to make sense 
out of a novel text, or make deep sense out of any 
text. 



What is common to all these efficient partial 
rethods is that an interpretation problem is 
~ransformed into a simpler recognition problem , 
ft is important for NLP researchers to study these 
~ethods, but they should not lead us to abandon 
the search for full solutions. 

P.ven in cases where the simple methods work, 
euch as treatin~ "wine glass" and "monkey tree" as 
pingle lexical entries, it is still of interest to 
know why the particular usage is motivated 
(Fillmor e 1979 ): "wine glass" is not an entirely 
arbitrary way of referring to wine glasses, in 
contrast with "jug", which is an entirely 
arbitrary way of referring to jugs. We would like 
the ~otivation behind an expression to be given by 
the way its interpretation would be computed, even 
~hough it usually isn't computed. But a finer 
pistinction is necessary, between the computable, 
like wine glass", and the noncomputable but 
~otivated, like "monkey tree". While both are 
stored and recognized as single lexical entries, 
the correct interpretation of the former could be 
computed. For the latter, there is a reasonable 
explanation of the correct interpretation, but a 
naive language user would not necessarily be able 
~o choose that interpretation over other possible 
~nterpretations if he had to compute it himself . 
Figure 1 summarizes all this. 

-- ~ -~~~ 
~rhitrery Motivated 
. I ~- ~ 

"jug" Not Computable Computable 

I /~ 
"monkey tree" Not Computed Computed 

I I 
"wine glass" "turpentine jar" 

Figure 1. 

As processes of comprehension, the solutions 
we will be seeking in this paper are relevant only 
to the rightmost case, the computed. But as the 
processes that underlie or motivate the cultural 
existence of a particular expression, the 
solutions will be relevant to all but the 
leftmost. 

2 , Selective Inferencing 

2. 1. Deductive Systems in Mathematics 

If we are goi ng to take up the challenge of 
full solutions to these ten problems, we need a 
mechanism for dealing with world knowledge and 
context, for going beyond what is given 
explicitly. Perhaps the best guide we have in 
this enterprise is the deductive systems of 
math ematics (D S) , so these are outlined first. 
But if our aims are not the development of 
mathematical theories, but the analysis of 
lincuistic texts, we need to modify the DS in 
certain ways, and these are discussed next. The 
result is what I will call a "selective 
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inferencing system" (SIS). Much of i ,t is a 
recapitulation of common practices and principles 
of AI, but I hope it includes a few new 
suggestions. In the course of developing the SIS, 
I will "solve" the ten linguistic problems, by 
reducing them to the single problem of how a SIS 
selects the right inferences. The subproblems 
this spawns are di scussed as we go along and 
summarized in Part 3, 

A DS can be characterized 
used, the process of using 
mathematician's commitment to it. 
each in turn. 

by the formalism 
it, and the 
We will look at 

1) Formalism: The formalism consists of a set 
of symbols-iind- means of combining them into 
expressions. Certain expressions are designated 
axioms. There are a few rules of inference, such 
as ~o_c!_u_s_ ponen~ and universal - instantiation, 
according to which expressions can be manipulated , 
When applied to axioms, they yield the~~· 

2) Process: Anything derivable from the 
axioms by11pplication of the rules of inference is 
a theorem. But in practice, the mathematician, 
viewed as the one who turns the crank on the 
deductive engine, doesn't go about enumerating all 
theorems; he only proves the interesting ones. At 
any given moment in the deductive process. some 
axioms and theorems are highly focused, in the 
spotlight, so to speak, while most remain very 
much in the background, And most theorems he 
simply lacks the resources to prove. I mention 
these facts because we will have to formalize 
aspects of this process. 

3) Commitment: The mathematician assigns to 
each symbol in the formalism an individual or set 
in some Platonic universe whose existence he 
accepts as unproblematic, at least for the 
purposes of the enterprise. Legal ways of 
combining symbols into expressions are assigned 
corresponding set construction operations in the 
universe, in such a way that the axioms correspond 
to statements about the universe. In positing an 
expression as an axiom, the mathematician commits 
himself to the truth of the corresponding 
statement about the universe. The rules of 
inference preserve truth, so the mathematician 
also commits himself to the truth of the 
statements about the universe corresponding to the 
theorems. 

I am not cal ling all this by its usual name 
"semantics". "Semantics" is by now hopelessly 
ambiguous in an interdisciplinary field like 
cognitive science. Philosophers mean one thing, 
psychologists another. ( "Meaning" is even worse, 
since it means something to ordinary people as 
well.) But the real difficulty is that logical 
semantics assumes we can talk reasonably about the 
world in a way that is independent of someone's 
perception and interpretation of the world. L~ke 
many people in AI, I find myself very 
uncomfortable in that mod e of discourse, and 
bereft of intuitions. But I can make sense of 
talk about the social enterprise of building and 
using formal systems, What surfaces in logical 
semantics as "meaning" surfaces here as 
"commitment". 



. I 

·, 

It is good to take a DS as our starting point 
and depart from it only where we have to. In this 
way we run the least risk of that plague of AI, 
reinvention. 

2,2. A Selective Inferencing System 

We wish to construct a mechanism which, when 
· presented with a text in a particular context, 
will apply the appropriate world knowledge, 
including knowledge of the context, to solve the 
linguistic problems posed by the text, including 
those laid out in Part 1. We will assume a 
syntactic component has already recognized 
predicate- argument relations and reduced the text 
to the mechanism's internal language, perhaps with 
some annotations signaling where the problems are. 
Later in the paper I will discuss some features of 
the internal lanP,uai:i:e necessary to make this 
assumption reasonable. 

We need a label for this component of 
language processing. The undes irability of 
"semantic" was discussed above. "Deduction" won't 
do, since that's what we're contrasting this 
mechanism with. "Entailment" is a bit too strong 
for what I have in mind . "Implicature" means two 
things, conversational implicature and 
conventional implicature, and these turn out to 
require two quite different mechanisms when made 
precise. "Reasoning" implies a conscious 
activity, whereas the processing of the sort we 
will try to simulate ranges from barely conscious 
to deeply unconscious. "Interpretation", or more 
metaphorically, "comprehension", is what the 
mechanism does, but not how it does it. 
"Understanding" is too loaded to be a useful 
technical term: hermaneuticists tell us it's 
obvious that machines will never be able to 
understand; there's something to that; machines 
without toes will obviously never understand "John 
stubbed his toe" in the way we do . 

So we will settle upon the label AI has 
already chosen -- "inference". To verb the label, 
we will say the mechanism "draws inferences". But 
how to nominalize the process is a problem. "The 
drawing of inferences" is too cumbersome. 
"Inferring" seems more appropriate for the single 
act of drawing an inference than for the process 
that underlies those acts. So we will again bow 
to AI custom and use the illiterte term 
"infe rencing". The mechanism will be designed to 
draw inferences selec tively : hence, the title 
"Selective Inferencing". 

We can divide our discussion into five 
sections. Corresponding to the formal language of 
a DS, we need to specify our language of 
re_Rresentation. Corresponding to the axioms of a 
DS, we need to discuss the knowledge to be 
representeq. Corresponding to- --~rules of 
inference, we need to talk about the operations 
that use the knowledge by manipulating the 
representations. Corresponding to the process of 
applying ru les of inference to derive theor ems is 
the mechanism of control for the operations. 

'Finally, we need to discuss our commitment to our 
formal system. 
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By cleanly separating these five issues for 
the purposes of this discussion, I do not mean to 
imply they should be cleanly separated in 
implementation. There may be many good 
implementation reasons for mixing the categories. 

For the Iest of Part 2, differ~nces between 
the deduction systems of mathematics and the 
selective inference system required in NLP will be 
forced upon us. But first I will tip my hand . 
Figure 2 summarizes the differences and should 
help the reader keep track of where we are. 

Representation: 

few predicates 

few constants & 
vaiiables play a 
Iole at given time 

Knowledge: 

few axioms 

deep proofs 

Operations : 

simple calculus: rules 
of inference only 

Control· 

in theory, no resource 
constraints, no 
control over proof 
process 

Commitment: 

commitment at symbol 
level 

Figure 2, 

Selective Inferencinll_ 

about 1 predicate/ 
English morpheme 

about 1 constant or 
vaiiable / moipheme 
in t ex t 

about 1 axiom/ fact we 
know about the world 

shallow proofs 

complex calculus: rules 
of inference under 
control of higher 
discourse operations 

means for controlling 
proof process 
formalized 

heuristic commitment to 
axioms as used by 
by operations; 
ultimate commitment 
to external behavior. 

2.3. Representation 

Our 
criteria: 

formal language should satisfy two 

1) It should be close to English. The 
mechanism is responsible for comprehending. and 
ultimately, generating English texts. The 
translation between English and the formal 
language is likely to be easier the closer to 
English the formal language is. The ideal choice 
by this criterion is English itself, but it fails 
monumentally on the second criterion. 



2) It should have a simple syntax. This 
:eases the manipulation of the representations, and 
manipulation is what the mechanism does most of 
the time. Much of the complexity of English 
syntax, e.g. the division of predicates into 
nouns, adjectives, verbs, adverbs, and 
prepositions, reflects a conceptual scheme that is 
better captured in the axioms than in the syntax 
of our formal language. Hence, we will stick to 
the language of predicate calculus, a language of 
predicates, constants, variables and quantifiers. 
To satisfy criterion (1 ), there will be nearly a 
one- to-one mapping of the morphemes of English 
onto the predicates of the formal language; "onto" 
sinc:°e there will be other predicates as well. For 
any text processed, there will be about one 
predication and one constant or variable for every 
morpheme in the text. Rather than taking the time 
to define the language formally here (it is done 
in Hobbs (forthcoming)), I will simply paraphrase 
all the formal expressions I have occasion to use. 

Thus in our language of representation, we 
need to depart very little from what is provided 
by a DS, although a SIS, because of its profusion 
of symbo1 s, will have a very different look to it. 

2 . 4. Knowledge 

In a D;, , we typically build on a small number 
of carefully crafted axioms, and proofs of 
theorems ar e generally quite deep. A SIS, on the 
other hand, mu s t be axiom-rich. The axioms encode 
the knowledge we have about the world, and I would 
expect there to be about one axiom for every fact 
we know -- that is, lots. There would be little 
point in an effort toward an elegant, independent 
set of axioms. Because of resource limitations, 
proofs will have to be shallow, and many 
expressions that could be proven as theorems will 
have to be s tored as axioms anyway. For example, 
even if it _were possible to deduc e many of the 
details of our economic system from reneral 
ideological principles, the SIS should not have to 
do so every time it reads a text about 
supermarkets. Nevertheless, facts should be 
stated at an appropriate level of generality. 
Thus , some of the things we know about 
supermarkets are just facts about supermarkets. 
But mo s t are facts about food stores, or stores, 
or Luyin~ and ncllin~ in ~eneral. 

My prefe rence is for the facts about the 
world to be stated in as atomic a form as 
possihle. For example, I prefer a system to have 
a bunch of small facts about baseball, along with 
the facts that th.ey are about baseball, easily 
accessible from each C>ther, rather than having a 
lar ge-scale baseball schema that has to be used as 
a unit. Then we can use our knowledge about 
baseball selectively. For example, in 
interpreting "veto pitch" we could access facts 
about pitchers and batters without accessing facts 
about third basemen and outfie lders. However, I 
have no objection to including such large-scale 
schemata, and would view them simply as other 
axioms. 
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I don't think it's useful to distinguish 
among kinds of knowledge, except as we are forced 
to by differences in the way the operations 
manipulate the knowledge. In particular, the 
distinction between the dictionary and the . 
encyclopedia, or the distinction between lexical 
and world knowledge, as well as the distinction 
between analytic and synthetic truths, will 
probably turn out to be useless in our system. 
Thus, both 

A husband is a male, 
and 

A husband usually lives with his wife, 

will both be expressed by axioms of the same sort 
and will have the same status in the system. 

2.5. Discourse Operations 

So far we have had to depart very little from 
a DS. But now a radical departure forces itself 
upon us. 

In theory, in a DS, there are only a f ew 
rules of inference, like modus .IJE.ne'!_~ and 
universal instantiation, and whenever they apply, 
we have to live with whatever they produce. In 
practice, only a few things are really proven; the 
rest just lies in reserve. 

For us, things cannot be as simple as a DS is 
in theory. We have to formalize the practice. 
The standard rules of inference will have to be 
under strict higher control. One reason for this 
is the likely inconsistency of our set of axioms ; 
this is taken up below. Another reason is that of 
the vast number of inferences we might draw from 
the information in a text, only a small number 
will be relevant. 

We need to divide the expressions into two 
r. ategories: a knowledge base, our repository of 
axioms waiting- 'iass-fv-ely . - "to be used. and a 
spotlight (to use a technical term no one e lse 
will be tempted to adopt), which contains 

1) the current sentence being processed, 
2) a representation of the previous text, and 
3 ) some representation of the external 

environment, 

together with the inferences drawn from the 
knowledge base that are determined to be relevant 
to the interpretation of the text . The inferences 
are not the axioms themselves, but the 
instantiated conclusions of the axioms. 

Given this structure and our language of 
representation, what would it be for our SIS to 
comprehend a sentence in the text? It would have 
to relate the sentence to itself, to the prev ~ou s 
text, and to the representation of the external 
environment. The problem of relating the sentence 
to itself arises from two phenomena of English 
discourse: 

1) English allows predicates to be applied to 
arguments rather freely. Metaphor and metonymy 
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are examples, Predicates and 
to be interpreted in such a 
congruent, This leads to 
.E_redicate inte~etation. 

their arguments have 
way that they become 

the operation of 

2) English allows some predicates to be 
implicit, Compound nominals and denominal verbs 
are examples, These predicates should be made 
explicit, Thie leads to the 1:_nte~retation of 
implicit .P!_edicate~. 

Relating the sentence to the previous text 
involves two kinds of problems: 

3) English is linear and when something 
appears in several grammatically unrelated 
predications, it has to be mentioned more than 
once, If the text is to be comprehended, the 
identity between the mentioneds has to be 
recognized, Hence the operation of coreference 
resolution. 

4) What the current sentence asserts should 
be related to what was asse.rted in the previous 
text. Thus, we should discover ~o~~rence 
relations, 

5) Finally, the sentence has to be related to 
the external environment, This could be broken 
down in a number of ways, but in this paper, I 
won't, 

These five discourse operations are dictated 
by the nature of the mechanism and the lanr:uage of 
representation. They each seek to satisfy certain 
requirements imposed by the text. The 
requirements are expressed in terms of inferences 

' to be drawn from the knowledge base. The 
discourse operations work by searching the 
knowledge base for inferences satisfying the 
requirements, When they find them, they 
instantiate them into the spotlight, and perhaps 
make certain minor modifications to the original 
representation of the text, These five discourse 
operations encode our hypothesis about what it is 
to comprehend a text. Hence, rather than drawing 
inferences freely as in a DS, we will draw 
inferences only as dictated by these discourse 
operations, They constitute the fundamental 
mechanism for selecting appropriate inferences, 
Moreover, it is here that we see our ten 
linguistic problems translated one by one into the 
problem of selecting the appropriate inferences, 

Let us look at each operation in greater 
detail: 

1, Predicate inte~retation: Elements of the 
text have to fit into their local environments. 
This can be viewed as a more active version of the 
old check on selectional constraints. It can be 
stated roughly as follows: 

(2) Given proposition p(A), from PROPS(A), infer 
RF:Q(p), 

where "PROPS(A)" is the set of properties of A, or 
the set of propositions in which A occurs as an 
argument, and "REQ(p)" is the set of requirements 
associated with the predicate p, In the simplest 
_case this checks selectional constraints, For 
example, the sentence 
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T points to the root of a binary tree, 

might be represented 

point(T,R) where root(R,B), binary-tree(B), 

That is, T points to R where R is the root of B 
and Bis a binary tree, REQ(point) would be 
"node(R)"; that is, variables can only point to 
nodes, PROPS(R) would be "point(T,R), root(R,B)", 
The knowledge base would include the axiom 

(3) (Ax,y)(root(x,y) --> node(x)), 

that is, if xis the root of y then xis a node, 
In Katzian terms, this is equivalent to having the 
feature +NODE attached to "root". The axiom would 
be used· by the predicate interpretation operation 
to satisfy requirements of (2), "Node(R)" would 
be instantiated and placed in the spotlight. 

But predicate 
more active than 
metonymy. 

interpretation is 
this. Consider 

in general 
a case of 

T points to a binary tree, 

or 

point(T,B) where binary-tree(B). 

"REQ(point)" is the same, PROPS(R) is 
"point(T,B), binary-tree(B)", There is an axiom 

(4) (Ax)(Ey)(binary-tree(x) --> root(y.x)), 
that is, a binary tree has a root. Axioms (4) and 
(3) lead to the satisfaction of (2), "root(R ,B)" 
and "node(R)" are instantiated with some new 
constant R, and the original assertion is changed 
to "point(T,R)", In this modification, it 
resembles the type coercion found in some 
programming languages. 

It is often a problem to determine what the 
requirements REQ of a local environment are. In 

John sold his Ford for 57 3/8, 

we would have to determine from "sold ,, . for" 
that "57 3/8" has to be interpreted as money. 
Only stocks are priced in eighths, so we need to 
infer a relation between stocks and Ford, Once we 
know that, we can use axioms that Ford is a 
corporation and that corporations issue stock. 
But the reasoning leading to "REQ = stocks" is not 
simple, 

2, Interpretation ~f_ .!_mpli<!_it ~ -d_i_c_a1:_e_s_: 
The operation for finding the implicit relation 
between the nouns in a compound nominal can be 
stated roughly, 

Given r(N1 ,N2), find P such that P can be 
inferred from PROPS(N1) and P can be inferr~d 
from PROPS(N2) (Find an intersection between 
PROPS(N1) and PROPS(N2)), 

For example in resolving "wine glass", we have 
r(N1 ,N2) where wine(N1) and glass(N2), that is, N2 



is a elass and 
wine . We can 
the axioms 

N1 some non-specific portion of 
determine the relation r py using 

(Ax)(wine(x) - - > liquid(x)) 
(Ay)(Ex)(glass(y) --> purpose(y, contain(y,x)) 

& liquid(x) ), 

That is, wine is a liquid and the purpose of 
glasses i s to contain liquids. The intersection P 
is "liquid(x)". We instantiate into the spotlight 
the proposition "liquid(N1)" and replace 
" r(N1 ,N2 )" by "purpose(N1 ,contain(N1 ,N2))". 

De nominal verbs are similar to compound 
nominals, In the pattern "N1 N2ed N3" we need to 
find some plausible action, or "doing", of N1 that 
involves N2 and N3. Roughly, 

Find an intersection P between PROPS(N1), 
PROPS(N2), and ~ROPS(N3) such that from P, 
"do(N1)" can be inferred, 

For exampl e , in 

Th e paper boy porched the newspaper, 

we mie,ht use th e axioms 

(Ax)(Ey,z,w)(paper-boy(x) --> 
deliver(x,y,z) & newspaper(y) 
& near(z,w) & front-door(w)), 

(Az)(Ew)(porch(z) --> near(z,w) & 
front-door(w) ), 

saying that paper boys deliver newspapers to 
places near front doors and that porches are near 
front doors, to interpret the denominal verb 
"porch" a s "deliver to the porch", 

In giving the example in Part 1, 

Ma x t eapotted a policeman , 

what I did by setting up the context was to place 
an action by Max involving teapots and people into 
your s potlieht. That action would thus be used to 
interprnt thn Anntence. 

3) ~ -r~ ( ~_r_e_~c_e_ ~~o~!_i._o_T!_: 'rhis includes 
resolution of definite noun phrases, pronouns and 
impli cit arguments . 

Th e re a r e two me thod s for r esolution, Th e 
r i r :i l i:1 di r,-,ct. 
pr e vi ou s t ext 
pr ope rti es of 
Roughly, 

Wn nend to find nnmn thin~ in the 
from which we can prove the 
the constant to be resolved . 

To resolve A, from PREVIOUS.TEXT, infer P 
where Pis in PROPS(A). 

For example , returning to (1 ) , 

( 1) John can open Bi 11 's safe. He knows the 
combination. 

we look for something in the previous text that 
implies the existence of a combination. We find 
it us ing the axiom 
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(Ax)(Ey)(safe(x) --> combination(y,x)) 

or a safe has a combination. 
pronoun "it" in 

Similarly, 

John can open Bill's safe, He knows its 
combination. 

would be resolved using the same axiom. 

the 

The second method is more common for pronouns 
and implicit arguments. It is what in Hobbs 
( 1979a) I called "petty implicature". When other 
discourse operations would succeed if only a 
certain identification were made, we assume the 
identity as a kind of conversational implicature, 
and solve two problems at once. For example, in 
(1) the second sentence can be seen as an 
elaboration of the first by the coherence 
operation mentioned below if only we identify "he" 
with John. So we do, 

Coreference resolution can also be used to 
resolve many syntactic ambiguities. But let's 
work into this gradually, looking first at a real 
corefe rence problem -- reflexives . Usually there 
is no problem. In 

Jane gave Bill a picture of himself, 

"himself" can o~ly refer to Bill , 
instances, such as 

But in 

John gave Bill a picture of himself. 

rare 

"himself" is ambiguous. The resolution is a 
problem for selective inferencing to solve. But 
we would like syntax to pass on to the inferencing 
component all that it has been able to find out. 
In this case, it's quite a bit -- "himself" can 
only refer to John or Bill, We ca n encode this by 
representing "himself" with the "ambiguous 
constant", "[John/Bill]". It must be resolved, 
but it can only be resolved to one of the two 
entities, 

The same device will extend to some syntactic 
ambiguities, including the prepositional phruse 
problem. Our representation of the classi c 

I see the man in the park with the telescope, 

will include 

see(S, I ,M), in([S/M),P), with(IS/M/P],T) 

That is, S is a seeing action by I of the man M, 
e ither Sor Mis in the park P, and eithe r Sor M 
or P has the telescope T, The inferen~e component 
can then solve the problem by finding something 
that implies the properties of the ambiguous 
constant, or by pe tty implicature, This reductton 
of the prepositional phrase problem to a 
coreference problem is a fairly natural one, as 
seen by the pair 

John drove down the street in a car. 
John drove down the street. It was in a car. 



. I 

.. 
In both cases we have to decide whether the street 
or the driving is in the car. 

Similarly this device extends to the problem 
of "very compound nominals". In "Stanford 
Research Institute" there are two implicit 
relations, one "rl (R,I)" between research and the 
institute, and the second "r2(S,[R/I])" between 
Stanford and either research or the Institute, In 
seeking to interpret r2, we look for a link both 
from the properties of Rand the properties of I. 
Whichever results in success will cause the 
ambiguous constant to be resolved, 

I do not mean to imply that all syntactic 
ambiguities translate so elegantly into 
coreference problems . For example, I see no easy 
way to deal with the old favorite 

They are flying planes, 

in this way , For such e xamples, we may just have 
to turn the inference mechanism loose on all the 
parses to see which it can make sense out of 
first, or alternatively, that frequently urged 
approach, let the inferencing get a piece of the 
parsing action. 

4, Discovering coherence relations: Hence, 
discovering the structureof-the text-:- In Hobbs 
(1978) I proposed a reasonable number of possible 
coherence relations and made the rash claim of 
exhaustivity. To give an example, one of the 
coherence relations is "Elaboration", and its 
requirements can be stated roughly, 

Given current sentence SI, find a sentence SO 
in PREVIOUS.TEXT for which there is an 
intersection P between ASSERTION(SO) and 
ASSERTION( S 1 ) , 

That is, infer an intersection between the 
assertion of the first sentence and the assertion 
of the second. Thus in (1), we wouln use an axiom 
saying that if someone can cause a state to come 
about, then he knows an action that will cause it, 
an axiom that it is common knowledge that one can 
dial the combination of something to open tt and 
an axiom that one knows the implicatiops of what 
one knows. The intersection would be that John/he 
knows some action (dialing) that will cause the 
safe to be open, The relevant propositions are 
instantiated and some representation of the text 
structur e i s encod ed. 

Klapholz and Lockmqn (cf. Lockman 1q7s) s ee 
some of the coherence relations as examples of 
coreference resolution between structures in the 
text larger than simple constants, and this may be 
a useful point of view. 

5) Relating the text to the world: This seems 
like a broad requirement that defies 
formalization, but in AI we have been able to 
described formally certain well-behaved portions 
of the world by means of task models, scripts, 
plans, grammars and the like. Where we can do 
th is, it becomes one of the discourse operations 
to relate the text to the model of what is going 
on in the environment. I take most work in NLP to 
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be efforts on this problem . For example, Grosz 
(1977, 1980). A, Robinson (1980), Hobbs and 
J. Robinson (1979) attempt to relate task- oriented 
dialogs to a model of the task . Mann, Moore and 
Levin (1977) relate dialogs to dialog games 
encoding the expected course of the dialog. 
Schank and Abelson (1977) and Wilensky (1978) 
relate what is said in stories about the 
characters to the characters' conjectured plans. 
Allen (1979) attempts to relate utterances to the 
speaker's plan. 

A simple version of this discourse operation 
might be stated 

Given PLAN in the spotlight and a sentence S 
to be interpreted, from Grow(PLAN), infer 
ASSERTION( S). 

We assume what is said is a general statement 
referring to the specifics of the plan, so we try 
to infer the general statement from some specific 
information in the plan, growing the plan 'to a 
deeper level of detail if necessary. 

Two of our ten problems do not seem to reduce 
easily to one of the five discourse operations 
metaphor and lexical ambiguity. Th e probl em of 
metaphor is treated from the perspective of 
selective inferencing elsewhere (Hobbs 1979b). 
Here I will mention the approach jus t briefly. 
When a speaker uses a metaphorical predicate, as 
in "John is a hog", he intends the listener to see 
certain similarities between John and hogs, say 
the similarity that both overconsume. On the 
other hand, it is intended that other properties 
of hogs, such as four-leggedness, won't be 
inferred. That is, to comprehend a metaphor, the 
listener must select certain inferences as 
appropriate and reject others -- just the process 
of selective inferencing. In Hobbs (1979b), it is 
shown how the discourse operations frequently lead 
to the correct interpretation of the metaphors, 
especially the operation of predicate 
interpretation in the case of spatial me taphors, 
by selecting the right inferences . 

Now lexical ambiguity: Ambiguity is not a 
property of expressions but rather q relation 
between an expression in one repr esentational 
system and a second representationul system. Por 
example, "men" is not ambiguous between "two men" 
and "more than two men" unless we ar e translating 
into a language with dual as well a s plural forms. 
If we are translating into a pictorial 
representation that requires a s pecific number of 
men, it is infinitely ambiguous. Otherwise the 
term is not ambiguous but merely vagu e . 

It is usually possible to devise o 
propositional target representational system in a 
way that will make an expression's translation 
vague rather than ambiguous. One way of doing 
this, say for the pair "bank!" of a river and 
"bank2" wher~ you get loans, is to have a general 
predicate "bank" that is implied by both of the 
specific predicates: 

(5a) (Ax)(bankl(x) --> bank(x)) 
(5b) (Ax)(bank2(x) --> bank(x)) 



This may seem implausible -- what do 
of banks have in common? But what 
common is precisely what is captured 
(5) -- they are both called banks, 

the two kinds 
they have in 

by the axioms 

How is the 
vagueness made more 
workhorse example: 

ambiguity 
precise? 

resolved, or the 
Let's return to our 

John can open Bill's safe, He knows the 
combination, 

We have the axioms 

(Ax)(Ey)(safe(x) --> combination1 (y,x)) 
(Ax.y)(combination1(y,x) --> combination(y,x)) 
(Ax,y)(combination?(y,x) --> combinntlon(y,x) ) 

The solutions to the definite noun phrase and 
coherence problems use the first two axioms and 
not the third and thus require us to instantiate 
an expression with "combination1", not 
"combination2", So the lexical ambiguity problem 
is solved as a by-product of other discourse 
operations. 

I would guess that this is typical, that most 
lexical ambiguities that matter woulrl be solved by 
the ordinary workings of the discourse operations. 

2. 6. Control 

In defining a DS, we need not be explicit 
about the proof process itself. In defining our 
SIS, we must, in particular about the order in 
which searches for proofs are conducted, The 
problem of AI is how to control inferencing and 
other search processes, so that the best answer 
will be found within the resource limitations, 
fairly quickly, and before other plausible 
candidates, In an NLP system with a rich 
knowled~e bane, the last of these problems is 
likely to be the most severe. The difficulty will 
not in general ·be that no proof satisfying the 
requirements of the discourse operations will be 
found. It is that too many will be found, each 
leading to a different interpretation. This 
remains a major research issue, but I can suggest 
three leads. 

First, the axioms should have associated with 
them a measure of salience. In part this would 
include a measure of a fact's "natural salience": 
for example, the fact that an animal has a head is 
naturally more salient than the fact than an 
animal has a pancreas. But it would also include 
a component of dynamically varying salience which 
would encode the likely relevance of the axiom to 
the particular context: when reading an article 
about politics, axioms about ice hockey would have 
a low salience, but if ice hockey is mentioned, 
say, in a passage Bh?ut the President 
congratulating the Olympic hockey team, then the 
salience of axioms about ice hockey is increased, 
Such an increase could overcome an axiom's natural 
low salience. 

The search for the appropriate inferences 
would then be conducted in an order determined by 
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the salience of the axioms and the length of the 
proofs. The inference chosen would be the first 
one encountered in this process that satisfied the 
requirements. 

This already gives us a concise explanation 
of certain features of some of the linguistic 
problems. Nunberg (1978) developed a framework 
for analyzing indirectly referential expressions, 
in which one got from an explicit referent to the 
intended referent by applying functions derived 
from world knowledge, such as "stocks issued by", 
"owner of", and "father of", He proposed what he 
called the "Identity Principle", which says 
roughly that if a function or sequence of 
f,unctions has already arrived at a referent that 
sntisfies the requirements of the local linguistic 
environment, we cannot apply a further function to 
get to the intended referent. This explains the 
fact that, while we can point to a car and say 
"He's crazy," meaning the owner of the car is 
crazy, we cannot point to-a~-picture of George IV 
and say "He was crazy," meaning the father of 
George IV (George III) was craz~ George fv 
already satisfies the requirements imposed by the 
predicate "was crazy". 

Nunberg's functions translate directly into 
our inferences. Then in terms of a salience-and
length-ordered search, the Identity Principle 
simply says that we draw the first inference that 
satisfies the requirements of the discourse 
operations, Predicate interpretation on the 
predicate "crazy" requires that it's argument be 
human. In the first case, the fact that a car has 
an owner gets us to the intended referent. In the 
second case, George IV already satisfies the 
requirements so we do not look further. 

My second suggestion is that we should take 
advantage of the natural redundancy of almost all 
texts (Joos 1972), The nature of the language 
makes texts highly redundant anrl we do well to 
assume the maximum redundancy possible in our 
interpretation of a text. Let us look at (1) 
again: 

(1) John can open Bill's safe, He knows the 
combination. 

There are at least five plausible solutions to 
problems posed by the text. Solution 1: If 
someone owns the safe then he knows the 
combination, so Bill is a candidate for the 
referent of "he" . Solution 2: One sense of 
"combination" is of an arrangement of several 
similar entities, and the set consisting of John 
and Bill satisfies that. Solution 3: The 
inferences and associated petty implicatures 
involved in recognizing the Elaboration relation 
described above, result in the resolution of "he" 
and "the combination" both and solve the text 
structure problem as well. Solution 4: Since if 
someone can open a safe, he probably knows the 
combination, John is a good candidate for the 
referent of "he", Solution 5: Since safes have. 
combinations, a good guess is that "the 
combination" of the second sentence refers to the 
combination of the safe of the first sentence, 



There are two ways in which redundancy 
.operates. First, in Solution 3, the fact that one 
solution solves three problems reflects the 

' redundancy of the information in the text. 
Secondly, in Solutions 3, 4, and 5, we have 
consistent, redundant solutions to the coreference 
problems. Figure 3 summarizes this. 

Interpretation 

Solution 1 

he • Bill 

Elab(SO, S1) 
he • John 

comb of safe 

Interpretation 2 

Solution 2 ------
comb = (J,B) 

Interpretation 2 

he = John 

Solution 'i 

comb of safe 

Fip,ute 3. 

Here we see one solution, Solution 3, solving 
three problems and two examples of two solutions, 
Solution 3 + Solution 4 and Solution 3 + Solution 
5, solving the same problem consistently. This 
example suggests that the way to capitalize on the 
text's redundancy is by looking for single 
solutions that solve multiple linguistic problems 
and fot consistent multiple solutions for single 
problems, and favor the resulting interpretations 
over others. 

My final suggestion is to use metarules, as 
suggested by Davis (1977), to guide the 
inferencing. Few such rules have been proposed, 
but one possibility arises in the problem of 
reasoning about s omeone else's reasoning (e.g . 
McCarthy 1979). In one approach, you need an 
axiom that says someone will draw the valid 
inferences of what he knows. It turns out that 
much of the inferencing in this domain is driven 
by that axiom. Thus, it would be good to have a 
metarule specifying the circ~mstances under which 
that axiom should be tried first (cf. Hobbs 
forthcoming). 

It might be useful to collect into one place 
all of the ways in which context enters into the 
selective inferencing system. Fiist of all, the 
salience on the axioms varies with the context, 
thus varying the order in which the knowledge base 
is searched. Secondly, what is in the spotlight 
has the highest salience, so the text itself and 
the previous inferences are part of the context 
that influences interpretations. Thirdly, the 
previous text has a structure deriving from its 
coherence relations, and this influences the 
salience of expressions in the text (cf. Hobbs 
1976b). Finally, the model of the external 
environment has a structure that influences search 
order (cf. Grosz 1977). In short, context is 
foimalized as what is known and the order in which 
whnt is known is accessed. 

110 

2.7. Commitment 

Let's begin with an analogy of the sort we 
AI -ere are fond of . Suppose you build a veiy 
complex clock, telling the time of day, the day of 
the week, the date, the phase of the moon, the 
season, perhaps even the sign of the zodiac each 
planet is in. In other words, your clock 
simulates a number of astronomical phenomena. 
When you sell the clock to me with this 
description, you are committing yourself to the 
described correspondence of its external behavioI 
to the astronomical phenomena, and if the 
correspondence fails to hold, I will have a right 
to complain and you will have an occasion to woriy 
about what went wrong. 

But suppose I open up the clock and demand 
that you tell me which sstionomical object 
corresponds to each gear -- where's Mars, for 
example. At this point I have exceeded the level 
of detail of your commitment. 

In a DS, the level of commitment is maximal. 
We can not only demand that it produce cor1ect 
formulae for us to compute trajectories with. we 
can look inside the formal system and ask what 
each symbol stands for, learning foI example that 
"2" stands for the Platonic two. The axioms 
correspond to true facts in the univer se, and the 
rules of inference preserve truth. In short, 
there is a correspondence between each gear and 
something in the world. 

There is a serious problem when we try to 
carry this level of commitment over to the 
inference component of an NLP system. It is 
probably impossible to axiomatize any complex 
domain consistently in a way that would be useful. 
Achieving a consistent axiomatization of set 
theory required some of the world's greatest minds 
working fox half a century, and set theory is 
about the simplest domain imaginable. When we get 
to domains as complex as the entities occupying 
our world, our management of the events in our 
lives, and social relationships, there seems to be 
no hope for a consistent axiomatization. FoI 
example, we would like our system to know that 
birds can fly without worrying each time about all 
the circumstances in which they can't. We 
frequently have and use contradictoiy general 
principles: 

Haste makes waste. 
A stitch in time saves nine. 

When Me come to axiomatizing our knowl edge about 
social relationships, there is enough variation 
among people that there are probably no useful 
statements that are universally true. 

There are several possible approaches to this 
difficulty. One is to try to axiomatize complex 
domains consistently anyway, such as Pat Hayes is 
doing in his interesting work on naive physics 
(Hayes 1978b). Another is to develop nonmonotonic 
logics (McDermott and Doyle 1978), in which there 
are axioms of the form 



p(x) & M q(x) --> q(x). 

That is, if p( x) is true and it is consistent to 
assume q(x), then q(x) is true. 

These researchers' efforts are still 
tentative and it is not clear whether they can 
succeed in a way that will satisfy our criteria of 
a formalism, clonenen2 to F.nelish and a 2imple 
s.vntrix. Whi lP. T wiFih them wflll, T Am RkPptical 
about their pro,1pects, ,'lnd bein1; lmp11li"nt like 
most people in AI, I want to get on with the 
problems of primary interest to me in the 
meantime. 

So I would like to see mechanisms for dealing 
with inconsistent sets of axioms. Selective 
inferencing can be just such a mechanism. We need 
it anyway to avoid being swamped by irrelevant 
inferences. We may as well use it to avoid 
inconsistencies, by building into the discourse 
operations the feature that they back away from 
placing contradictory propositions in the 
spotlig~t. When about to place a proposition Pin 
the spotlight, if not-P is already there, the 
system retracts one of the two inferences, 
presumably on the relative strengths of what 
warrants each inference (cf. Carbonell 197g , de 
Kleer & Harris 1979, Doyle 1979). This is just a 
generalization of common practice in AI as old as 
Collins and Quillian (1971) who said that birds 
can fly but penguins can't. 

Now that we have decided to allow 
inconsistent sets of axioms, let us look at a 
couple of extreme cases. We can not only include 
normative facts such as "Birds can fly, " along 
with the marginal exceptions. We can include 
directly contradictory axioms, 

(Ax)(chair(x) --> has-arms(x)) 
(Ax)(chair(x) --> Not(has-arms(x))) 

The first axiom would be used for chairs 
arms were mentioned or implied, the second 
chairs whose armlessness was relevant, and 
discourse operations would insure that no 
was assumed to be both armed and ar mle2s. 

whose 
for 
the 

chair 

Another example is Fregean set theory, which 
I've always felt was right, in some intuitive 
sense. It is too compelling on other grounds for 
Russell's paradox to be more than an obscure bug 
that we can live with. Frege's offending axiom 
schema, the principle of comprehension, says that 
for all predicates p, 

(Ex)(Ay)(member(y,x) <--> p(y)) 

Corresponding to every description p there is a 
set of entities satisfying that description. I 
think we use this axiom all the time, for example, 
in making sense out of 

Will all those who disagree please stand 
up and be counted. 

We assume there is a set that can be counted that 
contains all those who satisfy the predicate "x 
disap;rees". When we try to use the axiom schema 
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for the predicate "y is not a member of itself" 
and spot the paradox,. we simply shrug our 
shoulders and call it an exception, and so should 
our system. 

All this, of course, makes it impossible to 
maintain the maximum level of commitment to our 
formalism. We have to pull back somehow. The 
extreme possibility is the clockmaker's stance. 
We are writing pro~rams that will perform well 
l i.np;uisti,:1Jl ly and if our pror,nun does th11t you 
have no business looking inside at the gears. 
Ultimately, that is the only commitment I think we 
should accept. Just because I call one of my 
gears "bird" doesn't mean it has anything to do 
with real birds. As long as the mechanism says 
appropriate things about birds, you have no 
grounds for complaint. 

But as Pat Hayes has pointed out (personal 
communication), it is highly unlikely that we 
could build such a mechanism with no more to go 
<Jn~~ We need at least a heuristic commitment at a 
mor e detailed level. Very complex processing 
takes place in the system, and if we don't have 
some intermediate checks on the corr es pondence 
between the formalism and the world, it is 
unlikely that we will have the proper 
correspondence between the ultimate behavior and 
the world. 

In order to state a reasonable heuristic 
commitment, we need to back up and state again 
what the problem is. I have frequently said that 
model theoretic semantics is a translation from 
some formal language, say, lambda calculus, into 
the language of set theory. Loeician friends have 
objected vehemently, calling it a mapping from the 
formal language into things in the world. That 
raises difficulty for those of us who are 
methodological solipsists, verging on real 
solipsism. We can't make sense out of "things in 
the world" independent of some conceptual 
framework. The solution is to move up a level, 
climb to the top of Mount Olympus with Zeus. Zeus 
looks down and sees a society of people, two of 
whom we'll call the Maker and the Buyer; he sees a 
formal system that the Maker has just made and is 
trying to sell to the Buyer: and he sees a number 
of languages, or conceptual frameworks, that exist 
as "social objects" in this world and are used by 
the Maker and the Buyer for communicating . From 
this perspective, what looked like semantics when 
we were in the hurly-burly of earthly life, now 
looks like a translation from a representational 
system or conceptual framework at one level (the 
formal system) into a conceptual framework at the 
next level up (the society). The advantage of 
this perspective is that it allows us to talk 
about which of the conceptual frameworks at level · 
two, the society, is the most appropriate tar get 
of the translation. The question is -- when :he 
Maker makes a commitment to the Buyer about the 
nature of his formal system, what language should 
they use? 

Model theoretic semantics assumes that the 
target should be the language or conceptual 
framework of set theory. This works weli for 
implication and quantification, and thus is an 
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appropriate choice for a deductive system in 
mathematics. But it sheds little light on the 
bulk of what we talk about in natural language. 
It does little good to be told that 

America is the bastion of democracy 

means that the ordered pair of America and 
democracy is in the set of ordered pairs denoted 
by the relation "is the bastion of". 

A common way around this objection is to 
enrich one's ontology with received t heories and 
use the entities they provide as targets of model 
theoretic interpretation. For example, one might 
attempt to map our language of spatial 
relationships into coordinate geometry, our 
laneuage of motion into Newtonian physics, and 
presumably our language of beliefs and emotions 
into Freudian psychology. That is, one candidate 
for a target representation is a "suitably 
enhanced" set theory. 

Another perfectly viable candidate is the 
:conceptual framework provided by natural language 
itself. All of us, as Makers and Buyers, are just 
as comfortable in natural language as we are in 
set theory. The usual objection to natural 
language is that it is frequently ambiguous, so we 
will modify our candidate to "suitably 
unambiguous" English. 

The choice is thus between a suitabl y 
enhanced set theory and suitably unambiguous 
English. Suitably enhancing set theory is a 
project science has been embarked on for centuries 
and will continun on for centuries to come. 

·suitabl y disambiguating English, on t he other 
hand, is something all of us do all the time. So 
the latter choice seems the more judicious one. 
Moreover, since it is a mechanism for simulating 
natural language behavior that the Maker and Buyer 
are discussing, the correspondences will be easier 
to state with the latter choice, for natura l 
languages and scientific theories tend to carve 
nature at very different joints. 

The intermediate check, the heuristic 
commitment, that I as the Maker am willing to give 
to t he Buyer then is this: I claimed a fairly 
straightforward translation between expressions in 
the formal language and English sentences. If in 
the course of processing a sentence in a text, the 
discourse operations place an expression in the 
spotlight, I will feel committed to it in the 
following sense: Translate the expression into 
English and put it in the frame "You mean ••. ?" 
The resulting utterance should be an appropriate 
request for clarification in the circumstances and 
should be answered positively. Suppose the system 
is told "John is a hog." Then it is appropriate 
for it to draw the inference 

ovetconsume(J,F) & food(F), 

since the response "You moan John overconsumes 
food1" would usually be answered positively. It 
would not be appropriate for it to draw the 
inference 
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four-legged(J), 

since the response "You mean John has four legs?" 
would be answered negatively. Similarly. for an 
expression that was read in as part of the text, 
if the requirements of the discourse operations 
have been satisfied and any necessary 
modifications made, then I am willing to make the 
same commitment. Turn it, as modified, into an 
English request for clarification and the answer 
should be "yes". The commitment associated with 
including an axiom in the knowledge base is that 
there is some situation in which t he discourse 
operations should draw that inference and place it 
in the spotlight, with the associated commitment. 

Rather than map the formal language into a 
scientific language at the level of the social 
enterprise and judge truth, we map the for mal 
language into natural language at the level of the 
social enterprise and judge appropriateness. 

3. Summary: What Are the Real Problems? 

Here's a possible program for advancing the 
study of language. Take our ten linguistic 
problems and give one each to our ten best 
graduate students, and let them work for severa l 
years. The arguments of this paper lead to a 
prediction of the outcome. Ten percent 
explorations of aspects special to the particular 
problems, ninety percent overlap, The space of 
what we don't know about language would have been 
cut along the wrong axis. 

I have sugeested another way of partitioning 
t he space. In this, the problems are devising a 
language of representation, encoding various 
chunks of world knowledge, refining the statements 
of the discourse operations, and discovering 
methods of control. The first of these is 
probably the least interesting; most work on the 
problem has just resulted in a reinvention of 
predicate calculus. This leaves three problems to 
focus on. 

In the project of encoding knowledge, we 
should concentrate on those basic areas that lie 
at the core of language and occur in almost all 
discourse -- space, the meaning of prepositions 
(cf. Herskovits 1979), time, tense and aspect, 
naive physics (Hayes 1978a, 1978b), belief (Moore . 
1979), number, and so on. A difficulty with such 
efforts in the past has been that definitions of 
terms won't stay constant under shifts of context. 
Ways of representing normative know l edge and 
mechanisms for context-dependent selective 
inferencing, such as presented here, should ease 
this difficulty. Much work has been done on these 
areas already in AI, but there is a common pitfall 
here. Many such efforts fail to pass the 
Grandmother Test. They tell us no more than our 
grandmother could have told us. There may be 
domains in which all there is to do is write dow" 
the obvious, but it's probably best not to waste 
our time on those domains for now. Our approach 
to the basic areas can be sharpened by the . 
existence of several simple but challenging 
puzzles, such as McCarthy (1979) has suggested for 



the domain of belief, 
interpreting linguistic 

•contribute. 

A few good puzzles in 
expressions would also 

The program indicated by the discourse 
,operations has two stages. In the first stage, 
various linguistic phenomena are reduced to one or 
moie of the five discourse operations. The ten 
linguistic phenomena discussed in this paper by no 
means exhaust the field, There are also the 
problems of interpreting adverbials, resolving 
quantifier and conjunction ambiguities, and 
resolving "one" anaphora (Webber 1978), to name 
just a few. The second stage is to define the 
discourse operations in terms of the selective 
inference process. The definitions I have given 
are only first approximations. For predicate 
interpretation, we need methods for computing the 
requirements of complex predicates, such as "x 
sell y for 57 3/8". For textual coherence, we 
need to search for further constraints on the 
definitions of the coherence relations, For the 
probem of relating the text to the world, the 
time is probably ripe for someone to look at the 
diverse work that has been done in the field and 
summarize it all in a coherent framework, 
chazacterizing in the most general terms the 
structures used to model the world, and the 
procedures used to relate various aspects of 
English discourse to the models, Such a 
consolidation would give us a plateau from which 
to advance. 

For control, we need to follow out the three 
leads that were suggested -- salience measures, 
using redundancy, and metarules - - as well as 
other leads, such as parallel search mechanisms 
(Fahlman 1979), The idea of using redundancy is 
particularly intriguing, because it involves 
exploiting an inherent property of natural 
language to solve the search problem , It would be 
good to find other inherent properties of natural 
language with similar computational payoffs, 
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INTERPRETING VERB PHRASE REFERENCES IN DIALOGS 
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ABSTRACT 

This paper discusses two problems central to 
the interpretation of utterances: determining the 
relationship between actions described in an 
utterance and events in the world, and inferring 
the "state of the world" from utterances. 
Knowledge of the language, knowledge about the 
general subject being discussed, and knowledge 
about -the current situation are all necessary for 
this, Presented and discussed are the kinds of 
knowledge necessary for interpreting references to 
actions, as well as algorithms for using that 
knowledge in interpreting dialog utterances about 
onp,oinr, tllskB nnd for drnwine infernnces nhout thtt 
task situation that are based on a given 
interpretation. 

I INTRODUCTION 

Two problems central to the interpretation of 
utterances are determining the relationship 
between actions described in an utterance and 
events in the world, and inferring the "state of 
the world" from utterances. Knowledge of the 
language, knowledge about the general subject 
being discussed, and knowledge about the current 
situation are all necessary for this, The problem 
of determining an action referred to by a verb 
phrase is analogous to the problem of determining 
the object referred to by a noun phrase. Although 
considerable attention has been given to the 
latter (Donellan, 1977; Grosz, 1977a, 1977b; 
Sidner, 1979; Weiier, 1979), little has been done 
with the former. 

Th e need to identify an action is obvious in 
utterances containing verbs like "do", "have", and 
"use", as in "I've done it", "what tool should I 
use?", or "I have it". In these utterances the 
verb does not name the action, but rather refers 
to it more generally, much as pronouns or 
"nonspecific" nouns (e .g., "thing") refer to 
objects. Even when more specific verbs are used, 
complex reasoning may be required to ascertain the 

* This research has been funded under three-year 
NSF Continuing Research Grant No, MCS76-22004, 
This paper and the research reported in it have 
benefited from interaction wt th all the members of 
the natural-language research group at SRI. 
Barbara Grosz, Jerry Hobbs, Gary Hendrix, and Jane 
Robinson have been particularly helpful in the 
preparation of this paper. 

•• A problem related to identifying verb phrase 
referents--interpreting verb phrase ellipsis--has 
been investigated by Webber (1979) , 
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particular action being referred to. For example, 
the utterance "I've glued the pieces together" can 
refer to different steps in a task--depending on 
what objects "the pieces" refers to, because each 
gluing action is a different step in the task 
(Werner, 1966) , Similarly, the verb "cut" refers 
to different types of cutting actions when used 
with different objects, as in "cut grass", "cut 
wood", or "cut cake" (Searle, 1978). 

This paper presents algorithms that combine 
knowledge about language, the problem domain, and 
the dialog itself to interpret references by 
verbs, The algorithms have been implemented and 
tested in a computer system ('l'nu:;) that 
participates in a dialog about the assembly of an 
air compressor (Robinson, 1980), The system acts 
as an expert, guiding an apprentice through the 
steps of the task, 

II KNOWLEDGE NEEDED 

Interpreting any utterance and relating it to 
a task requires knowledge about the language and 
the task, as well as the relationships between 
them, This paper will outline briefly some of the 
knowledge needed to identify actions. The 
research builds directly on the concepts of global 
and immediate focusing, through which certain 
entities are highlighted (Grosz , 1977a, 1977b; 
Sidner, 1979), General familiarity with that 
research will be assumed. More detailed 
descriptions of other aspects of the knowledge 
needed for interpreting utterances can be found 
elsewhere (Gros z, 1977a; Hendrix, 1977, 1979; 
Robinson, 1980; J, Robinson, 1980). 

A, Actions and Goals 

Interpreting verbs requires knowing about 
events that have occurred, are occurring, or can 
occur in the domain, Knowledge about events 
typically includes the steps necessary to perform 
the actions associated with the events, the 
possible participants, the conditions that must be 
true before the actions can be performed, and 
their results (e.g., the goals they achieve or 
their possible side effects), Knowledge about 
actions and events includes both general knowledge 
about possible actions and events and more 
specific knowledge about those that occur during a 
particular task. 

A recently developed formalism, process 
~ (Grosz et a.I., 1977; Appelt et al., 1980) 
is used in TDUS for encoding information about 
actions. The knowledge encoded includes a 
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specification of hierarchical decomposition of 
actions into subactions, as well as a description 
of individual types of actions. The 
representation is an extension of the network 
formalism used for representing other knowledge 
about objects and relationships, as described by 
Hendrix (1979) . 

Related to knowledge about current actions is 
knowledge about the goals of the dialog 
participants. The goals that are expressed or 
implied by an utterance can be of many types. 
These include "domain goals" related to the 
subject domain; "knowledge-state goals" related to 
changing the knowledge of one or more of the 
dialog participants; and "social goals" arising 
from both the social context in which a dialog 
takes place and the inte4personal relationships of 
the dialog participants. 

The goals of dialog participants affect the 
interpretation of verbs in at least two ways: (1) 
interpreting verbs entails recognizing the 
speaker's goals as expressed OI implied by the 
utterance; (2) current goals are a part of tie 
context within which ve1bs are interpret~d. 

The TDUS system handles two kinds of goals: 
domain goals and certain knowledge-state goals. 
Domain goals concern states to be achieved by 
task-related actions in the domain, while 
knowledge-state goals concern states to be 
achieved by acquiring a specific piece of 
information. 

Figure 1 illustrates the relationship 
between actions and goals. The hierarchy shown is 
a simplification of a portion of the.11sembly task 
hierarchy currently encoded in TDUS. Each node 
represents an action and its associated goal. The 
hierarchy encodes the substep relationships: child 
nodes represent substeps of their parent nodes. 
The top- level node in the tree, node (1), 
represents the action of attaching a pump whose 
associated goal is that the pump be attached. 
Nodes (2) and (3) represent substeps of this 
attaching process--the actions of positioning the 
pump and tightening the bolts, with the associated 
goals that the pump be positioned and that the 
bolts be tight. The action of locating bolts, 
represented by node (4), is not an explicit step 
in the task, but is necessary for its performance. 
Node (4) has an associated knowledge-state goal: 
"know the location of the bolts", All these goals 
have associated actions that, in the process model 
formalism, are specific instantiations of actions, 
not action schemata. 
--------
* The distinction between domain and knowledge
state goals was drawn by Appelt (1979). 

** The current implementation of goals in TDUS is 
an extension and partial revision of one by 
Sidner, described in her dissertation (1979), 

*** Although the assembly task currently encoded 
in TDUS involves strong structuring of actions and 
goals, our representations and procedures are 
applicable to less structured domains. 
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POSITION PUMP 
goal : IN POSITION 

ATTACH PUl\jP 
goal: ATTACHED 

141 

TIGHTEN BOLTS 
goal: TIGHT 

LOCATE BOLTS 
goal: KNOW LOCATION 

Figure 1 Goal/Action Tree 

We distinguish two classes of goals: "direct 
goals" achieved by actions the apprentice has 
explicitly or implicitly said.!!!_ bei~ performed 
now or have been performed; "potential goals" 
mentioned by either participant that have not been 
acted~ but might possibly be, In--the context 
of the task steps shown in Figure 1, "I am 
attaching the pump" states that the speaker is 
performing an attaching action represented by node 
(1) . Thus the utterance establishes that the pump 
be attached as a direct goal. "Should I tighten 
the bolts?" indicates that the speaker might 
perform the tightening action represented by node 
(3) and thus establishes that the bolts be tight 
as a potential goal, 

A knowledge-state goal can also be a direct 
goal. For example, the goal associated with node 
(4), "know the location of the bolts", can be 
introduced by utterances like "where are the 
bolts?" In the current implementation, knowledge
state goals cannot be potential goals. This 
limitation arises primarily because knowledge
state goals have not been as fully explored as 
task goals, 

Direct and potential goals are distinguished 
from one another because of the different roles 
they play in the interpretation of verbs. 
Basically, direct goals are those that are known 
as existing or former goals associated with 
actions that are being or have been performed. 
Potential goals are possible near-term goals 
associated with possible future actions. 
Depending on the type of utterance, one or the 
other class of goal might be considered first. 
The different roles of the two goal clasees will 
be illustrated when the interpretation of verbs is 
discussed in detail below. 

Besides recognizing a goal, it is necessary 
to recognize whether the goal is th~ current one, 
one ·that has already been achieved, or one that 
has been abandoned. It is also necessary to 
recognize when goals are no longer potential. 



A direct goal is assumed to be current when 
an utterance states that en action that will 
achieve the goal is in progress. A goal is 
assumed to have been achieved when one of the 
following conditions has been satisfied: 

(1) An explicit statement sue~ as "I have 
attached it" or "I'm done" or "OK" indicates 
completion of the action that achieves the goal. 

(2) An explicit statement indicates 
compl e tion of an action intended to achieve the 
goal . 

(3) The start of a new action implies 
completion of its prede1issor and thus achievement 
of the associated goal. 

An utterance such as "never mind" is 
interpreted as signaling the abandonment of a 
goal. 

Potential goals are not achievable as such. 
Rather, they can either become direct goals 
through the mechanisms for establishing direct 
goals or disappear when a new potential goal is 
recognized. 

B. Knowledge about Language 

Knowledge about language is also required, 
encompassing what is generally characterized as 
syntactic, semantic, and discourse knowledge . 
nyntnctic nn~ semantic knowledge includes 
knowledge ahout tense and aspect and about the 
r e lationship between words/phrases and .domain 
entities. 

.Dis course knowledge is knowledge about how 
the domain and dialog contexts in which an 
utterance occurs contribute to and are influenced 
by the interpretation of the utterance. 

A key element of discourse knowledge is 
knowledge about discourse focus, through which the 
participants in a dialog focus their attention on 
only a small portion of what each of them knows or 
believes. As a dialog progresses, the partici
pants continually shift their focus and thus 
form an evolving context within which utterances 
are produced and interpreted. This research 
builds directly upon the concept of discourse, or 
global, focusi~osz, 1977a, 1977b, 1980). 

In addition to global focusing, we have built 
upon the concept of immediate focus (Sidner, 1979) 
through which a single discourse entity is 
isolated. This is a more localized focusing 
phenomenon that is closely related to the use and 
recognition of anaphora, as v~11 as to changes in 
global focusing. 

*Seethe discussion in Grosz(1977a) of the roles 
of OK, 

** As Sidner(1g79) points out, in the first two 
cases the information comes from the utterance, 
while in the third case it is from the task model. 
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C, Shared and Joint Knowledge 

In our framework, the dialog participants ere 
assumed to•i~are knowledge about processes in the 
task model and the history of the task 
performance to date, along with knowledge about 
direct and potential goals and focused entities. 
We view this shared knowledge as composed of at 
least two parts: (.1) the processes in the task 
model and the history of its performance comprise 
knowledge about the world that is assumed to be 
shared by the participants independently of the 
dialog; (2) knowledge about the goals and 
focusing, which is assumed to be shared as a 
result of the dialog. We will distinguish these 
two types of shared knowledge and their roles in 
the interpretation of utterances, and use the 
terms shared and joint to refer to them. 

We use shared knowledge to refer to what is 
known by both participants because of their common 
background and experiences, end is assumed by them 
to be shared, but has not been explicitly 
discussed by them, This includes knowledge of 
both language and the domain. 

We use joint knowledge to refer to whet has 
been explicitly communicated between the dialog 
participants. The steps of the task that are 
explicitly mentioned are joint knowledge, as are 
other focused entities that have been mentioned, 
Since we are considering dialogs in which the only 
mode of communication is verbal ( there is, · for 
example, no shared visual context) only what is 
nctually said is assumed to be known jointly. 

This analysis identifies as "joint knowledge" 
essentially what Clark and Marshall (1980) 
characterize as the mutual knowledg11 that results 
from "linguistic co-presence." Our use of the 
term "shared knowledge" covers the mutual 
knowledge they describe as resulting from 
"cultural co-presence" Iii a limited form of 
"physical co-presence". * 

Assumptions about things that are jointly 
known play a critical xole in the interpxetation 
and production of utterances (Clark and Marshall, 
1980), as the use of anaphora illustrates. 
Pronouns and pro- verbs (when used felicitously) 
always refex to jointly known concepts, so tha.t 
any utterance containing a pronoun ox pro-verb 
must drawn upon joint knowledge. 

--------*** Note that the apprentice knows neither all the 
steps in the task nor their ordering--otherwise 
there would be no need for the expert. However, 
the apprentice does know how to perform most of 
the basic actions, such as bolting and tightening. 

**** Physical copresence is limited by the sensory 
constraints of the computer system. The system 
can assume that both it and the apprentice are 
aware of the physical situation, but it can verify 
its assumptions only on the basis of the 
appre_ntice's actual utterances in the dialog. 



III INTERPRETING VERBS 

In this section we sddiess issues that Biise 
in using domain and linguistic knowledge to 
interpret veibs and to infer the current situation 
on the basis of that interpietstion. 

The possible referents of a verb phrase are 
constiained by both the context and the utterance 
itself, Coordination of the constraints is 
necessaiy for interpieting verbs in a computeI 
system. 

Contextual constraints are deiived fiom two 
sources: the domain and the dialog. Knowledge 
about the domain and, in particulaI, the task 
being performed, is part of the knowledge shared 
by the participants at the beginning of the 
dialog, includinp, knowledge as to which actions 
can be perfoimed, how to peiform them, and when , 
The dialog provides knowledge about the actual 
progiess of the task: it causes certain entities 
to .be focused, as well as providing information 
about the goals of the participants. This 
knowledge is the joint knowledge we described 
previously, 

Utter~nce constiaints include tense and 
aspect information and the type of action denoted 
by the verb. The tense and aspect of the 
utterance restrict the alteinatives within the 
task model and limit the ROBls that might be 
con:iidered as referents. Generally, pressnt tensfl 
and piogressive aspect are used when IefeIIing to 
a new action, indicsting ·that it has been started, 
Only if the utterance is somehow marked, as in 
"I'm still tightening the bolts", will the 
refeience be to an sctio·n that has already been 
mentioned as in progress, Consequently, when TDUS 
is interpreting a piesent and progressive 
utterance, the actions consideied in the task 
model aie those closely related to the most recent 
action performed, The only goal considered is the 
potential one since a direct goal is associated 
with an action already under way. 

Past tense and/or perfective aspect indicate 
that an action has been finished. However, the 
hesier may or may not have known that the action 
was in piogress. Consequently, the actions known 
to have been in progress and those that can be 
subsequent steps are possible referents, as sie 
actions associated with all direct goals and the 
potential goal. 

The search for the Iefeient of a verb can be 
conducted eitheI top-down or bottom-up. The top
down search useo contextual constraints to find 
the place in the task that the utterance fits and 
utterance constraints to limit alternatives. The 
bottom-up mode uses information from the 
utterance, such as veib type, to find its 
relationship to the task. If the top-down search 
is successful, the action and its place in the · 
task are identified simultaneously. 
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In the cuirent domain, in which all the 
utteiances are directly Ielsted to the task and in 
which the system has already encoded all the 
Ielevant steps to be performed, top-down 
constraints are stiong enough to allow a top-down 
seaich to be conducted fiist--and only if that 
fails is a bottom-up search conducted. In a 
domain where theie is less structure piovided by 
the task, a bottom-up seaich will clearly play a 
more centisl Iole. This sesich can be improved by 
doing more extensive reasoning based on the verb 
in the utteiance. FoI such domains, we have been 
examining what other linkage between actions 
should be introduced, 

One of the major limitations of previous 
natural-language systems has been a lack of 
cooidination of the strategies for identifying 
referents of noun phrases and pronouns with one 
anotheI or with the interpretation of: the verb. 
Tn fact, except for the pronoun resolution 
piocedure that ueed a very simple goal recognition 
slgoiithm (Sidner, 1979), the veib phisse was not 
even taken into account. However, since the 
interpretation of each of these utterance elements 
cannot be caIIied out in isolation, the previous 
stiategies have been modified and now the 
procedures for identifying noun phtase and pronoun 
Ieferents are coordinated with the search for the 
verb .phrase referent, Details of this modified 
sttategy will be discussed in conjunction with 
elucidation of the ·verb phrase strategy. 

A. Ths Top- Down Algorithm 

Different types of utterances can draw upon 
different contextual constiaints. Three major 
factors are considered by the interpretation 
algotithm in determining which contextual 
constraints to draw upon. The fsctois are (1) 
whether or not a pronoun is present in the 
utterance; (2) whe~her or not all the noun phrases 

· in the utterance refer to focused entities; (3) 
whether or not the main verb is "do", The 
presence of a pronoun indicates that joint 
knowledge, particularly goals · and immediate focus, 
is being drawn upon, If no pronoun is present, 
other factors weigh more heavily in determining 
constraints. When all the definite noun phrases 
refer to focused · entities, focusing information is 
also a key in interpreting the verb. If the 
referents are not focused, knowledge about the 
task and its structure must be used. When "do" 
appears as the main verb, joint knowledge plays a 
more central role than when other verbs ate used. 
The particular usage of "do", as signaled by the 
other constituents, indicates which aspects of 
joint knowledge are most important. 

We will discuss the interpretation algorithm 
by examining the interpretation of utterances 
resulting from various combinations of these 
factors. The utterances we will discuss are those 
containing the verb "do", those containing verbs 
other than "do" plus pronouns, and those 
containing verbs other than "do" plus definite 
noun phrases. 



Within the first type of utterance--those 
containing "do"--we further distinguish utterances 
like "I've done it" from utterances like "I've 
done the screws," In the former, "do" refers to 
the performing of an action, "it" to the action 
itself. In the latter, "do" refers to a 
particular action, such as remove, Our discussion 
will first cover these two types of utterances 
containing "do", then utterances with other verbs 
and pronouns, finally utterances with other verbs 
and definite noun phrases. 

1 . Do and Pronouns 

In interpretinR verb phrases such as "do 
it", knowledge about the context is used first to 
determine possible referents. If "it" has been 
used felicitously, it must refer to an action 
jointly known to the dialog participants. As we 
have discussed, joint knowledge in TDUS is 
represented by goals and focusing. Goals are a 
subset of all focused entities and, by definition, 
those actions that could possibly be performed by 
the apprentice. Consequently, possible referents 
are contained in the subset of joint knowledge 
represented by the most current direct goals and 
by the potential goal. 

The main utterance constraints are 
derived from tense and aspect, which, as we have 
observed, limit the goals whose associated actions 
could be referents, The three cases we ' 
distinguish are past tense, present tense and 
imperfective aspect, and future tense . 

As we have discussed, direct and 
potential goals can be referred to in a past- tense 
utterance. For such utterances, the algorithm 

·examines the moat recent direct goal first. If it 
.is associated with a domain action (i.e., not a 
knowledP,e-state goal), the action is taken to be 
the referent of "it" because that is the action 
known to be in progress, Utterance (3) 
illustrates such a reference to a task ·goal, 
(1) A: I'm doing the brace now, 
( 2) E: OK 
(3) A: I've done it, 
Here "i t" refers to the action of installing the 
brace, the action associated with the current 
goal. 

Because of restrictions in our current 
implementation, the most recent direct goal is not 
considered as a referent if it is a knowledge 
.state goal. Instead, the action associated with 
the potential goal is taken to be the one refetred 
to, since it is always a domain action, Clearly, 
,if potential goals were extended to include 
knowledge-state goals, a more sophisticated test 
would be required. 

Utterances (4) thro~gh (10) --taken from 
an actual dialog with TDUS--i lluatrate reference 
to a potential goal, 
(4) A: What should I do now? 
(5) E: Install the aftercooler elhow on the pump, 
(6) A: I've done it, 
(7) E: OK, 
(8) A: Should I instal l the aftercooler? 
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(9) E: Yea, 
(10) A: I've done it, 

The apprentice's Utterance (4) 
establishes a direct knowledge-state goal of 
knowing what action to perform, while the expert's 
reply establishes a potential goal that the 
aftercooler elbow be installed. Utterance (6) 

·refers to the potential goal. Utterance (8) 
similarly establishes a direct knowledge-state 
goal of knowing about the action--in this case, 

·whether the action is installation of the 
aftercooler; here the apprentice's utterance 
establishes the potential goal that the 

·aftercooler be installed. Utterance (10) refers 
again to the potential goal. 

An utterance that is present-tense and 
progressive (e.g., "I'm doing it") refers to an 
action that has been previously mentioned but only 
just started,· As we have seen, a potential goal 
is associated with such an action, so that the 
latter is taken as the referent. For example, 
Utterance (10) could have been "I'm doing it", 
referring to the action of installing the 
aftercooler, 

For a question referring to a future or 
a hypothetical action (e.g., "What should I do 
now?"), no attempt is made to identify the action 
as part of the interpretation. Instead, the 
reasoning process makes use of the task model to 
identify the appropriate reply. 

2, Do and Definite Noun Phrases 

For the other use of "do" (e.g., "I'm 
doing the screws"), where "do" refers to an 
action, an action of that type must be part of 
joint knowledge. However, only the action type 
may be jointly known and not the specific action 
referred to. For example in the sequence: 
(11) A: I've attached the pump, 
( 12) E: OK, 
(13) A: I'm doing the pulley now. 
Utterance (11) makes joint the attaching action 
for the pump. In Utterance (13), "do" refers to 
another attaching action, but this one involves 
the pulley, and is thus a separate act ion. "Do" 
is not referring to the same specific action, but 
rather to the same~ of action, i.e., 
"attaching". 

To interpret such utterances, the 
contextual knowledge used is joint knowledge and 
knowledge about the task . The joint knowledge 
used is focusing information, because an action of 
the same type as the one referred to should be 
focused.* The interpretation algorithm scrutinizes 
focused actions for a type capable of having the 
newly mentioned participating objects. For 
example, the algorithm might find "attach pump" as 
a focused action, determine that it is an "attach" 

--------
* Goal information could be used by examining the 
types of the actions associated with domain goals. 
However, access to the action type is more direct 
through fa.cueing information. 



and that therefore a pulley can also participate 
in an "attach" action. If an action is found, 
task knowledge is used to determine if an action 
of that type with the indicated participants is an 
appropriate action in the current situation. 
Thus, if attach+ pulley is an appropriate action, 
"attach pulley" is taken as the referent of "do". 

Tense and aspect information from the 
utterance help determine which actions in the task 
model are appropriate. As we noted, a preaent
progreaaive utterance indicates initiation of a 
new step, whereas the past tense could be used 
with either a new step or one in progress. 

Utterances (14)-(16) 
(14) A: Should I install the pulley now? 
( 15) E: No. 

The next step i~: 
Install the aftercooler elbow on the pump. 

or 
Install the brace on the pump. 

(16) A: I'm doing the brace now . 
illustrate a related situation. Here two steps 

' have been mentioned and are essentially equally 
focused and both potential goals, so "do it" could 
not refer unambiguously to one of the actions. 
However, both actions are "install" actions, so 
"do" can refer to an "install" type of action. 
The interpretation algorithm outlined above works 
for this case as well. 

3. Pronouns with Verba Other Than Do 

For utterances containing verbs other 
than "do" and pronouns, contextual constraints 
also stem from joint knowledge, since the object 
or objects referred to by the pronoun must be 
joint knowledge--in our case, mentioned in the 
dialog. The way the referent of the pronoun was 
introduced into the dialog affects the 
interpretation of utterances that contain 
pronouns. The distinction we make is whether the 
object was mentioned as a participant in an action 

;comprising part of the task, (e.g., "I attached 
the pump.") or was not mentioned as a participant 

'in an action (e~-:-.-"where is the pump?"). In the 
first case, if the object has been mentioned as 
participating in an action, the action will be 
recognized as a direct or potential goal and all 
its participating objects will be focused. In the 
second case, if no action has been mentioned but 
the object is a participant in some task action, 
,the action will be inferred through the potential
goal recognition mechanism and thus become a 
potential goal. However, in this case only the 
,object mentioned will be focused and not the other 
iparticipanta in the action. An example of the 
~econd case ia: 
(17) A: Where are the bolts? 

[Immediate focus• bolts] 
[Potential goal ~ THE BOLTS ARE BOLTED] 

(1
1
~) E: OK 

( ,) A: I've tiRhtened them with the wrench . 
, [with the wrench not in focus] 
~n this situation, the first reference to the 
bolts has established the potential goal that the 
~olta be bolted. 
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In both these situations the object 
mentioned is focused and, when appropriate, an 
action it participates in is established as a 
goal. The difference between the two is whether 
the actions and the other participating objects 
are also focused. Thia difference affects the 
interpretation of successive utterances containing 
pronouns. 

Three cases are distinguished in the 
algorithm: (1) If there is a pronoun and there are 
no definite noun phrases, the actions associated 
with the moat recent direct goal and the potential 
,goals are considered as possible referents of the 
verb, since either of the two cases described 
above could obtain. ( 2) If there are definite 
noun phrases, all of which refer to focused 
entities, then the actions associated with the 
most recent direct goal and the potential goal are 
the most likely referents. Since all the objects 
are focused, the action was presumably mentioned, 
as in the first case described above. (3) If a 
pronoun and definite noun phrases occur together, 
but not all of the latter refer to focused 
entities, then only an action associated with a 
potential goal is a possible referent. Since a 
direct goal associated with this object could not 
have been established, only the second case 
described above could obtain. 

In all three cases, utterance 
information about tense, aspect, and action type 
(from the verb) is used either to verify that the 
action associated with the goal is a possible 
referent or to choose a matching action type amon" 
possible referents. 

4. No Pronoun or Do 

When there is no anaphora in the 
utterance, the contextual knowledge used for 
interpretation is provided by focusing and the · 
task model. Focusing is used to determine the 
relationship between the utterance and focused 
entities, including the current action. The task 
model, including the record of task progress, is 
used to determine which actions can reasonably be 
talked about in the context. First, focusing 
information ia used to determine if the referents 
of any definite noun phrases associated with the 
verb are currently focused. 

a. All Noun Phrases in Current Focus 

If the noun phrase referents are 
focused, it indicates that the action involves 
objects currently being discussed by discourse 
participants and that the action is related to the 
current step (because it involves the same 
objects). The task model provides information 
about actions the apprentice can perform and has 
performed, Tense and aspect information from the 
utterance and the verb type restrict alternatives 
within the task model. 

Aa we discussed earlier, present
progressive utterancaa generally r-efer to -newly 



initiated actions. rhus, the actions in the task 
model considered are those closely related .to the 
most recent action performed and that involve 
objects referred to in the utterance. Possible 
actions might be a substep of the last step 
started but not completed; the potential goal; a 
step, not involving any different objects, that is 
closely linked in the plan to the most recent step 
started or completed (i.e., a step that is a 
substep of or successor to the last step, or 
succeeds a parent of the last step). 

For example, "I am attaching the 
pump 1s a present-progressive utterance with a 
noun phrase referring to a focused object. In 
this instance, the pump-attaching step is a 
substep of the last step started--installing the 
pump. 

For utterances that are past tense 
and/or perfective aspect, actions in the task 
model known to have been in progress and those 
that could be next steps are possible referents. 
The alternatives considered during interpretation 
are: a step in progress; the potential goal;· a 
substep of the last step started; a substep of any 
step in progress; and a step closely linked to the 
last step started or completed. For example, "I 
attached the pump" refers to a completed action 
that was a step in progress--attach pump. The 
verb in the utterance "I've installed the pulley" 
refers to a completed action that was the next 
step to perform, but was not explicitly mentioned 
as having been started, i.e., install pulley. 

b. Not all Noun Phrases in Cur.rent 
Focus 

If the referents of the noun 
phrases are not currently focused, the focusing 
hierarchy is searched because it indicates 
previously focused objects that might become 
focused again. If the noun phrase referents are 
identified somewhere ·in the focusing hierarchy, 
the action named in the utterance is matched 
aRainst any action occurring at that place in the 
hiernrchy. 

If the utterance contains noun 
phrases referring to objects participating in the 
action and those objects cannot be identified 
among focused entities, the actions associated 

· with direct goals are eliminated as possible 
referents of the verb . This happens because all 
actions associated with direct goals have been 
mentioned, which has caused all their participants 
to be focused. 

Possible referents of such verbs 
include: the action associat~J with the potential 
goal; a ~ubstep of the current step in progress; a 
substep of all the steps in progress (if the 
utterance is past and/or perfective); any action 
which can achieve some current goal (e.g., knowing 
a location-> found the object). Since the 
objects described in the noun phrases and the 
action both have to be tested when the substeps 
are examined, the algorithm first checks the 
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objects described by the noun phrases to see if 
they are participants in any of the substeps (by 
looking at the binding space) ; and if so, it then 
examines the actions to ascertain whether one of 
them matches the input action. 

B. Bottom-Up Search 

Currently the bottom-up algorithm consists of 
a search for the most specific occurrence of an 
event in the model whose participants are 
compatible with those in the utterance. This 
strategy is being expanded to include a search for. 
a more general event that can then be found in the 
task. This can be either the most specific event 
type compatible with all the elements in the 
utterance, or a more general or 'similar' event 
type that is both compatible and can be found in 
the task. An example of the first is an utterance 
containing "tighten the bolt". The verb "tighten" 
refers to a general tightening action that can 
have more specific applications--such as tighten 
screws, tighten bolts, etc. From the knowledge 
that one kind of tightening is bolt tightening and 
from the concomitance of "bolts" in the utterance, 
it can be inferred that the "tighten bolts" action 
is intended. In the second case, a more specific 
verb might have been used (e.g., bolt the pump) to 
mean securing the bolts. The verb "bolt" might be 
initially interpreted as referring to a specific 
action of tightening bolts. However, that might 
not be an explicit step in the task, but rather, 
perhaps, only some general securing step. From 
the bolting action and knowledge of the more 
general actions of which it is a subset (e.g., 
securing) , the relation of that action to the task 
model can be found. 

C. Setting Limits to a Search 

Knowing when to stop searching for a referent 
of a verb is another important element of the 
interpretation process. In general, the extent to 
which a verb reference is interpreted depends on 
the type of utterance. For example, a verb may 
refer to an action that does not fit into the 
current task context, such as one that could not 
or should not be performed at that time. If the 
verb is contained in a question (e.g. , "Should I 
cut the end off now?"), a reasonable assumption 
may be as follows: if the action cannot be 
identifies, it is not the appropriate one to take, 
as illustrated in Utterance ( 14). On the other 
hand, if the v~rb is contained in a statement 
(e.g., "I have cut off the end."), it is more 
important to identify the specific action 
performed, since a model of the current situation 
could not otherwise be maintained. Thus, any 
process for identifying a verb referent should oe 
able to determine what resources it should expend 
in each situation. 

Another factor to be considered when 
determining how much effort to expend in 
identifying the referent is the extent to which 
the speaker can be assumed to be cooperative, and, 
consequently, .hie or ·her utterances to be 
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relevant. If eome fairly direct connection 
between the utterance, the task, and/or dialog 
context can be postulated, devoting more effort to 
the search fore connection ie more reasonable 
than in a leee task-oriented dialog, in which euch 
a connection may not even exist. In the TDUS 
eyetem it ie assumed that the ueer is cooperative 
and that all hie or her utterances are relevant, 
Thus, considerable effort is expended, when 
necessary, to relate a statement about an executed 
step to the teak of which it is a part. 

IV FUTURE DIRECTIONS 

In this paper, we have discussed the problem 
of identifying the actions and events referred to 
by verbs, In particular, we have considered 
dialogs about en ongoing task, We have examined 
some of the knowledge needed for identifying the 
actions and have presented a strategy for finding 
them. Thie problem is of interest both because it 
ie en important part of interpreting utterances 
end because it illustrates the need for combining 
knowledge of many types in the course of that 
process. 

The reeeerch discussed here shows how the 
knowledge about language and about the domain that 
ie currently identified and repreeented in a 
computer system can be used when interpreting 
verbs. Important extensions of this research 
include determining: (1) how top-down and bottom
up searching can be combined more effectively; (2 ) 
on what basis decisions can be made to stop 
looking for a connection between an action and a 
plan; (3) what exteneione of thie algorithm are 
necessary for handling dialogs in which the lack 
of a strong model of the taek being performed 
reeulte in weaker top- down constraints. Further 
research on finding referents of verb phrases, 
building on the algorithm presented here, should 
contribute to solving the more general natural
language processing problems of determining what 
other knowledge is necessary for interpreting 
utterances and how that knowledr,e can be used mont 
effectively. 
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This paper presents a method for cx:mputation 

of intensional failures of presumptions in queries 

to a natural language interface to a data base 

4ystern. These failures are distinguished fran 

fxtensional failures since they are dependent on 

~he structure rather than the content of the data 

~e. A knowledge representation has been 
,nvestigated that can be used to recognize 
intensional failures. When intensional failures 
~re detected, a form of corrective behavior is 
' t;>roposed to inform the user about possibly 

~elevant data base structure that is related to 

1j.he failure. 

INTROOOCTIOO 

In the course of interacting with a natural 

1anguage data base query system a casual user may 
I!08e queries based on beliefs about tpe danain 

which are incXJ!patible with those of the system. 

Kaplan [Kaplan 79] has investigated one such class 

of beliefs which can be cx:mputed fran a query and 

qorrected, namely, extensional failures of 

presumptions. This paper introduces aoother 
dlass, that of intensional failures of 
presumptions, outlines the kind of knowledge 
representation needed for their cx:mputation, and 

proposes an appropriate form of corrective 
! 

Qehavior. 

A presu~ition is a proposition that is 
Ejntailed by all the dir<;!Ct answers of a 

question(*). A presumption is either a 

~resu~ition or it is a proposition that is 

entailed by all but ~ of the direct answers of a 
question [Kaplan 79]. Hence, presu~ition is a 
stronger version of preSlll'ption, and a 
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presupposition is a presumption by definition. 

For example, question (la) has several direct 

answers such as "John", "Sue", etc., and, of 

course, •no a1e". Proposition (lb) is entailed by 

all the direct answers to (la) except the last ' 
one, i.e., •no one". Therefore, (lb) is a 

presumption of (la). Proposition (ld) is a 

presupposition of (le), since it is entailed by 

all of the question .. s direct answers. 

la) Which faculty members teach CSEllO? 

lb) Faculty members teach CSEllO, 
.le) When does John take CSEllO? 
ld) John takes CSEllO. 

Presumptions can be classified on the basis 
of what is asserted - i.e., an "intensional" 
statement about the structure of the data base or 
an "extensional" statement about its contents. 

Thus an extensional failure of a presunption · 
occurs based on the current contents of the data 

base, while an intensional failure occurs based on 

the structure or organization, For exanple, 

question (2a) presumes propositions (2b), (2c), 

and (2d). Presumption (2b) is subject to 

intensional failure if the data base does not 
allow for the relation "teach" to hold between 
"faculty" and "course". An extensional failure of 
presumption (2b) would occur if the data base did 

not contain any faculty member that teaches a 
course. Also note that the truth of (2b) is a 
pre-oondition for the truth of (2c), 

(*) The OC11plete definition of presupposition 

includes the oondition that the negation of a 

question, direct answer pair entails the 

presu~ition, 
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2a) Which faculty members teach CSEllO? 

2b) Faculty members teach courses. 

2c) Faculty members teach CSEllO, 

2d) CSEUO is a course. 

Although a presumption which fails 

intensionally will of neccesity fail 

extensia'lally, it is important to differentiate 

between them, since an intensional failure that 

occurs will occur consistently for a given data · 

base structure, whereas extensional failure is a 

hansitory function of the current contents of the 

~ta base. This is oot meant to imply that a data 

t>ase structure is oot subject to change. However, 
I 

liuch a change usually represents a fundamental 
i 
~ification of the organization of the enterprise 

that is modelled. One can observe that structural 

tlodifications occur 011er long periods of time 

(many nonths to years, for example), while the 

<3ata base contents are subject to change over 

felatively shorter periods of time (hourly, daily, 

~r nonthly, for example) . 

The problem this paper addresses is the 

tecognitia1 of presumptions which fail 
I 
intensialally. In that case, the failure should 

~ carmunicated to the user and a form of 

¢orrective response produced which informs the 

user about the relevant data~ structure. 

DA.TA BASE MXlEI. ------
A data base model based primarily on the 

entity--relationship model of Chen [Chen 76] with 

the addition of an inheritance hierarchy can . be 

used to detect the intensional failure of a 

presumption. This loodel is similar to that 

proposed by Lee and Gerritsen [Lee and Gerritsen 

78], which incorporates the generalization 

dimension developed by Smith and Smith [Smith and 

Smith 77] into Chen .. s model. Although Lee and 

qerritsen, and Chen allow entities to participate 

ln n-ary relationships, this discussion will be 

restricted to binary relationships. Entities 

participate in relationships along two orthogonal 
dimensions, aggregation (among dissimilar 
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entities) and generalizatia1 (among similar 

entities), as well as having attriootes that 

assume values. 

an entity 

Along the generalization dimension 

inherits the attriootes and 

relatialShips of its super-entities. All 

individuals of a particular entity set are members. 

of any of that sees super-entity sets. Sane 

:individuals in an entity set may be members of a 
sub-entity set, therefore participating in 

relationships of the sub-entity set and having 

attriootes of the sub-entity set. 

A simple subset operator is oot adequate for 

generalization in this context however, as is 

illustrated by the following example, Consider 

the data base model fragment shown in figure l. 

Entity sets are designated by 011als, aggregation 

relationships by diaironds, and generalization 

relationships by edges fran the super-entity set 

to the sub-entity set. Here "men", "wanen", 

"faculty", and "students" are all subsets of 

"people", with "students" participating in a 

"take" relationship with "courses". Fran this it 

can be determined that a "take" relationship can 

exist between "men" and "courses", since it is 

possible that there are sane "people" who are both 

"men" and "students". But by this same reasoning 

we may also assert that a "take" relationship 

might exist between "faculty" and "oourses", which 

is certainly oot the case in most universities. 

The essential difference that needs to be ooticed 

is that a non-empty intersection is possible. 

between "men" and "students" and is oot possible 

between "faculty" and "students". 

The incorporation of an operator that 

partitions an entity set into several nutually 

exclusive sub-entity sets eliminates this problem. 

This distinction can be made by prohibiting the_ 

traversal of a path in the data model that 

includes two entity sets which are mutually 

exclusive, Furthernr:>re, the path in the 

generalization dimension is restricted to "upward" 

traversals followed by "downward" traversals. An. 

upward (downward) traversal is fran a sub-entity, 

{super-entity) set to a super-entity (sub-entity) 
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set. This restriction is made to prevent 
I 
over-specialization of an entity set when 
traversing downward edges. The set of inferences 
~t can be made in the presence of this 
restriction is not overly constrained, since any 

j:11«) entity sets that have a cx:moon intersection 

~sub-entity set) will also have a cx:moon union 
ksuper-entity set). As an exarrple of this type of 
4itructure, consider figure 2, where partitioning 
~s denoted by parallel arcs across edges • . 
(Usually sane attribute of an entity serves as the 
basis for the pu!·u~.l,m. l"or exarrple, "sex" 

us 

partitions "people" into "men" and "wanen" .) In 
_this fragment of information about university 
organization the possibility of a "take" 
·relationship existing between "faculty" and 

"cxiurses" is precluded by the fact that "faculty" 

and "students" are nutually exclusive. Observe 

that the path fran "students" to "unenployed" 

would include "people" rather than "undergrads" or 
"unsupported". If either "undergrads" or 
"unsupported" were included, "students" would be 
unnecessarily restricted. 

Although it might seem at first that a 
"teach" relationship might be possible between 
"undergrads" and "cxiurses" since all 
"undergrads" are "students", and "students" and, 

"teachers" are not mutually exclusive - this is 
not the case. Closer inspection reveals that all_ 
"undergrads" are "unenployed", and "unenployed" 

. and "teachers" are nutually exclusive, thus 
eliminating the possibility. The inferencing 

about mutual exclusion required to produce this 
result would proceed in a fashion similar to that 
proposed by Fahlman [Fahlman 79] • Very briefly, 
markers are propagated upward fran the two entity 
sets which are assumed to be disjoint. If a split 

node (which denotes 11'1ltual exclusion) detects 
markers fran both entity sets, they are not 
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disjoint. Fahlman uses this operator to enforce 
restrictions on updates to a knowledge 
representatioo. 

INTENSIOOAL FAIUJRE 

In this data base model, intensional 
koowledge can be equated with the ability of an 
entity to participate in a relationship with 
another entity. Here, intensional failure ocx:urs 
when such a relationship can not be established. 
for instance, the question "Which faculty take 
courses?" inoorrectly pres1.1nes that a "take" 
~elationship can exist between "faculty" and 

~courses" entities. 

A method for the oanputatioo of a significant 
class of presllllptions in the data base query 
~in is described by Kaplan [Kaplan 79]. The 

t~roach taken there involves the generation of 
pie meta-query language (MJL) fran the natural 
tanguage input. The M,JL is essentially a IOC>dified 
parse tree that closely reflects the surface 
I structure of the input query. An exalli)le is shown 
tn figure 3 for the questioo, "Which students in 
! . 
QCJIP.lter science took CSEllO?". Kaplan oanputes 
t:he extensional failures of presumptions in a 
~ery fran the M,JL by checking the result of the 
rorma1 data base query of each oonnected sub-graph 
<l>f the M,JL for emptiness. That is, the contents 
~f the data base are accessed to determine if a 
presllllptioo has a oon-empty extensioo. 

FIC,uQE '3 

The intensiooal failure of presllllptions in a 
query can be oanputed in a similar fashioo. The 
essential difference being that the data model 
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image of the r,o.. representatioo must be checked to 
insure that each relationship can be established 
in the data model. The data IOC>del image of a node 

or arc in the M,JL is the entity set or 
relationship set, respectively, in the data IOC>del 
which is designated to oontain the referent or set 
of referents for it. This is basically equivalent 
to disambiguating the lexical items, since the 

arcs and nodes in the M,JL have lexical i terns 
asscx::iated with them. Coosider the question, 
"Which faculty take CSEllO ?" and its 

corresponding M,JL representation in figure 4. 

Here the entity set "courses" is designated as the 

data model image for "CSEllO" since it is m::ist 
likely to refer to a "course" entity. This query 
contains the presumption that "faculty take 
courses" which can be recognized as failing 
intensionally because a "take" relationship does 
not exist between "faculty" and "courses". 

' 

t1m1: \ll 

(ff\U.)L'T'f ) ~ ( c!uRsfS ) 

Reoognizing the intensional failure of 
presllllptions is only part of the problem - it is 
also useful to provide the user information with· 
respect to related intensional knowledge. Given a 
relation R, entities X and Y, and a failed 
presumption (RX Y), salient intensional knowledge 
can be found by abstracting on either R, x, or Y 
to create a new relation. For exarrple, using the 
university data base model fragment, consider the 
following hypothetical exchange: 

Q: "Which faculty take courses?" 
A: "I don .. t believe that faculty can take 

courses. 
Faculty teach courses. 
Students take courses." 

Here the presumption that faculty take courses can 



be recognized as failing intensionally. This can 

be camunicated to the user by paraphrasing its 
I 

pegation, noting as well what possible relevant 

relationships do hold. 

HIGmR ORDER FAILURES 

A ITOre cxrnplicated interaction of 

presumptions with the data ITOdel can also cause a 

presumption to fail intensionally. These failures 

occur in sub-graphs of the~ which oontain two 

fr ITOre arcs. It may be the case that a 

telationship can be established for each arc that 
I 
~ts two nodes in the~. but there is still 
~ cxinnected sub-graph (a presumption) that fails 
intensionally. The relationships in a particular 
~;ub-graph may irrpose restrictions on the nodes 
that will form empty response sets which can be 

recognized solely fran intensional knowledge. An 

example of this is shown in question (3a) • The 

restrictions on "teachers" involve two entities in 

the same partition. Question (3b) oontains the 
I same intensional failure. Both presume identical 

fropositions, although in (3a) it is not as 

•warent. 

3a) Which teachers that advise students take 

courses? 

3b) Which teachers are both faculty and 

students? 

A corrective response for this type of 
failure involves identifying the entities that 
participate in the relationships in addition to 
the failed presumption. In response to (3a), for 

example: 
"Faculty advise students. , 
Students take oourses. 

I dcrl't believe that a teacher can be both a 

faculty member and a student." 
It doesn't ai;pear that any related knowledge need 

be oc:mnunicated, although sane information 

regarding the various partitions of an entity set 
flight be helpful. An adequate procedure for 

determining relevant knowledge along the 

generalization dimension has not been thorooghly 
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investigated. 

RELA~ RELATIOOSHIPS 

An interesting situation arises when 

attempting to determine related intensional 

knowledge for a failed presumption with regard to 

relationships. Consider an enterprise which has a 

matrix organization as in figure 5. The "in" 

relationships are conceptually similar but must be 
represented distinctly. The following behavior is 

desired for this data ll'Odel: 

Q: "Which employees are in areas?" 

A: "I don't believe that employees are in 

areas. 

Dnployees are in divisions. 
Projects are in areas." 

f Ml'LO'fffS P~orens 

l)iVISIOIJ<; C IIRE1b ) 

But this will not be achieved given the 

method outlined earlier of abstracting on one of 
R, X, or Y for a failed presumption (R X Y). If 
"in-1" is picked as the data ll'Odel image for "in" , 

the response will not include the fact that 
"projects are in areas". Similarly, if "in-2" is 

chosen, "employees are in divisions" will not be 

included. This can be remedied by introducing an 
operator (R-sm') which denotes the conceptual 

similarity of relationships as in figure 6. 'l'he 
procedure for determining salient intensional 

knowledge can be ITOdified to include relationships 
in the same "R-sm'" when abstracting on a 

relationship. Although this might appear ad hoc, 

it should be noted that this would be the first 

' . 
I 
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step towards develcping a hierarchy for 
relationships. 

Em\>Lo'fff.S 

AREAS 

FluVRE ~ 

Note that there may be sane basis for 

~ing the danain of a particular predicate fran 

t semantic relatedness measure. For instance, if 
two distinct "teach• relationships existed, 
between "faculty" and "oourses", and "grads" and 

•oourses", the question "Which undergrads teach 
oourses?" would indicate that the "teach" between 
•grads" and "oourses" should be coosen. 
I 

Intensional failures of presunptions in 
queries occur when the user .. s beliefs about the 

structure of the data base diverge fran those of 
the systan. The use of a partitioned subset 
hierarchy is essential here to determine those 
intersections of entity sets that are empty by 
definition. It is inportant to distil'X}Uish 
between structure and ex>ntent, since there is a 

significant difference in the rate in which they 

change. When responding to intensional failures 
of presunptions, sinply pointing out the failure 
is in most cases inadequate. The user 111.1st also 
be informed with regard to related krXMledge about 
the structure of the data base in order to 

forlllllate queries directed at solving his/her 

partiwlar problan. A straightforward, but 

effective, method for producing such responses was 
outlined here. 
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Researchers in Natural Language 
Processing have long recognized the need 
for an adequate semantic representation 
language (SRL) in computer systems for 
the analysis of general natural language 
texts. One of the primary requirements 
for any SRL is that it be computable 
whether or not two formulas in the SRL 
have the same meaning. (We are, in this 
paper taking no position on whether this 
computation should be done through the 
use of some canonical form or through the 
use of meaning-preserving 
transformations.) This requirement 
forces the creator of an SRL to define 
its primitive terms by fully specifying 
the inferences that may be drawn when 
they appear in a formula; i.e., we define 
a predicate P to be used in an SRL by 
specifying which other propositions may 
be inferred to be true whenever we know 
that P(a) (possibly in conjunction with 
some set of other propositions) is true 
for some a. 

While many researchers have 
1proposed various approaches to SRL's, the 
full definitions of the primitives 

.Proposed have rarely been well-defined in 
terms of the inferences to be dr.awn. In 
particular, little attention has been 
paid to the problem of how an SRL might 
represent the meanings of words which, 
while different parts of speech, seem to 
refer to the same basic concept. 
Consider, for example, the adverb 
"speedily," the adjective "speedy," the 
abstract noun "speed," the agentive noun 
"speeder," the nominalization "speeding," 
and the verb "to speed." Obviously the 
meanings of these words share a common 
concept, which we might approximate as 
"some event or set of events taking 
relatively little time." Unless an SRL 
can rigorously represent the proper 
relationships in meaning between the 
representations which it uses for the 
meanings of these words, it cannot 
satisfy the previ0 " sly mentioned 
requirement of computable meaning 
equivalence. That is, an adequate SRL 
must not represent "x has speed" by P(x) 
and "y occurs speedily" by Q(y) unless 
the inferences defining P and Q are 
properly related. Failure to meet this 
requirement would result in the inability 
to note the contradiction in a text such 
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as: "That horse has speed. He does not 
run speedily." (Of course, a reader 
could force a consistent interpretation 
of such a text, in the example presented 
perhaps by inferring that the horse is 
sick, drugged, etc., but this forcing is 
caused by his noting that a normal, i.e. 
using default knowledge, interpretation 
causes a contradiction.) The problem of 
representing such commonalities of 
meaning has been noted, as in Fillmore 
1971, Schubert 1974, and Cercone 1975; in 
Leech 1974 a sketch is made of what is 
needed to capture it. 

We investigate such commonalities 
of meaning by exploring and 
characterizing the ocurrence of part of 
speech variants for various verb 
categories of English. The fact that 
certain groups of verbs do not have 
certain part of speech variants suggests 
the usefulness (in semantic 
decomposition) of new verb categories 
beyond the traditional ("activities," 
"situations," etc.) ones. We formulate 
sets of general expressions for various 
verb categories, whereby. the meanings of 
part of speech variants may be expressed 
in terms of one basic meaning which 
constitutes the component common to a set 
of variants. The question of what form 
such a basic meaning should take (i.e. 
which part of speech variant•s meaning, 
if any, might be considered basic) is 
discussed for various verb categories. 

The evaluation of such 
expressions during the processing of a 
text must, in general, incorporate the 
use of context and world knowledge (CWK). 
For example, the sentence "x is speeay" 
means (to a reader) that each (or the 
typical) member of a certain set Y of 
events in which x plays an agent/theme 
role takes relatively little time. 
Exactly which events Y contains depends, 
however,~ontext and world knowledge. 
If x were known to be a brickl c1er 
(and/or the sentence appears in a 
bricklaying context) Y would be different 
than if x were known to be a racehorse 
(and/or the sentence appears in a 
horseracing context). 

this 
An 

task 
attempt is made 
of CWK-dependent 

to seperate 
ev al.uat ion 
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from that of capturing the variation in 
meaning (from a common concept) due to 
part of speech. To this end, we utilize 
,in our expressions special quantifiers 
which represent calls to be made to a CWK 
maintenance mechanism when an expression 
.is to be evaluated; these calls ask this 
mechanism to supply appropriate 
instantiations for those constituents 
which are CWK-dependent variables in the 
expressions. For the above-mentioned "x 
is speedy," for example, such a special 
quantifier would be attatched · to the 
"certain set Y of events in which x plays 
an agent/theme role" as a call to the CWK 
maintenance mechanism to find and 
instantiate the most appropriate such 
set. Our expressions, therefore, are an 
;approximation to the definition of that 
portion of the meaning of a word that is 
:carried by its part of speech marking, a 
,portion which must be extracted during 
natural language analysis in order to 
ensure proper semantic representations. 
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Introduction 

This paper describes the syntactic and semantic processing 
components or a natural language undnstanding system 
currently un,kr development at HBN . There arc several 
interesting features or this system which this paper will 
highlight. The first is a f'ramcwork for nntural language 
parsing (called the RUS parser) which combines the 
efficiency of a semantic grammar with the flexibility and 
extensibility of modular syntactic-semantic processing. 
The second (the PSl·KLONE interface) comprises two 
descriptive taxonomies represented in the KL-ONE 
formalism [Brachman, 1979] which represent, first the 
system's knowledge of interpretable syntactic-semantic 
patterns, and, second, the system's semantic knowledge of 
possihle objects, events and relationships. These 
taxonomies facilitate the two major tasks of the system's 
semantic processor: 

1. providing feedback to the syntactic processor. 
and 

2. providing semantic interpretations for 
individual phrnses. 

/\ third interesting lcature or the system will he tuuched 
upon only briefly · its treatment or natural language 
q11antilk:1ti1111 in terms or a combinatoric problem to be 
solved. lo whatever extent necl'ssary, hy a 
pragmatics/discourse component. 

I. An ovcnirw of lhc BBN nalurnl lani,:uagr sysll•m 1 

'Ilic task of the sy).lem in which l'Sl·A'/.ONI:' and RVS 
ar.: embedded is to prol'iclc a na: ·.ral language interface to 
un intelligent display system in a command and control 

1
This section .111d the appendix dcscrihing Kl ·ONE .ire slightly 

rcvisl'd and shortened ver.;inns ol' portions of lllrad1111an. 19791. We 
arl' grall'f'ul to Ron llrad11na11 Ji,r giving us permission lo use them 
here. 
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environment. As well as being able to create and modify 
displays, the system should be able to :mswer factual 
que).tions about what is on the display screen. Questions 
and commands addressed to the sysh.:m typically 

1. make use of ekments of the preceding 
dialogue, 

2. can be expressed indirectly so that the surface 
form does not rellect the real intent, and 

3. can refer to a shared non-linguistic context (the 
graphic display) 

The issues of anaphora, (indirect) · speech acL'>. and 
deix is nre thus of principal concern. 

·n1e natural language system is organized as follows. 
The user sits at a bit-map terminal equipped with a 
keyboard and a pointing device. Typed input from the 
keyboard (possibly interspersed with rnordinatcs from the 
pointing device) is analyzed by a version or the R US 
parser. The parser produces a K 1.-0N E representation of 
the syntactic structure of an utll.:rance. The production of 
syntactic constituents incrementally triggers the creation of 
the local. sentence-level (non-discourse) semantic 
interprctation or these constituents. This interpretation 
structure is then processed hy a disrnurse expert that 
attempts lo determine what was really meant. In this 
process, anaphoric and qLwntifkr-rclated aspects or the 
utterance must be resolved and indirect speech acts 
recognized. Finally, on the basis of what is determined to 
be the intended force of the utterance. the disCllurse 
component decides how the system should respond. It 
plans its own speech or display actions, and passes them 
llff to a language ccnerntion componcnl (not yet 
implemented) or display expe11. 
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2. The organiznlion or this paper 
The next section of this paper discusses the R US 

parsing framework - first. the structure of its cas~:aded 
interactions with the semantic interpreter. then, tedmiqucs 
used to minimize bm:ktnu.:king in RUS. Section 2 
diS<.:usses semantic interpretation in PSl·KLONE, with a 
detailed example of the dialogue that the parser and 
interpreter carry on in parsing a sentence and constructing 
the descriptive part of its semantic interpretation. 
C',0mbinatoric aspects of a sentence's interpretation are 
discussed in the latter part of this section. For readers 
unfamiliar with the KL-ONE formalism, an appendix 
provides a brief introduction. 

1. The RUS natural language pnrsing framework 

J.I. lnlrotluction 
RUS is a framework for natural language proel.!ssing 

that is as efficient as a semantic grammar. and as flexible 
and extensible as a modular syntactic/sl.!mantic processor. 
It is based on a non·dl.!tcrministic ATN parser, but it 
parses without backup in virtw1lly all cases that Marcus's 
"ddcnninistic parser" docs !Marcus. l977J. In addition. 
because of the ATN's ability to operate 
non-deterministically, RUS can handle phl.!noml.!na not 
covered by Marcus· purser. 

We have achieved this co111hina1ion of eflieiency and 
cxten~ihility by c11smt!i11g (sec (Woods. 19801) the syntactic 
and semantic processors - making calls to the scmanlir 
processor at signilicant points in the parsing process. The 
near-determinism results in part from two new arc-types -
GRO( I I' arcs and almost-GROUP arcs - and in part rrom a 
new control structure for ATNs. 

The following two sections describe the li:alurcs or the 
,ynlactic rrocessor. Section 1.2 covers those li:aturcs that 
MC _in~_p_orl:lllt i<>r the l":ISl':ldcd inh:raclion of synl:IX and 
semantics. Section 1.3 discusses the modi lications to the 
grammar and the normal ATN co1itrol structure that 
increase the dderminism of the parsing process. 

1.2. Synta,·tic l..ahclling and C:1sc:1ded lnternclions 

1.2.1. Syntax and Function:11 Rehtlions among 
Con.'ititucnts 

We view parsing as a mechm1ism for providing a 
functional description of the relations that hold among the 
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pieces which form a syntactic unit (phrase). This 
description notes the phrase's constituent syntactic units. as 
well as labelling the functional relations that hold between 
the constituents and the phras~~s a whole. These labels 
arc based on a constituent's functional role in the higher 
phrase, and not simply on its internal syntactic structure. 
For example, a noun phrase (NP) can serve various 
functions in a clause. including logical subjl.!ct (I.SU BJ}, 
logical object (LOBJ}, logical indirect object (UN['()HJ). 
surface subject (SSU BJ). and first NP (Fl RSTNP). It is up 
to the syntactic procl.!ssor to determine which or these 
possible labds is appropriate for a given NP constituent of 
a clause. 

These functional labels me primarily intended to 
provide inlormation f<>r semantic interprclation and 
discourse processing, and not to screen oul ungramnwtical 
constructions. l.ogirnl labels sud1 as I.SUB.I and I.OBJ 
provide a coupling to the case relationships that arc the 
basis of lc.xical semantics. while Fl RSTNP helps determine 
discourse focus ISidncr. 1979) and SSUBJ wnstrains the 
use of a clause as the source of later verb phrase ellipsis 
[Webber, 1978). 

1.2.2. Casl'aik intcrnl'lion between syntax and wmantks 
The parser docs not interact with the semantic 

interpreter by sending it a complete syntal"lic analysis of a 
sentence labelled with the functional relations discussed in 
section 1.2.1. Rather. the parser and intcrprcta engage in 
a dialogue consisting of a sequence of transmissions from 
syntax and resp'onses from semantics. 

An individual transmission consists of a tmnsmit triple, 
which represents a proposal by syntax of the addition of 
())anew constituent with (2) a labr! indicating a purticular 
functional relation to (3) the phrase currently under 
construction by both syntax and semantics. Semantics 
either rejects the proposal or returns a pointer to a 
data-structure which represents semantics· knowledge of 
the resulting phrase. These pointers are all thal the R US 
syntactic processor knows about the internal operation of 
th,: sl.!mantic component. and they arc simply saved to act 
as part of the third component of lt1tcr trnnsmission triples . 
Thus the RUS framework has no commitment to any 
panicular internal structure for semantic interpretations. 

A transmission occurs as part of an arc action in the 
ATN, with the success of that arc depending on scnrnntics' 
response to the trunsmission. The failure of an arc because 
of a semantic rejection is treated exactly like the failure of 



an urc becuuse of a syntactic mismatch; alternative arcs on 
the source state are attempted, and if none arc successful, a 
back -up occurs. 

Transmit actions only occur when enough syntactic 
structme has been analyzed to confidently r,ropose a 
functicmnl label for the transmitted constituent. In 
particular, transmit actions arc always postponed until 
after the head of the current phrase has been recognized. 

In a simple active sentence2 likc 

"The three boys ate two pizzas." 

the NP "The three boys" can be labelled as FIRSTNP 
immediately, and as SSUBJ and LSURJ immediately after 
the head verb is recognized. In passive sentences like 

"The dog was given a steak bone." 

"The dog was given to the first boy who asked 
for it." 

it is impossible to tell if the Fl RSTNP "The dog" should 
be labelled LOBJ or LIN DOBJ until the NP after the main 
verb is parsed. 

Note that in this paradigm the parser docs not per se 
produce a static syntactic structure. For any given path 
through the ATN the syntactic structure is implicitly 
rcpn.:scnted in the sequence of transmissions, however, 
and a parse tree can easily be constnrcted from these 
transmissions. 

Semantics' responses to a transmission from syntax will 
be discussed in more detail in section 2.2.2. The important 
thing to note here is that this response is not n<'c<'ssarily the 
incrl'ment,il interpretation of the phrase currently under 
com,1ruction. It may simply verify the existence of an 
interpretation (projection) rule (or ruks) hy means or 
which the interprewtion or the phrase could be extended 
by the mldition of the proposed new constituent. This 
buys eflicicncy by rejecting constructs which have no hope 
or semantic interpretation · and not paying for the 
construction of a semantic interpretation until a phrase is 
syntactically checked. 

., 
'That is. with the exccp1ion of sentences such as '"John I like.", or 

any active sentence in whid1 1npicati1.ation or \' -movement has 
occurred. 
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1.3. Approaching Dctcrminislk Parsin~ 
The basic ATN is a non-deterministic parsing 

mechanism: when more than one arc leaves a stale in the 
ATN. the parser must treat that state as a potential 
branch-poinl. That is, the purser must select an arc to 
follow, and if its path from that arc becomes blocked, it 
must be prepared to back-up to previous branch points 
and try alternative arcs. A deterministic parser, on lhc 
other hand, must be abk to treat a state with many arcs as 
a choice point, and make the comxt choice of which arc to 
follow. without allowing for any back-up to that stale. 

By analysing the back-ups that occurred in a typical 
non-determ in istic ATN parser (i.e., an early version of the 
ll US system}, we found them to have th ree major causes: 

1. the existence of unnecessary branch-points in 
the /\TN, 

2. the preponderance of "hypothesis-driven" (as 
opposed to "data-driven") charnctcrizations of 
English grammar found in the ATN, and 

3. the intera~tion of the normal depth-first 
control structure of the ATN with the 
capability for semantic rejection of 
constituents. 

hi a typical ATN there arc many states that arc not true 
non-dt:terministic branch-points. That is, for any given 
sentence there is at most one acceptable arc from· such a 
state. In those cases, tl1e parser should be abh: to take the 
correct arc and not have to provide for back-up to that 
state. In the RUS parser, we have taken advantage of r.n 
extension to the nonnal ATN notation [Burton; 1976) thnt 
pennits any set of arcs from n single state to be combined 
into one GROUP arc. The arcs within a GROUP are ther. 
treated as strict alternatives -- at most one can succeed at 
any point ·in a parse, and so there is no need to allow for 
any back-up. The arc sets or many stales in R US could be 
GROU/>ed immediately. When this w:is not the case, it 
w11s often possible to GROUP arcs bv allowing th_em to 
examine not only the current ,\'ord but one or two words 

ahead. 
We havl! also introduced the notion of an 

"almost-GROUP." This effec1ively splits a single node in 
two, with one GROUP splitting the situation into 
deterministic and non-detcn11inistic cases, and anot,1er 
(,'ROUP for the deterministic case. This captures our 
intuition that most sentences could pass deterministically 
through a given state, nnd moreover, it would be easy to 
distinguish the sentences which had to be treated 
non-detcrm i nsitically. 
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The second cause of back-up mentioned above has 
been pointed out by Marcus [1977] - the typical use of 
ATN's as a top-down. hypothesis-driven parsing 
mechanism. Toot is. when a point in the parsing is reached 
where it is possible for a constituent o.f type X lo appear. 
the parser PUSH1.-s to a network which actually looks for 
an X. In top-down analysis this is done purely on the basis 
of the structure found up to that point in the sentence. 
Back-up can be avoided if such PUSH arcs arc not taken 
when it is clear that thl' current word (or the next few 
words) prl'dudcs such a constituent. For example. there 
arc pl:ll'l'S in the analysis of a clause where a PP is optional. 
We do not want to PUSII for a PP there if the next word 
dearl, precludes iL<; presl'nce - e.g. if the next word is not o 
pn:position. 

After unalyzing situations where the RUS ATN 
PUSHcd for constituents lhal were "obviously" not 
present. we inserted tests that blocked the offending PUSH 
arcs when the next words were obvimtsly inconsistent with 
the PI.JSH arc. These tests required looking no further 
than the next three words. and often no further than the 
next word. This is consistent with Marcus' "three chunk" 
look-ahead. Ahhough there arc cases where a three 
constitlll'nt look-ahead would have been t\·quired to 
compll.'tcly avoid backup. three wunl looh1head suflin:s 

to drnstically reduce the back-up normally caused by, 
ll>p·down parsing. 

111c third source of back-up· lay in the very heart of U1e 
R US npproach. namely the incremental semantic testing of 
constituents, coupled with the ATN's standard depth-first 
control structure. For cxampk. PUSH actions ndmit the 
possibility that several constituents of the type pushed for 
(e.g. several PPs) arc present at the given place in the 
string, differing in length or in internal structure. RUS 
may reject the first result of the PUSH becnuse it is 
sem:intically unacceptable in the context of that PUSH. A 
"depth-first" control structure will produce all possible 
alternative constituents of the desired cntcgory before 
trying any alternatives to the PUSH. 

However, as the parser becomes more nearly 
deterministic. the first semantically meaningful result 
returned from a PUSH is likely to be the best description 
of what actu:illy occurs at that position. This is particularly 
true for optional constituents, such as prepositional phrnse 
modifiers (especially those specifying location or time). A. 
frequent cuse is where an embedded NP PUSHcs for a PP, 
the pmscr finds one, and the semantic interpreter rejects it 
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as a modifier of the NP. This situation can occur when the 
first PP found by the parser is actually a nwdi lier of' the 
matrix clause or NP. 

For example. consider the sentence 

"That professor teaches undergraduates about 
languages for processing complex types of list 
structure." 

Whl~n the parser is processing the embedded noun 
phrase "undergraduates" it will PUSH for a PP and find 
"about languages for pro<:cssing mmplcx types of list 
slntcture" us a semantically coherent PP. This is indeed 
the corTccl PP at this point in the string, as opposed to 
"about languages" or "about languages for processing", 
nnd so on, but it is not a ·pp- that ~an modify 
"undergraduutes." In this situntion a depth-first control 
structure will gcnernte useless parses of meaningful but 
irrelevant PPs before determining that in this sentence the 
NP "undergrnduates" hus no PP modifiers, and that 
"about languages for processing complex types of list 
st ructurc" is actually a modifier of the clause. 

To avoid this difficulty we have implemented a control 
structure that produces the first semantically acceptable 
result of each PUSH 3 but postpones brnnch-points that 
might produce alternative results4 for that PUSH. When 
this control structure is combined with the wc/1·/ormed 
substring facility (WFS) which is a no1mal part of the 
parser we get an eflicicnt technique for placing optional 
modifiers where they arc semantically acceptable. If un 
optional constituent is semantically rejected becuusc it was 
PUSHcd for by the wrong level of network, it is stored in 
the WFS. If some other phrase then PUS~ les li.n the same 
type of constituent ut the same place in the string ,t will 
find that constituent in the WFS wilhout any further 
parsing. 

The net effect of these changes has been to remove 
almost all inst:1nces of backtracking in the operation of' the 
parser. Most or the cases where the parser actually has to 
back up arc ones which cannot be resolved on the basis of 
ILx:al evidence, and in which humans olkn garden path. 

1111is usually is lhe longest semantically cohcrent L·onslit11cnt of the 
type l'USlled for. 

\11cn hy dropping off s.•111.intkally ,ll'l'L'plahlc h111 syntactic.illy 
optional posl·modificrs 



2. Sl•manlic inkrprl'l:1lion in PSl·KLONE 

2.1. lnlroduction 
This section describes both the scnwntic interpretation 

assigned to an input sentence and the process hy which it is 
assigni:d. As we indicated in section l, semantic 
interpretation is merely an inkrmcdiate stage in the 
processing of a si:ntcncc. The linal stage is processing by a 
discourse component which has access to 

· the results of the syntactic analysis of the 
sentence 

· the semantic inti:rpretation ofthl! sentence 

· general pragmatic knowledge 

· i:volving modl!ls of 

•the speaker's knowledgi:, beliefs and 
current focus 

•the objects, events and relationships 
under consideration in the current 
discourse 

·111c semantic interpreter produces a representation of 
the input sentence bas1:d on the functional syntactic 
analysis of the sentence (sec Section 1.2. l) and a 
knowledge of lexical semantics to be described here. 
There arc two distinct types or information included in thl! 
output or the semantic interpreter · m111hi11moric 
inf'ormation and dcsaiptfre inltinnation. This distinction 
can be viewed as a generalization of the distinction 
between quantifiers and formulas with free variables 
(matrices) in quantified predicate logics. and we introduce 
it by means of an analogous distinction in typed·quanti ficr 
predicate logic. 

Consider a typed-quantifier predicate logic with the 
following properties: 

I. quantified variables arc typed·· each variable is 
limited to range over a particular domain. 
which is specified by a predicate. 

2. variables arc allowed to stand llir sets as well as 
for individuals, 

3. types are not limited to simple predicates on 
individuals or sets, hut can be complex 
predicates that may themsdvcs dercnd on the 
binding of other variables in the expression, 
and 
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4. expressions are written in Prcnex Normal 
Form, with all quantifiers pulkd out to the left. 
leaving an open formula to the right. 

TI1e advantages of such a logic as a representation for 
the semantics of English sentences arc discussed by 
Webber (Webber, 1978). The first three properties allow 
the information conveyed by noun phrases to be kept 
separate from the information conveyed in the clause. 
Properties I and 2 reflect the fact that in English one 
predicates allributes of u set, such as cardinality, in 
addition to predicating attributes of its members. Finally, 
prope1ty 3 prov;dcs for both explicit and implicit 
dcrendcncies between noun phrases. by allowing the 
type-predicate for one variable to explicitly depend on the 
value of another variable. 

To illustrate this. consider the sentence 

"Each boy gave each girl he knew three 
peaches" 

which we can represent by the typed predicate logic 
llmnula 

(Ax: Boy) 
(Ay: >.(u: Girl)[Know x,u]) 

(Ez: >.(w: SClc!/lPeach))[lwl • 3]) 
Gave x,y,z 

1 lcrc the rcrrcscntation of the dausc is simply the uren 
ltmnula 

"Gave x,y,z", 

while the noun rhrnscs correspond to clements in the 
411:111ti lier prefix. The variable x is shown to range over 
individual boys, the variable y is shown to range. for each 
boy, over individual girls he knows · an explicit (non 
Skolcm·function) dependency · while the variable z rnnges 
over sets of individual peaches whose cardinality is 3. 
Note that cardinality is a property of sets rather than of 
individuals. (This particular notation is discussed further 
in Webber [Webber, 1978). where its value is pointed out 
for understanding various anaphoric and elliptic 
phenomena. In PSl·KLONE, we arc using the KL·ONE 
formalism. which provides these properties. as well o<; an 
inheritance hierarchy for the efficient indexing of relevant 
inference rules.) 

'Ilic reason we have introduced this typed predicate 
calculus representation is that in Prcncx Normal Form, the 
open fonnula to the right of the quantifier prefix can be 



viewed as a pa11em - a way of describing a set of ground 
literal formulas by giving their 5:yntactic shape. The literals 
in this set will vary according to how individual constants 
arc substituted for the variables in the rattern. The 
quanti lier rrelix. on the other hand. can he viewed as a 
combinatoric speciflcatio11 which determines what ordered 
combinations of constants can be assigned to the variables 
to instantiate or slamp 0111 copies of the pallcrn. 

To summarize, we view a semantic rcpresentution as 
having both a descriplive part and a combina/oric part. In 
the representation we arc using, the descriptive pa1t of a 
semantic interpretation consists of an interlocking and 
interdependent collection of Generic descriptions in 
KL-ONE, to be instantiated to Individual Concepts in 
ways specified by the combinatoric part.5 Among the 
combinatoric constraints on individual instantiations are 
dependency, distribution and c.irdinality. All or these will 
be discussed in section 3.3. 

Finally, we believe that a quantified sentence like 

"Which windows were delivered to each 
house?" 

poses an u11derco11s1rai11ed combinatoric problem which the 
listener must solve, in order to respond appropriately to 
the sentence. It is our view thut semantic interpretation is 
only responsible for delineating the problem to be solved, 
whereas it is the responsibility of the discourse component 
- using whatever pragmatic and discourse information is 
availahlc to it - to solve the prohlem to the extent required 
to respond appropriately. TI1e procedure to be used by the 
pragmatic/discourse component to solve this prohlem is an 
active area of research. 

2.2. Scnmntic lntcrprch1tion: Descriptive Information 

2.2.1. Introduction 
ll1is section further describes the dialogue between 

syntax semantics. There arc two things that a cascalkd or 
interactive semantics must do: 

I. provide semantic interpretations for individual 
phrases, and 

2. provide feedback to the syntactic processor. 

5n1esc nre not necessarily descriptions of things in tile outside 
world, hut nither of objects, cvenL~ and relationships consistent with 
the system's long term semantic knowledge. 
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If one considers two major existing models for 
computer based parsing - the framework used in the 
LUNAR system [Woods et ul.. 1972]. and semantic 
grammar framework [81111011, 1975) - one can sec that in 
both cases there is one mechanism that checks properties 
or particular constituents and. if those constituents satisfy 
those properties. then there is another mechanism thut 
shows how to build or add to the interpretation of the 
whole phrase depending on how those properties arc 
satisfied. 

In LUNAR, the pallern-match on the left-hand-side 
(LHS) of a semantic interpretation rule corresponds to the 
first mechanism. while the actions specified on the 
right·hand-si<lc (RHS) of the rule. correspond to the 
second mechanism. In a semantic grammar, on the other 
hand. PUSHing for a pa11icular syntactic/semantically 
shaped constiluenl (e.g. "an NI' which is intc1pret:ible as a 
measurement") corresponds to the lirsl mechanism, whilt~ 
some "BUILD action" into a register corresponds Lo the 
second. 

In the PSI-Kl.ONE interface, each interpretable 
sylllactic/semantically shaped pauern corresponds to a 
KL·ONE Generic Concept. These Concept; are arranged 
into a KL-ONE taxonomy which can be used both as a 

discrimination net and as a mechanism for inheriting 
appropriate interpretation rules. Semantic checking of 
potential assignn-ents of constituents to particular 
functional syntactic roles in a phrase involves infonnation 
that may be used in building the interpretation of the 
completed phrase. On the other hand, semantic 
interpretation only occurs after the entire phrase has been 
recognized, and the possible rules for semantic 
interrrctation have been collected. 

2.2.2. Usini.: KL·ONE taxonomies to huiltl wmantic 
intcq1rl'latiom; 

To illustrate the use of the larnnrnny of 
syntactic/Sl'niantic shnpcs in the PSI· K LON F intnl:,cc, 
consider the sentence 

"That professor teaches undcrgraduati.:s about 
Lisp on ·nrnrsday." 

Figure 2· lshows a fragment of a possible 
syntactic/semantic taxonomy that covers some statements 
on teaching. We will rnnn:ntrak on the activity al the 
clause level and ignore the details of parsing at the NP and 



Figure 2-1: A KL-ONE syntactic/semantic taxonomy 

Figure 2·2: A simplified ATN for clauses 

PP levels. Figure 2-2shows a fragment of a toy ATN that 
could be used as a (non-deterministic) parser of various 
types of clauses. 

The first step in parsing the example is PUS I-ling for an 
NP. This parses tht: string 'That professor" and produces 
the Individual Concept NI'# I which is an instance of the 
Generic Tl:AC/IER-Nrl', with an associated semantic 
interpretation not shown in this diagram. 

At this point NP# I is trnnsmittcd as the FmSTNP of 
the (currently empty) cluusc, although the parser docs not 
yet have enough informution to : ;cide on other roles it 

fills. 

6
The justification for having a special dass of Ni's which can he 

in t,•rprctcd as lCal'hcrs is hasi.•d on the fo~t that various modifiers like 
"tenured" ,ire specifically .,pplicahlc to such Ni's. and others. like "at 
lkrkcley", may r,·t·cive sped.al tr,·atmenl. 
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Tut: parser then discovers that "teaches" is the main 
verb of the clause, and transmits the Individual Concept 
\'/'EACH\ (we use the character\ to bracket the names of 
concepts that stand for morphological units, \TEACH\ 
corresponds to the morphological root of "teaching") as 
the HEAD of the current clause. 111c PSl·KLONE 
interface can now begin to place the clause within the 
syntactic/semantic taxonomy, as a subConcept of 
TEACH-CLAUSE. This Generic Concept carries the 
information common to two types of "teach" clauses -
those whose LOBJ is a subject of study like "John teaches 
calculus" (represented by TEACII-SUBJEC7:cLAUS£), 
and those (represented by Tl:AC/1-STU·C/,AUSE) whose 
I .OB.I is human (or at least sentient). The interpretation of 
a clause of either type is an individuator of the Concept 
'/'!:'AC/I I NG, and bolh types of clauses must have an 
I .SU BJ whose interpretation is an instance of l'ERSON. 
Additionally, both clauses arc examples of clauses that can 
lake PP time modifiers. Such clauses correspond to the 
Generic Concept '/'/ M /:'/'l'-CI.AUSE and 
'f'l:AC/1-Cl,A USE is a suhConcern of 
'/'I Ml:'f'l'·CI.AUSE. 

'll1e PSl·KLONE interface responds to RUS with a 
pointer to a newly created subConccpt TC. I of 

'f'EAC/1-CLAUSE, with its HEAD role filled by 
\'/TAC/I\ and its FmSTNP role lilled by NP#/. Since 
the clause is not passive. the parser transmits NP# I as the 
LSUBJ of TC.I. From the point or view of semantics. 
since NI'# I is an instance of a PERSON-NP (by 
inheritance through TEACHER-NP), it can fill the 
LSUBJ role of TC.I. Thus semantics fills the LSUBJ 
Role with NP# I and returns a pointer to TC.I to RUS 7 

RUS then parses "undergraduates" as an NP, 
producing the Individual Concept NP# 2 which 
individuates STUDENT-NP. The parser cannot transmit 
th is NP yet, because it cun function as either the LOBJ or 
LINDOBJ ofa "teach" clause. 

We have glossed over an intert:sting point here •• the 
fact that it was a restriction on the l'PMOl>IFIERs of 
STUDENT-NP that prevented "about Lisp" from being 
included as a PPMODIFIER of"undergraduates." This is 
an example of th: use of semantic information to rt, .:ct 
syntactically plausible parsings. 

7 Actually, a new suhConcepl of TC.I is created with its IA"lJIU role 
filled by NI'# I. This strategy facilitates sharing of infonnmion 
between alternative paths in the parser, hut we will ignore it in the 
remainder of this example. 
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Once RUS determines that no NP directly follows 
"undergraduates" it can trnnsmit NP#2 as the LOBJ of 
the clm1sc TC.I. This is done on the JUMP arc between 
VP/NP and VP/OBJ. In this case, PSl·KLONE notes that 
there is a subConcept TEACll·STU-CLAUSE of 
TEACll·CLAUSE which allows a PERSON-NP as the 
lillcr of iL., LOHJ role, and sn PSl·KLONE makes TC.I a 
subConcept of TEACll·STU·CLAUSE and fills in its 
LOBJ role with NP#2. 

RUS then parses "about Lisp" as a PP, producing 
PP#/, an instance of an ABOUT·SUBJ/:'CT·PP. 

· Allhough a PP in this position may play a special syntactic 
role in a clause, like a "by ... " PP in a passive clause, PP# I 
docs not, so the parser transmits it to PSl·KLONE as 
simply a PPMODIFIER of the clause TC.I. Since TC.I is 
now a subconcept of TEAC/1-STU·CLAUSh', it can take 
such a PPMODIFIEltR In fact, there is a specialized 
version of the PPMODIFIER role present at 
TEACll·STU·CLAUSE, the role AboutSuhjcl'IPP, which 
can accept PP# I as a filler. The response 10 this 
trnnsmission is a pointer to TC.I, which now has PP# I 
filling its AboutSubjectPP role. 

Finally, RUS parses the PP "on Thursday", producing 
PP# 2, an instance of TimePP. This is trnnsmittcd as a 
PPMODIFIER to TC.I, and PSl·KLONE determines that 
it can fill the TimcPP role that TC.I inherits f'rom 
TIMEPP·CLAUSE. PSl·KLONE returns a pointer to 
TC.I with its TimePP role filled by Pl'# 2. 

At this point the parser is al the end of the clm1s: (and 
string) and signals this by a transmit triple whose label is 
POP. This signals semantics to check that all necessary 
Roles are filled and that all inter-Role restrictions arc 
sutisfied. Now PSl·KLONE creates the descriptive part of 
the semantic interpretation of the clause by collecting the 
pro}<'ction rules that TC I inherits hy virtue of its position 
within the syntactic/semantic taxonomy. These rules arc 

1979b]. There arc two reasons for this: one, JARGON is 
ensily read and understood, and two, its interpreter 
impk:metits an algorithm · the MSS algorithm [Woods, 
1979a] · that automatically inse11S KL·ONE Concepts 
described in JARGON at the appropriate place in the 
taxonomy of Concepts. This makes it possible for the 
descriptive part of a semantic interpretation to inherit all 
appropriate inference rules that are stored in the long-term 
semantic taxonomy. 

A slightly simplified form of the JARGON phrase that 
describes the semantic interpretation of the sentence "that 
professor teaches undergraduates ubout Lisp on Thursday" 
is 

A TEACHING WHOSE TEACHER IS THE 
INTERP OF (LSUBJ) AND WHOSE 
STUDENT IS THE INTERP OF (LOBJ) AND 
WHOSE TIMEl'REDICATE IS THE INTERP 
OF(TimePP) 

In JARGON, phrases can refer to both concepts and 
their roles. For example, the construction "THE I NTERP 
OF (LOHJ)" refers to th.e Role n.11111:d INTERJ> of the 
Concept which is the value of the variable LOHJ . 

'Ilic JARGON phrase given uhove is a conjunction of 
smaller parts, including "A TEACHING", "WHOSE 
TEACHER IS THF INTERP OF (I.SUB.I)". and so on. 
These parts indirnte the source of a ranicular piece of 
information on the syntnctic side (e.g. "THF INTFRP OF 
(LSU BJ)") and the Role that the piece of information is to 
lill in the semantic interpretation (e.g. "WHOSE 
TEACH ER", which means the TEACH ER Role of the 
sem:intic interpretation of the clause). 

·11,csc pieces of .IA RGON constitute the semantic 
projection· rules hung on roles in the syntactic/semantic 
taxonomy. For example, the ruk "WHOSE 
TIMFPRFDICATF IS TIIF INTFRP OF (TimePP)" 

attached as data on various Roles and Concepts in the hangs on the Role Timl•PP of the Conl'epl 
taxonomy. 'f'IMl:'PP·CLAUSE. '/'C.I, the Concept describing the 

PSl·KLONE expresses semantic projection rules in a 
formal, styli1.ed subset or English called ./ARGON [Woods, 

8Note th.n Tl:'ACll-.\'/1/1./l:'(TCI .AUS/:' cannot take such a 
modilkr. so that in a string likl• "a professor who teaches algchrn ahnut 
I .isp", the PP "about Lisp" would have to he a modifier of something 
else other th,m the "teach" cl.msc. as in "John told a professor who 
ll'achcs alp.chra .ihout 1.isp" wlwrc "ahout l.isp" is una111hig11011sly .i 
modilicr of the "told" clause. 
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syntactic/senrnnlic shape of Lhl! s.:ntenl'c "that proli.:ssor 
... ", is a subConccpt of TIMl:'I'l'·CLAUSI:·, and has an 
explicit liller (PP# 2) fiir the Role Time PP. it inherits the 
projection rule. Similarly. TC.I inherits the rule "WHOSE 
TEACHER IS THE INTERP OF(LSUBJ)" from Role 
I.SUBJ of TEACll·CLAUSE and the rule "WHOSE 
STUDENT IS THE INTERP OF (LOBJ)" from the Role 
LOBJ ofTEACll·STU·ClAUSE, and so on. 



Whi:n the R US parser trnnsmits the triple labelled 
POP, the PSI-KLONE interpreter creates a new 
Individual Concept TC#/ as an individuator of TC.I. 
This action triggers an allached procedure hung on the 
highest-level syntactic/semantic concept, Pl/RASE, which 
collects the projection rules inherited by TC# I and forms 
a JARGON phrase. It then hinds the vnriablcs occurring 
i.herc to the tillers of the appropriate Roles (e.g. the 
variable LSU BJ is bound to NI'# I. the 111kr of LSUH.J of 
TC/), and then calls the JARGON intepretcr which 
builds the KL-ONE concept described by the JARGON 
phrase. and inserts it at the proper position in the semantic 
taxonomy. Finally, it tills the INTEUP Role of TC# I 
with the Concept in the semantic taxonomy produced by 
the cull to the JARGON interpreter. 

2.J. Srm:mtk intrq1rl'lation: Comhinatork information 
·mere seems to he a point in the processing of a 

sentence where there is sllmc indication or the type of 
events, objects and relationships hcing described, hut 
where things have not hccn resolved into a form which can 
he represented in an unambiguous predicate calculus type 
or quantification. People of'ten believe that they have 
unclerstood the sentence without further elaboration or this 
part or the interpretation. without rcali,ing that there arc 
rcnwining quantilicr srnpc ambiguities !Van 1.chn, 1978]. 
Van l.ehn suggests that correlations between syntactic 
structure and 411antifier scope interpretation arc 
l'piplH.:nomenal - i.e .. llwt there arc no processes based 
purely on syntactic information that can disambiguate 
quantifier score. Our belief is somewhat stronger - that 
there arc few, if any, processes that can compktely 
disambiguate quantifier scope simply on the basis of 
syntactic and semantic information, without making use of 
discourse-level and pragmatic information. 

We believe that this is not accidental - i.e. not a 
performance error - but rather represents a naturnl split 
between the results of the syntactic/semantic component 
and the activity of later discourse and pragmatically based 
processes. That is, it is not at the level of the sentence that 
the information needed to resolve things is available: ifit is 
available at all, it is at the level of the discourse. Moreover, 
the degree to which scopc ambig,.i ities will be resolved is 
itself dependent on the purposes of the discourse. In some 
cases in fact, those purposes can be met withm1t raising the 
spectre of ambiguity at all. 
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2.J.I. The comhinatork aspects or semantic interprel,,lion 
·111c purpose of this section is to illustrate the 

combinatoric aspects of a sentence's interpretation that 
should be identified by semantics, and, if necessary, 
resolved by pragmatics. Although the current system docs 
nut yet treat the combinatoric p,irt of a sentence's 
interpretation in line with this presentation, we arc 
currently designing a semantic component for 
PSI-Kl.ONE which docs. 

ll1cre arc qualitatively three types of combin:1toric 
constraints embodied in an English sentence: 

1. depcndcncil.'s 

2. iterations 

3. cardinalities 

To illustrate these types of constraints. consider the 
following sentence 

'Two windows were tested in each house." 
and the situ.itions in which someone might generate it. In 
any such situation, the usc of "each house" indicates, at a 
syntactic level, that the speaker has in mind a dclinitc set 
of houses. (This treats "each house" as equivalent to the 
phrase "each of the houses".) For this example, label the 
clements in this set of houses h l, ... ,hk. There is also 
something being said about some set (or seL'i) of two 
windows. "Two" is cardinality information about the 
number of windows in each set. What is not specified is 
how many sets there arc. This can be determined only after 
implicit dependencies have been made clear. There arc 
three possibilities: there is 110 dependency of one thing on 
anything else, or there is a minimal constraint 
(Skolcm-functional) depcndcncy or an discourse or 
definitional dependency on some other variable. 

No dependency. In this case, the speaker has in mind 
two rarticular windows (call them wl and w2). There is no 
dependency, since independent of house. it is w l and w2 
that were tested there. We might represent this in terms of 
ground literals as 

Tested-in(w1, h1) 
Tested-in(w2, h1) 

Tested-in(w1, hk) 
Tested-in(w2, hk) 

Notice llrnt there arc two terms for windows and k terms 
for houses. Pragmatic.illy, there arc as many rclcrents for 
windows and houses as there arc terms. 



windows tested in some olhcr house 'I. In tcrr1's of ground 
Ii Lera ls, 

Tested-in(f1(hl), hl) 
Tested-in(f2(hl), hl) 

Tested-in(f1(hk), hk) 
Tested-in(f2(hk), hk) 

where f1(hi) = / = f2(hi). Nolice thal there arc 2k 
diffen:nt terms for windows here and k different krms for 
houses. However, all we know about the number of 
different referents for windows is that there arc at least 2. 

Discourse or definitional dependency 011 the one iterative 
variable. Here again the speaker is iterating over houses in 
the set. For any house hi, the two windows tcsled Lhcrc 
(wlhi and w211 i) not only depend on the house, but arc 
members of some previously established, definite set of 
windows W(hi) tL1t either belong to that house or have 
been associated with the house through the discourse. 10 In 
terms of ground literals this can he represented as follows: 

Tested-in(wlh1• hl) 
Tested-in(w2ht• hl) 

Tested-in(wlhk• hk) 
Tested-in(w2hk• hk) 

where wlhi =I= w211i' and W is a function · from a 
house to the set of windows belonging to (or associated 
with) that house. Herc again we have 2k different tcm1s 
for windows and k different terms for houses. Moreover, 
since W(hi) is a previously established set, one may have 
additional infonnation by which the referents of wlhi and 
w2hi can be further constrained. for example, in the case 
of ddinitional dependency, pragmatic knowledge tells us 
that, since a window can only belong to one house, there 
arc 2k different referents for windows. 

'l.1·1 · t I . I I "'I' 11s may )e t: carer m t 1l' an,1 ogous scnt,'ncc wo songs were 
sung hy cad1 hoy.", in whid1 it is possible that more Lh,111 one hoy sings 
somc panirnlar song. 

JOI . I ·., I ·or cxamp ,·.1:ons1ucr L tc sequence 

"The contractor dclive1'l~d some experimental 
windows to each house on the block. 

Two windows were tested in each house." 
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2.4. Next steps in representing combinatoric semantic-. 
An important goal of our current research in semantic 

interpretation is to develop a formalism in which there is a 
clean split between the descriptive and combinatoric 
aspects of semantic representation. The number of 
alternative ground level interpretations of a sentence 
increase rapidly, as the number of noun phrases (and 
hence quantifiers) increase in the sentence, and as the 
numher of possible dependcncil!s among entities increase. 
It is inellicicnt to try to represent large numbers of such 
alternatives as an explicit disjunction, both because or the 
amount of space such a representation would normally 
require, and becm1se of the complexity of the case analysis 
that would be necessary to reason forward from such a 
representation. 

We want to provide an ellicicnt representation for that 
part of the meaning of a senten,c in a disrnursl.' that c:rn he 
provided on the basis of its internal syntactic/semantic 
strul'111re :,lone. This would include explicit information 
on the cardinality restrictions on ,ari:1hlcs associ:11l·d with 

NPs. restrictions on which variables arc likely to be 
iterated, and information on possible dependencies among 
variables, including those suggested by long-term semantic 
know ledge, and restrictions on dependence based on 
syntactic structure. We believe that it should be possible 
to represent such knowledge as a set of constraints on the 
set of ground level literals to which the sentence might 
possibly expand. 

Such a representation would provide an input to the 
pragmatics/discourse component, which could reline it 
and add constraints based on discourse in formation and 
perhaps some variants of the heuristics suggested by van 
Lehn. It is not always necessary for the 
pragmatics/discourse component to totally disambiguate 
the combinatoric aspects of semantics in order to satisfy 
the requirements of the discourse. 

We are investigating a number of possihle 
representations in KL-ONE, in the context of a broader 
study of the use of mc1a·dcscriptio11. the use of K L·ON F. 
structures to describe (classes ol) other KL-ONE 
structures. 



J. Summary 

1 n this paper, we have tried to give a reeling fi.H the 
methods and scope of syntactic/semantic processing in the 
natural language system heing devclopl'c.l at BBN. What 
we feel is most significant about th·.: work to date is the 
near-determinism of the KUS parsing framework, the 
effec ti ve use of cascaded semantics both to guide the 
parser and to construct the descriptive part of a semantic 
interpretation, and the separation made between the 
descrirtive and the combinatoric rart of an interrretation. 
We expect 10 have more to say in a later paper about the 
details or the representation of combinatoric infiirmation 
and its interact inn with descriptive structures. 

Ack 11, 1w/ccl~c111c111s 

Our work 011 the sy11tactic/sem;1111ic side of Lhe system has not 

been done in 1•arno · our ,ollcaguc•s in this research clfort include Ed 

lbrt1111. Rllll llrad1man. l'h il Cohen. l>al'id lsral'I. I krto r I .cvesque. 

C111Jy SiJ n~r. ;111J Hill Woods. We hop,• 1his p;1pcr rcfkcts well 011 

our juint dl<irt. 

·111c ;1u1hors wish to thank I .yn lla1es. Ron Brachman. David Israel, 

i\r:11 incl foshi. C111dy Sidner. Brian Smilh and Bill Woods for 1hcir 

hdpltil c1H11111t• 11ts on e;trlicr versions of this p;1per. Our special thanks 

!\I' tn S11s.111 Chase. who holstered our somewlwt nagging spirits with a 

magnificent cclchration fea5t. somewhere between near-deterministic 

parsing and combinatoric aspects of semantic interpretations. 

111is research was supported by the Advanced Research Projects 

Agency of the Department of Defense, and was monitored by ONR 

under Contract No. N00014-77·C·0378. 

I. :\ hril·f i11lrotlul"lion to KL·ONE 
Kl -()NI'. i, a u11il<1rt11 l;t11gu;1gr li1r !Ill' explicit l\'Jll'<.:sc·ntation of 

conn·1H11;il i11li1rnwtio11 based on the itka or s1m,·111rt'd i11/wril//11cr 

11,·111, •1-ks I llrad1111;111. . I 'J7X. l 1J7<JI. St'VL'ral or its prom incnt features ;1rr 
or partirnl:1r importance in l'SI -KI ()NI-: - its se111antit-ally ckan 
i11"1wri1;111n: or structured descriptions. taxo110111ic classilkation of 
gc•1wric- know ledge. inttnsional stn11:turL0 S li1r runL·tion;1l roles 
(ind11di11g Lh,· possibility ol' multiple fillers). and proceJural 
;1l1:1d1111L'lll (wi1h ,11110111<1tic invoc;1tion). 

Thr principal rcprese11t;1tio11al dc•ments of KI ·ON F arc ( ·1111cr111s. 

or which there• are two n1ajor typL'S · (ien,riL· and lndi1idual. <,L'llL' ric 
Conc-L"J)ls ;ire arr;1ngc•d in an inhL·ri. 11ct' slniclut\'. exprL·ssing 
J.1ng·tc·1rn ~,n,·rir knowkdgc as a taxonomy. i\ singk Gt•neric 

Concept is a descri111ion 1c11111lalt'. fr,nn 11,hicl1 individual dc~riptions 
(in 1hc fonn of Individual C,n1cL'pts) arc fonned. A (ienrric Concept 
can spccialilc one or more other Generic Com:epts (its su1w1( 'm1t'l'()IS), 

to which it is attached hy i11/wri11111cc· Cable.~. ·111csc Cables fmm tl1c 
h;1l'kbone of the network and carry structured dc:;criptions from a 
Cnnccp! to its suhConcepts. 
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KL-ONE Concepts ,ire highly strucwred ohjc,ls. A s11bConcert 
inherits a s1ruc1urf'<i definition from its parent and c.111 modify it in a 
number of structurally consistent ways. The main clements of tl1c 
st ructu re arc Roles, which exprrss relationships between a Concept 
and other closely associated Concepts (i.e., its prnpenies. parts, etc.). 
Roles themselves have structure. including descriptions of potential 
fillcrs. 11 modality infonnation, and names. 12 There arc basically two 
ki nds of Roles in KL-ONE: RoleSr!s und /Ro/rs. RolcSets have 
po1c111ially many fillers and may carry a restriction on the number of 
po,siblc lillcrs (e.g .. the officer Rotc0 ,,fa particul,tr COMPANY 
would be lilied once for each person who is an officer of that 
company). /\ RoleSct on a Generic Concept represents what is known 
in general about the fillers i>f that Role. A RolcSet on an Individual 
Concept stands for the panicular set of fillers of th;H Role for that 
indi1id11al (e.g .. the officers of a panicular crnnpan} ). I Roles (for 
'l11st;111cc Roles') appear only on lndivid11al Conccpls, and arc used In 

n·p1'1°,L'nl particular bindings or Roles lo Individ ual Conrer1s (q\.. the 
pn·sid,·nt 01';1 parlirnlarCOMl'/\NY). (Thc•n• would he on,· !Role liir 
,ach offker position in a parlicular crn11p.111y, regardless of the actual 
11 11mhcr of people rlaying those Roles.) 

TherL' ;ire sel'cral intL'r·Rolc rd11ii111ship:; i_11 KI -ONI' .. which relate 
lhL' Roks or a Conrqll to llwse ol' a s11p,· rC011n:p1. S11rh rdt1io1tships 
;1rL0 carried i11 lhe inheritance C;1hlcs mentiom·d c•arlier. ThL'Y indudL': 

· restriction (of Ii Iler descrip tion and/or n11111lwr): e.g .. that a 
p;irlirnbr ki11d or COMl':'\NY will haw L'xartly three 
offi,·crs. all ofwho11111111st hL· over 45 

- differentiation (of a Role i11to suhlfolcs): e.g .. 
di fferc111i,1tiJ.1_g till' offi,·crs or a COMPANY i 1110 prc~idcnt. 
vkr-prt•sidcnl. etc. This is a relationship hetween RolcScts 
in which the more specili.: Roles inlwrit ,111 properties of 
the rarent Role except for the number restrktinn (since 
tl1at applies to tJ1c set and not the tillers): 

· panicularirntion (of a RolcSc1 fo r an Individual Concept): 
e.g.. the officers of BIIN arc all 
COII.FGE-GRADUATEs: tl1is is the relationship 
hetwt·en a RolcSet of an lndividu.il Concer1 and a RolcSet 
of a p;1re111 Generic CotKCpt. 

- s.itisfaction (binding of a particular filler description into a 
partiClllar Role in an Individual Concept): e.g.. the 
prcsid1•11t of BBN is STEVE-LEVY: this is the relationship 
between an !Role and its parelll RolcSet. 

I I.I hL·sc li11111:1tio11s 011 lh!.! for111 of panirular lil!l·rs an.' r:lllcd "Valw· H<..'.'ilrirtio11 :-,." 
(V/H"s). 1r 1111m~ 1hn11 011c V/H. 1s a11plirahlc at :1 gi ,cn l(ok. lhc rcstrir1io11s ilrl' lakcn 
c,111junrlivcly. 

12 !'1>..:;uncs :ut 111 ,t used hy lh<' s~·SIL'lll 111 any w;1~ ' llll'~ ·m· nwr~I) l1111,c11icm'l's t'or 
the user. 

1\111hc h..'\I 1ha1 fullow!'I. l(ulc!'I will hL' indir;IIL'd as holtlli1n•tl 11a111L'!'I and< ·omqll.\ 

wi ll hr inchratc<I hy all UJlJllT r:JSL' L'\j\ll'SSIOIIS . 
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Figure 3-1: /\ piece ofa KL·ONE taxonomy 

Fi[!lire .l· 1 illus1rall'S thl' use of' Cahks and 1h,· slnu.:ture of 
Concepts inn piece of' lhl' Kl ·ONI( 1axo1u1my dcscrihin[! an /\TN 
gr;11 :1111ar. Concepts arc presented as dlips,·s ( lndividu,11 CollCl'JllS arc 
shad,·<.!). Roles as small M.juarcs (I Roles al\' filled in). ,md Cables as 
douhle·tined arrows. The most general Concept. 
/\TN·CONSTITUl:NT. has lwo suhC'oncepls · ST/\TI: and /\l{C. 
These each inherit the general propl' l'lil'S of' /\TN wnstillll'nts. namely. 
ead1 is known lo ll.lVl' a dis11layForn1 assol'iatl'd with it. The 
suh11e1work bl• low /\RC expll'sses 1hc classilkation of thl' various 
lyp,·, of ;ires in 1hc /\TN .uul how lhdr rnnceptual slrul·lurcs vary. 
For ,·xan1pk, a l'ONNH.TIN(i·/\Rl' has a m•,ISlah• (lh1.• slall' in 
\I hil'i1 1111: 1ra11si1io11 It-av,·~ 1h,· 1iarsi11g pro1.·ess). whik lilr 1'01'·/\RCs 
1h,· 11·1m i, 11ol ui.·ani11µ1'11I (i.,· .. 1h,·n· is no m•,ISlah• lfoll'). I inks Ihm 
wn111.·,·1 1111.· Roi,·, of' mo1t· sp,·1.· 1lic ( ·011,·l'Jlh with wn ,·,111111ding lfoks 
in 1heir parent Concepts arc considned to lravct through the 
approrria1,· Cahlcs. Finally. the s1ruct11rc of ,111 lndivid11.1I Concept is 
illuslriilcd hy C/\T/\RC#Oll7. l-:ad1 !Role cxprc,ses the filling of a 
Rok inheri1cd from the hicrnrchy above·· because C/\T/\RC # OJ 17 is 
a C/\T·/\RC. it has a ci11l-gory; because it is also a 
CONNECTING·/\RC. il has a ncxlSlatc, etc. 

·111crc is one important feature of Kl.·ONE that is worth pointing 
oul, allhough it is not yet used in the current natural language system. 
The l:111glwgc carefully distinguishes hctwcen purely dcscriptional 
structure and assertions about corcforence, existence, c1c. /\II of the 
structure mentioned above (Con..:ep1s, Roles. and Cables) is 
dcji11itio11a/. /\II assertions arc made relative to a Context (anolhcr type 
of KI .·ONE object) and thus do nol afTcd the (descriptive) taxonomy 
of grnail.' knowledge. We anlidpale Lhat Co1 11cx1s will he of use in 
reasoning about hypothclicals, beliefs. anil wants. 
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The final fealurc of Kl.,ONE relevant to our discussion is the 
ahilily to att.1cl1 procedures ,md data to s1ruc1url'S in lhe network . /\s 
menlioned previously, Kl.·ONE is used in several places in our 
language understanding system • these include the syntactic taxonomy 
used lo constrain pnrsing and to index semantic in1crprctalion rules. 
and the s1rucLUres used in the syn1ac1iddiscourse inlcrl:icc to ex.press 
Lhc lileral scmanlic c1.:1lent of an uucrance. The parser uses Kl.·ONI, 
lo describe Lhnse synlactically correct strucllar,·s for which there arc 
known interrret.111<111 rules. l11tcrprc1.1tion 11rr sc is .ichievcd using 
atlachcd procedures and data, with ,cmanlic projection 111lcs expressed 
.1s d;ila attached lO Roles of 1hc synlal lic Conccpls. 
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THE ROLE OF DISCOUHSE STRUCTUUE IN LANGUAGE PRODUCTION 

David D. McDonald1 

MIT Artificial Intelligence Laboratory 
Cambridge, Massachusetts 02139 

Ahstrnct 

A technique is described whereby descriptive discourse 
structures can be used directly to plan texts, nrnnage 
details, and insure grammaticality. Constituent structures 
arc intcrrrctcd as plans of action, executed by a 
controller that walks the tree, interpreting categories and 
features as latent actions or as constraints on further 
decisions. Under this interrrehltion, linguistic 
descriptions become programs for achieving rhetorical 
effects in the output text. One can then use production as 
an experimental laboratory to test the effectiveness of a 
given linguistic analysis. 

The Nel'li for a Planning Language 

Purposeful language production is a planning 

process no di f'l'ercnl, in many respects, from guiding 

robots or stacking blocks into towers. Goals must he 

defined, means and ends analyzed, and, most important 

of all. there must be a planning language: a means of 

representing texL'i2 in progress, linguistic and rhetorical 

actions that have been scheduled hut not yet carried out, 

and pending goals at all levels of rclincmcnt. 

The central problem of language prnduction is to 

translate a speaker's goals from their original internal 

form to a linguistic one. In n(m·trivial rnscs, the process 

requires deliberating between alternatives and advance 

planning; otherwise a decision made for one goal will 

I. This rl'fH>rt c.ksnihes rl·search done at the Artificial lllll'lligl'lll'e 
I .;1hora1ory or lhc M;1s~ad111sl' ll s l11sti1 ... c or Tcdmology. Support 
fi1r lhl· l;,hor;uory's ;1rtiliri;il intdlip.l'lll'C ll'Sl';1rch is prnvic.kc.J in part 
hy thl' t\dl';mc,·d lfrsea rch Prnjl-c.:ts t\gl'lll'.\' or the I kpartn1ent of 
I kkncl' 111Hkr Oflkr or Naval lh·sc.';1rch rnntracl 
NOIJll 14-75-C'-(k,4.l. 

2. For praclii;al n:asons. my resc.irch has involw<l only the 
prod 11ctio11s or II rittl'll tl'Xts r;Hher llwn acoustic signals. t\lso only 
nnc n;1lural langnagc, l·:nglish. lws hcen used. 

143 

often make other goals impossible. A speaker cannot 

perform this reasoning in tem1s of alternate finished 

texts: the space of possible texts is unmanageably large; 

and. more to the point, the detail of a finished text is 

rarely relevant to the decision-making (unless perhaps 

the speaker is a poet) and only serves to obscure those 

facts that are relevant. A planning language gives the 

speaker the ability to reason at the right level of detail, to 

postpone decisions that are of lesser importance or arc 

determined by others, and to have a concise record of 

what actions have been taken, what arc planned, and 

what remain possible (i.e. grammatical) in that context. 

The proper planning language for naturnl language 
production is linguistic struclurc.l itself: synlaclic 
and morphological structures for planning 
s1.•nlenl·e-level details, mul discourse structures for 
planning largl'·scale texts and rhetorical relations 
at :ill levels. 

This assertion is made, of course. in the context of a 

very speci fie proposal for how production is lo be clone 

and how the linguistic structure is to he interpreted. This 

proposal is the subject of my dissertation [McDonald 

1980). I have developed a theory of the linguistic 

component of the process, based on the psycholinguistic 

hypothesis that our (human) fluency as speakers stems 

from the use of an incremental. indelible4 process that 
produces utterances in time linear with the number of 

clements in the source message. The dissertation 

l lly "linguistic stn1c.·1me" I llll'illl Sfll'cilic,lly a s11rfoce· ;,w t. 
i111n1cdi.tll' n111s1it11,·nt strncture trl'l' of the 11s11.1l sort. Thl' trel'S i11 
my c.Ji,scna1i11n we11· ;11111ota1ec.J by c,ltl'gmy, had li1ncti11nal lahds for 
rnnsti111ent positions. incl11c.J,·d li.·alures (as in systrn1k gr;1111111ar 
11 lalliday l<J701), and usc.•c.l tracl'S !Chomsky 197.lJ. None ol' these an· 
ahsolute requirements howewr. 

4. I.e. "writtl' ll with indclihk ink"-- onre a 1kcision has hcen made 
it cannot he takl·n hark or rl'Vis('d. only relinl'd . 
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presents the theory and the experiments with the LISP 

program that embodies it, with emphasis on syntactic

level design decisions. 

In the present paper, I want to focus on the 

application of the proposal to discowsc structure. I do 

not have a theory of discourse structure to present, rather 

I will show how a constituent-oriented theory would be 

applied to control discourse production. 

Linguistic structures as planned ;1ctions 

The process begins with an abstract description of 

what is lo be said (a "message"). This description may be 

or any size or level of detail, provided that it can be 

relationally decomposed into a well-ordered hierarchy of 

elements. This hierarchy is very important: As we will 

sec, the description is going to be its own production 

program-its well-ordered hierarchy will be what dictates 

its order of execution. 

The knowledge base of the process is a "production 

dictionary", written specially for each new speaker and 

problem domain.5 The dictionary has an "entry" for 

every relation (or relation type) that could appear in a 

description. This entry is a schematic dcscription of the 

possible realizations that the relation could have and the 

conditions: prngmatic, intcntional. and grammatical, that 

will dictate whid1 realiwtion lo choose in a spedlic 

situation. ·11ie entry is where the internal vocabulary und 

representational culculus of the speaker is translated into 

a linguistic vocabulary and representation. Realizations 

arc specifications of linguistic structures: phrases, words, 

rhetorical effects; typically they are translations of the 

relation proper. that incorporate the arguments to the 

relation intact for realization at a later point. 

To sce how a description can use the dictionary to 
become "ils own production program", let us look at a 

5. 'Ilic computer program is designed to he ,1 separate "linguistic 
component" th,11 is llwn spcciali1cd to new dom,1i11s hy writing a 
dil'lion.iry and a set of simple interface functions. So for, !lie 
program has hccn usi:d with five dirti.·renl "spl·akl·rs" using as many 
different t°l'prcscntations including !Ill' prcdicall' calculus. 
pallt'rn·m,1lrhing aSSl'l'lion~. and Kl ONI' lllrad1111an 197</I. 
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simple example. Assume that what we want to say is 
described by the classic expression: 

\f(x) man(x) = mortal(x) 

This hns a clear, well-ordercd decomposition: first the 

qunntificalion, then the implication, then the two 

predications. Thal then will he the order of the 

realization decisions: first the quantification, then the 

implication, and so on. 

We want Lhc production process lo be incremental: 

no one entry should he responsible for more than it has 

the actual cxpcrtise to decide. This mcans that the 

quantilicalion should make its decision in terms of 

picking a context for the implication, mid the implication 

in terms of a context for the two predicates. 

TI1c contexts arc givcn in the planning language, i.e. 

the linguistic structures sclcctcd by earlier rcalizations. 

They arc expressed as constituent structure trees with the 

yct-to-bc-rcalizcd relations cmbcddcd al their leaves. 

(Mcssage relations ("clements") can remain in their 

original representation since their dictionary entries will 

act as interpretcrs.) When an clcment is rcalizcd, it is 

replaced in the tree by the syntactic phrase (or word, or 

subclement) that was chosen for it. 

There arc very specific dependencies between 

decisions. Ry making the decisions in a specilic order. i.e. 

top-down thn>ugh the message and top-down and lcft-to

right through the incrcmcntally growing constituent tree, 

we can gunrantee the production i11 one pass of u 

grammatical text that satisfies the speaker's description 

(The organization of that source description must also 

meet certain criteria, sec [McDonald 1980].) We enforce 

the ordering by vesting control of all processing in a 

simple dispatching routine ("the controller") that walks 

the constituent structure along the desired path. When it 

reaches a message relation, it dispatches to the 

appropriitte entry; when it reaches a word. it has it 

printed out: and when it reaches a linguistic descriptor (a 

category name, a lcature, or a labclcd position). it runs an 

atlached procedure. relining the context or directly 

printing a function word. 



Most realization decision will require multiple 

actions to implement, yet can only have one action 

performed at a time (i.e. the morphemes of the text must 

be printed in order). The "pending" actions thus 11111st be 

stored until their time comes. Since what an entry 

dccicks is lo use arc instances of linguistic constructions, · 

fixed phrases, or words, the form of the storage should be . 
a linguistic description. 

fly inll'rprcting the usual desniptive linguistic 
strul'lurt•s as the s11el'ilkations or constraints and 
as a sour'l'c of "dl'f:11111" grammatk:rl :1l'lions 
triggcrt•d by the pass:ri.:e of the controller, we can 
use the structures as :r representation for 11cnding 
decisions. 

I .ct us f<>llow this process for the example ltmnula. 

We st:.irt out with no context (i.e. no prior decisions and 

therefore no constraints). As the first action, the 

controller dispatches to the entry for the quantification. 

That entry makes some tests on the logical structure and 

linguistic potential of its argument (the implication) and 

then chooses a realization. Let us say that it decides that 

the implication can be given as a statement and that the 

quantificntion per se should be given us the determiner of 

the variable (i.e. "afl men"). 

The quantification entry cannot implement these 

nctions directly because they involve realization decisions 

that haven 't huppem:d yet. Instead. it must make a 

record of its decision-create a linguistic context that will 

force the implementation of its decisions at the 

appropriate time. To do this, it (I) installs the 

implication in a "sentence" context, and (2) it creates a 

"premature instance" of the variable with its determiner 

decision rrecn1rted to be "express-quantification". (The 

preempted decision will take effect much later the first 

time the v,1riablc is realized. We will pick up its trail 

then.) 

top·of·thc·t rec 
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Since its context is marked us requiring a sentence, the 

entry for the implication is now constrained Lo pick a 

clause (i.e. it can't choose "111or1a/ 111r11"). Let us say that 

it decides to translate the consequent as a statement about 

the antecedent. (The actual entries used arc included in 

[McDonald 1980).) It implements this decision by 

: placing the two predications in a context that identifies 

: them as the subject and predicate of a clause, i.e. 

I 

tup·1ff.-thc·trcc 
I 

I 

sc~tcncc] 
cJ.1usc· l 

~ 
[suhjcctJ (predicate) 

man(x) mortal(x) 

The point of a label like "clause" or "subject" is not 

description for description's sake. These labels are a 

succinct representation of pending grammatical actions 

and constraints: the presence of a clause node in a 

sentence slot will initiate agreement once the controller 

reaches the main verb; the subject label will indicate 

where to find the element to agree with. ·nie clause 

"node" defines a region with specific grammatical 

properties and provides a context-binding mechanism. 

Having "man(x)" in a subject slot will constrain its entry 

to choose a noun phrase realization. (l'hc slot label 

actively filters out the ungrammatical altcrnlltives as the 

entry is interpreted.) 

The construction of the noun phrase itself is bnjken 

down within the entry into a set of near independent 

decisions organized by linguistic category: the referent of 

.,1e phrase is the variable "x"; its "head" is taken from 

the name of the predicate; its "determiner" is fixed, in 

this ·case. by the earlier decision or the quantifier but 

would otherwise have been decided on the basis of tests 

for generic/specific. This internal organization of t 1e 

entries is a linguistic structure just like the constituent 

structure and may have atlached procedures and 

transformations on the same basis. 



I 
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By building on explicit, abstrucl structu1 ~ to slrndow 

the produced text, we not only gain an eflicicnt 
representation of pending decisions, but we can design 
transformations, monitors, und decision heuristics that 

apply on the basis of the structures themselves and do not 

need to know anything ubout the contents of the 

purticular message. If we arc then careful about using 

well-motivated linguistic structures, we will recoup 

effective general procedures from our investment. 

Unphinncd coherence 

The primary things that make a discourse more than 

just u sequence of sentences are mallers of content: a 
common topic, common references, a progression of 
temporal and cnusul chains, or u rhetorical "point" or 

moral. Also necessary however arc the S<>·culled 
"coherence phenomena" at a linguistic level: using 
pronouns and definite noun phrases, not repeating facts 
that have been recently mentioned, or using ellipsis to 
condense texts with a common linguistic structure. 

Many coherence phenomena con be introduced into 

a text "automatically"-without the speaker actively 

planning to use them- by associating them with 

discourse-level structures. Below arc the first few 
paragraphs from a long (if boring) text written by my 

program by reading out the relations in a semantic net. 
'The only aspects of this text that were specifically 

planned were the order of the paragraphs, and the order 
of the focts within them (e.g. whether there was to be a 
summary, or whether one · foct was to be attuchcd to 

another by a relative clause). Every other effect was 

controlled by a gcncrnl purpose rule. 

l'/11rm! is 1hc 1011 of lite 11rt. Ifs illlerp role 
111us1 he a rnni·,•pt . a11t! ifs modifier mfr and ifs 
head role 11111s1 /I(' p/1ra.\'e.\'. Its suhco11c,•11ts arc pp 
. np. aJjunl.'t. i11dobjdause, and word. 

l'p has the roll's: pobj , prep . interp , and 
ppobj. Pohj 111us1 br a np , prep a prep , interp a 
relation, and ppobj a pp . l'p s subco11c1•p1s are 
ofperso11pp. and in.~ubjectpp, 

Ofperson has a pobj role which mus/ be a 
/1umanp. a11d a prep role which mus/ be an of. 
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lnsuhjectpp :~ pobj role mus/ be a .~ubjectnp . 
its prepro/e 011 in. and ifs interp role a subject . 

Np is another subconcepl of phrase ... 

The instances of subject merging and gnpping were 
controlled by local monitors associated with the 

conjunctions. ll1e pronominalizntion was controlled by a 

record of mentioned items that was sensitive (1) to the 

paragraph structure (items in earlier paragrnphs6 were 
considered too "old" to pronominalize) and (2) to each 
paragraph's "focus" ,7 defined here as the network node 

whose prope1ties were being described. Focus also 
triggered several order transformations whoSt! aim wns to 
position the focused item in an early, "given" location in 

the construction, e.g. saying "ifs interp role" rather than 

"1heititerp roleofphmse". 

A further unplanned effect wus the omission of 

"given" information, i.e. if a fact hud appeared once it 
was not be repeated. Thus in the second paragruph, it 
snid "Pobj mus/ be a np ", rut her than "The pobj role 

mus! ... " because the fact thut "IK2b.i" was a role had just 
been given in the previous sentence. Similmly, the 

originally planned first sentence or that paragrnph: "Pp 

is a subconcept or p/1rase" was left out bemuse it had just 

been given in the last sentence of the previous paragraph. 
Sensitivity to what information is alrcudy "given" is part 

of the controller's entry interpreter. 

The problem with unpl,111ned coherence cl'l~·cts ,ll'C 

that they arc sometimes insensitive to the range of 

altcrnutivcs that arc possible- their triggering conditions 

nrc usuully myoric. Consider an cxamrlc from yet 

another domuin, the annutntion of games of tic·tac·tuc.8 

Suppose we h:1vc two moves as shown below nnd wish to 

6. An exception is the "topic scn1cnce" of thl' paragraph . These arc 
pl'l'sumcd lo Ill' more salient than the hodics. and i1cms menlimwd in 
them .ire kepi in an alternate chronologkal record. This is how the 
subsequent rL'lc1'l'nL·e 10 "011i1J.h!:l subco11crp1 of phrasl'" was 
motivated. 
7. Focus in the St'nsc of hcing what the paragraph is "ahoul". Sec 

(SidnL'r 19791 ,md (Cirosz 1977(. 

K. Unlike llll' l'arlicr lo{Zil' and "nctworh,~·ohjcl't" domains. the 
dictionary for the tk·taL··toe domain is still hdng. d~·vcli>pl'd. Not 
much more tl1an the examples given in this papl'r ha1c actually hcen 
imr,kmcntL'd thus for. ·111e model for tl1is domain is thl' l'('ry fine 
work on discourse prodlll'lion donL' hy Antlmny I )avcy (I >avey 11'741. 



describe them as two instances of the predicate "take a 

corner". 

If we join the two clauses with a conjunction, then we 

have at least the following alternative phrasings: 

(1) B01h you and I took a corner. 

(2) You look a corner and so did I. 

(3) You /Ook a corner and I did too. 

(4) You !Ook a corner and I took another one. 

(5) You took one corner and I another. 

The problem comes when you consider that the 

order of those sentences is the same as the order in which 

the controller will pass through each of their triggering 

monitors. If those monitors are set to trigger every time 

they arc applicable, then we will always get sentence one, 

since its monitor will be reached first, and it will always 

apply, preempting the others. 

There arc, of course, "kludgy" ways to get around 

this problem: e.g. defining a system of five enabling 

features, and allowing only one feature from the system 

to be "alive" al a time, varying the choice on some 

pseudo-random basis. 

A better way (but one we do not understand well 

enough to implement) would be to dCLcrmini.: what 

rhetorical clTccts arc bi.:st served by each construction and 

to then label the context according Lo the effect the 

speaker want to achieve. ·niat would give us very specific 

triggers where formerly we had only the most general 

one- "make the text more coherent" . 

A large part of motivating a speaker to make such 

specific and varied distinctions in intention is having 

them employ a rich discourse structure. In the remainder 

of this paper, I want to look at some examples of a 

complex discourse/plnnning structure that motivate 

distinctions in text length and con. ~11t. While not nearly 
as subtle as those required above, these distinctions will 

be of the same type. 
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Planning a Discourse 

Let us imagine that we arc to describe the game 

below: 

*' * The first thing that we must determine is the level of 

description to use. Obviously, this will affect the lexical 

choices open to us: more interestingly however. it will 

also greatly affect our options for discomse structures. I 

will look at three different levels in turn: each will permit 

successively richer structures, and finer control over the 

details. 

A description just in terms of squares-taken can 

hardly motivate any discourse structure at all, because 

each move is conceptually the s:1111c as the next. Since 

both six separate sentences or a six-long conjunct arc 

stylistically unacceptable, a content-free default of 

conjoining pairs is used. ·n1e conjuncts will then 

motivate some default coherence strategics.9 

source description: (and I .l) (and 5 9) (an<l 6 4) 

Resulting text: 
You took a comer and I took another. You ,ook 
the center and I took the comer below mine and 
opposite yours. You took the middle square 
between my corners and I took the middle square 
opposite it. 

9. In the ligur,· below and those lhal fi>llow. mows arc referred to 
hy till' numhcr of the square taken. where squares arc numhcrcd 
,tarting wi1h "I" lop to hot10111 and kl\ to right 
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If we now move up to the tactical level of "threats" 

and "blocks". we find a much richer semantic structure 
tying the moves together, and it becomes possible to plot 

out a rhetorical structure that will emphasize the semantic 
one. We begin by laying out the tactical description of 

the game: 

1. nothing 
2. nothing 
3. threat 
4. block & threat 
5. block & threat 
6. block => draw 

The next step it to "parse" this description and work 

out a patlern of rhetorical connections, e.g. 

[ 1 and 2] 
[ 3 but 4] 
[Then 5 but 6] 

At this point we should consider what the entry for 

a "move" should be. Semantically, a move is a locus of 

relations at many different descriptive levels: no one level 

is primary, and combinations of levels can be effective 

(i.e."/ thrcatc11cd you by laking the cc111cr"), 

We can control a "multi-facet" entry like this 

through a combination of explicit directives and 

contextually controlled defaults. Most of the directives 

will come from the discourse structure that we build by 

combining the tactical description and the rhetorical 

parsing into a constituent structure10 with the moves as 
the leaves. 

I 0. Note. pan of the lnl'aning t11csc "rhctorkal categoril·s" is a 
pn11:cdurc triggered hy the controller that causes t11e conjunctions 
"but". "then". and so on to he printed dil'l'Ctly without ever 
on:upying a con,titucnt position in t11c tree. 
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~ 
(U1rcat](block·&·thrcatJ 

3 4 
·111cn·A·but· B 

..-::::::::: ~ 
(block·&·thrcat)[block=>drawJ 

5 6 

You may recall that the earlier text made extensive 

use of "corners" in its descriptions of squares taken. If a 

fact like that can be seen at "planning time". it can be 

turned into a discourse directive to use constructions that 

emrhasizes the corner description though deletion (see 

the lirst sentence of the output text below). This is one 

example of a rhetorical effect that can serve to pick out a 

speci lie construction. 

"fl1e default for the move entry- what it docs when 

the move is in a constituent p~ition that is not marked 

for a particular relation-will be to give the square-taken 

intcrprctalion. Fu1ther let us say that when the rel:1tion is 

specified, the entry will add the relation of the next, more 

concrete level of description as a default. The result is 

given below: (The choice of constructions for "block and 

threaten" is controlled largely as synonymous 

alternatives.} 

You took one comer and I a1101 ltcr. You 
threalened me by taking the i:cnter, but I blocked 
you and threalcncd you in tum by 1aki11g the corner 
he/ow my corner and opposite yours. Then you 
blocked me with a threat from the middle square 
between my corners, bu/ I blocked ii by taking the 
opposite middle square, resulting in a drawn game 
because there were no more lines 10 lake. 



At an even higher level of abstraction. consider the 
frame below, constructed from a study of the tactical 

description and reasoning about alternatives. 11 

missed-opportunity-37 
player·who·did·it "you" 

summary·missed·action "fork" 

summary·actual·outcome "draw" 

summary·possible·outcume "win" 

had·move 3/5 

possihlc·movc 3/9 

lcad·in·moves (1/1. 2/J,) 

actual ·fnllowing·movcs (4/9. 5/6, 6/4) 

possihk·following·movcs (4/5, 517. c,/{4.81) 

By developing an entry lor a "misscd·tipportunity". 

we GIii start the production process directly with this 

frame. ·111c entry will be fundamentally just like any 

other entry: recording alternative realizations and the 

conditions that select between the111 . The difference will 

be that its output is a srecilkation for a discourse rather 

thun for a syntactic phrase. with an output vocabulary in 

terms of the focets of the frame and di ITerent rhetorical 
speci ficntions. 

The <.:lustering and labeling of' moves in ter111s of' the 

semantically charged facets makes it possible to sum

marize them, or to treat them as units in the discourse 
that can be commonly marked, say, as hypotheticals, as in 
this possible realization: 

lf·A· then· B (hypothetical) 

~a ken] [game] 

A·inste<id·of·B summary,missed,e'wf~&IMil 

~ ~me: 3/ 
(A] [II] 

3/9 3/5 

11. Moves arc giVl'n here as <mnnhcr of movc>/<mnnhl' r of 
squarL·>. The cxa111plc game is rcpcalL'd for convenience. 
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which. if selected, would eventually lead to the text: 

If. on your second move, you had taken the opposite 
corner instead of the center, you could have forked 
me and won the game. 

Another alternative would be: 

(sentence] 

A·hccausc· II 

(focus·on game] [event) 

summary-actual-outcome missed-opportunity-37 

"'/11e ~ame was a draw, because you missed an 
opportunity for a fork." 

Because this alternative is constrained to be a single 
sentence, the entries for the two focels arc inhibited from 

adding any "default" elaborating clauses because that 

would strain the heuristics defining good sentence size. 

Realizations at !his discourse level arc as amenable 

to intentionally directed transfomwtions as at any other 

level. and can be organized into families of alternative 

orderings, alternate lhcuses. or alternate assumption 

about what information is dedudblc and should be 

omiLLcd; though it is certainly not cllw at this juncture 

what the correct organizing rules and heuristics for this 

kind of reasoning will be. 

I lowever, by sludyini.: discourse hl•uristks from the 
point or view or l.1111-:uai.:c produl·tiou, we ha,·c a 
strnighHorward way to test our ideas, namely to 
run the process, produce the texts, re,ul lhcm, and 
determine if the choke of rhetorical devices met 
our goals. 

The direct control over the process parameters that a 
study of production affords us will allow it to make 

powerful contributions to our understanding of all 

aspects of natural language. 
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ABSTRACT 

METAVERB is a small user -designed system for 
consulting a data set for the linguistic study of 
English verb syntax. A question -answer control 
component, written in PROLOG , a flexible language 
for logic programming, links the reply to a query 
to the success in deriving the semantic structure 
of the query as a theorem from the data set, using 
the techniques of resolution theorem proving. 
English queries are analyzed into their semantic 
representations simultaneously with syntactic par
s ing in 'metamorphosis grammar', a super-Q option 
within PROLOG. The problem of analyzing meta
linguistic queries, which may both use and mention 
the same verb, is also considered. 

1 . INTRODUCTION 

The programming language PROLOG (Colmerauer et 
a 1. , 1972, 1979) has been designed to facilitate pro
gramming in first order logic using the techniques 
of resolution theorem proving (see also van Emden, 
1977) . Its applications until now have included 
formal integration, medical diagnosis, speech re
cognit ion, and certain data base query systems, 
Colmerauer's addition of 'metamorphosis grammars' 
to PROLOG (Colmerauer,1975) has simplified the 
treatment of strings and tree structures, and hence 
made PROLOG more accessible to linguists interested 
in natu ra l language analysis. 

Thi s paper describes METAVERB, a functioning 
natural language query system which answers ques
tions about the syntactic properties of English 
verbs, such as "Which verbs is NPN an object type 
of?" or "I s each object type of ' acc use ' an object 
type of a verb whose subject type is THS?" . 
Although t he query language is quite limited and 
particular to the domain of syntactic research in 
linguistics, t his system illustrates a number of 
interesting possibi lities in the use of PROLOG, for 
specify ing the semantics of a subset of natural 
language, and metamorphosis grammars, for control
ling t he compositi onal build-up of semantic repre
sentations during the process of syntactic parsing. 

*Virtually every aspect of this system has been 
influenced by the work of the Groupe d'Intelligence 
artificielle of the University of M~rseille-Luminy. 
In addition to references to published work, I 
should like to acknowledge the collaboration of 
Alain Colmerauer during the design and testing of 
an early vers ion of this system, particularly with 
regard to the implementation of his proposals for 
the treatment of linguistic quantifier expressions. 
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After a brief description of the data set in 
~2. we consider the semantic representation given 
to the basic query types in §3. He then review 
certain relevant aspects of PROLOG and illustrate 
the control and semantic sections in §4. In §5 
we examine the syntactic parsing of queries, which 
is coupled with the construction of the desired 
semantic representations using metamorphosis gram
mars. Finally, in §6, we consider the problem 
specific to METAVERB of parsing sentences from the 
metalanguage of English syntactic description . 

2. THE DATA BASE 

The query system is designed to answer ques
tions about the syntactic properties of verbs, 
based on a data set for roughly 800 English verbs, 
including most verbs which take a wide variety of 
prepositional and sentential complements. A syn
tactic study by Kiss & Kittredge (1976) provided 
in tabular form the information on each verb ' s 
potential to take any of six possible subject 
forms and any of the 40 possible object strings. 
For the purpose of the t1ETAVERB experi rients, each 
verb's potential was given in a tree structure 
having the form of a positive PROLOG literal in 
which the verb name, list of possible subject 
forms and list of possible object forms are the 
three branches. For example, the verb "accuse" 
has a data representation: 

+VERB(ACCUSE, N.NIL, N.NPN.NPVGO .N IL). 

where ''." serves as a list concatenator. The 
three non-NIL elements of the object list corres
pond to the three possible oject strings for this 
verb: 

Noun (phrase) e.g . ... accuse Fred. 
Noun+Preposition+Noun 
- e.g .... accuse-Fred of treason. 
N+P+Verb+inG+Object 
- - e-:-g .... accuse the boy of creating a 

disturbance. 

At the moment, relatively little is known 
about the dependencies between syntactic proper
ties, or the possible groupings of verb s accord
ing to partial similarities of their propertie ~. 
To advance this kind of research a query system 
is required with maximum flexibility to compare 
property lists, permit definitions of new compos
ite properties, etc. 
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It might be a relatively simple matter to 
tailor-make an artificial query language which 
would permit efficient access for a large number 
of kinds of query . The decision to use natural 
language is due to several factors including the 
following: 
(a) Considerable insight into linguistic semantics 

is gained from the exercise of specifying pre
cisely the functional structure of each query 
word, and from observing the interactions with 
other words. 

(b} Natural language is undoubtedly the most flex
ible query language. The pitfalls which pre
sent themselves during an attempt to program 
natural language are of interest for the 
theoretical foundations of syntax and seman
tics in linguistics. 

(c) The queries required for this data set involve 
distinguishing the use and mention of certain 
verbs which may show up in both functions. 
Since little is known of the linguistic pro
perties of English metalanguage, such a system 
provides one possible controllable situation 
in which metalanguage properties, in addition 
to the data set properties, may be studied for 
their own interest. 

3. THE SEMMITIC STRUCTURE 
OF QUERIES 

In the traditional distinction between ~/no 
questions and wh- questions, lin9uists have tended 
to represent a question such as (la) semantically 

.as (lb) , and a question such as (2a) as (2b): 

(la) Did Max come? 
(lb) I ask that (you tell me whether( 

(Max came)OR NOT(Max came) 

(2a) Who came? 
(2b) I ask that (you tel 1 me whether( 

(Max came) OR 
( Fred came) OR 

. ) 
where the potentially infinite disjunction in (2b) 
is formed from substituting in the sentential for
mula "x came" the name of each individual in the 
universe of discourse which obeys the selection 
restriction for "came". Because of the occurrence 
of "I" and "you" in the semantic paraphrases (lb) 
and (2b), a true semantic analysis would require 
a model of both the interrogator and the system 
in 11JJch more detail than we wish to provide. 

We therefore adopt the following conventions 
in accordance with Colmerauer ' (1977) : 
Ql. We can reply in the affirmative to a ~/no 

query provided that we can prove the corres 
ponding declarative sentence (cf. the first 
part of the disjunction in (lb)) 

Q2. To a wh- question containing "which P", where 
Pis representable as a predicate of one argu
ment, we may reply "n" if n is a proper name 
such that P(n) is true and the expression 
obtained by replacing "which P" by "n" in the 
declarative form of the query is true. 

As an example of Q2, consider the query "Which 
verb is NPN an object type of?". We may reply 
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"accuse" (among other answers) if we can show that 
verb(ACCUSE) and "NPN is an object type of ACCUSE", 
or rather its semantic representation, can be 
proved as theorems. 

3.1 Quantifier expressions 

Colmerauer's proposals for quantifiers are 
in fact much more precise and far-reaching than 
indicated above. His treatment of quantifying 
expressions (including articles) such as le,un, 
chague and aucun in French assumes that eachsuch 
expression acts as a kind of semantic functor, 
creating a complex quantifier expression out of a 
variable, x, and two sentential functions in which 
x occurs free. Consider the simple sentence 
"Each man loves Brigitte", whose translation in 
standard predicate logic is: 

(Vx}(man( x) -1 ove( x,Bri gitte)) . 

Note that in this translation the variable x 
appears in two simpler sentential functions , 
man(x) and love(x,Brigitte). The resultant complex 
quantifier expression is represented as : 

( 3) each 
/ 1-----

x man love 
. /" I / B . . t x x r1g1t e 

or , 1 inearly: 

(4) each(x,man(x), love(x,Brigitte)) 

For each quantifier , the corresponding complex 
expression can be converted by simple rules into 
a form more easily evaluated by PROLOG. In par
ticular, (4) becomes: 

(5) not(exist(x,and(man(x),not(love(x,Brig))))) 

What is significant about this treatment is the 
fact that when all quan tifiers and articles are · 
given a lexical representation calling them predi 
cates of four arguments, e.g. 

(6) s3 ) 
~ 

resultant complex 

each(x, sl, s2, 
,.----7 f / 

variable sententia l 
formulas quantifier expression 

it is possible to maintain full control over the 
construction of semantic representations during 
unification of variables. This is particularly 
important when sentences with several quantifiers 
must be given the proper hierarchical semantic 
structure. Colmerauer's hypotheses for these 
construction principles are incorporated into the 
parsing rules of t5. 
3.2. Relative clauses 

Restrictive relative clauses serve to delimit 
the set of possible referents of a noun phrase, 
over and above the conditions on reference speci
fied by the noun itself and any prenomina1 modi-



fiers. This fact is reflected in the representa
tion of a relativized noun phrase as the conjunc
tion of two sentential functions, both containing 
a free occurrence of the same variable . For exam
ple, (7) is represented as (8) , where the under
lined portion of (7) corresponds to the portion 
of the tree within the dotted line. 

( 7) 

(8) 

the !1_1_a~Jlho loves Brigitte is Canadian 

the 
/"" \----

x and Canadian 
/·~, I 

man love x 
I / ""-·. x x' Brigitte 

Given these conventions on representing quant
ifier expressions and relative clauses, it is now 
possible to give a representation of a more com
plex query: 

( 9) 

( 10) 

Is each object type of ACCUSE an object 
type of a verb whose subject type is THS? 

each (declarative form) 

~e~~a 
/ \ /1 -----

x ACCUSE y and object type 

/ \ / "' 
7rb j~YJ~ x y 

y THS y 

In the form evaluated by METAVERB this becomes: 

( 11) not 
l 

/j1St 
x and 

I - -
object type 

x/ Ac2usE 

·--not 
I. exi st 

-------- I y and 
/"" -

and 

------- \ verb subject type 

1 Tf{ ~ 
3. 3 Wh - ques t ions 

~ject type 

/ '"' X y 

The word which (or what) al so falls under the 
uniform treatnier£of quanf ifi( expressions out-
, ined above . In the query : 

(12) ~Jhich verbs is PNWHS an object type of? 

what is requested is essentially: 

( 13) (The set of) those x such that 
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xis a verb and 
PNWHS is an object type of x 

We set up a semantic predicate "those" , similar 
to CollllE!rauer's "ces" giving a two-branched seman 
tic tree for (1 2) as: 

(14) those 
~ '""-x and 

/ -------. verb object type 
I / ~ 
x PNWHS x 

4. PROLOG AND THE COMTROL COMPONENT 

4.1 Some relevant features of PROLOG 

We summarize here some of the basic features 
of PROLOG given in the introduction to Colmerauer, 
Kanoui & Van Caneghem (1979). 

PROLOG is a very high level programming 
language based on first order logic. The only 
operation in this language is the unification of 
two logical terms, which are represented as trees . 

A program in PROLOG can be viewed in both a 
declarative and a procedural perspective. Declar
atively, it corresponds to a set of regular clauses 
in first-order logic. These clauses express the 
relations between the various subparts of a proof. 
Procedurally, the program, with the help of a 
simple control language, describes how the theorem 
prover constructs a proof. 

On the syntactic level a program is a set of 
regular clauses, each of which consists of an 
ordered sequence of literals. The head literal 
(o r positive literal) is followed by zero or more 
negative literals, which make up the tail of the 
clause. For example: 

(regular) clause 
~ - ····· ··'-----... 

(15) +P -Q -R -S 
J l.....'.....--y-' 

head literal tail of clause (negative 
1 iteral s) 

A literal is an atomic formula of logic (predicat) 
or its negation. A predicate expresses a relation 
among terms, which are the objects manipulated by 
PROLOG:-fo the tree 

( 16) list 

/ "" a list 

(\ 

(also represented as 
1 is t ( a , list ( b , ~) ) 

the variable xis underlined to distinguish it 
from the constants a and band the binary function 
"list". The name of a variable is local to the 
clause in which it appears. The following simple 
program calculates the concatenation of two lists : 



·I 

+concat(list(~,11),_2,list(~,13))-concat(~1,12,.f3) 
+concat(nil ,1,!J 

Here "nil" is an atom. 

An instance of ii tr.rm or clausr. ic; obtained 
by unifori11iy- -s·ubstituting terms for variables. 
The declarative semantics defines those predicats 
which can be proven true. +P', the head of an 
instance +P' -Q' -R ' -S' of the clause +P -Q -R -S 
is said to be true if all the predicates in the 
tail of the clause, q,R' ,and S' are true. This 
definition does not make use of the order of the 
clauses or the order of the literals within a 
clause. 

A bundle of clauses is a set of ordered 
clauses, all having the same head predicate. 

The procedural semantics interprets each bun
dle as a procedure definition, each clause repre
senting one possible definition of the procedure. 
The literals of the tails of the clauses corres
pond to procedure calls. 

Resolution consists of executing a sequence 
of procedure calls. Unification is the operation 
which searches for the most general common instan
ce of two terms. In other words it is the search 
for those substitutions which particularize varia
bles the least while still making the two trees 
equal . To execute a procedure call P, the inter
preter se~rches, in the bundle corresponding to 
the definition of P, for the first clause for 
which the head literal can be unified with P. If 
this unification succeeds, the unification of the 
tail of the instantiated clauses is attempted 
(unless the tail is empty ) , resolving each literal 
in order. If the tail is empty, we attempt to 
reso lve the next literal in the waiting list. If 
the unification fails, or if no clause is found 
with a head which can be unified against the pred
icate to be resolved, then backtracking occurs. 
Upon backtracking, the interpreter returns to the 
last choice point, undoing all substitutions made 
after that point and then starts off in the new 
direction, trying to resolve the same predicate 
with another clause. 

Certain predicates are interpreted directly 
and do not pass through the resolution mechanism. 
Some, such as plus(x,y,z ) , defined for integers, 
could be written in PROLOG. Others, such as those 
which read or write a character, can only be de
fined procedurally. 

4.2 The Question-Answer control component 

We give here only the essential parts of the 
control section, which can be written as five 
clause bundles: 

+GO -AJOUT(+(AGAIN).NIL) -L IGNE -LIGNE -COMEON . 

+COMEON -SENTENCE(*L) -TESTEND (*L). 
+COMEON -LI GNE -LI GNE -AGAIN -COMEOtl 
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+TESTEND(GOOOOYE.*X) -LIGNE -SORM("SO LONG") 
- / -SUPP(+(AGAIN).NIL). 

+TESTEND(*L) -ANALYZE( *L,*S) -L!GNE -SORT (*S ) 
- LIGNE -LIGNE -ANSWER(*S). 

1ANSWrR(T1 1osr(*X,*S)) -/ -TRUF( *S ) -sorn (*X) 
-SORM(" ! ") . 

+ANSWER(*S) -TR UE(S) - / -SORM("YES'."). 
+ANSWER( *S ) - / -SORM( "NO'.") . 

+ANALYZE(*L,*S) -S YN(QUEST{ *S ).NIL ,*L ) -/. 
~ANALYZE(*L,*S) -LIGN[ -SORM("IT' S HIGII TIM[ 

YOU DID SOMETHING ABOUT YOUR SPELLING'.") 
~LIGNE -IMPASSE. 

The relational symbols AJOUT,LIGNE,SORM,SUPP,SORT, 
SYN, and IMPASSE are all predefined in PROLOG. 
All others in these clauses are defined within 
METAVERB. When the goal statement -GO! is entered 
the first clause becomes applicable. Evaluation 
of the first negative literal causes the cla.us e 
iAGAIN to be added to the system, allowing for 
repetition of queries. Two lines are skipped and 
COMEON is evaluated. When a query has been enter
ed, this triggers the evaluation of SENTENCE fol
lowed by TESTEND. The first of these calls up a 
bundle of clauses, not given here, which read ~he 
input characters and convert that string to a list 
of words. TESTEND first checks whether the input 
is a closing statement "goodbye ... " in which case 
a reply is printed anrl the repeat clause +AGAIN 
is suppressed. Otherwise, TES TEND tries to ana 1-
yze the word list *L into the question structure 
*S, print the structure (which is the value of) *S 
and provide an answer to *S. ANALYZE( *L,*S ) 
succeeds if the tree structure QUEST( *S ) can be 
constructed using the metamorphosis grammar rules 
(called by the predefined relati.onal syrrbol SYN) 
out of the word li st *L. Failing that, a message 
is printed. If the tree *Sin the last negative 
literal of the fifth clause is of the form 
THOSE( *X,*S) we use the sixth clause and try to 
show that *Sis true for each such *X, and if 
successful we print the value of *X followed by 
"'" If the *S tree of the fifth cl a use was not 
of the form for a wh- question, ~,e can answer 
"YES!" provided that *S can be shown true. Other
wise the answer is "NO!" . 

4.3. The semantic component 

All queries handled by the METAVERB system 
as described here can be analyzed into semantic 
trees using the seven predicates those,~xi2.!_,~nd, 
.r:i..<?1, verb, _? Ubject_~. and object type_. The 
semantic component, then, specifies the semantics 
of these predicates , as well as that for TRUE: 

+ TRUE( *S) -*S. 

+EXIST (*X ,*S ) -*S. 

+AND( *S1,*S2 ) -*S l -*S2. 

+NOT(*S ) -*S - / - IMPASSE. 
+NOT(*S). 



+VERR(*X} -VERB (*X,*Ll,*L2 ) . 

+SUBJECT TYPE (*X,*Y } -VERB (*Y,*Ll,*L2 ) 
-DANS (*X,*L 1). 

+OBJECTTYPE(*X,*Y} -VERB (*Y,*Ll,*L2) 
-DANS(*X,*L2 ) . 

A formula *Sis said to be true if *Scan be 
proved from the data base. There exists an *X 
such that *S provided *Scan be proved. We can 
prove AND(*Sl,*S2) provided we can prove both *Sl 
and *S2. To show NOT(*S) we specifically try 
first to prove *S, and if successful bring the 
system to a halt. Failin9 to find any contradic
tion, we may conclude NOT(*S). To show that *X 
is a verb it suffices to find *X as the first 
branch of a VERB tree in the data base. To show 
that *Xis the subject (obj ect ) type of *Y, it 
suffices to show that *Y is in a VERB tree of the 
data base and that *Xis in the list of subject 
(object) types, given as the second (third) branch 
of that tree. The relation DANS, which is easy to 
define declaratively, is predefined. 

5. PARSING QUERIES IN METAMORPHOSIS GRAMMAR (MG) 

Metamorphosis grammars were designed by Col
merauer(l975} to facilitate the syntactic and 
semantic analysis of natural languages and other 
sets of complex strings within the general frame
work of PROLOG. Rules which manipulate strings 
of trees are expressed directly, with the possi
bility of representing subparts of trees by means 
of variables. In this respect MGs bear a certain 
resemblance to Colmerauer's Q-system grammars 
( 1971). 

MG rules, as they are used in METAVERB, are 
written like context-free production rules, except 
that non-terminal symbols may be complex, having 
the general form of tree structures, as elsewhere 
in PROLOG. Non-terminal elements are preceded by 
the symbol ":" and terminals, by"#". For example 
the two rules: 

:NCOMP(*X.*L,*Sl,*S ) == :NCOMP(*L,*Sl,*S2 ) #OF 
:NP(*X,*S2, *S). 

:NCOMP(NIL,*U,*U} ==. 

state that a noun complement may, in the general 
case, con sist of a noun complement followed by the 
string "OF" followed by a noun phrase. Or, 
:NCOMP( ... ) may be the empt) string . The varia
bles within the non-terminal trees are arranged 
so that when values are assigned during unifica
tion , there is control over the recursive process 
by which pieces of the semantic representation are 
built up, corresponding to the recursive analysis 
of syntactic constituents. 

5. 1 Example 

The process of syntactic-semantic analysis 
can be seen by following a simple query: 

(17)I s NPN an object type of ACCUSE? 
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through the following MG rules (numbering serves 
only for reference in this discussion): 

(f) :QUEST(*S ) == :YESNO(*S }. 
(V :YESNO( *S4) == :BE (*NB ) :NP (*NB-*X,*S3,*S4 } 

:ART(*NB-*X,*Sl ,*S2,*S ) :NC (*NB -*X.*L,*Sl ) 
:NCOMP (*L,*Sl ,*S3) #?. 

~ -' :NP (SIN-*X,*Z,*Z) = a :NPROP(*X}. 
(4_. :NP (*X,*S2,*S4 ) == :DET (*X,*Sl ,*S2,*S3 ) 

:NC( *X. *L, *Sl ) :NCOMP (*L, *S3, *S4 ) 
([.i :NCOMP (*X.*L,*Sl ,*S) == :NCOMP(*L,*Sl ,*S2) 

#OF :NP (*X,*S2,*S ) 

~ 
:NCOMP(NIL,*U, *U ) == . 

Z :NPROP(*X) == #*X -OBJTYP(*X}. 
:NPROP(*X) == #*X -VERB(*X,*Ll ,*L2). 

(]J :ART (SIN-*X,*Sl,*S2,EXIST (*X,AND (*Sl ,*S2 ))) 
== :A. 

QO• :A == #AN. 
(1J> :BE (SIN) == #IS. 
QZ,1 :NC (SIN-*X.*NB-*Y.NIL,OBJECTTYPE(*X,*Y )) 

== #OBJECT #TYPE. 

Rules 7 and 8 show an important difference from 
the others. A negative PROLOG literal appears 
to the right of the MG rule proper, indicating 
t hat the rule applies only if the literal can 
be proved. 

The question-answer control component, 
discussed in~4.2 above, is activated upon receipt 
of a query terminated by"?". After some initial 
steps, we are in the position of trying to show 
+SYN (QUEST( *S).NIL,*L), as seen in the next-to
last rule of that section. The predefined rela
tion SYN calls the metamorphosis grammars, trying 
to unify variables in such a way that the sentence 
li st *L can be generated from the tree QUESTl*S) . 
We can develop the left-hand member of rule CJ) in 
the form of the riatl_t-hand member of rule~by 
setting *S of rulel.};,equal to *S4 of rule(bi 
The first non-terminal of the right of rule CZ:, can 
be resolved agatnst the input terminal "IS" ~ 
applying rule@. Hence the value of *NB in 2' 
becomes SIN. In order for :NP(SIN-*X,*S3,*S4 to 
match against the proper name NPN, which is the 
next element of the input sentence string we must 
apply (X;~nd(J), which returns the value NPN for *X 
in rule~s string representation . As a result of 
the application of ruleG)we also have *S3 set 
equal to *S4, by virtue J;.,_f the fact that both are 
set equal to *Z of rule(J). As we continue in this 
way the ,X(!lues in the variables of the right side 
of rule(Z)are progressively instantiated in such 
a way that we build up a semantic representation. 
In order to show more precisely how this occurs, 
we represent in figure 1, on the fo l lowing page, 
the direction in which values are assigned to 
variables for the remainder of the input string, 
using the instantiations assigned up to this point. 
We describe only some of the major events in th is 
assignment: (;.) When :ART ( ... ) is resolved against 
#AN by rules (2) and ®, the va 1 ue of *S in the top 
line becomes EXIST(*X,AND(*Sl ,*S2 )) ; (b) When 
:NC ( ... ) is matched against #OBJECT #TYPE, the 
value of *Sl becomes OBJECTTYPE(NPN,*X-,; (c) The 
value of this last *X~becomes equal tor.;{'CCUSE by 
virtue of the match using rules QJandl,; 



. I 

. _- ·J 

1 

r-- - .. --·· ····- . --:.:, ... ---... ,r ~ 
:ART( SIN-NPN, *S 1, *S2, *S) :NC( S IN-NPN. *L, *Sl) : NCOMP( *L, *Sl , *Z ) #? _ ____ / --- -- ~ .-., .A -- _._, /'/ '\ "\ '\ 

--- --- --- -- ,/ _.,. :NCOMP(*X'.*L',*Sl,*S) 

/ ,------,\..... --- -- ...------L__,, ___ .. · , / 
:NC(SIN-*X.*NB-*Y.NIL,OBJECTTYPE(*X,*Y)) . 

I Ye.0 
:NCOMP(*l,*Sl ,*S2) #OF :NP(*f,*S2,*S) ';) ~ "\ "'··, :NCOMP(NIL, *U '*U) :_NP (SIN -*X'~ *Z I '*Z I) 

/ 

(1,/\ r 
:NPROP(*X? 

_/,,,/ ~, l 
,,.- #*x· 

// 1 ' . / 1',-''I 

#OBJECT #TYPE /I #OF #ACCUSE #? 

figure 1. Transfer of value assignment during unification of variables 

(d) *Sl is put equal to *Z by virtue of certain 
equalities assigned during the development of 
:NCOMP( ... ) ; (e) *L is set equal to SIN-ACCUSE. 
It is the value of *Sl in the top line which is 
transferred, via *Z,*S3 and *S4 to become the 
value of the variable *Sin :QUEST(*S). The 
final result of the resolution process for this 
question is :QUEST(OBJECTTYPE(NPN,ACCUSE)). The 
tree structure containing EXIST( ... ) is not used 
in this case. 

6. PARSING METALINGUISTIC QUERIES 

The metalanguage of English (M) is a subset 
of the language which constitutes a §ublanguage in 
the sense that it is closed under the transforma
tional operations which can be set up for describ
ing English grammar. The subset of English which 
is appropriate for describing the syntactic poten 
tial of verbs is a tiny subpart of M, which in 
fact also constitutes a sublanguage.E Although 
we have not explored the properties of this smaller 
sublanguage in any systematic way, it is clear that 
it has a number of special properties which simpli
fy the parsing granmar and the semantic representa
tions. One example is the lack of any tense vari
ation out of the simple present. Another is the 
restriction on the size of the lexicon used in 
metalinguistic statements, and the tighter selec
tion restrictions on the verbs (and other pred
icate words) when used metalinguistically. 

Certain pitfalls, however, are also present 
in metalinguistic parsing, which are relatively 
uncommon in typical texts. Even in the restricted 
context of the METAVERB system, we may wish to 
use a verb which is also mentioned in the study of 
verb properties: 

(18) Does HAVE have a property which no other 
verb has? 
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Without resorting to special marks to differenti
ate use and mention (such as the use of capitals 
for clarity above), it is virtually always possi
ble to distinguish the two functions for both 
syntactic and semantic reasons. It is a fortu
nate property of metalanguage that the shift of 
levels throws mentioned expressions into the 
category of proper noun on the higher level, 
regardless of their category on the object lang
uage level. During parsing only by assigning 
the category NPROP to the first occurrence and 
V to the second will a successful parse be pro
duced. 

In a system such as METAVERB where the 
semantics of each query expression is tightly 
controlled, there are also semantic reasons for 
not confusing use and mention of verbs. The 
semantics of HAV[ as a meta-verb will be defined 
only to allow words functioning as two-place 
predicates as its syntactic direct object. Thus 
any local syntactic arrbiguity, such as where the 
second"have'of (18) is interpreted as direct ob
ject of the first, will be weeded out semantica lly 
at an early stage. 

Some of the problems which have shown up 
in trying to extend the query language have 
sharpened our awareness of the semantics of 
natural language. The sentence (18), for example 
raises the question of quantifying over properties 
which have been defined in the system. In the 
absence of a second-order logic programming 1 ang 
uage , we must be content to handle such situations 
in a rather ad-hoc manner . 

** This work was supported in part b_y a CAFIR 
grant from the Quebec Ministry of Education. 
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TOWARDS SYNTHETIC IMAGES IN SCENE ANALYSIS 
Brian V. Funt• 

Computer Science Department 
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Amherst, New York 14226 

Abstract are illustrated by the three scenes in 

In the course of interpreting an image 
of a scene, a machine vision program can 
evaluate its progress, obtain new clues 
about the correct interpretation, and be 

led to new hypotheses by comparing its 
input image with a synthetic image. This 

is a hypothesis, and to test it a vision 

system which uses this type of comparison 

for feedback is being implemented. The 

system constructs its synthetic image on 

the basis of its current understanding of 

the scene's contents and lighting condi
tions. Then to evaluate the similarity of 
the actual and synthesized images, the 

system compares features extracted from 
each image. This paper discusses the 

motivation for the system, gives an over

view of its design, and reports on its 
current status. 

I. Introduction 

Research in Machine Vision over the 

past fifteen years has uncovered many 
hurdles which are only gradually beinq 

overcome. The essential difficulty is 
that a machine vision program must derive 

invariant features of a three-dimen
sional scene, such as object shapes and 
positions, from hiqhly variable features 
of the intensity data which are (i) only 
two-dimensional, (ii) dependent on the 
lighting conditions and the relative 

positions of the objects, and (iii) 

affected by both noise in the camera and 

noise due to such things as dust specks in 
the scene. Some of these problems 

•Author's new address: Computing Science, 
Simon Fraser Univ., Burnaby, British 
Columbia V5A 156. 
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Figure 1. The two-dimensional image of 
the cube changes from scene (a) to scene 
(b) as the orientation of the cube chanqes; 
the image of the cylinder is affected in 

(b) by the cube occluding it, and in (c) 

by the cube casting its shadow on it. 

Also in (c) changing the light-source 

position will create a different shadow. 

A number of techniques have been 

developed to deal with these complexities. 

Horn [1975), Barrow and Tenenbaum [1978), 
and Marr [1979) have shown how a careful 

analysis of scene illumination, surface 
reflectance properties, and the surface 

characteristics of common objects, can 

lead to a surprising amount of information 

about the orientation of surfaces in the 

scene as well as reasonable estimates of 

their relative distance. Other research
ers (Shirai [1975), Hanson and Riseman 

[ 1978 )) have built into their programs 

knowledge of what can be expected in 
typical scenes, and this knowledge helps 

guide the scene interpretation process. 
Baumgart [1974) implemented a three

dimensionill geometrical modelin~ system 

which was to be used for the type of 
feedback vision described in this paper. 
Although he developed many interestinq 
image synthesis techniques, methods for 
extracting polygon descriptions of two

dimensional images, and a polygon matching 
algorithm, he did not implement a complete 

vision system based on comparing actual 
and synthetic images. 

II. 1 Overall System Design 

In order to provide an overview of 
the central ideas in the vision system 
currently being implemented,· I will 
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discuss its analysis of the scenes in 
Figure 1 (the actual input is an intensity 

array, not a line-drawing). The general 
aim of the system is to construct a three-

1mens1ona mo el useful representation) 

of the given scene. This means that it 

must recognize the objects and determine 
their relative positions and orientations. 

To do this it must have knowledqe of the 

objects it is to recoqnize and use some 

assumptions about the qeneral environment. 

The following assumptions are made in the 

system: 
(1) all objects are restinq on a flat 

horizontal table 
(2) all object surfaces have the same 

reflectivity 
(3) the dominant lighting is with 

parallel rays from a known 
direction 

(4) there is a uniform low level 

background illumination 
(5) the camera is at a sufficient 

distance from the objects so that 
the image is a relatively orthog

onal projection of the scene 
(6) the system knows the dimensions of 

the objects it is to recognize 

This last assumption means that the system 

does not recognize the class of rectangu
lar parallelpipeJs, but rather the single 

2-by-3-by-6 box. This assumption is 
needed to help determine the distance of 

an object from the camera. Although for 
boxes it may seem a bit strong, it is not 
an entirely unrealistic assumption since 

humans, it would seem, use knowledge 
about the standard sizes of such objects 
as telephones and typewriters. 

II.2 Feature Extraction 
The first processing stage (see Figure 

2) seqments the input intensity image into 

regions usinq techniques similar to those 
of Brice and Fennema (1970]. These 
regions are then input to a special set of 
parallel feature-extraction algorithms 
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(Funt (1980)) which handle the regions as 

patches of area rather than just proces

sing their boundaries. The featur e
extraction algorithms determine such 
properties of a region as its area, its 
center-of-area, its neighboring regions, 

its corners (if any), its degree of 

bilateral symmetry at each of 36 orienta

tions about its center-of-area, and its 

degree of rotational symmetry also at 

each of 36 different orientations. In 

addition the feature-extraction 

algorithms can find the degree of simi
larity of two two-dimensional shapes 
under any combination of translation, 
rotation, and scaling. Rather than 

finding all features of all regions in 

the image in advance, they are co:nputed 

on request by the object-hypothesizer or 

feature-comparator. 

II.3 Object Hypothesis 
The object-hypothesizer uses the fea

tures available from the feature-extrac

tor to conjecture which objects are in 
the scene and to produce a rough estimate 

of their positions and orientations. 

This is the least developed part of the 

system because it is not central to 

testing the suggestion that synthetic 

images might be useful in scene analysis, 
and there has also been a good deal of 

work on the problems of recognition and 
scene labelling (Roberts [1965), Nevatia 

and Binford (1977], Waltz (1972], Guzman 
[1968], Falk (1972], Mackworth [1973)). 

But there is a difference here because 
the object-hypothesizer need only make 
reasonable guesses as to the objects and 
their positions. The guesses it makes 
will be either rejected, confirmed or 
improved upon by the image-comparator at 
a later stage in the processing. 

The hypothesizer makes hypotheses 

about only one object at a time starting 

with any unoccluded objects first. It is 

organized as a set of "specialists"--one 



for each object in its repetoire. Each 
specialist decides whether a subset of 

the regions under consideration could 
possibly have arisen as a result of 

the presence of its object in 

the scene. The box-specialist, for 
example, looks for evidence such as: 

(1) three mutually abutting regions 
(2) approximate symmetry under a 

rotation of 180° of the overall 
shape (symmetry is always esti

mated about a shape's center-of

area) of the three regions 

considered as one large region. 
(3) approximate symmetry under a rota

tion of 180° of each of the three 
regions taken independently. 

When satisfied that a set of regions 

may have resulted from the box, the box

specialist then estimates the box's 

orientation. For this it uses the angle 

that a horizontal line would make with 
the bottom edge of one of the lower 

regions of the box. By measuring the 
area of one of the box sides in the image, 
compensating for the effect of the known 
rotation, and comparing the resulting 
area with the side's area stored in the 

box model, an estimate of the box's 

distance is obtained. 
II,4 Image Synthesis 

Sin.ce it is possible that some other 

object might have caused the same set of 
image features, the hypothesis, a box in 

this example, must be tested further. In 

order to evaluate it, the system generates 
a raster graphics image which contains a 

box of the same size and position as the 

one it has hypothesized to be in the 
actual scene. An existing computer 
graphics system (Herman r • 979J) has been 
used for the image synthesis. Modifica
tions are being made so that each pixel 

in the synthetic image will also carry a 

label identifying the object or object 

faces which the pixel represents. The 
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pixel intensities and labels can be 

accessed by the feature-extractor and 
then used by the image-comparator. It 

compares the synthetic and actual images 

of the scene, and accepts the box-hypo

thesis if the two are sufficiently 

similar. 

II.5 Image Comparison 
Horn and Brachman [1978] had consid

erable success with statistical matching 

of images on a more constrained domain, 

but in general two images will not match 

very well on a pixel-by-pixel basis, In 

addition, we want the system to be able 
to determine how to modify its current 
hypothesis in order to improve the match. 

For this we need more information from 

image comparison than a single statisti

cal measure of success or failure. The 

solution is to compare the images at the 

level of the features found by the feature

cxtractor, These features are more mean

ingful for comparison than the actually 
pixel intensities because they result 

from global properties of the object's 
position and orientation as well as the 
illumination and imaging process. A 
region missing in the synthetic image 

can be a sign that the wrong object has 

been hypothesized; a region of slightly 
the wrong size, but the correct shape, on 

the other hand, is more likely to indicate 
that the object has simply been placed at 

the wrong depth, The system's strategy, 
therefore, is to use the same feature

extraction algorithms on the synthetic 
image as on the actual image, and then 

compare the corresponding sets of 

features. Discrepancies discovered in 
the comparison lead to a further analysis 
of their probable cause, an improved 
hypothesis, and a new synthetic image. 

The first task of the image-compara

tor is to make sure that the current 

hypothesis doesn't invalidate any of the 

previously accepted hypotheses. This 
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would occur, for example, if a new object 
was hypothesized at a depth which placed 

it in front of an already-accounted-for 
object. Since the pixels are labelled as 
to their origin, the image-comparator can 
detect when a newly hypothesized object 
occludes an established object, thus 
invalidating either the current or 
previous hypothesis. When this happens, 
the current hypothesis is thrown out and 
the hypothesizer is called and informed 
of the reason. 

From this point on the image-compara
tor can concentrate solely on those 
portions of the two images which are 
affected by the current hypothesis. It 
first counts the number of regions the 
feature-extractor finds in ~hat part of 
the synthetic image with pixel labels 
representing the newly hypothesized 
object. The hypothesizer, when it calls 
the comparator, passes it a list of the 
regions it thinks that it has accounted 
for in the input image as well as a 
designation of which part of the object 
each region represents. Ideally, the 
number of regions found in the synthetic 
image will correspond to the number the 
hypothesizer expects it has accounted for, 
and it will be possible to correlate the 
regions from the two images with one 
another. However, even in cases where 
the hypothesis is correct this may not 
always be the ease. The synthetic image 

is produced by an imperfect graphics 

system which has only an approximate 
model of the surface reflectivity and 
lighting conditions and does not take 
into account such factors as self-illu
mination, while the input image is 
produced by an imperfect camera which 
introduces noise and distortion. 

The first stage in finding the 
corre~pondence between the individual 
regions is to compare the overall shape 

of the object as it appears in each image. 

The overall shape of the object in one of 
the images is defined by the union of the 
regions which make it up. The similarity 
tester finds the translation, rotation 
and scaling required to overlay the two 
shapes as closely as possible. If there 
is a relatively high degree of similarity 
in the overall shape then the comparator 
proceeds to the next stage in finding 

correlates for the individual regions; 
otherwise, it can use the lack of similar
ity to adjust the hypothesis. In parti
cular, if one shape needs to be scaled in 
order to correspond to the other then 
this is strong evidence for a translation 
in depth of the hypothesized object, On 
the other hand, if one of the shapes needs 
only to be moved in order for it to 
correspond to the other then this is 
evidence for a translation parallel to 
the image plane. A complete lack of 
similarity in the overall shapes is 
evidence that the hypothesis is totally 
incorrect. If a translation is called 
for, the image-comparator updates the 
current world model and calls the image 

synthesizer to generate a new synthetic 
image (see Figure 2), 

Once the image-comparator receives a 
synthetic image in which the overall 
shapes are in the same relative positions 
and are of the same size, it begins 
establishing the correlation between the 
individual regions in the two images. It 
takes the largest of all the regions, L, 

and sees which regions from the other 
image would lie under it (minor overlap 
is ignored) if the two images were super
imposed. Then L's shape is compared with 
the combined shape of the regions i t 
covers. If there is a reasonably good 
match without any translation, rotation 

. or scaling then the relationship between 
these regions from the two images is 
recorded, and an attempt is made to find 
~ corresponding set of regions for 
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the next largest region. This process is 
repeated until all the regions have been 
exhausted. There is one further circum

stance which must be taken care of and 
that is when L only partially covers one 
of the regions, R, from the other image. 

In this case the regions R covers in L's 

image are found and combined with L. If 
a satisfactory mapping between the regions 
of the two images cannot be found then 
the comparator calls the object hypothe

sizer and rejects the current hypothesis. 

After correlating the regions, the 

image-comparator considers whether a 

rotation of the hypothesized object is 
required. Since it is assumed that the 
objects are resting on a flat table, any 
rotation which keeps the same face of the 

object in contact with the table must be 

about a vertical axis. The hypothesizer 
postulates both the object and the face 
it rests on, so if the object cannot be 
made to match using rotation about only a 
vertical axis then the hypothesis is re

jected. If there is a good match between 
the correlated regions of the last step 
then no rotation is necessary and the 
oomparator accepts the current hypothesis. 
A poor match between some of them, on the 

other hand, may be resolved by a small 

rotation. A rotation will change the 

shapes in the image because they are two
dimensional projections of surfaces in 
three-dimensions. 

The comparator estimates the direction 
and angle of rotation by comparing the 
sizes of correlated regions. For simple 
objects such as boxes and cylinders, a 
clockwise rotation (as viewed from above) 
will cause regions from the right of the 
object to grow and regions from the left 

to shrink. The more different the sizes 
of the related regions, the further the 

object will have to be rotated. Whenever 
the need for a rotation is established the 
world model is updated and a new image is 
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synthesized. 
When the image-comparator is satis

fied and accepts the curr ent hypothesis, 

it calls the object hypothesizer which 
attempts to make a hypothesis about one 
of the other objects in the scene. When 
the hypothesizer is unable to generate 

any new postulates, execution terminates. 

III. Concluding RemArks 
I expect the benefits of this 

approach--image feature extraction, 

object hypothesis, image synthesis, 

feature comparison, hypothesis adjustment 

--will arise most clearly on the more 
complicated scenes of Figure· 1 (b) and 
(c). In them the two objects interact, 
in Cb ) by occlusion and Cc) by shadowing. 
After the box is confirmed, there will be 

sufficient features to hypothesize the 

presence of the cylinder, but not enough 

features to confirm the hypothesis 
directly. The technique of synthesizing 
an image of the hypothesized scene is 
particularly powerful in this case, 
because in the synthetic image (assuming 

the hypothesis is correct ) the same 

portions of the cylinder will be occluded 

or in shadow as in the actual image; 
therefore, the features derived from the 

actual image will match those derived from 

the synthetic image even though they would 

not have matched those of a standard 
cylinder in isolation. 

TO improve the performance of the 
system, parallelism can be used in both 
feature extraction and image synthesis. 
In fact, one of the advantages to the 
system of using synthetic images is that 
they are a geometrical representation of 
its hypotheses to which parallel proces
sing can be applied. A parallel proce~sor 
consisting of at least 1000 individual 

processors each connected to its inunediate 

neighbors via conununication links has been 
assumed. For the time being this 
processor is simulated on available 
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sequential hardware. To process an image, 
it is first mapped onto the entire 

parallel processor in such a way that 

each individual processor represents one 

small portion of the image, and neighbor
ing processors represent neighboring 

image regions. By mapping small image 
areas onto some processors and large 

areas onto others, the parallel processor 
as a whole "sees" the image in varying 

degrees of detail in a manner analogous 
to the way people ·see less detail at the 

edqe of their field of view. If the 

mapping from image to parallel processor 

is done correctly, then rotation and 
scaling of two-dimensional shapes can be 
performed by simple neighborhood communi
cation between individual processors. 
This is the same basic parallel proces

sing structure as used in WHISPER (Funt 

(1980]), and some of the same feature

extraction algorithms have been used 
directly (e.g. center-of-area finding, 

similarity test), while others have 

required improvement (e.g. the symmetry 

test, vertex finding), 

The implementation of the system is 
well underway, and some preliminary exper
imental results are expected soon. At 

this time many of the feature-extraction 
algorithms are running, the image 
synthesis problem has been largely over
come by interfacing the system's three
dimensional world model to an existing 
image synthesis system (Herman (1979]), 
and the object-hypothesis, image-compari
son and hypothesis adjustment procedures 

are partially coded for the case of an 
isolated object. 
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Mediation Between Central and Peripheral Processing: Useful Knowledge Structures 

Roger Browse 
Department of Computer Scie~ce 
University of British Columbia 

Vancouver, B.C. V6T 1W5 

Abs tract 

This paper outlines a computational vision 
research project aimed at the development of 
techniques for the mediation between central and 
peripheral processes. The key ingredients are 
structural relations between image and scene 
domain hierarchies, and a representation which 
emphasizes the dependencies that exist within the 
knowledge. These constructs may be used to select 
areas of the image to process in greater detail on 
the basis of the progress of interpretation; the 
nature of the task which is motivating the visual 
system; and the contents of both peripheral and 
foveal vis ion. 

1. Introduction 

Information extraction is an essential com

ponent of intelligent behaviour. This extraction 

often involves the selection of sequences of 

intense, localized processing within contexts of 

less detailed global processing. The locomotion 

of an organism through its environment provides 

locations from which detailed information may be 

obtained. Of course the extent to which informa-

tion may be received from locations nearby may 

vary, but it is always constrained by the 
1 

capabilities of the organism. Similarily the 

saccadic eye movements of the visual system, 

together with the acuity structure of the retina, 

1. Rowat (1979) has implemented a computer model 
which demonstrates the intricacies of these 
processes. 
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provides a sequence of select locations in the 

visual environment which may be intensely processed 

within the context of acuity-limited peripheral 

vision. 2 Visual attention may also be viewed as 

the selection of locations for more detailed 

processing, both within the information available 

in a single fixation of the eyes, and within the 

knowledge which is involved in the visual 

processing. 3 To extend the idea to its limit, 

thought may be a sequence of ~vailabilities of · 

information within the mind. 4 

Visual attention and thought have no directly 

observable manifestations as do locomotion and eye 

movements, and hence the patterns of their 

operation must be inferred from psychological 

experimentation and from introspection and will 

thus always remain speculative. 

The interesting questions which arise are: 

1. Is there some uniform computational process 

which can mediate between detailed, local 

information extraction and less detailed, 

global information extraction? 

2. l~hat is the role of such a process 

2. see Rayner (1978) for a sunmary. 
3. see Kahneman (1973) for an explanation of these 

different forms of visual attention. 
4. see Bartlett (1932) for a discussion of the 

ballistic nature of thought. 



in intelliqence? 

This paper describes part of a research 

project which is aimed at the development of 

answers to these questions. The context is a 

computational vision system which interprets line

,drawings of human- like body forms. 1 Of particular 

concern is the interaction between interpretation 

and the selection of locations to process with 

;foveal acuity. 

2. A Computational Model 

A fixation within the image is represented 

computationally as the availability of information 

at different levels of a detail hierarchy: at 

any qiven time , a small location will have the 

actual lines of the drawin~ available, and the 

periphery has available nnly information about the 

density of line in each unit area. In addition, a 

data structure is available which encodes knowledoe 

about the hierarchical relations al'lOn~ body parts, 

and represents the possible confinurations that 

comprise different postures . Thus a very clear 

distinction is maintained between ima!]e and scene 

domains (Clowes, 1971). The key to the operation 

of the system is the relation between these two 

hierarchical structures. Primitive imaoe features 

can be detected at any of the detail levels, and 

these features act as cues for the existence of 

scene domain elements at a correspondinn level of 

the body form knowledge hierarchy. For example, a 

foveally located line vertex (the most detailed 

level) may act as a cue for the connection of a 

f inger to the hand, while a vertex at some coarser 

l. The drawinqs are similar to those used to 
illust rate the movement notation of Eshkol and 
!•lachmann ( 1958) . 
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level may cue the connection of an arm to the body. 

Previous computational vision systems have 

exploited the power of operatinq at more than one 

level of detail in an image (Kelly, 1971; Shiri1i, 

1973) but the present system differs through the 

introduction of structural dependencies bet~ieen 

model knowledge hierarchies and these levels of 

available ima!Je information. Such structural 

dependencies permit the interaction of processinn 

at these levels in a way which is (at least) 

analooous to the interaction of peripheral and 

foveal vision. 

Computational vision systems often utilize 

the relations found within the scene domain (see 

Havens, 1978 ; Mulder, 1979). Usually, however, 

hinher-level scene domain elements are confirmed 

by a structure which relies on low-level input 

information. Issues of top-down vrs. bottom-up 

processina are then addressed within a context 

similar to that of !]rarrnatical analysis in which 

the existence of i1ny non-terminal is supported by 

evirience which is ultimately traceable to a 

sinnle level of input representation (the terminal 

string). Processing top -down or bottom- up, the 

resultin,:, surport evidence is the same. Addressed 

within PsycholoC1.v, issues of the direction of 

processino assume the availability of support for 

hiqh level scene doMain elements independent of 

low level information (Kinchla and ~nlfe, 1979; 

11erMelstein, Banks and Prinzmetal, 1980). 

The present system has been designed to be 

responsive to several influences in the selection 

of locations to process within an image: the 

on~oino interpretation and the critical 
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ambiguities which arise; the nature of the task 

which is motivating the visual process; and the 

contents of both foveal and peripheral vision. As 

a result of these requirements, a declarative 

structure has been chosen which will make explicit 

the details of the hierarchical relationships 

among components. The remainder of this paper 
• 

will describe that knowledge structure and point 

out some of the more interesting processing 

capabilities which it provides. 

3. Representation 

The body form knowledge is centered around 

schemata-like structures called CONCEPTS, 1 which 

may be related to one another via SUBCONCEPT 

·relations, and which may be related to entities in 

the image through INSTANCE relations. For example: 

The CONCEPT hand may have SUBCONCEPTS left 

hand and right hand. One structure in the 

imaoe may be related by an INSTANCE pointer 

to the left hand CONCEPT, while another may 

be an INSTANCE of the CONCEPT hand. 

From the example it is shown that incomplete 

knowledge can result in image entities being 

specified as INSTANCES of more abstract CONCEPTS. 

The binding of image entities to the CONCEPT 

structure is a critical aspect of the interpret

ation process, and requires a richer form of 

representation than the simple INSTANCE pointer 

(see Stefik, 1979). This discussion, however, will 

1. Some words used in the description of the 
knowledge representation are the same as 
English words. When the meaning within the 
system is intended, the word appears in 
capitals. Names of CONCEPTS and ATTRIBUTES 
appear underlined. 
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center on the internal structure of the CONCEPTS, 

which has been fashioned in a way similar to that 

of Stanton (1968,1971). 

Each CONCEPT has a NAME,ATTRIBUTES and 

DESCRIPTIONS. DESCRIPTIONS are named lists of 

CONCEPTS which characterize the described CONCEPT. 

For example: 

The CONCEPT arm has the part-of DESCRIPTION 

giving the list (upper-arm lower-arm hand). 

CONCEPTS may have ATTRIBUTES. For example: 

The CONCEPT !!J!! may have ATTRIBUTES such as 

posture, orientation, etc. 

Only entities in the image may take on actual 

ATTRIBUTE values. The CONCEPT does, however, 

specify the range of values that ATTRIBUTE can 

take on, and also specifies other ATTRIBUTE 

values which are necessary in order to compute the 

value. For example: 

The development of a value for the ATTRIBUTE 

posture for the CONCEPT arm (whose values 

may be either straight or bent) may require 

values for the ATTRIBUTES orientation of 

both upper-arm and lower-arm. 

Thus the development of ATTRIBUTE values for a 

CONCEPT may depend on the ATTRIBUTE values of 

CONCEPTS found in its DESCRIPTIONS. 

The existence of a CONCEPT cannot be assumed 

just because of the existence of the CONCEPTS 

which are given in one of its DESCRIPTIONS, there 

are DESCRIPTION RELATIONS which must hold amono 

CONCEPTS, or more specifically, among the 

ATTRIBUTES of the CONCEPTS. For example: 



The DESCRIPTION RELATION connect must exist 

between the ATTRIBUTE distal-end of the 

CONCEPT upper-arm and the ATTRIBUTE proximal

end of the CONCEPT lower-arm before the 

existence of these two CONCEPTS can confirm 

the existence of the more general CONCEPT arm. 

This outline of the knowledge structure may 

be adequate to point out the intricate chain of 

dependencies among ATTRIBUTES of CONCEPTS. By 

laying bare these relationships, they may be 

exploited in the decisions to be made in the 

processing of images representative of the 

CONCEPTS. To complete this capability, corre

spondences have to be established between image 

domain and scene domain elements. 

The advantage of having available all of the 

dependencies among ATTRIBUTES relies upon the 

assumption that a vision system is better off 

spending its energies deciding upon useful loca

tions to process rather than processing in a 

somewhat arbitrary order and determining the 

usefulness of the information later. This mode of 

operation seems most reasonable for human vision 

because saccades consume up to 250 ms (Yarbus, 

1967), and attentional shifts 50 ms (Eriksen and 

Hoffman, 1974) . At least in the case of saccades, 

there is a serious loss of visual capability 

during the shift (Latour, 1962). In addition, 

there is compelling evidence that humans fixate 

very rapidly on the most important aspects of a 

scene (Loftus and Mackworth, 1978). 

4. Using the Knowledge Base to Select Locations 

By examining the knowledge involved in the 
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visual task, intelligent decisions can be made as 

to candidate processing locations. For example: 

The discovery of an L-vertex at some coarse 

level of detail may signal either an elbow 

or a knee. To process in the proximal 

direction may result in the discovery of a 

vertex which could either be the connection 

of the arm or the leg to the body, and hence 

the ambiguity would not be resolved. More 

differences are expected in the distal 

direction toward either the hand or foot, so 

processing would move in the direction of 

the distal portion of the vertex. 

If the task presented to the vision system can be 

expressed in terms of ATTRIBUTES to be evaluated, 

then the dependencies among them can be used to 

mark the entire set of ATTRIBUTES (at all levels ) 

which are critical to the task. For example: 

If the task at hand is to determine if the 

body is standing upright, (i.e., if the 

posture ATTRIBUTE has the value standing

upriqht), then the method by which this 

value can be obtained is examined, and it 

is found that the values of the ATTRIBUTES 

orientation of the CONCEPTS middle-body and 

lower-body are necessary. These ATTRIBUTES 

are marked, as are the requirements for their 

evaluation, etc. Subsequent decisions about 

the choice of processing locations will take 

into account the expectation of finding 

information relevant to these specially 

marked ATTRIBUTES. 

In the more general case, the existence of a 
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declarative, analyzable ATTRIBUTE dependency 

structure provides the basis for the application 

of an inclusive hierarchy of support for any 

particular CONCEPT node. 

l. A CONCEPT may be only "suggested" through the 

existence of the CONCEPTS found in one of its 

DESCRIPTIONS (within some reasonable image 

area). 

2. A CONCEPT may be "confi nned" through the 

validity of its DESCRIPTION RELATIONS. 

3. A CONCEPT may be "understood" through the 

evaluation of its ATTRIBUTES. 

Each of these processes relies on the availability 

of different ATTRIBUTE values at different levels 

in the knowledge structure. The different levels 

of support are dependent on one another. For 

example, one CONCEPT may have to be confirmed 

before it can be used to suggest another, and some 

ATTRIBUTES will have to be evaluated before other 

CONCEPTS can be confirmed, etc. 

The distinction drawn between (1) and (2) 

above is a computational counterpart of the 

1jistinction between attended and non-attended 

feature analysis in the Feature Integration Theot.y 

of visual attention (Treisman and Gelade, 1980). 

While the identification of features may take 

place simultaneously over an image, the assemblage 

or integration of thasedeatures into larger 

perceptual units requires the application of atten

tion which operates sequentially over smaller areas 

of the image. 
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Abstract 

This paper describes current research in ap
plying schemata-based recognition methods to the 
understanding of hand-drawn sketch maps. In this 
system, schemata are employed as representations 
for models of the cartographic objects and sys
tems of objects possible in sketch maps. The re
sulting hierarchical network is then searched 
using a combination of both data-driven and model
driven methods. Low-level models are invoked by 
primary cues computed directly from the input 
image. Once invoked, schema models apply object
specific procedural methods to complete their 
recognition. Completed schema instances are then 
used as abstract cues to invoke other models 
higher in the schema hierarchy. A multiprocess
ing control regime is utilized to permit a number 
of schemata to apply their recognition proce
dures concurrently. 

1. 1.!l.!!'oduction 
In order to cope with the enormous complex

ity of visual information, computer vision sys
tems must employ extensive model-specific knowl
edge of the visual world . A major problem in 
model -dri ven vision systems is the invocation of 
appropriate models to interpret a given image. 
Typically, data-driven methods are employed to 
generate low-leve l image cues to select likely 
models as hypotheses . It has been pointed out 
that this method is ineffective. Low-level cues 
are highly ambiguous matching to many inappro
priate high-level models. 

As a solution to this problem, we are cur
rently integrating model-driven and data-drive 
recognition in schemata representations by em
ploying a recursive hierarchy of cues and models . 
Schema models are invoked both by primary cues 
computed directly from the image and by abstract 
cues created recursivel y as the result of recog
nition. The successful recognition of a schema 
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instance at one level in the hierarchy yields a 
context-sensitive cue to invoke schema models at 
higher levels. 

Sketch maps have been chosen for this re
search for the following reasons: 
l) We believe that the conventional semantics of 

of cartography accurately reflects geographic 
features in real aerial and satellite imag
ery. 

2) The use of vector graphic input data greatly 
reduces the amount of low-level processing 
required while still capturing the essential 
difficulties of geographic image analysis. 
The research is therefore able to focus on 
issues of cue generation and model invoca
tion. 

3) The enhanced abilities of this approach can 
be easily compared to a previous sketch map 
system, MAPSEE, [Mackworth, 1977a] employing 
a constraint network representation and a 
network consistency search method [Mackworth, 
1975]. By testing both systems on the same 
input maps, we should obtain a quantitative 
measure of the expected improvement of sche
mata over constraint network methods. 

2. Model-Drive.!l_ ~ecogni_!ion 
Computer vision can be characterized as the 

task of mapping a two-dimensional sensory image 
into an abstract symbolic description of the 
three-dimensional scene represented by that image 
[Clowes, 1971]. This process necessarily in
volves the interpretation of sensory signals that 
are voluminous in their quantity and simu l ta
neously highly ambiguous in their possible mean
ings. In order to cope with this complexity, com-



puter vision systems must employ both model 
driven and data-driven recognition methods. 
Model -driven recognition utilizes knowledge of 
the objects and their abstract relationships 
possible in the visual world . Conversely, data
driven methods exploit spectral knowledge about 
the signal source and physical knowledge about 
the processes of image formation and surface re
covery. Indeed, the representation and coordi
nated application of knowledge is the central 
problem in computer vision [Reddy, 1978]. 

We are exploring a recognition paradigm 
for computer vision that integrates top-down, 
model-driven recognition with bottom-up, data
driven methods in hierarchical schemata-based 
knowledge representations [Havens, 1978a]. A 
major problem in model-driven vision systems is 
the invocation of appropriate models to inter
pret a given image. In most current systems, 
data-driven methods are employed to generate 
low-level image cues to select likely models as 
hypotheses . Cues can be regions of statistical
ly homogeneous properties or edges inferred 
from characteristic changes in image intensity. 
It has been pointed out that this methodology is 
ineffective [Barrow & Tenenbaum, 1975]. Region 
and edge-finding algorithms have no knowledge of 
the real objects to which they may belong. As 
a result, low-level cues are highly ambiguous 
matching too many inappropriate high-level 
models. 

As a solution to this problem, we argue 
that high- level object models must be invoked 
by appropriate high- level cues. The discovery 
of such abstract cues is , of course, recursively 
the recognition problem, thereby necessitating 
the use of a recursive hierarchy of cues and 
models. Schema models must be invoked both by 
primary cues computed directly from the image 
and by abstract cues created recursively as the 
result of recognition. Tht successful recog
nition of a schema instance at one level yields 
a context-sensitive cue to invoke schema models 
at the next higher level. 

To realize this recognition paradigm, we 
are employing a multiprocessing progranrning 
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language methodoiogy that supports the concurrent 
execution of top-down and bottom-up search pro
cesses in hierarchical knowledge representations 
[Havens, 1978b]. 

3. Schemata B~resentations 
Recent research has focused on the applica

tion of schemata [Bartlett, 1932] as a represen
tation of knowledge [Minsky, 1975] [Bobrow & 
Winograd, 1977] [Rumelhart & Ortony, 1976]. 
Schemata have been used or proposed in a number 
of computer vision systems [Freuder, 1976] 
[Hanson & Riseman, 1978b] [Brady, 1978]. Schemata 
are object centered representations which repre
sent complex concepts as specific compositions of 
simpler schemata thereby forming hierarchical 
knowledge structures. By exploiting composition, 
a finite number of schema stereotypes can be used 
to represent an arbitrary number of object in
.stances . Schemata may contain both active and 
passive knowledge. Passive knowledge represents 
descriptive models of stereotypical objects. 
Active knowledge is represented as procedures 
attached to schema models to guide the recogni
tion process for instances of those schema stereo
types [Winograd, 1975]. 

The recognition process in schemata-based 
systems can be characterized as a search of the 
schema hierarchy to find a best match of the in
formation present in the input image to the knowl 
edge represented in the knowledge-base. Havens 
[1976] has shown that this search can be neither 
a strict top-down nor bottom- up search. Instead, 
recognition must be an integration of top-down, 
hypothesis-dri ven search and bottom-up, data
driven methods [Rumelhart & Ortony, 1976] . Sche
mata represent models providing expectation and 
guidance for top-down search. At the same time, 
features discovered in the image provide cues for 
the bottom-up selection of particular schemata 
as likely hypotheses. 

We are investigating the integration of 
model-driven and data -driven recognition by em
ploying both a model hierarchy and a cue hier
archy within a schemata knowledge representation. 
The interactions between model-driven and data-



driven processes in computer vision are poorly 
understood [Brady, 1978]. This research is con
cerned with characterizing that 1nteract1on. 

A preliminary schemata knowledge representa
tion for sketch maps is _illustrated in Figure 3. 
The nodes in this tree represent schema stereo
type models of various cartographic objects and 
systems possible in sketch map scenes. The arcs 
represent composition with nodes higher in the 
hierarchy being composed of connected nodes lower 
in the hierarchy. The interpretation of the 
arcs, however, depends on whether a top-down or 
bottom-up search method is being applied. Using 
top-down search, the arcs are possible subgoal 
paths. To recognize a Road-System, for instance, 
this schema can selectively call the Town, Road 
and Bridge schemata as subgoals. Using bottom
up search, on the other hand, the arcs represent 
cue paths to select possible supergoals. As an 
example, if the Bridge schema has satisfied its 
expectations for a bridge instance in the input 
image, it must invoke plausible higher schemata 
as supergoals. In this case, both Road-System 
and River-System are very likely to be found in 
a sketch map scene containing a bridge. 

For this sketch map system, the image is 
represented as plot vectors taken directly from 
a vector graphics tablet. Conceptually, the 
data consists of connected image points called 
Links and blank space called Patches. We have 
employed a simple recursive quadrant-splitting 
region finder to yield a conservative first seg
mentation. For this domain, regions are thought 
to be poor cues. Instead, a line finder which 
attempts to connect plot vectors into chains is 
used to provide primary cues. This algorithm is 
again chosen to be conservative, forming chains 
only where the distance between links is small 
and there is no ambiguity as to chain direction. 

4. Cycles of Perception 
Unfortunately, to completely segment a com

plex image requires the use of model-specific 
information about the scenes interpretation, yet 
that information is only fully available after 
the segmentation has been performed. In order 
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to avoid this "chicken and egg problem" [Mack
worth, 1977b] [Havens , 1976], an integration of 
low and high-level processing must be achieved . 
Mackworth [1978] has advocated a "cycle of per
ception" theory for computer vision to avoid this 
problem (see Figure 1). Kanade [1977] defines a 
si mil ar cyclic model. An initial conservative 
segmentation is used to generate primary cues 
that invoke appropriate object models. Once in
voked, these models can guide a context-sensitive 
resegmentation of the image, thereby providing 
new more powerful cues to repeat the cycle. 

f 
CUE 

DISCOVERY. 

MODEL ... ~11------. 
ELABORATION ~ 

MODEL 
VERIFICATION 

"-_ MODEL 
"'-~..;)lo., INVOCATION 

_) 

Figure l 

We argue that this cycle of perception can 
as well be characterized as a recursive process. 
When all the expectations of a particular model 
have been satisfied, the instantiated model be
comes an abstract cue to recursively invoke ap
propriate models higher in the knowledge hier
archy (see Figure 2). Instead of relying only 
on primitive context-free cues, the recognition 
of schema instances at intermediate levels in 
the hierarchy can provide context-sensitive cues 
for the next level. 

invokes ( 
EXPECTATIONS 

matches\_ 

SCHEMATA~ 
directs y 

OBSERVATION 

pri~~ success 

DI~~6VERY j 
i abstract 
'-...:.:..:.. COMPLETION 

. Figure 2 



5. Prograrrming Methodology 

The development of prograrrming methodology 
for such tasks as computer vision is an active 
area of research [Bobrow & Raphael, 1974]. Re
cent work has focused on the development of 
schemata-based prograrrming languages such as KRL 
[Bobrow & Winograd , 1977] and MAYA [Havens, 
1978b] . Such languages define data structures 
for representing and accessing schemata and for 
constructing schemata networks. A method of 
copying stereotype schemata to provide specific 
schema instances is also essential. Since sche
mata may contain both descriptive and procedural 
knowledge, a mechanism must also be included for 
allowing attachment of procedures to data within 
schemata [Winograd, 1975]. 

The procedures associated with each schema 
are considered model -spec ific methods for guiding 
the search process for that schema. Procedura l 
methods can be used in both top-down and bottom
up search of the schema hierarchy. Both require 
multiprocessing capabilities. Top-down, subgoal 
search can be realized by using generators [Suss
man & McDermott, 1972] as independent processes 
that can be recalled on failure to repeatedly at
tempt alternative solutions to their subgoals. 

Bottom-up search requires that .a number of 
models be allowed to be active hypotheses simul
taneously. Therefore, each procedural method as
sociated with an active schema must be realized 
as an independent process . Each such process is 
allowed to guide the recognition process for its 
schema stereotype. The coordination of multiple 
competing processes in goal-directed systems is 
poorly understood [Brady, 1978]. KRL defines a 
hierarchy of scheduler processes but leaves the 
specification of these schedulers to the program
mer. 

To the contrary, MAYA defines four control 
primitives for implementing bottom-up, data
driven recognition in scherr .. ca networks. The 
first primitive, PROCESS, creates a new process 
associated with some schema and begins its execu
tion. This process may attempt to satisfy its 
schema's model by employing subgoal search or by 
invoking low-level iconic processes to generate 
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primary cues. If the search is unproductive, the 
process can suspend itself, using SUSPEND, to 
simple n-tuple patterns representing the unful
filled expectations of the schema model. When 
such information is discovered later by a lower 
process, the process can be restarted, using 
RESUME, by a successful pattern match to its pat
tern. A number of schemata can, therefore, con
duct their recognition in pseudo-parallel being 
activated by the discovery of cues or information 
matching their model's expectations, applying 
their methods, suspending themselves when infor
mation is not avail able, and being resumed later 
by the discovery of additional matching cues of 
information. See Fig ure 4. 

This iterative cycle continues for each 
acti ve schema until some schema succeeds in 
satisfying its model's expectations. If the 
schema is intermediate in the schema hierarchy, 
then the completed schema instance is an ab
stract cue. The control primitive COMPLETE al
lows this schema to perform two essential control 
operations. A pattern match determines which 
higher schemata processes are waiting for the in
formation provided by this completed instance. 
The completed process is suspended and the 
matched higher- level processes are resumed, in 
turn, to continue their own methods . 

6. Cone l us ion 
This research is concerned with extending 

the use of model -driven recognition methods in 
computer vision. By employing a recursive hier
archy of cues and models, represented as sche
mata, the acknowledged difficulties of invoking 
models by low-level cues are avoided. By using 
a schema-based multiprocessing programming en
vironment, a number of models can simultaneously 
be active hypotheses applying their object
specific methods concurrently. Finally, by test
ing these techniques on the idealized domain of 
cartographic sketch maps , both qualitative anJ 
quantitative measures of their performance can 
be obtained. 
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Abstract 

This paper presents a generalizatia, of the 
Augmented Transiticn Network formalism to allo., 
the writing of picture granmars. 'Ille generalized 
A'IN is used to write a picture granmar for a 
subclass of Heraldic Shields. 'Itlis awlicatioo 
serves to illustrate such (usually linguistic) 
terms as "anomaly", "ambiguity" and "paraEflrase" 
as awlied to pictures. 'Itle paper also suggests 
two obstacles to progress in picture granrnars and 
concludes that the proposed system 01Terocxnes 
them. 

1. Introduction 

1.1 OJerview 

The linguistic awroach to image 

understanding pushed the analogy between 

sentences and images to the point of designing 

picture granrnars as generalizatioos of string 

granrnars (Miller and Shaw 1968, F\J 1974, Ledley 

1964, Ellans 1969). _Such attenpts were successful 

in highly circumscribed two-dimensiooal scene 

domains , but the awroach has not made much 

further progress. 'Iwo reasons for the lack of 

progress are, first, the failure to allo., for the 

expressioo and exploitatia, of graEflical 

relaticnships and, second , the weak expressive 

po.,er of conventional granmars as a progranming 

language in which to write effective recognitia, 

procedures. 
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we propose a substantial generalization of 

the Augmented Transitia, Network formalism for 

string granmars (Woods, 1970) to allo., the 

writing of picture granmars. 'Itlis m:x:lificatia, 

required the soluticn of the follo.,ing problems: 

- the A'IN must look at suitable picture 
primitives rather than words 

- the A'IN must work with many graEflical 
relatioos not just ooncatenaticn and 
carp:,sitia, 

- the noticn of "get next token" must be 
generalized for pictures 

- the notia, of "end of sring" nust be 
extended to pictures 

'Itle solutia,s to these problems are presented in 

detail. 'llley required the generalization both of 

the A'IN formalism for granmars and its associated 

parser. 

'Ille m:x:lified A'IN was used to write a picture 

granmar for a subclass of Heraldic Shields. 'Itlis 

picture granrnar takes, as input, an image of the 

shield represented as an array of pixels with 

colour values. It then outputs a linguistic 

descripticn of the shield called an Heraldic 

Blazcn. 

1.2 Heraldic Shields 

we will restrict ourselves to the class of 

shields that can be described by the class of 



blaza,s generated by the granmar of (Baker, 

1977). '!he granmar for this class is presented 

belcw. 

<shield> ::= <field>. 
<field> : :• <c:x>lours>, <charges> I 

per pale: a, the dexter <field>: and 
on the sinister <field> 

per fess: in chief <field>: 
and in base <field> I 

quarterly: I <field>: II <field>: 
III <field>: Ill <field> 

quarterly: I and Ill <field>: 
II <field>: III <field> 

quarterly: I and Ill <field>: 
II <field> and III <field> 

<colours>::• <tincture> I 
<partitioo> <tincture> and 

<tincture> 
<tincture> ::• argent I or I azure I 

gules I sable 
<partitia,> ::m per pale I per fess I quarterly 
<charges> : :c: <centred charge> I 

<minor charges> I 
on <centred charge>, 

<minor charges> I 
<palewise ordinary> and, 

<fesswise side>, 
<minor charges> I 

<palewise ordinary> charged with 
<minor charges> and, 
<fesswise side>, 
<minor charges> I 

<fesswise ordinary> and, 
<palewise side>, · 
<minor charges> I 

<fesswise ordinary> charged with 
<minor charges> and, 
<palewise side>, 

_ <minor charges> I 
<centred charge> : := <ordinary> I 

<ordinary> between 
<minor charges> 

<ordinary>::• <palewise ordinary> I 
<fesswise ordinary> <cross> 

<palewise ordinary> : := a pale I 
a pale <colours> 

<fesswise ordinary> : := a fess I 
a fess <colours> I 
a bend I 
a bend <tincture> 

<cross> ::=across I a cross <tincture> 
<fesswise side> : := a, the dexter I 

a, the sinister 
<palewise side> : := in chief I in base 
<minor charges> ::= a billet <tincture> I 

<number> billets <directicn> 
<tincture> 

<number> : := two I three I four 
<directia,> : := in pale I in fess <e!Tpty> 
<enpty> ::= 

'!he terminology of heraldic blazons is bound to 

be unfamiliar to IICSt readers. 'lb aid in the 

reading of this paper, a descriptiCl'I of these 
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terms is provided in the following figure. 

chief 

base 
[E 
~ 

[JJ 8 
A Pale A Fess A Bend 

A Cross A Billet 

~ [IJ 8 
Three Billets Three Three Billets 

Agent Or 

Billets 
in Pale 

in Fess 

Azure Gules Sable 

Argent, on a cross 
azure between four 
billets gules, two 
billets in pale or. 

Argent, a bend gules 
and, in chief, two 
billets gu l es. 



2. Generalizing the A'lN 

'!he MW is generally regarded as an 

"off-the-shelf" tool for writ ing string granrnars. 

The nature of the words in the dicticnary and en 

the WRD arcs are left to the granrnar writer. 

('nle WRD arc is an extensicn to Wood's original 

proFO,Sal that requires the presence of a 

particular word next in the string,) Similarly, 

the nature of the functicn MJRPH is also left to 

the user. (M'JRPH is the mori:tier that, given a 

derived word not in the dicticnary, finds its 

root form in the dicticnary and adds the required 

inflecticnal features.) 

Our picture granrnar MW is to be treated 

this way also. We found h<:Mever, that discussicn 

of the A'IN concepts is facilitated by the use of 

an example awlicaticn. With this end in mind, 

let us first examine the heraldic shields danain, 

2.1 Dana.in Specific Concepts 

We would like to solve the follCMing 

problems: 

- define the picture primitives 

- identify the picture primitives 

- choose the relatiais needed to describe 
picture structure 

- write a granmar and define the associated 
semantics 

These problems will ro,, bP examined in more 

detail. 

Primitives. 

A subset of the primitives defined is sh<:Mn 

belcw. The names underneath are the "words" a, 
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the WRD arcs of the granrnar. 

+ I ~ I 

cross pale bend-4 billet 

:o· 
II II 

II I c::::J 
Iii • 

pale-3 3-billets-in-fess fess-4 

llll IBl II 

' II 1111 Ii 

2-billets 4-billets bend 

There are 24 primitives in all. The unshaded 

objects above are for illustratiai aily and are 

not part of the primitives. 

F.ach primitive is qualified by its ooords 

which uniquely determines a primitive's size, 

shape, and ooordinates. For example, (BEND 

CXX:JRDS) where CXX:JROO .. (Q-I SHIELOO), means only 

the primitive: 

Note that "ooords" is used in a slightly 

non-standard sense. This word here refers to the 

region in which the primitive is enclosed. For 

example, (CJQ;S (Q-I SHIEID)) is the shaded 

regiai belCM, 

A billet in the middle of this regiai is 

indicated by (BILLET <XX>ROO), 



Identificatioo 

These primitives are detected by the WRD 

arcs of the gramnar. The WRD arc requires the 

CXX>IaJ as an argument. A simple pattern matcher 

checks the occurrence of the primitive and 

returns its oolour, Fbr example, suppose the 

word is BF1ID and the ooords are (Q-I SHIELD) . 

The folla,,ing pattern would then be generated: ~----: 
:~ I 
I I 

~ ) 
' ~ ' ,,. ,..., 

Note that aily the boundary of the primitive is 

generated as the pattern. 'l'his is to allCM 

charged charges (e.g. a billet oo a fess). 'l'he 

inside of the pattern is an "I don't care" 

regioo. 'l'he boundary must be a uniform oolour 

(which is returned ) , and the pixels adjacent to 

it oo the outside must be a different oolour. 

A possible matcher is shown belCM 

(DEFtJN MATCH (OOJECI' COJRDS) 
(<nm ( (APPLYl ' (IAMBo.a. (PATI'Em) 

(DIFFERENI' (RIM PA'l'l'Em) 
PATI.'Em) ) . 

(GENERATE OOJECl' COJRDS)) 
(ER1'SE OOJECl' COJRDS)) 

(T NIL))) 

where 

GENERA'lE returns a list of x,y coordinates making 
up the pattern i.e. ( (X1 Y1 ) (X2 Y2 ) ... 
(Xn Yn )) 

RIM returns a list of x,y coordinates making up 
the rim of the pattern (i.e. the outside 
boundary) 

DIFFERENI' returns T if PATI.'Em is a unique oolour 
in the picture and (RIM PATI'ER'<l) consists 
of any oolours different fran those of 
PATI'Effi 

ER/ISE SEID;22's every point of the object to a 
deletia, figure (the object is all points 
within PATI'ER'<l of PATI.'Em's oolour) and 
returns the oolour of the object 

MATCH therefore returns the oolour of the object 
or NIL if the CXlllditiais are not met 
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PATI'Effi is a list of x,y ooords 

Upoo recognitioo, the object is deleted. 

'l'his is best done with a "bug" (or several, if 

need be) placed oo the object, which "eats" <May 

the ooloured object. Fbr exarrple, 

.. . .. . I ~ G .. . 
:::. ·-·· 

Note that the differently coloured billet in the 

centre is left untouched. 

In our system, this deletioo should be done 

using SE'IQ2. 'l'his is an undoable functiai in 

LISP/Ml'$ and is chosen here to allow backtracking 

in the granrnar. 'l'his notioo of deletioo 

oorresponds to that of string advance in the 

regular A'lW parser. 

Relatioos 

'l'he relatioo a.ncng words in string gramnars 

is that of ooncatenatioo. Another way of 

thinking of a sentence is as a series of slots 

into which the words fit. Aloog these lines, we 

consider a picture as a oollectioo of regions 

into which the prmitives fit. 'l'hese regioos are 

the ones used in describing the shields with 

· blazons. Namely, 

DEXTER 
SINISTER 
CHIEF 
~ 
aa;s 
PALE 

Q-I 
Q-II 
Q-III 
Q-IV 
m;s 
BmD 

colours, as well, are considered to be 

relations. 'l'his holds not so much for 

primitives, as for entire regioos. 'l'his is 

tested by looking at several points in the regia, 

where charges oould not be. All the points must 

be the oolour being tested for. 



2.2 Generalization of~ Concepts 

The A'IN parser was designed for string 

granrnars, consequently sane rrodificatiais were 

necessary to enable use with picture granmars. 

String Advance 

The area of interest is restricted on PUSH 

arcs by sending (via SENOR) the desired CXX)RDS to 

the net of the subpicture being PUSHed for. For 

example, suppose we were looking for a cross in 

quadrant I of the shield and that we were 

presently at the top level. We \«>uld 

(SENOR CXX)RDS (Q-I (Gm'R CXX)RDS )) ) 

to the ~ / net. Here CXX)RDS is the 

register containing the current regiai and Q-I is 

a functiai which returns the regiai which is the 

first quadrant of the regiai defined by its 

argument. 

The notiai of "advancing the inp..1t picture" 

is realized by the following acticns: 

(1) Upcn recognitiai of a primitive, that 

primitive is deleted from the picture (replaced 

by deletioo characters ) . This occurs on WRD 

arcs. 

(2) Upcn detectioo of the colour of a regicn, 

that colour is deleted for that regicn. This 

occurs en TST arcs. For examp1"', 

detectioo of 

( SABLE SHIELD) 

~~++--·---
++· 
+++ 
+++J 
++ 
++ 

+ 

Note that the two billets in fess sable are not 

deleted due to the nature of the bug method of 

deletiai. 

183 

End of String 

The noticn of, "a string granmar parse is 

successful when the entire string is accepted", 

is generalized to that of, "a picture granmar 

parse is successful when the entire picture is 

accepted". This oonditiai is detected in our 

system by a functiai (EMPTY CXX)RDS ) which tests 

if all the objects within the regioo specified by 

CXX)RDS have been deleted. "Erd of Picture" is 

determined by calling (EMPTY SHIELD/) • 

WRD arcs ---
These are now used to detect picture 

primitives, rather than \«>rds. This arc now 

takes OXlRDS as an argument. This is necessary 

to canpletely specify the primitive as explained 

earlier in the sectiCX'l ai primitives. An 

internal variable, PR:>PERTY', is set to (MA'Iai 

OOJECl' OXlRDS) . This could be anything the user 

desires, in this case, the colour of the object. 

Following the conventicns of (Reiter, 1978) , the 

WRD arc definiticn appears below: 

(WRD <word> [coords] [test] [acticn] *> 

If "test" evaluates to non-NIL, and if the 

primitive "\«>rd" is found at "coords" by MATCH 

(user defined functicn), perform the sequence of 

actioos. The last action must be ('IU <state> ) . 

* is bound to the tuple (\«>rd PIDPERTY' ) , where 

PIDPERTY' is returned by (MA'Iai \«>rd coords ) • WRO 

"advances the inp..1t picture". 

MEM arcs ---
As for WRD, cnly MEM allows a list of 

primitives (in ooly cne regioo, CXX)RDS ) all of 

which are checked. The format for MEM arcs is: 

(MEM <words> [coords] [test] [action)* > 

where <\r,'Ords> is a list of possible 
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alternatives, 

'IST arcs 

'lbese are usea to test relatioos. In the 

SHIELOO exairple, they are used to test for the 

colours of regioos. As such, 'IST still "advances 

the in{1lt picture". 

PARSE 

Since no sentence is being parsed, the 

flD'lctioo PARSE need not acx:ept a sentence as an 

argument. 'Ihe new format for calling PARSE is: 

(PARSE <state>) 

All string advance calls have been eliminated 

from the parser, as have the CAT arc and the 

calls to MJRPH. 

3. 'Ihe Heraldic Shields Gramnar 

3.1 Semantic Tests 

A few words need to be said about the 

semantic tests used. At present, these tests are 

only simulated but their designs are presented in 

the following discussion. 

Q-'!E.5T 
PALE-TEST 
FffiS-TEST 

These tests return T if the regioo specified 

by the argument is divided quarterly, vertically 

(per pale), or horizontally (per fess) 

respectively. These. tests would work as follows: 

EB 
Tests are ma:le at the points (.) iooicated 
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above. 'Ihese points are chosen so as to avoid 

charges. 'Ihe numerals in the tests below are to 

be interpreted as 

<NlJo1ERAL> = colour of <NlMERAL> quadrant 

Q-TEST ( I 'f II) AND ( II 'f IV) AND 
(I 'f III) AND (III 'f IV) 

PALE-TEST {I = III) OR (II = IV) 
FffiS..Jm;T (I = II) OR (III a IV) 

Q-(X)Ul.JRED 
P-COUXJRED 
F-<X>Ul.JRED 

'Ihese are tests to determine if a given 

regioo is coloured by quarterly, palewise or 

fesswise division respectively. 'Ihe tests 

themselves are the same as those above, but the 

tests are made on all the lD'IShaded · points below: 

Points of one quadrant ~ be of lD'liform 

colour. 

3.2 EMPTY 

'Ibis test determines if the region specified 

by its argument has had all objects deleted, 

which is the case if the entire region is ma:le up 

of deleticn characters. It is used en POP arcs 

to ensure that a given regioo has been correctly 

parsed before going oo to the next regioo. For 

exanq:,le, we would like to know that quadrant I 

has been correctly parsed before attempting to 

process quadrant II. It is also used on some 

PUSH arcs to prevent looking for something in an 

erpty regioo. 

Note also the use of SENOR in restrictioo of 



the area of interest by narrc:Ming down of the 

OX>RDS, 

3.3 Successful~ 

A simulaticn of the proposed system has been 

implemented. This includes: 

a) a m:xUfied A'IN parser 
bl the gramnar 
c) simulated semantic tests 

'ltiat is, the entire system has been implemented 

oo the AMDAHL/470 at UBC, except the semantic 

tests, which are not autanatic, but require 

interacticn with a human operator. This 

implementaticn CX)rrectly translates shields into 

blazoos for those shields described by Baker's 

heraldic blazon gramnar. For example, when given 

the two example shields of Figure 1, the program 

yielded exactly those blazons oorresponding to 

the shields in Figure 1. Shields not describable 

by that gramnar are said to be · ananalies. 

Anomalies are CX)rrectly rejected by our system. 

The figures bela., show how the picture is 

processed. 

. 

.... •,·,• •.',;,,. 

3.4 Ambiguities 

An interesting point that arose in this \\Ork 

is the existence of ambiguous shields. A shield 
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is said to be ambiguous if it can be described by 

nore than ene blazen. An example of such a 

shield aleng with two possibie blazens is shown 

bela.,, 

(1) Per pale: en the dexter per fess: in 
chief azure, a cross gules: and in base 
argent: and en the sinister argent 

(2) Per fess: in chief per pale: en the 
dexter azure, a cross gules: and en the 
sinister argent: and in base argent. 

Note that the abolle shield CX)Uld also be 

described as divided quarterly, but this would 

not be a valid parse in our system due to the 

semantic Q-'l'E.ST. The ambiguity is resolved in 

our system by arc ordering. The A'IN is thought 

of as being a parallel process, but this is, of 

CX)Urse, not the case in any sequential machine 

implementatien. In our case, the arcs are tried 

in the order in which they appear. Hence, if we 

put the arc for PER PALE divisien first, then it 

will be tried first. This is equivalent to 

saying that if a shield can be divided both PER 

PALE and PER FESS, then divide it PER PALE. 

Blazen (1) is therefore the CX)rrect descriptien 

· as generated by our parser • 

4. Directions for Further ~rk -- --

Due to the nature of our pattern matcher, 

multi-coloured primitives are not permitted (e .g. 

a two tooe bend) • The matcher CX)Uld be extended 

to allCM such objects, which are permitted in 

Baker's granmar. 

The present system's recognitioo of regicn 
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colours is unsatisfactory. It must avoid all 

charges that might be a, the regia, in its 

detectia, and nust be careful to delete around 

them. A re-<>rder ing of nodes and arcs ~ld have 

the system look first for dlarges, then for the 

colours of the regia,. Deletia, would rn, mean 

extending the colours over the deleted charge. 

The semantic test EMP'lY would require 

roodificatia, to oonsider a regia, of pure colour 

as "enpty". As well, the granmar could no laiger 

rely a, kl'XMledge of the regia, before checking 

for dlarges (e.g. at present, if a cross is 

detected , dlarges a, the cross are looked for • 

The new design would fioo the charges a, the 

cross first (and then realize that they are en a 

cross later , then look for the cross) • An 

exan;ile of how the new system would process 

shields is diagranmed below. 

0 
Since our pattern matcher effectively 

generates each primitive, we could, by m:xlifying 

this matcher into a generator, generate shields 

by running the granmar "in reverse". That is, we 

(or some program) could decide a, precisely what 

arcs to take (i.e. the parse is pre-selected), 

This, together with our notioo of shield 

ambiguity, gives us a method of paraphrasing 

blaza,s. If we oonsider our arc ordering as 

being "standard", then our parse can be 
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oonsidered to be a "standard blazcn", In 

particular then, we have a method for the 

standardizatia, of non-standard blazons: 

- use the na,-standard blazcn to generate a 
shield 

- parse the shield 
- the output will be the standardized blazoo 

s. Conclusions 

This paper has shown that A'm's are 

mxlifiable to allow the writing of picture 

granmars. We have dem::ristrated this for a 

picture granmar for heraldic shields exhibiting 

oontext-sensitive properties, such as identity of 

quadrants. 

We have fouoo that the syntactic method ( in 

our granmar) yields useful information (blazcns) 

about the structure of heraldic shields, 

Anomalous shields are rejected and a notion of 

"standard blazon" eliminates ambiguity, 

We feel that generatioo of shields is 

possible by running the granmar "in reverse", and 

that heraldic blazons may be paraphrased by 

oonsidering shields to be the semantics of the 

blazon. 

We see that relatia,al richness is provided 

in our A'm by our use of "layered" regioos. That 

is, we look for things on crosses, etc. An 

alternative way of thinking of this, perhaps roc>re 

indicative of its ~er, is as "restricted" 

regioos. That is, when we PUSH for (Q-I ooords), 

we are actually fcx::using our attentioo on this 

restricted area of ooords. 

Finally, we conclude that our system has 

inherited the ease-of-progranming associated with 



string granmar A'l'Ns. 
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Autanatic registraticn of Landsat images 
using features selected from 

digital terrain models 

James J, Little 
Department of CalpJter Science 
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Vanoouver, B.C., ,Canada V6T lWS 

Abstract 

Before two Landsat M.SS images can be 
corrpared, they must be registered by being 
brought into ex>rrespondence with some reference 
pat um. 'lbe reference can be cne of the images, a 
·synthetic image, a map, or other symbolic 
representaticn of the area imaged. A novel 
metl'x:ld is presented for determining the 
transformaticn to align an image to a digital 
terrain model, a structure which represents the 
topography of an area. Parameters of an affine 
transformaticn are 00111?Uted from the 
correspondence between features of terrain 
extracted from the digital terrain model, and 
brightness discontinuities found in the Landsat 
image. 

1. Introduction 

A Landsat M.SS image measures scene ra<'liance 

in each of four spectral bands, at a nominal 

ground resoluticn of 80 x 80 meters. The 

positicn and attitlrle of the satellite is kna.m 

with limited precisioo, After bulk processing, 

the estimated ground locaticn of a pixel may 

differ from its true positicn by as much as 10 

km. Further processing is required to make the 

coordinate systems of multiple images oarparable. 

Registratioo can benefit from the availability of 

accurate digital terrain models. A digital 

terrain model (IYIM) is accurately located in a 

geographic coordinate system. A Landsat image 

registered to a digital terrain model can be 

directly oarpared with other sources of 

geographic informaticn, and other images. 
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Horn and Bachman (1978) used synthetic 

images generated from digital terrain models to 

register Landsat images. Their work assumes that 

the transformaticn between the synthetic image 

and the Landsat image can be described in term.s 

of rotaticn, translaticn and scale change. A 

correlatia1 of the real and synthetic images is 

used as measure of goodness of fit to guide the 

adjustment of the parameters of the 

transformaticn. Horn and Bachman's method is 

based upon an areal ex>rrelatia1 which can be 

CO!Tplltatiooally expensive. 'llle authors avoid 

some of this expense by first using la.,, 

resolutia1 images to produce rough estimates of 

the registratia1 parameters. The full resoluticn 

of the data is used to OCJll1?Ute the final 

correctioos to these estimates. 

~rk by Horn and ~ham (1978) has shown 

that an affine transformaticn is sufficient to 

register small subsectia1s of a Landsat image to 

a synthetic image, or, in our case, a r::Yll-1, In 

the technique presented here, the Landsat image 

and the IYIM are each characterized by a set of 

curvilinear features. A ex>rrespondence between 

the elements of the two sets of features is 

established which satisfies both geometric 

(shape) constraints and topological (adjacency) 

constraints. The matching between elements 



provides the inp..1t to a least-squares estimator 

for the parameters of the affine transform. 'lb 

test the method, a lOOxlOO pixel subsection of a 

Landsat image (figure l) is registered to a 

digital terrain mcrlel. The Landsat image was 

acquired on September 14,1976 (frame ID 

11514-17153). The digital terrain mcrlel was 

digitized from a 1/50000 series contour map, NTS 

sheet 82 F/9, St. Mary Lake, centered on latitude 

49 degrees, 37.5 minutes and longitude 114 

degrees, 15 minutes. This area is southwest of 

Cranbrook, British C.olumbia. 

Fig.l Landsat image subsection (100 x 100) 

2. Extracting features of terrain 

The terrain representation used is the 

Triangulated Irregular Network (Peucker et al., 

1978) which represents the terrain surface as a 

mesh of contiguous, non-overlapping triangular 

facets. The structure of terrain can be 

represented by the network of ridges and 

channels, or divides and streams. The ridges are 
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convex linear surface features which, 

theoretically, connect passes (saddle points ) to 

peaks (relative maxima). In practice we find 

that the set of ridges on a surface also includes 

convex linear features which connect to the main 

ridges that do join passes to peaks. Channels 

are concave linear features similarly defined. 

These elements of surface structure are 

explicitly represented in the mc<lel as the edges 

of triangular facets. A synthetic image 

generated from the test area IYIM is shcMn in 

figure 2. 

Fig.2 Synthetic image from the D'IM 

After determining the sun position 

corresponding to the Landsat image, it is 

possible to select those ridges which will appear 

in the image as linear brightness 

discontinuities. A simple mcrlel of surface 

reflectance is used (Horn and Bachman, 1978 ) . 

'Ihe slope of each surface facet is derived and 

the brightness of the surface determined using 

the assumed reflectance function. Those ridges 

are selected which are bounded, on one side, by a 
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self-shadc:,,.,,ed facet (one which receives oo direct 

illuminatioo) , and, on the other side, by a facet 

whose predicted brightness is relatively high. 

The ridge sectioos are merged into curves when 

they are adjacent and are consistent in 

directioo. O'lly those curves are output which 

represent, on average, a strong brightness 

discontinuity. Figure 3 shc:Ms the features 

extracted from the JJIM. 
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Fig.3 Features extracted from the lJIM 

3. Extracting Features fran the Landsat Image 

In the Landsat image, these ridges will 

appear as boundaries where a transitioo occurs 

between a bright and dark regioo. Desirable 

boundaries are those formed by m:>untain ridges 

oriented perpendicular to the azimuthal direction 

of solar illuminatia,. Shadow boundaries may 

also be found, rut, since the directia, of the 

incident illuminatia, is knc:,,.,,n, they can be 

distinguished from the transitia, features formed 

by ridges. Shadows are dark en the side of the 
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edge nearer the light source. 

3.1 Filtering 

The Landsat image is convolved with a 5x5 

Sobel operator (Iannioo and Shapiro, 1979), which 

is oorrposed of two orthogooal canpcnents. 'nle 

ratio of the outputs of these provides an 

estimate of the directia1 of the boundary element 

passing through the pixels tested. By checking 

this direction against the azimuthal angle of the 

sun position, it is possible to reject any 

brightness discontinuities caused by shadc:,,.,,s. 

The 5x5 filter gives high values not only at 

discontinuities, but also at pixels offset fran 

the discontinuities. 'nlis produces secondary 

lines lying parallel to the original. In order 

to eliminate these as early as possible a scheme 

of Nevatia and Baro ( 1979) is used. An edge 

element is ju:lged to exist at a pixel if 

a ) the magnitu:le of the filter output is 
above a threshold 
b) its magnitude is higher than that of its 
two neighbors in the direction normal to the 
estimated edge directioo, and 
c ) the edge directioos of these neighboring 
pixels are within 45 degrees of the 
directia1 at the central pixel. 

If any of these conditioos do not hold then no 

edge element is present. 'nle effect of this 

process is to suppress the 'echo ' elements at an 

early stage, eliminating the need for later curve 

thinning procedures. 

3.2 Line Grc:,,.,,ing 

'nle output of the filter is used in the 

constructia1 of the linear features, which 



·i.mplelllP.nts the method of Bajcsy and Tarakoli 

(1976). A histogram of the values of the filter 

outµ.it is derived. 'Itlis histogram is used to 

l:Hrect the process so that lines are 'grCMn' fran 

toose points which had the highest outµ.it from 

the filtering step. A cumulative distribution 

function is derived fran the histogram. At each 

step in the line growing process, the filter 

':hreshold is is relaxed so that five percent oore 

9ixels are above it. Initially the threshold is 

set at the 95 percent level. 

At each stage in the line construction 

process, the threshold is set at the proper level 

and all points are tested in the order in which 

they are stored in the image. 'Itle thresoold is 

lowered a level, and the process repeated, until 

the minimLDTI level is reached. Lines are 

constructed incrementally in this first stage: at 

first a line consists of a single point. When 

another adjacent point lies above the threshold, 

and cannot be joined to any existing line, it is 

joined to the single point and forms a two-point 

line. To ensure that the lines found have oore 

than a certain minimLDTI curvature, points are 

added to an existing line only if they are 

adjacent to the endpoints of the line and the 

segment connecting the new point to the endpoint 

lies within 45 degrees of the direction of the 

nearest segment in the line. 

'Itle result of the first stage is a set of 

lines each consisting of a Sc - of connected 

pixels. In the next stage, these lines are 

merged into larger connected lines when two 

conditions hold: first, the lines must be 

adjacent at their endpoints, and, second, they 
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must each be corrpatible with the orientation of 

the line segment at the end of the other line. 

To aid in this process, a piecewise linear 

approximation is derived for each of the curves. 

3. 3 Approximatioos to Lines 

A piecewise linear approximatia'l to a 

digital line (Ramer,1972) approximates a line to 

a given precisia'l by a set of linear segments 

connecting points on the line. In its 

constructia'l, the first and last points in the 

line are connected by a straight line segment and 

those extreme points are found which lie farthest 

in perpendicular distance fran the line segment 

(figure 4, A and B). 'Itlese extreme points are 

included in the approximatia'l if their distances 

from the segment are above the specified 

threshold. 'Itle line is then subdivided into the 

three sets of points to the left, between and 

right of the selected points. 'Itle .three subsets 

of the line are processed recursively in a 

similar fashia'l. If the point farthest fran the 

segment in a particular subset is within the 

threshold distance, then processing of that 

subset of the line is stopped, and O'll.y the 

endpoints of the line segment retained. 'Itle 

process of finding such an approximatia'l is 

termed 'generalizatia'l', 

----

Fig.4 A curve and its extreme points 
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M:>st of the lines contain many colinear 

points, so the line ai:proximatia, process reduces 

the number of points in the lines substantially. 

Using the ai:proximatia,s, directia,al decisia,s 

involving the orientatia, of line segments are 

less affected by any perturbatia,s at the end of 

curves caused by quantizatia,. '!he outp..it of the 

feature-detector is the set of lines in 

generalized form, which are la,ger than a 

specified minimum length(figure 5). 
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Fig.5 Landsat features 

4. Matching 

The original scheme proposed matching the 

edges fran the Landsat to those in the lYIM by 

using the intersectia, of linear features when 

these formed vertices of degree more than two. 

Nodes of s imilar degree were to be paired, 

starting with those of highest degree. 'lhe 

orientatia, of the edges incident upc:n these 

nodes would be oompared to determine the 

correctness of the matching. However, because it 

was difficult to fi!¥'1 nodes of degree higher than 
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two in the Landsat image, the design of the 

matching process had to be nmified. '!he 

matching is instead driven by the structure of 

the curves themselves and the spatial 

relatia,ships aJOCJng them, rather than their 

intersecticns. 

4.1 Previous work 

Q.ir method is an extensioo of the techniques 

used for image registraticn developed at SRI 

(Bolles et al.,1979) . In their method, the 

transformaticn fran the test image to the 

reference is nmelled as a functioo of the camera 

parameters, such as focal length, X,Y, z, 

heading, pitch and roll. An essential part of 

the SRI method is that there is a gcxxl 'a priori' 

estimate of the camera parameters and of the 

errors in these parameters. 'lhese estimates are 

used to predict the extent of the regicn in the 

image which is to be searched for an element from 

the reference image. 'llle predicted search region 

for an element is termed its 'uncertainty 

regicn'. Cxice an element is located within its 

search regicn, it is possible to reduce the 

search regia,s for other elements: the pairing of 

reference element and image element provides new 

inforrnaticn, which is used to improve the camera 

parameters and reduce the errors. Both linear 

and point features are hand- selected fran the 

reference image for registration. 'llle SRI system 

utilizes the notion of local support for the 

verification of linear features. For example, 

highways are composed of several parallel lanes: 

in detection of a highway the system searches for 



locally offset lanes to confirm the matching of 

others. The matching of elements provides 

informatia, for the correspcndence refinement 

process which solves the nonlinear camera 

i;>arameter estimatia, problem. 

4. 2 The Method ----

Our registratia, method proceeds in several 

stages, folla,ling a similar scheme. The inp..1t 

consists of the features found in the Landsat 

'images, which we will term the "1-edges", and the 

ridges selected from the DIM. The elements of 

:both feature sets are the result of 

'generalizing' the appropriate curves using the 

same approximatia, technique and the same 

':hreshold. If a curve is represented in its 

generalized form by a straight line segment, then 

tt is 'simple'. Pny curve whose generalized 

~epresentatia, requires interior points, other 

.than its endpoints, is said to be 'structured'. 

During all stages of the registraticn process, 

features in both images are ordered by the anount 

of structure in their generalized representaticn. 

The transformaticn applied to register 

f'*ltures from Landsat to terrain nodel 

coordinates is an affine transform, an operator 

of 6 parameters. Finding the tranformaticn 

parameters requires pairing at least three points 

from each image. These are CCl!lllla'lly supplied 

manually by selecting ground · ..>ntrol points from 

ooth images. If rore than three are supplied, a 

least-squares estimate of the transform can be 

corrputed. M 'a priori' estimate of the 

(l()E!fficients of the affine transform can be 
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derived from the parameters of the satellite's 

orbit (Horn and ~ham, 1978). This transform 

least constrains the translatia, COll'EJOl'lent, so 

the practical strategy is to determine the 

necessary translaticn. The ncminal positicn of 

the Landsat data indicates the center of a search 

regia1 for a terrain element, and the known 

errors determine an 'uncertainty regicn', 

The ridges are considered in the order of 

their structural oonplexityi it is assumed that 

the rore strongly an element differs from a 

straight line the less likely it is to be 

incorrectly matched. The goal of the matching 

process is to pair a sufficient number of 

features from the Landsat image and the terrain 

nodel to CCJnilllte the transform parameters 

correctly. Note, however, that we ccrnpute the 

transformaticn directly rather than estimate 

camera parameters. 

Once three feature pairings have been 

established, the affine transform can be derived. 

Exhaustive examinaticn of all such triples is 

clearly too expensive. Knowledge of the 

constraints imposed in the problem, especially in 

the image formatioo process, rrust limit the 

search space. 

4.3 Construction of the Matching 

The matching starts by selecting a ridge and 

ranking the 1-edges in its search regioo by tr. · 

strength of the match found. The carparison 

procedure determines a translaticn vector which 

will match the ai;:propriate points of the ridge 

and the transformed 1-edge. F.ach 1--edge is 
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'transforme3 according to the 'a priori' transform 

estimate, and cmpared with the candidate ridge. 

To assess a pairing of features, it proceeds as 

follcws: 

a) If neither feature has structure, thElll 
the 1-edge is tested to see if its endpoints 
lie within a band about the test ridge. If 
so, the measure of goodness of the match is 
the rosine of the angle between the two 
curves. 
b) If the ridge feature is structured, then 
the 1-edge is cmpared with each element in 
the ridge at the second level, in a similar 
fashim. 
c) If both have structure, then the angles 
of the 'bends' in the curves are oompared. 
If they are sufficiently similar, a matching 
is constructed which identifies the points 
at the 'bends' • Otherwise the best match of 
substructures of the two features is 
returned. 

My oomparisons which yield a high value, near 

l.O, are said to succeed. 

4.4 Support for 2- Matching 

A su::cessful match specifies a translaticn 

'vector. Each subsequent pairing must be 

!oonsistent with the previous pairings, that is, 

the translatia, required to oonstruct the pairing 

must be similar to those previous. 1-b.rever, 

,experimentaticn with the feature sets has shc:Mn 

that this is not enough. To eliminate iocorrect 

matchings, we must also use the local spatial 

structure of both the ridges and the 1-edges to 

guide the matching. 

When an initial pairing of features is made, 

nearby ridges are examined and a tally is kept of 

the number of nearby ridges which can be paired 

with 1-edges in a matching oonsistent with that 

under oonstructicn. 'l'1e pairing of ridge and 

1-edge is chosen which has the highest tally 

(i.e. which can be best locally extended). 'Ibis 
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strategy can be understood as a generalizatim of 

the scheme of determining local support for 

linear features enployed in the SRI system. 

'l'1e matching is extended to include three 

lllltually ocnsistent pairings of features. With 

the six values fran the matching, an affine 

.:ransform can be determined. Each pairing of a 

ridge and an 1-edge provides a point-t.o-point 

match for the parameter determinatim. Detectia, 

of the terminatim of a boundary in the Landsat 

image is unreliable, so the endpoints of an edge 

are not entirely satisfactory choices for 

,natching in all cases. Ibolever, when an 1-edge 

is matched to a,e of the arms of a structUfed 

ridge, or vice versa, the appropriate endpoint 

can be directly matched to the bend point. In 

other cases the center of the segment (the 

average of its endpoints) is used. 

'Ibis first estimate of the transform 

conp.1ted fran the three pairings is tested for 

self-oonsistency by using the new transform to 

predict the overlap of the transformed 1-edges 

and their matching ridges. If they overlap, the 

new transform is used to predict the the locaticn 

of the remaining 1-edges in the terrain m:x:lel. 

'!be number of 1-edges which overlap existing 

ridges is used as the measure of the quality of 

the matching. If the enough features can be 

matched in this way, the set of pairings is used 

to form an extended matching, fran which a 

least-squares estimate of the affine transform 

parameters is OCtll)Uted. 'Ibis transform, in turn, 

is used to predict the locaticn of the 1-edges in 

the IJIM. If the matching grows, a new 

least-squares estimate of the transform is 



canputed. 'lhis iterative process terminates when 
I 

ithe m.unber of matched features does not increase. 

5. Discussion and Conclusions 

5.1 Results 

In our test case, the initial search regioo 

for a ridge feature was set at 0.75 km, or 

approximately 10 pixels. 'lhe registratioo 

determined from the matching found by our system 

.resulted in an average error of less than 10 

'1!eters, much less than half a pixel. 'lhe points 

matched are labelled A-K in figures 3 and 5. 

Further experiments will examine the capacity of 

the method to register images when the error in 

the original estimate is larger. 

Several improvements in the method are 

envisiooed. 'lhe relatiooship arrcog features is 

not used in the feature-to-feature matching. 

particular, feature pairings should be 

In 

a::mstrained to ensure that cx:>linear 1-edges are 

matched to cx:>linear ridges. Presently, 

line-to-line matching is based only upon line 

shape. 'l'1e inclusioo of other informatioo, such 

as the shape of the intensity profile across a 

line, srould improve matching 

5.3 Cairnents and Conclusions 

'l'1e present system extends the work of 
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Bolles et al. in several areas. First, the 

features used for matching are autanatically 

generated fran the surface representatioo, 

aonsistent with the analysis of the image to be 

registered. Our method generalizes the notioo of 

support for matches by using the local spatial 

structure of the features. Since the system is 

guided by the structure of elerrents, it can 

rapidly discover distinctive matches. 'lhe 

technique of searching for supporting evidence 

eliminates false matches readily. 'lhese aspect.s 

of the method recomnend it as a registratioo 

technique, aonsidering the volume of satellite 

images to be processed. 
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Abstract 

Cell movement is a fundamental proces::; of 
some importance to embryological development and 
to host defence mechanisms. However there is no 
existing method for quantifying the observable 
changes in nucleus and membrane shape that occur 
during locomotion. This paper outlines an image 
interpretation system capable of analyzing the 
structural changes in the shape of a moving cell 
from a sequence of pictures. It is used for ana
lyzing a cine film to detect, quantify, and symbol
ically describe the dynamic changes in the cell's 
nucleus and membrane. The system consists of two 
main analysis processes: static scene analysis, to 
provide a numeric and symbolic description of the 
static cell geometry and location; and dynamic 
motion analysis to quantify and analyze the dyna
mics of the cell motion and shape changes. The 
different computational processes of the system 
cooperate through a colTUl\On relational database 
structure using two different memories, a Short 
Term Memory (STM), and a Long Term Memory (LTM). 
The processes interact through the STM using the 
information stored in the LTM, until a complete 
description of the dynamic cell motion and shape 
is obtained. This type of analysis may be exten
ded lo consider moru than one cu ll intcract.ing 
with each other. 

1. Introduction 

In the study of the effect of substances 
which modify cell locomotion at the cell membrane 
level, we are interested in quantifying the observ
able changes in membrane shape that occur in loco
motion. Advances have been made recently in the 
characterization of locomotory paths taken by cells 
in vitro and how these are affected by various 
substances [49). The internal mechanisms for cell 
locomotion are also reasonably well understood and 
the role of microtubles, microfilaments and con
tractile proteins is receiving much attention [48]. 
However progress has been much slower as to how 
the cell monitors these external substances so 
that internal mechanisms might be modified. This 
interaction between external factors and internal 
processes has to occur at or within the cell 
membrane; yet presently we have no means of quan
tifying the observable changes in membrane shape 
that occur in locomotion. Consequently, it is 
difficult to study at the membrane level the effects 
of substances which modify cell locomotion . To 
achieve this objective using the techniques of 
digital image processing, this paper outlines a 
computer vision system capable of analyzing the 
structural changes in the shape of a moving c~ject 
from a sequence of pictures. The system must be 
able to recognize the various image patterns, 
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segment and interpret the desired object, and 
detect significant changes in the location and 
shape of the object. Using such a system to 
analyze a cine film of a moving cell, quantifi
cation and symbolic description of the cell's 
geometry are provided and in this way we can 
characterize dynamic changes in the shape of the 
cell nucleus and membrane. 

A review of the background and related areas 
of study to the developed system is given in 
section two. A general overview a nd its structure 
is presented in section three. Finally, in section 
four, we conclude with the present status of the 
project. 

2. Background 

The research reported here is related to three 
different areas of study: automatic image proces
sing of cell images, tracking of moving objects, 
and shape analysis and description. This section 
is a brief review of the significant work that 
has been done in each of these areas. 

The early history of . automatic processing of 
cell images can be traced to the l950's, and is 
directly related to development of the so-called 
television microscope [57) . Most of the work 
which has been done in this fiel<l has dealt with 
static pictures of blood smears for the purpose of 
classification or counting [3, 19, 20, 40, 58 ). 
More recently, this has led to the development 
of experimental and also practical systems whose 
perforrnance in many cases equals that of the human 
technologist. With reaara to the analysis of cell 
movement, most of the effort has been concentrated 
on tracking cell paths, rather than studying cell 
interaction characteristics (6,10,15, 50, 16]. 
However, our earlier work(32,33,70] was rather 
different, because it addressed the problem of 
analyzing a group of live cells. This system was 
able to quantify the cell path and compute the 
steady-state probabilities, from which the 
ultimate direction of the cell population could be 
predicted. 

Except for the work on cell mitosis reported 
in (13], there is no existing system which concerns 
itself with the analysis of the structural changes 
in the cell membrane which occur during locomotion, 
the main concern of our current work. 

Extending our consideration to the general 
problem of processing dynamic scenes, either by 
motion detection or motion analysis (38 ], this 
field has been largely restricted to the detection 
of locomotion changes of an object rather than the 
dynamic alteration of its shape (2,9,29,30,36,37, 
42). In some recent work by Nagel (4 5], the 
problem of detecting the shape of a moving vehicle 



was considered. However its motion was subject to 
many constraints, so that changes in its shape 
could be predicted given a knowledge of the pre
vailing situation. In our case, we are considering 
two kinds of changes with time, one in locomotion, 
the other in shape, and both can :change randomly 
from frame to frame. 

The third problem our re s earch is related to 
is shape discrimination. This is a central issue 
to pattern recognition and as such has received 
attention in many papers dealing with recognition 
of characters, waveforms, chromosomes, cells, 
machine parts, etc. In a recent review by Pavlidis 
[51 ], he has classified the methodologies used in 
shape discrimination under two categories; whether 
they examine only the boundary or the whole area, 
and whether they describe the original pictures in 
terms of scalar measurements or through structural 
description. Most studies of shape and pattern 
·analysis are based on global feature measurements 
which then constitute a feature vector used for 
the shape representation. However more recently 
there has been great interest in syntactic pattern 
recognition techniques· [53,55] which analyze 
patterns by a parsing process of hierarchial de
composition. The advantage of such an approach 
suggests that it might be appropriate to study 
hierarchial shape representation in more detail as 
a vehicle for cell shape description. We also 
note that, to date, nwneS'i.o~ descriptors have been 
used for shape measures; however in order to 
provide a readable analysis for an interested 
physiologist, we are endeavoring to provide a 
symbolic descriptio'n. 

3. SYSTEM OVERVIEW 
3.1 General Approach: 

The basic requirement of the desired system 
is to be able to detect and analyze the structural 
changes in the shape of a moving object. To 
achieve this, we postulate two main analysis stages: 
static scene analysis to provide a numeric and 
symbolic description of the static cell geometry 
and location, and dynamic motion analys is to quan
tify and analyze the dynamics of the cell motion 
and shape changes. The different computational 
proce sses of the system cooperate through a common 
relational database structure, such as described 
in Shaheen and Levine [63]. using two different 
memori e s. The Short Term Memory (STM) is designed 
to work as a communication channel for all of the 
processes. It contains a record of the instant-

aneous cell motion and shape chancres, c\S well as 
global description of the cell behaviour. The, 
Long Term Memory (LTM), on the otht~r hand, is also 
a r e lational database and contains the general 
model of the morphology and dynamics of the cell. 
The dif fe rent processes interact through the STM 
using the stored information in the LTM, until a 
comple t e des cription of the dynami c cell motion 
and s hape i s obtained. Figure Ll)shows a block 
diagram of the different computational processes 
of the system. This section will give a brie f 
descriJ , tion of the data structure o f the system 
,rnd tlir, obj.,ctivc of each process. 

3.2 Static _scene Analysis 

The main goal of this module is to process 
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one frame in order to provide a numeric and sym
bolic description of the cell geometry and locat
ion in the current frame or any specific frame. 
Figure (2 ) shows a block diagr am of the sequential 
processes in this module, a brief description 
of which follows: 

Preprocessing (Initialization); Initates the input 
device such as disc, magnetic tape, 16 mm cine 
film, or a real time device (may be microscope 
connected to a TV camera interfaced with the 
computer viewing live blood cells). 

Segmentation of the Cell: This task analyses the 
histogram to define the threshold(s) which seg
ment(s) the complete cell( s ) from the background 
(protoplasm) . It also defines the coordinates 
of the cell boundary points (membrane) and labels 
the regions which belong to the different cell 
parts (nucleus, and cytoplasm.) The procedure 
is slightly different in the first frame from 
the others. In the first frame the desired 
cell is selected interactively, whereas following 
this it is tracked automatically. 

Polygon Representation: Based on an approach 
introduced by Ramer [59], this process approxi
mates the boundary points of the cell, as well as 
its parts, and represents them as connected 
polygons. This stage has the effect of grossly 
reducing the data which are manipulated by t he 
higher level processes. The main factor here 
which controls the whole procedure and thus the 
result is the approximation level "threshold". 
This value must be selected very carefully in 
order to achieve a maximum decrease of data 
(minimum polygon vertices)· while at the same 
time preserving all important information regard-

ing the original shape. A similar approach to 
polygon representation was used by Liu [35] to 
classify the age of the neutrophil cell. He found 
that the represented polygon not only decreased 
the amount of data but also reduced the noise 
around the boundary points resulting from the 
digitization of the original object. 

Polygon Decomposition: This technique is us ed to 
decompose the polygon making up the ce ll into 
simpler components. It was originally introduced 
by Feng and Pavlidis [12] to decompose a concave 
polygon into simpler convex ones for character 
and chromosome analysis. In our case this de
composition is not as simple. We are us ing the 
decomposition technique as a vehicle for recog
nizing and describing the different parts of the 
cell and for detecting and quantifying the dynamic 
changes in e ach of its parts. Connecting the 
centroids of these simpler components, we may 
simulate a type of medial axis transform which 
gives the simplest representation of the geometry 
of the cell shape. 

Feature Extraction and Measurement : This t ask ' ,, 
executed in parallel with the previous proces ses 
to compute the necessary features s uch as : area, 
centroid, perimeter, orientation, elongation, 
circularity, etc. The features are selected in 
such a way as to minimize the number needed to 
give a comple te description of the cell's geome try 
and location. 
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Shape Description: Based on the numeric feature 
measured, this step provides a global numeric and 
symbolic description of the morphology of the cell 
and its different parts (nucleus, cytoplasm, and 

,membrane ) . First the numeric features are conver
' ted into symbolic ones using a "mapping table" • . 
'Second, comparing the numeric and symbolic features 
:with the LTM information about the general model 
'of the cell, a description of the static cell's 
geometry and location can be given. For example, 
a description of the cell as "bended" or "segmented" 
can be computed from the decomposition of the cell. 
Other descriptions such as "small", "circular", or 
"elongated", can be computed from t he features 
giving area, circularity, and elongation. The 
location of the cell within the frame can be 

: described using the coordinates of the centroid 
' and the two farthest points (the diagonal line), 
or other critical points on the boundary 
(membrane). 

3.3 Dynamic Motion Analysis: 

The objective of this module is to quantify 
and analyze the dynamics of the cell motion and 
shape changes. A brief description follows of the 
function of each computational process of this 
module shown in Fig. (1). 

Incremental Location Change Detection: To define 
the changes in the cell location from frame to 
frame (cell tracking), the displacement of the 
cell's centroid between two frames is the most 
important factor. However it is possible that the 
centroid exhibits some displacement without any 
change in the cell location because all of the 
cell's elements are in continuous random motion. 
For this reason, in detecting the change in cell 
location, we must take into consideration besides 
the centroid displacement, tne changes in the 
coordinates of other critical points such as the 
centroid of the best fitted rectangle, the centroid 
of the maximum containing rectangle, and the 
farthest points around membrane in both length 
and width. This process also computes the speed 
and direction of the cell motion between any two 
frames. 

Incremental Shape Change Detection: This compu
tation is used to detect and quantify the change in 
cell geometry from frame to frame. The dynamic 
change in shape can be quantified by computing 
the incremental changes in the features that 
describe the cell geometry. Some of these changes 
may describe global change in the cell shape, for 
example: "The cell changed from bended to 
segmented (or vice versa)". Such a description 
can be derived from the change in the decomposition 
of the cell's polygon. Furthermore, the ultimate 
local change in the s hape of any of the cell's 
parts can be described using the incremental 
changes in the features of the subpolygon making 
up this part, such as: The number of sides, length 
of each side, the angles between the sides, and 
the coordinates of each vertex. The selected 
features, symbolic terminology, and the type of 
description given by .the system can be easily 
changed according to the application. Currently 
we are most interested in dynamic changes in the 
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cell membrane, and are therefore giving more 
attention to features which describe the boundary 
(angles, sides, curvature, etc.) rather than those 
which describe the interior of the cell. 

3.4 Global Motion and Shape Characterization: 

This stage is concerned with characterizing 
the cell behaviour by analyzing the processed data 
of the motion and shape changes. After the 
analysis of each frame this module examines the 
details derived from each image as a coherent 
sequence, rather than as an individual increment. 
It compares the results of this analysis with the 
LTM data from which the dynamics characteristics 
of cell motion and shape can be given. For 
example, the motion of the cell can be character
ized as: "From t tot the cell exhibited a 
constant velocit1 V in2direction 012,and from t 2to 
~ its motion was ra\iaom. From ti tot· there was 
acceleration A. . in direction 0. . . Js i ng the same 
methodology thc1Jdynamic changes \ln the shape can 
be characterized: "The cell started at t.0with a 
small area and circular shape. At t 1it showed 
slight elongation towards the north-east. At ti 
a pseudopod began growing at the lower left hand 
corner with a short joining base line". 

These dynamic motion and shape characteristics 
are updated after processing each frame in order 
that at any given time the system can give the 
behaviour of the cell from the first (tj to the 
last (t , )processed frame. However the module can 
be oper~ted interactively by the user to inves
tigate the cell behaviour through a specific 
period of time, or to examine the dynamic changes 
within a specific part of the cell in more detail. 

4. CONCLUSIONS 

This research deals with the quantification 
and characterization of the shape changes of a 
moving cell, a fundamental process of some impor
tance to many aspects of cell biology. However 
there is no existing method to quantify the 
observable changes in nucleus and membrane shape 
that occur in locomotion. This paper outlines an 
image interpretation system capable of recognizing 
the various image patterns, segmenting and inter
preting the desired object (cell), and detecting 
significant changes in the location of the object 
as well as in its shape. Using such a system to 
analyze the structural changes in the shape of t he 
constituents of a moving cell, a quantification 
and symbolic description of the cell's geometry 
could be provided, thereby characterizing changes 
in the shape of the cell membrane. Investigation 
of the characteristics of the dynamic shape change 
and motion of the cell might provide clues to the 
nature and distribution of"receptors" on or within 
the membrane which might be a vital link in the 
interaction between external factors and cell 
internal processes. 

To date, the stati~ shape description, the 
incremental location change detector, and the 
incremental shape change detector have been 
largely completed. Attention is now being focussed 
on the last most important stage which is respon
sible for providing the global description of the 



cell shape changes. 

It is interesting to note that this technique 
employing a general purpose database in conjunction 
with general purpose analysis processes is also 
applicable to other similar problems. Examples 
are the visual monitoring of the behaviour of rats 
under the influence of various protocols, or the 
quantification and analysis of the changes of 
growing plants in different soils or under the 
effect of different fertilizers. 
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Figure 1: The main modules of the processing system for quantifying and 
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.A.Qstr~! 
An oYerview of a siaulated 

robot-environaent syste• and the design of 
a robot-controller are presented. The 
en•ironaent is a flat tabletop with fixed 
and mo•able objects on it and the robot is 
a mo•ing point that can pickup, move and 
drop an ob1ect. The robot uses an eye 
with Yarying resolution to •iew tbe 
tabletop and construct a world model of 
the environment. A novel approach to 
path-finding frobleas that uses tbe 

.skeleton of the empty space is outlined. 

This work was animated by a desire to 

understand the c onnect:ion between 

perception and action. Every day we do 

~uch simple things as 

aYolding all obstacles in crossing a 

cl ut tPre•l coo11 

navigating through an unfamiliar house 

making and exPcuting a mental plan to 

go to the local shop or cross a ca~pus 

moving an awkward piece of furniture 

around a housP.. 

In order to explore tbe abilities 

required to exhibit such skills ve have 

proceeded as follows: 

1. 

2. 

To design and implement a sim~lated 

robot vorld which reflects to a 

certain extent the spatial asp~cts of 

a cluttered room or thP floorplan of 

a house, 

To specify a class of tasks of a 
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spatial nature which the robot algbt 

reasonably be expect'!d to solYe in 

this world, and 

3. To design computat:ional process'!s 

which enable the robot 

these tasks in a 

intelligent aanner. 

The 

carP-fullf 

si•ulated 

designed 

robot 

to 

to handle 

reasonably 

world 

enforce 

is 

a 

non-triYial treatment of the int'!raction 

bet.ween perception and ac•io11. The 

robot•s sensory input from distant parts 

of the environm'!nt ls either non-existent 

or very inexact and fuzzy, in accord vl+h 

real world organisms; yet plan~ h~,e tn be 

made and actions executed. 

The information-processinq component 

of any organism that physically int'!racts 

vit.h the outside vorld ~ust consist of 

three distinct parts: sensory roceptors, 

action eff~ctors, and an intermedi~rr that 

relates the senses and the ~ctions. our 

~ain interest is in a sufficient design 

for the intermediary, which will be 

Its aajor task, in order to iapro•e 

the organism's survival chances, is to 



build a ~ .!.Q~: a model of the 

outside world. In infocaation-processing 

teras, a world model is a data base of 

tacts which, toggther with interpretive 

procedures, enables the prediction of 

future sensory input. Equivalentl7, it is 

a data structure and procedures for making 

predictions about tbe outside world. Tbe · 

purpose of a world model is to allo• the 

construction of plans and thus to better 

achieve the organisa•s goals. A world 

model must be built to explain the sP.nsory 

input r~ceived so far, using sensory 

inputs as the primitive items of evidence. 

Thus the world model of an organisa is a 

function of the design of its receptors, 

and furthermore can never te assumed to be 

correct. 

The interface between an organisa and 

the out.side world is defined by the 

~rganism•s sensory receptors and action 

effect.ors, and is necessarily always 

sloppy. 

The discussion so far is summarized 

in figure 

functions, 

perpetual 

1. our robot-controller 

at the top l~vel, by the 

repetition of the ~tio~ £:!~!~, 

a loop containing three parts: perception, 

planning, and action. In our 

robot-controller these three processes are 

?erformed in serial order, whereas in most 

living organisms they 

performed in parallel. 

presumably 
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l ~~ overvie! 

The s7stea consists 

prograas: TABLETOP, that 

of three 

siaulates 

aain 

the 

outside world; UTlK, that simulates the 

robot: and PPl, the robot-controlling 

program. 

1-1 IA!U&~, ill! environment si1ulat2~ 

TABLETOP siaulates a frictionless 

tabletop vitb a 

boundary or verge. 

polygonal shapes 

fired and soae 

polygonal restraining 

There may be arbitrar, 

on the tabletop, soae 

aovable. ThesP. shapes 

constitute the ob1ects of the outside 

world. There are nevet any holes in an 

obiect. On this siaulat~d tabletop the 

everyday laws of physics bold: the shape 

of an ob1ect remains invariant durinq 

motion, and if the path of a moving ob1ect 

is obstructed by another ob1ect or the 

verge t.hPD the moving object comes to an 

ifflmediate standstill with a small gao 

between it and the obstruction. Pigure 2 

shows a sample world. 

].1 YI!~, !rut ~~R2! ~imulat.or 

UTAK simulates 

to as Otakl, who is 

dimensionless point 

the robot, (referred 

reprPsented as a 

and is free to move 

wherever •here is empty space. Ke cannot 

pass between two objects in contact. He 

can grasp an adjacent aovable ob1ect, and 

can translate, rotate, or release such a 

obiect. 

Utak senses his environaent with an 

eye having a limited field of view and 
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. 1 

llaYing a Yarlabll! resolot.iou: fine in the 

centre or foYea, progressiYely coarser 

towards tbe periphery. the ere •a y be 

thought of as a TV camera, suspended at. 

the top of a stalk sticking Yertically up 

fro• Utak, with the camera pointing 

directlr dovnvards at the tabletop and its 

field of Yiew centered on Utak. Thas the 

eye gets a two-dimensional viev of part of 

the tabletop and an image of Utak alvays 

appears at the centre of the field of 

view. 

The retinal geometry of the eye is 

sbovn in figure 3(a). Each little square 

constitutes a !§.1.i.na! ~ld, and covers a 

certain area of the task environment 

position. depending Uta k 1 s 

corresponding to l!ach retinal field there 

is a retin4l ~l!, vhich reqist~rs a 

~~~. or int~ger in the range O - 7, 

that deFends on the ratio of obiect to 

total area in the part of the task 

~nvironment covered by the retinal fiP,ld. 

A~~ impression is the structured set 

of grayle9els registered by all the 

retinal cells at one particular instant in 

time. Pigore l(b) shows an exaaple of a 

retinal illpr<!ssion. 

~tactile" r'!Ceptors, 

eight basic compass 

Utak also has eight 

one in each of the 

directions, which 

~llow hiM to sense the colour of an 

iaaediately adiacent object. 

i!.21:f§§!.2! is the structured set of eight 

colors registered by the tactile receptors 
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at one particular inst.ant of time. 

In sua, Dtak inhabits aa outside 

world which aay be likened to a tabletop 

vith confining Yerges, where he can vanaer 

around and aoYe objects, and wh•re his 

sensory contact with this world consists 

of a series of retinal and tactile 

iapressions. The task for ?Pl, the 

robot-controlling prograa, is to make 

sense of the sensory input and create a 

world aodel for planning purposes. 

Otak is giYen path finding ("Go to 

the north-east corner") and object moYing 

tasks ("Push the square 110Yable object 

into the next room"). The statement of a 

task may require considerable changes to 

Utak's world 11odel. Consider, 

instance, the ob1ect-mo9ing task 

for 

iust 

11entioned. If Utak has so far seea a 

square movable object but has only 

explored what he thinks is one end of a 

single room, his world model before the 

task statemen+ vill simply consist of & 

room vith one square aovable object in it; 

but after "understanding" the 

statement his vorld model will include an 

extra room with a doorway which connects 

it to the rooa he's currently in at a 

position consistent with bis accaaulated 

sensory experience to date. 

PP~, the robot-controller, is diYided 

into three parts: ACCO~. SPLA~. and ACT. 

?PA operates by continaally eye l illg 



through these three pacts cocrespondinq to 

perception, planning, and action. ACCC~ 

accepts a retinal impression and modifies 

(accoamodate~ the current world aodel in 

the light of this nev evi~ence; SPLA~ is 

the §RA!ial .2!~~! and is responsible for 

£lways aaintaining a valid plan to achieve 

the current task by creating a new plan or 

by updating an old one, while ACT simply 

co~putes from the current plan the next 

action to he executed. 

A world model, a task, and a plan are 

~efined at all times in PPA, whate•er 

Utak•s actual situation, including the 

aoment before Utak "opens his eye" and 

receives his first retinal impression. So 

far, the following defaults ha•e been 

used. The world model is taken to be a 

large empty square centred on Otak•s 

initial position. The default task is to 

explore the assumed vorld, which aeans 

"collect evid~nce (i.e. sensory input) to 

confirm the current world model". If the 

default task results in the specific task 

of, say, "go to the north-east corner", 

then ~he current plan would consist of 

walk actions to the hypothesized position 

of the north-east corner. Other possible 

iefaults are "sleep" or "find food". 

The ACCO~ prograffl, responsible for 

understanding incom. ng sensory 

impressions, 

&CC-INIT 

accoaodates 

into two divides 

artd ACC-SUB. 

initial default tha 

parts, 

ACC-[NIT 

world 
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model to the very first retinal impression 

while ACC-SOB carries out all subsequent 

accoaodations of the vorld aodel to 

inco•ing sensory iapressions. 

The spatial planner SPLA" depends on 

a subsystea called SHAPE to sol•e 

path-finding and object-aovinq probleas. 

SHAPE makes extensiYe use of the vorld 

mo~el. The basic vorld aodel is 

maintained in a format of points an~ lines 

specified by means of Cart~sian 

coordinates and will sometimes be referred 

to as the ~A~t~§.i.J! !2.!11 ~~l or th-. 

£~.[!~ ~!~!n.tA!i2ll• SHlP! functions 

by projecting and re-pro1ecting all or 

part of the Cartesian vorld model onto a 

digital array (the ~cre2a). Path-finding 

and object-aoving problems are solved in 

siaple cases from one projection on thP. 

scre9n; more interesting cas-.s rP.quire 

se•eral projections. A pro1ection of the 

Cartesian representation onto this digital 

array will soaetimes be referred to as an 

1~2 !~!!~!.!!!~!lsm-

The aost iaportant part of SHAPE is 

the collection of algorithms for solving 

path-finding and ob1ect-moving probleas. 

These are based upon the concept of th~ 

~~~!2~ of a tvo diaensional 

shape[Blum,1967]. The skelgton was found 

to be a useful tool for path- f inui ng 

problems, and would be a useful heuristic 

foe object-mo•ing problems pro•ided 

algorithms could be de•lsed to coapute it. 
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?be skeleton of the empty space ina 

!usLBTOP world is shown in figure "· It 

turned out, for reasons ghen in 

[Bovat,1979,1980] that tlae publisbed 

~teleton algorithas were unsatisfactory. 

!fowever, it was possible to aodify one of 

these to provide a satisfactory skeleton 

111 go ri t ha. 

The skeleton of a planar shape aay be 

'described as follows. Imagine the shape 

to be the boundary of a dry grass prairie 

and imagine a fire set at all points of 

the boundary siaultaneously. Tbe fire 

advances as a wavefront with unit velocity 

into the interior of the shape. At 

'certain points tvo or more sections of the 

wavefront eaanating fro• distinct points 

of the boundary aeet and mutually 

~xtinguish themselves. The locus of these 

points of extinction for• a set of 

connected lines called the skele~al ~~Eh, 

while the time from the setting of the 

fire to the time of extinction at a point 

of the skeletal qraph is known as the 

!IJ!!DS~ function. The value of the quench 

function giv9S th~ radius of the maxiaal 

circle that fits inside the shape at that 

poini:. 

The third component of PPl is ACT, 

the progra• that coaputes the nqxt action 

for Utak fro• a coapleted plan. This is 

not entirely trivial because the nature of 

the next action has to b~ a function of 

the confidence Utak bas in the details of 
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the world aodel in the vicinity of his 

current position and of tbe accuracf with 

which he can ezecute an action. 

Anf coaplete organisa-controller for 

Utak requires the following progra• steps. 

These can be stated here without 

specifying data structures or processes. 

All tbat is needed is a vortd aodel, a var 

to receive a retinal iapres&ion, and an 

action effector. 

ll!lll!ItlllTIO! ~ 
1. Set the current world mod~l equal to 

soae default world aodel. 
2. Re~eive the first retinal iapression. 
l. lnaly~e the retinal iapression into 

regions and borders. 
"· Interpret the regions in the retinal 

iapr~ssion and identify the iaage of 
Utak in the retinal iapression. 

5. ~odify the default world model to be 
consistent witb the interpreted 
retinal impression. 

6. Accept a task and interpret it in 
teras of the world model. This •af 
require substantial modification of 
the world model, for instance the 
addition of an object if one is 
aentioned in the task but no ob1ect 
is "•isible" in thg current retinal 
impression. 

.U!! 
7. construct a plan to achieYe 

using tbe spatial planner. 
!.I!! !£I.12! £1~1] 

the task, 

.A&I 
8. 

9. 

1 o. 

Test whether the task 
co•plete. If so, STOP. 

is 

Decide on thP next action to 
take, by examining the initial 
portions of the plan and the 
degrees of confidence a~sociated 
with those parts of the world 
model close to the planned 
actions. 
Execute the next action and 
receive the next retinal 
i111pression. 

l,llg!,!! 
11. Interpret the n~w r~tinal 

W! 

iapression on the basi~ of the 
current w~rld model, ~nd aodify 
the world model as necessarr to 
sake it consistent with the 
current retinal imprPssion. 

12. Is the plan still Yiable? If so 



u. 
go to a. 
Otherwise, re-compute all or 
part of the plan, as in step 7, 
ud go to a. 

The parts of the action cycl• correlate 

with figure 5 as follows. Steps 8, 9, & 

10 are carried out by ACT; Step 11, 

~perceive", is carried out by ACCO~, and 

Steps 12 g 13 are carried out by SPtl!. 

A task statement as required in step 

'6 is presented as two paraa@terized world 

models, a starting and a goal world model. 

Por example the world models c,orresponding 

to the task "Push the square object into 

th@ next room" will have two rooms, a 

square object, and a connecting doorway, 

the only diffP.rence b~twee.n the start and 

1oal world aodels being in the position of 

the square object. The problem in step 6 

ls to reconcile. the current default world 

model with tbe world model implied by tbe 

task statement. 

lie have briefly introduced a 

simulated environment and simulated robot 

and have sketched the design of a 

·robot-controller capable of executing 

~i11ple tasks in this robot world. 

A spatial reasoning module is an 

i111portan t and essential part of any 

robot-controller. It makes plans for 

.action on the tasis of the currPnt 

collection of hyfotheses about the form of 

the environment.. We have outlined a new 

~pproach to problems of spatial reasoning 
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i>a sed on the 

two-dimensional 

use of 

shape. 

th~ skeleton of a 

llaen t:be 

P.n,iron1ent bas been drawn on an array of 

points like a screen, ctn Herathe 

algorith• requiring a constant a1ount of 

computation reduces any 1>athfinding 

problem to a graph-traversal problea. 

Each edge of the graph corresponds to a 

path between two objects, each node 

corresponds to a junction of three or 1ore 

pa tbs, while the number of nodes is 

reduced to a ~inimua. Thus the amount of 

subsequent search is reduced. There are 

other vays to do this that are based on a 

Cartesian representation of the shapes of 

obiect.s, but. vhich may require more se11rcb 

if the shapes in the en,ironment ha,e much 

extraneous detail. 

An interesting technical problem was 

found in this approach, that ve call the 

rope-tightening problem. Namely, when one 

reasonable obstacle-avoidinq path between 

two points has been found, how can this 

path be optimized to be as short as 

possible? 

Though there ha,e been se,eral robot 

simulation programs written before, ours 

is among the first to handle the movement. 

and collision of two dimensional shapes. 

Of the previous two ma 1or robo+ 

simulations, [Becker & "erriam,1973J u~a~ 

a CaC't@sian representation and [ 1Hlsson & 

Raphael,1967] used 

representation of shapes. 

a digital 

The Cartesian 



represents shapes dS a series of points 

Jiven by Cartesian coordinates vhile the 

digital represents a shape directly as an 

array of points like a screen. Of the 

pre,ious rigid object motion siaulations, 

·(Eastaan,1973) and [Pfeff~rkorn,1975] used 

Cartesian re pre sen ta ti ons vhile 

( runt., 1976] and ( Balter, 1973) used digital 

representations. our siaulation uses a 

coabination of the Cartesian and the 

digital representations to simulate •he 

motion and collision of ob1ects on a 

tabletop. The TABL!TOP and UTA!( 

siaulation programs, vhich execute actions 

and produce tactile and retinal 

impressions, have been implemented. For 

aach aore detail see the first author's 

tbesis [ Rovat, 1979 ]. 
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Causality Analysis in Cha11 

David E. WIikin, 
SRI International 

Menlo Park, Callfornl1 94025 

Ab1tract 
CAPS, KAISSA and PARADISE perform causality reasonln1 
In chess. This paP.er defines the problem, demonatratH 
Its difficulty, describes the contributions of PARADISE, and 
comparH the approaches of the thrN provame. 

1. Introduction 
Human cheaa masters discover thln11 during their 
searchin& proce11 that they then use for analysis. For 
example, suppoee a master mentally searches a move in a 
position and discovers that the move lose, becauee of a 
three-move mate he had not previously noticed. Havin& 
discovered this three-move mate, he will not mentally 
search other moves unle11 he knows they will avoid this 
mate. Most che11 provams will 1earch all moves In thi1 
situation, continually rediecoverina the mate each time 
(which may mean aeneratlna a Iara• and expensive tree). 

Three proa,ems, KAISSA [1], PARADISE [5,6], and CAPS 
[21 try to avoid this by doin& causality reasonlne. 
KAISSA uees a technique called the •method of analoaies·, 
CAPS ltt •causality facllltt. PARADISE also employs a 
causality facility, which is based on the ideas used in 
CAPS, but with some improvements and clarifications. 
These provams all try to determine the •tnfluence• a 
su11ested move mi&ht have on an already searched line, 
so that moves that cannot influence a winnlne attack by 
the opponent are not searched. The term •causality 
facility" will be used in this paper to refer to all three 
methods (i.e., includH the method of analoaiH), Sections 
2 and 3 of this paper define the problems facina a 
causality facility and illustrate their difficulty. Section 4 
describes the improvements PARADISE has made on the 
cau111ity facility In CAPS, while Section 5 briefly 
compares the three approaches. 

Figure 1 
blac• to mon 
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2. The Problem 
The polition in Fiaure 1 derivet from an actual master 
eeme (position 6 in [4]) after White plays his rook from 
b6 to b7. (This 11vet the rook from capture by the Black 
pawn.) Suppose now that a provam doe, not notice 
Black'• threat of a back rank mate, and attempts to save 
Black's rook by playina it to cS. White replies R-b8 
which a proeram like PARADISE recognizet II equivalent 
to mate. After backine up to the position in Fleur• 1, the 
provam has additional sugaestion1 to move tl:le Black 
rook to dS, eS, and fS. The idea behind the causality 
facility Is that the provam will racoenize the threatened 
back rank mate in the refutation of R-cS eo that it does 
not repeat Its mistake. If the discovery of the mate had 
taken hundreds of nodes of 1earchine, it would have been 
expeoaiYe to try these three other rook moves. In Flaure 
1 PARADISE, for example, uses Its causality facility to do 

. this type of reasonina, and reject R-d5, R-e5, and R-f5 
without 1earchin1 (after searchina R-cS). 

Fiau,e 1 shows the type of reaaonlne the causality facility 
It Intended to do, but Fleur• 2 shows how difficult the 
problem can be. in Fleur• 2, R-c5 fail, just as it did In 
Flaure l; now, however, R-eS 1hould not be rejected, 
althoueh R-d5 and R-fS should be. The only influence 
R-iS has on the back rank mate is to attack one of the 
1quare1 over which the "final" check Is elven. If the 
system were to say that R-es Influences the matlne line 
because It attack• a square over which an attack la eiven, 
It would search many mov11 that should be rejected (e.a., 
R-f5 and R-d5 In this position). On the other hand, a 
eeneral analysis of which poHlble Interpositions may 
work it extremely difficult. Each side may have a number 
of pieces bearine on the Interposition squarei some of 
which may be pinned Thi, example shows the subtle 
ways In which a move may Influence a line. 

Figure 2 
blac• to mon 



Figure S 
black to move 

The above two position, ahow thal pasaible 
counterattacks by the opponent may subtly modify the 
influence I move mi1ht have on a line. In Fi1ure 3, there 
Is no way Black can eave hie queen. Suppose a proaram 
first plays 8-d7 for Black (for lack of anythin1 better). It 
qulckly find• that white obtain• a diatlnct advantage after 
the White blahop capturea the queen and Black 
recaptures. It is fairly obvious to human masters that 
P-b6, N-h6, and other auch movea cannot save the Black 
queen. The causality facility should prevent a program 
from aearchin1 such moves, since they do not Influence 
the lo1in1 line produced for B-d7. 

Now consider Black's move K-d7. It seems obvious that 
this cannot Influence white'• wlnnln1 of the queen, and so 
should not be searched In Fi1ure 3 this is true, but in 
Figure· 4, K-d7 should be searched because it allows a 
Black counterattack that may save the position. The only 
difference In the positions Is that the White king is moved 
over one square in Figure 4, but now if White answers 
K-d7 by capturing the Black queen, Black can reply N-e3 
winning White's queen. The fact that K-d7 help• prepare 
a counterattack influences White•, winning line In Flaure 
4. Such subtle lnfluencea are hard to recoanlze. 

3. Tradeoffs 
There is a tradeoff between recognizing 1eneral 
influences (i.e., viewln& any type of interaction as an 
influence), and recognizing only more specific Influences. 
By reco1nizing 1eneral influencea, it is possible to make 
almost no mistakes at the cost .. · searching many moves 
that the program thinks influence a line (although a human 
could see that some of them have no Influence). By 
reco1nlzln1 more specific Influences, it is po11ible to 
reject more moves without searchin1 at the coat of 
poHibly lntroducin1 more errore. 
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Figure 4 
black to move 

The performance of PARADISE'• causality facility on the 
above examples illustratea this. PARADISE handles the 

problem In Fi11Jre 2 by recognizing the Influence of an 
attack on a square over which an opponent•, attack is 
given only when the side on move already has a piece 
bearin1 on the square, and the opponent•, attack is a 
check. This Is fairly specific and may introduce errors. 
PARADISE handles the problem in Fi11Jre 4 In a more 
1eneral way. Neither PARADISE, CAPS, nor KAISSA would 
be able to reco1nize the difference in influence of the 

mo•e K-d7 between Fi1ures 3 and 4. It appeare that the 
causality facility in CAPS would not see K-d7 as avoidin1 
the loss of the queen, 10 It would not search that move in 
either position (thus makln1 an error In Figure 4). It also 

appears KAISSA would not notice that K-d7 can Improve 

the situation In Figure 4. PARADISE assumes K-d7 can 
influence the 1018 of the queen, since the queen is no 
longer captured with check. It searches this move in both 
positions, thus avoidin1 the error made by the other 

pro1rams, but at the cost of unnecessarily searchin1 it 

and similar moves in position, like thoae in Fi1ure 3. In 

this case PARADISE lean• towards areater 1enerallty and 
elimination of errors. 

These examples show what the causality facili ty is 
Intended to do and alao ahow how difficult the problet: is. 
PARADISE, CAPS, and KAISSA have facllltlea for doln& thia 

type of reasonin1, but they all make compromiaea 

between effediveneH and correctneH when decidina the 
specificity of the Influence• to be noticed. 
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4. PARADISE'• Contribution, 

The causality facility rea1ons about a move and a tree 

produced by 1earchin1 en unsati1factory line. (CAPS and 

KAISSA do not have trees to analyze, only certain sett -

see Section 5 for a discuselon.) To reject a proposed 

move without Herchln,, two determination, must be 

made by the caueelity facility. Flret, It mu,t conclucte that 

It w11 not the flnt move In the un11tl1fectory line that 

permitted the ensuina consequences. This Is referred to 

as a PERMIT determination in PARADISE. Second, the 

causality facility must decide that the proposed move 

could have no Influence on the unsatisfactory line. This le 

referred to as an AFFECT determination. CAPS does not 

distioguish between these two functions, but PARADISE 

shows that the distinction can be important and useful. 

For example, the PERMIT determination Is also used by 

PARADISE In Its defensive search to lnetiaate a null move 

analy1l1 (I.e., lettlna the opponent make two moves In a 
row durina the search) when all defeneive moves have 
permitted their refutations (see [5]). 

Durina the PERMIT determination, PARADISE looks for any 

of seven permittina influences the 1iven move may have 

In the tree (e.a., vacatin1 a square which wae moved over 

by the opponent, removing protection from a piece that 
w11 captured). These influence, are described in detail 

in [Sl If any influences are found durina the tree 

traversal, the move permit. the unsati1factory tree. To 

reject a proposed move from consideration on the basis 
of an unsatisfactory tree, the causality facility first doee a 
PERMIT determination usin1 this tree -- with the first 

move of the unsatisfactory tree being the one checked 
for permitting i(lfiuences. if any permitting influences are 
found, thit tree normally cannot be used to reject another 

proposed move since its first move permitted the 

refutation. At this point, CAPS gives up. However, 

PARADISE next check, whether the proposed move 

permit. the unsati1factory tree. if it permitl the tree for 

all the same reasons that the first move in the tree 
permitted it, the tree can still be used to reject the 

propoted move since the propo11d move would aleo 

permit the tree. (See below for an example.) CAPS 

cannot do this, because its equivalent to the PERMIT 

determination return, a ye, or no an1wer Instead of a list 
of Influences. 

If the PERMIT determination finds that the unsatisfactory 

tree did not permit its own refutation (or that the 

proposed move permits the refutation for all the same 
reasons), an AFFECT determination is done to find any 
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influences the proposed move might have on the 

uosatlsfaclory line. Thi• Involves another tree traversal, 
in which the causality facility looks for possible 

counterattack, and any of ten affectin1 influences which 

are deteribed In [5l If any influence, ere found during 

the tree traversal or counterattack analysis, the propo1ed 

move affect, the unsatl1factory tree. If the proposed 

move doe, not affect the tree, it Is rejected without 

searchina. If it does, then PARADISE check, whether the 

first move in the un11tl1factory tree also affectl the tree. 

If so, the proposed move it rejected unle11 it affectl the 

tree for some reason that the orlainal move In the tree 

did not. Aaain, this l11t test It not performed in CAPS 

since it does not have a list of influences. 

How PARADISE'• causality facility 1olvea the problem in 

Fieurea 1 and 2 should help clarify thi1 description of it. 

In Fl,ure 1, the unsatl1factory line consists of a tree with 

only two nodes: one for BR-c5 and one for WR-b8. 

PARADISE first checks whether BR-c5 permita this line 

and find• one reason why it doet 10. While looking at the 

node for WR-b8, the causality facility notices that BR-cS 

unprotecta a 1quere over which the white rook delivers a 
check, and that black h11 another piece bearln& on that 

square. Thus PARADIS£ realizes the black rook could 

have interposed on 18 if it had not moved. This line 

cannot be used to reject another move unle11 the 

proposed move also unprotects 18 (thus permittine this 

line for all the same reasons). PARADISE next does a 
PERMIT determination for BR-e5 end finds that this move 
also unprotects g8, thus permittine the line for all the 
same reasons R-cS does. An AFFECT determination is 

then done for R-eS and this line; however, since no 
reasons are found R-e5 is rejected without searching as 

it does not affect the line. BR-d5 and BR-f5 are rejected 
in the same manner. 

In Flaure 2, the eame unsatisfactory line is 1enerated for 
R-cS. All PERMIT determinations produce the 1ame 
results as in Fi1ure 1. However, the AFFECT 
determination for BR-e5 now discovers one reason why 

the move affect, the line: It 1ttack1 e8, a po1Sible 

interposition 1quare for the check from b8, that it alto 

attacked by another Black piece. An AFFECT 

determination is now done for BR-cS to see if this move 

affects the line for all the same reasons. R-c5 is found 

not to affect the line, 10 BR-e5 la not rejected. 

PARADISE finds that BR-d5 and BR-f5 do not affect the 

unsatisfactory line, so they are rejected without • 
eearchlna. 



5. Comparl1on of Cau1111ty FacllltiH 
KAISSA, CAPS, and PARADISE have different 
implementation• of causality reaeonin1. The causality 
facillty In PARADISE is explained above. The causality 
facility in CAPS reaeon1 about an ~satisfactory llne. Like 
PARADISE, II ascertain, whether the llne wa, permitted 

by lt1 flret move. If not, CAPS trlee only movee 

1enerated by the cau11lity facility II countercaueaf 
move• (I.e., they should Influence the un11tl1factory llne). 

The effect Is the 11me II In PARADISE, where movH 
generated by any mechanism (countercausal analysis or 

otherwise) are checked for their countercau11I nature by 
the causality facility. PARADISE h11 a major advantage 

over CAPS In that It can compare the Influence . two 
different moves have on the 11me line 1ince It return, a 
list of Influence,. 

The method of analo1ies (used In KAISSA) le considerably 

different from these two causality facilities. It reasons 

about two positions: the current one, and one that has 
already been searched and found to be unsatisfactory no 
matter which move Is played. For the method of 

analogies to apply, all admiHible moves (defined in (1) as 

·movee which make sense In the 1trate1iee under 

consideratlon1 in the current position must also be 
admiHible in the unsatisfactory poeition. The method of 

analo1ies then determine, if any of the differences in the 
current po,ition can influence any of the unsatiefactory 

llnee. (Information about the lines le retained as a number 

of sets, as described below.) If not, the new position can 

then be a11umed un11tl1factory without 1earchin1 any 
move, in It. 

Unlike those of CAPS and PARADISE, KAISSA's approach 
to causality cannot reason about individual moves, but can 
only determine that a whole position is unsatisfactory. 
The method of analogies Is only applicable when all lines 
from one position have failed and when there is another 
position whose admissible moves are all admissible in the 
unsatisfactory position. It seems that such a situation 
would not occur frequently, and KAISSA's authors do not 
asaeH, even subjectively, how the method of analo1ie1 
has performed in their proaram. Reasoning about 
Individual moves is useful, for example, In positions where 
there is only one 1ood move and many bad ones that lose 
to the same complicated att~k. Once CAPS and 
PARAOlSE have tried one bad move, their causality 

facllltles ehould eliminate all the other bad move, without 

eearchlAi them. KAISSA would have to try all moves, and 
the method of analo1ies would help only if it could be 
applied to position, deeP9r in the tree. 
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The major difference amon1 theee three causality 
· facilities ie the wealth of information returned from a 
prevlouely analyzed line In PARADISE. In both KAISSA and 
CAPS, all that 11 returned from an analyzed line Is a 
number of aete. These 11t1 contain square, that were 
moved to, 1quare1 that were moved over, piecee that 
moved, 1quare1 that were newly attacked by moves that 
were made, plecee that were attacked, and so forth. 
These 1et1 do not contain sequencin1 Information (e.g., 
what order moves occurred In, whether new attacks 
existed simultaneously), and do not 1how which move 
caused which effect, (e.1., for a square in the eet of 
•squar~s moved to•, it Is not possible to determine which 
piece moved to that 1quare). PARADISE, on the other 
hand, doe, return thie kind of Information. After searching 
a tine, PARADISE returns a tree that contain• every node 
1enerated during the search. Each node describee which 
piece was moved, its ori1in and destination squares, and a 
number of attackin& patterns (including discovered attack 
patterns) that matched at that node. With such a tree 
PARADISE can determine which attacks were happening 
simultaneously, which moves were first, which pieces 
moved to which squares, and which moves caused which 
attacks. Returning this much Information would probably 
not be practical in KAISSA elnce It producee much larger 
trees than PARADISE. 

As described above, it is very difficult to notice all the 
subtle ways a move might influence a line. Any of these 
three caueality facilities can make a mistake by not 
reco1nlzln1 a subtle Influence, which may cause the 
proaram to reject 11 1ood move without eearching it. ([ 1] 
cites a "proof• that the method of analogies never makes 
a mistake. However, the definition given in the proof for 
"influence• ie inadequate and does not appear to 
receiinize such subtle influences as those described in 
Section 2. For example, all moves in Figure 3 fall and It 
appears that the method of analogies would be applicable 
to Figure 4, yet would not detect the Influence.) There is 
always the tradeoff of recognizin1 general influences and 
making almost no mistakes at the cost of searching many 
unnecessary moves, and recognizing more specific 
inflaences that will search fewer moves at the cost of 
possibly introducing more errors. 

It is difficult to compare performance of the three 
implementations. There are a few examples of CAPS's 
causality facility in (2). and PARADISE appears to make 
more causality cutoffs over this small set than CAPS .. oes 

(see (5)). (PARADISE'• Improvements on the causality 
facility In CAPS have already been mentioned.) The 
author is aware of no published example or subjective 
evaluation of the method of analo1ies in KAISSA. The 
aliiorithme of the three proarams are not similar enou1h 
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to verify 1ub1umptlon, alnce eech proaram uee1 different 
tradeoffs In aenerallty when checking for a particular 
Influence. One thln1 Is clear: PARADISE has enou1h 
Information available both to make fewer mi1take1 and 
make more cutoff, then either CAPS or KAISSA. (It would 
be a dlfflcult project at preeent to ahow that either of 
theee ha, actually been accompllahed.) Thie Is clear 
becauae PARADISE'• treea contain 10 much more 
Information than do the aet1 in the other proarame. By 
usin1 lta knowled1e baH to produce small annotated 
trees, PARADISE provide• more knowledae for Its 
cauaallty feclltly to uae. 

6. Summary 
The difficulty of the causality problem has been ahown, 
and PARADISE'• contribution described. PARADISE tries 
to avoid errora by noticina many kinds of lnfluencea. The 
causality facility has been effective and error-free over 
PARADISE'• teat domain of 92 poaitlon1 (1ee [5]). (The 
trees aenerated by PARADISE are so small that all 
caosality decisions can be checked.) However, neither 
the PERMIT nor the AFFECT Influences are adequate to 
handle all middle aame positions without errors (see [5]). 

It is not clear at present how to formulate a causality 
facility that would never make error,, yet be effective 
for re)ectina moves without searchina. It is not even 
clear whether it is poHible to do ao. ([3] diaeu88ea 
these issues.) 
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Abstract 

The focus of much recent Artificial Intelligence 
research into Computer Chess has been on programm
ing the endgame. This paper discusses some of the 
specific reasons for complexity in the endgame and 
considers the effects of such complexity on human 
chess-playing strategy, textbook descriptions and 
the development of programs, In programming the 
endgame the researcher is faced with a range of 
decisions concerning the quality of play to be 
aimed at, the balance between knowledge and search 
to be adopted and the degree to which the playing 
strategy should be understandable to human chess
players. The term "human window" has been used to 
describe that range of programs which not only 
perform at a high level of expertise but are 
comprehensible to subject experts, A model for 
representing pattern-knowledge is described which 
has enabled the development of algorithms to play 
a number of endgames. Three algorithms represent
ing different levels of performance for the 
endgame King and Pawn against King are compared, 
in order to discuss the tradeoff between complexity 
and completeness, on the one hand, and compactness 
and comprehensibility, on the other. Finally, the 
role of search in reducing the amount of knowledge 
to be memorised is considered and an extension to 
the basic model to incorporate a deeper searching 
element is discussed, 

Introduction 

The game of Chess has been used as a task area for 
Artificial Intelligence research for over a 
quarter of a century, as one in which complexity 
is combined with a well-defined structure, together 
with an extensive background culture against which 
a given standard of program performance can be 
evaluated, 

The focus of much recent research into computer 
chess has moved towards the study of endgames (i . e. 
subgames with only a small number of pieces remain
ing), Endgames retain much of the complexity of 

' the full game of chess whilst in many cases 
affording the possibility of controlled experi
ments and precise quantitative analysis. It is 
also notable that conventional chess-playing 
programs using deep search with simple evaluation 
functions generally perform ve ry badly in endgames, 
where knowledge, rathe r tha t. calculation, is 
probably the major factor i n human play. 

Studies of fundamental endgames such as King and 
,Pawn against King (KPK) and King and Rook against 
King (KRK) or of slightly more complex ones such 

:as King and Rook against King and Knight (KRKN) 
have revealed surprising complexity, Knowledge
based algorithms for a variety of endgames have 
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been given by Bramer (1977b), Bramer and Clarke 
(1979), Bratko, Kopec and Michie (1978) and else
where, in each case developed after a lengthy 
series of trials and careful refinement. 

There are a number of reasons for this unexpected 
complexity. 

(I) Limitations of current theoretical knowledge 
of chess. Experiments have revealed important 
errors and omissions in the known theory of 
particular endgames, with erroneous evaluations 
previously made by experts and counter-intuitive 
moves and results found in several important 
positions, 

KPK and KRK are believed to be fully understood 
theoretically by reasonably strong players. 
Nevertheless there are difficult cases which are 
not given in the majority of widely available 
textbooks, or (in some cases) in any of them. The 
authors have either been unaware of the difficul
ties or have excluded them as unimportant. 

(2) Boundary effects caused by the board edge. 
Inability to manoeuvre beyond the Rook files or 
the first or eighth ranks leads to difficulties and 
"special cases" affecting general strategies 
(particularly for KPK). 

(3) "Discontinuities" in the rules of chess. 
Stalemate, the option of an initial double Pawn 
move and Pawn promotion can be viewed as 
"discontinuities" in the normal rules (being un
able to avoid King capture loses, pieces move in 
the same way anywhere on the board) and both are 
significant in endgame play. 

(4) Chessboard geometry, The geometry of the 
chessboard is non-Euclidean (and varies from piece 
to piece). Measuring in terms of King moves (one 
square vertically, horizontally or diagonally at a 
time) the distance from square Al to square A7 is 
6 units either directly or via two sides of a 
triangle (AI-B2-C3-D4-CS-B6- A7). The situation is 
compounded by the existence of squares on to which 
a King may not legally move, which alters its 
"effective distance" from a given square. Some 
analysis of effective distance in the KPK case is 
given in Bramer (1977a). 

With this geometry it is difficult to de f ine tven 
apparently simple geometrical relationships, such 
as "Black King can take Pawn" for KPK. 

From the above it is clear that endgames, 
especially those with only a small number o.f 
pieces, differ from middlegames by being much more 
highly ill-behaved with numerous special and 
unexpected cases arising. Moreover the traditional 



computer chess technique of using a sophisticated 
search algorithm with a fa i rly simple evaluation 
function is not applicable (at least without major 
modification) to endgames, where it is easy to 
find examples of positions which would require a 
search of 30 ply or more deep to find the one 
(counter-intuitive) winning move. 

Although simple in structure, chess endgames are 
not a "toy" domain (such as the blocks world) but 
a highly complex and badly-conditioned one. It 
is not that conventional programming has proved 
ineffective for the endgame which is surprising, 
but that human players with even a small amount of 
training should appear to ignore the difficulties 
and play so well. 

Textbook descriptions of endgame strategies 

From the chess literature it is evident that end
game play depends much more on the use of plans 
based on a knowledge of significant configurations 
(or patterns) of pieces than on deep analysis of 
possible variations. 

For fundamental endgames such as KPK and KRK, the 
plans are very simple (e.g. "move as close to 
White's Pawn as possible") and the search very 
shallow, in fact almost non-existent. 

In conventional chess-playing programs, storing 
chess knowledge (of weak squares, say) can be 
viewed as helping to reduce the amount of search 
required, In endgame play (especially with a 
small number of pieces) it is probably more 
accurate to think of using search as a means of 
reducing the amount of knowledge that must be 
stored, either for a person or for a program. 

A typical textbook description comprises a small 
number of general "rules of play" together with 
some example variations from diagranmed positions. 
The rules are normally only imprecisely worded and 
omit important details which have to be inferred 
from the variations given. Nevertheless, this 
information is considered to be a complete and 
sufficient explanation for the reader and it is 
intended to have essentially the same meaning for 
every reader of the text. 

Although standard textbooks such as Fine (1941) 
are often thought of as definitive and exhaustive, 
this is far from true. Aside from gaps or errors 
in chess theory as mentioned previously, there is 
no attempt made to deal with all possible 
situations which can arise even in the simplest 
endgames, Fine remarks "I have given a large 
number of rules which are at times incorrect from 
a strictly mathematical point of view, but are 
nevertheless true by and large and are of the 
greatest practical value". Thus he concentrates 
on the typical cases to the exclusion (in general) 
of rarely arising exceptions even when these are 
known . 

· Even in the highly analysed and practically 
important case of KPK, it is clear that no effort 
has been made to demonstrate the most efficient 

· strategy (in the sense of the shortest possible 
win in every position). The emphasis is on the 
simplest possible explanation of how to handle 
this complex endgame in practical play and the 
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reader is required to supplement the knowledge he 
has gained from the textbook as a r esu lt of 
inference and practica l experience. 

Prograuming the endgame 

In attempting to model the strong player's know
ledge of the endgame, the researcher is faced by 
a number of decisions. One is whethe r to adopt a 
structural or a procedural representation, 
another is the level of performance f or which he 
should aim. A helpful distinc t ion can be made 
between winning algorithms which are optimal (i. e . 
the stronger side wins whereve r possible in the 
smallest possible number of moves) and those which 
are correct (the stronger side wins wherever 
possible but not necessarily as quickly as 
possible). The evidence and examples given in 
Bramer (1978) strongly suggest that, even fo r KPK, 
strong players perform sub - optimally, although 
almost certainly correct ly. For complex endgames 
it is quite possible that strong players do not 
always perform even correctly. 

There is a principle of sufficiency involved here . 
The game-theoretic maximum nuaber of moves needed 
for the stronger side to win any winnable KPK 
position is only 19. The rules allow for SO 
moves (without any piece taken or any Pawn moved) 
before a draw can be claimed. It is simply not 
worthwhile to overload the memory with numerous 
special cases (or spend time performing a deep 
analysis) to achieve optimal play, even as s uming 
this is feasible, if there is a simple algorithm 
which suffices for correctness, still well within 
the constraints of the SO-move rule . 

On the other hand, the endgame King, Bishop and 
Knight versus King is thought to require up to 
34 moves to win in some cases and, in practice, an 
error in certain critical positions can easily 
lead to an exceeding of the SO move limit. In 
these cases it is worthwhile memorizing much mo re 
detail of difficult cases, although not necessar
ily all of them. 

Clarke (1977) draws attention to the tradeoff 
between knowledge and search. At the extremes are 
a program which has full knowledge and uses no 
search (i.e. it simply looks up the best move in a 
table) and one which uses extensive search and has 
no non-trivial knowledge (i.e. it uses only the 
definitions of won, drawn and lost t enninal 
positions). In general, programs will lie some
where along this spectrum, with recent Artificial 
Intelligence research concentrating on programs 
towards the "knowledge" end. 

Kopec and Michie (1979) have described another 
tradeoff: this time between the per f ormance of a 
program and its comprehensibility to subject 
experts. High- performance programs which are also 
comprehensible are referred to as lying inside th e 
"human window". The importance of this concept 
can be seen by considering a hypothetical program 
which performs medical diagnosis and reconmiends 
treatment, such as major surgery. Gi ven the we ll 
known prevalence of "bugs" even in we ll - t ested 
systems, it is essential for med i ca l pra cti t ioners 
to have confidence in such a di agnos t ic system 
even when it makes pr oposa ls which conf lict with 



their own experience and judgement. With an 
appropriate representation, such as the production 
rules used by Mycin, it may be possible to satisfy 
subject experts of the accuracy of such judge
ments, for example by describing the factors which 
were taken into account, the weighting given to 
each, the diagnostic rules applied and the reli
ability attached to the result. 

Such considerations argue strongly in favour of 
the choice of a structural representation, 
particularly one based on rules or patterns. It 
would be extremely hard to justify a decision 
based on deep search, possibly recursive, and 
fine tuning of the weightings of terms in an 
evaluation function such as that used in standard 
tournament chess-playing programs. Another 
advantage of a pattern-based approach is that as 
well as judging the value of the rules given, 
subject experts can add their own experience in 
codified form. 

An interesting case where trust in an unfathom
able program was required has already arisen in 
chess. Michie (1977) reports that the grandmaster 
Bronstein has made use of a database of the best 
move in every position for part of the King, 
Queen and Pawn against King and Queen endgame for 
analysis of an adjourned position. This comprises 
more than a hundred million positions stored on 
nine magnetic tapes. If the move retrieved from 
the database had conflicted with Bronstein's own 
judgement it would have been virtually impossible 
to check whether it arose from an error in creat
ing the database or was in fact accurate. 

Rule-based representations of a body of knowledge 
can be viewed as having two possible functions: 
one as a replacement for the textbook, to be 
committed to memory by the chessplayer, the 
general medical practitioner etc. and used as 
required, the other is as an expert computerized 
assistant typically used in an interactive mode. 
In both cases, there is an important need for 
comprehensibility. However, a set of rules for 
the former will generally need to be much briefer 
than for the latter, to match the limitations of 
human short-term memory, and again there is a 
tradeoff, this time between accuracy (or complete
ness) and compactness within a given framework. 

A desirable feature of a r ule-based expert system 
is that learning within it will generally proceed 
monotonically, i . e. that adding a new rule should 
not invalidate old ones but should lead to an 
improvement in performance. This is only likely 
to be true if the underlying representation is 
well chosen. The proliferation of rules each 
covering a small number of cases which the subject 
expert would not regard as reflecting aspects of 
the complexity of the domain in question is a 
good indication that the repr , sentation is 
probably not appropriate. 

The weakness of a general - purpose representation 
such as the hierarchical model used by Negri 
(1977) for KPK and the standard form of inductive 
learning performed within it is that it fails to 
take into account the specific features of the 
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domain under consideration. Thus it may be that 
in specifying the "King can catch Pawn" predicate, 
some descriptors should always be used in 
preference to others where possible or that some 
descriptors should only be used in conjunction 
with others, or if others do not appear, etc. 
Given such knowledge for KPK, a much more compact 
description may be poseib le for "King can catch 
Pawn". 

A model for representing pattern-knowledge for 
chess endgames 

A representation designed to enable the chess
player's knowledge of an endgame to be represent
ed in a structurally simple and compact form, 
capable of incremental iterative refinement to 
improve its performance whilst preserving its 
initial properties, is given in Bramer (1977b) 
and Bramer and Clarke (1979) and summarized below. 
It is assumed that the problem is to construct an 
algorithm to find a move for a chosen side (say 
White) in any position p, for a given endgame. 
The basic move finding algorithm is then ss 
follows: 

(a) generate the set Q of immediate 
successors (Black to move) of p 

(b) find the highest ranked member of Q, 
say q 

(c) play the move corresponding to q. 

To achieve step (b) an implicit ranking is 
defined on the set Q* of all legal BTM (Black to 
move) positions for the endgame in question. 
Each such position is assigned to exactly one of 
a number of disjoint and exhaustive classes which 
partition the set Q*. 

The ranking of each BTM position is then 
determined by its class value (which is constant 
for all the positions in any class) and the 
values of a number of associated ~unctions. 
These vary from one class to another, in general. 
For positions in the same class, the functions 
used are always the same although their values 
will vary from one position to another. To 
compare the values of two positions , their class 
values are compared, with the larger value 
indicating the higher-ranked position. If there 
is a tie, the first associated function is used 
for comparison. If there remains a tie, the 
second associated function is used, and so on. 
(Any ties remaining after all the associated 
functions have been used are resolved 
arbitrarily.) When comparing the values of 
associated functions, in some cases the larger 
value is preferred, in some cases the smaller is, 
depending on the particular function. The 
intention is that each class should correspond to 
some significant static feature of the endgame as 
perceived by chessplayers, e.g. "Black is in 
check". The associated functions correspond to 
relevant numerical values, such as the distance 
between the two Kings. 

Assigning a position q to a class is achieved by 
working through a series of predicates (called 
rules) in turn until one is satisfied. 
(Subsequent rules are not evaluated.) A position 



q is defined to belong to a particular class N if 
and only if rule N is satisfied by q and none of 
the preceding rules are satisfied. 

This procedure ensures that each position belongs 
to only one class and helps to simplify the 
definition of the rules. To ensure that each 
position belongs to some class, the final rule is 
defined to be always~ for any position q. 

This model was used initially to develop an 
algorithm for the stronger side (White) of KPK 
which was thought to be a fully correct strategy 

as a result of extensive testing, reported in 
Bramer (1977b). Subsequent analysis revealed 
that the algorithm was not entirely correct. 
An optimal strategy was developed by a process 
of iterative refinement using a database of the 
shortest-path winning move (or moves) in every 
position. A correct algorithm has now been 
refined from the original 'near correct version' 
by .the aemi-automatic refinement process based on 
inspection of "Win-trees" given in Bramer ( 19 79) 
and is summarized in the Appendix . (The develop
ment of a correct algorithm for KRK is described 
in Bramer (1979).) 

Three algorithms for King and Pawn against King - a compgrison 

The following figures give basic information about each of the algorithms. 

FiS!:!re I - Three algorithms for KPK 

Alsorithm De.scription Classes Associated FunctiOJlS Max. -~e1;:t~- -, 
of win (1;:ly) 

A "near correct" strategy 19 9 

B correct strategy 20 10 44 

C optimal strategy 38 13 38 

Figure 2 - "Optimality Levels" for algorithms A (near-correct) and B (correct) 

Algorithm A"' Algorithm B 
Move played is optimal 59,888 (95.93%) 60,462 (96. 77%) 
Move played increases depth by l 1,526 (2 .44%) 1,075 ( l. 72i.) 

II II II II II 3 673 660 
II II II II II 5 251 222 

II II II 7 68 47 
II II II II 9 19 11 
II II II II 11 5 
II II II II II 13 
II II II 15 2 2 

Total 

(Breakdown for all legal WTM positions, which are theoretical wins). 

"' Excluding non-win preserving moves 

Figure 3 - Class membership for algorithm B (correct strategy) 

! Class Number of positions Class Nuni>e r of positions I 

l (BTM) (BTM) 

I 10,093 (10 .3%) 12 60 
2 9 13 176 
3 12,985 (13. 3%) 14 I ,620 (I . 7%) 
4 35,026 (35. 7%) 15 8,507 (8 . 7%) 
5 14,422 (14 . 7%) 16 2,632 (2.7%) 
6 694 (0. 7i.) 17 I 
7 so 18 4,971 (5. 1%) 
8 6,045 (6. 2%) 19 5 
9 42 20 4 

10 66 Total 97,992 11 584 (0.6%) 
(Pawn on file A-D, ranks 2-8.) 

Classes 2 7 9 JO 12 13 17 19 and 20 total to ether 413 members 0. 42i. . 
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Figure 2 shows the "Optimality Levels" for 
· algorithms A and B; i.e. the amount by which the 
· move selected in each theoretically won wrM 
position changed the maximum depth. For an 
optimal move the depth is decreased by one ply, 
for all other moves it is increased by an odd 
number of ply (the fewer the better). The figure 
shows that in both cases the great majority of 
moves are either optimal or increase the depth by 

· only one ply. The differences between the two 
algorithms are small and, in fact, algorithm B 
was formed from A by the addition of one new class 
(with only one member) and one new associated 
function plus slight changes affecting a few other 
classes. 

However, the difference in performance is sub
stantial. Algorithm A fails to win from as many 
as 4,602 theoretically won positions (WTM) and 
4,3Sl (BTM). Only in 48 positions (Wl'.M) is a 
move played which does not preserve White's winn
ing advantage, the other positions simply 
transform into one another in cycles. This result 
reinforces the evidence given in Bramer (1979) for 
the KRK endgame that a change to the move played 
in a small number of positions can drastically 
alter the overall performance of an algorithm. 
Testing even by expert human players might never 
reveal that A was not a correct algorithm. Its 
errors will in general result in a cycle but this 
may be after many moves of otherwise expert play, 
possibly in response to poor play by Black. 

To improve the performance of KPK from correct (B) 
to optimal (C) requires an increase from 20 to 38 
classes and from JO to 13 associated functions. 
This near-doubling of the size of the algorithm 
results in a relatively minor improvement in 
performance. The number of individual positions 
played optimally rises from 96.777. to 1007. and 
the maximum depth is reduced from 22 moves (44 
ply) to 19 (38 ply). The definitions of 38 
classes would probably be too many to commit to 
memory, if the algorithm were to be used as a 
replacement for the textbook, whereas 20 classes 
would probably be acceptable. Either number 
would be satisfactory for an expert computerised 
assistant. The pattern of distribution of depths 
for algorithm Bis very similar to that for C 
(theoretical maximum depths), and this is also 
true for algorithm A, which would tend to support 
the appropriateness of the representation adopted. 
In making the transition from algorithm B to C, it 
is clear that a "diminishing returns" effect is 
involved. The maximum depth of 22 moves for 
algorithm B is still well within the SO-move. 
drawing limit. For a practical player to take on 
the additions: ! memory burden required to play 
optimally wc·..1ld simply not be worthwhile, an 
unnecessary violation of the principle of 
sufficiency. 

The class membership table for algorithm B 
(Figure 3) shows that a fairly small number of 
classes account for the great majority of 
positions. The nine smallest classes contain less 
than a half of one percent of the positions, and 
four classes contain less than ten positions each. 
It is useful to consider whether classes with a 

low-level of membership reflect "special cases" 
of the domain in question or merely result from 
the particular representation used. In the case 
of algorithm B, the classes concerned do seem to 
correspond to clear special cases arising from 
the boundary effects, rule discontinuities etc. 
referred to previously. For example, Class 17 is 
used to deal with recognized difficulties with a 
Knight Pawn and Class 2 contains all the 
positions where Black is stalemated. Some of 
these special cases although important are not 
given in the major textbooks (or not in all of 
them) and this is more markedly so for algorithm 
C (optimal strategy). Bramer (1978) gives 
several examples of positions which are clearly 
special cases but are of no practical signific
ance and would certainly never be quoted in 
textbooks. It is evident that textbooks omit 
many special cases, even those which are 
necessary for correct play, and that a major 
reason for thi s is to reduce the amount to be 
memorized. 

It is not certain that algorithm Bis a minimal 
correct strategy for KPK, i.e. one with the 
fewest number of rules possible. By removing 
certain of the special cases or by other changes 
it might be possible to construct an algorithm 
which was still correct but had a greater maximum 
depth, although still within the SO-move limit. 
Such a strategy would doubtless still have to 
include classes to deal with a (possibly reduced) 
number of special cases. If the aim were not to 
achieve correctness, but to perform expertly in 
practical play or to serve as a teaching document 

/ superior to standard textbooks, it could be 
argued that an abbreviated algorithm which 
omitted special cases but was still reliable in 
the great majority of cases was preferable. To 
return to the idea of the "human window", it may 
be that the window includes all three algorithms 
A, Band C and a spectrum of others including 
some which are not fully correct. In each case 
there is a tradeoff between complexity and 
completeness, on the one hand, and compactness 
and comprehensibility, on the other. 

Extending the model 

The most important way in which people reduce 
the amount of knowledge memorized is by making 
use of analysis or search. 

For experienced players, search plays little 
part in playing simple endgames (although exact 
counting does) but increasingly more as the 
problem becomes more complex. Unfortunately, 
tournament chess-playing programs have found it 
necessary to use search of a volume and kind 
which is most unlike that of expert human players. 
An extension of the model previously described 
enables the use of pattern-knowledge to be 
combined with search deeper than one ply, but 
which is capable of careful control. 

The final class (defined to be always true) is 
called the residual class; those with class 
values greater than that of this class are called 
positive, those with lower values are called 
negative. These latter two categories broadly 
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reflect features of the endgame which are 
particularly desirable or especially undesirable. 
The most likely source of difficulty in programm
ing complex endgames lies in specifying a 
sufficiently large number of positive or negative 
classes, with many important positions thus fall
ing into the residual class. 

There are four possibilities for a given set of 
successor positions: 

(a) at least one belongs to a positive class; 
(b) all belong to negative classes; 
(c) all belong to negative classes, except one 

which belongs to the residual class; 
(d) two or more positions belong to the residual 

class and the remainder (if any) belong to 
negative classes. 

In cases (a), (b) and (c) the most favourable 
position can be found statically using position 
values in the usual way. In case (d), either the 
positions in the residual class can be taken as 
terminal and the associated functions used to 
calculate the value statically, in the usual way, 
or an analysis tree can be generated from each of 
the residual class positions, with the negative 
class positions rejected altogether. 

Constructing an analysis tree (either depth-first 
or breadth-first) in this way has the effect of 
reducing the amount of search by pruning all 
branches to positions in negative classes (unles s 
there is no alternative) and defining terminal 
states of a given set of positions . as a whole 
(cases (a), (b) anI"cc) above). Since a residual 
class position can, at any stage, be regarded as 
terminal, with the static value of the position 
backed up the tree, the amount of analysis 
perfot"l!led is subject to close control. In 
gener•l, this forln of the model is distinguished 
from conventional tree-searching in that search 
is intended to be used in a controlled way only 
as necessary to supplement the pattern-knowledge 
which it is believed is the fUrtdamental component 
of th·e chessplayer's endgame knowledge. It 
corresponds roughly to the high-level rule "if in 
an unfamiliar situation, search for possible 
forcing variations into known positions" . An 
implementation of this extended model, known as 
Kappa 2, is currently in progress. 

Appendix 

A correct algorithm for the endgame King and Pawn against King 

Figure 4 - Classes for King and Pawn against King (Summary) 
,_=::::::=:;:==============================:;::::====:::::~-----------· 

Class 

I 
2 
3 
4 
s 

16 
6 

17 

7 

8 

9 

10 

I I 

12 

13 

14 
18 
19 
20 
I'S 

Property of position q 
(Black to move) 

Pawn en prise 
Black is stalemated 
Pawn is on eighth rank 
Pawn can "run" 
Black King is effectively closer 
to the Pawn than White (adjusted 
for second rank case) 
(Some Rook Pawn cases) 
Black can move to "blockade" square 
(Knight Pawn position - special 
case) 
White is on the "blockade" square 
and Black can take opposition 
Black King at least two files from 
White King on same side of Pawn, 
White King not below !:'awn's rank 
Kings on critical squares on same 
rank 
Kings on critical squares, Black 
one rank above White 
White King on Pawn's rank, above 
Pawn 
Kings in vertical opposition, with 
the White King on a critical square 
Kings in opposition, White King 
above Pawn or both on sixth rank 
White King on a critical square 
White King on a file above Pawn 
(Pawn on sixth rank-special case) 
(Pawn on fifth rank-special case) 
(always true) 

Class 
value 

I 
2 

20 
19 
3 

4 
5 

I I 

6 

18 

17 

16 

IS 

14 

12 

10 
9· 
8 

13 
7 

Associated Functions 

2, 3 

I 
2, 3 

I, 2, 3 

I, 4, 7 

) • 7 

r, 6, s, 10 
4, r, 8 

2, 3, 7 ,. 9' 
"' --··-'---------------------L----'----------------' 
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Figure 5 - Associated Functions for King and Pawn against King 

Function Value of function 

I The Pawn's rank"' 
2 The file or rank distance between the Kings, whichever 

is the larger"'"' 
3 The file or rank distance between the Kings, whichever 

is the smaller"'"' 
4 The file distance between the White King and the Pawn"'"' 
5 The file distance between the White King and the Pawn"' 
6 The number of ranks the White King is above the Pawn"' 
7 The White King's rank"' 
8 The rank distance between 
9 The file distance between 

IO The White King's file"'"' 

"' The largest value should be taken 
** The smallest value should be taken 
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Abstract 

Preliminary experiments are described 
with a program that simulates concurrency 
.to process game trees in parallel. The 
alpha-beta algorithm is implemented to 
·search disjoint subtrees simultaneously 
using knowledge about the behavior of the 
s equential algorithm to increase the num
ber of cutoffs. This approach is found 
to result in a considerable speedup of the 
search. Some future research directions 
are suggested. 

1. Introduction 

"Even though the real world is 
inherently parallel, our algo
rithmic view of it is basically 
sequential. This is due in part 
to 300 years of sequential math
ematics and more than 20 years of 
sequential Fortran programming." 
[9] 

Tr~e search occupies a fundamental 
place in artificial intelligence research 
[14]. In particular, the majority of game 
playing programs generate and search game 
trees. To date all game playing programs 
have sequentially searched the trees they 
generated. With the advent of concurrent 
processing technology, however, this state 
of affairs is very likely to change. 

Two papers have recently addressed 
some of the problems associated with pro
cessing game trees in parallel. In [6] 
the emphasis is on developing a specific 
structure of microprocessors in a master
slave configuration to minimize the solu
tion time of certain tree decision prob
lems. One particular application is dealt 
with in the paper: that of two ply chess 
move generation. It is shown that, for 
the typical two ply move, the total real 
solution time decreases with the increas
i ng number of slave microprocessors. A 
theoretical upper bound on the number of 
use f ul slaves for this particular problem 

This research was supported by the Natur
al Sciences and Engineering Research Coun
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is also derived . 

In [3] the alpha-beta pruning algo
rithm is studied. It is argued that in a 
parallel implementation which explores 
different subtrees of the game tree con
currently and independently, the power of 
the algorithm would be lost . As an alter
native, the paper suggests that the prob
lem of finding a path in a game tree can 
be viewed as the problem of locating the 
root of a monotonic function over some in
terval. A parallel implementation of the 
algorithm is thus proposed in which the 
processes work independently by searching 
the entire game tree for the solution over 
disjoint subintervals. Here the efficien
cy of the alpha-beta pruning algorithm is 
measured by the average number of terminal 
nodes explored during the search. The 
main result is that when the degree k of 
parallelism, i.e. the number of processes 
cooperating in the search, is small (k=2 
or 3), the parallel algorithm shows an 
improvement over the original algorithm by 
a factor which is larger thank. The max
imum speed-up achievable, however, is 
believed to be limited to 5 or 6. The 
author concludes by suggesting that a bet
ter way to implement the alpha-beta prun
ing algorithm with a large number of pro
cesses in parallel would be to combine 
both his strategy of decomposition and the 
independent exploration of different sub
trees of the entire game tree. 

The present paper describes prelimi
nary experiments with a program that sim
ulates concurrency to search game trees in 
parallel. As our model of computation we 
use a parallel computer of the MIMD (Mul
tiple Instruction stream Multiple Data 
stream) type as defined in [8] . The ma
chine we intend has a number of asynchro
nous processors with a communication fa
cility provided by common memory or com
munication lines. A processor can initi
ate another processor, send a message to 
another processor, or wait for a message 
from another processor. Apart from these 
interactions, processors proceed independ
ently. 

The simulated environment provides 
multiple software processes and multiple 



hardware processors. A process is created 
for each node that is searched. The num~ 
,ber of processors is a parameter of the 
program. 

Unlike the algorithm of [3], our im
plementation of the alpha-beta algorithm 
:searches disjoint subtrees concurrently. 
,It uses knowledge about the behavior of 
'the sequential algorithm to simultaneously 
increase the number of cutoffs and reduce 
the search time. The major experimental 
finding reported in this paper is that 
this approach results in a considerable 
speedup, thereby contradicting the claims 
in [3]. 

We assume the reader is familiar with 
the sequential alpha-beta algorithm and 
the associated tree search jargon insofar 
'as the terminology is unified (11,13,14]. 
,We will essentially use the nomenclature 
used in (13] . As usual, the trees to be 
searched are those of a two-person, zero
sum, non-chance, board game of perfect 
information (10]. In Section 2 we outline 
the basic principles used in the design of 
our parallel implementation of the alpha
beta algorithm. The algorithm itself to
gether with the procedures it calls are 
described in Section 3. In Section 4 we 
present and analyse the results of our 
experiments. 

2. Basic Design Pri~ciples 

It is shown in (16] that the minimum 
number of terminal nodes scored by the 
alpha-beta tree search algorithm under the 
best circumstances is 

where Bis the branch factor and Dis the 
maximum depth of the (uniform) tree. This 
is illustrated in Fig. 1 where the tree is 
perfectly ordered so that the best moves 
for both players are always to the left.In 
such a tree, the terminal nodes shown with 
a score (and only these terminal nodes) 
must be examined in order to determine 
the principal continuation (PC), i.e. the 
best sequence of moves found for both 
sides to follow based on the computer's 
finite depth search [2]. 

This fact represents the basis for our 
parallel implementation of the alpha-beta 
algorithm: assuming that the tree to be 
searched is perfectly ox :ered, those nodes 
that have to be scored are (concurrently) 
visited first. The algorithm is designed 
with two objectives in mind: to minimize 
the run time of the search and to perform 
as many cutoffs as possible, thereby min
imizing the cost of the search (total 
number of op~rations). 
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In order to achieve these goals a 
distinction is made among the sons of a 
node. The first son of a node is called 
the "left son". The subtree containing 
the left son is called the "left subtree" 
and the process that searches this subtree 
is the "left process". All other sons of 
a node are called "right sons" and are 
contained in "right subtrees" which are 
searched by "right processes". This is 
illustrated in Fig. 2. 

The left subtree of a node is searched 
by a left process (which is spawned by the 
parent node) until a final value for the 
left son is backed up to the parent node. 
To obtain this final value, the left son's 
process spawns processes (lefts and rights) 
to search all of the left son's subtrees. 
Concurrently, a single, temporary value 
is obtained for each of the right sons of 
the parent node. These values are then 
compared to the final value of the left 
son and cutoffs are made where appropriate. 

The temporary value for a right son is 
obtained by the right son's process spawn
ing a process to search its left subtree. 
This new process searches the subtree, 
backs-up a value to the parent's right 
son, and then dies. If after a cutoff 
check the right subtree search continues, 
then a process is generated to search the 
second subtree of the right son. This 
procedure continues until either the sub
tree is exhaustively searched or the 
search is cut off. 

It is clear that, by applying the 
above method, those nodes that must be 
examined by the alpha-beta algorithm will 
be visited first. This ensures that need
less work is not done; a cutoff check is 
performed before processes are generated 
to search subtrees that may be cut off. 

In a search with more processors than 
running processes it may be possible to 
minimize the run time of the search by gen
erating processes to search the sons of a 
right node concurrently using the idle 
processors. This brute force approach is 
not used since it conflicts with the other 
aim of our design, namely minimizing the 
cost of the search. The cost of any tree 
search consists mainly of the cost of up
dating the system in moving from parent to 
son and in the cost of evaluating or scor
ing a node. Therefore even though a pro
cessor (which could be doing concurren~ 
work) is idle, the overall cost in oper
ations is minimized by not searching sub
trees which may not have to be searched. 

In Fig. 3 (assuming an infinite number 
of processors running at the same speed) 
the root node process generates processes 
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·Pl, P2, and P3 which execute concurrently. 
1Pl being a left process generates proces
•es Pl.l, Pl.2, and Pl.3 to search all of 
the subtrees of the left son of the root. 
:P2 and P3 are searching right subtrees and 
.therefore generate only processes to 
jsearch the left subtrees of the right sons 
'of the root (P 2. l and P3 .1 respectively) . 
After generating its son processes, a 
:parent process suspends itself and waits 
'for its children to terminate, backup a 
value, and die. 

At this point an interesting question 
arises. We stated earlier that one of our 
.design objectives is to increase the num
ber of cutoffs; How do we expect our al
gorithm to perform in this respect com
•pared with the sequential version? To 
;answer this question we shall make a dis
:tinction between shallow and deep cutoffs. 

1) Shallow Cutoffs 

(i) All shallow cutoffs that would 
.occur in a sequential search due to the 
'. (temporary) value backed up to a node from 
:1 ts left son also occur in a parallel 
;search. This is because all temporary 
~alues obtained for the right sons of the 
node are compared to the backed up final 
.value of the left son for a cutoff check 
before the right subtree search continues. 
An example illustrating this situation is 
shown in Fig. 4. Initially, the root is 
assigned (temporarily) the final value of 
:its left son, i.e. 8. The two right sub
~rees are searched in parallel, resulting 
.in temporary values of 3 and 5 being as
'signed to the first and second right sons 
irespectively. Clearly the circled sec
tions of the two right subtrees are cut 
off in exactly the same way as in a se
quential search. 

A right subtree that is exhaustively 
searched and not cut off compares its 
final value to the temporary value of the 
~arent and changes the parent's value if 
necessary. Any cutoff that would have 
occurred in other right subtrees due to 
the value backed up to the parent from its 
left son will also occur due to any right 
son value that changes the parent's value. 

(ii) Some shallow cutoffs that would 
occur in a sequential search can be missed 
in the parallel search due to the way in 
which processes are generated to search 
game subtrees. In the example of Fig. 5 
a sequential search would cut off the cir
cled portion of the tree whereas the par
allel search would not. The parallel 
search misses the cutoff since a process 
is generated to search that subtree before 
the first right subtree of the root com
pletes its search and updates the root's 
value. 
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(iii) Some cutoffs that are missed in 
the sequential search may occur in the 
parallel search due to the way in which 
processes are generated. A right subtree 
search that terminates early and causes a 
change in the parent's value, may cause 
cutoffs in other right subtrees that would 
not occur in the sequential search, as in 
Fig. 6. 

In Fig. 6 both right sons of the root 
compare their initial values, 6 and 7 
respectively, to the final value of the 
left son, i.e. 5. Neither right subtree 
search is cut off so processes are gen
erated to search the second sons of the 
right sons of the root. But since the 
second right son of the root has only one 
son, its subtree has already been exhaus
tively searched and, therefore, the root's 
value is updated to 7. Thus when the fir
st right son of the root performs a cut
off check, this time a cutof f occurs. 
This cutoff is missed by the sequential 
search. 

2 ) Deep Cutoffs 

In order for deep cutoffs to occur at 
a node, values from searches of other 
parts of the tree must be available. In a 
sequential search the values or scores at 
each ply are known to every node and are 
stored in a single global score table. In 
a parallel search this is impossible since 
the best sequence of moves (found so far) 
from the root to a leaf is not always 
returned. 

In Fig. 7 the left son of the right 
son of the root is searched at the same 
time as the son of the left son of the 
root. If the right son is backed up the 
value 3 at ply 1, and then the left son is 
backed up the value 1 (overwriting the 
score table value of 3 at ply 1), then 
when the second subtree of the right son 
is searched its value of 2 will not be 
recorded at ply 1 (since 1 <2 and we are 
minimizing at ply 1) . Therefore the value 
of 2 will not be backed up to the root as 
it would be in the sequential search. 
This means that instead of returning the 
best sequence of moves (m2,m5) from the 
root, the sequence, ml,m3 will be 
returned. 

Since there can be no global score 
table, an individual score table is as
signed to each node when a process is gen
erated to search the subtree containing 
that node. This table is initialized to 
the values in the score table of the 
node's parent. Therefore, the information 
necessary for a deep cutoff to occur is 
not available in general, s ee Fig. 8. 

In practice, a node is not given a 



:complete score table, but rather just a 
,small table containing the scores for the 
!two previous plies and the node itself. 
·This means that the complete score table 
/for a node (as described above) is actu
ally distributed throughout the tree along 1

1
the path from the root to the node. With 
this structure it would be possible to 
!obtain additional deep cutoffs as follows. 
!suppose that during a search of the tree 
!in Fig. 8 (b) the following sequence 
!occurs: 

(i) the search of the left subtree (of 
the root ) begins, 

(ii) the search of the right subtree 
beg inri, and 

(iii) the search of the left subtree 
~ompletes, backing up a temporary 
score to the root. 

At this point searching along some paths 
in the right subtree could be cut off, the 
information indicating this being availa
ble in the score table of the root node. 
However, to effect this deep cutoff, the 
information must be propagated down the 
right subtree. The algorithm could be ex
.tended to deal with this circumstance but 
·as "deep cutoffs have only a second order 
effect on the average behavior of the 
alpha-beta pruning algorithm" [3), we have 
avoided the additional psychological com
:plexity and administrative overhead. 

This Section has described some basic 
·principles that were considered in the 
design of the parallel adaptation of the 
alpha~beta algorithm. The algorithm it
self is presented in the next Section. 

3. The Algorithm 

There are seven main components of the 
algorithm: Initialize, Handle, Score, Gen
erate, GenerateMoves, Apply, and Update. 

l) Initialize reads in the original 
board position (i.e., the configura
tion for the root node of the search 
tree) and the depth to which the tree 
will be searched. Handle is then in
voked to create a process for the root . 

2) Handle is a recursively-defined 
process. It searches a node in a game 
tree by calling either Score ( for a 
leaf) or Generate (for a non-leaf) and 
then calling Update. 

3) Score is a static evaluation func
tion. It accepts a - parameter a board 
configuration, and returns an integer 
representing the value of the position. 

4) Generate is called to search a sub
tree that is not a leaf. It calls 
GenerateMoves to produce a list of 
moves from the current position. If 
the root of the subtree is a left node, 

then Handle is invoked once· for each 
son. The processes thus created run 
concurrently, and Generate waits until 
they all terminate. If the root of 
the subtree to be searched is a right 
node, then the sons are searched in 
sequence by calling Handle for one of 
them, waiting for it to complete, and 
performing a cutoff check before 
searching the next son. Procedure 
Apply is used to produce board config
urations for sons. 

5) GenerateMoves accepts as parameter 
a board configuration and produces all 
of the legal moves from that position. 

6) Apply accepts as parameters a board 
configuration and a move, and produces 
the board configuration that results 
when the move is made. 

7) Update waits until the parent's 
score table is free and then copies 
the value derived as a score for the 
current subtree into the table, if 
applicable. 

This algorithm has been implemented in 
order to empirically investigate its be
havior. Experiments with the implemented 
algorithm yield statistics on the cost of 
a tree search in terms of the total run 
time, the number of nodes scored, and the 
number of nodes visited. By varying the 
number of processors used to search the 
tree we can investigate the value of par
allelism in the algorithm. This experi
mental procedure can be applied to a num
ber of search trees. 

Since we did not have a multiprocessor 
available on which to implement our algo
rithm, it was necessary to simulate phys
ical parallelism. The simulation language 
GASP IV (15] was chosen as a vehicle for 
thi '~ because it would easily simulate a 
variable number of processors and because 
it facilitates writing complex transactions 
(in our case: processes to search a tree 
node) in a high level language (FORTRAN). 
Additional details can be found in [l]. 

4. Experiments and Conclusions 

"I think we're coming more and 
more to the frontier where what 
artificial intelligence is waiting 
for is the mechanization in hard
ware of the sorts of parallel in
teraction which will allow an or~ 
der of magnitude increase in i ~
telligent behavior with a given 
outlay of cost." (12) 

The implemented parallel alpha-beta 
algorithm, executing in the simulated mul
tiprocess-multiprocessor environment, -was 
tested for various inputs. The purpose 
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pf our experiments was to study the ef
:fects of parallelism on the cost of a tree 
search, this cost being expressed in three 
different forms: (i) run time of the tree 
•search, (ii) number of terminal nodes 
,scored and (iii) total number of non-ter
~inal and terminal nodes visiteq. 

Essentially, a uniform tree of a given 
depth, D, and branch factor, BF, was gen
:erated and stored prior to the search. 
(Note that this is just for experimental 
purposes~ in a typical decision tree 
search, the tree is generated as it is 
searched and only the relevant parts of 
the tree are stored.) The terminal nodes 
of this tree were assigned scores chosen 
from a particular probability distribu
tion. The principal continuation was then 
sought using a varying number of proces
·SOrs and the three measures of cost re
.corded each time. These values were 
·averaged over several trees with different 
terminal node scores but keeping the depth, 
branch factor and probability distribution 
:of the scores fixed. The entire procedure 
was then repeated by altering these latter 
characteristics. Typical results of these 
experiments are shown in Figs. 9-12. 

The curves in Fig. 9 show that the run 
:time decreases sharply with an increasing 
number of processors doing the search. 
For a given depth of search the savings 
:in run time are more noticeable, however, 
for large branch factors than for small 
ones . It is also clear that a saturation 
point is eventually reached after which 
the run time remains constant for an in
'creasing number of processors. As expect
ed, the total number of nodes visited as 
well as the number of terminal nodes scor
ed also increases with an increasing num
ber of processors. Surprisingly, in this 
case the increment is relatively small and 
a saturation point i,s quickly reached as 
can be seen in Figs. 10 and 11. Finally, 
the curves in Fig. 12 indicate that the 
algorithm exhibits the same behavior for 
various distributions of the terminal node 
scores. 

A few remarks regarding future work 
are now in order. The experimental res
ults presented above indicate that paral
lelism is of value in alpha-beta search
ing. Some modifications are possible in 
our algorithm. For example, minor changes 
in the strategy for generating processes 
to search a subtree, or in process prior
ity assignments might make significant 
differences in performance. It is also 
worthwhile investigating the value of deep 
cutoffs in parallel searching. Because 
of the different order of node evaluation 
introduced by parallelism, deep cutoffs 
may become more than a second order effect. 
The simulation environment is a natural 
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one in which to investigate these issues. 
Changes in either the algorithm or the 
hardware configuration can be implemented 
and experimented with easily. We believe 
that the next logical step would be to 
incorporate the parallel alpha-beta algo
rithm in an actual game playing program 
and study its behavior. It will then be 
possible to address more pragmatically 
the issues pertaining to the saturation 
points mentioned above -- in particular 
how they are related to the depth of 
search and branch factor. More important
ly, it will be possible to determine how 
the quality of the game played by a game
playing program is affected by parallel 
tree search. Naturally, one may predict 
that with the faster processing of trees 
provided by parallelism, it will be pos
sible to search deeper trees in a given 
amount of time and hence improve the 
quality of the play. This is not certain, 
however. In fact the artificial intel
ligence community seems to be divided on 
this matter. In [SJ Neil Charness as
serts that 

"Adding a few plies does not pro
duce tremendous change in perform
ance. What is gained by adding 
more lookahead capacity is rapidly 
lost in time spent evaluating the 
hundreds of thousands of new ter
minal positions .•. Humans have 
two major advantages over comput
ers. They have both a vast know
ledge base about chess and a set 
of procedures for efficient man
ipulation of that base". 

These statements are to be contrasted 
with what Hans Berliner (4) recently 
wrote in an article reviewing the com
puter chess state-of-the-art: 

"Strangely enough (from my point 
of view and I believe AI's in gen
eral) the breakthrough has come on 
speed rather than knowledge. From 
this I must conclude that human 
chess players largely delude them
selves in believing that chess is 
a 'conceptual' game. Apparently a 
large part of chess can be solved 
by exhaustive searching (as done 
in CHESS 4.6) and it remains to be 
seen whether such an approach will 
ultimately allow a machine to be
come World Champion by taking ad
vantage of small inaccuracies in 
human play to win a material ad
vantage and then hold on through 
the end game (where conceptualiz
ation still appears to be needed) 
to win anyway. I believe this 
will not happen, but such machines 
may come very, very close. It is 
already clear, however, that a 



full width search going to a depth 
of six plies plus quiescence will 
discover things that even a Grand~ 
master will overlook on occasion." 

We hope 
~owards the 
'3ial point. 
in [7J). 

that our work will contribute 
resolution of this controver

(Similar issues are discussed 

In conclusion we point out that search
ing trees in parallel, in our opinion, not 
only provides a considerable increase in 
speed, but in addition could allow us to 
naturally simulate one of the several as
pects of human game playing, namely per
ception. Indeed -- taking the game of 
chess again as an example -- a generally 
accepted theory for Grandmaster play as
serts that a highly sophisticated pattern 
recognition ability is used by the skilled 
human player while analyzing a chess pos
ition in order to choose the next move. 
As Charness writes: "The process of choos
ing a move seems to involve perception as 
a primary component, and in particular, 
the recognition of thousands of stored 
patterns" [SJ. Whether this pattern rec
ognition ability (simulated using paral
lelism or otherwise emulated ) will be es
sential in the attainment of high-level 
game-playing by computers is yet another 
open question. 
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Abstract 1 

We discuss the implementation of heuristic 
search algorithms in a distributed problem solver 
whose processors interact according to the contract 
.D.tl. protocol. Task distribution is viewed as a 
local mutual selection process based on a two-way 
transfer of information between processors wit h 
tasks to be executed and processors with knowledge
sources capable of executing those tasks. 

As an example of the approach, we consider the 
N Queens problem. We then derive measures of the 
speedup that can be expected from the application 
of a distributed processor to search problems that 
involve regular trees, and discuss the effect of 
coupling between processors on speedup . Bounds are 
developed for the number of processors that are 
required to achieve maximum speedup . 

Introduction 

Distributed problem solving is the cooperative 
solution of problems by a decentralized and loosely 
coupled collection of knowledge-sources (KSs), each 
of which may reside in a distinct processor node. 
The KSs cooperate by sharing tasks and/or results. 
By decentralized we mean that both control and data 
are logically and often geographically distributed; 
there is neither global control nor global data 
storage. Loosely coupled means that individual KSs 
spend most of their time in computation rather than 
communication. Such problem solvers offer the 
promise of speed, reliability, extensibility, the 
ability to handle applications with a natural 
spatial distribution, and the ability to tolerate 
uncertain data and knowledge. 

Search problems are attractive as applications 
of distributed problem solving for three ma jor 
reasons. First, exploration of a search space of 
the size commonl y encountered in Al applications 
consumes a large amount of computing time (see, for 
example, discussions of Meta-Dendral [Buchanan, 
1978], and CONGEN [Carhart, 1976]) . Thus, the 

1 This work was supported in part by the 
Advanced Research Projects Agency under contract 
MDA 903-77-C-0322, and the National Science 
Foundation under contract MCS 77-02712. Some of the 
work described is being pursued i n coll11boration 
with Randall Davis at MIT. Joe Maksym also made a 
number of valuable comments. 
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speedup promised by the distributed approach is 
attractive. Second, search problems are often 
modular in form. Numerous relatively independent 
subtasks are created during the course of a search. 
These subtasks are ideal candidates for 
distribution to individual processors. Finally, 
search is one of the major problem-solving 
paradigms . It is therefore important to develop 
tools for applying the new VLSI technology to 
search problems. 

2 Task-Sharing And Contract Negotiation 

The contract .D.tl. protocol [Smith, 1978], 
[Smith, 1979] facilitates cooperation of multiple 
processors in the solution of a problem. Dynamic 
matching of tasks and KSs is effected by 
negotiation. A contract is an explicit agreement 
between a processor that generates a task (the 
manager) and a processor willing to execute the 
task ( the contractor). (Note that a processor is 
assumed to contain one or more KSs.) A contract is 
normally established by a process of local mutual 
selection based on a two-way transfer of 
information. In brief, available contractors 
evaluate task announcements made by several 
managers until they find one of interest . They 
submit a bid for that task. The manager then 
evaluates the bids received from potential 
contractors and selects the one it determines to be 
most appropriate. Both parties to the agreement 
have evaluated the information supplied by the 
other and a mutual selection has been made. 
Control is distributed because processing and 
communication are not focussed at particular 
processors, but rather every processor is capable 
of accepting and assigning tasks. 

Contract net messages contain slots for 
information that aids negotiation. A task 
announcement contains three such slots. The 
eligibility specification is a list of criteria 
that a processor must meet to be eligible to submit 
a bid. It enables a processor receiving the 
message to decide whether or not it is able to 
execute the task. This specification red uces 
message traffic by pruning processors wh0se bids 
would be cleArly unacceptable. The task 
abstraction is a brief description of the task to 
be executed. It enables a processor to rank the 
announced task relative to other announced tasks. 
An abstraction is used rather than a complete 
description in order to reduce the length 0f the 
message. The bid specification is a description of 
the expected form of a bid. It enables a proce3sor 
to include in a bid only the information about its 



capabilities that is relevant to the task rather 
than a complete deiscription (called a node 
abstraction). Thiis simplifieis the task of the 
manager in evaluating bids and further reduces 
meseage traffic. 

3 Distributed Search: Overview 

In thiis section we discus:, some general 
characteristics of diistributed search. We then show 
how the contract net protocol can be used to 
organize a distributed problem solver to perform 
such a search. 

Consider the exhaustive search of a tree in a 
distributed processor. To make clear the flow of 
the search, we make the following assumptions: ( 1) 
the basic task for each processor is generation of 
a successor node in the tree, (ii) as soon as a 
processor generates a node, it distributes that 
node to another processor for further expansion, 
(iii) generation of each node requires a constant 
processing time, (iv) there is a sufficient number 
of processors so that the expansion of a node can 
be commenced by one processor as soon as the node 
has been generated by another, ( v) a processor can 
distribute a successor node to another processor 
concurrently with generation of another successor 
node, and (vi) distribution of a node to a 
processor and reporting of results require a 
negligible amount of time compared to the time 
required to expand the node. 

The flow of the search process is shown in 
Figure 1 for a regular tree of branching factor 2 
and depth 3. The numbers inside each node circle 
indicate the time unit at which the node was 
generated and the processor that generated it ( in 
the format "time / processor"). 

Figure 1. Distributed Search or A Regular Tree. 

At time 1, one successor of the root node is 
generated. This successor is distributed (we 
assume instantaneously) to A~other processor, so 
that at time 2, two successors are generated. The 
number of processors involved in the search rises 
from 1 to 4 and then decreases again to 1 before 
completion. 

It is apparent that problems that entail a 
large amount of search are especially amenable to a 
distributed approach--they have the potential for 
large speedups. In addition, trees comprised of QB. 
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nodeis lend themselves more readily to concurrent 
exploration than do those comprised of Mm. nodes. 
This is because less processor synchronization is 
required for their exploration. Trees with 
Ordered-AND nodes ( 1. e., nodes that must be 
expanded in a particular order) are the least 
amenable to concurrent exploration because they 
require the greateist amount of synchronization 
(which inevitably means that some processors will 
stand idle waiting for results to be generated by 
other processors). 

In Appendix A we present performance measures 
for exhaustive distributed search of regular trees. 
It is shown that speedups that are close to linear 
in the number of processors are possible. It has 
been shown elsewhere (e.g., [Imai, 1979]) that 
better than linear speedups are possible. This 
result follow:, for problems in which application of 
multiple processors can eliminate fruitless 
expansion of a large number of nodes. We also see 
from the analysis that trees that are bushy near 
the root lead to larger speedups than trees in 
which bushiness occurs at larger depths. This is 
due to the fact that more processors get involved 
quickly, and the nodes they generate can often be 
queued for later expansion with no increase in 
search time ( because of the decreased demand for 
processors as the search nears completion). 
Finally, it is shown that loose-coupling must be 
maintained if maximum speedups are to be achieved. 

3.1 Node Selection 

In a distributed search, selection of nodes 
for expansion and generation of their successors 
are asynchronous, local processes. Node selection 
is especially different from the uniprocessor case, 
where a global evaluation function is used to 
select one node to be expanded next. Distributed 
search strategies have a local character because 
many nodes may be selected concurrently for 
expansion by individual processors, usually based 
on a more local evaluation. 

If interprocessor communication is severely 
constrained, then as a processor generates new 
nodes, it queues them locally for expansion and 
processes them alone as soon as it can (in an order 
dependent on its search strategy). Only when a 
processor is idle and has no nodes queued for 
expansion does it communicate with other processors 
to acquire new nodes. We call this~ queuing. 
The result is a local approximation to one of the 
familiar uniprocessor search strategies. 

It is possible to impose a global search 
strategy on a distributed processor by transmitting 
all nodes ready for expansion to a central 
repository. A global evaluation function can ~hen 
order the nodes, and idle processors can remove 
them (in order) from the repository. We call this 
.&l.Q.Qa.l queuing. Unfortunately, it can lead to 
bottleneck and reliability problems. In addition, 
when communication costs are high, it can lead to 
lower speedups than local queuing (see Appendix A). 
The main advantage of global queuing is that it 



1 

: I 

I 

i 
.'· 

offers the potential for ensuring that the ~ 
nodes are expanded first because the evaluation 
function has a global perspective. When local 
queuing is used, other measures must be taken to 

. approximate a global perspective. This is an 
example of the general problem of achieving 
coherent behavior in a system that uses distributed 
control. Distributed control is necessary if the 
advantages of distributed problem solving are to be 
achieved--but it leads directly to a problem in 
maintaining global coherence. 

Better approximations to global strategies are 
obtained at the price of interprocessor 
communication. The intent of a best-first search in 
a uniprocessor, for example, is to select the most 
appropriate node for expansion at any given time. 
If interprocessor communication is severely 
constrained, then an individual processor can only 
select the best of the nodes that it has stored 
locally; and none of these nodes may be the overall 
best node to be expanded. If the processors can 
communicate more extensively with each other, then 
several of the overall best nodes can be 
concurrently selected for expansion by separate 
idle processors. We will see how this is done with 
the contract net protocol in the next section. 

4 Example: The N Queens Problem 

The goal of the N Queens problem is to place N 
queens on an N x N chessboard in such a way that no 
two are on the same row, column, or diagonal. We 
discuss one possible implementation of this problem 
as a simple introductory example of the issues that 
arise in an application of distributed problem 
solving. Section 4.1 shows sample messages 
transmitted by processors during the solution of 
the problem. 

The processor at which the problem is started 
(the top-level processor) begins with an empty 
board. It generates N subtasks, each of which 
corresponds to a partial~ with 1 queen in the 
first column and in a different row for each 
subtask. These subtasks are announced. Bids are 
submitted by other idle processors. Successful 
bidders are awarded contracts for the task of 
extending the partial boards to completion. The 
top-level processor is the manager for this task. 
(It is now free to become a contractor for future 
subtasks.) 

This process is continued recursively for each 
column of the board; that is, the contractors 
trying to extend partial boards (here, with 1 queen 
already placed) Renerate independent subtasks by 
placing a queen in the next column (here, the 
second column) under the no-capture constraint. 
They then distribute the subtasks (and take on the 
role of manager for them) . 

There is thus only one type of task for all 
processors--extension of a partial board. When a 
processor node places the Nth queen, and thus has a 
complete solution to the problem, it reports to its 
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manager. (Similarly, when a processor cannot 
further extend a partial board, it reports to its 
manager.) Further reports ripple upward to the top 
level and the search terminates when some pre
specified number of solutions has been compiled; 
that is, when any manager has received the required 
number of solutions, it terminates any outstanding 
subtasks within its span of control and reports to 
its own manager. This manager in turn terminates 
outstanding subtasks, and so on. Ultimate ly, the 
top-level node reports the solutions to the user . 

The task abstraction of each task announcement 
specifies the type of task to be executed and the 
present .ll.t.al;& of the task, relative to the goal 
state (in this case, the number of queens that have 
already been placed on the partial board). The 
number of queens placed gives a potential 
contractor a method for ranking announced tasks in 
order to select a task for submission of a bid . It 
is used by processors in this example to effec t an 
approximation to the desired global search 
strategy . A breadth-first strategy, for example, 
is implemented by ranking boards that have a small 
number of queens placed higher than those that have 
a larger number of queens placed. Bids are 
submitted first for these boards, and they are 
therefore generally executed before the others.2 

We pointed out earlier that one of the 
problems associated with distributed control is 
approximation of the global perspective that 
enables a uniprocessor to select the best nodes for 
expansion at any time. This problem is handled in a 
contract net as follows: Each processor listens to 
all task announcements and maintains a list of 
recent announcements. When a processor goes idle, 
it selects, according to its own criteria, the 
current optimum task for which to submit a bid from 
among the tasks contained in its list. Each 
processor therefore has a kind of ~ through 
which to view the currently available tasks. This 
window lends a more global character to the search 
strategy because node selection is based on 
information received from a number of processors. 
The cost is local storage (for the list of tasks) 
and communication (to gain information about tasks 
available from other processors). 

Two possible eligibility specifications are 
shown. The first is a null specification . The 
assumption here is that all processors have the 
necessary procedures for executing the extend- board 
task. A bid then simply indicates that a processor 
is willing to execute the announced task, and the 
contract is awarded to the first bidder. In the 
second case, the eligibility specification names 
the required procedures. The assumption here is 
that not all processors are pre-loaded with the 
necessary procedures. A potential contractor can 
submit a bid indicating that it needs the 
procedures to execute the task . In this casJ the 
contract is awarded to the first processor that has 
the procedures, or, in the absence of any such 
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bidders, to the first bidder. This is an example of 
dynamic transfer of knowledge. (See (Smith, 1978) 
for a more extensive discussion. ) A simple award 
strategy (i. e., award to the first bidder) is 
possible for this problem because any processor 
with the procedures has the capability to execute 
the task. 

4.1 Sample Messages 

<The processor given responsibility for the top
level task issues messages of the following form as 
it generates the first subtasks.> 

To: • <"*" indicates a broadcast message.> 
From: 
Type: TASK ANNOUNCEMENT 
Contract: 1 

Task Abstraction: 
TASK TYPE EXTEND-BOARD 
BOARD QUEENS 1 

Eligibility Specification: 
NIL <or> PROCEDURE NAME EXTEND-BOARD 

Bid Specification: 
NIL 

To: 1 
From: i 
Type: BID 
Contract: 

<Idle processors respond.> 

Node Abstraction: 
NIL <or> REQUIRE PROCEDURE NAME EXTEND-BOARD 

To: i 
From: 

<To the successful bidder.> 

Type: AWARD 
Contract: 1 

Task Specification: 
BOARD SPECIFICATION ( ... ) 
PROCEDURE NAME EXTEND-BOARD CODE ( ... ) 

To: k 
From: q 
Type: REPORT 
Contract: j 

Result Description: 
SUCCESS 

<If required.> 

<Eventually, messages like 
this are transmitted.> 

BOARD SPECIFICATION ( ... ) 
<or> 

FAILURE 
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To: n 
From: m 
Type: TERMINATION 
Contract: i 

5 Summary 

<When enough solutions have been 
accumulated by a manager, it 

sends messages like this 
to its contractors.> 

We have shown the use of the contract net 
protocol in the solution of a search problem. The 
negotiation process is particularly simple for this 
problem and a minimal amount of information needs 
to be transferred between processors. Consequently, 
only a degree of the power of the approach is 
demonstrated. The main use of the protocol in this 
example is to make connections between processors 
for reliable distribution of the processing load 
and communication of results. Processors are 
efficiently used because they can take on multiple 
roles: A processor tha t has generated all 1-queen 
extensions to the current board and distributed 
them to other processors (contractors) need only 
deal with reports occasionally ( in its role as 
manager). It is therefore · free to act as a 
contractor for other tasks. The result is that no 
processors remain idle as long as there are tasks 
to be executed. Furthermore, processors are able 
to obtain the procedures necessary to execute tasks 
as part of the negotiation process. Finally, The 
explicit manager-contractor links assist in rapid 
local pruning of the search space (via termination 
messages) when a sufficient number of solutions has 
been found. Each manager can directly terminate 
the execution of subtasks being executed by its 
contractors as soon as it becomes aware that the 
results are no longer required. The net does not 
have to wait for reports to reach the top-level 
processor before subtasks are terminated. 

We have demonstrated the utility of 
negotiation as an approach to the problem of 
maintaining global coherence in a system that uses 
distributed control. The problem is by no means 
solved, however, and is a focal point for further 
research, One of the extensions currently under 
examination is to have processors listen more 
carefully to the message traffic around them. At 
present, only task announcements are examined by 
all processors. It may prove beneficia l for other 
messages (e.g . , bids, awards, and reports) to be 
subjected to the same scrutiny. It may, for 
example, lead to more informed bid and award 
strategies. 

Appendix A 

Distributed Search Analysis 

We derive bounds on the performance that can 
be expected from distributed search of regular 
trees. Although we only explicitly consider 
regular trees in this analysis, the results are 
easily extended to a more general class of trees-
those that are compositions of regular trees. (See 
(Smith, 1978) for details.) 
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A. 1 Speedup 

The total number of nodes, n, in a regular 
tree structure with depth d and branching factor b 
is, 

n = (bd+l 1)/(b - 1) . ( 1) 

The number of tip nodes, nt, in such a tree 
is, 

(2) 

The time required for the search is the most 
appropriate measure of performance for a 
distributed processor. The traditional 
uniprocessor measure of number of nodes examined is 
still a valid measure of the power of the search 
strategy, but is insufficient to capture the effect 
of multiple processors. 

A. 1. 1 Uniprocessor Search 

The search time divides into two components: 
the time to expand a node, te, ( i . e., the time 
required to generate all successor nodes of a 
node), . and the time to select a new node for 
expansion, ts. The time to expand a node can be 
rewritten in terms of the time required to generate 
a single successor node, tg, as follows, 

te = b·tg. (3) 

The minimum time to find one goal node in 
regular tree is achieved if the tree is searched i"n 
a depth-first fashion and no false paths are 
explored. Und~r this assumption, the uniprocessor 
search time, tmin• is, 

t~in = ((d - 1)·b + l)·tg + (d - 1)•t5 • (4) 

We have assumed that a node is completely 
expanded (i.e., all successor nodes are generated ) 
before a new node is selected for expansion, and 
that the goal node can be recognized as soon as it 
is generated. We do not consider search strategies 
where only some of the successors of a node are 
generated before a new node is selected for 
expansion. (See [Smith, 1978J for treatment of this 
type of strategy.) 

The maximum uniprocessor time, t~ax, is 
achieved when exhaustive search of the tree must be 
performed before the goal node is found. In this 
case, the search time is, 

A.1.2 Distributed Processor Search 

We assume the search strategy is as presented 
in Section 3; that is, a node is distributed for 
expansion by another processor as soon as it is 
generated; there is thus no time required for 
selection of nodes and the search time depends on 
the time to generate a successor node, t~, and the 
time to distribute a node to another processor, tc. 
We assume that the tc cost must be incurred any 
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time the expansion of a node is started by a 
processor, even if the node was generated by that 
processor. This is the case if ilobal queuing is 
used. It leads to a somewhat pessimistic estimate 
for search time (and therefore speedup) but 
simplifies the analysis. We will later drop this 
assumption. 

The minimum time for a distributed §rocessor 
to find a single node in a regular tree, tmin• is, 

d 
tmin = d·tg + (d - 1) ·tc. (6) 

The maximum time, d 
tmax• is given by, 

d 
tmax = d·b·tg + (d - 1) ·tc. (7) 

This is equivalent to the time required to expand 
the nodes that border the tree on one side . 

A.1,3 Comparison 

The speedup for exhaustive, or maximum, 
search, Smaxe• is given by, 

(8) 

Note that Smaxe is not the maximum attainable 
speedup for a regular tree. It is, however, a 
convenient measure for comparison. We will later 
derive the address of the tip node for which the 
maximum speedup is attained. 

Note also that as the selectivity of the 
search strategy is augmented, thus diminishing the 
need for exhaustive search, the advantage of 
concurrent computation is also diminished. 

In order to draw some simple conclusions from 
the Smaxe equation, we will assume that ts « tg. 
Under this assumption, 

smaxe ::: (n - 1 )/(d·b + (d - 1) · (tc/tgl) . (9) 

tc/tg is a measure of the coupling between 
processor nodes for the distributed search problem. 
We call this ratio the processor-coupling-factor, 
C , (Note that it depends on both the 
cRaracteristics of the task and the characteristics 
of the distributed processor.) Thus, rewriting (9), 
we have, 

Smaxe::: (n - 1)/(d·b + (d - 1)·CP). (10) 

Figure A. 1 shows the variation in S axe as a 
function of CP for a regular tree of °!;ranching 
factor 3 and depth 6. The cost of a mismatch 
between the task grain size and the communications 
characteristics of the distributed proces~or is 
apparent: Loose-coupling must be ensured by a 
proper match of task grain size to distributed 
processor communications characteristics if a 
significant speedup is to be achieved. 

Figure A.2 shows the maximum speedups 
attainable for exhaustive search of th1·ee regular 
trees, of branching factor 2, 3, and 6, as a 
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A.2 Processor Requirement 

We derive lower and upper bounds on the number 
of processors, Pmax• required in a distributed 
processor to obtain the maximum speedup for the 
exhaust! ve search of a regular tree. We assume 
that tc = O, and that tg = 1. 

As a lower bound, it is apparent that at least 
Smaxe processors are required to achieve a speedup 
or smaxe. This is overly optimistic because it 
assumes that all processors are fully utilized 
throughout the period of the computation. Near the 
start and end of the search, however, very few 
processors are in use. 

In order to improve the estimate, consider the 
rate at which processors are pressed into service 
as the search progresses. The number of new tasks 
generated at each successive time unit in the 
search of a tree of infinite depth and branching 
factor b is given by the following generalized 
Fibonacci series of order b, 

p* • • • j = (Pj-1 + pj-2 + + pj-b). (11) 

j = 1,2, 3, 

p* 
j = o, j < -1. 

• p• p -1 • 0 = 1. 

where the "*" superscript is used to indicate 
that the series is writ ten for a tree of infinite 
depth. To account for the finite depth of the 
trees of interest, the equation can be modified as 
follows. Observe that whenever a processor reaches 
a tip node in the tree, the effect is to prune a 
subtree from the infinite tree. This pruning begins 
after d time units. We can account for the pruning 
of these subtrees by subtracting Fibonacci series, 
that start at times when processors reach tip 
nodes, from the original series. The number of 
series to be subtracted at each time instant 
corresponds to the number of tip nodes reached at 
that time instant. The number of tip nodes reached 
at each instant of time (starting at the dth time 
instant, when the first tip node is reached, to the 
b • d th time instant, when the search is completed) 
is given by, 

j = d, d+1, d+2, 
kj = o, j < d, 

(12) 

.... b·d. 
j > b•d . 

where Cm('lh k) is the coefficient in the nth row 
and the k column of the m-arithmetic triangle. 
In general, the Cm(n, k) obey the equation, 



Cm(n, k) = Cm(n-1, k) + Cm(n-1, k-1) + ( 13) 

... + Cm(n-1, k-m+1). 

0 < k ~ n· (m-1), n > 0. 

Cm(O, 0) = 1. 

Cm(1, k) = 1, 0 < k < m-1. 

Cm( 1, k) = o, k > m. 

Thus the number of processors required, Pj, is 
given by, 

pj = p~ - kd·P~-d - kd+1·P~-(d+1) - (14) 

• ..• - kb•d.pj-(b•d)· 

j = 0,1,2, ... , b·d. 

And an upper bound on the number of processors 
required is given by, 

Pmax = MAX(Pj). ( 15) 

0 ~ j < b·d. 

This estimate is an upper bound because of the 
assumption that nodes cannot be queued for later 
expansion, but instead must be expanded as soon as 
they are generated. This is not generally required 
because of the lower demand for processors as the 
search nears completion. 
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Figure A.3. Processor Requirement 

238 

Figure A.3 shows the two bounds for the 
required number of processors for exhaustive search 
of the same three trees as used in Figure A.2. Also 
shown (by dash£d lines) is the actual number of 
processors required to achieve the maximum 
exhaustive search speedups (as determined by 
simulation). 

Figure A.4 shows the increase in normalized 
speedup for a tree of branching factor 3 and depth 
6 as the number of processors is varied. Also 
shown is corresponding decrease in efficiency 
(i.e., speedup per processor). This is a 
conservative estimate of efficiency, in that it 
includes processors that stand idle near the start 
and end of the search. These processors might be 
applied to another top-level problem during this 
time in a general-purpose distributed processor . 

We noted earlier that the speedup estimates 
for distributed processor search are slightly 
pessimistic, because of the assumption that the 
cost tc is ~ incurred when a processor 
acquires a node for expansion. In Figure A. 5, we 
show the effects of dropping this assumption. The 
figure compares the possible speedups for varying 
numbers of processors on a tree of depth 6 and 
branching factor 3 for both the global queuing of 
nodes to be expanded and the local queuing of such 
nodes. The speedups are normalized to that 
attainable with a global queuing strategy. A small 
number of sample points are marked with symbols to 
allow the reader to distinguish between the curves. 

• 25 St 75 1H 125 151 
N~•b•r of Proceaaora 

Figure A.4. Speedup And Efficiency 
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Figure A.5. Speedup And Queuing Strategy . 

Local queuing strategies are useful when CP is 
high. In Figure A.5, C = 1. We see a small 
improvement for local queufng in each case. 

For further comparison, two selection 
strategies have been used for the figure: breadth
first and depth-first. We see that a breadth-first 
strategy leads to slightly better speedups than a 
depth-first strategy, mainly because tasks get 
distributed to idle processors earlier in the 
search. 

A.3 The Maximum Speedup 

We now derive the address of the tip node at 
which the maximum speedup is attained. As in the 
previous section, we assume that CP = O, tc = O, 
and tg = 1. 

We can write the address of a tip node, ak, as 
follows, 

ak = k + n - nt. (16) 
0 < k < nt. 

where k is the .illil.U of the tip node. ak is also 
the number of time units required by a uniprocessor 
to reach the tip node with that address, using a 
breadth-first search algorithm, under the above 
assumptions. 

The number of time unJ• s , tk, required by a 
distributed processor to reach the node with 
address ak -is given by, 

( 17) 

where w j = { O, 1, ... , b- 1}, 0 < j < d-1 are 
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the values of the bits in the b-ary representation 
of the index, k. 

Hence, the address of the node for which the 
maximum speedup is attained, asmax• is the ak that 
maximizes ak/tk. 
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A GEOMETRIC MODEL APPROACH TO REPRESENTING 
GRAPH-SEARCH PROBLEMS: FIRST RESULTS 
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Abstr .act 
A change in representation can sometimes simplify a 

problem considerably. Given a prob lem (defined in some 
specific representation or encoding), it would be useful 
then to be able to find alternative representations for 
it, preferably ones that simplify the problem. Better yet 
would be the ability to generate such "simpler" 
encodings automatically. This paper introduces a new 
approach toward these goals, based on geometric models 
of graph-search problems (i.e., embeddings of the 
vertices of the problem graph in a d-dimensional 
Euclidean space). We show how the hmlliar English 
description of a problem can be mapped into its 
corresponding geometric model, and we give examples of 
the "familiar" geometric model and alternative 
geometric models of several well known problems 
(including a "Seven squar·es 11 version of the Water Jug 
problem that is simpler to solve than the familiar 
version). We propose an "operator partition entropy" 
measure of the simplicity of any geometric model of any 
problem graph; by this measure the alternative 
geometric models displayed in our examples are simpler 
than the "familiar" geometric models, suggesting that 
the example problems are not inherently as complicated 

as the "tamlliar" models would suggest. We comment on 
possible extensions to these first results, including the 
possibility of searching for problem representations in a 
state space of geometric models of a graph, using the 
operator partition entropy measure as a heuristic to 
guide the search. Note that the characteristics of a 
model or representation that make a problem easy or 
hard to solve are beyond the scope of the present 
paper; here we are explicitly concerned only with ways 
to devise alternative models for describing a problem, 
leaving for future work the connection between the 
ease of describing a problem and the ease of solving it. 

1. Introduction 
Research to date on problem representation has 

spanned several approaches and problem domains. The 
closest in spirit to the present work have focused on 
identifying and exploiting symmetries in problems (e.g., 
[Amarel 1968}. [Cohen 1977]). The present paper 
examines the same broadly-defined class of 
graph-search problems considered in the latter work , a 
class that includes familiar problems such as the Tower 
of Hanoi and the Eight Puzzle as elementary examples. 
The object is to find a path from a given Initial node to 
a given goal node. This class of problems has also been 
studied extensively as a domain for the A• best-first 
search algorithm (e.g., [ Nilsson 1971]. [Pohl 1977 J. 
[Gaschnig 1979a]). One advantage of this particular 
class of problems Is that since a problem is defined as a 
graph, questions about a problem's representation, or 
alternative representations, or the "simplicity" of such 
representations can be formulated in precise terms. 
This paper attempts to be precise in Its statements, 
although sometimes informal for illustrative purposes. 

Amarel [1968) investigated a sequence of 
alternative models for the Missionaries and Cannibals 
problem, successively grouping the nodes of the graph 
into larger equiva lence classes, and defining new 
operators (and macro-operators) accordingly. Cohen 
[1977} extends Amarel's work by proposing a mechanism 
for partitioning the nodes of & graph into equivalence 
classes reflecting certain sorts of symmetry. Hence 
both Amarel and Cohen attempt to identify abstract 
problems equivalent (in a certain sense) to the given 
problem, but having a smaller state space (i.e., number 
of nodes). In contrast, the present approach Involves 
relabeling the nodes of a problem graph so as to 
partition the ~ (r ather than the nodes) into a new 
set of operators that may simplify the problem. 

2. Geometric Models of Problem Gr&phs: Basic Concepts 

Figure 1 illustrates a basic notion that the 
appearance of regularity or symmetry in a graph 
depends on how it is described or depicted. The three 
graphs depicted in Figure 1 are isomorphic, differing 
only in the assignment of nodes of the graph to 
coordinates In the plane. (The coordinates assigned to 
some of the nodes are printed in Figure 1.) One might 
say (Informally) that regularity Is inherent In the 
topology of a graph, but is realized (or expressed or 
revealed) in the arrangement by which the graph is 

depicted or encoded. To find paths between arbl trary 
nodes in Figure la is trivial, in Figure lb nearly so, but 
apparently more difficult in Figure lc.1 

Now consider the following well known problems 
( fam i I i ar I t y w i th wh i ch i s presumed) : 
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,Th. . f . 
1s 1n ormal claim could be stated more formally in 

terms rel1ting to the performance of the A• algorithm 
using as a heuristic function the orthogonal disun'ce 
metric in the Euclidean plane. Such a heuristic 
function would estimate distances between points in the 
griph of Figure 1 exactly In the case of Figure h, 
~ather accurately in the case of Figure lb, and poor IY 
1 n the case of Figure 1 c. 



No, of nodes No, of edges 

Water Jug i . 
14 372 

(jug capacities 3 and 4) 

Missionaries and Cannibals 16 17 
(3 missionaries, 3 cannibals, 
boat capacity 2) 

Tower of Ha noi (3 d I SC S) 27 39 

Eight Puzzle 91 = 362,880 483,840 

Table 1. Sizes of graphs of faml 11 ar problems 

It Is common to encode these problems In practice In 
a concise form, for example, in which the configurations 
of the problem (i,e,, nodes of the graph) are 
represented as tuples whose elements ar.e drawn from 
finite sets of number s, and in which the legal moves of 
the problem (1,e,, the edges of the graph) are spanned 
(disjointly and exhaustively) by a set of operators, each 
of which Is a function that takes a tuple as argument 
and returns the tuple of a node connected to the 
argument node, If any exist for that operuor (1.e,, If 
the precondition of the operator is satisfied for that 
argument tuple). For example, In Figure la one such 
operator might be defined as RIGHT (x, y) = (x + I, y). 
whose precondition Is satisfied If x < 4. 

The configurations of the Water Jug problem can be 
represented in this way by tuples of the form (Cl, C2), 
where Cl Is the current contents of jug 1 (I.e., O, 1, 2, 
or 3 units of liquid), and C2 is the current contents of 
jug 2 (0, 1, 2, 3, or 4 unlts ),3 The commonly defined 
operators for this problem can be called EMPTY-1 (I.e., 
empty jug 1), EMPTY-2, FILL-1, FILL-2, POUR-1 (i.e . , 
pour the contents of jug 1 into Jug 2 until either jug 1 
Is empty or jug 2 is filled), and POU R-2. Similarly, the 
Missionaries and Cannibals configurations can take the 
form (M,C,B), where M, C, and B denote the number of 
missionaries, cannibals, and boats on the left side of the 
river (i.e., 0, 1, 2, or 3 missionaries; 0, 1, 2, or 3 
cannibals; 0 or 1 boat; certain combinations are 
forbidden). Similarly, a configuration In the Tow er of 
Hanoi problem can take the form (D1, D2, D3), where 
DI denotes th e number of the peg on which disk i 
currently resides (the pegs are numb ered 1, 2, and 3), 
Similarly, a configuration in the Eight Pu.zzle can take 
the form (Tl, T2, ... , TS), where Ti denotes the square 
of the board on which the tile numbered i currently 
resides (the squares are labeled 1 through 9 in some 

2No t e t ha t edge s i n t he Wat e r J u g gr a p h are 
directed (since some operato rs have no Inverse) , 
wh i I e those in the graphs of the oth er prob I ems 
cited in Table 1 are undirected. 

3certain combinations are precluded by the 
preconditions of the operators. 
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convenient ordering),4 

The present appr oac h Is to consider each instanc e of 
such a tuple as the coordinates of a point in Euclidean 
space. Then the ;above tuple encodings determine an 
assignment of the node s of the problem graph to 
coordinates In space, and the edges connect pairs of 
coordinates In space, Hence the familiar English 
description can be m;ipped Into ;i geometric picture. 
Figures 2a, 3a, and 4a depict the geometric models 
corresponding to the Water Jug, Missionaries and 
C;innibals, and Tower of Hanoi encodings given above. 
In Figure 2a the sequence of edges labell ed Pl, P2, P3, 
P4, PS, P6 indicates the moves to transform the initial 
state (0,0) into the goal state (2,0 ), 

3. Examples of Alternative Geometric Models 

It Is clear that an infinite number of geometric 
models of the Water Jug problem (or of any other 
problem graph) is pos s ible, si nce the nod es o f that 
graph can be ass igned to arbitrary distinct coordinates 
in N- dlmensional space (for ar bit rary N > 1 ). Our 
objective now Is to find models that appear to be 
simpler than the one in Figure 2a (or Figures 3a or 4a, 
by analogy). Figures 2b, 3b, and 4b depict alternative 
geometric models for our example problems. The origin 
of these alternative models reflects divers e sources an d 
methods: trial and error, observations made In previous 

work for other purposes [Nilsson 1971, p. 82]. [Amar e l 
1968, P• 145]. and a method similar to that In [Cohen 
1977] for identifying equivalence classes of nodes in 
the graph that reflect topological symmetries. (For 
example, in the "Seven Squares" model depicted in 
Figure 2b and describ e d In English subsequently, the 
pairing of nodes reflects a symmetry discovered by this 
mechanical method. ) The sequence of edges Pl, P2, ••• , 
P6 in Figure 2b correspond to those having the same 
labels In Figure 2a, and the nodes connected by these 
e dges are similarly in correspondence. Visu a lly at least, 
the alternative models given in Figures 2b, 3b, a nd 4b 
appear simpler than the corresponding "familiar" models 
in Figures 2a, 3a, and 4a. Apparently these problem 
graphs ,-re not so complicated as the " familiar" models 
would suggest. 

Just as we transformed an English d esc ription into 
Figure 2a, so we can attempt to describe Figure 2b in 
English, thus: 

There Is a board consisting of seven squares 
In a row, numbered O through 6, and a checker 
that is colored white on one side and b lack on 
the other. The checker can occupy any square 
with either color facing up. From any 
(color, square) state, the checker may move to 
either adjacent square without flipping color . 
(Th e end squares of co urse have only on e 
adjacent square.) These mov es (I.e., edges ) could 
be covered by operators RIGHT and LEFT 

4 Note that the Water Jug probl e m is a directed graph 
(since some operators have no Invers e ), whereas the 
oth e r problems considered here are undirected graphs, 
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defined as for Figure 1 a. If the checker is on 
square 6, it may flip color and remain on square 
6 {this set of moves covered by an operator 
called FLIP6). From any state, it may )U'J'P to 
square 1, flipping color If it jumped from an 
even-numbered square, and not fllpplng If from 
an odd-numbered square (operator JUMPl ). It 
may jump to square O from any state, flipping if 
It jumped from squares 1, 3, or 4 (operator 
JU MPO-F LIP), and not , flipping otherwise 
(operator JUMPO-NO-FLIP). 

Although finding a minimal-length path in Seven 
Squares may not be trivial, It is trivial to find a 
non-minimal length path for any Initial state S and goal 
sute G: if S and G are the same color, simply move 
RIGHT (or LEFT as the case may be) from S to G, 
otherwise move RIGHT to square 6, flip, then move 
LEFT to G,5 

Superficially the Water Jug problem and the Seven 
Squares problem are not similar at all, yet tli~ir graphs 
are isomorphic, Just as Figure 1a Is an apparently 
simpler isomorph of Figure 1 c, so Figure 2b is an 
appare ntly simpler isomorph of Figure 2a,6,7 

SThis approach ignores (I.e., doesn't use) the JUMPO, 
JUMP1, JUMPO-FLIP, and JUMPO-NO-FLIP operators. 
In a sense, then, we are thereby finding paths In a more 
constrained graph, l,e,, the variant of Figure 2b In 
which the edges corresponding to the JUMP operators 
are deleted, An aspect of the impllcatlon of deleting 
edges in problem graphs is considered in an "edge 
subgraph" approach to devising heuristics [ Gaschnig 

1979b J. 

6There does not appear to be any simply stated rule 
for mapping between states in Figure 2a and the 
corresponding states in Figure 2b, This Issue of mapping 
between geometric models may turn out to be important 
for practical considerations, but is beyond the scope of 
the present initial Investigation. 

4. An •operator Partition Entropy• Measure 
So far we have demonstrated how a problem 

representation can be mapped to a geometric embedding 
or model of a graph, and have presented instances of 
such models for several common problems, includlng 
"familiar" models and alternative models that appear to 
be simpler, at least with respect to one's visual 
Intuition. Now we propose a quantitative measur e of 
the simpllcity of an arbitrary geometric model of an 
arbitrary problem graph. 

The definition of operator partition entropy is 
motivated (although only loosely) by the information 
theoretic approach of Chaltln [ 1975 ], In the present 
context, we observe that a theory about problem 
representation can try to account for and measure the 
information content of a problem,8 Any member of the 
particular class of finite, stronaly connected graphs 
considered here can be reconstructed from the closur e 
of applications of the oper at ors to any arbitrary node, 
Hence here we seek a measure related in some way to 
the amount of information required to specify the 
operators, .i,e,, to encode the precondition and "action" 
of each operator, In this first effort, we ignore the 
precondition and consider only the "action" of an 
operator. 
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Our approach is that each geometric model of a 

7our discovery of the "Seven Squares" model of the 
Water Jug was aided by the results of a mechanical 
process for partitioning the nodes (as opposed to the 
edges) of the Water Jug graph into seven equivalence 
cluses corresponding to the seven squares, each class 
containing two nodes (corresponding to the checker's 
color), This symmetry-factoring algorithm involves only 
topological considerations, and is similar to a method 
described by Cohen [ 1977 ], The method successively 
spllts the classes of an initial partition, according to 
the following principles : (1) initially partition the nodes 
according to the number of incident edges; (2) associate 
a symbol (e.g., A, R, etc.) with each such equiV1ience 
class; (3 ) choose one equivalence class (e,g,, A) and 
associate with each of its member nodes n1 the list of 
the nodes n1 connecting n1 by an edge; (4) in the list 
associated with each such node n1 replace each node nj 
by the symbol denoting the equivalence class to whicli 
nl belongs, hence associating with each node n1 a 
multiset of class names (e.g., {A,B,B,C); (5) partition 
the nodes n1 Into new equivalence classes, each of 
whose members have identical associated multisets, The 
method proceeds {details omitted here) until no further 
partitions ensue, 

8To be concrete, the Eight Puzzle graph has 9! nodes 
and 4/3*91 edges, but its connection matrix can be 
constructed from instructions far less verbose than 91 
bits , 



graph (I.e., assignment of the nodes to distinct points In 
an N-dimenslonal Euclidean space) should determine a 
unique partition of the edges into exhaustive, mutually 
dlsfolnt subsets, I.e., into equivalence classes. (By our 
approach each equivalence class will correspond to an 
operator. ) From this partition of the edges of the 
graph we shall compute a number. 

To illustrate the approach, consider Figure la. It Is 
convenient in practice to partition the edges of Figure 
la Into four oper.ators: RIGHT, LEFT, UP, DOWN. 
Hence for all (x, y) such that x < 4, RIGHT(x, y) = 
( x + 1, y) specifies a (directed) edge from the node 
(x, y) to the node ( x + 1, y). We adopt the shorthand 
notation RIGHT (x, y) = <1, O> to Indicate that 
R IGHT(x, y) adds 1 to Its x argument and O to Its y 
argument. We call <1, O> the action expression of 
RIG HT. By this convention the action expression of 
DOWN Is <O, 1 >. Hence the edges of Figure la are 
covered by four act ion expressions: <1, O>, <O, 1 >, <-1, 
O>, <O, - 1 >. In this way a geometric model determines 
a set of action expressions covering all the edges. 
(I.e., the operators are not ·chosen freely but are 
determined by the geometric model). For simplicity and 
convenience we shall actually consider undirected edges 
rather than directed edges, and say that Figure la 
determine two action expressions: HORIZONTAL = <1, 
O> and VERTICAL= <O, 1>. 

Similarly, Figure 1 b determines the action 
expressions <1, O>, <1, 1>, and <1, -1>, covering 12, 6, 
and 6 edges respectively. Simllarly, Figure 1 c 
determines action expressions <1, O>, <1, -1 >, <1, 1 > 
<1, -2>, and <1, -4>, covering 9, 9, 4, 1, and 1 edges, 
respectively. This approach applies to the models in 

Figures 2, 3, and 4 as well, so that in general a 
geometric model determines an action class partition (or 
operator partition) of the edges.9 

With each operator i we can associate the fraction 

P1 of the total number of edges covered by that 
operator (i.e., action expression). This suggests the 
entropy formula standard in information theory: 

where c is the number of operators (i.e., equivalence 
classes in the partition). H0 p takes the maximum value 
log2 m when each of the m edges belongs to a distinct 
equivalence class; H0 p takes the minimum value O when 
all m edges belong to the same equivalence class. 

We make no claim that H0 is the most appropriate 
measure of the simplicity of pa geometric model, but 
simply that investigations of its properties may provide 
insight for future extensions of the present results. 
Nevertheless, we do no·u the fundamental result in 
Information theory ( Khlnchin 1957, Shannon & Weaver 
1972 J that the number of bits to transmit a symbol 
chosen from a finite collectlor , of c symbols, each 

symbol s, having probability Pi of being selected for 
transmission, is given by the H0 p formula above. Hence 

9The approach Is generalized somewhat in the case of 
the Water Jug problem. 

one could transmit them edges of a graph using m•H
0

p 
bits. (Whether this is of more than simply metaphorical 
significance In the present case is debatable.) 

The model in Figure la has two operators 
(HORIZONTAL and VERTICAL), each spanning 12 
edges, hence P = .5 for each operator. He nce we 

obtain H0 p = - (.S log .5 + .5 log .S) = 1, compared 
wl th the maximum value Hrnax = log 24 = 4.58. 

In Figure lb there are 3 operators, having P = 0.5, 
0.25, and 0.25, respectively, giving H

0
p = 1.s. The 

operators In Figure le span 9, 9, 4, 1, and 1 edges 
respectively, giving H0 p = 3.605. As fractions of the 
maximum value 4.58, the H0 p values of Figures la, lb, 
and le _are F0 p = Hop/1-\nu = 0.22, 0.33, and 0.79, 
respectively. 

Tab I e 2 s i mi I a r I y comp ar e s the " fam I I i a r • and 
a I t e r n ilt I v e g e ome t r I c mode I s of the Wat er J u g , 
Missionaries and Cannibals, and Tower of Hanoi. 
Besides the version of the Water Jug problem having jug 
capacities 3 and 4, the following table lists analogous 
r e s u I t s tor a v er s i on ha v I n g j u g cap a c i t I e s 5 and 8. No t e 
that the •seven Squares• model general lzes in the 
l atter case to the 11 13 Squares" model, having. an 
appearance and operator partition similar to the those 
of the "Seven Squares" model. Note that sealing the 
Wllter Jug problem parametrically In this way causes 
little change In the value of H

0
, for either the 

"familiar" or alternative modefs, because the 
par ame t t i ca II y I a r g er I a r g e r prob I ems s I mp I y have mo r e 
edges covered by each oper.ator ( as defined in terms of 
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action expression ) rather than introducing new 
operators (I.e., new action expressions not included 
among those for the sma 11 er variant). 

Hop 
( fam.) 

Hop 
( a It.) 

Hmax Fop 
( fam.) 

Fop 
( a It . ) 

Water Jug( 3, 4 ) 2. 783 2.40 5.64 o.49 0 . 43 

Water Jug( 5, 8 ) 2. 787 2.35 6.62 0.42 o.35 

Miss. & Can. 2. 19 1. 13 4.09 0.54 0.28 

Tower of Hanoi 2.06 1. 58 5.29 o. 39 0.30 

Table 2. Comparative operator partition entropy 
values for fami I iar problems 
( fam. = f.aml liar model, a It. = alternative model, 
as discussed in text) 

We have thus proposed one possible measure of the 
simplicity of a geometric model of a problem graph. 

Although H0 P. captures a very Incomplete notion of 
"simplicity", its values tabulated above are reasonably 
consistent with intuitlon.10 

101nformation measures of graphs were apparently 
first Introduced by Rashevsky [ 1955 J in a chem .c a l 
appliHtion, and later Investigated by Trucco [ 1956 !. 
Mowshowitz [1968]. Boncher, et al. [1976) and others, 
although they putitioned the nodes of the graph in a 
topological manner similar to Cohen [ 1977]. as opposed 
to partitioning the edges according to geometric 
considerations as In the present work. 
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s. Application to Larger Problems 

So far we have presented geometric models of 
several problem graphs having no more than 27 nodes 
and 39 edges, which classify as "toy" problems, While 
the examples may be of some theoretical interest, 
proving practical significance of the present approach 
r equires applications to larger problems, The Eight 
Puzzle, having 91 = 362,880 nodes and 4/3•91 = 483,840 
edges, Is a suiUble candidate, 

Tho "hmlllar• model of the Eight Puzzle 
(corresponding to the II-tuple encoding mentioned in 
Section 2) Is a structure in 8-dimenslonal Euclidean 
spa.ce. Clearly we desire an alternate encoding having 
fewer dimensions. It is also clear that we do not 
actually want to draw a model of the complete graph 
(although we note that chemists do make 3-D models of 
large molecules), More practical would be an attempt to 
devise a model of · part of the graph, and attempt to 
derive insight about the structure of the Eight Puzzle 
by examining It, 

The previous section presented evidence In the case 
of th e Water Jug problem that It Is possible to scale a 
geometric model to a parametrically larger version of a 
problem, This suggests that we approach the Eight 
Puzzle by first considering the Five Puzzle, a 3 by 2 
version having 61 = 720 nodes, Even this graph is 
relatively large, and smaller versions of the puzzle are 
degenerate, 

To approach the Five Puzzle we take a new Uck, 
namely to identify a probl e m that Is similar to the Five 
Puzzle or Eight Puzzle, but which scales down to 
smaller sizes. One such problem Is called the 
"MAX SWAP" problem, introduced by Gaschnig [ 1979b l in 
another context, This problem Is to sort permuliltions 
of the sequence 1, 2, ... , N by Iteratively exchanging 
pairs of elements , subject to the restriction that the 
e lement N must participate In every swap (i,e,, swap N 
with some other element), The correlate of the Five 
Puzzle takes N = 6, and for the Eight Puzzle N = 9, The 
element N In MAXSWAP corresponds to the hole in the 
Eight Puzzle or Five Puzzle, so that 9MAXSWAP Is like 
the Eight Puzzle except that any tile can jump into the 
hole (as opposed to only tiles adjacent to the hole). 
Hence 9MAXSWAP and the Eight puzzle both have 91 
nodes, but 9MAXSWAP has more edges than the Eight 
Puzzle (exactly 3 times as many, in fact). Considering 
problems that have more edges than the Five Puzzle (or 
Eight Puzzle) would seem to make the task of finding a 
geometric model harder rather than easier, but at least 
we can start with a very small case, namely 3MAXSWAP, 
and attempt to scale It to larger versions of MAXSWAP, 
and then attempt to devise ii geometric model for the 
Five Puzzle similar to those for MAXSWAP graphs, This 
is exactly what we shall do, as follows, 

The 3MAXSWAP graph has 31 = 6 nodes and 9 edges, 
A "familiar" encoding can take the form (Pl, P2, P3), 
where Pi denote s the position In the permutation of 
element I, Figure Sa depicts ii two-dimensional 
perspective drawing of this "hmillar• 3-dimenslonal 
mod e l of the 3MAXSWAP graph, Figure Sb depicts a 
two -- dlmenslonal alternate model for 3MAXSWAP, H

0
p = 

1,58 and 0, 92, respectively for these two models, 
compared with the maximum value log 9 = 3,17, 

The 4MAXSWAP graph has 24 nodes and 36 edges. 
Figure 6 depicts a two-dimensional geometric model of 
4MAXSWAP , for which H0 p = 1,69, compared with the 
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maximum nlue log 36 = S,17, and th e va lue of H
0

p for 
the "familiar" encoding, na mely 4, 17, 

The generalization of the •rectangular" model from 
3MAXSWAP (Figure Sb) to 4MAXSWAP (Figure 6) 
suggests that it may generalize further, and may 
possibly serve as a guide for a simple model for the 
Five Puzzle, Accordingly, we expanded a portion of the 
Five Puzzle graph having 147 nodes and 155 edges (i . e., 
a breadth- first expansion to S levels below a particular 
starting configuration), and attempted to devis e a 
recungular-llke geometric model for It, Figure 7 
presents the result, depicting approximately half of the 
partial model we devised. To visualize the geometric 
model, imagine that the points labelled A, B, and C are 
not on the page, but instead are placed in sp1ee one 
unit of distance above the page, Now imagine ii copy 
of the structure In Figure 7, except for points A, B, and 
C, raised. 2 units of distance above the page. Call by 
the names X 1, Y 1 , and Z' the points in this raised copy 
corresponding to the points labelled X, Y, and Z, 
respectively in the copy on the page. Now Imagine X 
connected to A, X' connect e d to A, Y to B, Y' to B, Z 
to C, and z, to C. Hence the model has two parallel 
structures (on the page and above the page), each 
having 72 nodes, connected to three intermediate 
points, The node labelled A was the root node In the 
breadth-first expansion, In this model there are 8 
action classes, covering 86, 40, 1 S, 8, 2, 2, 1, and 1 
edges, respectively, yielding li 0_p = 1.78, compared with 
the maximum value log 1 SS = 7,28. Note that in this 
portion of the Five Puzzle graph, to go from any point 
in the portion on the page to any point In the portion 
raised above the page (or vice veru), one must go 
through one of the intermediate points A, B, or C, (Of 
course, the further expansion of this graph beyond the 
present 147 nodes may uncover other nodes connecting 
the two portions of the model presented here,) The 
factorlna of this portion of the Five Puzzle graph into 
two symmetric portions and three intermediate nodes 
was discovered by the use of a symmetry factoring 
method similar to that of Cohen [ 1977 J. 

Intuition suggests that extending the "rectangle" 
model to the entire 6MAXSWAP or Five Puzzle problems 
may prove problematic. By way of considering other 
structures, the symmetry In Figure 6 suggests wrapping 
around the two ends of the long axis Into a regular 
polygon. Figure 8 shows a •cartwheel" geometric model 
for the 4MAXSWAP graph, 

The exercise presented In this section suggests at 
least the feasibility of devising geometric models of 
graphs having more than a few dozen edges, a nd the 
possibility that devising such mAd.els may promote 
insight about the structure of the problem, Future work 
may be able to expand upon these Initial efforts, 

6, Discussion 

We have demonstrated severill examples of a generill 
approach to studying some Issues of problem 
representation in a restricted context, Given an 
English description of a problem, we convert It to a 
"tuple format" suggested by the English description, 
then partition the edges into equivalence classes 
(operators) In .i me chanical fashion accordl'ng to the 
arithmetical differences between the tuples representing 
nodes incident to each edge (e.g., all edges having the 
effect of. "Move right 1 unit" belong to the same class), 

then compute Hop based on the frilction Pi of edges in 



e1ch edge class i, and then 1ttempt to find an 
1lternatlve geometric model whose H0 p is sm1ller than 
that for the "familiar" model. All but the last of these 
steps are (mor e or less) methodical. 

These first results leave many questions unanswered. 
Our Intention here has been merely to introduce the 
Ideas for further consideration by other researchers. 
Hence the remainder of this discussion focuses on 
possible extensions to the present initial efforts. 

To be concrete, we Imposed several simplifying 
usumptlons, e.g •. , to ignore the preconditions of 
operators, to consider only additive action express io ns 
for operators, to consider only the H0 p measure. 
Altern1tive assumptions and generalizations a lso merit 
Investigation. 

At present we rely mostly on human creativity to 
find alternative geometric models for a given problem 
grilph. The present approilCh suggests the fusibility of 
searching for problem representations in il state space 
of geometric models of il grilph, guiding the search 
heuristically by means of ii metric such as the proposed 
operator partition formul1. The size of this state space 
Is so enormous, however, u to require ii careful 
consideration of efficiency requirements, perhaps In 
genera.ting cilndldate models selectively, or In devising 
i1.ddltlon1I heuristics as alternatives to Hop• One 
possibly fruitful approach may be to generue 
alternulve models for il given problem lnterilCtlvely, 
illlowlng the user to guide the exp lor ation for il simpler 
model. 

The practlcill benefit of discovering an alternative 
simpler representation of a given problem to be so lv ed 

depends on the ilbility to translate a specified instance 
of il given problem into its new encoding, solve the 
Instil.nee therein, and translate the resulting solution 
path bilCk into the terms of the original representation. 
Our example of the Willer Jug/Seven Squares lsomorphs 
suggests the possibility that simp le mappings between 
alternate encodings may be difficult to identify, 
especially between encodings that seem intuitively to be 
rather different. Such a finding (assuming It could be 
formilllzed) cou ld severely limit the practical utility of 
this whole approach, although perhaps theoretical ly 
Interesting. 

The exilmples suggest in a concrete way that the 
hmillar representation of a problem m1y be far from 
the simplest .possible. It would be interesting then to 
know whether there exist simpler versions of other 
common problems, or yet simpler versions of the present 
examples (I.e., an issue of optlmill geometric models). 

Despite the limitations of our Initial results, one 
advilnUge we perceive of the present approach is that 
a geometric model of a graph can be visualized and 
manipulated as a structure in Euclidean space, which 
seems to promote some insight or intuition about the 
elusive concept of problem representation. For 
example, some two-dimensional models of a problem 
graph may prove useful in analyzing a given heuristic 
for. the problem, since the value assigned to each node 
by the heuristic can be plotted as an elevation above 
the plane. Then the heuristic can be viewed as a 
polyhedral surface, whose "hills" and "valleys " ma y 
permit a visual analysis of the efficiency of the 
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heuristic function.11 

In any case, funher investigations of this geometric 
modelling approach to understanding more quantitatively 
some Issues of problem representation would seem to be 
merited on both theoretical and (,po tentially) practical 
grounds. 
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PLANNI NG IN A DYNAMIC MICROWORLD 

Gordon I. Mccalla 
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Abstract 

Thia paper discusses a planning system that 
works in a dynamically changing geographic 
microworld (an abstraction of the world faced by 
a taxi driver). The discussion concentrates on 
explaining how geographic knowledge is 
represented in a single data structure, the 
route; how plans are constructed from such 
routes; and how such routes can be automatically 
acquired to augment the knowledge base. The 
important lesson to be learned from this 
approach is the usefulness of taking an 
integrated view of planning, execution, and 
acquisition. 

Introdyct1on 

Recently there has been some discussion ln 
the literature (Sacerdoti (1979)) about the need 
for complete planners, i.e. planners which not 
only produce plans, but also execute them. 
There has also been interest (e.g. Sacerdoti 
(1979)) in the problems of planning for a 
changeable or dynamic mlcroworld. For the last 
couple of years (Mc Calla At, .11. ( 1978), Mc Calla 
and Schneider (1979)) we have been working on 
such a complete planning system to produce and 
execute plans for a dynamic geographic 
microworld, Specifically our planning system is 
designed to produce and execute plans that guide 
a simulated robot taxi driver (named ELMER) 
through a simulated city which not only contains 
streets, intersections, and other unchangeable 
features, but also contains dynamic features 
such as traffic lights, other cars, and 
pedestrians. 

The architecture of the ELMER system is 
shown in Figure 1. Basically, a plan to go from 
some point x to some other point y is produced 
by the Planner (using route information provided 
by the Map) and sent for execution to the 
Executor. The Executor then augments the plan 
with common world sense (e.g. how to maintain 
speed, how to avoid pedestrians, how to stop at 
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red lights or stop signs, etc . ) and proceeds to . 
carry it out. Once the plan has been 
successfully completed, the "instantiated" plan 
is sent to the Map where it is adapted to form a 
route from x toy. This route can then be used 
by the Planner to aid ln future plan production. 
What we have, then, is not only a complete 
planning system which operates in a dynamic 
microworld, but also a planning system which can 
in some sense learn from its past behaviour. In 
this regard the ELMER system supports Simon's 
(1979) contention that learning may once again 
be an appropriate AI endeavour. 

The complete ELMER system has been 
described in Mc Calla At, .11. ( 1978) and the 
Executor has been further elaborated in McCalla 
and Schneider (1979), Thia paper discusses the 
Planner and the Map. A forthcoming technical 
report (Reid and McCalla (1980)) describes the 
implementation aspects. 

The Map stores all information using a 
single data structure: the route (in contrast to 
Kuipers (1977) where multiple representations 
are used ·for geographic knowledge). Figures 3 
through 6 illustrate typical routes through 
Simon City (Figure 2), Figure 3, for example, 
describes a path along Kuipers Crescent. Each 
box represents the traversal of a particular 
region in Simon City. the lower the box, the 
more local the region. Thus, box 16, 
representing a route along Kuipers Crescent from 
Lenat Lane to Schank Strip consists of three 
sub-~oxes (boxes 17, 18, and 19), representing 
routes through the obvious three sub-regions. 
Box 17, in turn, is still further specified. 
(Note that for clarity many of the low-level 
route boxes have been omitted from Figures 3-6.) 
The labelled arrows leaving a box represent 
transitions from one route to another; the 
associations in a box are pointers to other 



routes which are related to this route in the 
sense that it is "easy" to get from this route 
to those other routes. Transitions are 
important in plan execution but are not 
especially significant to the Planner or Map. 
0, the other hand, associations are critical to 
the planning process and should be further 
explained. 

To illustrate the nature of associations, 
it is instructive to look at an example. Sub
route 41 in the v.inat route (Figure 4) 
associates into sub-route 17 in the Kuipers 
route (Figure 3) since if ELMER were driving 
along IJ!nat from Schank to Kuipers (a la sub
route 41 ) he could readily transfer so as to be 
driving along Kuipers from !Anat to Winograd (a 
la sub-route 17). Similarly sub-route 82 
(entering the IJ!nat@Kuipers intersection from 
the west) associates into sub-route 70 (leaving 
the IJ!nat@Kuipers intersection heading north). 
But note that sub-route 90 (leaving 
Lenat@Kuipers heading east) does not associate 
into sub-route 70 because such a transfer would 
require ELMER to make a U-turn and retrace his 
steps. This emphasizes the one-way nature of 
both routes and associations. It is important 
to realize, however, that if there is an 
association from route A to route B, there is an 
inverse association ( inassociation) from B to A, 
thus allowing associations to be traced both 
directions. 

3 IM Planner 

The Planner is charged with the task of 
producing a plan to go from some start region x 
to some end region y. ( From the Planner's point 
of view points are just very small regions. ) 
Eventually we would like to enhance the Planner 
to force it to produce plans satisfying 
constraints as to how fast a destination must be 
reached or specifying certain milestones which 
must be passed en route (as in for example 
Hayes-Roth and Hayes-Roth (1979)). Currently 
the Planner is satisfied with producing the 
first successful plan that it comes upon. 

The Planner basically works by adapting Map 
routes to satisfy the requirements of its 
current task. Initially the start region x must 
be defined by a route X from the Map and the end 
region y by a route Y from the Map. These 
defining routes for all intents and purposes 
become the Plan~er's start and end points. 
Essentially, routes containing sub-routes into 
which X associates are candi~ates for getting 
ELMER off to a good start, and routes containing 
sub-routes to which Y inassociates are 
candidatP.s for gP.tling ELMER to his dP.stination. 
If there is a route C containing a sub-route 
Ri(C) into which X associates and another sub
route Rj(C) to which Y inassociates, and if the 
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then C can be rather easily adapted to form the 
plan to get from x toy. This process requires 
further elaborating Ri(C) (because of a 
different start region x) and further 
elaborating Rj(C) (because of a different end 
region y) but adopting Ri+1(C) through Rj-,CC ) 
exactly as they already exist. The ability to 
use such large chunks of pre-planned routes 
makes the planning process very efficient. 

If a route C containing both an association 
from X and an inassociation from Y cannot be 
found, then a route A containing an association 
from X must be spliced with a route B containing 
an inassociation from Y. The process is more 
difficult but is still manageable and reasonably 
efficient (since large parts of A and B can 
still be adopted intact). The current Planner 
implementation does not try such splicing, 
although the algorithm is well defined (see 
below). 

3,2 Detailed Planning Algorithms 

In the above overview of the planning 
process it was briefly described how a problem 
of the form "go from region x to region y" could 
be reduced to the three sub-problems . "go from 
region x to sub-route Ri(C) of an existing Map 
route C", "adopt the intermediate sub-routes 
Ri+1(C) to Rj-,CC) unchanged from C", and "go 
from sub-route Rj ( C) to region y". After making 
this initial breakdo~, the Planner attempts to 
solve the: first sub-problem in its entirety 
before proceeding to the other two sub-problems. 
This enables it to complete a partial plan as 
quickly as possible to pass on to the Executor 
so that ELMER can begin his travels without 
undue delay. Although this contrasts with 
NOAH's (Sacerdoti (1977)) complete level by 
level expansion, there doesn't seem to be the 
potential for the sub-goal conflicts which 
NOAH's methodologies were meant to avoid. This 
is due to the lack of unordered conjunctive 
goals (the kinds of goals leading to most of the 
difficulties) and due to the fact that the 
Planner is largely adapting previously 
successful routes. 

Three types of problems have been 
illustrated so far: the region-!&.-~ 
problem, the region-12,-~ problem, and the 
adapt-~-routes problem. There are two other 
types of problem: the route-to-~ problem and 
the ~-to-region problem. To solve an 
adopt-sub-routes problem, the Planner need only 
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copy over the sub-routes from the existing Hap 
route. Solving a route-to-region problem is 
completely analogous to solving a region-to
route problem. All that remains, therefore, is 
to give detailed algorithms for solving region
to-region, region-to-route, and route-to-route 
problems. 

3. 2. 1 Solving Region-12,-region Problem§ 

The following algorithm is called in when 
it is necessary to solve the problem of going 
from region x to region y. First the defining 
routes X and Y must be sought out ( currently 
these are predefined). In the algorithm s (e) 
marks those routes into which X (Y) directly 
associates (inassociates); S (E) marks those 
routes which have a sub-route into which X CY) 
directly associates ( inassociates) . The 
algorithm iterates through steps 2 to 5 looking 
for the elusive route C conMcting X to Y. If 
such a route isn't found during an iteration, 
the current version of X (Y) is replaced by its 
super-route before proceeding around the loop 
again. This corresponds to replacing initially 
small regions by larger regions that are more 
likely to be connected by an existing Map route. 
The g•rneralization stops when both X and Y have 
the same super-route. This is analogous to 
finding a region containing both X and Y, 
implying that no further information can be 
gained from the Map, In this case step 6 is 
called in to try route splicing. The algorithm 
proceeds as follows: 

1. Mark route X ( Y) with an s (e) and go to step 
3, 

2. Find all routes which are both 
1. not marked with ans (e) and 
11. direct super-routes of routes marked 
with ans (e) and not marked with an e or E 
(s or S) 

and mark them with an s ( e) , 

3, For all routes that have just been marked 
with an s (e), mark any associated 
(inassociated) routes not already marked with an 
s (e) with ans (e). 

4. Mark all routes which use a route marked with 
an s (e) as a sub-route (not necessarily 
directly) with an S (E). 

5. If some route C is marked with both an S and 
an E and, moreover, has a sub-route Ri(C) marked 
with ans or Sand a sub-route Rj(C) marked with 
an e or E and i~j, then C is a route from some 
region containing x to a region containing y and 
the region-to-region problem can be solved by 
adapting C as follows: 



/ . "~ '"""" . '" "'"" ' 
. T(c) I \ ~ 

go from reg ion X ~ R. () R ( ) ~ t from route 
to routt R

1
(c) i+l c · · · j-1 c Rj c) to region Y 

6. If in step 2 or step 4 no routes are marked 
then there is no single connecting route C. In 
this case a pair of routes must be found and 
spliced together. This is done by searching all 
routes marked Sande or E ands for a pair of 
routes C1 and C2 with the following properties. 
First, C1 is marked Sande and C2 is marked E 
and s. Second, C1 associates into C2. Third, 
C1 has a sub-route Ri(C1) marked s or S and C2 
has a sub-route Rj(C2) marked e or E (so Ri(C1) 
"contains" x and Rj(C2) "contains" y). Fourth, 
C1 has a sub-route Rk(C1) which associates into 
sub-route Rm(C2) of C2 (i{k, mij). Then the 
region-to-region problem can be solved by 
adapting C1 and C2 as follows: 

3.2.2 Solving ~-.!.9.-.r.2.lrul Problems 

Region-to-route (or route-to-region) 
problem expansion is slightly different from 
region-to-region expansion. It may not be 
necessary to find a new route if the region and 
route are close enough together but may suffice 
to refine the node slightly, For the problem 
"go from region x to route A" (and once again 
assuming xis defined by route X) the algorithm 
proceeds as follows: 

1. If A has no sub-routes then 
1. if X associates into A, then their 
common region must be very small (e.g. an 
intersection or a single block) so expand 
by fabricating Executor commands to get on 
route A from X. (These ~111 be commands 
such as 'left turn' o, · 'follow signs to 
A'.) In the interests of plan brevity 
replace the problem node in the developing 
plan by these fabricated low-level 
commands. 
11. otherwise treat as a region-to-region 
problem except that in any sub-nodes 
produced A is labelled as a route. 
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2. Perform the marking portion of the region
to-region algorithm starting at X only to see if 
some sub-route Ri(A) of A is marked by an s or 
s. 

3, If so then expand as follows: 

4. a;herwise treat as in region-to-region 
expansion except that Y becomes the set of sub
routes of A ({Ri(A)l) . Tilat is, attempt to find 
a route connecting X to one of the Ri, say Rm. 
The expansion results in: 

... ~21·~="" · ::c ·~~~) 
nq1cn X route l 
to route \ R: ( C) to 
k (C) R. (C) T , (') ~out< T_(A) p (A ) .... 

1 j- 1 R,,(A) ~ WT 

3.2.3 Solving .l!.2..ru.-.!.9.-~ problems 

Route-to-route expansion is essentiall y 
region-to-route expansion with minor changes. 
For the problem "go from route B to route A", 
the algorithm proceeds as follows: 

1. If B has no sub-routes, then treat as a 
region-to-route problem except that sub-nodes 
produced will have B labelled as a route. 

2. If A has no sub-routes then treat as a 
route-to-region problem except that sub-nodes 
produced will have A labelled as a route. 

3, If some sub-route Ri(B) of B or one of its 
sub-routes associates into some sub-route Rj (A) 
of A or one of its sub-routes, then expand as 
follows: 

~go from route B to ,octe ~ 

R (B)---. • . . • ~go from lute R. (~) T~ ( A' 
l to route Rj(A) , · 

4. Otherwise treat as a region-to-region problem 
except X be.:iomes {Rn(B)} and Vbecomes {Rn(A)} 
and a route connecting one of the {Rn(B)}, say 
Rk(B), to one of the {Rn(A)}, say Rm(A), should 



• ··1 

1 

be chosen. The problem expansion looks like: 

ll Example 

Figure 7 shows a plan produced by the 
Planner for the problem "go from LP.nat@Kuipers 
to Reiter@Schubert". Assuming the routes in 
Figures 3 - 6 are in the Hap and that ELMER is 
sitting on Lenat at the intersection of 
Lenat@Kuipers, the defining route for ELMER's 
start region is sub-route 82 of the L1mat route 
(Figure 4). Further assuming that ELMER wants 
to get exactly to the Reiter@Schubert 
intersection but doesn't care which direction he 
is facing when he arrives, the defining route 
for ELMER's end region is sub-route 122 of the 
Reiter route (Figure 5). 

Indicated under each plan node in Figure 7 
is information . about the node's origin. Some 
nodes are copied unchanged from Hap routes. 
Others must be further expanded using one or the 
various planning algorithms, in which case 
particulars of the algorit_hm are specified, and 
a sequence number indicating the order of 
expansion is prov idP.d. 

Note the similarity of the plan to the Hap 
routes from which it has been constructed. Q\ce 
the plan has been suitably augmented and 
successfully executed by the Executor, it can be 
passed to the Map where information glP.aned 
during exP.cution (P..g. as to speed limits, 
directions, etc. discovered en route) can be 
abstracted up the plan hierarchy to the 
appropriate level of detail and where 
associations and inassociations can be made 
between this plan and existing Hap routes. Both 
tasks are relatively straightforward, 
surprisingly even thP. latter since the plan was 
originally built · out of Map routes whose 
associations are known. To illustrate, new 
sub-plan 300 can associate into old sub-route 16 
(since sub-route 1 from which new sub-plan 300 
has been built is so associated) and, 
conversely, old sub-route 16 can inassociate to 
new sub-plan 300: Q\ce these two tasks have 
been accomplished, the recently created and 
executed plan can take its place as the newest 
addition to the pantheon of Map routP.s. 
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5 Conclusion 

The most important contribution or this 
work is the unified approach to planning that it 
promotes. The system is not only capable of 
efficiently making plans but also executing 
these plans and acquiring the knowledge 
necessary to enhance its ability to plan. Next 
steps in the research involve more closely 
integrating planning and executing to allow re
planning after a plan goes awry; enhancing the 
Hap and Planner to more extensively incorporate 
knowledge as to the relative merits of routes in 
order to allow the "best" plan to be 
constructed; figuring out how to allow the Map 
to infer "hypothetical routes" based on world 
knowledge (e.g. the reverse of an existing route 
may also be a valid route some of the 
Kuipers (1977) and Hayes-Roth and Hayes-Roth 
(1979) geographic knowledge structures may be 
appropriate here); and finally discovering 
whether other applications (e.g. process 
control?) can benefit from this app~oach. 
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1 ,0 INTRODUCTION 

Research into story understandin~ has 
become an important concern of Artificia l 

f
ntelligence natural la1gua~e understanding, 
e, g~, Charniak, (1974 ~ chank and Abelson 
1977 Cullinl!ford ( 'j78 , and Wilensky 
1978 ). Stories constitute a naturally 

occurring domain of coherent texts through which 
problems involving real world knowledge and 
contextual understanding may be conveniently 
studied , Thus stories provide the researcher 
with both an important set of problems and a 
realistic domain in which those problems may be 
productively pursued, 

Attempts to produce computer story 
understanding systems have generated A number of 
interesting ideas, particular in the areas of 
knowledge representation and organization, 
However, many very basic questions still remain 
largely unaddressed, In particular, the idea of 
what actually constitutes a story has never been 
clearly delineated, In fact most of the work 
on story understanding has reaily ha~ little to 
do with stories per se. Rather, the objects 
that have been studied are coherent texts. 

The difference between the two is that 
there are many texts that cohere but which are 
not recognizable as stories. As a result, the 
problems that hove been considered so far are 
prlmarily concerned with how to find the 
connection between sentences of a text, While 
these are certainly important issues, the 
question of what exactly it is theta story is 
about has been left unasked, 

As I will argue below, developing a theory 
of stories is not merely an academic exercise in 
providing a mea ns for categorizing texts into 
stories and non-stories, There would be littl e 
point in developing the theory if that were its 
purpose, Rather, the theory of stories that I 
propose is intimately connec ted with some basic 
issues of language understanding, language 
generation, cognition and memory. Such a theory 
of stories is not only be related to these 
issues , but is as necessary for the construction 
of intelligent story understanding programs as 
are theories of inference and knowledge 
representation. 

Before I attempt an exposition of this 
theory, it is important to point out how its 
thrust is different from another approach that 
ostensibly seems to have the same goal, This is 
the f0rmalism known as a story grammar, Using a 
sramm11r· to try to capture th e notion -of 
storyness" seems to have been introduced to the 

~T/coenitive psychology literature by Rumelhnrt 
(1q7<;J, f>i nre then, the not.ion of story 
grammars has been nxpAnrted theoretically by R 

number of researchers, and even used 9s the 
basis for a number of empirical studies \e, g., 
~andl~r and Johnson (1977 ) Stein and Gl enn 
(1977/, and Thorndyke (1977 , 

*This work was supported in part by the Advanced 
Research Projects Agenry of the Department of 
Defense and monitored under the Office of Naval 
Research under contract N00014-75-C-llll. 
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Unfortunately, the story grammar concept is 
lacking in a number of ways that make it 
inadequate for its intended purpose , The chief 
problem is that story grammars purport to 
capture the idea of what a story is by trying to 
express the structure of a story text, My claim 
is that a theory of stories must be much more 
concerned with the content of a text than with 
its form, Moreover, when story grammars are 
examined closely, most of the story s tructure 
they ai m to capture dissolves away, and they end 
up saying little more than that story is R 
coherent set of sentences, 

A detailed critique of story grammars is 
found in Black and Wilensky (1q79J, and will no t 
be repeated hC're, This paper i11 concerned with 
11 theory of storles T have been rlev eloping b11sed 
on tnxt content. The theory is by no means 
complete. NC'vertheless, some parts of it. flre 
wel1-formed enough to be presented, perhapR even 
r,;,futed, In any case, the piece of t he theory 
described below should provide A picture of whnt 
I believe a theory of stori es needs to look 
like, 

2 .0 BACKGROUND 

Most of the work that goes under the label 
of story understanding is really eoncerned w'i t.h 
eoherent text comprehension, Unde rstandin~ a 
text involves finding the implicit connections 
between story sentences, and thus much of t he 
work in this area addresses the problem of 
inference generation, In particular, the 
problem of representing knowled~e needed for 
this task has played a large part. in t his work, 

Most of this work is very basic, It has 
application not only to understanding 
narratives, bu~ to other formR of cognit ive 
processinp, even non-linguistic ones. This is 
precisely its failure as a theory of stories. 
For example, consider the following "story" 
which is used by Schank (1977) to demonstral e 
his script idea: 

(1) John went to 
seated J ohn. 
John ordE'red 
quickly, He 
r es taurant. 

fl restaurant. 
Th e hostess gave 
11 lobster. He 

left a large tip. 

The hostess 
John a menu. 

was served 
Hn left th t" 

The point of this example is to demonstrate that 
knowledge about what typically ~oes on at a 
restaurant is needed to infer impli cit events, 
such as John's eat.inp the lobnter. Thn notion 
of n jcript. is introduced as R wny to orpnnizr 
suc h knowlP.dge. 

The 11hil i ty t.o undf•rstnncl ut;tr•rMn r,"" J ikr· 
(1) seems to underlie mu r. h of l11ngut,11;0 
processing, However, the existence of such 
knowl edge structures and the ir utility in making 
a text coherent h11s littlE' to do with the noti on 



of a story. It is unlikely that anythinp, 
conforming to the content of a mundane knowled~e 
structure will constitute a story. Problem 1s 
t.hat they just t90 du]l. No one will be heard 
telling story \1) to anyone else because there 
is l i ttJe reason to believe anyone would have 
any reason to express it, nor is anyone likely 
to bP Amused upon hearinp, it. 

Moreover, as wns well understood at the 
time of their inception, rigid knowledge 
structures such as scripts are inndequate for 
much of the inference processing necessary to 
establish the coherence of a non-conforming 
text. Script-like knowledge structures reflect 
the repeated experience of mundane situations, 
and are directly useful for comprehending these 
sl tuntions. However, they are less clearly 
useful for processing situations that do not 
conform entirely t.o stereotypes. 

2. 1 PAM 

PAM (Plan AppJier Mechanism) is a program 
that can understand a number of short texts 
about situations it may never have encountered 
previously. PAM has knowledge about the kinds 
of plans and goals people have, and uses this 
knowledge to find explanations for the events 
described in a text. PAM can then pAraphrase 
the text from the points of view of the 
different characters in the text, as well as 
answer questions about the text. 

The fo]lowing are some examples of stories 
PAM can currently process: 

*********************************************** 
Input text: 

WILLA WAS HUNGRY. SHE PICKED UP THE MICHELIN 
GUIDE AND GOT INTO HER CAR. 

Input: WHY DID WILLA PICK UP THE MICHELIN GUIDE? 
Output: BECAUSE WILLA WANTED TO KNOW WHERE A 

Input: 
Output: 

Input: 

Output: 

Output: 

RESTAURANT WAS. 

WHY DID WILLA GET INTO HER CAR? 
BECAUSE WILLA WANTED TO GET TO A 

RESTAURANT. 
WHAT WERE THE CONSEQUENCES OF WILLA 

PICKING UP THE MICHELIN GUIDE? 
THIS ENABLED WILLA TO READ THE MICHELIN 

GUIDE. 

THE STORY FROM WILLA'S POINT OF VIEW: 

I WANTED TO GET SOMETHING TO EAT BUT I DIDN'T 
KNOW WHERF. A RESTAURANT WAS. SO t PICKED UP THE 
MICHELIN GUIDE, AND I GOT INTO MY CAR. 

************************************************ 
************************************************ 

Input text: 

JOHN WANTED BILL'S BICYCLE. HE WENT OVER TO 
BILL AND ASKED HIM JF HF. WOULD GIVE IT TO HIM. 
BILL REFUSED. JOHN TOLD BILL HE WOULD GIVE HIM 
FIVE DOLLARS FOR IT BUT BILL WOULD NOT AGREE. 
THEN ,JOHN TOLD BILL HE WOULD BREAK HIS ARM IF HE 
DIDN'T LF.T HIM HAVE IT. BILL LET JOHN HAVE THE 
BICYCLE. 

Input: WHY DID JOHN WALK OVEll TO BILL? 
Output: BECAUSE HE WANTED TO GET HIS BICYCLE. 

Input: WHY DID BILL GIVF: HIS BICYCLE TO JOHN? 
Output: BECAUSE HE DIDN'T WANT TO GET HURT. 

257 

Input: WHAT HAPPENED WHEN JOHN ASKED BILL TO 
GIVE HIM BILL'S BICYCLE? 

Output: BILL TOLD HIM THAT HE WOULDN'T GIVE IT 
TO HIM. 

Input: WHAT HAPPENED WHEN JOHN THREA~ENED BILL9 

Output: BILL GAVE HIM THE BICYCLE. 

Output: 

THE STORY FROM JOHN'S POINT OF VIEW: 

I WANTED TO GET RILL'S BICYCLE. SO I WALKED 
OVER TO HIM AND I ASKED HIM TO HAND TT OVER. !IP. 
TOLD ME THAT HE WOULDN'T GIVE IT TO ME. SO I 
ASKED HIM TO SELL IT TO ME FOR FIVE DOLLARS. 
THEN HE TOLD ME THAT HE WOULDN'T. I TOLD HIM 
THAT IF HE DIDN'T HAND IT OVER THEN I WOULD 
BREAK HIS ARM. HE HANDED OVER HIS BICYCLE. 
THE STORY FROM BILL'S POINT OF VIEW: 

JOHN CAME OVER. HE ASKED ME TO GIVE HIM MY 
BICYCLE. WELL, WANTED HIM TO KNOW I WON'T GIVE 
IT TO HIML SO I TOLD HIM THAT I WOULDN 'T GIVE IT 
TO HIM. "HEN HE OFFERED TO BUY IT FOR FIVE 
BUCKS. I WANTED HIM TO KNOW I WOULND'T GIVE HIM 
MY BICYCLE. SO I TOLD HIM THAT I WOULDN'T GIVE 
IT TO HIM. HE TOLD ME THAT IF I DIDN'T GIVE IT 
TO HTM '!'HEM HE WOULD BREAK MY ARM. I DTDN'T 
WANT TO GET HURT. SO I GAVE HIM MY BICYCLE. 

************************************************ 
PAM can understand a number of texts that 

are considerably more complicated than this one. 
These capabilities of the program will be 
examined later on. For the present, references 
to PAM will essentially be references to the 
part of PAM that can find explanations for 
events like those in the stories above. I will 
refer tQ this program (and the algorithm it 
embodi es ) as "nAive PAM". 

3.0 POINTS 

PAM is a somewhat more flexible text 
understander than previous systems since it does 
not require that a text conform to a rigid 
structure. However, many of the same criticisms 
applicable to previous systems insofar as 
stories are concerned are just as applicable to 
naive PAM. PAM's "stories" may be less 
stereotyped than the texts other systems can 
process but th<"y are h11rdly eny more 
re11sonable. A relatively large number of 
inferences have to be generated to understand 
the Michelin guide example, but it is no more of 
a story than texts t hat conform to scripts. 
Once a~ain, it is hard to imagine someone not in 
the field of natural language processing 
bothering to tell this story to someone else. 

While goals and plnns are import1rnt 
elements of real stories, th<" pursuit of a ~oal 
does not in and of itself make for good reading. 
For example, contrast the following two 
paragraphs: 

(2) John loved Mary. He asked her to marry him. 
She agreed, and soon after they were wed. 
They were very happy. 

(3 ) John loved Mary. He asked her to marry him. 
She agreed, and soon after they were wed. 
Then one day John met Sue, a new employee in 
his office, and fell in love with her. 

Paragraph (2) is typical of the simple 
go~l-based stories that can be u9derstood by 
naive PAM: A character has a goal \wanting to 
m~rry M~ry) generated by a toeme (being jn love 
with her; and pursues a plan (asking her; toat 
results in the goal being fulfilled. While (2) 
is cogent enough, it is not a good story. Most 
readers would be surprised, for example, if they 
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yere promised a story and were given para6raph 
\2). In spite of its coherent intentional 
structure, paragraph (2) seems much more like 
the setting of a story than a story itself. 

In contrast, paragraph (3) se~m~ much more 
promising. Although paragraph \3) does not 
appear to be a complete story either, (it seems 
to get further along than paragraph 2) before 
it terminates. Here the reader probably expects 
the story to be continued with an elebor~tton ~f 
John's situation. In the case of story \?./i it 
is much harder lo pues1c1 what the ntory w1 1 be 
about. 

What makes p~r~graph (3) more of a · story 
than paragraph \2) is that paragraph (3) has a 
point. to it. By a point I mean some element 
~ invokes the interest of a reader. The 
point of a story is what the st9ry seems to be 
about. For examp~e, paragraph \2) does n9t)se~m 
to be about anything, while paragraph \3 is 
about a married person who falls in love with 
someone else. · 

Points play a significant role in story 
understanding because the main goal of the story 
reader is to determine the points of a story 
intended by the story teller. In a sense, 
points are intended.to play a similar role for 
stories as meanings play for individual 
sentences. A reader often for6ets the precise 
words and form that occurred in a sentence, and 
yet still retains the meaning of that utterance. 
In a story, a reader will often forget whole 
concepts and episodes, and yet remember what 
that story is about. A theory of points should 
be able to aid understanding and structure 
memory so thet it behaves in this manner. 

The role points play in understanding and 
memory is illustrated by examining a text that 
contains an entire story. The following story 
will be used for this purpose: 

The Xenon Story 

When John graduated college, he went job 
hunting and found a job with the Xenon 
corporation. John was well liked, and was soon 
promoted to en important position. 

One day at work, John got into an argument 
with his boss. John's boss fired John and gave 
his job to John's assistant. 

John had difficulty finding another job. 
Eventually, he could no longer keep up the 
payments on his car, and was forced to give it 
up. He also had to sell his house, and move 
into a small apartment. 

Then one day John saw a man lying in the 
street. Apparently, the man had been hit by a 
car and abandoned. John called a doctor and the 
man's life was saved. When he was well, the man 
called John and told him he was in fact an 
extremely wealthy man, and wanted to reward John 
by giving him a million dollars. 

John was overjoyed. He bought himself a 
huge mansion and an expensive car, and lived out 
the rest of his life in the lap of luxury. 

The interesting feature of the Xenon story 
is which parts of it are forgetable. For 
example, consider the following attempts at. 
summarizl.ng the story: 

(1) John graduated college and went looking for 
a job. He found one at the Xenon 
corporation, and did well there. 
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(2) John graduated college. One day, he founrl a 
man who had been hit by a car, and called 
the police. 

(3) A man had been hit by a car and left 
abandoned. Someone who used to work for the 
Xenon corporation called the police. 

(4) A man whose life John saved gave him a lot 
of money. John bought himself a house end a 
car. 

(5) John lost his job and came upon hard times. 
Then one day John helped a rich person in 
need, and was rewarded with enough money to 
last him a lifetime. 

All these summaries describe events that 
occur in tbe original story. However, only 
paragraph (5) can be considered a rea~onable 
summary. The other four all seem to miss tt_1~ 
point of the story, while summAry / ·,) 
encapsulates the gist of the story to the 
exclusion of all else. 

This summary conforms to a description of 
the story's point. We will attempt to define 
the exact content and structure of this point 
more rigorously below. First, let us consider 
how the poignancy of these events affect story 
processing. 

3.1 Points Structure Memory 

The conceptual representation of a story in 
memory is structured according to its point 
content. That is, memory is hierarchical, and 
consists of at least the following levels: 

1. At the highest level, a story is represented 
as a point or set of points that comprise the 
important parts of the text. 

2. Beneath this level is a description of the 
actual events that comprise these points. 

3. Beneath this is a level of events that 
connect up with the major events of the story 
but do not in themselves constitute points. 

4. Finally, there is a level consisting of the 
actual words of the sentences used to express 
these ideas. 

For example, in the Xenon story, the 
highest level describes that fact that John had 
a particular kind of problem. The level beneath 
this would describe the particular nature of the 
problem, e. g., that John couldn't keep up the 
payments on his car. The next level would 
include events like John spotting the hit and 
run victim. Then of course is the actual text. 

3.2 Points Affect Processing 

Since readers are presumably looking for a 
point as a text is being read, points often give 
rise to expectations, or predictions, about what 
will happen next tn the text. For example, a 
reader of paragraph \2) does not find any point; 
if the story ends here the reader's expectations 
are not met and the reader is surprised by the 
stories pointlessness. 

A reader of story (3), on the other hand, 
interprets the text as the beginning of a 
poignant episode. The reader of this story will 
also be surprised if the story terminates here. 
However this time, the surprise is due to a 
~oint being introduced but not completed. That 
is, the reader would be equally confused if the 



story were to continue and jntroduce other 
points without continuin~ to expand on the point 
already introduced. Without some predefined 
notion of point, a reader could not judge that 
one of these stories is better formed than the 
bther. 

Thus a reader must possess some notion of 
what constitutes a point in order to recognize 
one's occurence in a story. This knowledge 
about story points also plays a predictive role 
as well 1 since once a point has been referred to 
by a text, R reader must determine how the 
subsequent episodes in the story relate to that 
point. 

While text comprehension is normally 
influenced by pointsi it is possible that points 
play a greater roe in special kinds of 
processing. For example, skimming is a text 
comprehension technique in which the desire to 
process poignant information dominates the 
reader's concerns. We shall not be concerned 
with this sort of processing here, but with the 
role points play in ordinary comprehension. For 
a monPl of skimming as a goal-direr.ten 
understanding process, see DeJong (1979). 

3.3 Kinds Of Points 

By definition, some points ore liable to bP 
idiosyncratic. However, enough points seem to 
be sufficiently pervasive to allow peo~le to 
agree that the same point structure exists in 
the same texts. My goal here is to isolate 
these common points. 

Many of these points have to do with human 
dramatic situations. A human dramatic situaTioi'i 
is a sequence ot goal-related events that 
contains some problem for a character. For 
example, in the Xenon story, the problem 
involves John losing his job and not being able 
to afford the lifestyle to which he had become 
ar.customed. 

Dramatic situations usually also involve 
solution components that describe how a problem 
is reserved. In the Xenon story, the solution 
in a fortuitous circumstance in which John saves 
the life of a rich person who subsequently 
rewards him . 

Th e notion that problems form the basis of 
many stories was noted by a nu~ber of people, in 
particular, by RumPlhart (1976). Rumelhart uses 
the notion of a problem in his theory to refer 
to any situation involving a goal. The coneept 
of a problem introduced here differs from 
Rumelhart's in that it requires a character to 
heve trouble fu] fi l] ing hie goal. For example, 
Rumelhart's theofy does n9t make the distinction 
between story 2) and \3) above, although one 
story clearly appears to be better formed than 
the other. 

In particular, the problematic dramatic 
situations that initiate story points usually 
involve some complex interactions between goals 
that can create difficulties for a character. 
For example, in the Xenon story, John's problem 
involves a relationship between his recurring 
goa ls of living in a certain style, and the 
state of having a job. In addition to 
situations involving recurring goals, frequently 
occurring dramatic situations include those in 
which there are a number of characters with 
opposing goals, and in which an individual has 
goals that are in conflict with one another. 

The following is a short description of the 
goal relationships that play a significant role 
in creating poignant sit~ations. As I have 
point~d out previously \Wilensky, 1978a and 
1978h), these relationships are themselves quite 
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complex , and a great deal of knowledge about 
them is needed by story understanders in order 
to understand the situations in which they 
appear. The following section is meant only to 
illustrate these relationships. 

1. Goal Conflict 

A goal conflict is a situation in which one 
character has several goals such that the 
fulfillment of one goal will preclude the 
fulfillment of the others. For example, 
consider the following story: 

(4) John wanted to watch the football game but 
he had a paper due the next day. John 
decided to watch the football game. John 
failed Civics. 

Story (4) is an ins tance of a goal 
because John's goal of watching the 
game may interfere with his other 
writing his paper. 

2. Goal Competition 

conflict 
football 
goal of 

Gonl compe tition refPrs to thosP sttuntions 
in which several characters' goals may interfere 
with one another. For example, the following 
story contains an instance of goal competiti on: 

(5) John told Bill he would break his arm if 
Bill didn't give John his bicycle. Bill got 
on the bicycle and rode away. 

John's goal of possessing Bill's bicrcl e cannot 
be fulfilled along with Bills goal of 
preserving possession of the bicycle. If Bill 
succeeded in preserving possession of the 
bicyclei then John would have failed to fulfill 
his goa • 

3. Goal Subsumption 

Goal subsumption refers to A situation in 
which n charnr.ter's plan is to Achieve a stAte 
that will make it easier for a charncter to 
fulfill a recurring goal. For example, the 
following story contains an instance of goal 
subsumption: 

(6) John was tired of frequenting the local 
singles' bars. He decided to get married, 

In this story, John decides to ge t 
order to make it easier to achieve 
had been achieving previously by 
singles' bar. 

marri ed j n 
the goals he 
going to a 

. These particular goal relationships Are 
i mportant here because the situations to which 
they give rise account for a lar~e class of 
story problems. That is, dramatic situations 
involve a difficulty in fulfilling a goa l, ann 
these difficulties often arisP due to goal 
interrelations. In particular, goal 
relationships can give rise to these problems 
and associated solutions: 

1. Goal Conflict - If a character is unabl e to 
resolve a goal conflict, then one of thnt 
character 's goals may fail. Thus goal failure 
due to goal conflict, and attempts to resolve 
goal conflict both provide interesting story 
situati9ns. In aadi~ion to attempts at 
resolution, a goal conflict may resolve itself 
s~ontaneously under a set of fortuitous 
circumstances. 

2. Goal Competition - As with goal conflic t , 
the existence of competitive goals implies that 
some character mar have trouble fulfilling his 
~oal. Interesting stories therefore exist 
involving goal failure due to goal competition 
.~truggles against the plans of other character~ 
\which we call anti-~lanning), attempts at 
easing the competi ion, and spontaneous 
resolution of the problem. 



. I 
• 1 

3, Goal Subaumption - Goal subsumption gives 
rise to dramatic situations when a subsumption 
state is terminated, For example, if John is 
happily married to Mary, and then Mary leaves 
him, all the goals subsumed by their 
relationship may now be problematic - John may 
become lonely, and miss his social interactions 
with Mary, for instance. Closely related to 
problems based on ~oal subsumption are those 
caused by the elimination of normal physical 
states, For example, becoming very depressed or 
losing a bodily function can give rise to the 
inability to fulfill recurring goals, and can 
therefore generate some interesting problems, 

The resolution of goal subsumption 
termination involves establishing a new 
subsumption state to re-subsume the recurring 
goals, 

4,0 GOAL RELATIONSHIP POINTS 

Goal subsumption termination is a problem 
point component because previously subsumed 
goals become problematic. Goal conflict and 
goal competition endanger the fulfillment of 
some of a character's goals, and therefore 
generate dramatic impact. On the solution side, 
we have goal conflict resolution, goal 
abandonment, antipla.nning, re-subsuming 
subsumption states, and spontaneous conflict and 
competition removal. 

However the dramatic nature of 
relationships is not independent of how 
relationships are presented in n text. 
example, consider the following misuse 
potentially poignant goal relationship: 

goal 
these 

Fo,· 
of a 

(7) John lost his job. Then he found another 
one. 

This is not a particularly dramatic situation. 
It contains an instance of goal subsumption 
termination (John losing his job) and a solution 
~o )the problem this 9r~ates (John getting a new 
~ob. Nevertheless, ,7J hardly qualifies as an 
interesting story. 

The problem with (7) is that it contains 
the cause of the problem, the termination of a 
subsumption state, but no d~syription of the 
problem itself. Contrast t7J with the Xenon 
story given at the beginning of this paper. 
John ~lso los~ his job in that story, but the 
situation contains considerably more dramatic 
impact. In the Xenon story we are given a 
description of John's problem state. He could 
no longer afford all the things he had become 
used to. Since the problem is spelled out in 
this story, its dramatic effect is more fully 
realized . 

Thus the mere appearance of a problematic 
goal relationship does not guarantee its 
poignancy. The problem must appear in a form 
that spells out its implications. I call these 
forms p~ig{ ¥f7iotypes. A point prototype is a 
kind o s ~of the dramatic elemen t of 
which the goal relationship is a part. The 
Xenon story above will serve to illustrate such 
a prototype. 

The problem for John in the Xenon story is 
caused by a goal subsumption state terminating. 
To make this poignant, the story uses the 
problem point prototype in Figure 2 to fill out 
the rjrrumatanrea of the prohl~m. 
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Figure 2 
Goal Subsumption Termination Prototype 

1. Subsumption state 

2. Cause of termination event 

3, Problem state description 

1 . Unfilled precondition 

2. Problematic goals 

3, New goal (optional) 

4, Emotional reactions (optional) 

That is i to use subsumption state termination as 
a prob em point 1 first state the s ubsumpti on 
state, followed oy the cause of termination 
event. Then describe the problem state itself 
by listing the goals that are no longer 
s ubsumed • the goal of re-establishing a 
subsumption state may be stated also, along with 
any emotional reactions to the termination. 

In the Xenon story, this prototype 
instantiated as is shown in Figure 3. 

Figure 3 
Instantiated GST Prototype 

1. Subsumption state - John hns job, 

is 

2, Cause of termination event 
John, 

Boss fire s 

3, Problem state description 

1. Unfilled precondition John 
doesn't have enough money. 

2, Problematic goals·- Maintaining car 
and house. 

3, New goal - John wants to resubsume 
these goals. 

4, Emotional reactions not 
explicitly stated, 

This problem is resolved in the story 
through a very common solution point called 
Fortuitous Circumstances, Spontaneous goal 
conflict resolution and external goal 
competition removal are also instances of this 
solution point component, which is shown in 
Figure 4, 

Figure 4 
Fortuitous Circumstance Solution Prototype 

1. Undesired state 

2, Fortuitous event 

1. Incidental action 

2. Fortuitous outcome 

··; . Nrw ot.ntr 

3. State consequence descripti on 

This solution prototype is instantiated 
the Xenon story as Figure 5 shows. 

in 



Figure 5 
Instantiated FC Solution Prototype 

1 , Undeaired state 
enough money. 

2. Fortuitous event 

John doesn't have 

1 . Incidental action - John saves rich 
man, 

2, Fortuitous outcome - Rich man gives 
John money . 

3, New state - John is rich, 

3, State consequence description - John is 
happy and gets lots of possessions, 

4,0,1 Some More Solution Point Components 

Solution point components and their 
associated prototypes have not yet been analyzed 
in as much detail as the problem components have 
been, However, in addition to the fortuitous 
circumstances solution given above, several 
other solution point components seem to be 
common. 

One such solution is called "More Desperate 
Measures", In this point, a problem is attacked 
by some plan that is normally not considered 
because of its high riak, Because of this risk, 
More Desperate Measures solutions tend to 
generate goal conflicts their user thus 
creating another problem point component for the 
story. For example, in the Xenon story, after 
John loses his job, he might decide to rob a 
bank to get some money. Robbery entails a 
number of risks, so the use of this plan would 
create a goal conflict for John between his 
desire to have money and to preserve his 
well-being, This point would then be developed 
further in the story. 

Overcoming a Limitation is another solution 
point seen with some frequency. This case can 
occur when a problem is based ln part on a 
character's inability or lack of courage, Here 
t~e.cha'.aoter attempts to overcome his personal 
limitation or see the error of his Wafs in order 
to resolve a problematic situation, For 
~xample, a typical fairy tale type plot might 
1nvolve a character who is a subject of ridicule 
by his piers because he is a coward, and then 
overcomes his cowardess in some heroic deed, 

5,0 CURRENT STATE OF PAM 

As was me~tioned previously, the naive 
explanation algorithm fails to find proper 
explanations for events in stories involving 
goal relationships, However, a more 
sophisticated version of PAM has been 
implemented that possesses knowledge about the 
goal relationships described above. PAM can use 
this knowledge to infer explanations for events 
in many complex goa l relationship situations, 

The following simple eYamples illustrate 
some of the situations involving goal 
relationships that PAM can understand: 
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************************************************ 
Goal Subsumption: 

Input text: 

JOHN AND MARY WERE MARRIED, THEN ONE DAY~ JOHN 
WAS KILLED IN A CAR ACCIDENT, MARY HAD ,0 GET 
A JOB, 

Input: 
Output: 

WHY DID MARY NEED EMPLOYMENT? 
JOHN DIED AND SO SHE NEEDED A SOURCE OF 
MONEY, 

************************************************ 

Pam infera that John's death terminates a 
subsumption state for Mary, and that she may 
seek to replace it, PAM uses this inference to 
infer that the explana tion behind Mary's goal of 
getting a job, 

************************************************ 
Goal Conflict: 

Input texts: 

WILMA WANTED TO HAVE AN ABORTION. WILMA WAS 
CATHOLIC, WILMA CONVERTED FROM CATHOLICISM TO 
EPISCOPALIANISM, 

WILMA WANTED TO HAVE AN ABORTION, WILMA WAS 
CATHOLIC. WILMA WENT TO A ADOPTION AGENCY, 

FRED WANTED TO TAKE HIS GUN HUNTING. FRED 
WANTED WILMA TO HAVE A GUN AT HOME, FRED ONLY 
HAD ONE GUN, FRED BOUGHT ANOTHER GUN. 

************************************************ 

In the first two stories, PAM detects a 
conflict between Wilma's goal of having an 
abortion and her inferred goal of not having an 
abortion because she is Catholic, In the first 
story 1 PAM infers that Wilma resolved the 
conflict by changing the circumstance that gives 
rise t9 one of her ~oals, and fulfilled the 
other (i , e, 1 she decided to have the abortion), 
In the nex, case, PAM infers t hat Wilma 
abandoned her goal of having an abortion because 
it menat less to her than violating her 
religious beliefs. 

The third story is a goal conflict based on 
a resource shortage, Here PAM infers that Fred 
bought another gun so he could take one with him 
and leave one at home, 

************************************************ 
Goal Competition: 

Input text: 

JOHN WANTED TO WIN THE STOCKCAR RACE. BILL ALSO 
WANTED TO WIN THE STOCKCAR RACE, BEFORE THE 
RACE, JOHN CUT BILL'S IGNITION WIRE. 

Input: 
Output: 

WHY DID JOHN BREAK AN IGNITION WIRE? 
BECAUSE HE WAS TRYING TO PREVENT BILL 
FROM RACING, 

************************************************ 

This story contains an instance of a goa l 
competition situation involving anti-planning . 
PAM explains John's action as part of a plan to 
undermine Bill's efforts by undoing a 
precondition for Bill's plan, 



PAM also have been given some knowledge 
about poignancy. In particular, PAM knows about 
goal subsumption termination problem components, 
and fortuitous circumstance solution points. 
With this knowledge~ pam can now understand the 
following version 01 the Xenon story: 

************************************************ 
JOHN GRADUATED COLLEGE. JOHN LOOKED FOR A JOB. 

THE XENON CORPORATION GAVE JOHN A JOB. JOHN WAS 
WELL LIKED BY THE XENON CORPORATION. JOHN WAS 
PROMOTED TO AN IMPORTANT POSITION BY THE XENON 
CORPORATION. 

JOHN GOT INTO AN ARGUMENT WITH JOHN'S BOSS. 
JOHN'S BOSS GAVE JOHN'S JOB TO JOHN'S ASSISTANT. 
JOHN COULDN'T FIND A JOB. JOHN COULDN'T MAKE A 
PAYMENT ON HIS CAR AND HAD TO GIVE UP HIS CAR. 
JOHN ALSO COULDN'T MAKE A PAYMENT ON HIS HOUSE, 
AND HAD TO SELL HIS HOUSE, AND MOVE TO A SMALL 
APARTMENT. 

JOHN SAW A HIT AND RUN ACCIDENT. THE MAN WAS 
HURT. JOHN DIALED 911 THE MAN'S LIFE WAS SAVED. 
THE MAN WAS EXTREMELY WEALTHY, AND REWARDED JOHN 
WITH A MILLION DOLLARS. JOHN WAS OVERJOYED. 
JOHN BOUGHT A HUGE MANSION AND AN EXPENSIVE CAR, 
AND LIVED HAPPLY EVER AFTER. 

************************************************ 
In addition to the many inference that are made 
to understand this story, PAM also recognizes 
that John's losing his job is an instance of a 
Goal Subsumption Termination vroblem, and that 
the hit and run victim rewarding John is an 
instance of a Fortuitous Circumstance solution 
to this problem. This representation could then 
be used by a summarization program to produce a 
summary that included only the events of John 
losing his job, the problems this caused, John's 
saving the rich man 1 and the rich man rewarding 
him (A summarization component that actually 
performs this take in presently under 
construction. Although it has not yet been 
completed, it does not appear to be problematic, 
since all the information it needs is present in 
the structures PAM already produces). 

6.0 SUMMARY 

Stories constitute a subset of coherent 
natural language texts. For texts to be 
stories, they must be poignant in addition to 
being coherent. This point structure of a story 
serves to organize the representation of a story 
in memory so that more important episodes are 
more likely to be remembered than trivial 
events. Points also serve to generate 
PxpPd.nt.ions 11bout wh1,t will hnpp<"n next. in 11 

story, since a story r!'ader is looking for thP 
point of a story as the text is being read. 

An important class of story points deals 
with human dramatic situations, and these most 
often contain R set of interacting goals that 
create difficulties for a character. A taxonomy 
of these goal relationships and the situations 
they give rise to is useful for detectin~ a 
voint of a story, as well as for establishing 
its coherence as a text. When a goal 
relationship situation occurs as a problem point 
component, it will occur as part of a point 
prototype. These prototypes specify those 
aspects of the situations that should be 
mentioned in order to produce a dramatic effect. 

The notion of a story point competes with 
the idea of story grammars as a way to 
characterize story texts. The story grammar 
approach attempts to define a story as a text 
having a certain form, while the story point 
idea defines a story as a text having a certain 
content. The form of a story is viewed here as 
being a function of the content of the story, 
not a reasonably independent object. 
Understanding stories 1 then, is not so much a 
question of understanding the structure of a 
text, but of understanding the point of what the 
text is about. 
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The purpose of this paper is to simplify 
Perrault, Allen, and Cohen's [1,2,9,10,19,20) 
plan-based theory of speech acts by revealing an 
important redundancy -- illocutionary acts, We 
show that illocutionary act definitions can be 
·derived from more basic statements describing the 
recognition of~ plans -- plans based on the 
shared beliefs of the planner and some intended 
;recognizer, Eliminating the redundancy is 
iimportant for competence models of speech acts 
[10,19), but maintaining and exploiting it may be 
useful for computational and linguistic models 
[1,11,32) especially for those dealing with the 

'"short-circuiting" of certain implicatures 
[4,18,32), Our primary interest here is in 
competence models, 

A plan-based theory of speech acts specifies 
that plan recognition is the basis for inferring 
the illocutionary force(s) of an utterance, 'nle 
goal of such a theory is to construct a plan 
generation and recognition formalism that treats 
~ommunicative and non-communicative acts 
uniformly, Such a theory should therefore state 
'the communicative nature of an illocutionary act 
~s part of that act's definition, A reasoning 
system would then not have to employ special 
knowledge about co11111Unicative acts; it would 
simply attempt to achieve its goals, 

Communication and the recognition of shared plans 

Co1DD1Jnication is intimately tied to 
plan-recognition, Grice [14) showed that 
"simple" recognition of intention(l) as might be 
performed by an unseen observer (cf, [24,311) is 
insufficient as a basis for defining 
communicative acts, Instead he argued that 
speakers must plan for hearers to recognize their 
plans, and hearers must recognize the plans they 
were intended to recognize, Unifying Grice's 
analysis with Austin's [3), Searle [27,28) 
proposed that a speaker who is performing a 
speech act, such as a request, must intend to 
produce the effect of that action (to get the 
hearer to want to perform the requested act) by 
means of getting the heare·r to recognize the 
speaker's intention to produce it, It was on 
this basis that Perrault and Allen [l) developed 
a scheme for recognizing indirect speech acts, 

This research was supported primarily by the 
Advanced Research Projects Agency of the 
Department of Defense, monitored by the Office of 
Naval Research under Contract N00014-77-C-0378, 
and also, in part, by the National Research 
Council of Canada, 
(1) For this paper, "intention" and "plan" should 
be considered synonymous 
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However, Schiffer [26) has argued that, to 
avoid counterexamples based on deception, the 
Gricean program (and its amendments [30,271) 
produce an infinite regress of intending that one 
recognize an intention, To avoid this 
difficulty, he claims that the recognition of 
intention must be mutually believed, In other 
words, in order to communicate, speakers must 
make their plans shared or public knowledge, 

In view of this problem, Perrault and Allen 
have suggested that their model be reformulated 
in terms of mutual beliefs, Since we are 
proposing such revisions, we shall discuss the 
essentials of their scheme, 

Allen and Perrault's ~ 

Building on prior attempts to link speech 
acts to plans [5,6,7,9,10,24), Allen and Perrault 
proposed two levels of speech act operators: 
surface and illocutionary, Illocutionary 
operators, e,g,, REQUEST, are defined by stating 
propositions as preconditions, bodies, and 
effects with the understanding that: 

a) preconditions are necessary for the 
successful "execution" of the act (or 
procedure) described by the operator; 

b) effects are conditions that become true 
after the execution, and 

c) the body is "a set of partially ordered 
goal states that must be achieved in the 
course of executing the procedure," [19, 
p,23], 

Searle's recognition of intention" condition on 
speech acts is incorporated by defining an 
illocutionary operator's body to be "hearer 
believes speaker wants E" (abbreviated HBSW(.E)), 
where Eis the operator's effect, So, given the 
above understanding of operators, the 
illocutionary acts' operator's body needs to be 
achieved in the course of executing the operator, 
The standard ways of achieving them are by 
surface operators, 

The classification of an utterance as a 
surface operator depends on the utterance's mood 

declaratives become S-INFORMs, imperatives 
become S-REQUESTs, and questions become 
S-REQUESTs to INFORM, Surface operators are 
considered to be primitive -- they represent what 
agents actually perform -- and consequently have 
no bodies, Their effects are defined to match 
the corresponding illocutionary operators' bodies 

i,e,, HBSW(E), 'nlus, the standard way of 
achieving the body of a REQUEST is via an 
S-REQUEST, However, different combinations of 
surface act and propositional content can 
ultimately yield the same effect, 



I 

Mediating between the effects of surface 
_operators and the bodies of the illocutionary 
ones is a set of plan-recognition inferences. 
;Generally speaking, the inferences take the form: 
"the agent wanted P to be true because that would 
enable him to do A (precondition/action 
·inference), which would result in E 
(Action/effect), which is a means of achieving B 
(body/action). the agent is then regarded as 
baving wanted [to do] A, E, and [to do] B. 

The inference process begins by observing an 
act and then assuming it was intentional the 
agent wanted to do it. The application of the 
action/effect inference speech act operator thus 
results in a proposition of the form: 
HBSW(HBSW(E)). Perrault and Allen supply rules 
for inferring new propositions E' such that 
HBSW(HBSW(E')). Each such E', inferred by these 
1intended plan recognition rules, is regarded as 
;having been communicated, in the Gricean sense. 

Illocutionary act identification occurs when 
the body/action inference applies to the embedded 
·HBSW(E) proposition, yielding, for instance, 
HBSW( REQUEST(S,H,B)). If the body/action 
inference occurs immediately after the expansion 

;of a surface act, then a literal interpretation 
has been found. If there are intervening 
inferences, an indirect interpretation has been 
inferred. 

Their uncovering of the inferences needed to 
arrive at indirect interpretations is the key 
accomplishment. But once those inferences are 
known, formal (and perhaps computational) models ' 
need not recognize illocutionary operators in 
order to communicatively infer their effects. 
Since, for their model, illocutionary force is 
being discovered by a hearer motivated to 
recognize the speaker's plan in order to 
facilitate it, the effects are all that is 
needed. We suggest, then, that the body/action 
inference collapses two distinct kinds of 
inference processing -- means/end reasoning and 
summarizing. The latter has not been shown to be 
essential to helpful plan recognition. 

To demonstrate this point, Perrault and 
Allen's model will be elaborated upon in two 
ways: 

1) To relate an illocutionary operator's 
body and effect, a plan will be stated 
that produces the effect once the body is 
achieved. 

2) To capture the 
illocutionary 
steps of those 
believed. 

communicative nature of 
acts more accurately, the 
plans should be mutually 

Surface speech act operators will be redefined to 
produce mutual beliefs about the speaker's goals, 
much as Perrault and Allen suggested (cf. Clark 
and Marshall's [8] analysis discussion of 
situations producing mutual beliefs). Once these 
s teps are taken, the body/action inference will 
be unnecessary and illocutionary operators will 
reduce to redundant theorems . 
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The Formalism 

This section formalizes actions and plans , 
in conjunction with a planner's beliefs and 
desires.. the style of formalization owes much to 
the literature on axiomatic specification of 
programming languages, and to Moore[17J. We do 
not intend to give the impression that a complete 
language with proof and model theories is lurking 
somewhere offstage. Although we will describe 
the formalism in terms of axioms, rules of 
inference and possible world states, it should be 
understood that these are intended to be more 
suggestive than definitive and that the formalism 
itself remains a topic of on-going research. 

The formalism is a language with expressions 
of various types formed from primitive elements 
through rules of composition. Among the types of 
expressions we will discuss here are logical 
expressions (or wffs), action terms and terms 
denoting agents. For the remainder of this 
section, we will use "p", "q" and "r" as 
meta-variables ranging over wffs, "a" and "b" 
ranging over action terms and "x" and ''y" ranging 
over agent terms. In addition, we will use "I-" 
as a predicate over wffs holding when the wff is 
a theorem. 

By an action, we mean something an agent can 
do to change the state of the world. For 
example, the action term 

(GIVE x o) 

denotes the giving of the object denoted by "o" 
to the person denoted by "x". Notice that the 
action term does not mention the agent involved, 
This allows actions to be combined into more 
complex ones without having to fuss over the 
resulting agent. Examples of complex acts are 

(IF pa b) a conditional action 
(SEQ al••• ak) a sequence of 

actions 
(WHILE pa) an iterated action 

Among the actions required for communication, we 
assume 

(S-INFORM x p) saying to x that p 
is true 

(S-REQUEST x p) asking x to make p 
be true 

Among the wffs, 
connectives 

we assume the 

(IMPLY p q) (NOT p) 
(AND pl , •• pk) p • q 
(FORALL v p) 

In addition, there are wffs 
communication 

(ATTEND x y) true iff xis 
attending toy 

pertaining 

(BEL x p) true iff p follows from 
what x believes [15,161 

(WANT x p) true iff p follows from 

usual . 

to 



what x wants 

Note that just because a BEL or WANT is true does 
not mean that the agent involved actively 
believes or wants the proposition in question. 
All that can be said is that in every world state 
that is consistent with what the agent believes. 
the second argument to BEL will be true. One 
particular kind of wff peculiar to actions is 

(RESULT x a p) 

which is true iff "p" is true in the world state 
resulting from the execution of "a" by "x" (or 
"a" does not terminate). 

The behaviour of the expressions is governed 
by the axioms and rules of inference of the 
formalism. For example. action terms are 
specified using RESULT as in 

I- (IMPLY (OWN x o) (RESULT x 
(GIVE y o) 

(OWN y o))) 

The composite actions can be treated 1111ch like 
the axiomatic specification of programming 
language constructs. The IF rule. for example is 

I- (IMPLY (AND (KNOWIF x p) 

where 

(IMPLY p (RESULT x a q)) 
(IMPLY (NOT p) 
(RESULT x b q))) 

(RESULT x (IF pa b) q)) 

I- (KNOWIF x p) • (OR (KNOW x p) 
(KNOW x 

(NOT p))) 

and 

I- (KNOW X p) • (AND p (BEL X p)) 

Similarly, the rule of consequence becomes 

u 1- P then I- (RESULT x a p) 

Note that this must be a rule of inference in 
that the corresponding axiom (as an implication) 
cannot be a theorem. A related notion to this 
rule is the wff 

(CAUSE x p q) 

governed by the axiom 

I- (CAUSE x p q) • (FORALL a / ACTION 
(IMPLY (RESULT x a p) 

(RESULT x a q))) 

so that a CAUSE is true iff anything that "x" 
does to bring about "p" also results in "q" being 
true. In other words. making "p" true makes "q" 
true. 

Of crucial importance to the definition of 
speech acts, is the concept of mutual belief (or 
MB) governed by 
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If I- p then I- (MB x y p) 

and 

I- (MB X y p). (BEL X (AND p 
(MB y X p))) 

The axiom states that mutual belief is equivalent 
to an infinite conjunction of beliefs in that. 
allowing that 

I- (BEL X (AND p q)). (AND (BEL X p) 
(BEL x q)) 

then the following are implied by a mutual 
belief: 

(BEL x p) 
(BEL x (BEL y p)) 
(BEL x (BEL y (BEL x p))) ••• (1) 

Given the notion of mutual belief, we can now 
state the two rules governing two primitive 
comD11nication acts, S-INFORM and S-REQUEST: 

I- (IMPLY (MB x y (ATTEND y x)) 
(RESULT x (S-INFORM y p) 

(MB y x (WANT x (BEL y 
(BEL x p] 

I- (IMPLY (MB x y (ATTEND y x)) 
(RESULT x (S-REQUEST y p) 

(MB y x (WANT x (BEL y 
(WANT x p) 

When discussing 
goal-directed agents. a 
an agent being able to 
affairs that he wants: 

the behaviour of 
useful concept is that of 
bring about some state of 

I- (CAN x p) • (EXISTS a/ACTION 
(KNOW x 

(RESULT x a p))) 

Note that this is an example of "quantifying in" 
in that it is not sufficient for "x" ·simply to 
know the existence of an action that results in 
"p", he must also know what action it is. On the 
other hand, 

(BEL y (CAN x p)) 

could be true without "y" knowing how "x" will 
achieve "p" since. in this case, the quantifier 
is within the belief context• Given this 
characterization, we now turn our attention to 
plans, which, loosely speaking, are simply proofs 
that. given some set of beliefs, an agent is able 
to achieve some goal. More formally. the 
definition is 

(1) Schiffer's (26] definition of D11tual belief 
also includes an infinite conjunction starting 
from (BEL y p). Since we shall only be concerned 
about one person's point of view, we only deal 
with bel'iefs about mutual beliefs. which reduce 
to the above. 



A plan for agent "x" to achieve some goal 
"q" is an action terrn "a" and two sequences of 
wffs "pO", "pl", ••• "pk" and "qO", "ql", 
"qk" where "qk" is "q" and satisfying 

1. I- (BEL x (IMPLY pO 
(RESULT x a qO))) 

2. I- (BEL x (IMPLY pi 
(CAUSE x qi-1 qi))) 

i•l,2, ••• k 

In other words, given a state where "x" believes 
the "pi", he will believe that if he does "a" 
then "qO" will hold and moreover, that anything 
he does to make "qi-1" true will also make "qi" 
true. Consequently, a plan is a special kind of 
proof that 

I- (BEL X (IMPLY (AND pO ••• pk) 
RESULT x a q))) 

and therefore, assuming that 

I- (IMPLY (BEL X p) (BEL X 
(BEL x P))) 

and 

I- (IMPLY (BEL x (IMPLY p q)) 
(IMPLY (BEL x p) 

(BEL x q))) 

a plan is a proof that 

I- (IMPLY (BEL x (AND pO ••• pk)) 
(BEL x (CAN x q))) 

Notice that the assumptions "pi" may be 
simplified in a plan in that if we have that 

I- (BEL X (IMPLY p (RESULT X b 
(AND pO pl ••• pk)))) 

then we have a reduced plan for "x" to achieve 
"q" since 

I- (BEL x (IMPLY p (RESULT x 
(SEQ b a) q))) 

This process can, of course, be iterated on the 
new assumptions. (Since action "b" achieves all 
the prerequisites, the "non-linearity" problem 
[21] remains.) 

Among the corollaries to a plan are 

I- (BEL x (IMPLY (AND pO ••• pi) 
(RESULT x a qi))) i•l, ••• k 

and 

I- (BEL X (IMPLY (AND pi ••• pj) 
(CAUSE x qi-1 qj))) 

i•l, ••• k j•i, ••• k 

There are two main points to be made 
corollaries. First of all, since 
theorems, the implications can be 
believed by the agent "x" in every 

about these 
they are 

taken to be 
state. In 

266 

this sense, these wffs express general methods 
believed to achieve certain effects provided the 
assumptions are satisfied. The second point is 
that these corollaries are in precisely the form 
that is required in a plan and therefore can be 
used as justification for a step in a future plan 
in much the same way a lemma becomes a single 
step in the proof of a theorem. 

We therefore propose a notation for 
describing many steps of a plan as a single 
summarizing operator (akin to MACROPs in STRIPS 
[11]). An operator consists of a name, a list of 
free variables, a distinguished free variable 
called the agent of the operator, an effect which 
is a wff, a optional body which is either an 
action or a wff and finally, an optional 
prerequisite which is a wff. The understanding 
here is that operators are associated with agents 
and for an agent "x" to have an operator "u", 
then there are three cases depending on the body 
of "u": 

1. If the body of "u" is a wff, then 

I- (BEL x (IMPLY prerequisite 
(CAUSE agent body effect))) 

2, If the body of "u" is an action 
term, then 

I- (BEL x (IMPLY prerequisite 
(RESULT agent body effect))) 

3. If "u" has no body, then it is 
simply an action and 

,_ (BEL X (IMPLY prerequisite 
(RESULT agent u effect))) 

An example of this last kind of operator is the 
action GIVE, described above, which becomes the 
operator 

[GIVE y o) agent: x 
effect: (HAVE yo) 
prereq: (HAVE x o) 

One thing worth noting about operators is that 
normally the wffs used above 

!-(BEL x (IMPLY prerequisite • •• )) 

will follow from the more general wff 

!-(IMPLY prerequisite ••• ) 

as in the case of the GIVE example. However, 
this need not be the case and different agents 
could have different operators (even with the 
same name). Saying that an agent has an operator 
is no more than a convenient way of saying that 
the agent always believes an implication of a 
certain kind. 

Before considering some 
operators and their use in plans, 
the notation for describing plans. 

examples of 
we introduce 



qk • goal 
I 
I 

uk - - 0 -- pk 
I 
I 
qk-1 
I 

I 
uO -- 0 -- pO 

where the "pi" and the "qi" are as before and the 
"ui" are the operators justifying the transition 
given "pi" from "qi- 1" to "qi". In the simplest 
case, "pi" will be the prerequisite of "ui", with 
"qi- 1" and "qi" the body and effect respectively. 
More generally, we need only require that 

I- (BEL x (IMPLY pi prerequisite)) 
I- (BEL x (IMPLY qi-1 body)) 
I- (BEL x (IMPLY effect qi)) 

to satisfy the definition of a plan. 

Operator Definitions 

Given the 
definitions, we 
needed for our 
argument in the 
be the agent. 

above understanding of operator 
present those operator schemas 
derivation of REQUEST. The first 
parameter list for a schema will 

[CAUSE-TO-WANT x y p] 

effect: 
body: 
prereq: 

(WANT y p) 
(BEL y (WANT x p)) 
(AND -(WANT y -p) 

(HELPFUL y x) ) 

Provided y doesn't want NOT(p), and y thinks she 
is feeling helpfully disposed towards x, then 
getting y to believe that x wants p will get y to 
want P• Though this may be one way to influence 
someone's goals, more generally, one would like 
to state "y is given a reason for wanting p". 

The SHARED-RECOG operator describes Shared 
recognition of the agent's goals: 

[SHARED- RECOG x y pg] 

effect: (MB y X (WANT X q)) 
body: (MB y x (WANT x p)) 
prereq: (MB y x (CAUSE x p q)) 

Of course, not every action produces mutual 
beliefs about someone's goals. Usually, the two 
parties must be mutually aware of the other's 
presence. However, once it is shared knowledge 
that x wants p, if its mut~ .l ly believed that 
anything x does to make p t r ue makes q true, then 
it will be mutually believed that x wants q. 
Clearly, we are exploiting the "follows from what 
the agent wants" interpretation of WANT here 
an agent wants all the inevitable results of his 
wants. Since this interpretation is currently 
forced on us by our formal tools, and since we 
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want to formalize shared plans, we WANT this 
interpretation. 

The next operator provides for private 
recognition of the agent's goals. It is similar 
to Perrault and Allen's [19) Plan-Deduce 
operator. 

[PRIVATE-RECOG x y pg] 

effect: (BEL y (WANT x q)) 
body: (BEL y (WANT x p)) 
prereq: (BEL y (BEL x (CAUSE x p q))) 

PRIVATE-RECOG should appear in plans when 
SHARED-RECOG is inappropriate, for instance when 
the conditions implying CAUSE statements are not 
mutually believed. Lack of shared knowledge can 
arise because of third parties (e.g., someone 
tells you what I want), because of the modality 
of communication (e.g . , telephone conversations), 
or because one of the parties is an unseen 
observer. 

The operator ACHIEVE models getting someone 
else to make p true. 

[ACHIEVE x y p] 

effect: p 
body: (WANT y p) 
prereq: (CAN y p) 

All that is required is that y know of some 
action resulting in p (x does not have to know 
which action that is). Then, simply by getting y 
to WANT p will CAUSE p to hold. Of course this 
idealization ignores the possibility of y's being 
unable or unwilling to actually perform the 
action. Future versions of CAN, using Moore's 
(17) RES modal operator, may ensure that y can 
also perform the action. 

To allow for another way of influencing 
someone's goals, we define: 

[FORCE-TO-WANT x y p] 

effect: (WANT y p) 
body: (BEL y (WANT x p)) 
prereq: (BEL y (HAS-AUTHORITY-OVER X y)) 

The semantics of HAS- AUTHORITY-OVER 
(interpreted as x has authority over y) could be 
stated by filling out an organizational chart, or 
determining the status relationships between the 
parties. 

Finally, the last operator we shall need is 
S-REQUEST, as defined earlier, to produce mutual 
beliefs about the speaker's goals. The 
prerequisite is that it be mutually believed 
between x and y that y is attending to x. (Note 
the order of x and y -- x must actually believe y 
is attending.) A crucial but as yet unanaly zed 
condition on classifying an utterance as an 
S- REQUEST to some particular hearer His that it 
be mutually believed between the speaker, S, and 
H, that H is the intended addressee. This 
condition is not always satisfied, since some 
computer systems are conceptualized as 
"overhearing" (e.g., Genesereth's (13) ADVISOR). 



The following is x's plan to achieve E: 

E 

I 
[ACHIEVE y El ---0--(CAN y E) 

I 
(WANT y E) 

I 
[CAUSE-TO-WANT ---0--(AND 

y E I I - (WANT y '"E) 
I (HELPFUL y x) ) 

(BEL x (WANT y E)) .. 
II 
II 

(MB y x (WANT x E)) 

[SHARED-RECOG 
x y (WANT y E) 

El 
(MB y x 

I 
---0--(MB y x (CAN y E)) 

I 
I 

(WANT x (WANT y E))) 
I 
I 

----0--(MB y X 

I (AND 
[SHARED-RECOG 
x y (BEL y 

(WANT x 
(WANT y E) l 

E)) I -cwANT y -E> 
I (HELPFUL y x))) 

I 
(MB y x (WANT x (BEL y 

I (WANT XE)))) 
[S-REQUEST y El ----0--(MB x y 

(ATTEND y x)) 

Given the individual operators and the 
interpretation of operators as theorems, the plan 
itself should be relatively self-explanatory, 
The prerequisites of the SHARED-RECOG operators 
shown imply those necessary for each individual 
step, For instance, since all theorems are 
mutually believed: 

1-(BEL x (MB x y [IMPLY (CAN y E) 
(CAUSE x (WANT y E) 

El, 

therefore 
I- (BEL X (IMPLY [MB y X (CAN y E)l 

[MB y x (CAUSE x 
(WANT y E) E)l)) 

the precondition of 

(MB y x (CAN y E)) is shown, We have made one 
such implication explicit in the diagram -- the 
one marking the transition from shared to private 
beliefs, 

Summarizing the plan 

Various portions of the plan can now be 
summarized, First of all, consider the summary 
operator REQUEST: 

[REQUEST x y El 
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effect: (MB y X (WANT XE)) 
body: (MB y x (WANT x (BEL y 

prereq: (AND (MB y x 
(MB y x 
(MB y X 

(WANT x E)) )) 
(CAN y E) 
- (WANT y -E)) 
(HELPFUL y x)) 

If the prerequisite holds, any action making the 
body true achieves the effect, The propositions 
in the plan not summarized by this operator are 
achieved by virtue of y's private beliefs, The 
decision to include illocutionary or 
perlocutionary effects as part of some operator 
cannot be made solely on formal grounds, Also, 
notice that the third argument in the RF.QUEST 
schema is a proposition and not an action, While 
it would be desirable to derive a REQUEST to use 
an action, the formalism forbids its use since 
WANT takes a proposition as its argument, 

We can also define other operators from this 
same plan, For instance, 

[COMPLY y x El 

effect: 
body: 
prereq: 

E 
(MB y x (WANT x E)) 
(AND - (WANT y '"E) 

(HELPFUL y x) ) 
(CAN y E)) 

Clearly, we could have made the effect (WANT y 
E), COMPLY subsumes the remainder of the above 
plan, and progresses from shared beliefs to 
private ones (which cause y to ach:teve E), 
However, it is unclear which proposition should 
be chosen as the body, Should the body be a 
mutual belief (therefore involving a previous 
co111111Jnication act) or need it only be a private 
belief? Finally, if Eis a KNOWIF or KNOWREF 
proposition [1,2,10,191, then a more specific 
operator, ANSWER, can be defined, 

Multiple summaries can occur because of some 
indirect uses of surface speech acts as in 
with an S-INFORM of x's WANT that leads to the 
same effect as an S-REQUEST [1,2,10,191, Not 
only could the early part of the plan be 
summarized as an INFORM, and the later stages as 
a REQUEST, but a perhaps co~utationally useful 
operator would be one subsuming both the INFORM 
and REQUEST; call it a WANT-REQUEST, This 
formalizes the technique used in Woods et al's 
[321 system to "short-circuit" various chains of 
reasoning involving indirect speech acts, 

Substituting FORCE-TO-WANT for CAUSE-TO-WANT 
into the above plan allows us to create a summary 
termed COMMAND as follows: 

[COMMAND x y E] 

effect: (MB y x (WANT x E)) 
body: (MB y x (WANT x (BEL y (WANT x E)l 
prereq: (MB y x (BEL y 

(HAS-AUTHORITY-OVER x yl 
COMMAND differs from REQUEST in its 
insensitive to the hearer's helpful 
non-helpful) disposition and to her 
desires, 

being 
(or 

prior 



Finally, we can create a plan in which the 
effect takes hold in a .!12.!!.-communicative manner: 

E 

I 
[ACliIEVE y El -0--(CAN y E) 

I 
(WANT y E) 

I 
I 

[CAUSE-TO-WANT 0---(AND 
I -(WANT y -E) 

x y (BEL y I (HELPFUL y x)) 
(WANT x E)) 

(WANT y E)l 
I 
I 

(BEL y (WANT x E)) 
I 

[PRIV-RECOC ----0--(BEL y (BEL x (CAN y E))) 
X y (WANT y E) I 

El I 
I 

(BEL y (WANT x (WANT y E))) 

(BEL x (AND 
I 

[PRIV-RECOC --0--(BEL y 
X y (BEL y I 

(WANT x E) 
-(WANT y -E))) 

(HELPFUL y x) ) ) ) 
(WANT y E)l 

I 
(BEL y (~ANT x (BEL y (WANT x E)))) 

II 
II 

(MB y x (WANT x (BEL y 
I (WANT X E)) )) 

[S-REQUEST --0--(MB x y (ATTEND y x)) 
y El 

Again, the implication marks the shift from 
mutual beliefs to private ones. By Schiffer's 
[261 definition, any effect obtained on the basis 
of private beliefs was not communicated. Thus, 
on philosophical grounds, one would not classify 
a summary of this plan as describing an 
illocutionary act. 

Possible Uses of Illocutionary Operators 

The formalism indicates that certain 
illocutionary operators are redundant--they can 
be derived from other in~ependently motivated 
operators. However, the redundancy is only 
relevant to achieving the illocutionary 
operator's effects. For the reasons stated 
below, the redundancy may be useful. 

Illocutionary operators might be used to 
represent the meaning of illocutionary verbs. 
Consider verbs that report on social interaction, 
Corresponding operators can be defined to span 
multiple agents' achievemen~ ~ (e.g., COMPLY and 
ANSWER). Summary operators can perhaps be used 
for verbs requiring "uptake" [31. Thus, a plan 
summarizable as a bet could contain portions 
summarizable as offerings and acceptances. The 
major questions for this approach would be when 
and to what end would those summaries expanded in 
the course of processing an utterance. Obviously 
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the linguistic questions related to performatives 
are also relevant but as yet remain unanswered. 

From a computational perspective, summary 
operators are useful in l i miting a planner's 
search, as demonstrated by the use of MACROPs in 
STRIPS [121. Summary operators allow for 
"short-circuiting" the interpretation of certain 
indirect speech acts ([18,2,4,31,321), Further 
reduction in search could follow ABSTRIPS [221 in 
assigning priorities to the summary operator's 
prerequisites. Speech act plans could first be 
sought using high priority preconditions and 
later pruned by lower ones. Given suitable 
priority and threshold schemes, indirect 
achievement of a communicative goal may be as 
efficient as direct achievement. 

Finally, the issues of dynamically acquiring 
summary operators, as in STRIPS, become relevant. 
Though a system may summarize a shared plan, 
there may be no corresponding illocutionary verb 
in its lexicon to describe that plan, This 
problem then presents an interesting challenge to 
a model of language use -- how could a system 
plan communicative acts to establish a jointly 
agreed upon vocabulary? 

In summary, our model proposes a foundation 
for defining a class of illocutionary verbs, 
However, as the next section shows, there are 
formal and descriptive limitations to be 
overcome. Furthermore, other teats need to be 
applied to support the model, 

Limitations 

Our scheme has only been applied to a narrow 
range of phenomena. First of all, we have only 
shown the redundancy for two illocutionary verbs 
("requests" and "command") though a similar 
analysis has been done on "inform." Since these 
verbs are prototypical of Searle's [29] 
"directive" and "representative" classes, our 
hope is that this style of formalism can be 
extended to other members of those classes. Such 
an analysis is currently limited by our 
understanding of concepts such as benefit (for 
suggestions) and danger (for warnings). 

We have not yet attempted to handle the 
class of indirect speech acts addressed by 
Perrault and Allen. Our effor ts a r e currently 
hampered by the KNOWIF(P) - -> P(or - p) 
recognition inference stating that if you believe 
an agent wants to know whether or not Pis true, 
then it is plausible to believe that agent wants 
P (or, wants -p). The inference arises because a 
planner must determine whether or not an action's 
preconditions hold, In order to formalize the 
inference, an axiomatization of the behavior of a 
planner or a plan- recognizer is needed. Such a 
formalism would also have to capture stopping 
conditions for shared and private 
plan- recognition [1,2,13,25,32], and perhkps 
rating schemes for choosing the best plan 
[l, 2, 32]. 

Regarding the 
is the lack of an 
semantics for BEL 
distinction between 
"putting up with" 

formalism, a major difficulty 
adequate axiomatization and 

and WANT. For instance, the 
actively desiring, and 

(as the lesser of two evils) 



. ·1 

. ' 

·needs to 
Hintikka's 

be drawn 
[15,16] 

formally, 
treatment 

BEL, 
is the 

given 
better 

understood concept, 
A bothersome quirk of the formalism is that 

actions cannot appear as objects of want, and 
,henc~ do not appear in the REQUEST summary 
·operator, We are therefore searching for a 
.propositional way to state that an action was 
done, 

' Conclusions 

The primary reason for pursuing this 
formalism is that is allows one to express 

·naturally the communicative nature of 
illocutionary operators in terms of shared plans, 
It leads us to conclude that summarizing an 
utterance as the performance of an illocutionary 

1act is not necessary to helpfully motivated plan 

1recognition, The illocutionary operators that we 
'. have studied are redundant for achieving their 
'. effects, since the shared plans provide all the 
:power, and their components are independently 
motivated, However, though we have suggested 
·such operators are unnecessary, we cannot 
'formally prove the point without further 
research, especially on the logic of WANT, The 
formalism has led to a foundation for 
"abort-circuiting" certain implicatures, as 

irecommended by Morgan[l8], Perrault and 
.Allen[l9], and as attempted in Woods et al's 
' [32] natural language system, Finally, it 
reveals the arbitrary nature of operator 
definition, Some choices can be decided using 
the adequacy test of third-party speech acts 
'proposed by Cohen and Perrault [10), Other 
decisions must await empirical evidence, 
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This paper outlines a preliminary design 
for a system to understand one-sided 
arguments. These are a particular kind of 
conversation, where the speaker has one 

main objective: to convince the hearer of 

a particular point of view. Arguments are 

thus characterized by having an overall 
point, defended by some logical chain of 

reasoning. We develop methods to analyze 

arguments, considering them as intentional 

behaviour. For this first design, we 

concentrate on developing methods to 

recognize the logical form of the 

argument, by examining the relations 

between sentences. 

1. The eroblem ~ 

We are studying a particular kind of 

conversation the one-sided argument. 
This is a speech with a main objective of 

convincing the 

point of view. 

other texts in 

hearer of 

Arguments 

that: (i) 

a particular 

differ from 

there is an 

overall point (untrue of stories) (ii) the 

point is an oeinion which is to be 

defended (untrue of news reports) ( iii) 
the individual sentences serve to support 
the point (untrue of informing rather than 

convincing arguments) (iv) there is an 

overall logical form: a method of 

reasoning, holding the argument together 

(untrue of non task oriented 

conversations). 

Our main objective 

arguments, producing 

which reveals (il the 

is to analyze 
a representation 

point and overall 

opinion (ii) the chain of reasoning 

supporting the point. The restricted form 

of arguments is used to develop a 

classification for each sentence as either 
claim, evidence for some claim, or a 
statement of control (i.e. a sentence 

about the structure of the argument - e.g. 

"We now present our conclusion"). To 

classify sentences and record the 

relationships between them, frames are 
defined for each of the basic logical 

rules of inference. The main operation of 

our analysis is thus a matching onto 

frames, which hold our representation and 

facilitate further processing. 
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The underlying philosophy of this system 

is that arguments may be considered as 

intentional behaviour. One motivation for 

this pragmatic approach is that there are 
some clear distinctions between shared and 
private knowledge in arguments. Speaker 
(S) and hearer (H) share some knowledge: 

both know that the main purpose is to 

convince: both are aware of standard 

techniques to convince (e.g. using 
analogies, contrast, examples, etc.). On 

the other hand, both the statements of s 
and the connections between 
unknown to H. So H's 

them may be 

task is both to 
recognize the logical forms being used and 
to believe that they are appropriate. 

Another important reason for considering 

intentions is to facilitate the 
understanding process. H's comprehension 

process often involves deciphering and 
interpreting unstated assumptions. H may 

be able to determine unstated opinions of 
S or overall argument structure by 



examining, for example, the choice of 

words (e.g. "however", "only"). But H 

also knows that s must facilitate His 

understanding, in order to succeed in 

convincing H of his main point. H can 

thus postulate rules of coherence to 

interpret S's intentions and aid in 

analyzing the argument. 

There seem to be two main levels to H's 

processing: determining what S believes, 

and deciding whether or not he, himself, 

believes it. The second task involves 

judging the credibility of arguments, and 

will not be addressed in this paper (See 

Section 3: Future Work). 

This problem area, 

different from 

understanding projects. 

as defined, is 

other language 

DeJong's FRUMP <DeJong 79> analyzes 

newspaper stories. This kind of text . is 

similar to arguments in that (i) there may 

be statements of evidence and sources 

quoted (ii) it is important to believe the 

story. However, FRUMP does not concern 

itself with the underlying opinion on the 

overall topic, or with credibility. In 

contrast to FRUMP, we must distinguish the 

evidence in the argument and determine how 

the evidence supports the main opinion. 

Further, there is a basic representational 

difference between arguments and stories. 

DeJong himse 'f addresses the issue in 

<DeJong 79>, indicating that his program 

can't handle editorials because these 

present arguments in a novel form, and 

scripts can't be written ahead to include 
these new ramifications. 

Carbonell's POLITICS <Carbonell 78> 

analyzes opinionated text. But his system 

is given the underlying opinion (in the 

form of an ideology, represented as a set 

of goals). In our case, H assumes that 
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the argument will conform to one ideology, 

but he must determine that ideology by 

examining the form of the argument. 

Furthermore, the main purpose of our 

analysis is distinct from Carbonell's: we 

are concerned with the overall form - why 

sentences are put together in a particular 

order. Carbonell concentrates more on 

analyzing individual events. 

Allen <Allen 79> analyzes conversation as 

intentional behaviour. But again the goal 

of his system is distinct from ours. He 

is interested in recognizing speech acts; 

we know that the main purpose is to 

convince, but must determine how the form 

of the argument succeeds in convincing. 

Some of Allen's methods of plan deduction 

to uncover intentions may be useful to us. 

In sui, our problem area presents us with 

a new language understanding task. We are 

concerned with determining form and 

uncovering intentions to perform analysis. 

2. The Analysis Process 

2.1 Overview 

This section describes the basic 
procedure the hearer (H) follows to 

determine the logical form of an argument, 

leaving aside the issue of credibility. 

Th~ basic step in the analysis process is 

for H to take a sentence of the argument 
and to determine whether it is a new claim 

or e~idence for some previously stated 

claim. In this way, H can uncover the 

intended function of each sentence. The 

basic unit of analysis is actually a 

proposition the propositional content 

extracted from a sentence. (A simplifying 

assumption for our system right now is 

that the propositional content is made 

available). 



. 1 

To help Hin classifying 
there is a standard 

a proposition, 
set of frames, 

representing rules of inference. In 
addition to frames representing correct 
rules like modus ponens and modus tollens, 

there are some representing bad logic, 

~hich is often used in arguments (either 

intentionally or in an attempt to justify 
bad evidence). Consider the following set 

of frames: 
SET OF FRAMES: 

(Abbrevia~ions: M~JOR - major premis~, 
MINOR - minor premise, CONC - conclusion) 

·(correct) MAJOR MINOR CONC 

MODUS PONENS A-->B A B 

MODUS TOLLENS A-->B -s -A 

MODUS TOLLENDO PONENS Aor-s B A 

MODUS PONENDO TOLLENS Aor B B 

( incorrect) 
ASSERTING CONSEQUENT A-->B B A 
DENYING ANTECEDENT A-->B -A -a 

This selection of frames is motivated by 

<Sadock 77>, which indicates those correct 

and incorrect logical rules that occur 
most often in conversation. Our analysis 

of examples so far seems to function well 

with this restricted ~et. 

For each of these frames representing 

rules of inference, it is often the case 

that they are not completely spelled out 

in the argument. Any one of the major 

premise, minor premise or conclusion may 

be omitted, and H must still be able to 
recognize the logical form intended, by 

filling in the missing detail. (This kind 
of argument is referred to as "modus 
brevis" in <Sadock 77>). His aware of 

these variations in frames. 

CLASSIFICATION OF FRAMES(e.g:Modus Ponens) 

normal A-->B,A /B 

normal MAJOR A-->B /B 

normal MINOR A /8 

MAJOR A-->B (assume rest) 

MINOR A (assume rest) 

CONC (hard) B (assume rest) 

How can H make use of these frames to 
represent the logical form of an argument? 

Consider MAJOR premise, MINOR premise, and 
CONCLUSION to be slots of a frame, with 

the constraint that the premise slots must 
lead to the conclusion. His motivated in 

filling frames in order to classify 

propositions: we say that A is evidence 

for B iff they both fill slots in a frame 

such that A is a premise for B. H tries 

to instantiate a frame by filling its 

slots with propositions of the argument, 

possibly inferring premises that are not 
"spelled out", and thus choosing one of 
the "missing" versions of frames. The 

result is an indication of the logical 

relations between propositions 

argument. 

2.2 Details 

in an 

The overview illustrates the basic frame 

matching technique used 

propositions. This section 
to classify 

examines the 

analysis 

particular, 

classified 
develop a 

process in detail. 

a proposition may 

in many different ways. 

In 

be 

We 

scheme which formulates 
hypotheses for each proposition as to how 
it can fit with the rest of the argument, 

and then rates these hypotheses to 

determine the most likely interpretation. 
The rating scheme is based partly on 

fitting into our logic frames, and partly 

on other heuristics - e.g. based on the 
actual choice of words. In addition, this 

section describes the processing of the 

entire argument in more detail: how the 

classification of one proposition affects 
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another, how to isolate sub-arguments, and 
what kind of representation to build for 

the overall argument. 

Rating Hypotheses 

Consider the following classification 

scheme for a single proposition: 

HYPOTHESES FOR CLASSIFICATION OF PROP(i) 

f 
i) new claim 
iil evidence for some future claim 
iii) evidence for PROP(i-1) 

evidence for PROP{i-2) 
evidence

0

for PROP(l) 

To illustrate that more than one 

hypothesis is probable for a given 
proposition, and that rating is thus 

necessary, consider the following exa~ple: 

EXl: l)There is too much crime in th~ city 
2)We need more police 

This example gives insight into the 

possible functions of a proposition, 'and 

the need to rate hypotheses. Consider 1) 
in isolation: it can be either a claim 
(and we'd expect evidence about the amount 
of crime) or evidence for some claim. 

Upon seeing 2), a connection is found 

between 1) and 2) (e.g. "more police --> 

less crime"), so 1) is interpreted as 

functioning as evidence for 2). 

Determining whether a proposition is 

evidence for another is done by trying to 

fill slots in a frame, as described in 

Section 2.1. Since there are many frames 

in our system, each of the hypotheses in 
(iii) really represents a variety of 
options - e.g. evidence for PROP(i-1) by 
modus ponens, evidence for PROP(i-1) by 
modus tollen~, etc. Since propositions 
are processed one at a time from the 
start, the only options that can be 
directly measured are those using 
propositions that have already been 

processed - hence the distinction between 

(ii) and (iii) above. 
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TRYING FRAMES 

The first step is to determine the 
hypotheses in (iii) by 
to fit frames. To ensure 

ratings for 
actually trying 
that correct logic frames are given 

preference over bad logic frames, consider 

a frame system where the bad logic frames 

are connected to their correct logic 

counterparts using SIMILARITY links (as 

described by <Minsky 75>). In the spirit 

of <Tsotsos 80>, similarity links trigger 

alternatives when an exception is raised 
in trying to fill a slot in a frame. For 
example: 

EX2: l)Whenever the stock market crashes 
Carter refuses to appear on TV 

2)Carter has refusea to appear on TV 
3)So the stock market must have crashed 

With 1) and 2), modus ponens fails we 

have A-->B, then B. So we try •asserting 

consequent•, and with A asserted in 3), 
find that the bad logic frame succeeds. 
So bad logic frames are only tried when 
correct logic ones fail. 

Each hypothesis in (iii) thus 

expanded into a list of options: 

each of the correct logic frames. 
each option is tried. If 

gets 

one for 

Then, 

frame 
constraints can't be satisfied, the option 

is given a very low rating. As H tries to 

instantiate frames, he must be aware that 

he is often interpreting beliefs of the 

speaker. So, for instance, modus ponens 

is usually recognized as: (S believes 
(A-->B)), (S believes A) thus (S believes 
B). (And not as "(A-->B) is believed to 
be true by H" ••• etc.). This introduces an 
interesting sub-topic of how H 

distinguishes beliefs, wants, and goals of 
S to aid analysis (see Section 3: Future 
Work). 

Even when H succeeds in instantiating a 

frame, the rating for that frame may be 

lowered if it was •difficult" to fill in 
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the necessary "chains of reasoning". 
Consider the following: 

EX3a: 1) There is a national railroad 
system in the US today 

2) Railroads serve more than local needs 

,EX3b: 1) Railroads deliver goods across 
state lines 

2) Railroads operate on a national scale 
To determine 2) as evidence for 1) in 3a 
requires a rather long chain of reasoning 
(something like "exists national system 

--> operates on national scale--> carries 
goods between localities--> serves more 

than local needs"). In 3b, the chain is 

brief ("across state lines--> national"). 

H may wish to lower the ratings for 

longer, less certain chains. 

In addition to actually measuring the 
options in (iii), we also consider some 

heuristics to affect ratings, which 

include an assessment for (i) and (ii). 

LINGUISTIC CLUES 

Sometimes H 

classification 

is 

of 

aided in 

propositions by 

the 

the 
actual choice of words. For example, H 

can recognize (and S knows that he will 
recognize) the organizational function of 

certain words and phrases, and can thus 

detect structure. For example, 

classification 

reasonable: 

like <Hobbs 78> 

a 

is 

CATEGORY 
SUMMARY 
PARALLEL 
EXAMPLE 
DETAIL 
CONTRAST 
CAUSAL 

EXAMPLE 

in conclusion 
in the first place 
for example 
in particular 
on the other hand 
therefore 

The different functions can be interpreted 
in terms of claims and evidence for H to 
expect. 

In addition, the choice of connective 

between propositions should provide H with 

an insight into S's intentions. 
Certainly, com~ound sentences suggest a 
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common topic for their clauses - but the 
presuppositions attached to the words can 
indicate the function of each clause in 

the overall form. We are working on .a 

precise description of connectives, and of 

particular constructions like analogy, 

with a view to developing 
for overall logical form 

a description 
that further 

specifies the evidence I claim 
distinction. It is also interesting to 
examine the motives of S in choosing a 

particular construction - an issue which 

relates more to "credibility". 

SYSTEM RULES 

Furthermore, there are neuristics called 
SYSTEM RULES to 
classifications. 

indicate 
These are 

preferred 

rules 
motivated by the intentional nature of 
arguments. H expects S to conform to 

certain coherence rules, because he knows 

S must be clear in order to convince H of 

his point of view. H thus has some 

defaults about how propositions relate. 
Consider the following: 

1) a proposition which is a statistic is 

likely to be evidence 

2) a proposition which quotes a particular 

authority is likely to be evidence 

(based on the idea that claims 

considered to be disputable, while 

statistics and quoting authorities are 
less disputable material) 

3)a change in topic often signals a new 
claim 

4) repetition of topic suggests some 

connection (propositions may support one 
or another, or both support a common 
third) 

(judging continuity of topic) 

5) rules of distance: prefer connections 

between propositions located closer 



together in the argument 

* when a proposition rates high as a new 

claim, strenghten the ratings of previous 

propositions which let them relate to each 

other (since it should be hard to find 

evidence located after this new train of 

thought) 

something like the rule of 

applies for frame fitting: 

* if the "chain of inference" 

distance 

needed to 

instantiate a frame is long, decrease the 

rating for that hypothesis. 

(other sub-rules based on distance may 

develop) 

EX4: 1) Peter is a good musician 
2) He has produced 50 songs this year 

2ln~!nc~:i:ither: 
*evidence for future claim 
*evidence for previous claim 

Not only does 2) --> 1) fit into a frame 

(with chain "prolific --> good") but 

because of the ~istic in 2), all 

evidence options are strengthened. 

Updating ratings 

So far we have described how H can do a 
thorough analysis of a single proposition. 
We now consider how the ratings for one 

proposition can affect others. Recall 

that our control structure is such that 
propositions are processed one at a time. 
Now, once a proposition is processed, the 

ratings of previous propositions are 

re-evaluated. Consider the following 

interactions: 

(i) when PROP(i) is processed, go back and 

evaluate the "evidence for future claim" 

option for previous propositions, using 

PROP ( i) 

EXS: llMotorcycle gangs caused 50% of the 
deaths 1n our small town 

2)These gangs are dangerous 
None of the hypotheses for 1) can be 
directly measured since it is the first 
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When 2) 
"2) as 

is processd, the 
evidence for l)" is 

sentence. 

hypothesis 
measured and rates low (hard to 
establish). Then l) is re- processed, and 

"1) as evidence for 2)" is measured. This 

works with modus ponens and missing 

premise "caused lots of deaths --> 
dangerous". 

(ii) when PROP(i) rates high as evidence 

for PROP(j), increase the claim rating for 
PROP(j) 

(iii) if a new proposition is created 
i.e. filled in as missing detail in a 

frame - then this proposition is added to 

our system. Then, if a future proposition 
rates high as being related to one of 

these derived propositions, we increase 

the rating for the hypothesis which 
"created" it 

Overall form 

We now begin to have a feel for how 

rating propositions can propagate through 

an argument. We must as well try to 
develop a representation for the overall 
argument. What our classification of 
propositions has done so far is to 
indicate logical connections between sets 

of propositions. This, in fact, isolates 

sub-arguments, each with its own claim and 

set of supporting evidence. To complete 
the analysis, H must first of all 
determine the boundaries, 

sub-argument ends and another 
where one 

begins. 
Consider a methodology in the spirit of 
<Tsotsos 80>, strengthening hypotheses 

that indicate good "continuation" into a 

separate unit. Since a proposition can 

participate i~ more than one frame, the 

most likely option must be chosen. Some 

ideas on how to measure boundaries include 
using (i) change of topic (ii) ratings for 

"new claim" option (iii) combined ratings 
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for hypotheses indicating a unit: 

plus some evidence. 

claim 

E~6: llRogers is a talented songwriter 
2JH~ has won 6 Junos 
3)His son Peter has been active on 

Broadway for the past 15 years 
4)Peter has won 4 Tony awaras 
S)Both Rogers and son are very talented 

Here 2) rates high as evidence for 1), and 

1) as a claim. Then 3) rates high as a 

new claim (new topic), so we strengthen 

ratings for 2) and 1) to consider them a 

·separate unit. 

Once sub-arguments have been isolated, 

using the hypotheses for propositions with 

the highest ratings, the overall argument 

structure can be analyzed. For now, this 

process is done~ the end of processing. 

We try to relate all the individual claims 

from the sub-arguments into some overall 

form. Our final output is thus an 

indication of the most likely structure 

for the argument, in the form of relations 

between sub-arguments and forms of 

sub-arguments, represented as instantiated 

rules of inference. 

Continuing with EX6: 

4) and 3) share a common topic. 4) as 

evidence for 3) 

weak inference. 

evidence for a 

is possible, but with a 

3) and 4) both as 

common claim rates high. 

Then, with 5) we reach the end and have to 

wrap up. 5) splits into Sa)Rogers is 

talented and Sb)Son is talented. We find 

3) and 4) are evidence for Sb), and 1) is 

evidence for Sa). The most likely overall 

form is thus: two sub-args, one with Sa) 

as claim, with 1) as evidence (and 2) as 

evidence for it) and one with Sb) as claim 

and 3) and 4) as evidence. 

Our next step will be to develop a more 

sophisticated control structure. Ideally, 

we will be analyzing overall form in 

parallel with our det~cti.on of 

sub-arguments. 
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3. Fl.lture Work 

Section 2 presented a preliminary design 

for the analysis of arguments. In fact, 

most of the ideas for the design developed 

from an examination of many examples of 

arguments including a good selection 

from <Holmes and Gallagher 17>). The set 

of rules developed so far seem to function 

well, but are certainly not presented as 

an optimal solution. 

We have already alluded to several areas 

that need more development, including: 

(1) more precise formulation of linguistic 

clues (2) more precise measure of frame 

fitting (3) more sophisticated overall 

control structure and (4) thorough 

description of the rating mechanism, 

including some actual figures to show 

comparative worth of different rules. 

The major area for future work, however, 

is to develop mechanisms for H to 

determine and interpret the intentions of 

S. Issues of concern include: (i) 

recognizing and making use of control 
sentences 

of the 

discussion 

- sentences about the structure 
argument 

of this 

(We 

kind 
have skipped 
of sentence in 

this paper) (ii) distinguishing the wants, 

beliefs, and goals of S to aid in analysis 

(as alluded to before, H often recognizes 

relations between propositions not as 

logical truths but as beliefs of s. In 

addition, H may recognize wants, in 
particular with claims suggesting a 

"course of events". For example, when S 

says "There should be less war", H must 

recognize this as •s ~ (less war)", 

and when S then says "Less war would mean 

more prosperity", H must recognize this as 

a belief of S, and through some logical 

reasoning conclude 

prosperity)".) (iii) 
"S ~ 

determining 

(more 

the 



motive behind S's choice of argument form 

and content - examining issues like order 
of presentation, choice of evidence, and 

deliberate deception. Furthermore, this 
investigation of intentionality should 
lead to some comments on credibility - the 

factors that H has available to influence 
his bt lief in the argument. 

4. Conclusion 

Th is paper 

design of 

arguments. 

presents some ideas for the 

a system to understand 

We give insights into how 
analysis can proceed: the rules available 
and the form of representation we want to 

build, We have only begun to look at the 
intentional aspect of 

can guide his analysis 

about S. But we begin 

arguments: how . H 

by his expectations 

to see how this 
particular natural language task has 

restrictive characteristics which enable 
us to 
analysis: 

form, but 

formulate specific methods of 

not only is there an overall 

the speaker is forced to limit 
his choice of overall form so that the 

hearer can recognize all the points, and 
be convinced. 
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Abstract 

This paper addresses the problem of 
generating examples that meet specified 
properties which are used to direct and 
constrain the generation process, which 
we call CONSTRAINED EXAMPLE GENERATION. 
We begin by presenting a few examples of 
CEG taken from protocols. Based upon 
such examples, we present a model of the 
CEG process. We describe the 
architecture of a system that generates 
examples from specifications and present 
examples of problems that it has solved. 

1, INTRODUCTION 

The ability to generate examples that 
have specified properties is important in 
many intellectual areas, such as 
mathematics, linguistics and computer 
science [Collins 1979]. It is important 
from the standpoints of learning and 
teaching as well as performing research. 
For instance, examples are needed for 
inductive reasoning, sharpening of 
conjectures, and concept formation and 
refinement [Polya 1968, 1973: Lakatos 
1963: Winston 1975: Lenat 1976; 
Soloway 1978]. Having a rich stock of 
examples is intimately related to 
understanding [Rissland 1978a, b], Th us, 
examples lie at the heart of efforts to 
learn and reason in a subject. 

When an example is called for, one can 
search through one's storehouse of known 
examples for an example that matches the 
properties of the desired example. If a 
satisfactory match is found, then the 
problem has been solved through 
retrieval. 

However, when a match is not found, how 
does one proceed? In many cases, one 
modifies an existing example that is 
judged to be close to the desired 
example, or to have the potential for 
being modified to meet the constraints. 

In some cases, generation through 
modification fails. Experienced 
researchers, teachers and learners do not 
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give up however. Rather they switch to 
another mode of example generation which 
involves building up an example from very 
elementary consituents through careful 
attention to the desiderata and 
"unpacking" of the concepts involved. 
This phase of CEG is usually more 
difficult than either retrieval or 
modification. 

This paper presents a model of CEG that 
incorporat~s three phases: RETRIEVAL, 
MODIFICATION, and CONSTRUCTION . This 
model is based upon analyses of protocols 
of example generation tasks taken from 
mathematics and computer science 
[Rissland 1979, Woolf and Soloway 1980). 

2.PROTOCOLS OF CEG 

In this section, we describe some 
protocols for CEG tasks taken from the 
domain of elementary function theory in 
mathematics (which deals with concepts 
such as continuity) and from elementary 
LISP programming (especially with regard 
to cdncepts concerning list structure). 

2.1 Examples of Retrieval 

The type of questions that most people 
answered through retrieval is: 

Give an example of a function that is 
continuous 

but not differentiable (at a point). 

Give an example of a list 
with three elements. 

Host people handled these problems by 
offering their favorite standard 
"reference" examples [Rissland 1978a, b): 
for the first problem, the absolute value 
function (at the origin) and for the 
second, a list like " ( ABC)". Responses 
were usually immediate indicating that 
the retrieval was very readily made, 



2.2 Examples of Modification 

An example of a problem solved through 
modification of a known example is: 

Give an example of a list 
with three elements 

where the depth of the first atom is 3. 

Subjects frequently modified an example, 
such as " ( A B C) " by adding two more 
parentheses around the first element, to 
produce the list 

((A )) B C ) 

Other subjects truncated a longer list 
such as the list of digits or added to a 
shorter list such as ( 0 1 ) , as well as 
adding parentheses. The example chosen 
for modification depends on the context 
of the problem (e.g . , the sequence of 
recently solved problems) and the 
subject's data base of examples and its 
epistemology ( e.g., his favorite 
references). 

An example of a mathematics problem which 
every subject solved by modification is 
the following: 

Give an example of a non-negative, 
continuous function 

defined on the entire real line 
with the value 1000 at 1, and 

with area under its curve less than 1/1000 . 

Most protocols for this question began 
with the subject selecting a function 
(usually, a familiar reference example 
function) and then modifying it to bring 
in into agreement with the specifications 
of the problem. 

FIG 1A 

There were s everal clusters of 
according to the initial 
selected and the stream 
modifications pursued . A 
protocol went as follows: 

"Start with the function for a 
distribution" . Move it to the 
that it is centered over x : 1. 
it "skinny" by squeezing in the 
stretching the top so that it 
point ( 1, 1000)." 

responses 
function 

of the 
typical 

"normal 
right so 

Now make 
sides and 
hits the 

"I can make the area as small as I please 
by squeezing in the sides and feathering 
off the sides. But to demonstrate that 
the area is indeed less than 1/1000, I'll 
have to do an integration, which is going 
to be a bother . " 

"Hmmm . My candidate function is smoother 
than it need be: the problem asked only 
for continuity and not differentiability. 
So let me relax my example to be a "hat" 
function because I know how to find the 
areas of triangles. That i s , make my 
function be a function with apex at (1, 
1000) and with steeply sloping sides down 
to the x-axis a little bit on either side 
of of x: 1 , and O out s ide to the right and 
left. (This is OK, because you only 
asked for non-negative.) Again by 
squeezing, I can make the area under the 
function ( i.e . , the triangle's area) be 
as small as I please, and I'm done." 

Comments 

Notice the important use of such 
operations as "squeezing", "stretching" 
and "feathering" , which are usually not 
included in the mathematical kit - bag 
since they lack formality, and 
descriptors such as "hat" and "apex". 
All subjects made heavy use of curve 
sketches and diagrams, and some used 
their hands to "kinesthetically" describe 
their functions. Thus the 
representations and techniques used are 
very rich . 

(1, 1000) (1, 100'.l) 

FIG 1B FIG le 
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Another thing observed in all the 
protocols (of which there were about two 
dozen for this problem) is that subjects 
make implicit assumptions about the 
symmetry of the function (i.e., about the 
line x:1) and its maximum (i.e., occuring 
at x:1 and being equal to 1000), There 
are no specifications about either of 
these properties in the problem 
statement; however, they are 
mathematically simplifying and 
cognitively natural. 

These are the sort of tacit assumptions 
that Lakatos talks about [Lakatos 1963); 
teasing them out is important to study 
both mathematics and cognition. 

Example functions for protocols are shown 
in Figures 1a and 1b; another 
mathematically permissible example is 
shown in 1c, 

2,3 An example of Construction 

In this subsection, we present a protocol 
of example generation in which the 
example is built largely "from scratch" 
by working with the concepts involved in 
the specifications of the desiderata, 
instantiating them, and combining 
exemplars to produce a new example. The 
problem is: 

Give an example of a list of lists 
each of which has two elements 

the first of which is a literal atom. 

A typical protocol began with the subject 
sketching out the overall structure of 
the desired list as: 

( A 1 L 1) 
(A2 L2) 
(A3 L3) 

where in each sublist, Ai stands for a 
literal atom, and Xi the second element. 

The subject next focus~ed his 
on instantiating the Xi's. 
wanted to emphasize the fact 
elements of the sublists could 
be lists "there's a 
embeddedness possible here" 
each of the Xi's a list of 
"LAT") . 

attention 
Since he 
that the 

themselves 
lot of 

-- he made 
atoms ( a 

The subject began to write each Xi as 
(Ail Ai2 ..• Ain) and then remarked that 
this level of generality was more than 
the problem called for, In particular, 
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nothing was said about keeping the Xi's 
different: "So, why not make them all 
the same, like (00 01)". 

The candidate example now looks like: 

(Al (00 01)) 
(A2 (00 01)) 
(A3 

The subject next decided to pin down the 
length of the "big" list by making it be 
"not too short, like 2, and not too long 
either; why not 7". He tended to the 
Ai's by noting that Al, A2, A3, A7 
are perfectly fine literal atoms. 

The list thus offered is: 

(Al (00 01)) 
(A2 (00 01)) 
(A3 

(A7 (00 01)) ) 

Even though the subject was satisfied 
with this answer, he noted that it really 
didn't have to be so complex or long; 
the following list would do: 

( (Al 1) (A2 2) (A3 3) 

He said he made his list have a length 
longer than 2 because he didn't want it 
to be confused with the length of the 
sublists (i.e., 2). However, he said 
that a list of length two would be 
acceptable, but a list of length one 
would not since "after all the problem 
called for a list of lists". 

"The list: 
((AB) (AB)) 

would also do just fine. In fact, the 
possibilities are endless." 

Comments 

There are several observations to be made 
on this protocol. First, the subject had 
a general model of a list and procedures 
to instantiate it (e.g., generate literal 
atoms and lists) and he had procedures to 
modify lists and properties of lists. 
Second, the subject made several implicit 
assumptions on the example to be 
generated, such as (1) its length, ( 2 ) 
the non-repeatedness of some elements, 
(3) its complexity (e.g., depth), and (4) 
uniformity (e.g., of list -s tructure). 



3. A CEG MODEL 

From analyses of protocols such as 
presented in Section 2, we developed the 
following general model of the CEG 
process. Presented with a task of 
generating an example that meets 
specified constraints, one: 

(1) SEARCHES for and (possibly) 
RETRIEVES examples satisfying the 
constraints. This is done by 
searching through the knowledge base 
and judging examples for their match 
(or partial match) to the desiderata; 

( 2) MODIFIES an existing example 
judged to 
potential 
desiderata; 

be close or having the 
for fulfilling the 

(3) CONSTRUCTS an example from 
elementary knowledge, such as 
definitions, principles and more 
elementary examples from the 
knowledge base. 

Thus, there is a spectrum of responses to 
a CEG task ranging from having a ready 
answer as in (1) to having no especially 
close fitting candidate as in (3), In 
general, Task N depends on and follows 
Task N- 1. 

This information processing model of CEG 
is useful not only in describing human 
protocols, but also precisely specifying 
a computational model. 

RETRIEVER M::lDIFIER CoNS 1ER 

FIG 2 
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4. ARCHITECTURE OF A CEG SYSTEM -- - -- - --
From the model of the last section, we 
have developed a system that solves CEG 
problems in the LISP domain. It has also 
been used to hand-simulate CEG problems 
in the mathematics of linear and 
piece - wise linear functions. 

We have implemented this CEG model in 
LISP domain. Written in LISP, 
currently runs interpretively on a 
11/780 running under VHS. Examples 
problems and solutions are given 
Section 6. 

the 
it 

VAX 
of 
in 

The knowledge in our CEG system resides 
in two major sources: the knowledge base 
upon which the system runs, and the 
knowledge embedded in the processes 
operating on that base. The knowledge 
consists of general epistemological 
knowledge (e.g., the structure and types 
of examples) and domain-specific 
knowledge (e.g., particular example 
modification techniques). 

The system consists of several components 
roughly one for each of the three 

phases of the model which handle 
different aspects of CEG. The flow of 
control between the components is 
directed by an EXECUTIVE procedure. 
Figure 2 shows the general architecture 
of our system. 

The components use a common knowledge 
base which consists of two parts: (1) a 
"permanent" knowledge base of 
"Representation-spaces" [Rissland 1978]; 
and (2) "temporary" knowledge generated 
during the solution of a CEG problem. 

There are four representation spaces, 
each of which is a set of items, 
represented as frame-like data 
structures, and organized according to 
predecessor-successor relationships. 
Examples-space, which is by far the most 
heavily used in our current system, 
consists of known examples organized 
according to the relation of 
constructional derivation reflecting 
which examples are~structed from which 
others. The other spaces and their 
relations are: Concepts - space: 
definitional dependency; Results-space: 
logical dependency; and 
Procedures - space: procedural dependency. 

Before the system is given any CEG 
problems to work on, we create an initial 
set of representation spaces. The 
initial state of the Examples - space for 
the set of problems described in this 
paper is shown in Figure 3. The spaces 
are modified mostly through the 
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addition of ex~mples to Examples-space -
as the system works through CEG problems. 

The temporary knowledge held by the 
system during a CEG problem run includes 
a list of the constraints of the problem, 
an agenda of candidate examples, and 
various bookkeeping parameters such as 
"boxscores", "constraint satisfaction 
counts" and "recency counts". 

5, CEG SYSTEM COMPONENTS -- ----
(1) The EXECUTIVE is responsible for 
initializing the system for a CEG 
problem, directing the flow of control 
among the components, and cleaning up 
afterwards. It accepts a CEG problem in 
prescribed format from the user and sets 
up the problem specifications in the 
temporary knowledge base, 

The problem desiderata are kept on the 
CONSTRAINT-LIST, which has as many 
entries as there are constraints. Each 
constraint is recorded as a pair of 
properties DESIRED -P ROPERTY and 
DESIRED-VALUE. For instance, the 
specification of the three constraint 
problem of "a list, of length 3, where 
the depth of the first atom is 1" is 
recorded by the following properties 
(PLIST's) for the constraints: 

CONSTRAINT-1 

CONSTRAINT-2 

CONSTRAINT-3 

DESIRED-PROP: (TYPE~) 
DESIRED-VALUE: LIST 

DESIRED-PROP : (LENGTH X) 
DESIRED-VALUE: 3 

DESIRED-PROP: (DEPTH 
(FIRST-ATOM X) X) 

DESIRED-VALUE: 1 

Problem 1 

The EXECUTIVE dictates the behavior of 
the system as a whole by specifying the 
orderings used by the other processes, 
such as the order of retrieval of 
candidate examples used by the RETRIEVER 
and the order of application for 
modification techniques used by the 
MODIFIER. 

(2) The RETRIEVER searches the knowledge 
base for examples on request from the 
EXECUTIVE. It searches through 
Examples - space by examining examples in 
an order specified in terms of attributes 
such as "epistemological class" [Rissland 
1978], position in the Examples-graph, 
and recency of creation, 
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[n the problems described in Section 6, 
the "retrieval order" used was: 

reference examples before 
counter-examples before 
start-up examples before 
examples without epistemological 

class attribute 

and in the case of ties 

predecessors before 
successors. 

This retrieval order biases the system to 
examine ubiquitous and earlier-contructed 
examples before others. The order of 
CANDIDATES retrieved from the initial 
Examples-space of Figure 3 is thus: 

( A B C) 

(0 1 2 3 4 5 6 7 8 9) 

( 0 1) 

(A) 

(ABC DE) 

With each new example selected, the 
RETRIEVER calls the JUDGE to evaluate the 
example to ascertain how well it 
satisfies the desiderata. 

(DATA> 

/~ 
(A) (012 3 4 5 6 7 8 9) 

I'\ i 
<ABC) () (0 1) 

i 
<ABCDE) 

FIG 3 



(3) The JUDGE ~valuates a CANDIDATE 
example by cyclin~ through all of the 
DESIRED-PROPERTY/DESIRED-VALUE pairs on 
the CONSTRAINT-LIST, comparing them with 
the actual properties of the CANDIDATE, 
and recording the results of the 
comparison. Thus, the JUDGE's . basic 
cycle is evaluation, comparison and 
record. 

The JUDGE records the results of the 
comparison by FILLING-IN the BOX-SCORE 
and the CONSTRAINT-SATISFACTION-COUNT 
("CSC") slots in the representation frame 
of the CANDIDATE. The CSC is simply the 
number of desiderata met by the 
CANDIDATE. 

The BOX - SCORE is a list of 2-tuples, one 
for each constraint, of the form 
(ACTUAL-VALUE, T or NIL). The 
ACTUAL - VALUE is the CANDIDATE's value for 
the DESIRED - PROPERTY; T is entered if 
the ACTUAL - VALUE equals the 
DESIRED - VALUE, and NIL if not. 

The BOX -SC ORE for the example "(A B C)" 
in Problem 1 would be: 

(LAT T) (3 T) (1 T) 

The CSC for this example would be 3, that 
is, all the constraints are met; the 
success of this example would be recorded 
as a T in its "SF" (SUCCESS/FAILURE) 
slot. With the above retrieval order on 
the Examples-space of Figure 3, Problem 1 
would be solved with the first example 
retrieved. 

If the example "(A)" were judged, its 
BOX -SC ORE would be: 

(LAT T) (1 NIL) (1 T)) 

The CSC for this example would be 2. 

(4) The MODIFIER is invoked by the 
EXECUTIVE when the RETRIEVER has been 
unable to find an example meeting the 
constraints from its search through 
Examples-space. 

The MODIFIER calls the AGENDA-KEEPER to 
set up an agenda of examples to be 
modified. The MODIFIER then works down 
the AGENDA trying to modify each entry in 
turn until success is achieved or the 
agenda exhausted. 

To modify an example, the MODIFIER 
examines its BOX-S CORE for the 
constraints that were unsatisfied. It 
calculates the DIFFERENCE between the 
DESIRED - VALUE and the ACTUAL-VALUE for 
each DESIRED - PROPERTY not satisfied. 
Using the DESIRED-P ROPERTY and the 
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DIFFERENCE as an index 1n a 
difference-reducing table, the MODIFIER's 
DIFFERENCE-REDUCER finds and then Applies 
modification techniques to the example. 

For instance, for the example "(A ) " with 
a CSC of 2 for Problem 1, the property 
not met is that of having a length equal 
to 3. The DIFFERENCE between the 
DESIRED- and ACTUAL-VALUE is +2. The 
difference-reducing technique MAKE - LONGER 
is found by looking for modification 
techniques affecting the LENGTH attribute 
of a list and reducing the DIFFERENCE, 
i.e., by making it longer by 2. (If the 
difference were -2 , as would be the case 
for the example "(A B C D E)", the 
appropriate technique would be 
MAKE-SHORTER). 

When there is more than one unsatisfied 
constraint, the MODIFIER orders its 
modification attempts according to the 
order specified by the EXECUTIVE. For 
the sample problems of this paper, the 
modification order is to apply techniques 
that affect: 

TYPE before 
LENGTH before 
DEPTH before 
GROUPING 

The modified example is then re-judged 
and a new BOX - SCORE and CSC calculated. 
If the CSC is improved, the MODIFIER 
prints a message to the user of "success" 
or "failed" and asks whether it should 
continue modifying this example by going 
through another difference analysis, 
difference reduction, judgement cycle . 
If the CSC goes down, the MODIFIER 
abandons its attempt to bring the example 
into line, goes on to the next example on 
the AGENDA, and does not re-queue the 
example. Thus the MODIFIER engages in a 
form of hill - climbing. 

The modified example must be re-judged 
for two reasons : (1) some techniques are 
heuristic and do not guarantee successful 
modification; and (2) there can be 
interaction between the constraints, that 
is, a successful modification for one 
constraint may undo satisfaction of 
another. 

For instance, the system can make a 
NESTED-LIST from the LAT "(ABC)" by 
GROUPing "A" and "B", i .e., "( (AB) C)". 
However, before the modifi ca t io n 
technique was applied the LENGTH was 3, 
but now, after modification, it is 2. 
Satisfaction of the NESTED-LIST 
constraint has undone the LENGTH 3 
constraint. 
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In the next version 
shall re-judge an 
modification, and 

_contraints. 

of our system, we 
example after each 

also protect some 

(5) The AGENDA-KEEPER is called by the 
MODIFIER and CONS'ER to set up the AGENDA 
of examples to be modified or 
instantiated. 

When called by the MODIFIER, the 
AGENDA-KEEPER compiles an agenda of items 
to be modified based upon the CSC's 
calculated and recorded during the 
retrieval phase: the examples are ranked 
in order of their CSC's. Thus, the CSC 
is used as a measurement of the closeness 
of the example to meet ing the 
constraints. In the case of a tie, the 
retrieval ordering is used. 

(6) The CONS'ER is called by the 
EXECUTIVE when the MODIFIER is 
unsuccessful in its attempts to produce a 
solution or a model needs to be 
instantiated. The CONS'ER uses the 
procedural formulations of concepts 
stored in Concepts-space. 

6. SAMPLE PROBLEMS 

[NOTE: Text in this section is actual 
computer output generated by our CEG 
system; however explanatory text has 
been added (indicated by a"$") and some 
output modified to improve readability.] 

Problem 2 

$Problem 2 asks for a list of length 3 
whose first atom has a depth of 3: 

(x1 (desir ed-value list desired - prop 
(typep candidate))) 

(x2 (desired-value 3 desired-prop (length 
candidate))) 

(x3 (desired-value 3 desired-prop (depth 
(first-atom candidate) candidate))) 

$The retrieval phase is entered with the 
Examples-space of Figure 2. The 
retrieval order of candidates is: 

<abc> 
<**digits> 
<**bits> 
<empty> 
<a> 
<abcde> 

, 

$The RETRIEVER reports on each candidate 
tried, by printing out its BOXSCORE, CSC 
and SF: · 
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candidate name = <abc) 
candidate - value= (ab c) 

csc = 2 sf= nil 
(entry -x1 (lat t)) 
(entry-x2 (3 t)) 
(entry-x3 (1 nil)) 
"failed" 

candidate name = <**digits> 
candidate-value= (0 1 2 3 4 5 6 7 8 9) 

C SC : 1 Sf : n i 1 
(entry-x1 (lat t)) 
(entry-x2 (10 nil)) 
(entry-x3 (1 nil)) 
"failed" 

candidate name = <**bits> 
candidate-value= (0 1) 

C SC : 1 Sf : n i 1 
(entry-x1 (lat t)) 
(entry-x2 (2 nil)) 
(entry-x3 (1 nil)) 
"failed" 

candidate name= <empty> 
candidate-value= nil 

csc = O sf= nil 
(entry -x1 (atom nil)) 
(entry-x2 (0 nil)) 
(entry-x3 (0 nil)) 
"failed'' 

candidate name = 
candidate-value = 

<a> 
(a) 

C SC : 1 Sf : 

(entry-x1 (lat t)) 
(entry-x2 (1 nil)) 
(entry-x3 (1 nil)) 
"failed" 

nil 

candidate name = <abcde> 
candidate-value = (ab c de) 

csc = 1 sf= nil 
(entry -x 1 (lat t)) 
(entry -x2 (5 nil)) 
( e ntry -x3 (1 nil)) 
"failed" 

$The problem desiderata are not met by 
any example in the data base, and thus 
the modification phase is entered. 

$The AGENDA of candidates for 
modification is (the CSC is given after 
the candidate's name): 

(<abc> 2) 
(< **bits> 1) 
(<a> 1) 
( <**digits> 1) 
( <abcde> 1) 
(<empty> 0) 



$The MODIFIER goes to work on the first 
candidate, (ABC) : 

constraint = ((typep candidate) list) 
actual score= (entry -x l (lat t)) 

modify-candidate ok 

constraint = ((length candidate) 3 ) 
actual score = (entry -x2 (3 t)) 

modify-candidate ok 

constraint = ((depth (fir st-atom 
candidate) candidate) 2) 

actual score= (entry -x3 (1 nil)) 

"find-diff" 
"apply-di ff" 

reducer = 
new-candidate = 

(increase -dept h-by 2) 

make-deeper-x 
(((a)) b c) 

modify-candidate modified 

$The candidate's depth attribute has been 
modified by the modification routine 
MAKE-DEEPER-X to produce a new example, 
which is then judged and added to the 
Examples-space: 

candidate value = (((a)) b c) 
c·sc = 3 sf = t 

(entry-xl (nlist t) ) 
(entry-x2 ( 3 t)) 
( e ntry -x3 ( 3 t)) 
("creat ed new frame for example II 

marl 1- 009 ( ( (a)) b C)) 
"success! I" 

Problem 3 

$The CONSTRAINT-LIST for the next problem 
is: 

( x l (d esired-value list 
desired-prop (typep candidate))) 

(x 2 (desired-value 5 
desired-prop (l ength candidate))) 

(x 3 (desired-value 2 
desired-prop (depth 

(first -atom candidate) 
candidate ))) 

( x 4 (desired-value 3 
desired-prop (depth 

( first-atom (cdr candidate)) 
candidate))) 
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$The order of candidates retrieved and 
judged is: 

<abc > 
<••digits> 
<••bits> 
<empty> 
<a> 
<abode> 
marll-009 

$Since no example meets the constraints, 
the modification phase is entered with 
the following AGENDA: 

( <abode> 2 ) 
(marl 1-009 2) 
(< .. bits> 1) 
( <a> 1) 
(< ••digits> 1) 
(< abc> 1) 
(<empty> 0) 

$The MODIFIER sets to work on the first 
candidate (ABC DE): 

------------------------------------------
constraint = ((typep candidate) list) 
actual score = (entry-xl (lat t)) 

modify-candidate ok 

------------------------------------------
constraint = ((length candidate) 5) 
actual score = (entry -x2 (5 t)) 

modify-candidate ok 

------------------------------------------
constraint = ((depth (first -atom 
candidate) candidate) 2 ) 

actual score = (entry -x3 (1 nil)) 

"find-diff" (increas e-depth-by 1) 
"apply-di ff" 

reducer = make-deeper-x 
new -candidate = ((a) b c de) 

modify-candidate modified 

------------------------------------------
constraint = ((d epth (first -atom (cdr 
candidate)) candidate) 3) 

actual score = (entry -x 4 (1 nil)) 

"find-diff" 
"apply-di ff" 

reducer = 
new-candidate= 

(increase -depth-by 2) 

make-deeper-x 
((a) ((b)) c d e) 

modify -candidate modified 

------------------------------------------
candidate value = 

C SC : 4 Sf : 
(entry-xl (nlist t)) 
( entry - x2 (5 t)) 
(entry-x3 (2 t)) 
(entry -x4 (3 t)) 

((a) ((b)) c de) 
t 



I 

$The modification is successful 
new example is added 

and the 
to the 

Examples-space. 

("created new frame for 
mar11-011 ((a) ((b)) c de)) 

example 
"success 11" 

It 

The Examples-space after the successful 
solution of Problems 2 and 3 is shown in 
Figure 4, 

(DATA) 

/~ 
W 0012345678ID 

I \ r 
<A B C) < ) CO 1) 

ffiL~ 
~((PJJBCJ 

C (A) «B) ) C D E) 

FIG 4 

7. CONCLUSIONS 

In this paper we have described a 
computer system that models Constrained 
Example Generation ("CEG") in domains 
from computer science and mathematics. 
We described how the CEG system generates 
examples of data in LISP. 

We are currently using the system to 
explore issues such as 

1 . the effect of the 
contents of Example-space 
sequence of solved problems 
evolution of Examples-space; 

initia l 
and the 

on the 

2. the effect of alternative 
orderings on the retrieval and 
modification processes; 

3, the 
constraints, 
constraints. 

effect of 
e.g.• 

interacting 
impossible 

We also plan to use our system to study 
machine learning by the incorporation of 
adaptive techniques, e.g., by keeping 
track of the performance of various 
orderings and techniques and choosing the 
ones that perform best. Such extensions 
of our system will enable it to "learn" 
from its own experience. 
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Abstract: This paper introduces a 
domain-indeindent system called KMS (a .Knowledge 
.Hanagement stem) that supports the development 
of knowle ge-based consultant programs, At 
present KMS is based on a family of compatible 
subsystems, Each of these subsystems accepts 
knowledge stated in a non-procedural natural 
language-like format that is understandable to a 
domain expert while still being processable by 
machine, The first generation of subsystems is 
discussed and some simple examples of encoding 
medical problem-solving knowledge are presented, 

Introduction 
A growing concern of research in artificial 

. intelligence {AI ) during recent years has been the 
~roblem of representing and using (i,e., 

managing") real-world knowledge in the 
development of applications-oriented computer 
programs. Examples can be found of 
knowledge-based consultants in a wide variety of 
domains including medicine, geology, signal 
processing, and biochemistry, The goal of these 
systems is to make expert-level decisions about 
problems that are faced by individuals working in 
these domains, 

In this paper a system for creating and using 
such knowledge-based consultants is described, 
This system is based on a family of knowledge 
management languages and therefore is referred to 
as KMS (a i'1owledge .Hanagement .S.vstem), The term 
"management is empl9yed here to-indicate that the 

J.1S.8. of knowledge {e,g, the selection of an 
appropriate inference method, the specific 
inferences to make) as well as its representation 
is of concern. 

The KMS languages are applicable to a wide 
variety of domains but they are presented here in 
the context of medical problem-solving because of 
the author's specific interest in that field, For 
that reason a brief introduction to 
computer-assisted medical decision making is 
provided below for those who are unfamiliar with 
recent work in this area. The philosophy behind 
KMS is then explained and the common features 
underlyil}g its component languages are described, 
This is followed by some specific examples of 
clinical problem-solving knowledge encoded in the 
KMS languages that have already been implemented. 

Background 
One research area where knowledge 

representation and use is a central issue is that 
of _g_omputer-asaisted .medical .l1.ecision-making 
(~), Al though several different approaches have 
been taken in the attempt to find appropriate ways 
to develop CMD systems LReggia, 1979J, each can be 
viewed within the fram~work of the simple 
conceptual model shown in Fi gure 1, In this model 
the nucleus of any CMD system is portra~d as 
having two basic components: a knowledge of 
domain specific problem-solving information e ,g, , 
a set of production rules), and a 
domain-independent ~~fe~encr .lllflthQ.d th~t makes 
decisions based on t snow e~se le.g,, a 
consequent-driven rule interpreter), In general, 
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such CMD systems are given a description of a 
patient's symptoms, signs and laboratory test 
results and then draw upon their knowledge base to 
produce useful information about the patient's 
diagnosis, prognosis or treatment, 

Three of the approaches to developing CMD 
systems are germane to the material that follows, 
First 1 statistical pattern classification baaed on 
Bayes Theorem is one of the most common methods 
used to develop CMD systems. In this method the 
knowledge base is composed of the relevant prior 
and conditional probabilities, and Bayes' Theorem 
is used to infer a probability distribution for 
the possible outcomes (e.g., diagnoses ) . CMD 
systems based on Bayes' Theorem have several 
well-known inherent limitations, but for 
appropriately chosen medical problems they have 
been shown to work reasonably well and 
occasionally have performed more accurately than 
senior physicians (e,g,, [deDombal, 1975)), 

A second method for developing CMD systems 
involves the use of production systems, In these 
systems medical knowledge is captured as a 
collection of conditional rules that a rule 
interpreter uses to make decisions, Example 
medical domains where this AI approach has been 
adopted include the diagnosis and treat~~nt of 
infectiou~ disease~ LShortliffe, 197bJ and 
glaucoma LWeisa, 197~]. While rule-based systems 
offer the advantages of declarative knowledge 
representation, modularity and a limited 
explanation capability, it fa o~en difficult for 
domain experts to formulate their knowledge as a 
set of rules and some forms of knowledge seem 
esQ~cially refractive to this approach [Goldberg, 
197 ~; R eggia , 197 8], 

Finally, a third technique for developing CMD 
systems involves the construction of programs that 
are best described as cognitive models, The term 
'cognitive model' is used here in the sense that 
these systems represent an explicit attempt to 
model the knowledge structures and diagnostic 
reasoning of the physician as it has been revealed 
in empirical research studies, Baaed on the 
results of these studies and intuition, medical 
knowled~e is typically modeled as a network of 
"frames and a hypothesize-and-teat approach to 
decision making is used, Example medical domains 
that have been appro~ched in this fashion include 
internal medicine L Popl e, 1975] , nephrQl ogy 
[Pauker, 1976), and choleatasis [Mittal, 1979J, 

Symptoms 
Slgns 
Tests 

, -------- --- i 

I 

' 

Knowledge 
Base 

I 

· ---- --- ---- · 

Diagnosis 
Prognosis 
Treatment 

Figure 1: Conceptual model of a CMD system, 
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In spite of twenty years of research into the 
development of CMD models, such systems have had 
relatively little impact on the practice of 
medicine, even when they have been shown to be 
more accurate in their predictions than 
physicians. This is somewhat surprising in view 
of the potential benefits that CHD systems could 
bring to medicine and the comparatively successful 
use of decision support systems in a variety of 
other domains (e,g., bu;iness, eng1neer1ng, 
industry, government; see LKean, 1978 ), The 
reasons for this relative lack of success are 
complex; we will return to them in a later 
section, 

Iha. Architecture~ KMiS. 
The basic goal in creating KMS is to provide 

a domain-independent system that will serve as a 
"workbench" for the development of knowledge-based 
consultant programs, By doing this it is hoped 
that KMS will overcome some of the problems that 
have inhibited the development and use of such 
knowledge-based consultant programs in the past. 

An overview of KMS is shown in Figure 2, 
Basically, KMS consists of a collection of n 
§~~fyste%13, each of which is organized around a 

eren inference method. These 
domain-independent subsystems are overseen by the 
KMS executive. 

Each of the subsystems supports a formal 
~eprfs~ntaSion lay~uafe• To create a now e ge- ased consu an program a domain expert 
begins by selectipg an appropriate subsystem (i.e. 
inference method), She or he then uses the 
University of Maryland text editor to write a 
domain-specific knowledge base in the 
corresponding representation language, Finally, 
that knowledge base is given to the appropriate 
subsystem of KMS which screens it for errors. If 
errors are found then diagnostic messages are 
generated and the knowledge base is rejected, The 
errors are then corrected using the text editor, 
Once a knowledge base is free of errors that are 
detectable by KMS it is accepted and converted 
into an internal form. Subsequent testing of the 
knowledge base leads to revision of the knowledge 
base and its resubmission to KMS, Eventually it 
may become part of one of the knowledge 12.a.wi 
liQraries shown in Figure 2. 

Each of the subsystems also supports a formal 
command language for using completed knowledge 
bases, A user signs onto KMS and requests a 
specific subsystem and knowledge base (perhaps 
being guided by the KMS executive in this task), 
He or she can then direct the system to perform 
various ta~ks: make specified inferences, justify 
a decision {where possible), display a subset of a 
knowledge base, etc, In performing these actions 
KMS carries on a dialog with the user, re~uestinf 
problem-srecific information where appropr ate, 
subsystems representation and command languages 
taken together are considered to form a knowlegge 
maoagemen~ laPKlla&e. 

In summary, each of the KMS subsystems is a 
collection of programs that implement the 
following components. 

Inference system: When called into 
action this component will apply a 
stored knowledge base selected by the 
user to a specific problem, It makes 
inferences about that particular case 
that are of interest to the user. 

Knowledge base parser and interpreter: 
This component parses a knowledge base 
written in the appropriate KMS 
representation language and transforms 
it into an internal interpretable form. 
It is responsible for detecting 
syntactic and a limited number of 
semantic errors in a knowledge base. It 

--------------------------------------------------

I Exe~f 1ve I 
I 

I I I I 
Inference Inference Inference 
Method1 Method;i, Methodn 

--------- - - ---·--- - ---- - . - -
Rerresentation Rerresentation Reeresentation 

anguage1 anguage,_ ... anguage,, 
-· - - - - - ... .. - . - - .. 

Command Command Command 
Language1 Language2 Languagen 

I I l 
KB ( 1 ,1) KB(2 11) KB (n ,1) -. -KB (1 ,2 > 

.. -
KB(2 ,2) KB(n,2) 

- - - - . - - - ·- to- - ·- - - . - .. ... -. ... . . . . 
KB ( 1 ,1) KB (2 ,j) KB(n ,kl 

Figure 2: KMS architecture. 
--------------------------------------------------
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is analogous to a parser in a standard 
programming language 
interpreter/compiler and performs the 
same useful services, 

Knowledge base compiler.: This component 
stores a transformed knowledge base in 
its internal form, Later retrievals of 
that knowledge base do not require 
re-parsing or re-transformation to 
internal form and therefore are more 
efficient, The compiler is intended for 
use with completed, error-free knowledge 
bases, 

User interface: This component provides 
for interaction with a user. It 
includes the command language which is 
used to direct the control of the 
system display part or all of a 
knowledge base, etc, In addition, by 
using information in a knowledge base, 
this coml)onent can request 
problem-specific information from a user 
in ·a simple, natural language-like 
format. 

Not only is there the usual attention to 
modularity of elements in a knowledge base 
(intra-knowledge base modularity) in KMS but there 
is also inter-knowledge base, intra-subsystem, and 
inter-subsystem modularity, 

~-Subsystem compatibility 
The partition of KMS into a family of 

subsystems, each based on a different inference 
method and supporting a corresponding management 
language, raises the possibility of introducing a 
great deal of complexity into the system, To 
counter this the subsystems are designed to be 
compatible in two ways. 

First, regardless of which subsystem is used, 
the underlying conceptual structure of a problem 
to be . solved is built around a problem-oriented 
;~~tg~~~ ne~work, This network specifies the 

shat are of interest in a particular 
pro em and the different Ya.1.u.e__.s that they can 
have, In addition, the meclianfsm for describing 
such a network is similar in each of the 



representation languages, and this leads to a 
uniform structure for all KMS knowledge bases. We 
will examine the idea of a problem-oriented 
inference network and its relationship to a 
knowledge base in the next section, 

The second way in which the KMS subsystems 
are compatible is that the user interfaces are 
similar. The commands that give the user the 
ability to utilize a knowledge base are 
essentially the same for each subsystem, For 
example, regardless of the subsystem with which a 
knowledge base is associated a user can direct 
KMS to OBTAIN <attribute>, This command tells KMS 
to use the currently active knowledge base to 
determine the value of the specified attribute, 
Another command found in all the languages is 
DISPLAY <option>, This command allows the user to 
view part or all of the knowledge base or the 
internal representation of a problem that is being 
solved. A third example is NEXT <option>. This 
command tells KMS that the user wants to discuss a 
new problem (NEXT CASE) or that the system should 
switch to a new knowledge base (NEXT KB ) , 

In addition to sharing similar commands, the 
user interfaces of KMS subsystems all ask the user 
for information about a specific problem in 
approximately the same way, The name of an input 
attribute whose value is desired by KMS is printed 
out and the user simply selects from among its 
possible values in responding, This 
multiple-choice format is useful for constraining 
the inferences made by the a1atem [Rieger, 1978], 
presupposes no special typ ng skill of the user, 
and avoids the need for a sophisticated natural 
language interface, 

.El::.l2lll Attribute Hierarchy .t.si. Knowledge Il..iul.e. 
In the previous section it was stated that, 

regardless of which subsystem is used, the 
underlying conceptual structure of a problem to be 
solved is built around a ~rogle~~t~~~a~2 ij~i~~£gg~ net~~~k Off U~~re a§~~ Y, a¥he term 

pro em-oriented' in~icates that each such 
network is centered around a specific domain 
problem, The network specifies both the structure 
of that problem as well as the "direction" in 
which inferences are to propagate, Its nodes are 
the ftttrbutes of the problem being solved. 
Concep ua y associated with each of these 
attributes is a set o~ possible Jlal.u.as. which that 
attribute can have, The links --rn-The network 

--------------------------------------------------(a) NEUROLOGICAL 

RESPIRATORY 
STATUS 

(b) 

MAXIMUM 
DIAMETER 
OF PRIMARY 

OUTCOME 

RESPONSE PUPILLARY OCULOCEPHALIC 
TO STIMULI LIGHT REFLEX 

COMPLICATIONS 
OF PRIMARY 

TUMOR 

REFLEX 

BRONCHIAL 
TREE 

INVOLVE
MENT 

DIRECT 
INVASION 
OF EXTRA

PARENCHYMAL 
STRUCTURES 

represent the rel at iQn "depends on" ( or 
conversely, "determines") indicating that the 
value of one attribute (drawn in a superior 
position) is determined by the values of others 
{drawn in inferior positions), Thus, the lowest 
level of an attribute hierarchy consists of .i.DJ2.ut. 
attribu~s whose values are determined by a user; 
other n es in the network represent inserrgd 
attlibutes whose values are determined y e 
sys em, 

Figure 3 gives two simple examples of 
attribute hierarchies dealing with medical 
problems. The one-level tree in Figure 3a 
indicates that the NEUROLOGICAL OUTCOME of a 
patient with coma following cardiac arrest is 
determined by the four input attributes shown 
LSnyder, 1977], Similarly, the three-level 
attribute hierarchy in Figure 3b represents the 
organization for a knowledge base that will stage 
a patient's lung cancer Jnd generate a two-year 
prognosis for that patient LRoaenow, 1979], Since 
there may be more than one "most superior" node 
and as a node may have more than one parent, an 
attribute hierarchy is not necessarily a tree 
structure as illustrated in these examples, 

The development of any knowledge base is 
organized around an attribute hierarchy similar to 
those illustrated in Figure 3, For our purposes 
we will view knowledge bases as consisting of two 
parts: a knowledge ~ and an issoci~tions 
section. The schema coiis!sfs of a 1 at o the 
names of the attributes in an attribute hierarchy 
along with the names of their possible values. 
For example the input attribute REGIONAL NODE 
INVOLVEMENT fn Figure 3b and its possible values 
might be declared as 

REGIONAL NODE INVOLVEMENT: 
NONE . 

/ PERIBRONCHIAL NODES 
/ HILAR NODES 
/ MEDIASTINAL NODES; 

in the schema of the corresponding knowledge base, 

The associations section of a knowledge base, 
which may overlap in part with the schema, 
provides information that associates the possible 
values of different attributes to one another, 
Such associative links are formed through the use 
of implicit or explicit KMS statements. An 
explicit KMS statement has the form 

<attribute> <relation> <value> 

such as 

REGIONAL NODE INVOLVEMENT: HILAR NODES, 

Statements are combined to define the partial 
(non-circular) ordering of the inference network 
that determines the direction in which information 
is to propagate (see below), 

CHANCES FOR 
TWO YEAR 
SURVIVAL 

Figure 3: Some simple 
~ttribute hierarchies. 
{a) Predicting neuro
logical outcome 
following cardiac 
arrest, l b) Staging ~ 
lung tumor and 
generating a prognosis, 

REGIONAL 
NODE 

INVOLVE
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PRESENCE 
OF DISTANT 
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The effect of expressing knowledge in terms 
ot a problem-oriented inference network or 
attribute hierarchy is to provide a non-procedural 
framework for knowledge that is understandable to 
computer-inexperienced individuals. It therefore 
leads to the formulation of knowledge bases that 
are easily read and understood by domain experts 
and users while still being processable by 
computer. 

IhA.l.11:Al Generation SJ.I. Subsystems 
The initial version of KMS consists of three 

subsystems (n = 3 in Figure 2), The first 
versions of two of these subsystems have been 
implemented and are described below. The third 
subsystem is currently being designed, All 
programming is in LISP and the syste~ is accessed 
via terminals connected to the University of 
Maryland Instruction and Research Network, 
Although domain-independent, KMS is currently 
being studied in the context of developing CMD 
systems, especially in neurology, 

The first subsystem KMS,BAYES requires 
appropriate information for statistical pattern 
classification based on Bayes' Theorem (see 
'Background' above or [Duda and Hart, 1973]), The 
prior probabilities of outcomes (e,g, , diagnoses .1 
prognoses) and the conditional probabilities or 
manifestations of each outcome (e,g,, signs, 
symptoms) must be specified in a knowledge base, 
Bayes' Theorem was selected as an inference method 
because of its widespread use in CMD systems, In 
addition it is suitable for making use of 
probabilities that are frequently found in journal 
articles reporting clinical studies or th~t are 
produced by medical databases, · 

Figure 4 illustrates a very small example of 
a KMS,BAYES knowledge base, This particular 
example deals with predicting a patient's outcomH 
following cardiac arrest and corresponds to the 
attribute hierarchy illustrated in Figure 3a, 
Lines beginning with an asterisk are comments. 

••• CPR PROGNOSIS KNOWLEDGE BASE CPR2 ••• 
• PREDICTION OF NEUROLOGICAL OUTCOME FOLLOWING 
• CPR BASED ON NEUROLOGICAL EXAMINATION DONE 
• WITHIN ONE HOUR AFTER CPR, ASSUMES NO PRE-
• EXISTING BRAIN DAMAGE AND NO TOXIC/METABOLIC 
• ENCEPHALOPATHY, ASSUMES 24 HOUR SURVIVAL, 
• PREDICTED OUTCOMES ARE: FUNCTIONAL (NORMAL OR 
• SELF-CARE WITH SUPERVISION) IMPAIRED 
1 (SEVERE DEMENTIA OR PERSISTENT VEGETATIVE 
• STATE), REFERENCE: SNYDER ET AL, NEUROLOGY, 
I 27 1 1977 I 807-811, 
1 INPUT ATTRIBUTES 

RESPIRATORY STATUS: 
SPONTANEOUS ACTIVITY/ 
ON RESPIRATOR AND NOT TRIGGERING, 

RESPONSE TO STIMULI: 
PURPOSEFUL RESPONSE TO PAIN/ 
NON-PURPOSEFUL OR NO RESPONSE TO PAIN , 

PUPILLARY LIGHT REFLEX: PRESENT/ ABSENT, 
OCULOCEPHALIC REFLEX: PRESENT/ ABSENT, 

• INFERRED ATTRIBUTE 
NEUROLOGICAL OUTCOME (RESPIRATORY STATUS; 

RESPONSE TO STIMULif• PUPILLARY LIGHT 
REFLEXl OCULOCEPHAL C REFLEX): 

FuNCTIONAL(0,62): 
0,67 0,33; 
0.57 0,43; 
o.89 0.11; 

IM~A~2E8td~3~): 
0.15 o.85; 
0.15 o.85; 
0,42 0,58; 
0,33 o,67 I 

Figure 4: A simple KMS,BAYES knowledge base , 
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KMS,BAYES can use this knowledge base to compute a 
probability distribution for the values of the 
attribute NEUROLOGICAL OUTCOME when it is given a 
value for the four input attributes (e.g,, 
RESPIRATORY STATUS)• Only implicit KMS statements 
are illustrated here. For example, the prior 
probability of NEUROLOGICAL OUTCOME = FUNCTIONAL 
ls 0,62 (indicated in parentheses). The input 
attributes that NEUROLOGICAL OUTCOME depends on 
are indicated in parentheses following its name, 
In general these determining attributes may be a 
subset of the declared input attributes because 
there can be more than one inferred attribute, 
The appropriate conditional probabilities for the 
values of the determining input attributes are 
listed in · an order corresponding to that of the 
attribute names in parentheses a~er the name 
NEUROLOGICAL OUTCOME, For example I of patients in 
Snyder's series that ended up in the the 
FUNCTIONAL category, 891 had' PUPILLARY LIGHT 
REFLEX = PRESENT immediately a~er cardiac arrest 
while only 111 had PUPILLARY LIGHT REFLEX = 
ABSENT, Although not shown here, the number of 
values of an attribute can be greater than two, 

Figure 5 demonstrates part of an interaction 
mediated by KMS between the knowledge base shown 
in Figure 4 and a user. It demonstrates how 
questions are generated from a knowledge base, 
User responses have been underlined for clarity, 

The second subsystem, KMS,PS I involves 
representing knowledge about a problem as a 
collection of production rules, A rule-based 
subsystem was selected for inclusion in the first 
version of KMS because of the demonstrated 
usefulness and popularity of production systems in 
knowledge engineering, Production rules have 
proven especially suitable for capturing some 
types of "judgemental" knowledge, 

... 
>>> ENTER COMMAND: 

~ neurological outcome, 
>>> ENTER INITIAL INFORMATION: 

.QOJlll, 

>>> RESPIRATORY STATUS: 
(1) SPONTANEOUS ACTIVITY 
(2) ON RESPIRATOR AND NOT TRIGGERING 

= ? .1 
>>> RESPONSE TO STIMULI: 

(1) PURPOSEFUL RESPONSE TO PAIN 
(2) NON-PURPOSEFUL OR NO RESPONSE TO PAIN 

= ? ' 
>>> PUPILLARY LIGHT REFLEX: 

(1) PRESENT 
(2) ABSENT 

= ? .1 
>>> OCULOCEPHALIC REFLEX: 

(1) PRESENT 
(2) ABSENT 

= ? .1 
>>> NEUROLOGICAL OUTCOME = 

FUNCTIONAL: 0,94 
IMPAIRED: 0, 06 

>>> ENTER COMMAND: 

.nwu.. ~. 
>>> READY FOR NEXT CASE 
>>> ENTER INITIAL INFORMATION: 

Figure 5: Part of a KMS.BAYES session using 
the knowledge base in Figure 4, 



The rules in a KMS, PS knowledge base undergo· 
procedural interpretation using a top-down , 
depth-first strategy (note the similarities to 
PROLOG Futo et al, 1978]), The model of inexact 
reasoning originally introduced in MYCIN 
[Shortliffe 1 1976) is used to propagate "certainty 
factors" r·rom a rule's antecedents to its 
consequents, Some examples of rules written in 
KMS,PS are shown in Figure 6, Space restrictions 
prohibit showing the complete collection of over 
130 rules for diagnosing thyroid dysfunction that 
are in this particular knowledge base. Each rule 
consists of a name, one or more antecedents, and 
one or more consequents. Each antecedent and 
consequent is an explicit KMS statement, 
Certainty factors are specified in parentheses 
following consequent statements with a default 
value of 1,0 if none is given, 

Figure 7 shows two additional rules from 
another knowledge base for staging a patient's 
lung cancer and generating a prognosis, These 
rules demonstrate how disjunctions can be 
incorporated into antecedents and illustrate the 
' II' rel at ion ( for 'not equal to' ) • Other possible 
r(elations exist for attributes with numeric valu~s 
e,g,, 'GE' for 'greater than or equal to' I, 

These rules also show how the attribute hierarchy 
in Figure 3b is implicitly incorporated into a 
knowledge base, 

An interactive session involving a KMS,PS 
knowledge base appears very similar to one 
involving a KMS 1BAYES knowledge base (Figure 5) 
from the users point of view, Thus this is not 
illustrated here. One command that is available 
from KMS,PS but not from KMS,BAYES is JUSTIFY 
<attribute>= <value>, KMS,PS keeps track of 
which rules it uses to assign a value to an 
inferred attribute and this command tells KMS to 
state the names of those rules for a particular 
value, This forms the basis for a limited 
explanation capability, 

A third subsyste\11., KMS,HT, is currently being 
designed, Although ~MS,HT is most similar to 
cognitive models as described above (see 
'Background') the exact resemblance to human 
reasoning and knowledge organization· is not the 
major concern, The main emphasis in developing 
KMS,HT is to provide a convienient means for 
representing and using (medical) problem-solving 
knowledge as it appears in review ·articles and 
textbooks, Kno.wl edge bases associated with KMS, HT 
will be organized around frame-like structures 
that will be incorporated by the system into a 
problem-oriented inference network, A 
.ll,ypothesize-and-.t.est control strategy will be 
aclopted, 

TEST RULE10 
IF FREE THYROXINE INDEX= HIGH 
& T4-RIA VALUE = NORMAL 
& RT3U VALUE : HIGH 

THEN SCREENING TEST RESULTS= HYPERTHYROID (0,9) ; 

SCAN RULE6 
IF SCAN INTERPRETATION= HOT NODULES 
& TSH SUPPRESSION SCAN= NEGATIVE 

THEN SCAN RESULTS = AUTONOMOUS NODULAR GLAND; 

CLINICAL RULE24 
IF PRELIMINARY CLINICAL EVALUATION= HYPERTHYROID 

& INFERRED THYROID ARCHITECTURE= DIFFUSE GOITER 
& SCAN RESULTS : AUTONOMOUS DIFFUSE GLAND 

THEN FINAL CLINICAL EVALUATION= GRAVES DISEASE 
& STATUS OF FINAL CLINICAL EVALUATION 

= RECOGl'TZED PATTERN; 

DIAGNOSIS RULE13 
IF FINAL LAB TEST RESULTS= HYPERTHYROID 
& FINAL CLINICAL EVALUATION= GRAVES DISEASE 

THEN DIFFERENTIAL DIAGNOSIS : GRAVES DISEASE (0,9) 
& STATUS OF DIFFERENTIAL DIAGNOSIS 

: RECOGNIZED PATTERN; 

Figure 6: Example KMS,PS rules for diagnosing 
thyroid dysfunction. 
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STAGING RULE6 
IF STATUS OF PRIMARY= LEAST SEVERITY 
& REGIONAL NODE INVOLVEMENT= PERIBRONCHIAL NODES 

/ REGIONAL NODE INVOLVEMENT: HILAR NODES 
& REGIONAL NODE INVOLVEMENT f-MEDIASTINAL NODES 
& PRESENCE OF DISTANT METASTASIS: NONE KNOWN 

THEN CLINICAL STAGE= STAGE ONE; 

PROGNOSIS RULE2 
IF CLINICAL STAGE: STAGE ONE 
& CELL TYPE: LARGE 

THEN 
CHANCES FOR TWO YEAR SURVIVAL= ONE IN THREE; 

Figure 7: Example KMS,PS rules on lung cancer, 
--------------------------------------------------
Related .Hw:k 

KMS bears a resemblance to some other AI 
research efforts currently in progress, Its 
purpose and goals are in some ways similar to 
those of ~everal gen!ral knowledge representatiQn 
languages (e,g,, KRL Bobrow and 1¥inogradl 1977J, 
KLORE LBrachman, 1979 , SBDS [Ohsuga ,1979 ) , Even 
more closely relate are those systems hat have 
evolved from research into developing expert 
consultation programs, For example, the 
rule-oriented software originally developed for 
MYCIN (call ed EMYCIN for "Essential MYCIN") has 
been used to build consultation systems in several 
different areas of medicine as well as an 
engineering domain [van Melle, 1979], A second 
domain-independent rule-based system is EXPERTJ a 
generalized descendent of the CASNET formalism 
LWeiss and Kulikowski, 1979), It is currently 
being used to develop consultation models in 
rheumatology, ophthalmology 1 and endocrinology, 
Finally, another rule-basea system for building 
consyltation programs is AGE LNii and Aiello, 
1979J, AGE has been used to implement a 
consultation system dealing with pulmonary 
function test interpretation. 

KMS differs from all of these other 
domain-independent software laboratories in at 
least two very important ways, First, KMS is 
decomposed into a collection of subsystems, each 
of which is based on a different inference method 
and representation format, This approach to the 
architecture of KMS reflects the belief that there 
is no single "best" method for representing and 
using knowledge, On the contrary, there is a 
variety of methods that are available, each with 
certain .advantages and disadvantages, The 
selection of which method to use for a given 
problem depends on several factors such as the 
structure of the problem involved and the 
availability of appropriate problem-solving 
knowledge, Almost all of the domain-independent 
systems described above are oriented around a 
single formalism for managing knowledge, and in 
this sense approximate a single subsystem in KMS, 

A second significant difference between KMS 
and the systems described above is one of 
emphasis, KMS is based on the belief that the 
best way to develop knowledge-based consultants is 
by permitting a human domain expert to transfer 
~1lectiy his or her knowledge to the computer, 

h ss why KMS emphasizes subsystem-supported 
languages whose primitive elements are the 
attributes, values, and associations of a 
particular domain problem, Many of the other 
systems described above require a fair knowledge 
of LISP or other aspects of AI because of the 
additional expressive power this provides, 
Individual KMS subsystems sacrifice some of this 
power in exchange for being directly usabl o by 
domain experts a~er minimal instruction, 

Of course, this direct usability by domain 
experts raises the question about what tbe role of 
the knowledge engineer should be in the context of 
a system like KMS, The more traditional viewpoint 
has been that the knowledge engineer should serve 
as an intermediary betwoen domain experts and the 
computer, helping the human expert t9 express her 
or his problem-solving knowledge LAmarel ,1977; 
Feigenbaum, 1977), This is depicted in Figure Ba, 



Knowledge
Based 
System 

Knowledge 
Engineer 

Domain 
Expert 

(a) The traditional approach 

( b) The KMS approach 

Figure 8: Alternate views of 
the knowledge engineer, 

The KMS viewpoint is that the knowledge engineer 
should occupy a different position dealing 
predominantly with epistemological issues (Figure 
8b). Specifically, such an individual would 
create and modify the KMS subsystems, educate 
domain experts and users about the srstem, and be 
available for consultation as spec fie knowledge 
bases are developed. 

min& .t.ll erobl ems 12!. .CHIL 
It was noted in the 'Background' section 

above that CMD systems have had relatively little 
effect on the day-to-day practice of medicine, 
There are several reasons for this and they have 
been discussed extensively in the literature 
(e,g,, [Croft, 1972i Friedman.I 1977; Mitchell, 
1970; Startsman 1972J), Some or these problems 
that have inhibited the development and use of CMD 
systems are not addressed by KMS: the lack of 
adequate databases with relevant clinical 
information 1 the lack of standardization in 
medical derinitions, etc, However KMS does 
attempt to alleviate four of the probfems that are 
frequently mentioned, 

1) The physician-computer interaction has not been 
successfully accomplished, 

A distinguishing feature of KMS is that it is 
designed for direct use by physicians, both as 
users and as domain experts, The growing 
availability of computer facilities in clinical 
settings makes this a realistic possibility. 

2) The translation of clinical knowledge into a · 
form suitable for computer processing and the 
implementation of the programs to process it are 
difficult and time consuming tasks, 
Each KMS subsyst.em includes all the software 
needed to implement a complete CMD system 
(inference method, user interface, etc,) once it 
is given an appropriate knowledge base to work 
with, Thus no additional programming is 
necessary, Knowledge acquisition remains a 
significant problem, but it is at least improved 
by the direct use of formal representation 
languages by physicians, In addition KMS 
expedites knowledge acquistion by providing a 
collection of languages suitable for different 
types of knowledge and by detecting certain 
classes of errors in knowledge bases, 

3) There has been a lack of acceptance of CMD 
systems by the medical community, 

This in part reflects the fact that physicians 
have not been convinced that CMD systems can be 
generally useful, Often the emphasis by research 
workers has been on producing systems that do what 
the physician does, and not surprisingly this has 
met with only limited acceptance by physicians, 
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It is hoped to alleviate this problem within the 
framework of KMS by s tressing support for 
decision-making rather than by producing 
computer-generated decisions, Also, since KMS is 
directly usable by phrsicians, it gives a 
physician the freedom to mplement a knowledge 
base that is of specific interest to him or her. 
In the long run this may prove to be one or KMS's 
most important features, Finally, by providing a 
library of knowledge bases KMS has the potential 
for accumulating the "critical mass" of 
information that would be necessary to justify the 
time required to learn its use, This is not true 
with conventional CMD systems that address Qnly 
one problem with a single knowledge base (see 
'Background'), 

4) Even when successful most CMD 
convieniently be transferred 
installations. 

systems cannot 
to different 

While KMS is theoretically portable to any 
facility that supports the LISP language, the 
numerous dialects of LISP make this a less than 
ideal prospect, However, the real issue is not 
the portability of KMS itself, but whether or not 
knowledge bases (llS2t programs) can be made easily 
transferable from one installation to the next, 
Since KMS supports machine- independent 
representation and command languages, any computer 
facility with an implemented version of KMS would 
be able to use KMS knowledge bases developed at 
other sites. While a great deal of work remains 
to be done, the ideas behind KMS at least have the 
potential to provide a qualitative improvement in 
the portability of CMD systems, 

conclusion 
This paper has introduced KMS, a new approach 

to managing the real world knowledge needed in 
knowledge-based consultant programs, The major 
features of the architecture of KMS center on a 
family of compatible subsystems that are based on 
different inference methods. These subsystems all 
addross kn owl edge representation in a similar 
fashion, requiring the description of a problem to 
be in terms of its attributes, their values, and 
the associations between them, They also share a 
common set of control commands and have similar 
user interfaces, Associated with each subsystem 
is a collection of knowledge bases written in the 
appropriate fashion. A domain expert can use 
these KMS subsystems to build a library of 
knowledge bases that deal with one or more 
domain-specific problems, 

At present KMS is best characterized as an 
experiment-in-progress with many questions 
remaining to be answered about its ultimate 
utility. For example will the use of simple 
inference methods significantly limit the power of 
the subsystems? If one accepts the belief that 
"the problem solving power exhibited in an 
intelligent agent's performance is primarily a 
consequence of the specialist's knowledge employed 
by the agent and only very secondarily related to 
the gener,lity and power of the inference method 
employed" LFeigenbaum 1977) then the ability of 
KMS to manage libraries of knowledge bases gives 
reason for optimism, Is the direct domain 
expert-computer interaction really feasible? The 
growing diffusion of computer technol~gy 
througnout society and the incrAasing 
computer-sophistication of individuals in various 
non-computing disciplines at least makes this a 
possibility, 

These and other questions will be examined 
through KMS in the future, The present plan is to 
complete KMS.HT and then avaluate the first 
ganeration of subsystems by developing a small 
prototype library of knowledge bases, The use of 
KMS by computer-inexperienced individuals (medical 
students physicians, etc,) will also be 
evaluated, Hopefully, KMS or similar systems will 
ultimately help to make the computer a useful tool 
for a number of individuals for whom it has 
previously been relatively inaccessible, 



Acknorle~gem,nt~: The research described in this 
repor s un i,ct by an NIH Teacher-Investigator 
Development Award (5 K07 NS 00348) from the 
NINCDS, Computer time is provided in part by the 
Computer Science Center of the University of 
Maryland, The example rules on thyroid diagnosis 
are from a rule collection written by Barry 
Perricone, This is the second report of the 
NEUREX project. 

References 
Amaral S et al: Applications of Artificial 

Intelligence (Panel), .f.to.c... illt.b. .lliil, 
1977, 994-1006. 

Bobrow D and Winograd T: An Overview of KRL, a 
Knowledge Representation Language, Cognitiye 
scienffe , 1 , 1977 , 3-47, 

Brachman: On the Epistemological Status of 
Semantic Networks~ in AssoI1at~ye Netw~6¥~, N, Findler (editor,, Aca em c ress, , 
3-50. 

Cro~ D: Is Computerized Diagnosis Possible?, 
eo.mn..._ ~1ome~. ~. 5, 1912, 351-367, 

deDom~:ompliter-Assisted Dia!¥osis of 
Abdominal Pain, in A~~agcyf ~€410,1 8gmoyM~! , Rose and c e ed ors , 

urc -Livingston, 1975 10-19, 
Duda R and Hart P: P~ttef~ d1a8s~ficatte9 .aw1 s.c..ene. ~na,6s1f, Jon ey an ons 3. 
Feigen6aiiiil:ert of Artificial Inteiligence -

Themes and Case Studies of Knowledge 
Engineering, .f.to.c... illt.b. .lliil, 1977, 1014, 

Friedman Rand Gustafson D: Computers in Clinical 
Medicine - A Critical Review, .G.P.lim..a. B1omed. 
~. 10, 1977 1 199-204. 

Futo r:;-D"arvas F ana Szeredi P: The Application of 
PttOLOG to the Development of QA and DBM 
Systems , in 1.QJtk aru1 D.at.ll B..a.:s.a.s. , Ga 11 a ire 
and Minker (ec11tors)--;-l>lerium----p-fess, 1978, 
347, 

Goldberg Rand Kastner J: An Explicit Description 
of Anatomical Knowledge as an Aid to 
DiagnosisJ CBM-TR-78, Dept, of Computer 
Science, ttutgers University, Oct , 1978, 

Kean p and Morton M: B:§;g;ge Syppoi~ yvstews - An ~~,~~1zat1onal ________ iye, d son- esley, 

Mitchell J: The Automation of Clinical Diagnosis, 
Bio-Med,~. 1, 1910, 157-166. 

Mittal S, Chandrasekaran B, and Smith J: Overview 
or MDX - A System for Medical Diagnosis, 
~ Ilu.cs1 .. sxr90,~¥~ ~ ~ wilA. J.n. 

Nii~ ~oIN~ iGEc lttemp~ ~~-Ge~eralize} -
A Knowledge-Based Program for Buildir:ig 
Knowledge-Based Programs , .f.to.c... .8.1.lt.b. lliAl., 
1979, 6115-655. 

Ohsuga S: Theoretical Basis for a KnorJc1fe 
Represl}ntation System, ~ .8.1.lt.b. , 
1979, 676-683, 

Pauker Set al: Towards the Simulation or CliniQal 
Cognition, Am.ar..a. J.... Med.a.., f>O, 1976, 981-996, 

Pople R, Myers-----;r-arid--irr"Iier R: A Model of 
Diagnostic Logic for Internal Medicine , .f.to.c... 
f.o.l.lr.th IJCil , 1 9 75 , 

Reggi~ -X-- Production Rule System for 
Neurological Localization , ~ ,.~~ .. ~ 

ffim8~1~, IEfi, No~ 
Reggia J: Computer- Assisted Medical Decision 

Making - Knowledge Bases,~ Ilu.cs1 ~ 
~~sr~,E~Og~~0¥B,6 .A~6~1~.io. M 

Riege~: The Importance of Multiple Choice, 
TINLAP-II University of Illinois, July 1978, 

Rosenow F. and Carr D: Bronchoeenic Carcinoma' ~ -
~-~ !~~~:! ~ 1~~~c~~~s , Amer an 

Short~E:
0

~ ~ ~i!"e~
9
Medili, Consyltations 

- .MI.C..IN., mer can sevier, 6, 
Startsm~ and Robinson R: The Attitudes of 

Medical and Paramedical Personnel Toward 
Com

8
puters, .G.P.lim..a. Biomed. ma., 5, 1972 , 

21 -227, 
Snyder B, Ramirez-Lassepas M, and Lippert D: 

Neurologic Status and Prognosis After 
Cardiopulmonary Arrest, Neurology, 27, 1977, 
807-811. 

van Melle W: A Domain-Independent Production Rule 
S t for Consul tat ion Programs, .fr.o.s:... .8llth 

1 79, 923- 25, 
Weiss , ul1kowski ~~ and Sapir A: Glaucoma 

Consul tat ion by 1,;omputer , .l<.PIIIP.L B.1P.L. .t1e.d.A. , 
8 1978 25-40. . 

Weiss~ and Kulikowski C: EXPERT - A System for 
Developing Coru,ultation Models, ~ .8llth 
.lliil, 1979, 9112-947. 

295 



I 

Knowled~e Acquisition and Representation Using 
Logic, Set Theory and Natural Language Structures 

Stewart Bainbridge and Douglas 
Departments of Mathematics and Computer 

University of Ottawa 
Ottawa, Ontario, Canada K1N 

Skuce * + 
Science (resp.) 

6N5 

Abstract 

We present an ap proach to acquirinR 
qualitative generic knowledge from experts 
using a language LESK, and show how the 
semantics of LESK, for both human and 
machine understanding, can be expressed in 
a "deep structure" language, ARC. LESK 
gives a "natural language" surface syntax 
to ARC, which com pactly represents a 
set-theoretic interpretation of common 
predicate calculus expressions. ~ theorem 
prover for ARC has been implemented in 
PROLOG. 

The design of LESK and ARC have been 
driven by real examples of such knowledge 
which describe the conceptual structure of 
the Canadian census database. 

1. Introduction 

The acq uisition of generic knowledge 
(gk) from experts (not nec~ssarily 
computer speci:cillsts) nnd Hs 
representation in forms well-suiterl for 
either analysis by these experts or by 
deductive knowlect~ bas~ systems (kbs) is 
an increasingly important aspect of modern 
information systems. We describe an 
approach to expediting thes~ two tasks 
using two closely related languages, LESK 
(Languag e for Exactly Stating Knowledge; 
Skuce 75-79) an d ARC (Algebra of 
Relational Composition), intended 
respectively for the two uses referred to 
above. LESK, a kind of predicate 
calculus, provides a linguistically 
natural medium for humans, while ARC 
provides an efficient formalism for 
implementing a kbs which can interactively 
acquire new knowledge and 1eductively 
answer questions. Each LESK statement 
translates readily into ARC, and/or an 
associated "declaration" language, DARC. 

* alphabetical order 
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(DARC serves a purpose analogous to 
declaration statements in a programming 
language.) To the trained reader, ARC and 
DARC are superior to predicate calc ulus 
(PC) and conventional math ematical 
notation for semantic verifi catio n of 
LESK. 

The eventual goal of this r9search is 
an interactive kbs which assi~ts in the 
acquistion of linguistically and logi cal ly 
consistent generic knowledge from persons 
requiring computer processing of 
information dependent on this knowledge. 
After acquiring the gk, the system wouli 
serve as an "oracle" in helping humans 
understand it, or in interfacin~ to other 
systems which could use it, such as a 
conventional database system. By the term 
"LESK system" we shall mean such a sy~tem 
based on LESK and ARC. 

We report here on: 
1. t he basic id ens of LESK ;:ind I\R C; 
,. the use of LRSK in a typi~al ~k 
acquisition task: capturinR the 
terminology and logical structure of the 
concepts to be represented in a database 
system (dbs); 
3. implementation of a LESK system. 

2. Basic Concepts o_f ARC 

LESK is a linguistically natural 
surface language whose semantics are baserl 
on set theory and predicate calculus (PC), 
which ARC represents more directly without 
LESK's natural langu11ge (NL) sugar. We 
therefore begi n by describing ARC. (A 
detailed specification of ARC and its 
deductive structure will appear e lsewh ere; 
here we shall sketch the gsneral feRtures 
of the language anrl illustrate the 
inference rules with a simple example .) 



ARC has terms of two types: terms 
which denote sets, and terms which denote 
binary relations (viewed as sets of 
ordered pairs). For expository purposes, 
the semantics of ARC will be specified in 
PC. For example, the ARC set term 
"person" would be represented in PC by a 
unary predicate "person(x)", and the ARC 
relation term "uncle" would be represented 
in PC by a binary predicate "uncle(y,x)". 
(Our convention for reading PC expressions 
"R(y,x)" is "Y is a R of x", so in the 
preceding, y is the uncl e, x the 
nephew/niece.) The examples below will 
clarify how ARC manages without individual 
variables . The type of primitive terms is 
declared by DARC statements such as 
"set(person)", "rel (uncle)". 

Terms of like type may be combined by 
Boolean operations, and terms of different 
or like types may be combined by means of 
operations including those defined below . 
We give the definitions in PC with the 
understanding that the ARC relation term 
"R" denotes the set of pairs (y,x) which 
make the corresponding PC term "R(y,x)" 
true, and similar ly for ARC set terms. 

Compositi<rn: for · relation.s R, S, 
define the relation (R of S) by 

(R of S)(y,x) iff 3z R(y,z) and 
S(z,x) 

Image: for a relation Rand a set A, 
definethii set (R of A) by 

(R of A)(y) iff _lx R(y,x) and A(x) 

Product: for sets A, 13, define thP. 
relation (B-x A) by 

(Bx A)(y,x) iff B(y) and A(x) 

Inversion: for a relation R, define 
the relati~fnv(R) by 

The inference rules for ARC include 
Boolean inference rules and other rules 
and axioms for the additional operations, 
including the following, where Xis either 
a set or relation term: 

from X C y i.n fer (R of X) C (R of Y) 

from RC S in fer ( R of X) C: (S of X) 

associativity of "of": R of (S of X) = (R 
of S) of X 

The operations and inference rules 
given above are sufficient for the 
examples which follow, but do not 
constitute a complete description of ARC. 

Example: 

The following example illustrates the 
non-Boolean inference rules of ARC . No 
attempt is made to indicate how the proof 
would be discovered by the theorem prover, 
we simply exhibit it. Please note that 
the "of" operator conceals existentiql 
quantification and that despite the 
algebraic appearance of the proof, it is 
not simply propositional logic. We urge 
the reader not to dismiss this example as 
trivial without first examining in detail 
what is involved in the proof in PC. 

Axioms: 

LESK: the paternalgrandfathcr of X = the 
father of the father of X 
ARC: pg : f of f 
PC: 'v'y,x pg(y,x) iff .]z f(y,z) c1nct 
f( z' l() 

LESK: the age of the father of X > the 
age of X 
ARC: a of f C. gt of a 
PC: vly,x if Jz a( y, z ) and f(z,x) 
then 3w y > w and a(w,x) 

LESK: if Y > Zand Z > X then Y > X 
inv(R)(x,y) iff R(y,x) ARC: gt of gt c gt 

In addition there are certain set and 
relation terms with fixed meanings such as 
the set "universe" of which all sets are 
assumed to be subsets, the empty set 
"null" the identity relation "id" (id(y, 
x ) iffy= x), greater than "gt" (gt(y,x) 
iffy> xl, and so on. ARC has built - in 
axioms and/or inference rules for these 
special terms. 

Statements in ARC are equ~tions or 
set inclusion~ between ARC terms of like 
type. 
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PC: Vy ,x if 3z y > z and z > x then y > x 

(note : the PC given is the liter~l 
of the ARC, rather th~n the translation 

( logically 
LESK.) 

equi valent) form st~ted in 

Proposition: 

LESK: the 
of X > the 
ARC: a of 
PC: v'y,x 
then 3w y 

age of the pater·nalgrandfath~r 
age of X 
pg c. gt of a 
if Jz a (y,z) and pg(z,x) 
>wand a(w,x) 



· ' 

Proof: 

a of pg= a of (f off) 
(substitution using first axiom) 

(a off) off c (gt of a) off 
( (s~cond axiom) off) 

gt of (a of f) c gt of (gt of a) 

( gt of (second axiom) 

( gt of gt) of a c gt of a 
( (third axiom) of a ) 

The result now follows by associativity of 
"of" and Boolean inferences. 

It appears that a large number of the 
questions one would ask of a LESK system 
involve deductions not much more 
complicated than this, using (except for 
Boolean inferences) only the inference 
rules given above. lt is for this type of 
deduction that we suggest ARr. is 
especially well suited. 

We have the following design goals 
for LESK as a language: 

1. It emphasizes the linguistic aspect of 
knowledge acquistion. Since the knowledge 
we are concerned with is virtually all 
qualitative, it is normally expressed 
mainly in NL, using terminology which is 
often not well controlled. LESK enforces 
a standardized use of terminology upon the 
user, as a first step in removing semantic 
errors. 

2. It provides statement forms which are 
unambiguous, and which assist the user in 
formulating gk in desirable ways, in 
particular, in conceptual hierarchies. 
The semantics of these forms should be 
readily explainable in ARC, or if 
necessary, PC. 

4. Knowledge expressed in LESK should be 
understandable to anyone capable of 
learning a programming language such as 
PASCAL, and someone with a modest 
mathematical training and ability should 
be able to write LESK statements. 

LESK requires the user to make 
declarations of the essential terminology 
(principally nouns, adjectives and various 
verb forms) in a restricted subject in a 
ling~istically natural yet logically 
precise manner. By "declaring" 
terminology we mean a formal process of 
introducing words in restricted contexts, 
so that their syntactic and semantic 
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properties are unambiguous. A LE SK system 
would aid the user in making consistent 
use of th.is terminology, much .1s a 
compiler for a programming language does. 
With such a system, the process of 
developing a kbs in this manner would 
involve a three party communication 
between user (originating the concepts), 
other persons trying to understand the 
concepts in order to implement the kbs for 
the user (e.g. a database designer), and 
the LESK system as an "intelligent" 
assistant. 

4 . An Example: The Use of LESK to 
Capture Database ~oncepts 

The design of database systems (dbs) 
usually presumes a previous step in whi c h 
terminology and logical relations have 
been clarified. It is felt that thi~ 
vital first step is often not given 
sufficient attention, resulting in a dbs 
which contains errors due to semantic 
confusion between user and designer. LF.SK 
can serve an important role in dbs desi~n 
hy reducing the possibi.li.ty ,,f such 
errors. 

Having noted this potenti~l, 
Statistics Canada invited us to attempt to 
apply LESK to clarifying the c oncept,ial 
structure of their census database. 
Although this structure has evolved over 
many years, ::ind is not about to be 
drastically redesigned, this application 
provided a real anrl challenRinR example nf 
gk requiring formal explication. 
Previously, the gk associated with the 
census was to be found in a variety of 
forms: narrative in various internal 
documents, some containing glossaries; in 
(very limited) formalized rule systems 
used to drive certain software packaRes; 
in "data definition" statements; in code 
alone, or even only in people's heads. 
Our goal was to aggregate, ~ondense and 
make precise in a uniform manner a 
representative sample of this gk; the 
appendix displays a fragment of thi~ 
sample. 

The gk of which the appendix is 
representative was obtained during ten to 
fifteen hours of dialogue betwe en Skuce 
and senior personnel of Statistics 
Canada's System Development Divisi0n. 
During this time each was t e achinR t~e 
other a set of new concepts, using LES~ to 
aid the transfer of census concepts to 
Skuce. A frequent difficulty was thnt the 
logical and lexical precision demanded by 
LESK caused indecision as to which of 
several alternatives to choose. Since 



sometimes there was no clear authoritative 
source to resolve these questions, 
opinions were sought, or a solution was 
improvised. Thus the process was both one 
of knowledge acquisition and formulation. 
It is highly likely that virtually any 
organization would exhibit similar 
problems. 

We will now discuss the major aspects 
of LESK illustrated in the appendix. 
Terminology is introduced either in series 
of statements termed declarations (ending 
with a period) or in assertions~ich are 
single statements. The termfnology here 
involves either nouns, adjectives, or 
simple stative sentences denoting binary 
relations by phrases such as "is related 
to" or "is an ancestor of". Such terms 
are declare<i tobe in "is a" hierarchies 
whenever possible. The primitive "kinds", 
denoting class partition, statements of 
the form "x is a y", or the prefixing of 
an a<ijective to a NP y all result in 
subclasses of y. Unless preceded by "iff" 
or "consists of" (used in a noun 
declaration to be considered as a record), 
statements in declarations are necessary 
conditions. The abbreviation"-" denotes 
the definiendum. Syntactic details like 
singular and plural forms are declared 
elsewhere. 

Thus we first intro<iuce (i.e. 
declare) the noun person; we see that 
persons are partitioned three ways, first, 
into the subclasses livingpersons and 
deadpersons. The resulting ARC statements 
are: 

1 iv ingpersons u dead persons = per sons 
livingpersons r. deadpersons = null 

The second partition specifies a 
partitioning function, age, hence we have: 

adults = inv(age) of ge of 17 
ri persons 

children = inv(age) of lt of 17 
/"\ persons 

adults n children = null 
age of (inv(age) n (persons x numbers)) 

C id 
id n (persons • persons) c inv(age) of 
age 

Note that: 
a . ) a relation Risa fu r] tion iff (R of 
inv(R)) c. id and id c (inv(R) of R); the 
last two axioms thus state th~t age 
restricted to persons is a function; 
b.) the disjointness of adults and 
children is made explicit even though lt 
is already implied by properties of age 
and 1 t, ge. 
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The partition of person~ by sex is 
similar. 

We next decide to add some 
constraints to the functions age and sex. 

age of persons c lt of 11 S 
sex of persons = male u female 
male n female = null 

Here male and female denote atomic 
sex values;-i,ot the sets of all males and 
of all females. This is indicated in DARC 
by atom(male) and atom(female). 

The functions 
are introduced 
statements are 
functionality as 
uniqueness, i.e. 
(possibly partial) 

dwelling and parents 
n~--the on~RC 

those expressing 
before. The denotes 
it ls used with 

function names . 

In the next condition statement, the 
change of quantifier signals that siblin~s 
and children are relations. The fact that 
children is also a set name causes no 
difficufty. The persons declaration ends 
with a period. 

One may make other statements about 
persons; however, only the declaration 
itself is to be output in response to the 
question: "what is a person?" Of course a 
declaration may be changed and recompiled. 

The couple declaration illustrates 
the inclusion of "records" in LESK, 
signaled by "consists of". An ARC 
statement results which says that a couple 
is uniquely specified by its two 
"components", malepartner and 
femalepartner. We ha~-----

inv(malepartner) of malepartner 
n inv( femalepartner) of femalepartner 
c id n (couples .x couples) 

sex of malepartner of couples . = male 
sex of femalepartner of couples = female 

Sometimes a term can be declared witb 
a single statement, termed an "assertion". 
Thus the function father is given by: 

father = malepartner of parents 

Similarly, the relation sibling~ is 
given by: 

siblings = children of father 
n children of mother n not id 



We finally exhibit several relation 
declarations, each denoted by a simple 
English phrase: is related to, is an 
ancestor of, and i~married to:~ 

relatedto = ancestors u inv( ancestors) 

U inv(ancestors) of ancestors 
ancestors = father v mother 

v ancestors of ancestors 
marriedto = inv(marriedto) 
marriedto = legalspouse 
(maleperson x femaleperson) f'I marriedto 

c malepartner of inv(femalepartner) 

The phrase the legal spouse of 
signals that legalspo~is a partial 
function on the set of adults. We recall 
t hat R is a pa rtial function iff (R of 
inv ( R)) c id, hence the ARC statement is: 

legalspouse of (inv(legalspouse) 
"(adults .. adults)) c.;. id 

5. Implementation of~ LF.SK System 

A compiler is partially written which 
will translate the LESK statement types in 
the appendix into ARC and/or DARC. We 
have also developed a theorem prover for 
ARC which operates subject to specified 
time and depth limits. These programs are 
written in DECsystem - 10 PROLOG (Pereira, 
Pereira and Warren, 78), a particularly 
suitable and enjoyable language. Each 
program runs in 20K. At present, the 
theorem prover reads the output of the 
compiler into its associative database and 
then can accept questions interactively. 
An important step will be to couple the 
compiler with the theorem prover so that 
semantic errors can be deleted. (These 
are typically set expressions which turn 
out to be null, or relation arguments not 
contained in the sets previously declared 
to be the source or target of the 
relation . ) 

Some additional extensions are: 

1. Augmenting the theorem prover so that 
it uses a "modal" strategy: for all 
questions q, it first would attempt to 
prove "q is true" in less than n seconds 
(e.g . ., = 10), failing which, "q is 
false" in n seconds, failing which it 
would r eply "don't know". We have not yet 
developed the details of this technique, 
but believe it to be essential. 

2. Adding the special-purpose procedures 
needed to answer the many question types 
which are not ARC theorems, e.g. "what is 
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the declaration 
the relation 
couples?". 

of person?" or "what is 
between persons and 

3. Adding an ARC-to-LESK translator for 
English-like output. This would also 
allow the variety of synonymous LESK input 
forms to be reduced to a "canonical" form. 

4. Coupling the system to an existing 
relational database system. (The reasons 
for wanting to do this are discussed in 
the articles by Minker (78), Chang (7q) 
and Kellog, Klahr and Travis (78).) 

Ii. Related Research 

The resear ch described here can be 
considered as a practical application of a 
number of developments in AI r esearch; 
for example, it has drc1wn ide;-is from 
hierarchical knowledge representation 
systems (e.g. KRL, Bobrow and Winogra<l, 
77); FRL, Roberts and Goldstein, 77); 
from non-resolution-based de<luction 
systems (Bledsoe, 77) and certainly from 
PROLOG itself (Kowalski 74; Deliyanni and 
Kowalski, 79). ARC may be viewed as a 
synthesis of predicate c;:ilculus and 
semantic network representations; such ;:i 
synthesis has been proposed by Schubert 
(7h) and Hendrix (75), among others. It 
is also related to a number of more 
general attempts to express NL in 
predicate c;:ilculus (e.g. Evens and Smith, 
78). 

This work may also be considered as a 
confluence of artificial intelligence and 
database research (Wong and Mylopoulos, 
77) although we see it in a much broader 
perspective. A majority of the directly 
relevant research in this area is reported 
in a single volume: Gallaire and Minker, 
1978. There, for example, Reiter 
discusses the logicc1l problems of coupling 
a generic knowledge base to an 
(instantial) database. Several existing 
systems couple a theorem prover to a 
relational database: Minker; Chang; 
Kellog, Klahr and Travis (all ibid). 
These systems typically emphasize the 
design of a query lanRuage more 
human-engineered than PC, without 
considering the same problem in the 
initial step of a database system: the 
linguistic and logical specification of 
the conceptual structure of the database. 
LF.SK and ARC are addressed to this more 
fundamental problem, and yield as a 
byproduct, a useful query language as 
well. 



If one consults the database 
literature per se (typified by the ACM 
Transactions on Database Systems; the 
International Conferences on Very Large 
Data Bases; the Proceedings of the SIGMOD 
Conferences, or Nijssen (76, 77)) little 
concern is expressed as yet for 
1. user -engineered conceptual 
specification languages (like LESK); 
2. coupling extensional databases (e.g. 
a typical relational database) to 
(intensional) gkbs; 
3, providing practical yet precise 
semantic specifications. 
The common assumption is that to design a 
database, the problem reduces to 
specifying a "3-level schema", as in the 
ANSI/SPARC approach (ANSI/X1/SPARC, 75); 
we believe there exists a prior step of 
"conceptual acquisition". Some 
researchers who share this view are: 
Bubenko (79), Kent(78), Nijssen (7h, 77), 
Sundgren ( 79) . 

A related project which should be 
compared to LESK is TAXIS (Mylopoulos, 
Bernstein and Wong, 79). TAXIS is an 
"At-inspired" language intended for 
database systems implementors, and as such 
is not suitable for use by non-computer 
professionals. The combination of LESK 
and TAXI~ however is potentially a 
double-edged tool for implementing systems 
correctly. Given a conceptual design 
specified in LESK, a systems designer 
using TAXIS (possibly with some automatic 
translation) would have an easier task. 

The AI literature, as 
IJCAJ79, has just begun 
attention to some of the 
consider. (Dahl, Furukawa, 
Lasserre, J anas, all ibid.) 

7. Conclusions 

evidenced by 
to reflect 

problems we 
Gallaire and 

1. A language such as LESK which combines 
ease of use with logical precision is a 
neces sit y in generic knowledge 
acquisition, hence the design of such a 
language is a subject of much current 
research. There are several dimensions 
along whi ch to rank the design: 
formality; if it is too mathematical, too 
1'ewr,eople will be able to use it, whereas 
if it is too much like NL, its semantics 
will become unclear to the user ; level: 
too high a level means not enough cfetafl 
is specifiable; on the other hand most 
current system design languages are mainly 
concerned with specifying conceptually 
irrelevant detail; generality: is it 
better to be applicable to many tasks but 
to be replaced in some of these by more 
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particularized languages, or to be very 
good at doing just one job? The design of 
LESK attempts to fill what is seen as a 
considerable hole in this "langua ge 
space". It has been used in a variety of 
other applicattons (Skuce, 75-7Q) and yet 
has served a purpose in a typical database 
application. We envision dialects of LESK 
for various applications, and intend to 
experiment with some such as basic gk 
acquisition in scientific subjects for 
computer -a ided learning, and (overdue) 
clarification of the concepts involved in 
a university's academic regulations. 

2. As a formalism for knowledge 
representation in a deductive system, ARC 
has many potential applications in AI 
apart from its use as an "deep structure" 
for LESK. We will investigate the 
connection between ARC and other knowledge 
representation systems in a forthcoming 
paper . 

3, The database literature has not 
reported sufficent attention to the 
concept acquisition phase (which precedes 
all others) of database design. Though 
there has been much work on 
user-engineered query lanaguages, and 
system design languages which assume the 
concepts have already been made clear to 
the implementors, this latter aspect has 
not seen a user-engineered tool adequate 
developed. LESK serves, amongst other 
uses, to bridge the communication gap 
between user and implementor which until 
now has relied excessively upon natural 
language, with its inherent uncertainties. 
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Appendix 

A fragment of the generic knowledge underlying an example database. 

a person: 
kinds : living-, dead-; 
kinds (by age): adults (age> 17), children (age<= 17); 
kinds (by sex): male - (sex = male), female - (sex = female); 
the age of - < 115; 
the sex of - is 1 of: male, female; 
- has 1 dwelling; 
- has 1 couple P called parents of -; 

has O or more persons called siblings of-, 
- has O or more persons called children of-. 

a couple: 
consists of: adult X called the malepartner of -, 

adult Y called the femalepartner of 
the sex of X = male; 
the sex of Y = female. 

the father of a person X = the malepartner of the parents of X. 

a sibling of a person X = a child of the father of X and 
a child of the mother of X, but not X. 

a sister of a person X = a sibling of X who is a female person. 

a person Xis related to a person Y iff: 
Xis an ancestor of Y or 
Y is an ancestor of X or 
there exists a person Z such that 

Z is an ancestor of X and 
Z is an ancestor of Y. 

a per son Xis an ancestor of a person Y iff: 
Xis the father of Y or 
Xis the mother of Y or 
th~re exists a person Z such that 

Xis an ancestor of Z, and 
Z is an ancestor of Y. 

an adult Xis married to an adult Y iff: 
Y is married to X iff 
X = the legal spouse of Y iff 
Y = the legnl spous~ of X; 
the sex of X; the sex of Y; 
if Xis a mal e person and 

Y is a female person 
then 

th Lr e exists a couple C such that 
Xis the malepartner of C and 
Y is the femalepartner of C. 
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THE REPRESENTATION OF AN EVOLVING SYSTEM 
OF LEGAL CONCEPTS: 

I. Logical Templates 

L.T. McCarty 
Faculty of Law, SUNY at Buffalo 

N .s. Sridharan 
Computer Science, Rutgers University 

Although our earlier work on the TAXMAN 
Project (McCarty, 1977) has demonstrated the basic 
feasibility of applying artificial intelligence 
techniques to the field of corporate tax law, the 
6riginal TAXMAN system was seriously deficient as 
, model of "legal reasoning". More recently 
(McCarty, Sridharan and Sangster, 1979), we have 
proposed an alternative model of conceptual 
itructure, and an approach to the process of 
conceptual change, in an attempt to remedy these 
deficiencies. In the TAXMAN II system, which is 
currently under development, we distinguish 
between two different kinds of legal concepts. 
Precise statutory rules are represented as logical 
;emplates, a term intended to suggest the way in 
which a "logical" pattern is "matched" to a lower
ievel factual network during the analysis of a 
corporate tax case. But the more amorphous 
concepts of corporate tax law, the concepts 
typically constructed and reconstructed in the 
process of a judicial decision, are represented by 
a prototype and a sequence of deformations of the 
prototype, The prototype is a relatively concrete 
desorpti on selected from the lower-level factual 
network itself, and the deformations are selected 
from among the possible mappings of one concrete 
description into another. We have suggested that 
these prototype-plus-deformation structures play a 
crucial role in the process of legal argll!lent, and 
that they contribute a degree of stability and 
flexibility to a system of legal concepts that 
would not exist with the template structures alone 
(see McCarty, 1980). 

In this paper, we present our curent 
implementation of the logical template structures 
of TAXMAN II, but with an eye towards the 
subsequent implementation of the prototypes and 
the deformations. In order to construct a 
deformation of a conceptual prototype, it seems, 
we must first have availale a clear and coherent 
representation of the prototype to be · deformed. 
The space of possible concepts must be 
syntacticaly simple but the corporate tax domain 
itself is semantically rich, These are the 
constraints, then, on our initial representation. 
In Section I of this paper, we will describe the 
ground-level representation of TAXMAN II, and in 
Section II we will describe the representation of 
a hierarchy of higher-level concepts. Section III 
then describes the pattern-matching procedures 
which operate in this conceptual hierarchy, For a 

more detailed version of this paper, see McCarty 
and Sridharan (1980), 

I. The Basic AIMDS Representation. 

We have chosen the AIMDS language (Sridharan, 
1978) as the basic vehicle for the implementation 
of TAXMAN II. Based on the Meta-Description 
System of Srinivasan (1973, 1976), AIMDS provides 
extended facilities for the representation of 
states, events, actions and expectation 
structures. It was developed primarily for 
application to the Plan Recognition problem 
(Schmidt, Sridharan and Goodson, 1978; Sridharan 
and Schmidt, 1978), but we have discovered that 
its features are quite general and quite easily 
adaptable to the need s of the TAXMAN Project as 
well. AIMDS permits the user to construct a 
system of templates to describe certain named 
classes of objects, and a system of rel ations to 
express the allowable relationships between these 
objects. The user can then generate instances of 
these templates and their associated relations in 
a particular context, and yet constrain this 
process of instantiation by a set of consistency 
conditions written out in a version of many-sorted 
first-order logic. AIMDS provides a uniform 
procedure for the instantiation process, called 
MAKE, and a uniform procedure, called FIND, to 
retrieve a set of instances from a given context 
using a partial specification of the network of 
adjacent relations. Thus, in the spirit of 
several contemporary frame-based languages, AI~DS 
resembles at its lowest level a language for 
processing semantic networks, but it imposes o n 
these neti«>rks a higher-level "structure", an 
organization of knowledge into manageable 
conceptual "chunks", by means of its interlocking 
system of template definitions. 

For a simple example, consider the OWNership 
relation in the TAXMAN II system, We construct 
the template OWN by using the template definition 
function TON: 

(TON: ( (OWN REL) 
((OWNER FN) ACTOR) 
((OWNED FN) PROPERTY))) 

1l1ls means that an lnstance of OWN, whlch ls :ci 

template of type REL, must have an "owner" wtiich 
is an instance of ACTOR, and an "owned" which is 
an instance of PROPERTY. The flag FN on the 
relations "owner" and "owned" indicates that a 
particular instance of OWN can have at most one 
ACTOR and one PROPERTY standing in these 
relationships, i.e., the relations are 
"functional". Suppose we also define a template 
for STOCK (which is a subset of SECURITY) and a 
template for SHARE (which is a subset of 
PROPERTY): 

(TON: ((STOCK OBJ) 
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( (ISSUEDBY FN) CORPORATION 
(INVERSE ISSUEROF L)) 

((NSHARES FN) NUMBER) 
((PARVALUE FN) NUMBER) 
((VOTING FN) YESNO) 
((COMMON FN) YESNO 

(COHPLEMENT PREFERRED FN)))) 



(TDN: ((SHARE OBJ) 
((SHAREOF FN) SECURITY 

(INVERSE SHARES L)) 
((FRACTION FN) NUMBER) 
((QUANTITY FN) NUMBER) 
((VALUE FN) NUMBER))) 

Then we can 
.interest" 
:., Ne wJer sey" 

(MAKE 

write out a fragment of the "security 
space for a corporation named 
by means of the following code: 
(STOCK (ISSUEDBY NEWJERSEY) 

(NSHARES &(NUM 294271.0)) 
(PARVALUE &(NUM 29427100.0)) 
(VOTING YES) 
( COMMON YES)) ) 

(MAKE (STOCK (ISSUEDBY NEWJERSEY) 
(NSHARES &(NUM 160686.0)) 
(PARVALUE &(NUM 16068600.0)) 
(NOT VOTING YES) 
(PREFERRED YES))) 

( MAKE (OWN (OWNER &( MAKE (PERSON PH ELLIS))) 
(OWNED 
&(MAKE 

(SHARE 
(SHAREOF 
&(FIND (THE STOCK 

( COMMON YES) 
(ISSUEDBY 
NEWJERSEY)))) 

(QUANTITY &(NUM 250.0))))))) 

This code would first create an instance of 
"NewJersey common stock" (call it STOCK- 1, say), 
an instance of "NewJersey preferred stock" (call 
it STOCK- 2), and an instance of PERSON named 
Phellis. It i«>uld then retrieve the common stock, 
STOCK-1, and create an instance of SHARE (call it 
;5HARE-1) i.tiich w:>uld be asserted to be a "shareof'' 
STOCK- 1: (SHARE-1 SHARE- SHAREOF-SECURITY STOCK-1) . 
Finally, it would create an instance of OWN (call 
it OWN-1), and add to the neti«>rk the relations 
(OWN- 1 OWN-OWNER-ACTOR PHELLIS) and (OWN-1 OWN
OWNED-PROPERTY SHARE- 1). It should be noted here 
that this neti«>rk of relations is explicitly 
created and stored only as a default mechanism in 
AIMDS. If preferred, the user can write his or 
her own functions to ADD a relation, to REMOVE a 
relation, to CHECK the truth value of a relation, 
and to FETCH all instances i.tiich satisfy a 
relation in a given context. 

As described so far, the AIMDS s ystem bears a 
strong. resemblance to several other high- l evel 
languages in the AI literature. For example, the 
"templates" of AIMDS are quite similar to the 
"units" of KRL (Bobrow and Winograd, 1977; see 
also Martin, Friedland, King and Stefik, 1977), 
and the "relations" of AIMDS correspond to the 
"slots" of these other frame- based systems. Qie 
important feature of AIMDS, however, which does 
not appear prominently in the s~ other systems, is 
the facility for the partial evaluation of a 
logical expression. AIMDS provides a general 
subsystem, called CHECKER, which accepts an 
expression in a slightly restricted version of 
first-order logic, evaluates the expression with 
respect to a given network, and then returns as 
its result the sub- expression and the set of 

variable bindings ltlich produced the value of 
true, false, or unknown, respectively. The 
expression returned by CHECKER is cal led a 
residue, and it plays a major role in the 
operation of AIMDS. In basic AIMDS, the CHECKER 
subsystem is used primarily for the evaluation of 
the consistency conditions, the set of logical 
expressions which are attached, or "anchored", to 
the relations of a template. Consistency 
conditions provide a mechanism for continually 
monitoring the data base, in some cases simply 
reporting back an inconsistent instantiation, and 
in some cases actually updating the netw:,rk 
automatically. In TAXMAN II, the consistency 
conditions are used for several purpose s, but the 
major use of the CHECKER subsystem there i s in the 
pattern-matching procedures, which will discussed 
in Section III below. 

There are other ways, too, in which the 
ground-level TAXMAN II system has extended basic 
AD1DS, although the new features we have added are 
generally well - known in the AI literature. ( 1.) 
In addition to the separation of neti«>rks into 
distinct CONTEXTS, which is a feature of AIMDS, 
the TAXMAN II system provides an additional 
separation of neti«>rks into distinct STATES within 
each CONTEXT. The states are arranged in a 
binary- branching tree, so that each assertion in 
the network in a particular state is visible in 
each successor state unless it has been explicitly 
modified in an intervening state. We use this 
facility primarily to model an historical sequence 
of states and events, such as the facts of a case, 
and we use the binary-branching capability to 
model certain hypothetical variations of the facts 
of a case. (2 . ) As our earlier illustration 
suggests, the AIMDS templates have been organized 
lnto several hierarchies of · classes and subclasses 
in the TAXMAN II system. For example: an ACTOR 
can be a PERSON or a CORPORATION; a PROPERTY can 
be a PHYSOBJ or a CASH or a SHARE; a SECURITY can 
be a STOCK or a BOND. We call these hierarchies 
view hierarchies, because at the level of the 
instantiated neti«>rks they express the various 
ways of "viewing" a given instance (see Bobrow and 
Winograd, 1977) . Whenever a relatively 
"specialized view" of an instance is created, the 
TAXMAN II system automatically creates its more 
"generalized views", and then propagates upwards a 
designated set of relations, the so-called 
"inheritable properties", using the modular 
ne ti«>rk access functions. ( 3.) Another feature of 
the TAXMAN II system is its facility for 
representing meta-templates . The basic idea is to 
permit each named template (which represents a 
class of objects) to be itself an instance of a . 
higher-order template (which represents the meta
class). We use this facility in our procedures 
for matching conceptual hierarcies, as discussed 
in Section III below, but we also use it in our 
initial description of the corporate tax domain, 
wtlere STOCK- 1 can be treated as a class of SHARE 
instances, as well as an instance itself of the 
higher- order meta-class SECURITY. For a similar 
discussion of meta- classes, see Levesque and 
t.fylopoulos (1979). 
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II. The Conceptual Hierarchies. 

The major extension of AIMDS in the TAXMAN II 
system is the construction of an explicit 
conceptual hierarchy. Although we have seen 
already how the AIMDS templates can be arranged in 
a "view hierarchy", we will see in this section 
how a template can be defined in terms of a 
conceptual expansion in a space of descriptions, 
thus adding another level of organization to the 
representation. Section II-A describes the syntax 
and semantics of these new descriptions, and 
Section II-B shows how they can be arranged in a 
full abstraction/expansion hierarchy. 

A, Descriptions: DDNs and PDNs 

Let us first examine the TAXMAN II 
descriptions, or, as they will frequently be 
called, the DDNs. A description has the form: 
([CONTEXT cxtvar] [STATE stvar] <template-list> 
<constraint-list> <bindings-list>), where 

<template-list> 
, .- ((tname tvar (rname svar) .. ) .. ) 

and tvar <variable-name> 
svar •• - <variable-name> 

or (tname <variable-name>) 

<constraint-list> 
.• - (,, <any-logical-expression> 

,, <any-arithmetical-constraint> •• ) 

<bindings-list> ::= <any-AIMDS-bindings-list> 

ln this expression, cxtvar and stvar are "context 
variables" and "statevariables," respectively, 
and they are optional, as indicated by the square 
brackets. Similarly, tvar is a "template 
variable" and svar is a ....-;;lation variable" or 
"slot variable~Notice that each item in the 
<template-list> resembles the input to a MAKE or a 
FIND, as described in Section I, except that the 
names of specific instances have been replaced by 
the names of variables, Also, the unlimited 
embedding of descriptions i.tlich is permitted in 
the · MAKE/FIND syntax is disallowed in the DON, 
The "slot variables" here can be constrained, at 
most, by an expression of the form (tname 
<variable-name>), where "tname" would generally be 
a template somewhat further down in the VIEW 
hierarchy, As an alternative, however, the 
variables in a DON can be constrained by the 
overall structure of the <template-list> itself, 
and, most significantly, by the <constraint-list>. 
It turns out that this "flat" description syntax 
has certain advantages for the specification of a 
hierarchical matching procedure, as we will 
indicate later. 

Here are some examples, Consider first the 
"securityholding" description, which we might 
write out in F.nglish as "the C1"1Nership by an ACTOR 
of a SHARE of a SECURITY which is issued by a 
CORPORATION": 

(DON: (((OWN 01 (OWNER Al) (OWNED (SHARE Pl))) 
(SECURITY Sl (SHARES P1) (ISSUEDBY Cl))) 

NIL 
NIL)) 

In this example, the relation "shares" is the 
inverse of the rel at ion "shareof", and we know 
that Al must be an ACTOR and C1 a CORPORATION 
because of the original definitions of the 
templates C1"1N and SECURITY, respectively. Note 
also that we have used the embedded template 
(SHARE Pl) here to indicate that the PROPERTY ls 
restricted to the template SHARE. The 
<constraint-list> and the <bindings-list> are both 
NIL in this first example, but consider now how we 
can specialize the "securityholding" description 
to represent what might be called "NewJersy
voting- common-stockholding": 

(DON: (((OWN 01 (OWNER Al) (OWNED (SHARE Pl))) 
(STOCK S1 (SHARES Pl) (ISSUEDBY Cl))) 

((Sl STOCK-COMMON-YESNO YES) 
(Sl STOCK- VOTING-YESNO YES)) 

((Cl (NEWJERSEY))))) 

In this example, the SECURITY template has been 
specialized to the STOCK template, the STOCK 
template has been further constrained by the 
"voting" and "common" relations, and the 
CORPORATION, Cl, has been bound to the instance 
NEW JERSEY. 

In addition to the use of descriptions, or 
DDNs, in the TAXMAN II system, we will make 
frequent use of productions, or PDNs. The PDN has 
a structure very similar to that of the DDN, 
except that it contains two <template-lists> 
instead of one, each of which can be localized to 
a particular STATE: 

<template-list-1> 
·: := ([STATE stvar] 

(tname tvar (rname svar) , , , ) , , . ) 

<template-list-2> 
::= ([STATE stvar] 

(tname tvar (rname svar) ... ) ... ) 
As the syntax suggests, these PDNs would typically 
be used to represent a transformation from one 
state description to another. For example, the 
transfer of CYwNership from one ACTOR to another 
ACTOR could be represented as follows: 

(PDN: ((STATE Tl (OWN 01 (OWNER All (OWNED P1l)) 
(STATE T2 (OWN 01 (OWNER A2) (OWNED Pl) ) ) 
NIL 
NIL)) 

For another example, consider the splitting of a 
SHARE of STOCK into two equivalent SHAREs (and see 
McCarty, 1977, for a discussion of the need for a 
device of this sort): 
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(PON: ((STATE Tl 
(OWN 01 (OWNER All (OWNED P1)) 
(SHARE P 1 (SHAREOF S 1) 

(QUANTITY NTOTAL))) 
(STATE T2 

(OWN O 1 (OWNER A 1) ( OWNED P 1)) 



(SHARE Pl (SHAREOF S1) 
(QUANTITY N1)) 

(OWN 02 (OWNER Al) (OWNED P2)) 
(SHARE P2 (SHAREOF S1) 

(QUANTITY N2))) 
((EQUAL NTOTAL ( 1PLUS N1 N2))) 
NIL)) 

The <constraint-list> in this PDN provides our 
first example of an "arithmetical constraint": it 
says that the total quantity of SHARES owned by Al 
must be the same both before and after the split . 
In our current implementation, the arithmetical 
constraints are limited to expressions of equality 
between one variable and an arithmetical LISP 
·function of other variables, as in this example, 
but we are planning to generalize this syntax in 
the near future. 

B. Abstraction/Expansion Hierarchies 

Now that we have defined the DDNs and the 
PDNs of the TAXMAN II system, we are ready to link 
these expressions up to the TDNs of the basic 
AIMDS representation, in order to construct a full 
abstraction/ expansion hierarchy . For example, 
consider the DDN which represented the 
"securityholding" pattern in our original 
illustration. Suppose we now wanted to define a 
template of type REL named SECURITYHOLDING, which 
would represent the relationship between the 
"security-holder" and the "security- issuer" for 
any possible SECURITY. We would write: 

(TDN: 
((SECURITYIIOLDING REL.) 

((HOLDER L) ACTOR (REF: Al)) 
((ISSUER FN) CORPORATION (REF: Cl)) 
( (STRUCTURE FN) 

&(MAKE 
(DESCRIPTION 

(DLIST 
&(DON : (((OWN 01 (OWNER Al) 

(OWNED (SHARE Pl))) 
(SECURITY S1 (SHARES P1) 

(ISSUEDBY Cl))) 
NIL 
NIL)))))))) 

Ignoring for the moment the details of this code, 
let us simply observe that the slots of the TDN 
have been assigned variable names which correspond 
to the variable names of the DON. We refer to the 
DDN here as the expansion of the SECURITYHOLDING 
template, and conversely we refer to the 
SECURITYHOLDING template as the abstraction of the 
DDN expressing the OWNership of a SECURITY issued 
by a CORPORATION , Notice that the 
"securityholding" DDN cont .., ins se veral · free 
variables, 01, Al, Pl, S1 and Cl, but .the 
SECURITYHOLDING template contains only the 
variables Al and Cl in the slots for the "holder" 
and the "issuer", respectively. This is generally 
the way abstractions 1«>rk: an abstraction d eletes 
information which is explicitly repr e sented in the 
e xpansion, but it also partially encodes the 

missing information in the name of the abstraction 
template itself. 

A good example of the power of this kind of 
structural expansion is the concept of a "B
Reorganization", which was discussed extensively 
in McCarty (1977). By statute, a B- Reorganization 
is defined as "the acquisition by one corporation, 
in exchange solely for all or part of its voting 
stock of stock of another corporation if, 
immediately after the acquisition, the acquiring 
corporation has control of such other corporation 

11 United States Internal Revenue Code, 
368(a)(1)(B) . In the TAXMAN II system, we 
represent the basic structure of this concept as 
follows: 

(TDN: 
((BREORGANIZATION ACT) 

((ACQUIRINGCORP FN) CORPORATION (REF: Cl)) 
((ACQUIREDCORP FN) CORPORATION (REF: C2)) 
((TIME1 FN) TIME (REF: Tl)) 
((TIME2 FN) TIME (REF: T2)) 
( (STRUCTURE FN) 
&(HAKE 

(DESCRIPTION 
(DLIST 
&(DON: (((ACQUISITION ACQ 

(ACQUIRER Cl) 
(ACQUIREDPROP AP) 
(TRANSPROP TP) 
(TIME1 Tl) 
(TIME2 T2)) 

(CONTROL CON 
(CONTROLLER C1) 
(CONTROLLED C 2) 
(TIME T2))) 

( ( AP SHARE-SHAREOF-SECUR IT'l S 1) 
(S1 SECURITY-STOCKV- STOCK S1) 
(S1 SECURITY- ISSUEDBY-CORPORATION 

C2) 
(TP SHARE-SHAREOF-SECURITY S2) 
(S2 (SECURITY-STOCKY-STOCK 

STOCK-VOTING-YESNO) 
YES) 

(S2 SECURITY-ISSUEDBY- CORPORATION 
C1)) 

NIL)))))))) 

The DON in this example describes an ACQUISITION 
by a CORPORATION of CONTROL of another 
CORPORATION, where the "acquired- property" is 
related to the "acquired-corporation" in a certain 
way, and the "transferred- property" is related to 
the "acquiring- corporation" in a certain way. 
However, neither ACQUISITION nor CONTROL is a 
primitive template. Each has a further structural 
expansion: ACQUISITION expands into a sequence of 
EXCHANGEs, with constraints, and EXCHANGE expands 
into a sequence of pairs of TRANSs, with 
constraints; CONTROL expands into the OWNership o f 
a certain percentage of the STOCK of the 
controlled CORPORATION. 

Given this example, the purpose of 
classifying the DON variables into thr ee groups 
should be apparent . The "templ a te vari ables" 
correspond to those templates in the <template-
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list> which are potentially subject to further 
expansion: they act in some ways as if they were 
existentially quantified, although they often 
receive multiple instantiations in the net1«>rk, in 
which case each instance is analyzed separately in 
the remainder of the DON, as if the variable had 
~een universally quantified, 'nle "slot ·variables" 
are the variables which can be passed down (or up) 
with the template variables to (or from) a lower 
level of the expansion: they are treated as if 
they were universally quantified. 'nle remaining 
variables in the <constraint-list> are local to 
the DON and purely existential, and they are . 
inaccessible from the lower levels. 'nle basic 
idea, then, is to restrict severely the channels 
of communication between the TDNs and the DDNs at 
different levels of expansion, forcing all 
information to be carried by the bindings of t he 
slot variables. We conjecture that this is a 
natural constraint to impose upon a system of 
conceptual structures, and it has the added virtue 
of encoding some important control information 
into the basic semantic representation. 

Let us now see how the PON expressions can be 
incorporated into an abstraction/expansion 
hierarchy in much the same way as the DDN 
expressions. First, the PDN representing the 
transfer of OwNership (see Section II-A above) 
could be used for the expansion of a template 
called DELTAOWN, as follows: 

(TDN: 
((DELTAOWN STCH) 

((OBJECT FN) PROPERTY (REF: P1)) 
((OLDOWNER FN) ACTOR (REF: A1)) 
((NEWOWNER FN ) ACTOR (REF: A2)) 
((TIME1 FN) TIME (REF: T1) ) 
((TIME2 FN) TIME (REF: T2)) 
( (PROCEDURE FN) 

&(MAKE (DESCRIPTION 
(PLIST &( PON: ((STATE T1 

(OWN 01 
(OWNER A 1) 
(OWNED P1))) 

(STATE T2 
(OWN 01 

(OWNER A2) 
(OWNED P 1))) 

NIL 
NIL)) ) ) ) ) )) 

The expansion here is called a procedural 
expansion, since the PDN can actually be used as a 
"procedure" for transforming a net1«>rk from state 
Tl to state T2. A template with a procedural 
expansion can then be conjoined with other 
templates inside a DDN expression to produce a 
more complex "procedure", For example, DELTAO,,/N 
could be conjoined with SPLITPROP and JOINPROP to 
produce the procedural expansion of TRANS, at 
least for those cases in which the PROPERTY 
transferred is "divisible": 

(TDN: 
( (TRANS ACT) 

((AGENT FN) ACTOR (REF: AO)) 
((OBJECT FN) PROPERTY (REF: P1)) 
((OLDOWNER FN) ACTOR (REF: A1)) 

((NEWC1tlNER FN) ACTOR (REF: A2)) 
((TIME1 FN) TIME (REF: T1)) 
((TIME2 FN) TIME (REF: T2)) 
( (PROCEDURE FN) 

&(MAKE 
(DESCRIPTION 

(DLIST 
&(DON: ( ((SPLITPROP SP1 

(OLDOWNER A1) 
(OLDPROPERTY OP1) 
(NEWPROPERTY P1) 
(TIME T1)) 

(DELTAOWN DEL1 
(OBJECT P1) 
(OLDOWNER A1) 
(NEWC1tlNER A2) 
(TIME1 T 1) 
(TIME2 T2)) 

(JOINPROP JP1 
(NEWOwNER A2) 
(OLDPROPERTY OP2) 
(NEWPROPERTY P1) 
(TIME T2))) 

((Pl PROPERTY-DIVISIBLE-YESNO YES) 
(T1 TIME-PRECEDES-TIME T2)) 

NIL)))))))) 

The basic rule here is that any DDN expression 
appearing in a procedural expansion must 
eventually expand down to one or more PON 
expressions, so that the procedural expansion can 
actually be carried out. But the exact ordering 
of the procedures would normally be specified only 
by the <constraint-list>, as in this example: (Tl 
TIME-PRECEDES-TIME T2). Thus many of the planning 
techniques of Sacerdoti (1977), which involve the 
progressive tightening of the partial-order 
constraints, could be accommodated within the 
TAXMAN II formalism. 

III. The Pattern-Matching Procedures, 

Although the preceding discussion has 
suggested some of the semantic properties of the 
abstraction/expansion hierarchies, the full 
"meaning" of these expressions depends on the way 
they behave with respect to our pattern matching 
procedures, Basically, the DDNs and PDNs are 
abstract patterns which can be matched to any 
number of concrete net1«>rks, but when they have 
been arranged into abstraction/expansion 
hierarchies the pattern matching procedures must 
operate across multiple levels. 

Let us first consider the matching of a 
single DON expression, without any possibility of 
a further expansion of the <template-list>. The 
function to call in the TAXMAN II system is 
(RMATCH <Dname> <Bindings>), which takes as its 
arguments the name of a DON expression and an 
initial AIMDS bindings list. A single-level 
RMATCH is basically a call to the CHECKER 
subsystem of AIMDS: the templates i n the 
<template-list> are converted into a conjunction 
of network relations and combined with the 
expressions in the <constraint-list> to form the 
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,logical expression which we wish to have 
evaluated. The result, as described in Section I, 
is a residue expression telling us whether the 
match is true, ·false, or unknown, and why. If the 
result is unknown, for example, the residue sub
:expression and the unknown bindings list will tell 
µs which part of the DDN expression was 
responsible for the unknown match, 11n important 
piece of information to have available. Sometimes 
the unknown residue can simply be asserted true, 
as it is in the GMAKE functions of TAXMAN II. 
GMAKE also takes the name of a DDN expression and 
an initial bindings list as argunents, and it also 
calls CHECKER for an initial match result, but it 
then asserts into the netw:>rk all the relations 
which were unknown but uniquely bound in the 
initial match. RMATCH and GMAKE are thus 
complementary operations: RMATCH, somewhat like 
the FIND procedure of the basic AIMDS system, 
takes a network as given and attempts to construct 
a set of variable bindings W'lich produce a 
successful match of the DDN expression; GMAKE, 
like MAKE, takes the variable bindings as given 
and attempts to construct a set of assertions 
within the existing net1«>rk which satisfy the DDN 
expression. But it is interesting to note that 
both functions do their work by manipulating 
residues, and their control structures are 
;Jimilar. 

For the PDN expressions of TAXMAN II, the 
expressions with two <template-lists>, we use an 
RMAP function which combines the features of both 
RMATCH and GMAKE. Suppose we are using the PDNs 
to express a change of state, such as the 
"transfer of OWNership" or the "split ting of 
SHAREs" illustrated in Section II-A above. To 
carry out this change of state, we would basically 
do an RMATCH of <template-list-1> and then a GMAKE 
of <template-list-2>, thus transforming the 
network from a successful match with the fir st 
state description to a successful match with the 
second state description. Again, the necessary 
operations can be performed by the manipulation of 
residues, and this adds considerably to the 
clarity and uniformity of the implementation. 

Let us now investigate how the RMATCH 
procedure would operate if given a full 
abstraction/expansion hierarchy, such as the 
definition of a BREORGANIZATION in Section II - B 
above. The first step is to try a single-level 
match of the DDN expression, using RMATCHDDN. If 
this match succeeds, i.e., if it returns a true 
residue for every template in the <template-list> 
subject to the constraints of the <constraint
list>, then the RMATCH procedure terminates with a 
successful result. If the initial match is false 
or unknown, however, RMATCHDDN cycles through each 
template in the <template-list> in an attempt to 
match the lower-level expansi0ns. Specifically, 
RMATCHDDN passes down the top- level bindings for 
each "slot variable" in each template in the 
<template-list> to a function called RMATCHTDN, 
which is then responsible for establishing a 
successful match of the template expansion, if 
this is at all possible. After an initial 
analysis of the form of the expansion ( is it 

"structural" or "procedural"?), m1ATCHTDN passes 
· the variable bindings down one level further with 
a second call to RMATCHDDN, and this process 
continues recursively until the match either 
oucceeds completely, or else terminates from a 
lack of further expansions. The residue 
expressions returned from the bottom of the 
expansion would then be analyzed and combined 
until the result of the top level by level match 
could finally be assembled. Al though the rules 
for combining lower-level residues into upper
level match results are complex, the idea is 
simple: each template in the <template-list> could 
either be explicitly matched to the network, or 
implicitly matched by virtue of its lower-level 
expansions, and the explicit and implicit 
instances must all be combined according to their 
truth values, with true residues preferred to 
unknown residues, and unknown residues preferred 
to false residues. 

In an earlier version of the TAXMAN II 
system, we attempted to collect all of the 
combined residue expressions at the top level of 
the RMATCH, but this approach would be unworkable 
for a large hierarchy. Our current version stores 
the residue expressions locally at each TDN and at 
each DDN of the expansion, and returns to the top 
level a meta-residue which traces out the path of 
the RMATCH functions as they proceed recursively 
down and back through the hierarchy. This 
approach turns out to be useful, also, for the 
coordination of several more diverse styles of 
hierarchical pattern matching. To understand 'it, 
we need to understand the notion of a meta-domain 
for an abstraction/expansion hierarchy. l.ook 
again at our code for the SECURITYHOLDING template 
in Section II-B above. Although it appears here 
that the DDN has simply been attached to the 
STRUCTURE slot of the TDN, we actually represent 
this abstraction/expansion pair by a set of meta
templates and meta-relations: 3ECURITYHOLDING is 
an instance of a meta-template called TEMPLATE, 
which is connected by 11 "structure" relation to an 
instance of a meta-template called DESCRIPTION, 
which is in turn connected by a "dlist" relation 
to an instance of a meta-template called DDN. 
Suppose now that this particular instance of a 
DDN, say DDN017, has been matched to the network 
to produce a residue expression: we w:,uld then 
create an instance of DDN017,say DDN017-1, to 
stand for the result of the match. We 1«:>uld store 
the residue expression attached to this newly 
created . instance. If these match results later 
justified the creation of a new instance of 
SECURITYHOLDING (call it SECURITYHOLDING-1), we 
would connect SECURITYHOLDING-1 to DDN017-1 by 
instantiating t.he "structure" and the "dlist" 
relations in the appropriate context. In this 
way, we w:,uld preserve a record of the 
dependenciP.s between the DDN instantiations :1 nd 
the TDN instantiations, while distributing the 
actual residue expressions throughout the netw:,rk. 

Using the meta- residue expressions, it now 
becomes possible to integrate · several other 
pattern matching strategies into the TAXMAN II 
system. The RMATCH procedure performs a top-down 
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goal-directed match of a given abstraction to an 
existing lower-level network: in short, a 
"recognition match". The GMAKE procedure ( a 
"generative make") can also be extended to the 
full abstraction/expansion hierarchy: given a top-
level abstraction GMAKE instantiates all the 

1
1ower-level expansions, if this can be done 
'consistently in the existing network. We can 
;implement this quite easily, it turns out, by 
•first running RMATCH to test for the consistency 
and the uniqueness of the proposed expansion, and 
'.then tracing back down along the meta-residue to 
generate all of the unknown templates and 
relations. Perhaps even more significant is the 
possibility of defining a GMATCH procedure (a 
"generative match") using meta-residues. In its 
most general form, GMATCH would do a bottom-up 
data-driven generation of all the abstract 
.descriptions which could be inferred from an 
existing lower-level network, a process which 
seems impractical if the hierarchy is complex and 
'if the inference rules can tolerate partial 
·matches and partial mismatches, as in the TAXMAN 
II system. However, GMATCH can be defined more 
reasonably within the framework of an ex is ting set 
of RMATCH results: GMATCH would then monitor the 
data base and generate only the updates for the 
top-level instantiations. Note that the meta
residue expressions record all the dependencies 
between the DON instantiations and the TON 
instantiations which have resulted from an 
'application of RMATCH. We can implement this 
version of GMATCH by tracing along the path of the 
meta-residues. (In this connection, the meta
residue expressions are similar to the 
"footprints" proposed by Woods, 1978, and the 
"detlists" of MOS and AIMDS.) In some situations, 
:1t may also be useful to have available an RMAKE 
procedure: this is a goal-directed search for a 
:specific component of a lower-level expansion, and 
'it is related to GMATCH in the same way that GMAKE 
is related to RMATCH. We should note here, 
however, that only the RMATCH and the GMAKE 
procedures have so far been implemented in the 
TAXMAN II system. GMATCH and RMAKE are in their 
design stages. 

IV. Future Work. 

One of the main goals of the TAXMAN project 
is to represent a legal concept as a prototype
plus-deformation structure and to analyze the role 
that this kind of structure plays in the process 
of legal argument. In this paper, we have 
examined only the logical template structures of 
the TAXMAN II system, but we have established the 
foundation for a subsequent examination of 
prototypes and deformations. To construct a 
deformation, we need a clear and coherent 
representation of the prototype. But we now have 
a highly structured conceptual space to work with: 
the DON space. The DON expressions can be 
arranged in a generalization/specialization 
hierarchy, as we have seen in some earlier 
examples; they can be stored as AIMDS networks, 
using variable names in the place of instance 

names; and they can be transformed by a system of 
PON expressions, like any other AIMDS neti«>rk. We 
thus have available the basic mechanisms we need 
to represent the mappings of a conceptual space, 
as proposed in McCarty ( 1980) and McCarty, 
Sridharan and Sangster ( 1979). We w111 develop 
these ideas further in subsequent papers. 
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Abstract 

This paper addresses the problems in 

providing graphic displays autanatically to serve 

a user naive with respect to oanputer graphic 

devices. It identifies the properties of data 

that affect graphic representation and presents a 
formalism in which to view them. It also 
discusses and illustrates the selection of various 

graphic formats based on the data to be 

represented, its properties, and graphic device 
characteristics. 

h Problem Statement 

Broadly speaking, there are three phases of 
using oanputers: acquiring, processing and 

presenting information. As to the first two, many 
years of research and develOJ;lllent have led to the 

availability of efficient ways of collecting and 

processing data. However, methods of presenting 

informaticn are by and large limited to variations 
of taoolar form. Reading a sequence of lines and 
understanding their import _is a tedious job 
trough, reminding people of the old proverb, ~A 

picture is worth a thousand words.~ As a result, 

efforts are n::,w being directed towards presenting 
such data graphically. Unfortunately, using 

graphic devices can be a <X111?lex process, 
requiring days or even weeks of training. Up to 

* This research is partially supported by DARPA 
grant #MDA903-80-C- 0093. 
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now, it has been alm:lst impossible for a naive 
user to create a graphic display to view 

information. 

Our long range goal is to have an intelligent 

system helping users in the graphical display of 

data, performing the task of a graphic artist. 

Our objective, at present, is to facilitate 

autanatic display of information by providing 
reasonable defaults for graphical representations 

and easy user m:Jdification of the resulting 

displays. 

The major problem in developing such a system 

is that there is a gap between the way a user 

conceives of a graphic display and the way the 

machine does. For the user, it is a meaningful 

picture made up of certain particular pieces; for 

the machine, it is the sequence of operations 
needed to create such a display. A seex>nd problem 

is that a user will not think to make explicit 
what s/he does not care about or what s/he 

believes the system already knows or is able to 

infer. What is needed is a graphic expert system 
that, on the one hand, is at an appropriate 
conceptual level for user to state things that 

s/he cares about, but, on the other, provides 

appropriate defaults to take care of everything 
else. 

Research has proven that graphic presentation 

of information is better than tabular form. 

Tabular form merely presents raw data without 

interpretation [Gene Zelazny, 1972] , whereas 

pictorial form conveys the relationship between 
· the data items. 



To illustrate this CXll'ltrast between tabular 

and graphic presentation, oonsider the following 

exanq:>le. Usil'Y:1 the Harvest system [Harvest, 

1979], a database query system, a naive user can 

type in 

WHERE YFAR • 1980 DISPLAY BUDGET 

and get a formatted output as shown below: 

BUDGET FOR 1980 

ITEMS JIMJ{JNT* 

1. SAIJ\RIF.S 35 

2. TRAVEL 10 

3. EC(JIPMENT 25 

4. MAINTEtWCE 18 

5. MISCELLANICXJS 12 

------
'IOI'AL 100 

* Thousands of dollars 

For tabular form output, systems such as HARVEST 

can provide default formats. This relieves a 

naive user of the need to provide detailed format 

specifications, a burdensane task especially when 

the user may not care irore about the format than 

it be easy to read. 

However, it is 1'¥)t currently possible to 

request a graphic display in the same easy terms -

i.e., to type 

WHERE YFAR = 1980 DISPLAY BUDGET GRAPHICALLY 

and get a graphic display as sllc:Mn here: 

313 

BUDGET E.JL.R l...9....8.Jl 

f'l1s~ ---~ 

, 
/ 

f'IA I NTENAN E 

\SALARIES 

\ 
) 

/ 

No existing system provides the default graphical 

formats needed to provide such a service. 

There are sane "high level" software packages 

ocrrmercially available, such as Pu:Yl'-10 and DISPIA 

[ISsa:>] , that allow an applications programner to 

use a graphic device at a programnil'Y:1 language 

level. Interactive systems like Tell-a-Graf 

[ISsa:>J requires users to enter data and specify 

their preferences canpletely. But none of these 

systems can provide default displays for either 

canpletely or incanpletely specified choices. 

What is needed is, highly autanated graphics 
systems to meet the needs of naive users who 

either do not want to specify any preferences 

about the graphic display or give incanplete 

specifications. 

This paper discusses appropriate defaults for 

those aspects of a display the user has failed to 

specify and how tho.c;e defaults depend on three 

factors: the data to be displayed, the device on 

which it is to be displayed and the ~ it is 

displayed for. Two different types of defaults 

are CXll'lSidered: defaults affecting the choice of 

graph through which to display the data and 

defaults affecting the choice of "attributes" for 

that graph, such as color, size, orientation, 
order and other factors. These defaults are used 

to provide a naive user with the ability to see 

his or her numeric data (which would otherwise be 

presented as a table of numbers) in the form of a 

pie chart, bar graph or trends graph. 



.• 1 

.!!..:. Definitions 

Before introduci03 the system and basic 

assumptions for the system, we shall define the 

caicepts we will be usi03: 

1. <XNl'INUI'lY: a boolean value that 

represents whether or not the members of 

an ordered set represent an interval of a 

continuum with respect to the given 

ordering. Example: A set of days, 

{Sunday, Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday} oould be 

defined to represent a WEEJC, an interval 

of time, and have the prq,erty 

continuity, while {Sunday, Tuesday, 

Saturday} may not, and {Sunday, Tuesday, 

5, UNITS: is the set of labels specifying 

the unit of measurement associated with 

each m.nnerical value. Example: 

Thousands of dollars, Hundreds of tons, 

etc. 

One of the factors upon which effective 

autanatic data display depends ocmprises 

particular characteristics of the data itself. By 

abstracti03 out these characteristics, one can 

form a well defined bijection mapping that can 

help one to understand the ocmplex phencmenon of 

data and its manipulations. 

Let this abstract form of data be represented 

by the word title, a mapping fran the danain set 

of labels into the range set of quantities. That 

Friday, Wednesday, 1'4or¥lay, Saturday, is, 

Thursday} may not. 

2, 'IUI'ALI'lY: is a boolean value that 

represents whether or not the members of 

a set represent ALL the ocmponent parts 
of an object or an abstract ooncept. 

Example: the set of items {Salaries, 
Travel, F.quipnent, Maintenance, 

Miscellaneous} oould be defined to 

represent the parts of which BUIXEl' is 

ocmposed,and have the prq,erty 

totality. The subset {Salaries, Travel, 

Maintenance} would not have totality. 

3, CARDINALITY: is the number of elements 

in a set. Example: the cardinality of 

range the set of days is 7. 

4. MULTIPLICITY': is the number of values 

assigned to each element in a danain set 
by a mapping. Example: the mapping 

"square root" fran real numbers into 

oaiplex numbers has the l'lllltiplicity of 

2. 
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T .. , U:: 111,12, • • • ,lm}-•>{ (qll ,ql2' •" ,qln) ' 

<q21,q22• •" ,q2n> '" •' (C\,,1 ,qm7.' "• ,qmnl I 

.....tiere, for t!Very i=l tom, 11 is the ith element 
in the domain set and for t!Very i=l tom anri i=l 
ton, qij is the jth component of the ith tuole in 
the ranqe set. F.ach colunn also !vis an entity 

called units anri another m!'ITY call~ 

col unoa labe 1 • 

In other words, the data in the range set is a 

matrix of size m rows and n oolumns. - -
The cardinality of row-labels and 

multiplicity of the mapping can be derived fran 

input data. However, two additional prq,erties of 

this mapping, that are necessary to select a 

display format are not directly derivable fran the 

input data itself. These are: 

(i) whether elements of either row-labels or 

oolumn-labels form OCITf?Ollent parts of sane whole 
with respect to the quantities represented by each 

member of the oolumn-labels and row-labels 

respectively: that is, whether either set has 

totality, 



(ii) whether elements of either row-labels or 

column-labels denote to a continuum with respect 

to the quantities represented by each member of 

the column-labels and row-labels respectively: 

that is, whether either set has oontinui ty. For 

exarrple, 

NET INCn1E PER SHARE 

<XMPANY-1 <XMPANY-2 

1972 0.86 0.60 

1973 1.01 0.90 

1974 1.22 1.15 

1975 1.35 1.45 

1976 1.60 1.80 

1977 1.93 2.24 

1978 2.44 1.90 

1979 2.70 2.01 

In this example, the row-labels are 1972, 1973, 

1974, 1975, 1976, 1977, 1978 and 1979 and the 

column-labels are <XMPANY-1 and <XMPANY-2. The 

continuity of row-labels oould be true or false 

with respect to each column-label. If the 

oanaparison of inoanes for two canpanies over the 

period of time is prefered, then the continuity of 

row-labels would be {true, true} with respect to 

each of the column-labels. If an absolute 

CCJlllarison of incanes is prefered then the 

continuity of row-labels would be {false,false} . 

The totality of row-labels oould be true or false. 

If a relative ocrnparison of each year#s incane 

with respect to the total incane of each ocrnpany 

is prefered, then the totality of row-labels would 

be {true, true}; otherwise, it would be 

{false,false}. Similarly, the continuity and 

totality oould be defined for column-labels. The 

cardinality of row-labels is 8. '111e multiplicity 
of the mapping is 2. The units are dollars for 

each column-label. 

315 

III. Examples 

Having defined the concepts that we will be 

using, to denonstrate how the above mentioned 

ideas can be used to provide a graphic display, 

consider the BUOOET FOR 1980 exarrple given 

ear lier. Here the mappii!iJ is BUOOET FOR 1980, the 

set of row-labels is {Salaries, Travel, Equipnent, 

Maintenance, Miscellaneous} , the ~ set of 

quantities is { (35), (10), (25), (18), (12)}, the 

set of column-labels is {Am::>unt} and the set of 

units is {Thousands of dollars}. Let the totality 

and continuity of row-labels be {True} and {False} 

respectively. Given this information , and no 

preferences on the user#s part, the systern#s task 

is to observe the data and its characteristics, 

decide what type of graphic format is both 

suitable and feasible with respect to the graphic 

device that is available, decide its attributes 

and then display the picture. (Although it should 
also allow the user to nndify the resulting 

display, this aspect of the user interface will 

not be discussed.) For this example, the system 

selects a pie chart representation to express the 

totality of the row-labels. This pie chart 

representation is an appropriate choice as 

confirmed in the literature: 

"Because a circle gives such a clear impression of 

being a total, a pie chart is ideally suited for 

the one purpose it serves - showing the relative 

sizes of the oanponents of sane whole." -

(Zelazny, 1972] 

" ••• the separation of a whole anount in teans of 

its canponent quantities . In the graphic figure, 

a circular form can be used to represent a whole 

arrount, and can be divided into segments which 

represent prqiortional quantities, or percentages, 

of the whole." - (~, 1968] • 

As we noted above, the user has not stated 

any preferences regarding the display. This being 

the case, the choice of whether or not to color 



I 
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the different segments of the pie (and if so, what 

colors) is left as another set of defaults. These 

choices/defaults depend partially on device 

capabilities but also on whether oolors would be 

an effective way of ocmrunicating information to 

the user. For a device such as the printed , page, 

the choice of oolors is black and white. 

In this exarrple, suppose the totality is 

{False}, the system whould have opted for a bar 

~o 

2.5 

2,0 

chart. The reasons for this option are: (i) 1.5 

continuity being false, a line graph is not 

selected, (ii) totality being false, a pie 

representation is not selected, and (iii) "In a 

graphic figure, quantity can be shown in 

canparative relation to other quantities, through 

the extension of abstract parallel bar forms." -

Bowman (1968). The resulting figure is shown 

below: 

' 0.5 
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As another example consider the mapping 1. 5 

no:ME PER SHARE. We will look at five cases. 

case 1. If the continuity of row-labels is {true, 

true}, the totality of row-labels is {false, 

false} and the units is {dollars, dollars} the 

graphic format selected would be a LINE graph. 

That is, 

1.0 

0.5 

1912 
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If the continuity of row-labels is 

false}, the selected graphic format would 
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Case 3. If the continuity of row-labels is {true, 

false}, the graphic format selected would be 

3. 0 -
tLLI IN COME ti...R s.JLA.ll 

2. 5 

0 
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I I 
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Case 4. If the continuity and 

row-labels are {false,false} and 
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' 78 ' 79 

totality of 

{true, true} 

respectively, t hen the data would be presented in 

the form on the top right. 

Case ~- If the continuity and totality of 
row-labels are {false, false } and {false, false } i 

and the totality of column- labels is {true, true, 

true, true, true, true, t r Je, true}, then the 
graphic format on the bottan right represents the 

ini;:ut data. 
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IV. System Overview 

The overview of the proposed system currently 

under developnent is given in the following 

figure. 

CONTROL 

We are making the following three assumptions 

with respect to this system design: 

(i) DATA is expected fran an existing database. 

The system expects a table of information which 

has both row-labels and column-labels. Either of 

these sets may be tagged with the properties of 

continuity and/or totality. These two properties 

of the mapping are expected as input to the system 

along with the data mapping and information on 

units of measurement for the quantities in the 

range set. 
(ii) DEVICE is expected to have a set of routines 

for drawing and erasing points, lines and 

characters, and for setting colors or grey values. 

(iii) USER is expected to be able to type in the 

request for a graphic display. 

The information fran a database enters the 

system at the node rmur DATA. The data is passed 

to the next rode FOR-1AT SELFX:TIOO. 
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Depending on the characteristics of input 

data such as 11U.1ltiplicity, cardinality, units, 

continuity and totality1 and of graphic device 

such as device ~. spatial and intensity or 

color resolution1 a default graphic format (such 

as a pie chart) will be selected to display 

information. These rules of selecting a 

particular display format are defined after 

consulting Bertin (1973], Boi.man (1968] and Gene 

Zelazny (1972 and 1980] and studying various 

graphic representations. 

Once the appropriate graphic format has been 

selected, the format and the information to be 

displayed are passed to the next node, the 

ATl'RIBUTE SELEx::TIOO. This state consults the 

device knowledge and danain specific knowledge to 

determine the attributes of the display such as 

color and icons. The output of this state 

consists of data and device parameters. 

Depending upon these parameters, the next 

node, GRAPHIC PRCX:EDURES, generate the graphlc 

· cam1ands to a particular device that realizes the 

display. 

DISPLAY is the actual display of information, 

the final output of the system, in the graphic 

format. 

The graphic display is obtained by simply 

requesting the system to present tabular 

information graphically. If the display is not 

satisfactory to the user, it may be rrodified. The 

rrodifications are prOll'ided at three levels: (i) 

input data oould be rrodified by selecting or 

grouping the row-labels to be displayed, (ii) the 

properties such as totality or continuity could be 

changed thereby changing the format of the display 

and (iii) attributes of display oould be changed. 



V. Sl.Dll'llary 

In sl.Dll'llary, this paper has discussed the 
system [Gnanangari, 1980] which we have designed 

to provide appropriate defaults for those aspects 
of the presentation of a user .. s data thats/he 

either cx,es n:>t care about or assumes the system 

\IK)\lld "obviously" infer. The underlying 

structures of input data have been studied and 
abstracted arrl relavant properties of data have 
been recognized. -A reasonably large set of 
graphic formats have been defined for presenting 

data. Currently we are working on, knowledge 
representation issues of the system. 
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ABSTRACT 

The concept of graphical type is a basis of 
structured and reliable graphical processing. 
However, it requires the way of checking the 
compatibility and legality of operations. This 
paper presents methods of graphical type checking 
using computer perception. Algorithms have been 
implemented for MIRA-2D, a graphical PASCAL exten

s ion based on graphical types. 

l. INTRODUCTION 

A data type, as it is defined by Wirth [ l ] , 
determines the set of values to which a constant 
belongs, or which may be assumed by a variable 
or an expression, or which may be generated by an 

operator or a function. The concept of data type 
is very fundamental, but it requires the way of 

checking the compatibility and legality of opera
tions. For example, the assignment of a real va
lue to a logical variable has no meaning. Such 
an error may be detected without executing the 
program. However in some cases, the compiler 
cannot detect errors. For example, in a language 
such as PASCAL which admits subrange types, the 
result of a calculation may be out of range and • 
it may be only found during the execution. In 
this case , the problem may be solved in incorpo
rating tests in the object code produced by the 
compiler or in the runtime library. 

Because the concept of data type is very im
portant and because we are concerned with structur
ed computer graphics, we have designed and imple
mented abstract graphical data types as an exten
sion of the PASCAL language. This extension gives 

* Thi s work was supported by Natural Sciences and 
Engineering Research Council Canada. 

Daniel Thalmann 
D~partement d'Informatique et 
de Recherche Op~rationnelle 
Universit~ de Montr~al 
Canada 

the user a way of defining and u~ing specific gra 
phical types, which can be used as other PASCAL 
types. For example, the programmer may define and 
use variables of type triangle, square, circle and 
so on. Type checking may be perform in most cases 
at the compile time. For example, we know that a 
rotation does not alter the type of a variable . 
But, the language gives the user the possibility 

of defining image transformations which may cl1anqe 

the type of a variable (e.g. a shear does not 
preserve a circle!). A user may also enter inter
actively a figure and there is a union operation 
which allows the user to build a new figure from 
two existing figures. In these different ca ses , 
type checking is very difficult to perform. 
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It is necessary to recognize the s tructure of 
the figure, but at the runtime all figures are 
implemented as linked lists and it is not possible 
to have access to the original structure. The 
only way of checking if the figure has the good 
type is based on pattern recognition. The process 
of pattern recognition is dependent on the complex
ity of the graphical type. In a fir st step, we 
create a figure which is a model for the data type 
that has to be checked. This figure i s then trans 
lated in such a way that its center is the same as 
the center of the figure to recognize. Afterwards, 
the size is adjusted, and two typical vectors of 
both figures are computed, then the model is rota
ted until the typical vectors match. At this time, 
a characteristic function is c0111nuted for both 
figures and it is decided if the figure i s analog to 

the model. Different types of characteristic 
functions may be choosen and the choices will be 
discussed. In the case of more complex figure s , 



it may be necessary to decompose each figure into 
simpler figures and apply topological analysis. 
In ,ome cases, type checking is not possible be
cause the type is too general. 

2. THE CONCEPT OF GRAPHICAL TYPE CHECKING 

2.1 The concept of type ch_~~ki~ 

A data must possess a type; this concept is 
one basis of structured progranming as stated by 
Hoare [ 2 J. Let us have an example: we would 
like to write a function which calculates the 
factorial of a number. Although it is not the 
most efficient definition, the factorial may be 
written in PASCAL as: 

function fact (n:integer): integer; 
begin 
if n=O then fact·= 

else fact := n*fact (n-1) 

It i s clear that such a function will have 
some trouble when it is invoked as: 

y := fact(-10) or y := fact(lOOOO) 

A better version of th is function will be: 

const max = 10; 
~ subrange = O .. max; positive=O .. maxint; 

function fact(n:subrange):positive; 

~~ 
if n~o then fact := l 

else fact := n* fact(n-1) 

A statement as y := fact(-10) will produce 
a diagnosis at compile time, because it is very 
easy to find that -10 is not included in the 
subrange 0 •• 10 . But the two following statements 
may be only checked at the runtime: 

read (val); 
y := fact (val); 

In fact, if the read value is -10, a runtime 
error has to be detected. 

2.2 The concept of graphical type 

We are concerned with structured computer 
graphics [ 3]. That is the reason why we have 

designed and implemented MIRA 20 l 41, a graphical 

321 

PASCAL extension. This extension is based on 
abstract graphical data types (5 J. Such graphi 
cal types allow the programmer to define and use 
graphical variables which have a specific type. 

e.g. ~ s: square; t: triangle; 

User may define their own graphical types as 
it is shown in the following example: 

~ losange = figure (c: vector; a,b: real); 
var x,y: vector; 
begin 
X := << a,Q >> ; y := << 0,b>> ; 

connect (c+x, c+y, c- x, c-y, c+x) 
end; 

Standard types have been defined : square, cir
cle, triangle, ellipse, line, segment and fig, 
which is a universal but unstructured type Graphi
cal variables may be manipulated by procedures , 
assignments and image transformations as they are 

defined in [ 5 l. 

2.3 The concept of _graphical type checking 

Assume that a programmer defines two variables 
of circle type; 

var cl, c2: circle; 

then, he performs the following operations: 
create cl (<< 2,3 >>, 10); c2 :=c l; 
rotation (cl, origin, pi/3, cl); 

translation (cl, << 2,3 » , cl); 
draw cl; 

These operations have the following meaning : 
creation of a circle cl (with center < 2,3 > and 
radius 10), copy of this circle, rotation around 
< 0,0 > with an angle n/3, translation of < 2,3 > 
and drawing. 

All these operations may be checked at the 
compile time, because it is well-known that a 
rotation and a translation preserve a circle. 

However, it is possible to define image 
transformations which alter some graphical types. 
As an example, we define a shear along the x-axis. 
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transform xshear (si ze: real); 
var y: real; 
begin y:= projy(oldfig); 
newfig := << projx(oldfig) + size*y, y >> 
end; 

A transformation is similar to a procedure; 
the statements define the transformation to obtain 
a vector (called "newfig") of the new figure from 
a vector (called "oldfig") of the old figure. 
The transformation is implicitly done on each 
vector of the figure. 

If we declare the following variables: 
var t: triangle, c: circle; f: fig; 

The following sequence of statements will 
produce the figure which is shown in appendix. 

window (« -1 0, -rn », « 10, 10 » ); 
create t (<< 1,2 », << 3,4 >>, << 2,6 >> ); 
create c (<< -3,-2 >>, 2); 
draw t,c; 
xshear (t , o:5, f); draw f; 
xs hear (c , 0.5, f); draw f; 

If we replace Xshear (t, 0.5, f) by xshear 
(t, 0.5, t), there is no problem, because a 
shear transforms a triangle in another triangle. 
However, a shear does not preserve a circle and 
xshear (c , 0.5, c) has to cause a runtime error. 

Other operations require a runtime graphical 
type checking: 

a) the standard procedure readgraph 
(fl , f2, ••. fn) which allows the user to 
enter interactively figures. 

b) the standard procedure union (fl , f2, f3) 
which allows the user to build the figure 
f3 from the existing figures fl and f2. 
If the type of f3 is not the fig type, 
it has to be checked . 

c) the assignment; for example , if we 
declare: 
var t: triangle; f: fig; 

the assignment f: =t is always correct but 
the assignment t: =f is only legal if f is 
a triangle. 
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3. HOW TO CHECK GRAPHICAL TYPES 

3, l Philosophy of implementation 

At the runtime, all figures are implemented 
as linked lists and it is not possible to have 
access to the original structure. The only way 
of checking if the figure has the good type is 
based on pattern recognition. 

Our extension has been implemented by a 
preprocessor which produces a "standard" PASCAL 
program. Runtime type checking has to be perform
ed by adding tests in the object code. 

For example, if we declare 

~ t: triangle; f: fig; 

f:=t will be translated into: 

copy (t , f) 

t:=f will be translated into: 

if istriangle (f ) then copy (f, t) 

else runtimeerror(4) 

In the same way, the translation of the 
"xshear" statements that we have discu ssed in 
paragraph 2.3 i s the following: 

source code (MIRA 2D ) 

xshear(t, 0.5, f); 
xshear(c, 0.5, f); 
xshear(t, 0.5, t); 
xshear(c, 0.5, C); 

object code (PASCAL) 
xshear(t, 0.5, f); 

xshear(c, 0.5, f); 
xshear(t, O.S, t); 

if not istriangle (t) then runtimeerror (4); 

xshear(c, 0.5, c); 

if not iscircle (c) then runtimeerror (4); 

He show that the fig type is not checked in 
the first two statements. 

3.2 Pattern recognition of very_ _sim.p le ob_iects 

Objects like triangle or segment may be easily 
identified, as it is proved by the following func
tion definitions: 

· 1,1t .. 1 ., """"' ·i 



function istriangle (f:fig): boolean ; 

var cons, closed: boolean; n: integer; 

begin features (f, cons, closed, n); 

istriangle:= cons ~nd closed and (n=3 ) 
end; 

function issegment (f: fig): boolean ; 

var cons, closed: boolean ; n: integer; 

begin features (f, cons, closed, n); 

issegment:= cons and (not closed) and (n=2 ) 
end; 

Both functions use the procedure features 
(f, cons, closed, n) which checks if the figure 
f has consecutive visible segments, if it is 
closed and how many vectors compose the figure. 

3.3 Problems of structure 

The function istriangle which has been shown 
in last paragraph will cause problem if a triangle 
is built by the union of two half triangles as 
shown: 

[_·'·' > 

< 1,2 > < 2,2 > 

< 2,3.5 > 

< 2~< 3,2 > 

The new figure will have 6 vectors; that is 
the reason why we have implemented a procedure 
"restructure" which builds a new version of a 
figure by deleting all redundancy and unuseful 
vectors. 

3.4 Comparison _of _~cts 

In case of figures like a circle, we create 
a figure which is a model for the graphical type 
that has to be checked. The figure is then 
translated in such a way that its center is the 
same as the center of the figure to recognize. 
Afterwards, the size is adjusted, and two typical 
vectors of both figures are computed; then, the 
model is rotated until the typical vectors match. 
At this time, a characteristic function is com
puted for both figures and it is decided if the 
figure is analog to the model. 
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This algorithm is only possible when the type 
defines a class of similarity; the corresponding 
function is the following: 

function sameshape (fl, f2: fig): boolean; 

~ ctl, ct2, ptl, pt2 : vector ; 
alphal, alpha2, dmax2, dmaxl: real; 

begin ctl:= center(fl); ct2:= center(f2); 

translation (fl, ct2-ctl, f2); 

distmax (ct2, fl, ptl, dmaxl); 

distmax (ct2, f2, pt2, dmax2); 

homothety (fl, ct2, dmax2/dmaxl, fl); 

alphal:= arctan ((projy(ptl )- projy(ct2))/ 
(projx(ptl )-projx(ct2))); 

alpha2:= arctan ((projy(pt2)-projy(ct2))/ 
(projx(pt2) -projx(ct2)); 

rotation (fl, ct2, alpha2-alphal, fl); 

sameshape:= eqfig (fl, f2) 

end; 

The boolean function eqfig de~ermines if both 
figures are "equal" . In fact, eqfig calculates 
a few characteristics of both figures and compares 
them. 

Many choices are possible for these characte
ristics but they may be classified into two 
classes: 

i) statistical analysis 
e.g. comparison of averages, variances, 

correlations 
ii) topological analysis as: 

a) correspondence of point types as defined 
by Nagao [ 6 I 

b) comparison of relative positions as it 
has been used in recognition of _hand 
printed [ 7 J and handwritten (8 J text. 

c) comparison of line drawing analysis; 
this kind of analysis may be based on 
structural units as it was developed 
by Morofski and Wong [ 9 J in PPS . 

In the case of standard and simple graphical 
types, we have chosen a statistical analysis. 
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We compare averages and variances of vectors of 
both figures. However, we add, in the statistics, 
the middle vectors of a 11 visible segments. 

4. USER GRAPHICAL TYPE CHECKING 

4.1 Problems with user graphical type checkin_g 

As users may define their own graphical types, 
type checking method is dependent on the kind of 
type. For example, the two following types can 
not be checked in the same way: 

regularpolygon = figure(center: vector; 
length: real; nside: integer ); 

regularhexagon = figure(center: vector; 
length: real); 

The first type is very difficult to check, 
because a square or a regular hexagon are regular 
polygons and it is not possible to use the algo
rithm described in paragraph 3.4. For the second 
type, there is no problem. 

4. 2 Di_recti ves to the prep_roc~ssor_ 

The only way of providing type checking is to 
give the user the possibility of specifying his 
type checking method. As ·we consider that type 
checking is not a characteristic of the language 
but an implementation feature, we prefer that 
type checking specifications are introduced as 
directives to the preprocessor. These directives 
have to be given in a PASCAL comment (as directives 
to the PASCAL compiler). Such a comment has to 
begin with a character '!' • Each directive 
consists of a letter followed by a character '+' 
if the method has to be used, or a character 1

-
1 

if the method ' is not used. Ten directives are 
available: 

C: check if the figure has consecutive visible 
segments 

D: decompose the figure into simpler parts and 
checks if the different parts are compatible 
with the type definition. 

I: (see paragraph 4.3) 

K: check if the figure is closed. 
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L: check if all sides have the same length 

N: check if the figure has the same number of 
vectors than it is defined in the type 

R: in case of type error, the figure is restruc-
tured and checked again 

S: type checking by a statistical comparison 

T: type checking by a topological comparison 

Z: suppress all type checking. 

Different directives may be used si multa 
neously. 

e.g. 

~ 
(*!N+, K+, L+*) 
equilateral = figure (a,b,c: vector); 

begin connect (a,b,c,a) 
end; 

(*!L-*) 
quadrilateral = figure (a,b,c,d: vector); 

begin connect (a,b,c,d,a) 
end; 

A variable of type equilateral must be 
closed, must have all sides with the same length 
and the number of vectors will be checked. For a 
variable of type quadrilateral, there is no 
restriction on the side length. 

4.3 Q_i_~.£(!?Si_on ..2.f_ some di rect_i ve_~ 

Topological comparisons are obtained by a 
technique which is similar to the method of 
Morofsky and Wong [ 10 J, It means that the ana
lysis of patterns is based on the recognition of 
junctions: 

T- junction r 
x- junction + 
K- junction 

~ Y- junction 

Comparisons are also based on angle measures. 
The directives 'O' should be used when a graphical 
type is defined by inclusion of simpler figures, 
which is possible with the _i_!l~u-~ _ statement. 

. .. '· "·" 



P.(). typ~ (*!T+ ,O+*) 
doublecircle=figure(c:vector; r :rea l ); 

var cl, c2: circle; 
begin 
create cl(c-<< r,O >>,r); 
create c2(c+<< r,O >>,r ); 
include cl, c2 
end; 

In the case of an operation like union 
(fl, f2, f3), if the type of f3 is "doublecircle", 
the type checking algorithm searches for two 
circles. 

The directive 'I' has to be followed by a 
real positive number less or equal to 1. This 
value is a tolerance factor ; the higher is this 
value, the more exact pattern is required . Such 
a technique was already introduced in ESP3 by 
Shapiro [ 11 I . The default tolerance factor has 
been fixed to 1- lo-10 • 

5. CONCLUSION 

Graphical type checking is a new concept, be
cause graphical types have been introduced only 
recently . Methods have to be developed using 
techniques in pattern recognition. Our approach 
is sometimes empirical and types like polygons 
with n sides (where n i s a parameter) can not be 
checked. Further investigations in this domain 
have to be done . 
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ABSTRACT 

This paper discusses the application 
of voice-output in programming as well as 
important techniques and problems 
intrinsic to voice-input. A prototype 
voice response system for PASCAL 
programming is presented, and applications 
to alternate programming lang uages are 
considered. The introduciion of 
microprocessors to implement the voice 
response unit as well as the software 
modules involved are covered and the 
applications and advantages of such 
"speaking terminals" with respect to the 
programmer who is visually handicapped are 
discussed. 

I. INTRODUCTION 

In the general area of man-machine 
communications by voice, there are three 
major areas of interest for researchers 
fl ) : (a ) voice response systems, (bl 
speaker verification and speaker 
identification, and (c ) recognition of 
spoken utterances. These major areas may 
be subdivided into a large number of 
sub-areas, depending on such factors as 
the vocabulary size, static or dynamic 
vocabulary, speaker population, speaking 
conditions, requirements of the end-user 
etc. Central to a voice response system 
are, a vocabulary store and a set of iules 
for message formation. Figure 1 shows a 
block diagram of such a system. When a 
message request is received from an 
external source, the message composition 
program composes the required message by 
referring to the vocabulary store and the 
message formation rules. The composed 
message is in an acceptable form to the 
voice synthesizer which produces the voice 
response. An adaptive system may allow 
dynam1c changes in the vocabulary, in 
message formation rules, or in both. 

Several applications of voice 
response systems have been considered in 
the literature. For example, directory 
assistance systems, stock price quotation 
systems, flight information systems, and 
voice response systems for wiring 
communication equipment are discussed 
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in [2 ) . Consider an interactive process, 
such as computer programming, carried out 
by a visually handicapped person. There 
are two directions of information flow: 
(a ) Man->machine, such as program input, 
data input, or input for the correction of 
a program statement in error; 
(b) Machine->man, such as the errors in 
input, diagnostic messages from 
compilation or execution of the programs 
submitted, or the results generated by the 
program. A visually handicapped person 
who has experience in typing, faces no 
serious problems in man->machine 
communications, however for machine->man 
communications, he needs assistance, since 
he cannot read by himself. 
Conventionally, such assistance came from 
Braille terminals [3 ) or from the readings 
of a sighted person. Tho ugh braille 
terminals are helpful, they are not always 
satisfactory. For instance, they require 
"feeling by fingers", produce vol uminous 
hard-copy output, and they are expensive. 
Furthermore, working with these special 
kinds of terminals, distinguishes a 
visually handicapped programmer from his 
fellow programmers and this might be 
undesirable in some cases. It is in this 
context a voice response system for 
programming by a visually handicapped 
computer programmer, is discussed in this 
paper. 

II. VOICE INPUT AND VOICE OUTPUT IN 
PROGRAMMING 

The following stages may be noted in 
the development of a program: 

( 1 ) Program Design 
(2) Coding 
(3) Program Input 
(4) Compilation 
(5) Correction of Syntax Errors 
(6) Execution 
(7) Verification 

Some of these stages may be repeated more 
than once in the program development 
cycle. Both man->machine and machine->man 
communications are involved in the stages 
cited above. 
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Fiq. 1 Block diagram of a 
Voice Response System 

Use of a programming language for 
communication has certain notable 
differences when compared to the use of a 
natural language. The syntax and grammer 
of a programming language are much more 
rigidly defined than those of a natural 
language. A program consists of several 
"words" or names and operation symbols · 
such as +, - , *, /, =, 11, etc. Some of 
the words used in a program are reserved 
words and others are defined by the 
programmer. For a given programming 
language, say PASCAL, the set of reserved 
words are known -a priori and they 
constitute a fixed vocabulary for a voice 
response system. The set of 
programmer-defined names is not invariant 
and it changes from program to program. 
However, while programming in a language 
like PASCAL, the . set of such 
programmer-defined names are defined in 
the declaration part, before they are used 
in the program. Thus, for voice-input in 
programming, it might be possible to train 
the speech recognizer unit on the 
programmer-defined names. The knowledge 
obtained through such training may then be 
applicable for the duration of that 
program with that particular programmer or 
speaker. 

It is well known that recognition of 
isolated words or discrete speech is a 
simpfer problem than the recognition of 
connected or continuous speech. 
Occurences of isolated words are more 
intrinsic in the statements of a 
programming language than in the sentences 
of a natural language. Consider speaking 
the statement COUNTER= COUNTER+ 1. As 
an extreme cas e of this situation, some 
names in programs may not be readable as a 
word. For example, the name "SQZT" can 
not be read as a word and hence has to be 
read letter by letter. These factors lead 
to less stringent conditions for speech 
recognition in the case of voice-input for 
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programming. An experimental man->machine 
voice communication for programminq in the 
BASIC language has been reported in [4,51. 
The results reported have been 
encouraging, though not totally 
satisfactory. Initial tests have shown 
that utterances can be recognized in 
approximately one quarter of the real time 
with an error rate and rejection rate of 
9.6 and 6.0 percents respectively. 

Applications of syntax directed 
techniques for pattern recognition are 
well known (61. Similar approaches may be 
useful in speech recognition, especially 
in voice-input programming. Advanced 
programming techniques such as interactive 
graphics, involve higher dimensional data 
structures than simple linear strings. 
Syntax directed techniques will be 
appropriate for voice-input of such higher 
dimensional data types. 

Since voice response systems produce 
synthesized speech utterances that arc 
used for communications with humans, 
intelligibility is of paramount 
importance. Also, subjective factors such 
as quality and naturalness have been found 
to have a great effect on the acceptance 
of a voice response system [1). However, 
while designing a voice response system 
for the visually handicapped programmers, 
one could trade the subjective factors for 
the desirable system parameters like low 
cost and compatibility with other 
programmers for example. 

Browsing is one of the activities 
that a human eye (with the mind) can do 
more efficiently than others. One form of 
browsing occurs in program debugging. 
Suppose the compiler of a program reports 
an error in the J-th line of the program. 
It is possible, in some cases, that the 
error is actually in the (J-1 ) -th line: 
but the compiler has detected the error 



while processing the J-th line. A human 
eye looking at the J-th line is capable of 
"browsing" through the neighbouring lines 
and often it locates such errors. A voice 
response system designed for visually 
handicapped programmers should have 
facilities to cater to such needs. In 
essence a good text editor with 
voice-ouput will be of help in this 
direction. A blind person, using a 
terminal equipped with such an editor, may 
wish to hear a line repeatedly for 
intelligibility. Thus, for example, 
"REPEAT CURRENT LINE" would be a desirablP 
feature in the speaking text-editor. 

III. A VOICE RESPONSE SYSTEM FOR PASCAL 
PROGRAMMING 

For the experiment discussed in this 
paper, the popular programming language 
PASCAL has been chosen [7). The 
experimental voice response system can 
speak-out the error messages detected by 
the PASCAL compiler when compiling a 
PASCAL source program, as well as the 
lines or statements selected by the 
programmer from the program. The 
commercially available voice synthesizer 
Votrax [8] has been used in the present 
experiment. It is a phoneme based 
synthesizer that employs analog methods 
for voice synthesis. Votrax accepts input 
in its own code which will henceforth be 
referred to as votrax-code. Besides the 
Votrax, the experimental system consists 
of the following software modules which 
will eventually be transferred to a 
micro -computer (Section IV): 

com~iler Interface Module: From the 
compiler output file, this module 
selects the error messages or the 
error codes and the statements in 
error. 

Editor Interface Module: This 
provides an interface between the 
conventional text editor and the 
visually handicapped programmer. 

Voice Interface Module: This module 
is an interface betwe e n the voice 
synthesize~ and the other parts 
of the system. Its functions are 
the same as that of the voice 
response system shown in Fig. 1. 
It makes use of a set of 
vocabulary, VSET, and a set of 
rules, MS E~ , for message 
composition. Also it produces an 
output that is acceptable to the 
voice synthesizer. 

There are 128 error messag es 
corresponding to associated error numbers 
in the PASCAL compiler used in our 
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experiment. The number of words in a 
message varies from 2 to 10. There are 
182 distinct words, each of which occurs 
with different frequency in the set of 
error messages. The word that occurs most 
frequently is TYPE (32 times). It may be 
remarked that the distribution of the 
frequencies of the phonemes, which compose 
these words, follows the well known Zipf's 
Law [9] closely enough to warrant 
interest. Given the law as being 
RANK* FREQUENCY= CONSTANT, C, the 
average value for C derived from the raw 
data is 0.202. Assuming that 7.ipf's Law 
is adhered to, the predicted value for C 
is 0.193. Although this is an empirical 
law, it forms a useful formula for 
prediction of approximate phoneme 
frequencies and is a useful tool in the 
design of appropriate storage and 
retrieval schemes for a large phoneme/word 
database. 

The VSET in our experiment consists 
of two parts; VSET-1, the set of distinct 
words in the error messages and VSET-2 , 
the set of single characte rs such as A, B, 
•.• , Z, O, 1, ••• , 9, etc. Each member of 
VSET is stored in a table along with the 
votrax-code for speaking that member. 

Generation of votrax-codes for the 
words in VSET-1 can be made automatic 
through a program. The approach used in 
the automatic translation of English text 
to phonetics in [10] has been used in our 
experiment as the starting point. But the 
initial results obtained from [10), for 
the set of words in VSET-1, did not give 
good quality sound output. The output 
obtained from [10) for each word of VSET-1 
has been manually tuned to improve the 
sound quality by changing the phonemes, 
the inflections, or both. 

For each error message in the 
compiler, there is a corresponding member 
in MSET which gives the concatenation 
rules for message composition. The rules 
in MSET refer to the words in VSET. The 
message is composed by the voice interface 
module and then passed to the voice 
synthesizer. The software modules have 
been designed so that th0y may be easily 
adapted to support different programming 
languages. However, VSET and MSET have to 
be generated a priori for each of the 
programming languages to be supported. 

IV. AN INTELLIGENT TERMINAL FOR VOICE 
OUTPUT 

With the advent of microproce ssors 
a nd LSI technology, it has become possible 
to distribute some processing power to the 
otherwise dumb terminals. Also digital 
representation and processing of speech 
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signals have become a reality [l]. 
Commercial products such as the Texa s 
Instrumants SPEECH MODULE, TM 990/306 
[11], are now widely available. For 
instance, this speech module has a fixed 
vocabulary of 179 words whose digital 
representations are stored in electrically 
Programmable Read-Only Memories (PROM). 
Combining the advances in microprocessors 
and digital speech processing, it is 
possible to design an intelligent terminal 
that will have a voice response system. 
Yet, another approach would be to augment 
a conventional termin~l with a 
voice-output unit as shown in Fig. 2. 
This system is well suited for use by 
visually handicapped . programmers, since 
the voice-output unit can be "easily" 
plugged into a conventional terminal. 

Conventional 
Terminal 

To the computer 

Voice Output 
Unit 

Fig. 2 Block diagram of a Voice 
Response Terminal 

The voice-output unit of Fig. 2 will 
consist of a microprocessor, some local 
memory (ROM) for program storage, some 
local memory for data storage (RAM), and a 
speech synthesizer. With the availability 
of single board microcomputers, and the 
single board speech modul es like the TM 
990/306, it is possible to design a 
compact portable voice-output unit. Us e 
of the components and subsystems available 
"off the shelf", would render such a 
system to be inexpensive and henc e 
affordable to individual users . However 
this scheme is not without its 
limitations. 

The microprocessor in the 
voice-output unit of Fig. 2 will 
implement the functions of the software 
modules discussed in section III. The 
information or the data flow between the 
conventional terminal and the computer is 
monitored by the voice-output unit; and if 
desired the monitored information is also 
spoken out. The voice- output un it has it~ 
own limits on the output rate which are 
determined by such factors as the 
processing rate of the voice synthesizer, 
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and the acceptable input rate of the 
receiver, the human ear. If there are no 
buffers and inter -locking mechanisms, th e 
voice-output unit should function at least 
as fast as the flow rate between the 
terminal and the computer. The 
experimental system discussed in section 
III, for example, functions at a rate of 
300 baud. 

It is possible to extend the storage 
and processing capabilites of the 
microcomputer. Then, programs and the 
results of their processing may be stored 
in the local memory of the voice-output 
unit for ready access. Even if the 
rotating memories such as floppy disks are 
not preferred from the portability point 
of view, new memory technologies like 
magnetic bubble memories [1 2 ] or charge 
coupled devices may be used to extend the 
storage system. A single board r0port0d 
in [121 provides up to 64K (K = 1024) 
bytes of non-volatile memory with a 4 
millisecond access time and a 50 kilo-bit 
per second data transfer rate. Higher 
storage volumes, up to 768K bytes, are 
expected to be available in the first 
quarter of 1980. 

Translation of computer produced 
results to voice-output is not always a 
trivial task. Presentation of results in 
the form of tables, graphs, or charts is 
well suited for sighted oersons; but 
reading of such data to communicate to a 
visually handicapped programmer is non 
trivial. Besides voice synthesis, ther e 
are other problems to be solved in this 
context. Algorithms for solving such 
problems may be implemented on the 
"microprocessor" and the data stored in 
local memories may be refered to us often 
as needed. 

V. CONCLUSION 

A prototype voice response system for 
programming in PASCAL has been 
constructed. It has been used by a 
visually handicapped programmer and hus 
been found to work satisfactorily. In 
this paper, two approaches to the design 
of an intelligent terminal for 
voice-output have been discussed. Th e 
prototype system is being implemented on a 
Motorola 6809 microprocessor. Research is 
continued in the areas of reading compl ex 
data types like graphs, tables, and 
charts; and in the area of syntax dir0rt0d 
recognition of "spoken programs". 
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ABSTRACT 

This paper discusses the design, construc
tion, and use of an adaptive sorting pro
gram, which selects and tunes the sorting 
algorithm according to its recent experi
ence with the algorithms available to it. 
That is, the program adapts its behavior 
to try and minimize a cost function speci
fied by the users. 

The point of this exercise is to explore 
ways in which the computer program can 
carry some of the responsibility of opti
mizing its performance, instead of relying 
on a user to set rigid specifications. 
The purpose of choosing a good sorting 
algorithm is to minimize some kind of 
cost; the cost function used here is "vir
tual CPU time," computed by the program; 
we use that instead of measuring real CPU 
time because of the difficulties and un
reliabilities of measuring it in a time
sharing environment. 

Some of the adaptive programs discussed 
here perform better on some populations of 
lists than the standard workhorses found 
in many computer centers. 

1.0 Introduction and overview 

There are a number of different algorithms 
that can be used to sort lists. Each has 
advantages and disadvantages that depend 
on the nature of the lists. This paper 
discusses an adaptive sorter, which se
lects the particular algorithm it uses ac
cording to the efficiency it has previous
ly found. The sorter restricts itself to 
three algorithms: Straight Insertion, 
MergeSort, and QuickSort. It should be 
noted that each has operating parameters 
that have to be set before it can be con
sidered well specified. 
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The task domain is the selection of algo
rithms to sort lists. For this paper, the 
lists were generated by a program. For 
some of the exercises, the characteristics 
of the lists changed slowly in time -
that is, there is not merely a single op
timum sorting algorithm that is to be 
searched for, and, once found, maintained. 
Rather, the program must be capable of 
changing its selections as its environment 
changes. 

In Artificial Intelligence (AI), there is 
another approach to this problem, namely 
the use of experts: find out from them the 
rules they follow, the diagnostics they 
use, and so on, and design those rules 
into a program. Such a technique has been 
very successful in some cases. (1) But 
sometimes the domains are too large to 
have rules of the necessary precision; or 
the rules seem to involve human judgment 
in a profound way, as if in artistic se
lection; or the best experts are just not 
very good; and so on. Sometimes the cri- · 
teria for an "optimum" change - - in our 
example, the evaluation or cost function 
might be changed to include some measure 
of the cost of storage. That is, our 
underlying interest here is the use of 
adaptive techniques where there may be no 
experts, or where the problems may be too 
hard to understand or even to state. We 
use sorting as a domain, where there are 
experts, so that we can compare the effi
ciency of the adaptive techniques with 
that of the experts. 

Our purpose here is to see to what extent 
we can give the program the responsibility 
of choosing the "optimum" algorithm, by 
providing it the experience of trying 
several alaorithms and rP.mP.mhP.rina how 

(1) For example, see Feigenbaum ana-~~
Lederberg (1974) , with Dendral and 
Metadendral. 



they performed (with respect to the cost 
function that defines the optimum). 

Any program that can track a moving op
timum must spend some extra effort decid
:ing what the current optimum is, just as 
the experts spend effort on their diag
nostic analyses. Our program is constant
ly checking the current best algorithm 
against its competitors1 it does so less 
often when, whenever it does, the compari
son is very one-sided, and more often when 
it isn~t. 

In general it is not possible to compare 
two algorithms with just two trials, be
cause each has parameters that must be set 
for it to do best, so that the ideal set
tings have to be tracked. In the first 
set of experiments, however, we set the 
parameters by hand. A second set tries to 
optimize the parameter settings as well. 
A third set tries to find a good combina
tion of useful diagnostics to help the 
program determine a good threshold func
tion to help make a good selection of 
algorithm. 

The general adaptive approach that the 
program exemplifies is discussed at 
length, considering especially its in
herent limitations and the underlying as
sumptions about its application. For many 
domains of AI, we suggest that AI cannot 
afford the time spent to tap experts, and 
ought to try giving the program some res
ponsibility in improving its behavior1 
that would be even truer if the experts 
were scarce or not very good. This pro
gram is, we hope, a beginning exploration 
of ways to do that. 

At least one of the programs shown here 
seems to do better on the average than 
some of the workhorses used at computer 
installations1 whiJe we cannot be certain 
that it would be profitable to substitute 
them, it would certainly be worthwhile to 
check them with a broader range of sorting 
problems and algorithms, perhaps referring 
to human interaction, and to the expert 
work of, for example, Knuth (1974). 

An example of the kind of problem that 
might be susceptible to t he approach is 
the scheduler on a time-sharing system, 
where it is hard to a~cide what is the 
best way to satisfy user requirements, es
pecially as they and the system change in 
unknown and unpredictable ways7 another 
example is the control of a communication 
net with large swings in the volume and 
nature of the traffic, subject to c hanging 
priorities and channel capacities. 
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We use three sorting algorithms, Straight 
Insertion, Mergesort, and QuickSort, each 
of which is good for some applications, 
and which are described in section z. The 
adaptive techniques are not particularly 
subtle, and are described in section 3. 
The structure and functions of the program 
as a whole are described in section 4, and 
section 5 presents the results of the 
several experiments. The final section 
discusses the results and draws con
clusions from them. 

2.0 Background: Sorting 

Sorting is the task of arranging items in 
some desired order, like alphabetical. It 
was one of the first tasks assigned to 
automatic data processing machines, and 
was one of the first such problems to be 
thoroughly analyzed. 

We chose sorting as a task domain for 
several reasons: 

1. It is a well - known problem with several 
commonly used algorithms, whose rela
tive costs vary widely with the sorting 
problems presented to them. 

2. Sorting algorithms have been thoroughly 
analyzed, so that experts can be 
reasonably sure about the rules they 
follow1 in that way the performance of 
the program can be properly evaluated. 

3. We felt that it was likely that if the 
program worked as well as we hoped, it 
could lead to profitable improvements 
over some of the standard work horses. 
now being used in computer installa
tions. 

The program deals with 3 sorting algo
rithms: Straight Insertion (I), MergeSort 
(M), and QuickSort (Q). These are des
cribed in the following subsections. 

2.1 STRAIGHT INSERTION (I) 

Insertion adds items one at a time to a 
previously ordered list. Since each i nser
tion leaves the list ordered, a list n 
long takes merely (n-1 ) insertions. In the 
worst case, I makes i-1 comparisons to in
sert the ith item, so that the number of 
comparisons is O(n*n). Note that if the 
list is highly ordered to start with, then 
each insertion may be done with very few 
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comparisons. It is also usually a fast 
method for lists with few items, say, 
fewer than 15.(1) The program itself is 
short and easy to understand. Some other 
sorting methods may use it with short 
lists or sublists. 

2.2 MERGESORT (M) 

Merging is the technique of combining 
lists (in this case, two ) by seque ntially 
comparing the first elements of sublists, 
and moving them in the correct order into 
the merged list. M combines pairs of 
single elements into sublists, then the 
pairs themselves, and so on, each time 
dealing with sublists twice as large, un
til the process terminates. 

Mis an efficient sort, and is currently 
the system choice at the computer center 
at UMASS. It does, however, require a lot 
of storage. In running time, it takes 
O(n*log n). Its worst case is never much 
worse than that average. 

2.3 QUICKSORT (Q) 

Q is on the average the best sorting algo
rithm according to the experts. (2) Q is 
based on the notion that exchanges of 
items should be made over large distances 
in order to minimize the number of ex
changes -- it is the diametric opposite of 
bubble sort, for e~ample, which exchanges 
items out of order only with their neigh
bors. Q makes an arbitrary partition of 
the list into two parts, comparing items 
from both parts, and interchanging them 
when needed. 

The running time for Q is on the average 
O(n*log n), but its disadvantage is that 
its worst case performance can be O(n*n), 
which is not true of M. 

3.0 Background: Adaptation and Computer 
Learning 

There is a long and rich history of at
tempts to make the computer (program ) 
learn in the sense that children learn and 
grow. Nearly twenty years ago, there was a 
great deal of interest in ~self
organization,~ by which the computer was 

(l) See Knuth (1974). 
(2) Ibid, and Wirth (1976). 
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to organize its data and restructure 
itself so as to perform better. Some of us 
remember the perceptron of the late Frank 
Rosenblatt(l) and its numerous companions. 
Recently s uch activity has waned, perhaps 
because of a more or less conscious de
cision by the AI researchers that it was 
not very productive. One of the questions 
that we raise here is whether the simple 
control mechanisms that we discuss can be 
applied to hard problems so as to make a 
beginning of an attack on the larger area 
of learning by computers. 

The advantages of adaptation and learning, 
if any, are not had for nothing: it will 
always cost extra resources to make checks 
on the efficiency of the particular algo
rithms being used. 

One method of improving a strategy is to 
try small changes in it, observing the 
changes in performance. If they are posi
tive, continue to make such changes; if 
negative, undo them, and try other ones. 
This is generally known as hill-climbing, 
and it has a venerable history. Much of 
the power and difficulty of hill-climbing 
depends on the particular representation 
of the strategy, so that the changes are 
in some way related to the c hanges in per
formance. Indeed, AI researchers have 
long considered that the problem of 
finding good representation is one of the 
truly central ones in AI. (1 ) 

4.0 The Adaptive Sorter 

We deal with three different kinds of 
adaptive mechanisms. In the first, the 
program is given the cost of the algorithm 
when it tries iti its goal is to mi n imize 
the total cost of a long series of sorting 
problems. In order to make sure that the 
algorithm it is using is the best (that 
is, the cheapest), it must occasionally 
try the other algorithms, which costs it 
more resources. The underlying assumption 
behind this strategy is that the sorting 
problems in the series vary their charac
teristics only slowly, so that the best 
algorithm stays best for some long time. 

(l) For example, see Rosenblatt (1960 ) . 
For the best discussion of perceptrons, 
see Minsky and Papert (1969). 

(1) See Winston (1976 ) for a good general 
discussion. 



The characteristics of the lists to be 
sorted that are relevant here are two: the 
length L, and the degree of randomness R. 
The latter is interesting -- Q, for ex
ample, takes nearly as long to sort a list 
that is already sorted as to sort one that 
is in random order. Straight insertion, on 
the other hand, takes but L - 1 compari
sons to establish that a list is well 
ordered. 
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• : M * : Q 

Figure 4.1 is a length-randomness plot, 
with the length shown vertical ly, and ran
domness horizontally. rhe figure shows the 
regions where the three algorithms are 
superior to the others. The figure was 
constructed by generating 2500 lists using 
a random number generator. In general, 
small lengths or low randomness suggest I; 
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Mand Qare in fact fairly close over the 
remaining region, and the superiority of 
one over the other is usually but slight. 
It is possible to observe the extra time 
taken by Mas the length rises above each 
power of 2. Clearly, if the program could 
detect the best method cheaply enough, 
perhaps it could make significant savings 
in resources. 

In the second kind of adaptation, the pro
gram takes advantage of knowing, either by 
experiment or by our having told it, the 
contents of figure 4.1. The program~s task 
is then to make good estimates of length 
and randomness. In our sorting, the length 
is provided as a given with the submission 
of the list; the question is then how to 
estimate the randomness cheaply enough to 
make it profitable. 

A third experiment in adaptation selects a 
good simple combining function of Land R. 

There is a kind of zeroth order adapta
tion, in which the best overall method is 
used consistently; given the population of 
lists that we presented to the machine, 
and presuming a uniform distribution of 
lists over the variables Land R, that 
method was in fact M. the first job of any 
adaptive scheme, obviously, must be to do 
better than M. 

5.0 Experiments and Results 

We ran a number of experiments with some 
interesting results. The first task was 
to generate the lists; how we did that is 
described in section 5.1 below . Each list 
was in fact evaluated separately with each 
of the three methods, and what was pre
sented to the program was merely the char
acteristics of each list and the resources 
it would take according to the three 
methods. In that way, it was possible to 
compare different adaptive strategies 
without actually running the algorithms 
over and over again, which would have con
sumed considerable computer time. 

5.1 Generation of Lists 

The lists had two controllable attributes 
-- length Land randomness R. The value R 
set the fraction of the list that was con
structed at random, the other elements 
being generated in order. For example, for 
a list 100 long, the ith element defaults 



. I 

. I 

" I 

to just i itself, for R = O, the perfectly 
ordered case. If R is 0.5, then in exactly 
half the elements, the value chosen is 
just 100 times a random number uniformly 
distributed between O and 1. 

Note that lists can be generated with 
negative ordering, that is, backwards, but 
we did not use such lists in our experi
ments. 

For each experiment we generated lists 
that form the basis of the data used in 
the adaptation. Each list was then sorted 
by all the three methods. The data is con
tained in an array whose columns were: 

1. The length of the list 
2. The randomness of the list 
3. How long it took to sort with T 
4. How long it took to sort with Q 
5 . How long it took to sort with M 

For each test of the adaptive strategy, we 
computed the costs by merely referring to 
the array, instead of generating lists and 
sorting them. In this way the individual 
adaptive run could be tried with very 
little CPU time. 

Inspection of figure 4.1, generated in 
this way, will reveal a certain noisiness 
in the data. That arises from the use of 
the random number generator in making the 
lists. 

5.2 First Adaptive Scheme 

In the first scheme, the program initially 
tries the three algorithms, and then con
tinues by using only the best one. Best is 
defined by an estimate of the CPU time 
used by the algorithms. The program checks 
the validity of its choice by trying the 
other ones occasionally: if one of the 
other algorithms proves to be shorter, the 
program switches. The underlying assump
tion for this scheme i~ that the attrib
utes of the lists do not change very fast. 

In fact, the lists were selected from a 
population whose characteristics followed 
the trajectory shown in figure 5.1, which 
covered 1000 lists. Note, by comparing 
that figure with figure 4.1, that the 
trajectory runs through all three regions 
where the different algorithms were op
timum. 

The program worked by computing the cost 
of the preferred sorting algorithm. Some 
fraction of the time, it also tested by 
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trying the other algorithms: that meant 
adding their costs to the costs already 
incurred. The cost of the tests on the 
non-preferred algorithms was minimized by 
ceasing the test whenever its cost ex
ceeded that of the preferred one. 

500 

250 

o+---------+---------+ 
Sorted Random 

Fig. 5.1 Trajectory for 
a Population of Lists 

The behavior of the program is about equal 
to the best single algorithm, M. In this 
case, then, adaptation does not provide 
any real profit. The extra expense of 
making checks causes the program not to 
outperform the best single algorithm in a 
significant way. 

This kind of scheme is efficient only when 
the population characteristics change 
slowly, of course. In that sense, it is 
unrealistic to expect that it can provide 
a vast improvement in sorting efficiency 
in an operational environment. By analogy, 
however, we might hope that such a scheme 
applied to tasks harder to analyze, like 
certain kinds of scheduling in time
sharing systems, could lead to really 
worthwhile savings. 

5.3 Second Adaptive Scheme 

The second scheme used the data shown in 
figure 4.1. The program has but to know 
where on the figure the new list is, and 
it can choose the best sorting method. The 
length Lis given: since the program is 
not given R, it has to estimate it. The 
adaptation here is how much resources to 
put into estimating R, If the whole list 
is examined, that represents a fairly mas
sive expense: and if, say, but ten items 
are examined, then there is a fairly large 



chance of making a bad estimate. The 
parameters of the procedure for estimating 
Rare tuned so as to minimize the cost. 
The difficulty with such a scheme is the 
length of time needed to be sure of the 
results of tuning. It is clearly cheaper 
to use short samples, except that then the 
probability of picking the wrong selection 
by chance increases: that may lead to the 
selection of a much more expensive algo
rithm. 

We decided that the parameter of esti
mation that ought to be optimized was the 
fractional size X of the sample that gave 
the estimate of R. That is, if X were 0 .1 0 
then a list of length 500 would be tested 
for R with a sample of length 500*0.10=50. 
The estimation does not pretend to be an 
accurate measure of randomness, which is 
in any case undefined except insofar as it 
is defined by the generation process 
itself. 

If Y is the fraction of successive differ 
ences between successive elements in the 
list that are negative, then the program 
makes the randomness estimate R~ = 2*Y. 
The process is illustrated 

LIST 
0 1 2 3 4 5 
0 6 2 3 4 5 
6 10 1 5 4 9 2 3 8 7 

y 
o.o 
0.2 
0.5 

R 
o. o 
0.4 
1.0 

and these agree obviously with the gener
ation process in a gross way. The cost of 
the estimate is s ome approximately linear 
function of the number Ll=L*X of the items 
in the sample, There is no a priori 
reason why the optimal value of X should 
not be a function of L, and in truth it 
may bei furthermore, the optimum is not 
even well defined in any absolute sense, 
and must depend on the distribution of the 
population. This point is considered fur 
ther in section 6. 

Once the (R,L) was established for the 
given list, the method to be selected was 
found by examining the region around the 
point (R,L) in figure 4.1. Since that 
figure is drawn from noisy data, as dis
cussed in section 5.1, we averaged the 
region around (R,L), using a SXS window, 
and the program chose the most frequent 
best algorithm in that window. 

We selected a populat 1 , n of lists so as to 
exaggerate the effects and success of the 
scheme, by picking lists where the differ
ences in performance are marked. The re
sults for various values of x, that is, 
the fractional sample size for estimating 
s, are shown in the table: 
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COSTS of 
Sorting Estimating Total 

X 
.05 2930 16 2946 
.10 2817 33 2850 
.15 2856 50 2906 
.20 2833 68 2900 
.30 2808 102 2910 
.so 2823 171 2994 

1.00 2812 344 3156 

The COSTS are in arbitrary units. This 
shows a shallow but definite minimum at 
X=0.10. 

Using this value of X, then, let us com
pare this program with the single algo
rithms separately, and with the best pos
sible selection (BP): 

Program M Q I BP 
2821 3457 3476 17991 2744 

So it is clear that the program is not 
quite the best possible, but is still some 
20% better than Mor Q, even allowing for 
the extra resources used in making the es
timate. 

5.4 Third Adaptive Scheme 

The third scheme illustrates the selection 
of a usable adaptive method from a set of 
possibilities . Each method is not pre
cisely prespecified, but must be adap
tively improved before it can be reason
ably evaluated. This does not demonstrate 
the full construction of a possible com
plex processing scheme from a tabula rasa, 
but it does show how easy it is to test 
possible combinations of simple sub
processes to generate useful processes. 

The supposition is that the program knows, 
from previous experiences that we do not 
specify, that the values Rand Lare sig
nificant parameters in the choice of the 
best sorting algorithm. What the program 
does not know is how best to combine those 
two parameters to get a reasonable func
tion that will help to make the decision 
about the algorithm to be selected. 

Again, we used the data that produced 
figure 4,1, The figure was divided in 
regions bounded by smooth curves, so as to 
smooth over the irregularities caused by 
the random number generation that made the 
figure. The boundary of the region where I 
is the best policy is like a hyperbola, 
for example, separating it from where Q is 
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best. The boundary between Q and Mis 
somewhat more complicated, and shows 
clearly that M (if we didn~t know) is a 
binary merge, losing a little efficiency 
relative to Q every time the length L 
rises above another power of 2. For the 
sake of simplicity, this scheme selects 
only between Q and I, ignoring M: that is 
because the boundary between Q and Mis 
not easily describable. 

The point of this scheme is not to have to 
store the relatively large amount of data 
in figure 4.1, but to approximate its con
tents with a simple formula. We suppose 
that the program does not initially have 
the concept or idea of hyperbolas, and 
cannot make algebraic inferences from pic
tures like the figure. What it can do is 
to try schemes and pick the best perfor
ming one. This conceptually simple plan 
is complicated by the fact that each 
scheme will be seen to have parameters of 
operation, just like the one in section 
5.3 above. Since we need to compare the 
best examples of each scheme, that means 
that we .must optimize each one before we 
compare them all and choose the best. 

We decided to do that in parallel. The 
schemes we tried were all to use a func
tion of Land R in combination with a 
threshold; if the function was greater 
than the threshold, select Q, and other
wise I. The functions were simple arith
metic combinations of Land R: 

(L) (R) (L*R) (R/L) 

There are obviously others; and those can 
be generalized in obvious ways. But per
haps they can be considered a fair sample. 
Remembering the observation two paragraphs 
above that the boundary between Q and I 
was approximately hyperbolic, the reader 
will suspect that the best function ought 
to be (L*R), since L*R=constant is a 
family of hyperbolae. 

The program ran all of those schemes, 
represented by the different function 
forms, in parallel, keeping track of the 
costs; after adapting the thresholds to 
somewhere near optimum, the costs were 
compared and the best one chosen. The ex
periment used 2500 lists, the ones that 
were used to make figure 4.1. Using Las 
the function, the best threshold turned 
out to be 40; using R, the best threshold 
was .08 - .10. This is shown in the fol
lowing table, using arbitrary units for 
the costs: 
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LENGTH 
THRESHOLD TOTAL COST 

10 6185 
20 6182 
30 6181 
40 6179 
50 6180 
60 6187 
70 6194 

RANDOMNESS 
THRESHOLD TOTAL COST 

.03 5995 

.04 5944 

.OS 5944 

.06 5916 

.07 5916 

.08 5912 

.09 5912 

.10 5912 

.11 5933 

.12 5990 

using L*R, the best threshold was 30, and 
the cost was better than for either L or R 
by themselves. 

L*R 
THRESHOLD TOTAL COST 

10 5957 
20 5881 
30 5877 
40 5942 
50 6066 
60 6268 

Using the other functions produced no 
usable threshold at all. The differences 
in performance are not enormous, it must 
be remarked, but they are all in the right 
direction. 

6.0 Discussion 

What we have tried to show here is that 
some conceptually very simple methods of 
adapting certain parameters that govern 
the selection of an algorithm in a com
puter program can produce profit for the 
system. Learning what is the best thing to 
do, and when to do it, always entails more 
work than merely doing what is the stan
dard1 sometimes, however, it more than 
pays for itself. If one is in a situation 
that is hard to model -- like a fickle and 
changing set of computer users -- the de
fault procedure has to be to see experi
mentally what works best, and then to take 
advantage of what one finds out. 



In our paradigm, sorting lists in an adap
tive way, testing to see which is the best 
algorithm is expensive; usually more ex
pensive than doing the task. It is as 
though we are slogging through mud of 
varying depth on submerged wooden tracks, 
but we do not know which is the track that 
is nearest the surface . To test the other 
tracks may require complete submersion, 
but it may result in finding a track that 
is only a couple of inches deep, So how 
often should one take the plunge? 

Adaptation at another level is shown by 
the second scheme. Here we are provided 
with a good map of the terrain, showing 
the depth of the tracks. It>s just that we 
do not know where we are unless we swim 
around in the mud getting bearings - - the 
more we swim the better the estimate. 

The third scheme handles two adaptations 
at once. One of them is a simple tuning of 
a threshold, the other a simple discrete 
choice. The important aspect is that the 
second choice depends on having done the 
first adaptation well. It is an easy ex
ample of a hierarchy of adaptations. We 
use it not so much as to produce a useful 
program by itself, but to illustrate the 
kind of adaptations that must be used in 
the development of systems that may be 
hard to model or even understand. 

It will be clear that a crucial role in 
this attack is played by the representa
tion of the possibilities, the different 
functions in our case. As we have men
tioned already, Winston (1976) lays much 
stress on that point. Behind it lie some 
other ideas. Before the representation can 
help, there must be the possibility of 
searching for help in the first case. L 
and Rare merely two attributes of a situ
ation where a program has a task to do. In 
some way the program seeks to use the in
formation in Rand S; and furthermore, it 
seeks to optimize the diagnostic functions 
of the observables Rand S, by improving 
them. Typically in current system design, 
the possible realm of modifications is 
sharply restricted and tightly delineated, 
so as to make it less likely that bugs 
will arise. Systems, it is claimed, should 
always work in known ways with tried and 
true algorithms. What we are talking 
about here is a system that ought to be 
able to notice, for example, that small 
values of L should mean to use I; and from 
noticing, to make infe e nces about good 
rules of behavior. Good rules of behavior 
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in our case, that L can be used as an 
indicator or diagnostic, and that so can R 
-- can be combined or modified to make 
better ones. That process of course does 
not stop in a single application, but con
tinues, guided by the enlarging set of 
tasks that the system is faced with. In
deed, the rules of combination and modifi
cation themselves ought to be considered 
as modifiable in the same way, but perhaps 
that is more ambitious than we are dealing 
with here. 

The efficient functioning of the adap
tations described here does not depend on 
having an accurate model of what sorting 
is or how the individual algorithms work. 
Rather, we claim, the program tries to 
learn from various kinds of experience. 
This is far from saying that good models , 
mathematica l or otherwise, should be 
avoided. If we can get good models, we 
should use them. But there are many in 
stances when it is difficult to produce 
and deal with accurate models of the tasks 
ahead; in such cases, some of the adaptive 
techniques shown here, or ones like them, 
may be useful. 

That may be true, for example, in the con
trol of a complex communications net, or 
in setting or tuning the scheduling algo
rithm of a time-sharing system. Typically 
such models have to assume certain kinds 
of random distributions in order to be 
mathematically tractable; and all too 
often those assumptions are grossly incor 
rect. 
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Abstract 

In this paper, we make the case that problem solving 
based cin immutable goals, selection of operators to bring 
these goals closer, and discrete logic lo both select 
operators and evaluate outcomes is effective only in very 
small domains. Instead, methods using r,earch and 
continuous evaluation functions do well in any si1.ed 
domain as long as the evaluation functions have a certain 
structure. Oi!,crele reasoning systems manipulate 
discrete valued entities. However, serious errors can 
occur when the value of a continuous variable is 
discretized, especially if this is done before lhe value is 
needed for final output. Because of the need to 
prevent this source of large errors during the evolution 
of problem solvers that must survive while they 
master their domain, we infer that the 
generality-specificity dimension of problem solving 
runs from ends-or iented to means-oriented, and from 
continuous to discrete. Finally, we conjecture about the 
structure of computing machinery for problem solvers that 
must evolve from general to specific. 

I. Introduction 

Means-oriented problem solving requires a method of 
selectinp. a sequence of operators lh;il may leJd lo a r,oal. 
This involves knowing 1l1e potential of availJhlc opr.ralors, 
and possibly the closeness of non-goal sta les to goal 
states. It is widely held that this ·type of activity is a 
major part of human problem solving, and that the 
select ion of suitable operators is achieved using 
rule-based or pattern-based knowledge. 

It is also possible to have r,imply an ends-oriented 
problem solving approach. This involves generating a 
set of alternat ives (by generate and test procedures 
such as searches) and then evaluating the leaves of the 
test set to find the best path to pursue. Usually one 
attempts to generate the laqiesl sci of alternatives that 
can be processed with the resources available. This 
gives a brute - force aspect to the method; it attempts 
to discover the best path by investigating the maximum 
number of alternative paths, rather than by attempting to 
apply knowledge to guide the investigation into those 
areas that appear most promisinp . 

trhis re search was sponr,ored by the Defense Advanced 
(DOD), ARPA Order No. 3597, monitored by the Air 
Under Contract F33615-78-C-1551. 

The two methods can best be distinguished In that the 
means-oriented method must have knowledge. of the 
potential of operators so that it can choose wisely among 
the avai lable ones. Thi!, has lead (in GPS [Newe ll, et. al., 
1960)) to the "table of differences" that gives a clue as to 
which operato·r is most likely to produce maximum 
progress. To dale, the generation of dala lo guide lhe 
se lection of operators has been done almor,t exc lusively 
by humans (programmers ). Thus, it ;ippears unlike ly that 
data of this type can be generated mechanically for 
domains of (say ) 1012 states, yet humans Me able to make 
good decisions in such large domains. 
Means -oriented methods and ends-oriented methods 
both will require knowledrie of how flOOd a current 
stale is; in the first instance to decide which branch to 
pursue (as being closest to the goal) and in both inst ances 
in order lo identify the goodness of leaf nodes that are 
reached. 

Ev11tuation can be thought of as being done by a 
function that assigns a scalar value to a state, thus making 
it possible lo compare· its goodness to that of another 
state. In small domains this process may be little more 
than the identification of goal -s tates, or the identification 
of states that have some salient feature that must 
elevate it above any state not hav ing such a fe ature. This 
dominance type of reasoning is w.ually q11itc adequate in 
sm.i ll domainr., thur. giving evaluation a di•,crcle ch,1rarler; 
yes/no or a sort ing into a small number of equivalence 
cla!.ses, However, in IM£'.N domains the full power of a 
polynomial function, with it s ability to trade-olf the value 
of one term of the polynomial again~! the value of another, 
may be required. At its full potency, the polynomial can 
take on a (more or less ) continuous se t of values, and 
should (if totally effective) be able to correctly order all 
states in the domain with respect to nearness to 
goal-states. In pr;iclice, such effectivenc!,S is not 
achievable in interesting domains, so it is desirable that 
the ordering, if not total ly effect ive, at leas t not produce 
large decision errors (such as sending the solver off in 
the opposite direction, or leaving it stranded on a 
hill-top). We shall show that the structure of the 
eva luation polynomial has a great deal to do with its 
effectiveness. 

Research Projects Agency 
Force Avionics Laboratory 
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The selecting of effective operators al a noae, apart 
from being governed by decision rules, could also be 
done by evaluating the state that each avai lable operator 
produces and selecting the best. II should be noted 
that, while there is a sequential flavor to a reasoning 
process that moves from one premise to the next to 
achieve its aims, the evaluation polynomial is 
essentially a parallel construction, with each term 
independent of all others. Thus reasoning, c;tiscrele, 
and sequential appear to go together, while judgement 
(evaluation), continuous, and parallel go together also. 

II. Two Examples 

Consider the problem of mating with a King and a Rook 
versus King (KRK) at chess which is a medium size problem 
with a slate-space of about 105. All instruction books for 
humans will indicate that the correct procedure (lhus 
means-oriented) is to use the rook to build a fence around 
the black king (see lower left of Figure I), and gradually 
constrict the fence unlil the male is there. II is ralher 
interesting that this advice suffices for hum~ns. Clc.1rly, 
they have enough structure to interpret these 
instructions and produce the correct effect. I have 
never heard any beginner complain about the adequacy of 
these instructions, although I remember being temporarily 
al a loss the first lime I tried the exercise because 
fence constriction, taken to lhe ultimate, results in 
stalemate. Thus, a !:isl-minute change of strategy is 
required. 

Figure l 

However, when one attempts to implement the same 
instructions for a computer program, some very vexing 
problems occur. They deal with exactly how to go about 
cpnstricting the fence, since at times no constricting move 
is possible without lelti11g lhe oppor,ing king out (lower 
right of Figure 1 ). Also, there is !he problem of not 
intersecting the fence by placing one's own king on lhe 
fence line and thus allowing the opposing king to cross 
(for instance if K-83 in lower left, then K-R6 and black's 
king has escaped). These problems are so prolific that 
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one author [Zuidema,1975) has complained !hat if such 
a simple problem he that difficult to pror,ram, then 
chess itself mU!;t be impossible. If one wishes to 
program chess using only the means-oriented (rule 
based) approach, then Zuidema is probably riehl in !hat 
no set of humans will be able to write all the required 
rules. 

Actually, the ends-oriented approach for doi11e KRK 
had already succeeded several years earl ier, although 
with a great deal of structured knowledge tocether 
with very small searches [Huberman, 1968). But the 
real power of evaluation functions whe-n combined with 
search was demonstrated with great simplicity and 
elegance as follows [Aikin, et. al., 1971 ): Consider the 
upper right of Figure 1. Here a eradient exists from the 
center to the corner. Let the major lerm in the evaluation 
function be "how decentralized the black king is". Since 
the same evaluation function is used by both sides, 81.,ck 
will resist beine, decentralized. Thu~, it is wfficient for 
White to choose lhe sequence of moves !hat 
decentralizes Bl.1ck th!! most unlil the t;i~k is completed. 
This measure would be sufficient for termin;il noder, of a 
9-ply search. For shallower $earches, a subsid~ry term 
which values keeping White's kine near the 81ack one, and 
a stil l less sienificant term !hat values keeping While 's 
rook near the White kine, allow the male to be 
performed by a 3-ply search. This search need only U$e 
the evaluat ion function, know the value of material (so as 
not to lose the rook) and the rules of chess, $0 as lo 
mate and not stalemate. The resultine program could be 
written and debugged by a second year undergraduate in 
about 5 or 6 hours. 

Finally, the same problem is capable of ultimate solution. 
A data base can be created for all po!,sible positions of 
KRK. Then workine backwards from those positions !hat 
are males, one can assien a number lo all other 
positions. That number represents the minimum number 
of moves that are required to produce a mate. Positions 
that are draws (stalemate or lost rook), will be ;issir,ned 
a value of infinity. U~ine this data base it will alw;iys be 
possible to produce the shortest mate in any situ~tion, by 
merely eencr aling all lcr,al moves and se lect mg !he one 
that move5 to the position of lowesl v;ilue. Thi'., ta'-:.k 
has actually been performed by ;i number of 
researchers, first by M. R. B. Clarke [Clarke, 1977), ~nd 
has produced the first (though trivial) computer-produced 
chess knowledee. Clarke showed that ii is possible to 
mate in at most 16 moves from the most difficult po~ition, 
whereas ii always had been thoueht to require 17. 

That there is a trade-off between the amount of 
knowledee and the amount of r,carch is very clear ly 
shown above. A dala base of 105 ~uffices to produce 
optimal play as does a search to 31 ply (intr;,clahle 
unless a dynamic proeramming appro;ich ii, used to 
identify identical nodes and turn the free into a r,raph) . 
The most desirable r,o lution thouah, for problems of !his 
level of complexity is a heuristic one, in which only a 
sati sfic ing, rather than an optimal solution is obt;,incd. A 
shallow, ends-oriented search r,erves well here. A simple 
construction (the gradient) puts a key measure onto the 
evaluation process. At certain depths of search this 
suffices for successful performance of the task. At 



shallower depths of search some small amounts of 
additional knowledge are required. To select an adequate 
move, without search or a complete data base, requires 
large amounts of carefully structured knowledge. The 
optimum trade off between search and knowledge in the 
above e,cample appears lo be in the area of a 5-ply 
search (1 second duration) with a 2-lerm polynomial. II 
is inlere5ling lo note that one can characleri1e this 
problem (as is possible of all males of a lone kinp,) as 
simply a decentralization problem. This characterization is 
simple, precise and very useful. Yet humans characterize 
it differently, posr.ibly because of the effect of culture 
on the primitives available for perceiving the problem. 

The above is a typical medium sized problem as judged by 
the size of its state space. Let us now examine a small 
problem: i.e . the Monkeys & Bananas (M&B) problem 
[McCarthy, 1964) with at most a couple of hundred states. 
As usually staled, the M&·B problem has a few operators: 
move monkey (X), move box (X), climb box, and reacl1 (x), 
each of which may h.we some applicable pro-condition 
and effect some lranformalion on · the state. Then 
dependine on what your favorite paradigm is, you can 
solve the problem using GPS, predicate calculus, etc. 
However, these formulations all require a number of 
restrictions on the real problem (to make ii lraclab!e), 
together with machinery specifically designed lo make the 
solution proceed in the necessary direction. Even then, 
solving the problem produces a formidable challenge to 
the solving system. 

Let us now pose M&·B as a search problem. We can 
complicate the problem lo the point where many 
techniques would find it next lo impossible lo solve by 
increas ing the number and scope of the operators. 
The operator for moving the box produces movements of 
exactly one fool in one of the 8 compass directions. The 
same is true for moving the monkey. Also, allow the 
monkey lo climb down from the box as well as climbing 
up. In addition, allow the monkey lo throw the box 
against the cage (making ii unclimbable), lo tear a lath off 
it (making ii unclimbable), and lo reach in each of the 
eight compass directions. A goal sla te is one in which 
the monkey touches the bananas. In this problem 
statement, quite a few operators may be applicable at any 
one time. The st ate description specifics the 
3-dimensional Ice a lion of mon~,ey, box, and bananas, and 
the condition of the box. 

Now, as a searrh problem, we would be willing lo allow 
(say) a 4-ply search and evaluation of terminal nodes. 
Our evaluation function will value primarily lhe 
closeness of the monkey to the box, secondarily the 
closeness of the box to the floor and lo the bananas, and 
thirdly the closeness of the monkey's hands to the 
bananas. It is rather clear that such a paradigm will 
succeed with extreme efficiency and ease in discovering a 
very good solution. The monkey will approach the box to 
satisfy the primary term, push ii under the bananas to 
satii;ly the secondary term, .. nd climb the box and reach 
for the bananas lo satisfy the- terti ary term. I realize, of 
course, that M&B is only used as a pedai::ogical tool lo 
demonstrate problem solving paradigms. In fact, that is 
exact ly what I am using ii for. 
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Ill. Problem Solving Performance in Large Domains 

Let U$ now examine the exper ience of various problem 
solving methods in large domains. There are a few 
effort$ to apply means-oriented methods to checkers 
[Samuel, 1959 & l 969]i and chess [Baylor & Simon, l 966i 
Berliner, 1974; Pilrat, 1977; and Wilkins, 1979). 
Samuel's program wa5 a marvel for its time, but has more 
recently been soundly trounced by a full-width searching 
(ends-oriented) pro&ram with much less knowledi:e 
[Samuel, 1977]. The Baylor-Simon MATER program worked 
only in very restricted situations. Thus this was more a 
case of exposing the power of a useful move selection 
heuri$lic (the move that allows the fewest replies) than 
an attempt lo cover the domain of mating combinations, 
not lo $peak of the realm of combinations in chess. The 
Berliner program did reasonably well at doinP. r.hl'!~s 
combinations, but was inept when no combinations were to 
be found or when its knowledge was not quite up lo 
finding them. Pitral introduced the notion of plans lo 
select moves that, deeper in the search, were compatible 
with an initial goal. He also introduced methods for 
patching a plan when it ran ir1lo difficulties, but his 
approach relied heavily on brute force searching and 
very simple plans. The Wilkins program considerably 
improved on the last 1wo efforts above with knowlcd(le 
comparable to the Berliner program and plans of great 
sophistication that effectively controlled the plaw.ible 
action$ deeper in the search. This pro&ram was able to 
attain very hiuh solution rates 011 chess combin.ition 
positions, once its knowledge base had been built up to an 
appropriate level. 

In all these efforts one paramount fact has intruded it se lf 
upon us: a very small change in the problem 
environment can make a large difference in what is 
the correct action, and what, therefore, the problem 
solver may or may not be able to do. Thus, the way 
means -oriented programs are improved is by the writing 
of ever more exception rules. In the end, the search is 
supposed to catch those exceptions that were not 
explicitly programmed in. 

However, there is a great deal more to chess than 
executing combinations. This has been shown dramatically 
by the Norlhwe '., lern University chess group, whor,c 
program CHESS 3.0 (and up) has been lhe perennial winner 
of almost all important computer chess event~.. While 
meami-oriented programs wallow in trying to ~olve 
relatively small sub-domains of cl1es~ .• CHESS 4.6 (and up) 
[Slate & Aikin, ( 1977)] has in the la~.t 3 years moved up to 
challenge good human players, some of whom it has 
defeated. This program relies heavily on a full-width 
search with iterative deepening·!· which is made more 

1' A full-width search al each node looks al all alternatives 
in the tree that have not been logically eliminated by 
alpha-beta. pruning. Iterative deepening involves doing 
first an N ply search, then an N+ 1 ply, etc., until the 
allocated lime resources have been expended. 



efficient by the install at ion of a h.1sh table Jhal : 

1) Guides the search into the promisins sub-trees 
discovered by the previous iteration, and 

2) Terminates the search at posit ions that are identical 
to those already searched in the current iteration. 

Ken · Thompson of Bell Telephone Laboratories has shown 
that organizing the above method for parallel 
computation and ur,ins special purpose hardware 
produces further sieni fi cant speed-ups. Thus, in chess 
and checkers the han'd-writinc is clear ly on the .wall. 
Brute force searching w ith re latively litllc know ledce will 
soon be able to beat almost all the players in the wor ld. 
Whether knowledee oriented proi::r ams wi ll be required 
for the ·World Champion level in chess is a moot point; 
however, in this writer's opinion l he proerams will play 
with so much srealer consistency, that with just small 
amounts of additional knowledge, they will rerservere to 
the World title. 

The situation is quite different in GO, however, where the 
magnitude of the task would appear to mahe the u•,e of 
ends-oriented methods quite difficult because of the 
larse number of alternatives. In fact, no one has tried 
such methods, and the best pror:ram to date [Reitman and 
Wilcox, 1979) makes heavy use of speciall y designed GO 
constructs to euide its play. However, its play in this 
most difficult cf games is far from beins able to (live 
even intermediate players a decent eame. 

At backsammon, a program that uses no search hut 
relies solely on evaluat ion of all possible moves 
emanating from the current pos ition [Berliner, 1980), has 
recently defeated the reisnins Wor ld Champion by the 
lop-sided score of 7-1; a result that must be somewhat 
discounted due to the stochar,tic nature of the eame. 
Again, this was the result of an ends-oriented approach, 
that we describe lo some desree in the next section. 

Apart from games, experience with speech understandins 
systems has shown that discrete rcasonine sydems do not 
do as well as a brute force searching system u~.ine a 
fraction of the knowledee [Lowerre ~- Reddy, 1979). 

It should be clear from the above that, if at all 
possible, ends-oriented methods should be employed. 
They arc easier to implement, i,ucteccl be tter, and may 
be the only realistic way in certa in domains. Further, 
the methods h,wa been shown to be app licable to 
many domains that were thour:ht to be too complex to 
ever be subjugated by brute-force searchine. 

We hope the above has made clear our f irst 
thesis: that means -oriented problem solving has proven 
robust only in small domains. Some shal low searching plus 
some simple termin.il ev.ilu.ition has in an overwhe lminp, 
number of ca!,eS been shown to be superior to the 
business of solvin(! problems· by operator se lection and 
reasonins. This is definitely true for machine or iented 
problem solvins, and the evidence is so strong thal one 
wonders how living organisms set along without using this 
if,· in fact, they do. ' 
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IV. The Structure of Evaluation Functions 

The principal usefulness of evaluation functions is for 
guiding a problem solving process that is unlikely to 
reach a domajn defined goal (i.e. a complete solution) 
during its present probe, and must thus settle for a 
step in what is considered lo be the rip,ht direction 
toward a solut ion. A number of rca.,ons now appear lo 
favor usins evaluat ion functions where po%iblr. over the 
reasoning methods that have been considered fundamental 
in the past: 

1) It is posr,ible to r.imult ancous ly pursue sever al goals 
· with this method. Each term (or a small r.et of terms) 
in the polynomial could be conr.idered a po•,•,ible 
sub-soal to be pursued. Thus the dcr:ree to which 
each has been achieved may be ascertained. This is 
extremely difficult to do under rca~.onine paraclip,ms, 
as one eoal wil l be par amount in such proc cclures. 
Such a goal, in turn, determines the val,cl sub -eoals, 
and all others .ire ienored. Such methods will 
prefer success at ·a primary goal lo success at a 
number of secondary goals that may, in fact, be 
superior. Interactions between sub-eoals may be 
taken care of in the evaluation function by the use 
of non-linear terms. 

2) Two major problems with evalualion functions have 
been that they were thouehl to be lackint: in 
context senr,ilivity, .ind it w~s po 0.,. ihle for a 
hill -climbine proce~.s usinr, !,uch cvalualion funcl,ons to 
get stuck on a sub-optim,11 hi ll .incl not be able lo get 
off. However, in the pursuit of goals .ind ~uh-r,oal c. , 
proper conr,truclion of the ev;ilu.ition fu1,clion will 
produce smootl1 trans itions from one st,,tc to another, 
even if the first st ate rcprescnls a major eoal lb.it 
has just bcPn achiC'ved, and the focus mu~t now shift 
to a new coal. Below, we dr.rnonslrale how to 
construct evaluation functions properly. 

The essential DO's of constructine evaluation function~ are 
embodied in my SNAC method that was used in the 
backgammon proeram that beat the World Champion last 
year [Ber liner, 1980). SNAC stands for Smoothnc ~.s. 
Non-l inearity, and Application Coefficient• .. 

Non-linearity is extreme ly import,ml for exrerl 
performance. A condant coeffic ient can at bc•, t portray 
the a11eraRC usefulness of the term associated with ii. 
There will be times when this avr.racr. vah1e will br. at 
considerable variance with what expert judgement will 
consider correct, and th is is where i.yslcms usinr, linear 
funct ions wi ll fail. Non-linear functions can produce the 
necessary conle><t by combinine the action of several 
variables into one term. However, the key to ur. ins 
non-linear functions is smoothnef.S. This is where Samuel 
made a serious methodological error when he found that 
his non-l inear functions did not perform better than his 
earlier linear ones [Samuel, 1969). Smoothness relalcs 
to the rate of ch~nec of a function for adj~ceril pilrl ~. of 
the domain. Samud, for sever al of h,s v~riablcr,, 
subdivided their n.1turill ranr.e into a comprcs•.cd r ,,nr,e, 
so that the variable could only lake on a few value~ 
and thus the $if.nature Table would be smaller. Howcvr.r , 
this was a fund.imenta l error as can be seen in Fi !.',urc ?. 
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Figure 2 

If a variable h;ir. a value neM vertical line A, then in 
both the lower (lar(le grain) and lipper (~mooth) situations, 
a small change in the value of the abscissa wil _l produce 
only a small change in the value of the ordinate. 
However, near vertical line B the situation is quite 
different. Here, for the IOwLr situation, a small change 
in the value of the abscissa can produce a very large 
change in the value of the ordinate. Such a construction 
wilt provide opportunities for a program to manipulate 
the value of the ordinate to an extent unwarranted by 
Its actual utility, arid this may cause the program to 
make serious. errors. 
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This type of .behavior can occur whenever there are 
sharp boundaries in the evaluation space. A~.sume a 
chess proerarn has a different method for evalu,1tinp; 
middle - game situations than it does I.or evalu,1ti11e 
cnd - eame situations. Experts agree that such di i, pMate 
types of positions should be evaluated differcnlly. 
Further, as5ume such a prO(lram has a middle-came 
position that ii likes, but this position would receive a 
poor evaluation if seen as an end -game. If swapping 
material would cause the position to be cvaluilled af. an 
end - game, then the program would go to great lengths to 
avoid swaps. This could well cause ii to encounter severe 



and unnecess11ry problems in the play. The conver•.e of 
this problem also occur s: the proeram hurries into the 
end- game because the cenler co11trol situation is 
unfavorable in the midd;e g.1me. 

Smoothness in functions is the answer to this problem. 
There is a slow metamorphosis of middle-game to 
end-eame, and durin{l this phase the values of both 
phases must be rccoenized, althoueh the middle-eamc 
is wanine and the end -g ame wincing. Any attempt to draw 
a sharp line between these is doomed to failure because it 
will result in occasional unwarranted attempts to stay 
on one side of the boundary or cross it too quickly. 

The key to accomplishing smooth transitions is 
Application Coefficients. An application coefficient is a 
variable that measures something elobal, yet varies very 
slowly in the current context. It multiplies a term in a 
polynomial, thus providing context about the importance of 
the term under current conditions. We have invcstieated 
a number of domai~s and found good applic a lion 
coefficients in all of them. Their characler is that they 
measure some trend or change of phase. Because 
they vary slowly and smoothly, the program will not be 
trying to manipulate them over a significant range (as by 
deliberately staying in the middle-eame because it has 
good control of the center, and this i!. not va luable in the 
end-eame). For chess, material on the board is a 
good application coefficient, and this will produce a smooth 
metamorphosir. between pha~e<. ;ind there will be no 
boundar ies near which catastrophes can occur. 

a. ___ 2' _____ ~-

d-----~--

e. _..,.....-:::::=:::s;;. _________ ::::::-::::--,, __ aaa,_ 

T 

Figure 3 

Application coefficients can also prevent the previously 
mentioned problem of a hill-climbin{l program getting 
stuck on a sub-optimal hilt. Figure 3 shows the problem. 
With linear polynomial evaluation functions, the hills in 
the evalualio·n surface will have pointed peaks and this 
will make ii quite likely lo gel stuck on such a hill (3a). 
With non-linear functions, the peak is less pronounced so 
that ii may be easier to descend a once-climbed hill, if 
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some other high ground is in view of the searching 
process (3b). However, with applicat ion coefficient:. ii is 
possible to change the contour of the hill even as it is 
being climbed. This is shown in 3c through 3c; the arrow 
showing the proximity of the current state to the hill. At ~ 
distance, the hill looks as in 3c. This allows the heir.hi of 
the hilt to be compared to that of other l;ind•.c;ipe 
features that may be ;ichievable. However, as the hill is 
climbed, ii bP{lins lo flatten (3d), m;iking the achievement 
of the summit less desirable (since we arc almost there 
anyway), and resultine in the program lookin~ for the 
next set of goals before even fully achieving the current 
set . As ii sets out for the next coal, the hill flattens 
stilt further (3e). This flattcnine is controlled hy 
application coefficients that detect the degree of procress 
in achieving · the go;il, and reduce its importance ae. ii 
comes closer to being achieved. This par,,di r,m recalls 
the situation in which a footb,111 playl'r be~in., lo run with 
the ball before he has caught ii. The point is: if the 
controlling human processes solved problems sequen tially 
rather than in parallel, such behavior would be unli~.ely to 
occur. 

Thus application coefficients can chanee the program's 
view of what ii should be doine, even as it is doing it. 
For instance, in my backgammon procr am one of the major 
eoats is to blockade some of the opponent's men. 
However, ii such a maneuver succeeds, the blockade must 
eventually be lifted in order to brine one's own men into 
the homeboard lo proc.eed with the win. In order lo 
have the procram understand the clC'~1rahihty of the 
blockadinr, go;il, there arc arplic at ion rocff il icnl ~- I hat 
eauge the overall situ11tion and ra1•.c or lower the 
de,:;irabilily of bloc~.ading b;iscd upon r, lob"I 
considerations. Such constructions can be tuned to 
eive truly amazing performance: percC'iv ing (as ii 
appears) when blockading is appropriate and when ii i-:; 
not. 

Thal is not lo say that a domain '.,hould never be 
partitioned into sub-domains for evaluation purpo ~- cs. 
Sometimes, that is the only se n'.,ible thing to do, but it 
must be done judiciously. For in'.,f,rncr, in b.,rkg;immon 
there will come a time in the came where the two sides 
are no longer in contact and both arc racinc tor home with 
no further impedinc of each other . In !,uch a pha•.c ,t 
is senseless to consider such fe atures as blorkading 
potential, board control, etc. Since the coefficient'.. of 
such terms would be zero during the running r,ame, 
evaluations generated for such runninc came situations 
wilt differ con•,ideraply in mag11itudc from tho-.c 
generated for competing non-runnin~ eame po '..ilions. 
Yet ii may be necessary lo chOO'.,C between '.- uch 
positions. What is needed in such a silualion i'., a 
common measure along which both types of po:.ilion~. may 
be evaluated. This is attained by computine the win 
probability for eac.h type of posi tion. The bed of each 
position type can first be cho~.cn using the evaluation 
function appropriate lo each sub -domain. Then the best 
po,:;ilion in each r.ub-domain can he compared to •,elect 
the best over-.lll course of action. New sub-ciom.1ins 
should only be created when there is a clear b,>•.is for 
doing this, as the number of polcntial compari'..ons grow,·. 
with the square of the number of ',uh-domain•., and c ,1ch 
comparison is a potential source of dcci<.ion error. 



The use of SNAC functions in 
program turned it from a mediocre 
expert level prosram, with only a 
additional backgammon information, as 
[Berliner, 1980). 
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V .. Why Discrete Systems Fail in Laree Domains 

To here, I have tried to make two points: 

1) Thal the combin;ition of searc h and sood evaluation 
functions produces a very fine problem solver for 
many domains, ;ind 

2) That the evaluation lune lions must be carefully 
com;tructcd and arc more powerful when non-linear. 

Now it i!, time to tilke cor,niz;rncc of the rather appi!rcnt 
degradation that takes place when problem ',Olvcrs 
relying on boole.in dr.cision makinp, ;ire applied to l,irp,e 
domains. The dcr,radation takes place in the proce~.s of 
goal se lection, the proce!,S of operator selection, ;md the 
process of cvalualinr, closeness to goals in non-terminal 
nodes of the domain. From the variety of evidence 
presenter!, we consider ii appilrent that thi ~. is not the 
fault of researchers or lack of effort, but rather of the 
nature of the problem and the method. II ;ippears that 
the idea of applying boolean decision rules to a laq~e 
domain just will not work unless the domain ir, quite 
regular (as i5 mechani.cs, where a few principles have 
ultimately beP.n shown lo account for all macro behavior). 
Thus, as the exponential explo ~. ion prevents any attempt 
to produce salisf aclory decision functions b.ised on 
predicates (too many predicates required), any attempt to 
subdivide the domain without true basis ir1 fact succumbs 
to the problems we have described in Section IV. 

Lei us try lo rlcfcrminC' the rca•,on~. why it i~. i.o difficult to 
improve a discrete problem solver. The effectiveness of a 
problem solver is measured by the nearness of the 
system propo~ed solution to the best or an adequate 
solution. If an algor ithm for a particular domain is not 
known, then it is likely that effectiveness will be 
achieved gradua ll y throuch increa'.,es in i,eni.it ivity to what 
a correct so lution is. By sensit ivi ty, we mean the number 
~f st ate s in the domain that Me now ordered correctly, 
ignoring how far off misorderc>d stales arc. 

Given that the r.ffcclivcnc55 of a problem ~.olvcr is to be 
improved, 5enr,iti vity can be increa~.ed by havinc two 
states, that former ly had the same value, no lonccr h;ive 
the same va lue. If two such states have similar state 
descriptions, ii is po~,5ible lo think of them ;is bcinc 
somewhat arljacent in some mappinp, of the domain 
onto a multi - dimen•,ional surf,,ce. To prod11cc the new 
sensitivity, ii ir. po~siblc to pl;icc a p;irtit ion belw<'cn the 
two states so that slates 011 each side of the partition 
will now be treated differently. However, this will result 
in many other adjacent states ro 'J w bcinp, on one side or 
the other of the new partiti~ci. thus pos5ibly altering 
the.ir treatment too. · 

As earlier sections of this paper have shown, there is a 
d~finite risk aswciated with increasinr, the sens it ivity of a 
discrete problem solver. The r isk slems from the fact that 
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introducing a partition, while it may improve the sen5 itivity 
of the problem solver, may also result in radica lly 
misordering certa in states. Partit ioninp, will or1ly work 
proper ly if: 

1) There really is a discrete difference between 
identifiable sets of sla tes in thir, part of the domair1, 
and 

2) The partition is drawn absolutely correctly •,o as to 
not have any state on the wronp, !,idc of the partition. 

Apart from partilioninr, domains, incrcasr.s in scw.itivity 
can alr,o be achievr.d by crc-i tinc a •.,mooth cradient 
between the two stales that arc now lo be lrc.,ted 
differently. This wilt affect the valuc 5 of other adj;iccnt 
states, but not in such a severe manner as to cause 
misclassifications. 

A critical obt,ervation here is th-it drawinc a partition, 
irrevocably fixes the value of !,omc vari;ible at some 
discrete interval (as in Fir.ure 2, lower scale). If such a 
variable is quar.i-contir1uow,, and if ii i; value is to be ll !,ed 
later for other computat ion!., then it is certain ly 
preferable to _po~.tpone .the di-,cretizinr, proce !,S a<, lone as 
possib le and retain its value in quasiscontinuous form. 

Among large systems, MYCIN- like syt.tems are considered 
lo exerc ise their expert ise very well. These syi.tcms 
apparently avoid the partitioninp, problem in laq;e 
domains by the use of probabili5lic indicators [Shortliffe 
& Buchanan, 1975). B~causc of thi5, they can hardly be 
considered to rea!,on in the boolean maimer, but r,,the• 
one gel!; the ilavor of eva luation with !,L:mmation of 
likelihoods. 

VI. Models and Sensitivity 

The cffcctivenc",S of a problcn1 !.olvcr cl c pPnck, on how 
well its domain is beinp, modelled. Mor.I domains can be 
·modelled at many levels of dct ail. Con~.iclcr lhal the 
morning weather forecast predict!, a 1101 chance of 
showers, when it could c.onccivably produce a cumul,,ti ve 
precipitation curve over lime for that day for p,1ch 
acre in the metropolitan area. If the domain is cJi,,crct e 
and the model ;ilso, then a correc tl y formulated discrete 
mode l can be very effective. This is the case in mo e, t 
small domain5 and in domain!, that are "regularized", c.p, . 
the game of NIM for which a simrlc rule can find the 
winning move even though the si7c of the dom;iin is 
infinite. If the nature of tho domain is not completely 
understood, optin8 for a quasi-continuous model appc,,rs 
preferi!ble. This applies both to operator selection ir1 a 
problem solver that app lies knowledge to this prorcss 
(because misorcforinr, operators can al:,o have a 
very dcleteriou~. ef fect), and to cvalu;ilion. 

Based on the acl ior1 requirements ,ind the ,,ccur;iry ,111d 
avai labi lity of input data, a model i~ cho~.cn. II is d!''.,irccf 
to have that model lune tior1 11c;ir lhc top 0 1 it s 
effectiveness. When a given model docs not perform 
near that level, then eit her the input cl,1ta ;1re 
insufficient, or the model i'., ii1:.c11•.itivc to cert;iin thine,~ .. 
The selection ilnd improvement of a model appears to 
governed by the following principles: 



. I 

I 
· I 

1) For each model of e;ich dom.1in I here is an optimum 
sensitivity. If the model utilizes a greater degree of 
sensitivity, it wastes computational resourses; if it 

. uses lesser sensitivity, ii will fail to "understand" or 
react to certain things. However, 

2) Each increase in sensitivity in the problem solver is 
accompanied by an increase in ri$k of incorrect 
interpretation or action. 

Consider the chess middle-game, end-game situation 
mentioned in Section IV. In a particular implemf!nt~lion, a 
program may coni.ider that trying to control the center in 
the end-game is important, even though ii is really not. 
This would produce occasional ordering errors bec;iur,e 
the program would value center control in the end-eame 
more than is warranted by reality. Thue,, it would 
occasionally fail to achieve a more worthwhile goal. 

Now, assume the space is partitioned !,O !hill 
middle-r,ilmc and cnd ··g,,mc arc no lonecr on the r.;ime 
side of the p...rlition, ;incl control of lhc center is v~lucd 
only in the midcllc-r,am<'. Thi!, will rcr.ull in helter 
ordering of mod cnd-c,1me r.ituation!., bul will 
occc1sionally ca use r,cr iour, problem!, akin to myopia 
when transitions from middlc-gM11C' lo end-e,ame Me 
involved. This is the risk involved, and as we have shown 
earlier, it can produce scr iouc. problems that would 
render the value of the increa!,cd sens itivity questionable. 

Another way of looking al the problem is the following: 
Assume a syi. tem i<.; cnpable of only two rer.ponsC's and a 
partition in the domain determines which response is 
given. The naivt' probability of re•,ponsc error is 0.5. 
However, as!,umc an ordcrine of the states of the domain 
exists such that all slates above a cerl;i in state in the 
ordering arc on one side of the partition and all lhc 
remaining slates are on the other side. Under such 
condit ion<:;, error~ ;ire much mOrC' likely to be mildC in 
the vicinity of the partition thm1 elsewhere. 

If a vilriable is to be used to produce ii firial boolean 
decision, then there ir, no difference betwl'cn U',in[l a 
partition and usinr, some di',tan(e function of the place 
in the ordcrinr, lo produce the ,Hl'.wcr. However, if thi !, is 
an intcrm.,diatl' rPr.ult that m,1y l;itcr be combined with 
other d;ita, then therc i<:; a 1:re;it cie.11 to he r.,1i11rd hy 
retaining some f117 zy repre!,e11L1lio11 of the re :.ult; i.e. the 
distance from the partition. Thus, it is frequently more 
useful to know that .in event occurred ;ii sun:,cl, than that 
it occurred durinr, daytimC'. Coni.idcr thC' imrorlancc of 
distance from hir,h noon when ev;,luatin~. the ability of an 
observer to !,cc an t'Vent accurately. When it may be 
important to carry forward !,Orne of the prorcrties of the 
original measurement, a quasi-continuous measure serves 
better. In such cases, where ii i:radicnl mca~urc-!, lhc 
properly in question, the likelihood of error would be 
equally distributed throuehout the domain. Since under 
such conditions, general remedie~ exist for reducinr, the 
error in any slate, such a paradigm would seem 
preferable, when the value may be interim or when 
partitioning cannot be justified by the intrinsic 
proper iles of the domain. 
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VII. The Evolution of Problem Solving Systems 

There is no doubt that a highly discretized problem solving 
structure is the most effective one possible when such a 
model is applicable and the data ii requires are 
available. After all, that is what science is all about. 
However, if a· model produces r,ome crrorful respon!,es 
then care must be taken in achieving discreliz;,tion. In a 
sequential problem solver, a number of sm,1 11 errors is 
preferable to one laree error. Rr•,earch in r,;ime playinr, 
pro3rams has shown ar,ain and ;,g,,in th;it stl{h ;i sr,lcm 
is no better than its wea~.c~I link. Further, lhC' very 
ability lo discriminiltc the condition of sm;i ll error ar. 
against no error at all, is the h,1llmark of the expert. 
Each presently surviving org;inir.m con i, iders it •.C' lf to 
have adapted adequately. However, an expert oreani~m of 
a particular species m;iy be able to distine,uir.h errorful 
acts in a somewh;il inferior (but c urrcntly survivinr. ;ind 
self-confident) spec imen of its spec ie s. Thi s, a~,,in, 
supports the view !hill r,mall erron arc tolerable, and are 
done away with gradually over time. 

Thur,, for larr,c domilrns . (and in re;il life . ;ilmO!,t cvcryl hinr, 
is taq~e) problen1 r.o lvcrs mll',I fir',! and forcmo,.t he ;1ble 
to produce rc;isonilblc decisions (ones that arc not too far 
off the mark). To do this, fuzzy methods are much more 
satisfactory than those that. re;ison. Because hir,hly 
discretized problem solving is so difficult to achieve, it 
is almost certainly preceded by other less exact cleci~.ion 
methods in the ontogeny of any evolvinr, problem !,Olver. 

Thus, it would seem that slarlini: with r.mooth, cont inuous 
functions and r,radually discrctizing them would bt' a 
good slrater,y for achieving increased '.,cn,.it1 vily. /Is 
increar,cd scnr,ilivity i~ achieved over tir,,C', mo~t of the 
previously effective problem r.olver must dill be in pl;,ce. 
Thus, there will be a mixed bag of problem ~o lving 
techniques, rangine from the ui,e of continuous function!, lo 
distrele logic. In such an environment, ii appcMs 
extremely likely that many intermcdi,,te variable 5 will 
retain their original fuzzy char;icter br.caw.c higher level 
constructs are presently made from thC'm. Thcr.e notions 
would apply equally well to anim.ite .ind inanom;ite rroblem 
solving systems. 

Assuming the ilbOvc ideas are valid, there mur. l be a 
way for the problem solvinr, sy<.lrmr, of liv ing 
organisms to evolve in this direction, both clurinr. the 
life of the oreanism ;ind the life of the ~pec ic$. One 
possible solution to this problem is the v;iriablc 
coefficient. Suth coefficients, as they vary between 0.0 
and 1.0, have several known uses: 

1) Ar:. a characteristic function in fuz zy set theory, 
indicating to wh;il extent the clement to which ii 
applies is a member of the set. 

2) As an application coefficient in SNAC that controls 
applicability of a coc;icepl. 

3) For controllinc truth value in crrtain belief r,r, IC'w,. 

When such a value ha•. grnvililtcd i1!, clo~.r. to ,in exlrcmal 
value as can be deleclccl by the ~ystcrn, fhr.n we no 
longer have smooth vari;it ion between the limit s. , but a 



boolean entity. We conjecture that this paradigm 
accounts for the behavior of Piacct's pre -cOn$crvation 
children, wht;?re the phyr,ical extent of a r,et of objects is 
taken lo be · the hes! criterion of the amount of the set, 
until ii is learned Iha! conservation (when applicable) 
dominates "extent". 

Thus, an essential element of any evolving problem 
solver would appear lo be comput ing elements capable of 
graded response:t Beyond that, we do not want to 
propose here that human problem solvers use full-width 
shallow searches and evalu;ition procedurce. as lhose 
that have bc"n so !,ucccs~ful in computer pror,ram:.. 
However, we do consider ii likely that processes based 
on constraint satisfaction (as first implemented in Waltz's 
vision system [Macie.worth, 1977]) or tightly controlled 
knowledge directed sc;irches (ar, in the B* tree r.earch 
algorithm, [Berliner, 19791) arc deve loped to play the role 
that brute-force SP.i1rching docs in the previoue,ly 
reference!, pro(\ramr,. Both mdhods could he w,cd lo 
screen out obvious mir.fits in the solution process, in the 
fir!.I ca•,e throueh i1 low level combin;1torial ;1nalyr,ii. and 
in the second ca'.,e throueh C'.,limation of the limits of 
usefulness of each ;ilternative. Ev,1luat ion would be done 
using SNJ\C-like methods al each level of the solution 
process. 

Finally, let me brief ly address an issue that may be 
brought up by r,ome. The theory of compt1lation 
decrees th;it any continuous syr,lem can be r,imulnlc-d to 
any desired dc(\rec of fidclity by a Von Neumann machine. 
Thal is not the i!.sue here. The issue is one of complexity. 
Certain computing clements perform certain tasks more 
efficiently than others, and in th is case the required 
elements are such that they c,1n provide graded 
acceptance of signals, and graded re•,ponse. To use 
boolean _circuits lo provide the rn•.ponr.e required by the 
complex domains that arc encountered every day would 
appear to be so difficult that (we hold) even evolution 
would not have been ;iblc to build a r.ati sfactory 
system out of such component~. The real question is 
how did a syr.tcm that ha~ gr,,dcd rcr,pon•,c come to 
evolve into a ~-y~.tem that can manipulate ~.yrnbolic 
entities. It m;iy be that, in our de:,ire to •,imul.1te the 
highest level s of human b;havior, we have been 
overlooking the fundamcnt al 111formation proces'.,ing that 
is required to produce the vari;ibles that support such 
performante. 

twe are well aw..re of previo1,:, work in the field of 
perceptrons ;ind the dcmow.tr;ifion of the limitations of 
linear perceptrons in [Minsky and Paper!, 1969]. 
However, we arc here propor.ing a special cl ;v.s of 
non-linear perceptron. 
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