
PROCEEDINGS

.,.. ' . " . '
I :: "

l •

... . ' ...
'

CONFERENCE
1980
VICTORIA, B. C.

14, 15, 16 MAY 1980

,{

t J1 ! _• I , ' , , . ~ l/'

' ': '. - '1~' : ,- ,. ·, \. -·

VANCUli',L:,t u.C., '-' •" "uA VGT IZ1

PROCEEDINGS OF THE THIRD BIENNIAL CONFERENCE

OF THE

CANADIAN SOCIETY FOR COMPUTATIONAL STUDIES

OF INTELLIGENCE

COMPTE -RENDU DE LA TROISIEME CONFERENCE BIENNALE

DE LA

SOCIETE CANADIENNE DES ETUDES D' INTELLIGENCE

PAR ORDINATEUR

{ PRESENTED IN COOPERATION WITH
PRESENTE EN COOPERATION AVEC

Canadian Man-Computer Communications Society
Canadian Image Processing and Pattern Recognition Society

The University of Victoria
The University of Alberta

University of Victoria
Victoria, B.C.

14-16 May/Mai 1980

. I

. . I

.·_ · I

!-1

. . i

@) 1980
Canadian Society for Computational Studies of Intelligence
Societe Canadienne pour Etudes d' Intelligence par Ordinateur

Copies of these Proceedings may be obtained by prepaid order to:

CIPS National Office
5th Floor
243 College Street
Toronto, Ontario
M5T 2Y1

Prepaid price: CSCSI/SCEIO, CM-CCS, and CIPPRS members $22.00
Others $25.00

Chairman's Message

As Confere nce Chairman, I take great
pleasure in welcoming you to Victoria and
this Third Biennial CSCSI Conference.
This conference is particularly signifi
cant in that it is being held in cooper
ation with the Canadian Man-Computer
Communications Society and the Canadian
Image Processing and Pattern Recognition
Society. It is hoped that the arrange
ment is rewarding for all parties, and
will continue in future conferences.

The program committee, chaired by
L.K. Schubert a~d assisted by D.R . Bar
stow, J. de Kleer, A.K. Mackworth,
T.A . Marsland, R.C. Perrault and
J.R. Sampson have put together an out
standing program. I would like to thank
them for their efforts. In addition, I
am also grateful to N. Cercone, c. Suen
and M. Wein for their contributions to
the MCCS and IPPR portions of the pro
gram.

Local arrangements have been handled
by the University of Victoria, Housing
and Food Services, with assistance pro
vided by H. Widdifield, A. Tweedale and
C.H. Morgan. You have my gratitude for
your most welcome assistance.

The assistance of NSERC for pro
viding financial help with speakers'
travel and the Province of British
Columbia for a financial contribution
to the Salmon Barbeque is also
acknowledged.

Lastly, but not least, it is
necessary to acknowledge the assistance
of the University of Alberta: J. Tartar
for allowing the use of the facilities at
the u. of A. and particularly Sandra
Wilkins for making sure that everything
ran so s moothly .

Wayne· A. Davis
Conference Chairman

iii

Message du president

En tant que president de la
conference, j'ai le grand plaisir de vous
accueillir a Victoria, pour la troisi~me
conference biennale du SCEIO . Cette con
ference est particulierement importante
en ce sens qu'elle a eu lieu en coopera
tion avec la Canadian Man-Computer
Communications Society et la Canadian
Image Processing and Pattern Recognition
Society. Nous esperons que toutes les
organisations seront recompensees de cet
arrangement et que celui-ci se poursuivra
lois de futures conferences.

Le comite charge du programme,
preside par L.K. Schubert, et assiste par
D.R. Barstow, J. de Kleer, A.K. Mackworth,
T.A. Marsland, R.C. Perrault et
J.R . Sampson, a realise un travail re
marquable. J'aimerais les remercier pour
leurs efforts. En outre je suis tres
reconnaissant envers N. Cercone, c. Suen
et M. Wein, pour leur contribution aux
parties MCCS et !PPR du programme.

L'Universite de'victoria, Housing
and Food Services, avec !'assistance de
H. Widdifield, A. Tweedale et C.H. Morgan,
s'est chargee des arrangements locaux.
Vous avez toute ma gratitude pour votre
assistance qui a ete des plus bienvenues.

Je mentionnerai aussi !'assistance
du NSERC, qui a subvenu aux frais de
voyage des conferenciers, et de la
Province de Colombie bri t tainique, pou·r
sa contribution -financiere au Salmon
Barbeque.

Pour finir, il est necessaire de
faire part de !'assistance qui n'a pas
ete la moindre de l'Universite d'Alberta:
tout d'abord celle de J. Tartar pour
avoir permis !'utilisation des locaux et
de l'equipement de l'Universite d'Alberta,
et particulierement celle de Sandra
Wilkins pour avoir permis que tout aille
pour le mieux.

Wayne A. Davis
President de la Conference

I

I
I

· I

.1

OFFICERS OF THE THIRD BIENNIAL
CONFERENCE OF THE CSCSI/SCEIO

Geni::r a 1 Cl ,airman

Dr. Wayne A. Davis
Department of Computing Science
University of Alberta
Edmonton, Alberta
T6G 2H1

AI Program Chairman

Dr. Lenhart K. Schubert
Department of Computing Science
University of Alberta
Edmonton, Alberta
T6G 2H1

MCCS Program Chairman

Dr. Wayne A. Davis
Department of Computing Science
University of Alberta
Edmonton, Alberta
T6G 2H1

Proceedings Editor

Dr. Jeffrey R. Sampson
Department of Computing Science
University of Alberta
Edmonton, Alberta
T6G 2H1

Program CollY11ittee

Dr. David R. Barstow (Yale)
Dr. Johan de Kleer (Xerox PARC)
Dr . Alan K. Mackworth (U.B.C.)
Dr. T. Anthony Marsland (Alberta)
Dr . Raymond C. Perrault (Toronto)
Dr. Jeffrey R. Sampson (Alberta)

iv

OFFICERS OF THE CSCSI/SCEIO

President

Dr . John Mylopoulos
Department of Computer Science
University of Toronto
Toronto, Ontario
M5S 1A7

Vice-President

Dr. Alan K. Mackworth
Department of Computer Science
University of British Columbia
Vancouver, British Columbia
V6T 1W5

Treasurer

Dr. Wayne A. Davis
Department of Computing Science
University of Alberta
Edmonton, Alberta
T6G 2H1

Secretary

Dr. Steven W. Zucker
Dept. of Electrical Engineering
McGill University
Montreal, Quebec
H3C · 3G1

TABLE OF CONTENTS

EXPERT SYSTEMS I

Consultation Systems for Physicians: The Role of Artificial Intelligence
Techniques

Edward H. Short liffe

Finding Common Paths as a Learning Mechanism
Pat Langley 12

BACON.4: The Discovery of Intrinsic Properties
Gary L. Bradshaw, Pat Langley, and Herbert A. Simon 19

Incremental Deduction in a Real-Time Environment
Robert Bechtel, Paul Morris, and Dennis Kibler 26

An Inte lligent Support System for Energy Resources in the United States
S. Rosenberg . .. 34

Qualitative Reasoning about Time Series
James L. Stansfield 41

An Adaptive Sorting Program
Oliver G. Selfridge, Val erie I. Congdon, and Stephanie R. Davis 332

~ e \t.dwMUL oh~~ c>"t~
DEDUCTION AND SYNTHESIS ~·,\wt.~ ,k.¥;"'- ""I e1t~-rW\ll
Default Reasoning Clo~ ...vlA. d~\\ 1,(0Y~l c!~\-+ 4--4 ~ &~\t
~~.:~r.!e ixr ~~(. "~* 'i\.,ii" . ~ ~~~l . ·~i~~+ ~ *

Theorem Proving by Reducing Connection Graphs ~
Donald Kuehner

Towards an Iterative Approach to Program Synthesis
Michael A. Bauer

SEMANTIC NETS

Handling Exceptional Conditions in PSN
Yves Lesperance ,

Contexts in PSN
Peter F. Schneider

Representing Programs in PSN
Bryan M. Kramer

Organization of Modally Embedded Propositions and of Dependent Concepts
Alan R. Covington and Lenhart K. Schubert

U& e of an Attribute Gran ,na r in Network - Based Representation Schemes
CI i f ford R. Ho I I ander .

V

49

55

63

71

79

87

95

I

NATURAL LANGUAGE PROCESSING I

Selective Inferencing
Jerry R. Hobbs

Interpreting Verb Phrase References in Dialogs
Ann E. Robinson ...

Correcting Misconceptions About Data Base Structure
Eric Mays

Semantics and Parts of Speech

101

115

123

Abe Lockman 129

PSI - KLONE: Parsing and Semantic Interpretation in the BBN
Natural Language Understanding System

Robert J. Bobrow and Bonnie L. Webber .

The Role of Discourse Structure in Language Production
David D. McDonald

Natural Language Queries for a Linguistic Data Base Using PROLOG
Richard Kittredge

COMPUTER VISION

Computer Vision
Steven W. Zucker

Towards Synthetic Images
Brian V. Funt

Medi at ion Between Central
Structures

Roger Browse

in Scene Analysis

and Peripheral Processing:

Schemata-Based Understanding of Hand - Drawn Sketch Maps
William S. Havens and Alan K. Mackworth ...

Useful Knowledge

Push and Pop on Pictures: Generalizing the Augmented Tr ansition Network
Formalism to Capture the Structure and Meaning of Images

131

143

151

•

158

166

172

Heinz Breu and A 1 an K. Mackwor th 179

Automatic Registration of Landsat Images Using Features Selected from
Digital Terrain Models

J arne s J . L it t 1 e . •

Quantification and Characterization of the Shape of a Moving Cell
M.D. Levine and Y .M. Youssef

Spatial Experience and Spatial Problems in a Simulated Robot-Environment System

188

196

P.F. Rowat and R.S. Rosenberg 204

vi

GAMES, PROBLEMS, AND SEARCH

Some Observations on Problem Solving
Hans Berliner

Causality Analysis in Chess
David E. Wilkins

Pattern - Based Representations of Knowledge:
. M.A. Bramer

Searching Game Trees in Parallel

In Search of the "Human Window"

Selim G. Akl, David T. Barnard, and Ralph J. Doran

Applications of the Contract Net Framework: Search
Re i d G . Sm i th

A Geometric Model Approach to Representing Graph-Search Problems:
First Results

John Gaschnig

Planning in a Dynamic Microworld
Gordon I. McCall a and Peter F. Schneider

NATURAL LANGUAGE PROCESSING II

What's the Point?
Robert Wilensky

Speech Acts and the Recognition of Shared Plans
Philip R. Cohen and Hector J. Levesque

Understanding Arguments
Robin Cohen

EXPERT SYSTEMS II

Examp le Generation
Edwina L. Rissland

A Domain - Independent System for Developing Knowledge Bases
James A. Reggia

Knowledge Acquis ition and Representation Using Logic, Set Theory and
Natural Language Structures

Stewart Bainbridge and Douglas Skuce

The Representation of an Evolving System of Legal Concepts
L.T. McCarty and N.S. Sridharan....

vii

341

212

217

224

232

240

248

256

263

272

280

289

296

304

.,

I
.1
I
l
I . I
!

. I

I

MAN-COMPUTER COMMUNICATIONS

Providing Automatic Graphic Displays Through Defaults
Sakunthala Gnanamgari, N.I. Sadler, H.L. Morgan, and Bonnie L. Webber ... 312

Using Computer Perception for Graphical Type Checking
Nadia Magnenat-Thalmann and Daniel Thalmann

On the Design of an Intelligent Terminal for Voice Output in Progranming

320

T. Radhakrishnan and C. Labrador 327

• No paper avai labl e

viii

CONSULTATION SYSTEMS FOR PHYSICIANS:
The Role of Artificial Intelligence Techniques

Edward H. Shortliffe

Departments of Medicine and Computer Science
Heuristi c Programming Project

Stanford University School of Medicine
Stanford, California 94305

ABSTRACT

Computer systems for use by physicians
have had limited impact on clinical
medicine. When one examines the most
common reasons for poor acceptance of
medical computing systems, the potential
relevance of artificial intelligence
techniques becomes evident. This paper
propose s design criteria for clinical
computi ng systems and demonstrates their
relationship to current research in
knowledge engi ne erinp,. The MYCIN System
is used to illustrate the ways in which
our research group has attempted to
respond to the design criteria cited.

1. INT RODU CTI ON ------

Although computers have had an
increasing impact on the practice of
medicine, the successful applications have
tended to be in domains where physicians
have not been asked to interact at the
terminal. Few potential user populations
are as demanding of computer-based
decision aids. Thi s is due to a variety of
factors which include their traditional
independence as lone decision makers, the
seriousness with which they view actions
that may have life and death significance,
and the overwhelming time demands that
tend to mak e them impatient with any
innovation that breaks up the flow of
their daily routine.

This paper examines some of the
i ssues that have limited the acceptance of
programs for use by physicians,
particularly programs intended to give

1Thi s article i s base~-~~ a longer paper
to be published as a book chapter by
Academic Press [Shortliffe 1980) .

2or. Shortliffe is recipient of research
career development award LM00048 from the
National Library of Medicine.

1

advice in clinical settings. My goal is to
present design criteria which may
enco urage the use of computer programs by
physicians, and to show that AI offers
some particularly pertinent methods for
responding to the design criteria
outlined. Although the emphasis is
medical throughout, many of the issues
occur in other user communities where the
introduction of computer methods must
confront similar barriers. After
presenting the design considerations and
their relationship to AI research, I will
use our work with MYCIN to illustrate some
of the ways in which we have attempted to
respond to the acceptability criteria I
have outlined.

1. 1. The Nature Of Medical Reasoning

It is freq uently observed that
clinical medicine is more an "art" than a
"science" . This statement reflects the
varied factors that are typically
considered in medical decision making; any
practitioner knows that well-trained
experts with considerable specialized
experience may sti ll reach very different
conclusions about how to treat a patient
or proceed with a diagnostic workup.

One factor which may contribute to
observed discrepancies, even among
experts, is the tendency of medical
education to emphasize the teaching of
facts, with little formal advice regarding
the reasoning processes that are most
appropriate for decision making. There
has been a traditional assumption that
future physicians should learn to make
decisions by observing other doctors in
action and by a~quiring as much basic
knowledge as possible. More recently,
however, there has been interest in
studying the ways in which expert
physicians reach decisions in hopes that a
more structured approach to the teaching
of medical decision making can be
developed [Kassirer 1978, Elstein 1978) .

'i>•., .•

" · .•. \j

. .. 1

j

l
J

I
I
I

I

i

I
I .,

Computer programs for assisting with
medical decision making have tended not to
emphasize models of clinical reasoning.
Instead they have commonly assigned
structure to a domain using statistical
techniques such as Bayes' Theorem
[deDombal 1972) or formal decision
analysis [Gerry 1973). More recently a
number of programs have attempted to draw
lessons from analyses of actual human
reasoning in clinical settings [Wortman
1972, Pauker 1976). Although the other
methodologies may lead to excellent
decisions in the clinical areas to which
they have been applied, many believe that
programs with greater dependence on models
of expert clinical reasoning will have
heightened acceptance by the physicians
for whom they are designed.

1.2 . The Consultation Process

Accelerated growth in medical
knowledge has necessitated greater sub
specialization and more dependence upon
assistance from others when a patient
presents with a complex problem outside
one 's own area of expertise. Such
consultations are acceptable to doctors in
part because they maintain the primary
physician's role as ultimate decision
maker. The consultation generally
involves a dialog between the two
physicians, with the expert explaining the
basis for advice that is given and the
nonexpert seeking justification of points
found puzzling or questionable.
Consultants who offered dogmatic advice
they were unwilling to discuss or defend
would find that their opinions were seldom
sought. After a recommendation is given,
the primary physician generally makes the
decision whether to follow the
consultant's advice, seek a second
opinion, or proceed in some other fashion.
When the consultant's advice is followed,
it is frequently because the patient's
doctor has been genuinely educated about
the particular complex problem for which
assistance was sought.

Since such consultations are accepted
largely because they allow the primary
physician to make the final management
decision, it can be argued that medical
consultation programs must mimic this
human process. Computer-based decision
aids have typically emphasized only the
accumulation of patient data and the
ge ne ration of advice [Shortliffe 1979).
On the other hand, an ability to explain
decisions may be incorporated into
computer-based decision aids if the system
is given an adequate internal model of the
logic that it uses and can convey this
intelligibly to the physician- user. The
addition of explanation capabilities may

2

be an important step towards effectively
encouraging a system's use.

2. ACCEPTABILITY ISSUES

Studies have shown that many
physicians are inherently reluctant to use
computers in their practice [Startsman
1972). Some researchers fear that the
psychological barriers are insurmountable,
but we are beginning to see systems that
have had considerable success in
encouraging terminal use by physicians
[Watson 1974) . The key seems to be to
provide adequate benefits while creating
an environment in which the physician can
feel comfortable and efficient.

Physicians tend to ask at least seven
questions when a new system i s presented
to them:

(1) Is its performance reliable?

(2) Do I need this system?

(3) Is it fast and easy to use?

(4) Does it help me without being
dogmatic?

(5) Does it justify its recommenda
tions so that I can decide for myself what
to do?

(6) Does use of the system fit
naturally into my daily routine?

(7) Is it designed to make me feel
comfortable when I use it?

Experience has shown that reliability
alone may not be enough to insure system
acceptance [Shortliffe 1979); the
additional issues cited here are also
central to the question of how to design
consultation systems that doctors will ·be
willing to use.

The design considerations for systems
to be used by physicians can be divided
into three main categories: mechanical,
epistemological, and psychological.

3 . 1. Mechanical Issues

It is clear that the best of systems
will eventu ally fail if the process for
getting information in or out of the

machine is too arduous, frustrating, or
complicated. Someday physician-computer
interaction may involve voice
communication by telephone or microphone,
but technology is likely to require manual
interaction for years to come. Thus,
careful attention to the mechanics of the
interaction, the simplicity of the
displays, response time, accessibility of
terminals, and self-documentation, are all
essential for the successful
implementation of clinical computing
systems.

3.2. Epistemological Issues

As has been discussed, the quality of
a program's performance at its decision
making task is a basic acceptability
criterion. A variety of approaches to
automated advice systems have been
developed, and many perform admirably
[Shortliffe 1979]. Thus the capturing of
knowledge and data, plus a system for
us ing them in a coherent and consistent
manner, are the design considerations that
have traditionally received the most
attention.

Other potential uses of system
knowledge must also be recognized,
however. As has been noted, physicians
often expect to be educated when they
request a human consultation, and a
computer-based consultant should also be
an effective teaching tool. On the other
hand, physicians would quickly reject a
pedantic program that attempted to convey
every pertinent fact in its knowledge
base. Thus it is appropriate to design
programs that convey knowledge as well as
advice, but which serve this educational
function only whe~ as ked to do so by the
phy si ci an-user.

As has been mentioned, physicians
also prefer to understand the basis for a
co nsultant's advice so that they can
decide for themselves whether to follow
the recommendation. Hence the educational
role of the consultation program can also
be seen as providing an explanation or
ju stif ication capability, When asked to
do so, the system should be able to
retrieve and display any relevant fact or
r easoning step that was brought to bear in
considering a given case , It is also
important that such explanAtions be
expressed in terms that are easi ly
compr ehensible to the physician.

Since it would be unacceptable for a
consultation program to explain every
relevant reasoning step or fact , it is
important that the user be able to request
justification for points found to be
puzzling. Yet an ability to ask for

3

explanations generally requires that the
program be able to understand free-form
queries entered by the user. A reasonable
des ign consideration, then, is to attempt
to develop an interface whereby simple
questions expressed in English can be
understood by the system and appropriately
answered.

It is perhaps inevitable that
consultation programs dealing with complex
clinical problems will occasionally reveal
errors or knowledge gaps, even after they
have been implemented for ongoing use . A
common source of frustration is the
inability to correct such errors quickly
so that they will not recur in subsequent
consultation sessions. There is often a
lapse of several month s between "releases"
of a system, with an annoying error
recurring persistently in the meantime.
It is therefore ideal to design systems in
which knowledge is easily modified and
integrated; then errors can be rapidly
rectified once the missing or erroneous
knowledge is identified. This requires a
flexible knowledge representation and
powerful methods for assessing the
interactions of new knowledge with other
facts already in the system.

Finally, the acquisition of knowledge
can be an arduous task for system
developers. In some applications the
knowledge may be based largely on
statistical data, but in others it may be
necessary to extract judgmental
information from the minds of experts.
Thus another design consideration is the
development of interactive techniques to
permit acquisition of knowledge from
primary data or directly from an expert
without requiring that a computer
programmer function as an intermediary.

3.3. Psychological Issues

The most difficult problems in
designing consultation programs may be the
frequently encountered psychological
barriers to the use of computers among
physicians [Startsman 1972, Croft 1972].
Many of these barriers are reflected in
the mechanical and epistemological design
criteria mentioned above. However, there
are several other pertinent observations:

(1) It is probably a mistake to
expect the physician to adapt to changes
imposed by a consultation system.

(2) A system's acceptance may be
greatly heightened if ways are identified
to permit physicians to perform tasks that
they have wanted to do but had previously
been unable to do [Mesel 1976, Watson
1974].

(3) It is important to avoid
premature introduction of a system while
it is still "experimental".

(4) System acceptance may be
heightened if physicians know that a human
expert is available to back up the program
when problems arise.

(5) Physicians are used to assessing
research and new techniques on the basis
of rigorous evaluations; hence novel
approaches to assessing both the
performance and the clinical impact of
medical systems are required.

4, KNOWLEDGE ENGINEERING

In recent years the terms "expert
systems" and "knowledge-based systems"
have been coined to describe AI programs
that contain large amounts of specialized
expertise that they convey to system users
in the form of consultative advice. The
phrase "knowledge engineering" has been
devised [Michie 1973] to describe the
basic AI problem areas that support the
development of expert systems. There are
several associated research themes:

(1) Representation of Knowledge. A
variety of methods for computer-based
representation of human knowledge have
been devised, each of which is directed at
facilitating the associated symbolic
reasoning and at permitting the
codification and application of "common
sense" as well as expert knowledge of the
domain.

(2) Acquisition!.?.~ Knowledge.
Obtaining the knowledge needed by an
expert program is often a complex task.
In certain domains programs may be able to
"learn" through experience or from
examples, but typically the system
designers and the experts being modelled
must work closely together to identify and
verify the knowledge of the domain.
Recently there has been some early
experience devising programs that actually
bring the expert to the computer terminal
where a "teaching session" can result in
direct transfer of knowledge from t he
exoert to the system itself [Davis 1979].

(3) Methods of Inference. Closely
linked to~he issue of knowledge
representation is the mechanism for
devi si ng a line of reasoning for a given
consultation. Techniques for hypothesis
generation and testing are required, as
are focusing techniques. A particularly
challenging associated problem is the
development of techniques for quantitating
and manipulating uncertainty. Although

4

inferences can sometimes be based on
established techniques such as Bayes'
Theorem or decision analysis, utilization
of expert judgmental knowledge typically
leads to the development of alternate
methods for symbolically manipulating
inexact knowledge [Shortliffe 1975].

(4) Explanation Capabilities. For
reasons I have explained in the medical
context above, knowledge engineering has
come to include the development of
techniques for making explicit the basi s

This
methods

for recommendations or decisions.
requirement tends to constrain the
of inference and the knowledge
representation that is used by a complex
reasoning program.

(5) The Knowledge Jnterface. There
are a variety of issues that fall in this
general category. One is the mechanical
interface between the expert program and
the individual who is using it; this
problem has been mentioned for the medical
user, and many of the observations there
can be applied directly to the users in
other knowledge engineering application
domains. Researchers on these systems
also are looking for ways to combine AI
techniques with more traditional numerical
approaches to produce enhanced system
performance. There is growing recognition
that the greatest power in knowledge-based
expert systems may lie in the melding of
AI techniques and other computer science
methodologies [Shortliffe 1979],

Thus it should be clear that
artificial intelligence, and specifically
knowledge engineering, are inherently
involved with several of the design
considerations that have been suggested
for medical consultation systems, In the
next section I will discuss how our
medical AI program has attempted to
respond to the design criteria that have
been cited.

5, AN EXAMPLE: THE MYCIN SYSTEM

Since 1972 our research group at
Stanford University 1 has been involved
with the development of computer-based
consultation systems. The first was
designed to assist physicians with the
selection of antibiotics for patients with

1several computer scientists,
physicians, and a pharmacist have been
involved in the development of the MYCIN
System. These include J. Aikins,
S. Axline, J. Bennett, A. Bonnet,
B. Buchanan, W, Clancey, S. Cohen,
R. Davis, L. Fagan, F. Rhame, C. Scott,
w. vanMelle, S. Wraith, and V. Yu.

serious infections. That prof(ram has been
termed MYCIN after the suffix utilized in
the names of many common antimicrobial
agents. MYCIN is still a research tool,
but it has been designed largely in
response to issues such as those I have
described. The details of the system have
been discussed in several publications
[Shortliffe 1976, Davis 1977, Scott 1977)
and may already be well known to many
readers. Technical details will therefore
be omitted here, but I will briefly
describe the program to illustrate the
ways in which its structure reflects the
design considerations outlined above.

5. 1. Knowledge Representation and
Acquisiti<?_I!

All infectious disease knowledge in
MYCIN is contained in packets of
inferential knowledge represented as
production rules [Davi s 1976). These
rules were acquired from collaborating
clinical experts during detailed
discussions of specif ic complex cases on
the wards at Stanford Hospital. More
recently the system has been given the
capability to acquire such rules directly
through interaction with the clinical
expert 1.

MYCIN currently contains some 600
rules that deal with the diagnosis and
treatment of bacteremia (bacteria in the
blood) and meningitis (bacteria in the
cerebrospinal fluid). These rules are
coded in INTERLISP [Teitelman 1978) , but
routines have been written to translate
them into simple English so that they can
be displayed and understood by the user.
For example, one simple rule which relates
a patient's clinical situation with the
likely bacteria causing the illness is
shown in Fig. 1. The strengths with which
the specified inferences can be drawn are
indicated by numerical weights, or
certainty factors, that are described
further below.

5 .2. Inference Methods

5.2 . 1 .

Production rules provide powerful
mechanisms for selecti ng those that apply
to a Riven consultation. In MYCIN's case
the rules ~re only loosel, related to one
another before a consultation begins; the

1This capability was implemented in

rudimentary form in early versions of the
system [Shortliffe 1976) but was
substantially broadened and strengthened
by Davis in his Teiresias program [Davis
19791.

5

RULF:300
-~~-[-This rule applies to all cultures
and suspected infections, and is tried in
order to find out about the organisms
(other than those seen on cultures or
smears) which might be causing the
infection)

If: 1) The infection which requires
therapy is meningitis, and

2) The patient does have evidence
of serious skin or soft tissue
infection, and

3) Organisms were not seen on the
stain of the culture, and

4) The type of the infection is
bacterial

Then : There is evidence that the
organism (other than those seen
on cultures or smears) which
might be causing the infection
is staphylococcus-coag-pos (.75)
streptococcus-group-a (.5)

Figure 1 - A Sample MYCIN Rule

program selects the relevant rules and
chains them together as it considers a
particular patient . Two rules chain
together if the action portion of one
helps determine the truth value of a
condition in the premise of the other .
The resulting reasoning network, then, is
created dynamically and can be seen as a
model of one approach to the patient's
problem.

MYCIN's strategy in rule selection is
goal-oriented. The program "reasons
backwards" from its recognized goal of
determining therapy for a patient. It
therefore starts by considering rules for
therapy selection, but the premise portion
of each of those rules in turn sets up new
questions or subgoals. These new goals
then cause new rules to be invoked and a
reasoning network is thereby developed.
When the truth of a premise condition is
best determined by asking the physician
rather than by applying rules (e.g., to
determine the value of a laboratory test),
a question is displayed. The physician
enters the appropriate response and the
program continues to select additional
rules. Once information on the patient is
obtained, some rules will fail to be
applicable; in this way the invoked
applicable rules will provide a customi zed
patient-specific reasoning network for the
case under consideration.

Portions of a sample consultation
session are shown in Fig. 2. The
physician's responses are in capital
letters and follow a double asterisk.

Note that the physician can indicate that
he does not know the answer to a question
(Question 13) and MYCIN will proceed to do
the best it can on the basis of the data

- -~-- --PATIENT- 538- -------
1) Patient's name:
•• PT538
2) Age:
•• 45
3) Sex:
•• MALE
4) Race:
•• CAUC

:CAUCASIAN
5) Are there any cultures for Pt538

which may be related to the present
illness, and from which organisms
have been grown successfully in
the microbiology laboratory?

** NO
6) Are there any pending cultures?
** YES

=ROD

- -------CULTURE-1- -------
7) From what site was the specimen

for CULTURE- 1 taken?
** CSF
8) Please give the date and time

when the pending csf culture
(CULTURE-1) was obtained,

•• 11/28/78
9) Was a smear examined at the time

that the specimen for the pending
csf culture (CULTURE-1) was
obtained?

** YES
10) Were any organisms seen on the

smear of the specimen submitted
as the pending csf culture
(CULTURE- 1)?

** YES

- - -~- - - ORGANISM-1 - -------
11) The stain (Gram, India ink,

or Ziehl-Neelsen acid- fast) of
ORGANISM-1:

** GRAMNEG
12) Is ORGANISM-1 a rod or coccus

(etc,) :
** ROOD

13) What is the form of the
individual organisms (e,g,
Lancet - shaped for cocci,
fusiform for rods, etc.)?

• • ??
Expected responses are: FUSIFORM,
PLUMP or DUMBBELL-SHAPED
Enter HELP for list of options.
** UNKNOWN

14) Any other organisms noted on the
smear?

** NO

Figure 2
The B~ginning Ofl\Sample Consultation

6

available. Typographical or spelling
errors are automatically corrected
(Question 12) with the presumed meaning
printed at the left margin so that the
physician knows what assumption has been
made. Note also that the physician's
responses are generally single words.

In Fig. 3 the form of MYCIN's final
.conclusions and therapy recommendations
are demonstrated. Note that the program
specifies what organisms are likely to be
causing the patient's infection and then
suggests a therapeutic regimen appropriate
for them. There are also specialized
routines to calculate recommended drug
doses depending upon the patient's size
and kidney function.

My therapy recommendations will be
designed to treat for organisms that
either are ve ry likely or, although less
likely, would have a significant effect
on therapy selection if they were
present. It is important to cover for
the following probable infection(s) and
associated organism(s):

INFECTION- 1 is MENINGITIS

+ <ITEM-1>
+ <ITEM-2>
+ <ITEM- 3>
+ <ITEM-4>

E.COLI
PSEUDOMONAS-AERUGINOSA
KLEBSIELLA-PNEUMONIAE
DIPLOCOCCUS-PNEUMONIAE

41) Does Pt538 have a clinically
significant allergic reaction to
any antimicrobial agent?

** NO
42) Do you have reason to suspect that

Pt538 may have impaired renal
function?

** NO
43) Pt538's weight in kilograms:
•• 70

[REC-1] My preferred therapy
recommendation is:

In order to cover for Items <1 2 3 4>:
Give the following in combination:
1) AMPICILLIN
Dose: 3,5g (28.0 ml) q4h IV

[calculated on basis of 50
mg/kg]

2) GENTAMICIN
Dose: 119 mg (3,0 ml, 80mg/2ml

ampule) q8h IV [calculated
on basis of 1, 7 mg/kg] plus
consider giving 5 mg q24h
intrathecally

Since high concentrations of penicillins
can inactivate aminoglycosides, do not mix
these two antibiotics in the same bottle.

Figure 3
Example of MYCIN's Recommendntions

'i.2.2. Management of Uncerta_!!J_.!:y_

The knowledge expressed in a MYCIN
rule is seldom definite but tends to
include "suggestive" or "strongly
suggestive" evidence in favor of a given
conclusion. In order to combine evidence
regarding a single hypothesis but derived
from a number of different rules, it has
been necessary to devise a numeric system
for capturing and representing an expert's
measure of belief regarding the inference
stated in a rule. Although this problem
may at first seem amenable to the use of
conditional probabilities and Bayes'
Theorem, a probabilistic model fails to be
adequate for a number of reasons we have
detailed elsewhere [Shortliffe 1975].
Instead we use a model that has been
influenced by the theory of confirmation,
and have devised a system of belief
measures known as certainty factors.
These numbers lie on a - 1 to +1 scale with
- 1 indicating absolute disproof of an
hypothesis, +1 indicating its proof, and O
indicating the absence of evidence for or
against the hypothesis (or equally
weighted evidence in both directions).
The relationship of the mode l to formal
probability theory and the methods for
combining evidence from diverse sources
(rules and user estimates) have been
described [Shortliffe 1975]. Although the
system has served us well to date, it does
have several recognized inadequacies
[Adams 1976) and can only be seen as a
first step towards the dev.elopment of a
coherent theory for the management of
uncertainty in complex reasoning domains.

5.3. Explanation

Perhaps the greatest advantage of the
rules used in MYCIN is the way in which
they facilitate the development of
mechanisms for explaining and justifying
system performance. These capabilities
also contribute greatly to MYCIN's
educational role [Clancey 1979]. Th e
explanation program has two options, one
of which is limited in scope but fast and
easy to use. This option is used during a
consultation session and allows
examination of the reasoning steps that
have generated a specific question. The
second option is more powerful but it
involves lanr,uar,e processing a nd is
therefore less reliable and more time
consuming. This question-a~swering
capability is designed to allow full
access to all system knowledge, both
static (i.e:-;- facts and rules obtained
from experts) and dynamic (i.e.,
conclusions reached by the program for the
specific consultation session). Each
system is briefly described below.

7

5, 3. 1. Answers To Questions About The
B_~soning Status - -- --

During the consultation, MYCIN may
ask questions which the physician finds
puzzling, either because they appear
irrelevant or because the details of their
applicability are unclear. When this
occurs, the physician can digress
momentarily and seek an explanation of the
question 1. Instead of answering the
question MYCIN has asked, the user enters
the word "WHY" and the program responds
with a translation of the rule which

35) Is this a hospital-acquired
infection?

** WHY

[i.e. WHY is it important to determine
whether the infection was acquired while
the patient was hospitalized?]

[2.0] This will aid in determining the
organisms (other than those seen on
cultures or smears) which might be causing
the infection.

It has already been established that
[2:1] the infection which requires

therapy is meningitis, and
[2.2] organisms were not seen on

the stain of this pending
csf culture, and

[2.3] the type of the infection is
bacterial, and

[2.4] neurosurgery is not one of
the relevant items from the
history of pt538, and

[2.5] the age of pt538 is greater
than 10 days

Therefore, if
[2.6] the infection was acquired

while the patient was
hospitalized

then:
there is evidence that the
organism (other than those
seen on cultures or smears)
which might be causing the
infection is e.coli (.75)
staphylococcus-coag-pos (.3)
pseudomonas-aeruginosa (.3)
klebsiella-pneumoniae (.5)

[back to question 35 ..• J
••

Figure 4
Examp~ .'?! _the -WHY Command

1The mechanisms for examining the
reasoning status using "WHY" and "HOW"
commands were largely the work of Davis in
his Teiresias program [Davis 1979] , The
techniques he developed are general in
their applicability and have been
implemented in nonmedical domains as well.

I
. I

generated the question. An example of
this feature is shown in Fig. 4. Note
that MYCIN begins its response by phrasing
in English its understanding of the "WHY
question" asked by the physician. It then
displays the relevant rule, specifying
which conditions in the premise are
already known to be true and which
conditions remain to be investigated. In
many cases this single rule displayed is
an adequate explanation of the current
line of reasoning and the physician can
then proceed with the consultation by
answering the question.

The user can alternatively continue
to investigate the current reasoning by
repeating the "WHY" command several times.
Each additional "WHY" is interpreted by
MYCIN as a request for display of the next
rule in the current reasoning chain. For
example, in Fig. 4 another "WHY" would be
equivalent to asking "Well then, why are
you trying to determine the organisms
which might be causing the infection?"
After responding to each "WHY", MYCIN
returns to the current question and awaits
the physician's response.

The "HOW" command is used in
conjunction with the "WHY" command. Note
that MYCIN places a unique number before
each condition in the premise of a
displayed rule (Fig. 4). If the user does
not understand how a specified condition
was met (or willbe met), the "HOW"
command, followed by the identifying
number of the premise clause in question,
can be used. Hence "HOW" requires an
argument as shown in Fig. 5. This example
follows immediately on the "WHY" example
in Fig. 4; thus the argument "2.3" refers
to the third condition in the premise of
RULE545 in Fig. 4 and "2.5" refers to the
fifth. MYCIN' s responses to "HOW"
commands are self-explanatory. Note also
that components of all explanations are
given identifiers so that, in Fig. 5, the
command "HOW 3.1" would have resulted in a
display of RULE526.

Other features of the capability to
asses s the reasoning status during a
consultation are described elsewhere
[Davis 1977, Scott 1977, Davis 1979]. Two
points require emphasis here, however.
First, these features require no English
language processing since the user gives
simple single-word commands; hence the
capability is fast, efficient, and
reliable. On the other hand, questions
are limited to the immediate reasoning
environment surrounding the question asked
by MYCIN. Hence general access to other
system knowledge or other conclusions
previously made by the program is not
possible. To provide a more general
explanation capability, MYCIN must be able
to respond to questions expressed in
simple English as described below.

B

[back to question 35 .••]
u HOW 2.3

[i.e. HOW was it established that the type
of the infection is bacterial?]

The following rules concluded about the
likelihood that the type of the
infection is bacterial:

[2.7]
[2,8]
[2.9]
[3.0]
[3.1]
[3.2]
[3.3]

Rule
RULE148
RULE500
RULE501
RULE502
RULE526
RULE504
RULE524

.s;ertainty
(. 19)
(.51)
(.95)
(.97)
(.98)
(. 97)
< .98)

Thus, it has been established that the
type of the infection is bacterial.

[back to question 35 .•.]
u HOW 2.5

[i.e. HOW was it established that the age
of pt538 is greater than 10 days?]

In answer to question 2 you said that the
age of pt538 is 34 years. Thus, it
has been established that the age of
pt538 is greater than 10 days.

[back to question 35 .•. J
••

5.3.2. Answers To Questions About The
Consultation And Knowledge Base

MYCIN's general question-answering
feature is automatically made available to
the user at the end of each consultation
session. After a therapy recommendation
has been given, the physician may still
have several questions regarding details
of the consultation and the basis for
diagnostic and therapeutic advice. Fig. 6
shows an example of a simple English
question which MYCIN understands ann
attempts to answer. Our approach to
natural language understanding is very
simplistic [Scott 1977] but often adequate
if questions are kept short without
subordinate clauses. In many cases
questions are best answered simply by
retrieving relevant rules and displaying
them in a format suitable for the question
being asked. In Fig. 6 MYCIN offers a
detailed explanation of how it had decided
that the patient might be infected with an
~ coli. All rules are specified by

number so that the physician can have them
I displayed if full details are desired.

•• WHY DID YOU TREAT E.COLI?

ITEM-1 is E.coli associated with
meningitis. I decided to treat ITEM-1 on
the basis of clinical evidence only.

The following rules concluded abo ut:
the likelihood that e.coli is one of the
organisms (other than those seen on
cultures or smears) which might be causing
the i nfection '

RULE545 was used to conclude that e.coli
is one of the organisms (other than
those seen on cultures or smears)
which might be causing the infection
(. 74).

RULE557 was used to conclude that e.coli
is one of the organisms (other than
those seen on cultures or smears)
which might be causing the infection
< .93).

The parameters most frequently used in
these rules:

the infection which requires therapy
whether a smear of the culture was

examined
whether organisms were seen
the type of the infection

Figure 6
Response To ~ Free Text Question

Fig. 7 demonstrates the way in which
a physician can ask general questions of
the knowledge base (static knowledge) ;
neither the questions nor MYCIN's
ryesponses refer to any specific
Jonsu ltation session. Note that MYCIN has
~ sense of its limitations and makes it
'cl ear that it has no knowledge specific to
pneumonia. Also, a large dictionary
includes synonyms and hence permits MYCIN
to recognize that "pneumococcal" refers to
"pneumococcus", which in turn is the same
as "diplococcus-pneumoniae" .

Despite their utility, the language
understanding features demonstrated in
Figs. 6 and 7 have significant
limitations . The associated computer code
is large, complex, and very slow.
Furthermore, we have found that it takes
novice users several sessions before they
learn the best ways to phra ., e questions so
that MYCIN will interpret them properly.

5. 4. Evaluating MYCIN

As work on MYCIN has progressed, we
have begun to devise techniques for
~naly zing formally the system's

9

•• HOW DO YOU DECIDE THAT AN ORGANISM IS
AN E.COLI?

The following rules conclude about:
the likelihood that the identity of the
orp,anism is E.coli

555, 304, 243, 3
Which of the rules do you wish to see?

** NONE

•• WHAT IS THE TREATMENT FOR
PNEUMOCOCCAL PNEUMONIA?

The MYCIN system currently can treat the
following infections: BACTEREMIA
MENINGITIS CYSTITIS. Because the knowledge
base is incomplete, all other infections
will be treated like bacteremia.

For treatment of DIPLOCOCCUS-PNEUMONIAE
in BACTEREMIA, the drugs of choice (ranked
by relative efficacy, assuming
sensitivity) are:

1st choice:
PENICILLIN or AMPICILLIN

2nd choice:
NAFCILLIN, CEPHALOTHIN,
ERYTHROMYCIN, or CLINDAMYCIN

3rd choice:
TETRACYCLINE, CHLORAMPHENICOL, or
VANCOMYCIN

•• WHAT DOSE OF ERYTHROMYCIN DO YOU
RECOMMEND?

When ERYTHROMYCIN is given for BACTEREMIA,
the recommended dosage is:
if age is> 12 yrs then 12 mg/kg q6h IV
else if age> .08 yrs then 5 mg/kg q6h IV
else if age> .02 yrs then 5 mg/kg q12h IV

Figure 7
Requests For MYCIN's General Knowledge

performance. It must be emphasized,
however, that the decision making
performance is only one aspect of overall
system acce~tability; as I have
discussed, many of the most significant
problems occur when attempts are made to
encourage physicians to use a program,
even after it has been shown to reach good
decisions.

The details of the evaluation studies
will not be presented here1, but a number
of specific points are of interest. First
any evaluation is difficult because there
is so much difference of opinion in this
domain, even among experts. Hence, it is
unclear how to select a "gold standard" by
which to measure the system's performance.

1see [Yu 1979a] for the details of

the bacteremia evaluation, and [Yu 1979b]
for the data on MYCIN's performance
selecting therapy for patients with
meningitis.

• 1

· ... J

Actual clinical outcome cannot be used
because each patient of course is treated
in only one way and because a poor outcome
in a gravely ill patient cannot
necessarily be blamed on the therapy that
had been selected.

Second, although MYCIN performed at
or near expert level in almost all cases,
the evaluating experts in one study [Yu
1979a] had serious reservations about the
clinical utility of the program. It is
difficult to assess how much of this
opinion is due to actual inadequacies in
system knowledge or design and how much is
related to inherent bias against~
computer-based consultation aid. In a
subsequent study we attempted to eliminate
this bias from the study by having the
evaluators unaware of which
recommendations were MYCIN's and which
came from actual physicians [Yu 1979b].
In that setting MYCIN's recommendations
were uniformly judged preferable to, or
equivalent to, those of five infectious
disease experts who recommended therapy
for the same patients.

Finally, those cases in which MYCIN
has tended to do least well are those in
which serious infections have been
simultaneously present at sites in the
body about which the program has been
given no rules. It is reasonable, of
course, that the program should fail in
areas where it has no knowledge. However,
a useful antimicrobial consultation system
must know about a broad range of
infectious diseases, just as its human
counterpart does. Even with excellent
performance managing isolated bacteremias
and meningitis, the program is therefore
not ready for clinical imrlementation.

There will eventually be several
important questions regarding the clinical
impact of HYCIN and systems like it. Are
they used? If so, do the physicians
follow the program's advice? If so, does
patient welfare improve? Is the system
cost effective when no longer in an
experimental form? What are the legal
implications in the use of, or failure to
use, such systems? The answers to all
these questions are years away for most
consultation systems, but it must be
recognized that all these issues are
ultimately just as important as whether
the decision making methodology manages to
lead the computer to accurate and reliable
advice.

6. CONCLUSION

Although r have asserted that AI
r e~earch potentially offers solutions to

10

many of the important problems confronting
researchers in computer- based clinical
decision making, the field is not without
its serious limitations. However, AI has
reached a level of development where it is
both appropriate and productive to begin
applying the techniques to important real
world problems rather than purely
theoretical issues . The difficulty lies
in the fact that s uch efforts must still
dwell largely in research environments
where short term development of systems
for service use is not likely to occur .

It is also important to recognize
that other computational techniques may
meld very naturally with AI approaches as
the fields mature . Thus we may see, for
example, direct links between AI methods
and statistical procedures, decision
analysis, pattern recognition techniques,
and large databanks . As researchers in
other areas become more familiar with AI,
it may gradually be brought into fruitful
combination with these alternate
methodologies. The need for physi cian
acceptance of medical consultation
programs is likely to make AI approaches
particularly attractive, at least in those
settings where hands- on computer use by
physicians is desired or necessary. This
paper has attempted to explain why the
wedding of AI and medical consultation
systems is a natural one and to show, in
the setting of the HYCIN system, how one
early application has responded to design
criteria identified for a user community
of physicians.

REFERENCES

Adams, J. B. "A probability model of
medical reasoning and the MYCIN model."
Math. Biosci. 32,177-186 (1976).

Clancey, W.J. Transfer of Rule-Based
Expertise Through~ Tutorial Dialogue.
Dictoral dissertation, Stanford
University, September 1979. Technical
memo STAN-CS-79-769.

Croft, D. J. "Is computerized
diagnosis possible?" Comp. Biomed. Res.
5,351-367 (1972).

Davis, R. and King, J. "An overview
of production systems." In Machine
Representation of Knowledge (E. W. Elcock
and D. Michie, eds.), New York: Wiley,
1976.

Davis, R., Buchanan, B. G., and
Shortliffe, E. H. "Production rules as a
representation for a knowledge-based
consultation system." Artificial
Intelligence 8,15- 45 (1977) .

Davis, R., "Interactive transfer of
expertise: acquisition of new inference
rules." Artificial Intelligence, 12,121 -
157 (1979)-.-·---

deDombal, F. T., Leaper, D. J.,
Staniland, J. R., et al. "Computer-aided
diagnosis of acute abdominal pain." Brit .
Med. {~ 2,9-13 (1972) .

Elstein, A. S., Shulman, L. S., and
Sprafka, S. A. Medical Problem Solving:
An Analysis of cYinical Reasoning.
Cambridge, Mass.: Harvard Univ. Press,
1978 .

Gorry, G. A., Kassirer, J. P., Essig,
A., and Schwartz, W. B. "Decision analysis
as the basis for computer-aided management
of acute renal failure." Amer. J. Med
55,473-484 (1973) . -- - -

Kassirer, J. P. and Gorry, G. A.
"Clinical problem solving: a behavioral
analysis." Anns. Int, Med. 89,245-255
(1978). -- -- --

Mesel, E., Wirtschafter, D. D.,
Carpenter, J. T., et al. "Clinical
algorithms for cancer chemotherapy -
systems for community-based consultant
extenders and oncology centers." Meth.
-~ nfor~ Med...'.. 15, 168-173 (1976).

Michie, D. "Knowledge engineering."
~rneti~ 2,197-200 (1973).

Pauker, S. G., Gorry, G. A.,
Kassirer, J, P., and Schwartz, W. B.
"Towards the simulation of clinical
cognition: taking a present illness by
computer," Amer. 1-.:_ Med. 60:981-996
(1976).

Scott , A. C., Clancey, W., Davis, R.,
and Shortliffe, E. H. "Explanation
capabiliti es of knowledge-based production
systems. " Amer. J. Computational
Linguistics, Microfiche 62, 1977 .

Shortliffe, E. H. and Buchanan, B.
G. "A model of inexact reasoning in
medicine." Math .. Biosci, 23,351-379
(1975).

Shortliffe, E. H. Computer- Based
Medical Consultations: MYCIN, New York :
Elsevier/North Holland, 1976 .

Shortliffe, E. H. Buchanan, B. G.
and Feigenbaum, E. A, "Knc 1ledge
eng ineeri ng for medica l decision making: a
review of computer-based clinical decision
aids." PROCEEDINGS of the IEEE, 67,1207-
1224 (1979) . -- - --

Shortliffe, E.H. "Medical
consu ltati on systems: designing for
doctors." In Communication .!i_ith Computers

11

(M. Sime and M. Fitter, eds.), Academic
Press, London, 1980 (in press).

Startsman, T. S. and Robinson, R. E.
"The attitudes of medical and paramedical
personnel towards computers." Comp.
Biomed. Res. 5,218-227 (1972).

Teitelman, W. INTERLISP Reference
Manual, XEROX Corporation, Palo Alto, -
Calif. and Bolt Beranek and Newman,
Cambridge, Mass., October 1978.

Watson, R. J. "Medical staff
response to a medical information system
with direct physician-computer interface."
MEDINFO 74, pp. 299-302, Amsterdam: North
Holland Publishing Company, 1974.

Wortman, P. M. "Medical diagnosis:
an information processing approach."
Comput. Biomed. Res. 5,315-328 (1972).

Yu, V. L. Buchanan, B. G.
Shortliffe, E. H. et al. "Evaluating the
performance of a computer-based
consultant." Comput. _Prog, Biomed , 9,95-
102 (1979a).

Yu, V. L. Fagan, L. M. Wraith, S.
M. et al. "Computerized consultation in
antimicrobial selection - a blinded
evaluation by experts." J. Amer. Med,
Ass~ 242, 1279-1282 (1979b-)-. - ---

Finding Common Paths as a Learning Mechanism 1

Pat Langley
Department of Psychology
Carneg ie-Mellon University

Pittsburgh, Pennsylvania 15213

ABSTRACT

In this paper I describe ACTG, a production system language
designed to model the learning process. The language
incorporates a propositional network for storing declarative
knowledge. and employs five interacting learning mechanisms to
generate new condition-ac tion rules on the basis of experience. I
focus on one of these, a teclin ique for finding common paths
through the propositional network. The mell1od is applied to
learning simple procedures for algebra and inlcgration, inducing
mean ing to sentence mappings, and discovering complex
fu nctions.

1. Introduction

In recent years, Artificial Intelligence researchers have

developed a number of programs capable of expert behavior in

limited domains (e.g ., DENDRAL [3], INTERN IST (10]) . Each of

these systems has drawn upon a larg·e store of knowledge about

its specialty, and for this reason considerable effort has been

involved in their construction. More recently, researchers like

Mitchell [BJ and Michalsk i [7] have considered how such systems

might acqu ire their own knowledge bases.

In this paper I focus on the task of learning procedures and

other forms of rules from examples. I begin with an example of

such learning in the domain of algebra. Next I describe a

programming language, ACTG. designed for the construction of

learning systems. Aller this, I consider one of ACTG's learn ing

mechanisms in detail, the discovery of common paths through a

propositional network. Finally, I consider the generality of this

technique. along with some of ils limitations.

3x+2=8
3x+2-2=8-2

3 X: 6
3x/3=6 /3

X : 2

Table 1. Sample solution to an algebra problem.

1This work wo, s11ppo1 IP<I in pail by NSF G1011I Sf' l-7914852. in µ011 by NSF
Gron! ISl lfl lB;.>66. nnd in pa,1 by AIW/1 G,:ml F4~02ll -7~ CU074 . I would like to
tlianlo. John f\/lrlPrson, Pn11I Kline. H A. 811nnn. om.I llobe1t Ncch!'s toi discussions
lt•od1 ny to llu: idens p1C!~11ted in this paper .

12

2. Learn ing Algebra from Examples

Imagine a student presented with the worked-out solution

to an algebra problem like 3 x + 2 = 8, as presented in Table 1.

Given this information, the student might formulate a set of

· specific condition-action rules like that shown in Table 2. Each of

these rules corresponds to a step in the solution process, and the

possession of these rules would let the student resolve the

sample problem. Next, imagine that an analogous problem like

2 x + 1 = 9 is presented. along with its solutions. The solution

steps for these two problems are isomorphic; they differ only in

the numbers which are used. Thus. this example would lead to a

second set of rules like those In Table 2, struc tu rally similar but

containing different numbers.

If you have just written 3 x + 2 = 8,
thenwrite3x + 2 ·2 = 8·2 .

If you have just written 3 x + 2 · 2 = 8 • 2,
then write 3 x = 6.

If you have just w ritton 3 x = 6,
thenwrilo3x/3 = 6/3.

If you have just written 3 x / 3 = 6 / 3,
thenwrilex = 2.

Table 2. Specific rules learned from the sequence in Table 1.

At this point, the student might realize that he has two very

similar sets of rules. and attempt to generalize. The result might

be a set of rules like that shown in Table 3. Here the numbers

which <iiffered in the specific rule sets have been replace<i by

variables which can match any number; all variables start with the

letter v. Note that two of the general rules include conditions

which were not found in their specific counterparts. These

conditions are necessary to determine the values of some of the

_variables found in the action si<ies. The mechanism leading to

the discovery of such con<iitions is discussed in Section 4.

The interested reader should see Neyes [9] for a fuller

treatment of the task of learn ing algebra from examples.

Although I will be using examples from algebra throughout the

paper, that domain is not the focus of the present research.

Rather. the goal is to develop a small set of general mechanisms

which can lead to learning in many domains .. As a result, these

techniques will be data-driven instead of model-driven, and will

have a more syntactic than semantic flavor. Section 5 is devoted

to testing the generality of one of these methods.

If you have just written v1 x + v2 = v3,
then write v1 x + v2 • v2 = v3 • v2.

If you have just written v 1 x + v2 · v2 = v3 · v2,
and v2 + v4 = v3,

then write v1 x = v4 .

If you have just written v1 x = v4,
thonwritev1 x/v1 = v4/v1.

lfyouhavejustwrittenv1 x/v1 = v4/v1,
andv1xv5=v4,

then w rile x = v5.

Table 3. More general rules for solving algebra problems.

3. An Overview of ACTG

ACTG is a production system language designed to model

learning processes. Below I summarize the features that ACTG

shares with other production system languages. After this I

discuss some of its unique characteristics, including its

propositional network, its conflict resolution scheme, and its

automatic learning mechanisms.

3.1 . The ACTG Production System

ACTG has a number of simi larities to earlier production

system languages. A program is stated as a set of

condition-action rules, or productions, like those in Tables 2

and 3. If the conditions of one of these rules are true, then the

associated actions may be carried out. These conditions and

actions may refer to descriptions of the environment, or to purely

internal structures like goals. A production system operates in

cycles. Each cycle a true production is selected and its actio"s

are applied; these actions change the slate of the world so that

other rules become true. and the system iterates.

13

The ACTG language draws on Forgy's [4] techniques for

the efficient storage and matching of production conditions.

These are stored in a discrimination network which takes

advantage of common tests for the presence of symbols and for

shared variables. A separate discrimination net is created for use

by the generalization process discussed below. Approximately

half of ACTG consists of MACLISP code borrowed from Forgy's

[5] OPS4 production system language.

3 .2. The Propositional Network

ACTG differs from many of its predecessors by

incorporating a long-term propositional network. While

productions are ·used primarily to represent procedural

knowledge. propositions are used to store declarative or factual

knowledge. Although ACTG propositions may be arbitrary list

structures, all examples in this paper will be simple lists. A

proposition is composed of two types of symbols: content

elements and syntax elements. For example, a number fact

might be stored in a proposition like 3 + 2 = 5 , where 3, 2, and

5 are content elements and + and = are syntax elements. The

user may specify different syntax elements for different domains;

all non-syntactic elements are treated as content elements.

During a given cycle, some subset of the propositional

network may be considered active. It is against this set of active

propositions that the conditions of productions are tested. The

act ivation of a proposition decays by a user-modifiable factor

after each cycle. If its activation drops below a user-controlled

threshold. it is deleted from active memory. When this happens,

all matches relying on the proposition are removed from the set of

potentially applicable rules. or conflict set.

Once a proposition has been stored in the network, it may

be retrieved through a process of spreading activation. When

a proposition is added to active memory, its activation is divided

equally among its various content elements. All propositions

containing a given element are found, and the activation

associated with that element is divided among these propositions

according to their trace strengths. The trace strength of a

proposition is a function of the number of times it has been added

to active memory. If the activation spread to a proposition in this

manner exceeds the threshold mentioned above. ii is added to

memory and contributes to the match process.

-1
..

· I

I . i

3.3. Conflict Resolution

In many cases. morn thun 011e production will I.Ju rnutchud

by the contents of active memory, or a single production may

have multiple true instantiations. Normally a set of

domain-independent heuristics are used for determining the

order in which these instantiations are applied. McDermott and

Forgy [6] have considered a number of such conflict resolution

rules. Early languages simply ordered productions an_d selected

the true rule with the highest priority. More recent languages,

such as Forgy's OPS4, have used recency information to order

the conflict set.

ACTG uses the related strategy of computing the total

activation of an instantiation. This is found by summing the

activations of the propositions matching a production's

conditions. Although simi lar to recency-based approaches, this

heuristic also provides a preference for special case rules, since

productions with more conditions will tend to have a higher total

activation. ACTG also associates a strength with each

production, which may chunge over time. On each cycle, the

product of the strength and total activation of each instantiation

is calculated, and the act ions of the instantiation with the highest

product are carried out.

3.4. The ACTG Learning Mechanisms

One advantage of the production system formalism is the

simpl icity and relative independence of the condition-action

rules. This suggests that production systems shou ld be

well-suited for modeling incremental _learn ing. ACTG draws on

five interacting learning mechanisms in addressing this issue,

most of which it shares with Anderson, Kline, and Beasley's [1)

ACTF language. The most basic of these is the designation

process. This allows the creation of a new pr"oduction as one of

the actions of an exist ing production. Usually, the production

responsible for designation is a very general one, while the

productions it creates are quite specific. The productions shown

in Taule 2 are examples of rules which would be built t_hrough the

designation process.

A second mechanism leads to the strengthening of

productions through firing, or upon their recreation through any

of the learning processP.s. Since the strengths of productions

play a major role in conflicl resolution. productions which have

prover! useful in the pust will tend tu IJe preferred, as will those

which have been relearned many times. Since some rules may be

in error. an inverse process of weakening can occur when a

production is identified us the source of a bad result . In addition,

14

the discovery of an error can lead to a call on the disc rimlnallon

process. Here the recent firings of the responsible production

are examined. If some proposition is found to have been present

at the successful firings, but absent at the errorful ones, this

proposition is added as an extra condition in a new, more

conservative version of the rule. Taken together, the

strengthening/weakening · process and the discrimination

mechanism give learning systems written in ACTG the potential

for error recovery, though this aspect of the language has not

been explored in detail.

A fourth process leads to generalizations like the first and

third rules in Table 3. ACTG creates such a general rule

whenever a new production is added that is isomorphic, or

identical in structure, to an existing production. This general

production has variables in place of those constant terms which

differed in the two specific ru les. Occasionally, there may be

more than one mapping between two rules, so that multiple

generalizations can result. Syntactic elements are never

replaced by variables, and must be identical for two rules to be

considered isomorphic.

Now consider the second and fourth rules in Table 2, and

suppose two rules are added which are isomorphic to them. A_s

described above, the generalization process would lead to a pair

of general rules with unbound variables in their action sides. In

other words, there would be variables in the actions which are not

mentioned in any of the conditions. The application of such a

ru le would leave ACTG in confusion. not knowing what actions to

take. A filth learning mechanism, designed to deal with such

situations. is described in the next section.

4. Finding Common Paths
Upon finding a generalization with unbound action terms,

ACTG looks for additional conditions which will determine the

values of those terms. This problem can he cast as a search for

· analogous paths through the propositional network, connecting

the act ions of the specific productions to their respective

conditions. Vere [11 J has discussed a similar notion of finding

recurring relations. In this section I consider the details of the

pnth-finding process. Below I provide some definitions which

should clarify later discussions. Next I present some techniques

for constraining the search for common paths. Finally, I discuss

the merits of two alternate organizations for this search.

4.1. A Definition of Analogous Paths

One of the central notions in propositional networks is

adjacency. Two propositions may be considered adjacent if

they share one or more non-syntactic symbols. For example, the

propositions 5 + 4 = 9 and 4 + 3 = 7 are adjacent only

through the symbol 4, provided one treats the symbols + and =
as syntact ic elements. A<1jacency is important in determining the

spread of activation , but it is also necessary for the path-finding

process. A path through the propositional network may be

defined as a sequence of one or more propositions. in which each

proposition is ad jacent to its predecessor in the sequence. For

example. the sequence [5 + 4 = 9, 4 + 3 = 7, 3 x 2 = 6]

wou ld const it t1te a path of length three; I will use this notation for

paths throughout the rest of the paper.

Upon examin ing various pairs of adjacent propositions. one

finds that some pairs are adjacent in analogous ways. For

exa111ple. the propositions 3 + 2 = 5 and 2 + 4 = 6 are

adjacent in an analogous manner to the pair considered above.

This is because the symbol 2 occurs in the same positions in

these propositions as 4 occurs in the earlier ones; I will represent

a pair of elements x and y which occupy analogous positions as

[x, y]. Similarly, one can define analogous paths as a pair of

paths through the network which have analogous adjacencies

between their successive propositions. For example. the path [3

+ 2 = 5, 2 + 4 = 6, 4 x 2 = 8] is analogous io the path shown

above. Finally, one can compute a generalized path in which

the differing terms in two analogous paths have been replaced by

variables. The generalized path for the above pair would be [v1

+ v2 = v3, v2 + v4 = v5, v4 x 2 = v6], where variables start

with av.

4 .2 . Constraining the Search

In order to find additional conditions on a rule with

unbound action terms, ACTG searches for analogous paths as

defined in the last sect ion . The search originates from those

symbols which dilfer in the conditions of the specific rules, and

cont inues until analogous connections have been found to all of

the actions leading to unbound variables. Once a set of

analogous paths have been discovered. the resulting generalized

paths are added to the general ru le as an extra set of conditions.

15

Naturally, paths containing multiple propositions must

sometimes be handled. If the propositional network has a high

connectivity, as it does in the storage of arithmetic facts, then the

branching factor of the search may be quite high. In addition,

multiple action terms may have to be connected. so that many

paths must be found. ACTG uses four techniques for directing its

search down useful paths. I discuss these in some detail below.

• ACTG extends analogous paths only through
symbols which differ. Suppose the system is
considering the analogous paths [1 + 2 = 3] and [1
+ 5 = 6], where the original conditions differed by
the pair (3, 6]. Then extending the paths through
[2, 5] into [1 + 2 = 3, 2 x 3 = 6] and [1 + 5 = 6,
5 x 6 = 30] would be allowed, while going through
thepair[1, 1)to[1 + 2 = 3, 1 + 4 = 5]and[1 +
5 = 6, 1 + 7 = 8] would be prohibited.

• ACTG extends paths only through symbols not bound
earlier in those paths. Suppose · the system is
considering the length two paths given above. The
newest propositions differ in all three of their content
elements. giving the pairs [2, 5] . [3, 6]. and (6, 30].
However, since the first two of these are mentioned
earl ier along the paths, extensions may occur only
through the last pair.

• ACTG searches for generalized paths which lead to
unique mate/Jes. For example, suppose the original
conditions differed by the pair [2, 3], while the
actions differed by the pair [6, 9] . Consider the two
analogous paths of length one. [2 + 4 = 6] and [3
+ 6 = 9). These would lead to the generalized path
[v1 + v2 = v3], where only v1 was bound in the
original condition. Given a value for v 1 (say 2), this
condition will match any of a number of propositions
(e.g., 2 + 1 = 3 or 2 + 5 = 7), so that the action to
be taken is not uniquely determined. Based on this
knowledge, ACTG would reject this particular pair of
analogous paths.

• ACTG considers on ly propositions wl1ich were in
active memory at the creation time of the production
with which the path is associated. Since production
designation is usually based on data found in active
memory, activation has a chance to spread from
these data before a .production is created. The more
closely a proposition is associated with the data
leading to a new production, the more likely it will be
activated. Thus. this is a useful heuristic for filtering
out irrelevant information.

Taken together, these techniques should reduce tht:1

combinatorics inherent in the search for analogous paths, as well

as limiting the search to paths which have some usefulness to the

system.

4.3. Two Search Strategies

Although I have proposed a number of techniques for

eliminating certain paths from consideration, a large number of

paths remain which must be systematically explored. The two

basic strategies for exhaustive search, depth-first and

breadth-first search, presented themselves as likely

candidales. Routines.for both strategies were implemented in

ACTG. and experiments were carried out. The main attraction of

depth-first search was its ease of implementation in a recursive

language such as MACLISP. In addition, the activation level of

propositions provided a heuristic for directing the search down

potentially useful paths. This mechanism was implemented in

high hopes. Although I expected considerable search and

backup to be involved, I fully expected the appropriate paths to

be found.

However. this was not the case. Consider two specific but

isomorphic algebra rules: 3 x + 2 = 8 -+ 3 x = 6 and 2 x + 1

= 9 -, 2 x = 8. The only analogous unbound pair of action

symbols is [6, 8], whi le the analogous pairs of condition symbols

are [3, 2), [2, 1], and [O, 9). Using a depth-first search strategy

with a maximum depth of five propositions, ACTG successfully

found an analogous pair of paths connecting the pair (8, 9) to

the pair [6, 8). These paths were [3 + 5 = 8, 2 + 3 = 5, 2 x 2

= 4, 2 + 4 = 6] and [3 + 6 = 9, 3 + 3 = 6, 2 x 3 = 6, 2 +

6 = 8).
Unfortunately, the resulting rule is completely spurious,

even though all of the constraints mentioned in the last section

were used in finding it The rule may be stated as:

If you have written v1 x + v2 = v3,
and 3 + v4 = v3, and v5 + 3 = v4,
and 2 x v5 = v6, and 2 + v6 = v7,

then write v1 x = v7

or, in a somewhat simpler form . v 1 x + v2 = v3 -• v 1 x =
2x(v1 . 6) + 2. This ru le predicts the correct actions for the two

examples on which ii is based. However. if the new rule is given

an entirely new example (e.g., 5 x + 2 = 7), it may give an

incorrect answer (e.y., 5 x = 4). Changing the order in which

propositions were considered led to a different but equally

spurious rule.

Fortunately, the breadth-first search scheme was more

successful. This considers all analogous paths of length one first,

then P.xlenrls these into length two paths. and so on. Since in this

cas!., a l<in\Jlh one pillh 1><ur exislP.d ((6 + 2 = BJ and (0 + 1 =

9)). lunger paths were never examined. In surnrnary, although

the breadth-first strategy may have to consider many alternatives

for rules of any complexity, the guarantee of finding the shortest

possible path seems a decided advantage in its favor.

16

5. Generality of the Path-Finding Process

In this section I consider some domains to which the

path-finding mechanism can be applied. The first of these,

learning integration from examples, is quite similar to the algebra

example. The second domain, learning simple mappings from

meanings to sentences, shows the technique is not restricted to

finding numerical relations. Next, I show that the method can be

used to discover ra!her complex functions, like that describing

_Balmer's series. Finally, I consider some difficulties which arise in

applying the technique to learning rules for factoring algebraic

expressions.

5.1. Learning Integration

Consider two spe/i ic rules /or simpli/ing integral

expressions: / 6x 2 -+ 2 3x2 and · 8x 1 -+ 4 2x 1 . When

ACTG attempts to generalize from this pair of isomorphs, ii finds

two unbound terms in the action of its new production. These

result from the analogous action symbols [2, 4) and [3, 2). As in

the algebra example, ACTG searches through its network of

numerical relations, which includes such propositions as

1 + 1 = 2 and 2 x 3 = 6. As before, it ignores connections

through such syntactic symbols as +, x, and = ..

The first pair of useful analogous paths are (2 + 1 = 3)

and (1 + 1 = 2); these facts tell ACTG the coefficient it should

retain within the scope of the integral. The second pair of

· relations are [2 + 1 = 3, 2 x 3 = 6) and [1 + 1 = 2, 4 x 2 =
8). which extend the initial paths; these facts tell the system what

coefficient goes outside the integral, where the pair [3, 2)

corresponds to the already bound internal coefficient. The

resulling rule rnay be stated as: /

If you have written v 1x • 2
,

and v2 + 1 = v3,
and v3 x v4 = v1, /

then write the expression v4 v3x• 2
.

Note that not all of the terms in the new conditions havr? been

replaced with variables. The number 1 was retained because it

occupied analogous positions in both paths.

5.2. Learning Meaning/Sentence Mappings

The path-finding process can also be employed to let ACTG

learn mappings from descriptions of the world to English

sentences. For example, suppose the system has a set of facts in

its knowledge base about various subset relations, anrl the words

for different concepts. Assume these are represented as

separate propositions, say (Sam is-the-word-for •sam) and

(• ball· 1 ls-a • ball), where concepts are preceded with a • and

words are not. Now suppose a propositional description of an

event enters active memory, ("throw agent •sam recipient

"dog-1 object • ball· 1). accompanied by the sentence Sam

throw s the ball to the dog. Assume that the relations

is-the-word-for, is-a, agent. recipient, and object are all

syntact ic elements. If the appropriate designating production

exists, this data will lead to the first production in Table 4, which

reproduces the sentence whenever the event recurs.

Next, suppose that a similar event occurs, and is

represented in act ive memory by an analogous proposition,

(" give agent "Mary recipient •cat -1 object •string-1). In

addition , let this proposition be accompanied by a sentence of the

same form as the first, Mary gives the string to the cat. This

leads to the second production in Table 4, and at this point ACTG

would attempt to generalize from its two rules. However, the

general rule in its initial form has four unbound action terms, so

the path-finding process is ca llerl . In this case, four independent

paths are required, each connecting one action term to a

different term in the condition side. These paths are: [(throw

is-the -word -for •throw)] and [(give is -the -word -for

"give)]; [(John is··the-word -for "John)] and [(Mary

is-the-word -for "Mary)]: [("dog-1 is-a "dog),(dog

ls -the-word -for · "dog)] and [(•cat-1 is-a •cat),(cat

is -the -word-for • cat)]; and [(•ball· 1 is-a • ball),(ball

is -the-word-for • ball)] and [("string-1 is-a •string),(strfng

ls -the-word-for •string)]. The resulting production is

presented below its specific precursors in Table 4.

If you see
("throw agent " Sam recipient •dog-1 object "ball-1),

then say Sam throws the ball to the dog.

If you see
(•give agent •Mary recipient • cat-1 object • st ring-1),

then say Mary gives the string to the cat.

II you see
(vaction agent vagent recipient vrec object vobject),
and vword1 is -the-word -for vaclion,
and vword2 is -the-word-for vagenl,
and vrec is-a vconcepl1,
and vword3 is-the-word -for vconcept 1,
and vobject is-a vconcept2,
and vword4 is-the-word-for vcon r")pl2,

then say vword2 vword1 s the vw or<.14 lo the vword3.

Table 4. Productions mapping meanings onto sentences.

17

5.3. Discovering Balmer's Law

A third application of the path-finding mechanism is the

discovery of complex functions, such as that describing Balmer's

series for the hydrogen spectrum. This series2 may be stated as

9/5, 16/12, 25/21, 36/32, _ . To find one of the fractions,

take the square root of the numerator in the preceding fraction,

add one to this number and square the result to determine the

current numerator. The denominator of a fraction is always four

less than its numerator. If p is a fraction's position in the

sequence, then the fraction may be expressed as

(p + 2)2 /[(p + 2)2 · 4].

Suppose that upon receiving successive entries in the

series. n desi\]nating production creates specific rules predict ing

a fraction in terms of its predecessor. such as 9/5 - 16/ 12 and

16/12 - 25/21. Since the ru les have identical form, first the

generalization process, and then the path-finding process are

evoked. Searching through the same numerical data base as was

used in the algebra and integration examples, ACTG arrives at the

general rule presented in Table 5. The last four conditions in this

production correspond to the information given verbally above.

Using these constraints, the rule will correctly predict the fraction

for any position in terms of its predecessor.

If the last fraction was v1 / v2,
andv3xv3 = v1,andv3 + 1 = v4,
and v4 x v4 = vs, and v6 + 4 = v5,

then the next fraction will be vs/ v6.

Table 5. General rule for Balmer's series.

5.4. A Failure of the Method

In factoring algebraic expressions, the goal is to find a set

of simplified expressions which, when multiplied together, give

the original expression. Suppose ACTG creates two specific

factoring rules from examples it has been given, say 6x 2 + Sx · 4

- (2x . 1)(3x + 4) and 3x 2 + 2x · 8 - (3x · 4)(1 x + 2). Since

these are structurally similar, the system ·would attempt to

generalize, but would generate unbound action terms based on

the pairs [2, 3), [1, 4], [3, 1), and [4, 2]. The path-finding

process would try to connect these to one· or more of the

analogous condition symbols [6 , 3), [5, 2), and [4, 8). Ideally,

2tn Incl, AAlrnrn had only d~cimnl values to exn111inn Acco,ctin11 to Annttl (2),
much of Huhnor's insight was the 1cnliznlion that th,•s,, munh<,r8 nppro•imnted the
ratios of integers given above. ACTG's path -lindiny process has nothing to say
about this ospoct ot Bolmer's discovery.

· 1

ACTG would find the following tour pairs of analouous paths: [2

x 3 = 6) ;:rnd [3 x 1 = 3]; [1 x 4 = 4] and [4 x 2 = 8]; [5 + 3

= 8, 2 x 4 = 8] and [2 + 4 = 6, 3 x 2 = 6); and [5 + 3 = 8,

1 x 3 = 3] and [2 + 4 = 6, 4 x 1 = 4]. Unfortunately, a

difficulty arises in reaching this goal.

Taken together. the resulting generalized paths satisfy the

uniqueness criterion discussed earlier. However, none of the·

generalized paths do so individually. Moreover, if this criterion

were abandoned, then the first two paths would be sufficient to

bind all four action terms. But the resulting rule would be overly

general, leading to actions like 6x 2 + 5x . 4-, (6x . 2)(1 x + 2),

since there are multiple factorings for 6 and 4. Thus, the

uniqueness criterion remains useful, but its implementation in

ACTG seems overly restrictive. In the context of breadth-first

search, the system could be modified to link paths together for

add itional. constraints. However, the combinatorics would allow

this only if a small number of paths were being considered

simultaneously. This problem clearly requires more thought, and

a search is underway for other learning situations in which this

difficulty arises.

6. Summary

In this paper I described ACTG, a production system

language designed for the study of learning systems. This

language incorporates a declarative propositional network, a

· spreading activation mechanism, and a unique conflict resolution

scheme. ACTG also supports a number of automatic learning

mechanisms, including the ability to strengthen or weaken

existing rules, and the ability to form discriminant and general

versions of these rules. The conflict resolution scheme of ACTG

shou ld interact with these learning techniques to allow recovery

from errors. but this prediction has not been tested.

Alter summarizing the main characteristics of ACTG, I

focussed on one of the learning mechanisms. This was a

path-finding process which was called upon when generalization

led to unbound variables in the action side of a rule. Once a pair

of analogous paths had been found, a generalized version of

these paths was incorporated into the condition side of the new

rule. In its pure form, this network search would have been

computationally intractable, so four techniques were used to

direct the search along useful paths. Finally, I considered

18

applications of this method to the learning al mathematical

procedures, the induction of meaning to sentence mappings, and

to the discovery of complex functions. Future work will

concentrate on testing this technique in more complex domains,

and on studying its interaction with the other ACTG learning

mechanisms.

References

[1] Anderson, J. R., Kline, P. J., and Beasley, C. M. Complex
learning processes. In R. E. Snow, P.A. Federico, and
W. E. Montague (eds.), Aptitude, Learning, and
Instruction: Cognitive Process Analyses, 1979, in
press.

[2] Banet, L. Evolution of the Balmer series. American
Journal of Physics, 1966, 34, 496-503.

[3] Feigenbaum, E.A., Buchanan, B.G., and Lederberg, J. On
generality and problem solving: A case study using the
DENDRAL program. Machine Intelligence 6. Edinburgh
University Press, 1971.

[4] Forgy, C. L. On the efficient implementation of production
systems. Doctoral dissertation. Computer Science
Department, Carnegie-Mellon University, 1979.

[5] Forgy, C. L. OPS4 User's Manual. Computer Science
Department, Carnegie-Mellon University, 1979.

{6) McDermott, J. and Forgy, C. L. Production system conflict
resolution strategies. In D. A. Waterman and F. Hayes-Roth
(eds.), Pattern-directed Inference systems. New York:
Academic Press, 1978, 177-199.

[7) Michalski, A. S. Toward computer-aided induction. Report
No. 874, Department of Computer Science, University of
Illinois, Urbana, 1977.

[BJ Mitchell, T. M. Version spaces: A candidate elimination
approach to rule learning. Proceodings of the Fifth
International Joint Conference on A rtificlal
Intelligence, 1977, 305-310.

[9) Neves. D. M. A computer program that learns algebraic
procedures by examining examples and working problems
in a textbook. Proceedings of tho Second National
Conference of the Canadian Society for
Computational Studies of Intelligence, 1978, 191-195.

l1DJ Pople, H. E. The form.ition of con1posite hypotheses in
diagnostic problem solving: An exercise in synthetic
reasoning. Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, 1977,
1030-1037.

(11 J Vere, S.A. Induction of relational productions in the
presence of background information. Proceedings of the
Fifth International Join t Conference on A rtiflcial
Intelligence, 1977, 349-355.

BACON.4: The Discovery of Intrinsic Properties1

Gary L. Bradshaw
Pat Langley

Herbert A. Simon
Department of Psychology
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

BACON.4 is a production system that discovers empirical laws. It
is not intended as a detailP.d model of human discovery
processes. but instead attempts to model some of the general
proce~ses that can IP.ad to discovery in a number of domains.
BliCON.4, like its predecessor BACON 3. uses a few simple
heuristics to handle a broad ran11e of tasks. These heuristic rules,
which are easily implemented in a production system format,
detect constancies and trends in data, and lead to the formulation
of hypotheses and the definition of theoretical terms. No hard
dist inctions are made between the data and the hypotheses that
explain them, so that laws can be d iscovered involving an
arbitrary number of variables. BACON.4. unlike BACON.3, can
discover re levant propert ies of objects that have been input in
nominal form. Numerical va lues of these properties, consistent
with the data, are assigned to each of the nominal values. These
quantities can then be used in new hypotheses to discover
empir ical laws based on the discovered propert ies. BACON.4 has
shown its generality by rediscovering Snell' s Law, Black's Law,
the law of gravi tational attraction, and one form of the law of
conservation of momentum.

1. Introduction

Centuries ago. physicists like Kepler and Gali leo began to

discover laws that described the physical world. Such discovery

is presently being modeled in Artificial Intelligence with a number

of systems. These include DENDRAL [1], meta-DENDRAL [2] ,

and AM [3]. Fach of these discovery systems draws on a larqe

a111ount of k11owledye al>out tile domains i11 which they worked .

Another approach. represented by Langley's BACON.3

program 14). models the discovery process without requiring a

large body of domain-specific knowledge. This approach uses a

few weak, but general, heuristics that may be applied to discover

laws in many domains. BACON.3 showed its generality by

rediscovering such laws as the ideal gas law, Kepler's third law,

Ohm's law, and Coulomb's law. Although BACON.3 could

include variables taking symbolic value" into its laws (e.g., the

type of metal used in a battery). such variables could only be used

1This resenrch was supported in part by NIMH Grant MIi onn. in part by NSF
Grant Sf'I 711 14052. m par I by NSr Grant 1ST-79t82Gli. and in port by ARPA Grnnt
F446?0 73 C0074 We would like to thank Glenn Iba for discussions about ideas
presented in this paper.

19

in that system as conditions restricting the scope of numerical

laws.2 BACON.4 can move beyond this by hypothesizing a

numerical property of a nominal or symbolic variable, associating

an appropriate numerical constant with each nominal value, and

using these numerical constants to discover a more general law

which includes th is new property. We will call the numerical

variables intrinsic prope rtios of the nominal variables.

In this paper, we first discuss how such an intrinsic

property is postulated during the discovery of Snell's law. Next,

we review the operat ion of BACON.3. and discuss BACON.4's

added heuristics, which allow ii to propose intr insic properties.

Next we discuss BACON.4's generali ty as a discovery system by

showing how it finds several other laws. Finally, we show some

limitations of the present version of BACON.

2. An Example: Discovering Snell's Law
Snell's law relates the ang le of incidence, i , and the angle

of relraction, r, of a ray of light as it meets a smooth. transparent

interface between two media. The general form of Snell's law is:

Sine i/Sine r = n 1/n 2

where n 1 and n2 are indices ol refraction for each medium

relat ive to a common reference medium. Vacuum is the usual

reference medium. with an incfex of relraction arbitrarily assigned

as 1.0 With such a standarci, water has an index ol refraction of

1.33, oil 1.47. quartz 1.54 . and ordinary glass 1.66.

Suppose one is given experimental control over the angle

of incidence (a numerical variable)3 and the types of the two

media (wtiich are nominal variables) , and one gathers data by

varying first the angle of incidence, fol lowed by the first medium,

2 A nominal or symbolic vR, ioble is a var ioble that tnk<1s on names or labels as '3

values . Thus. o nominal vn1iol.Jle. "mnte1iol." mny take on values like lead, water,
etc.; ft nominal voriuhle "object," mny take on valu<?s liko "OhjP.ct A", "Object 8, "
end so on. Values of nume1ic11I properties mo~· sometimes be nss!rioted with
values of nominal vnr iables. l hus: "the density ot lead is 13.34 gr tcm ; "the mass
of Obioct A is 3 grams"; etc.

3
The present version of BACON c.onnol calculale sine vahres from angles.

Thus sine values nre prO\lided to the p1og1om. This se1vcs lo simplify the prob/om
tor BACON.4 by mducing the space through which it must search.

followed by the second medium. Table 1 shows some of the data

obtained in this manner when the second medium is vacuum.

The index of refraction of a medium is an intrinsic property of the

medium that is not apparent at the beginning of the experiment.

Without being given prior knowledge of the existence of such a

property. BACON.4 discovers it as it tries to describe the data.

SECOND FIRST Sine i Sine r Sine I
MEDIUM MEDIUM Siner

Vacuum Water .5000 .3759 1.33
Vacuum Water .7071 .5317 1.33
Vacuum Water .8660 .6511 1.33
Vacuum Oil .5000 .3401 1.47
Vacuum Oil .7071 .4810 1.47
Vacuum Oil .8660 .5819 1.47
Vacuum Quartz .5000 .3247 1.54
Vacuum Quartz .7071 .4592 1.54
Vacuum Quartz .8600 .!>623 1.54
Vacuum Glass 5000 .3012 1.66
Vacuum Glass .7071 .4250 1.66
Vacuum Glass .8660 .5217 1.66

TABLE 1 DATA OBEYING SNELL'S LAW

Consider the first three rows of Table 1. As sine

increases. sine r increases. Since a function of the form sine i /

sine r = k would lead to such a trend . BACON.4 calculates the

values of the ratio sine i / sine r (see Section 3 for a review of

BACON.4's discovery heuristics). In fact, the values of this term

have a constant value 1.33 whenever the first medium is water

and the second medium is vacuum. Constancies with different

values occur for vacuum paired with oil, vacuum paired with

glass, and vacuum paired with quartz.

At this point the data cannot be summarized further

numerically. However, since the nature of the first medium

influenced the value of sine i/sine r, and because values of the

first medium are interchangeable with values of the second

medium. BACON.4 assumes that there exists some property of

the two media (which we will call the index of refraction) that

affects the experimental outcome. Because the values of sine

i/sinc r are solely dependent on the values of the first and

second medium. BACON.4 assumes that the values of the ratio

reflect the different values of the property. We can assign to each

of the values of the second medium the value of the ratio sine

i/sine r. Thus the index of refraction for water is 1.33, oil is

1 .4 7. and so on.

Because the first medium has remained the same, an

appropriate value for vacuum cannot be specified. There are

several potential ways to find an appropriate index of refraction

for vacuum. The first way might be to conduct a second

experiment where vacuum appeared as one of the values of the

20

second medium. The relation between vacuum and the other

media would allow us to calculate an appropriate index. A

simpler approach, which is used by BACON.4, is to exclude

vacuum from further experiments, and simply use media for

which BACON.4 already knows the appropriate indices of

refraction.

SECOND FIRST Sine i Sine r ~I::~ MEDIUM MEDIUM

Water Oil .5000 .4523 1.11
Water Oil .7071 .6398 1.11
Water Oil .8660 .7835 1.11
Water Quartz .5000 4318 1.16
Water Quartz .7071 .6 107 1.16
Water Quartz .8660 .7479 1.16
Water Glass .5000 .4006 1.25
Water Glass .7071 .5665 1.25
Water Glass .8660 .6938 1.26

TABLE 2. NEW DATA OBEYING SNELL'S LAW

Table 2 shows data BACON.4 · collects after the

index-of-refraction property has been postulated. In this table,

the second medium is water, while the first medium takes on the

values oil, glass, and quartz . The program again calculates the

values of sine i /sine r, which again have constant values for

water paired with oil, water paired with quartz. and water

paired with glass.

SECOND FIRST Index of ~ nf~i~!r MEDIUM MEDIUM Refraction r

Water Oil 1.47 1.11 .752
Water Quartz 1.54 116 .752
Water Glass 1.66 1.25 .752
Oil Water 1.33 0.90 .680
Oil Quartz 1.54 1.05 .600
Oil Glass 1.66 1.13 .680
Quartz Water 1.33 0.86 .649
Quartz Oil 1.47 0.95 .649
Quartz Glass 1.66 1.13 .649
Gloss Water 1.33 080 .602
Glass Oil 1.47 0.89 .602
Glass Quartz 1.54 0.93 .602

TABLE 3 SECOND LEVEL SUMMARY OF SNELL'S LAW

Table 3 shows the second level summaries generated by

BACON.4, including the indices of refraction for the first media.

The first three rows summarize the data shown in Table 2. At this

point, BACON.4 detects a monotonic increasing relalionship

between the term sine i / sine rand the value of n 1 , the index of

refraction for the first medium. It therefore defines a new

theoretical term, sine i /n 1 x sine r which has a constant value

of 1.11. Other values of this term are calculated as BACON.4

collects further data. and these values are shown in the remaining

rows of Table 3. Notice that this term takes on constanl values for

each value of the second medium. These constancies are shown

in Table 4.

SECOND Index of sine I n2. sine I
MEDIUM Refraction n1. s,ner iiT:"ilniir

Water 1.33 .752 1.00
Oil 1.47 .680 1.00
Quartz 1.54 .649 1.00
Glass 1.66 .602 1.00

TABLE 4 FINAL SUMMARY OF SNELL'S LAW

In Table 4, only the· second medium plays the role of a

condition, so BACON.4 introduces the values of n2 , the index of

refraction for the second medium. Now BACON.4 notes that the

value of sine i/n 1 xs ine r varies inversely with the index of

refraction of the second medium. Based on this, BACON.4

defines a new theoretical term, n 2 xsine i/n 1xsine r, which has

a constant value 1 .0. This relationship is equivalent to sine

i/sine r = n 1 /n 2 , which the reader will recognize as Snell's law.

3. BACON.3 and BACON.4
In the las! section, we summarized BACON.4's discovery of

Snell 's law. BACON.4 is an extension of BACON.3, described by

Langley (4). Ye! BACON.3 cou ld have discovered Snell's law only

if it was explicitly provided with the index of refraction for each

medium. In th is section, we will review the two programs, and

consider the reason for the difference.

3.1. A Review of BACON.3

BACON.3 represented its data in terms of conjunctions of

attribute-value pairs called descriptive clusters; clusters

corresponded to rows like those in Tables 1, 2, 3, and 4. The

program used a small set of heuristics called regularity

detectors for finding constancies and trends in the data. in

data. The central heuristic could be stated:

II the dependent variable a has the value v
in a number of clusters at level L,

then create a cluster at level L + 1 in which a is v,
and which has all of the conditions
held in common by the lower level clusters.

Once createrl. a hiuher level oescription could contribute to yet

higher level regularities. Much of BACON.3's power derived from

this ability to recursively treat hypotheses as new data.

The program used another set of heurstics for noting

trends in numerical data. One of these may be summarized as:

II the values of dependent variable al increase
as the values of variable v2 decrease
in a number of clusters at level l,

then note a monotonic decreasing relation
bet ween a 1 and a2,
and calculate the slope of a1 with respect to a2.

Additional rules further analyzed these data, and defined

theoretical terms based on the results. If a constant slope was

21

found, BACON.3 defined new terms for the slope and intercept of

the line. Otherwise, the product or the ratio of the variables was

considered. depending on the direction of the relation and the

signs of the numbers involved. Once defined, a theoretical term

could be used in formulating hypotheses or in specifying yet more

complex definitions.

BACON.3 was well-suited for discovering purely numerical

laws. However, since it could incorporate nominal variables only

as conditions on such laws, it would fail to make much progress

on Snell's data. Below we describe BACON.4's solution to this

dilemma.

3.2. BACON.4 and Intrinsic Properties

BACON.4's trend detectors can only operate on numerical

variables. At the start of an experiment, the only relevant

information known about certa in variables might be that these

variables take on symbolically different (i.e,, nominal) values.

BACON.3 could only use such variables to limit the scope of a

law.

However, an experimenter has knowledge about the

variables being used in an experiment. In the case of Snell's law,

the experimenter knows that values of the first and second media

are both drawn from a common set: the set of transparent media.

In the present terminology, the first and second media are

interchangeable: one set of values can be substituted for

another. It should b~ obvious that the values of the second

medium and lhe angle of incidence of the first medium are drawn

from different sets, and so are non-interchangeable. When

BACON.4 is told that two variables can take on interchangeable

values, it considers defining a new property associated with these

variables.

BACON.4 contains only three more OPS4 productions [5]

than the BACON.3 system upon which it was built. The first of

these postulates a property associated with a set of variables. It

may be paraphrased in English as
II v2 is an independent nominal variable

and II the values of the numerical
dependent variable v 1 change
as the values of variable v2 change,

then propose an intrinsic property
associated with v2 and
with variables whose values
can be interchanged with v2 .

The second production is responsible for associating numerical

values with nominal ones, after an intrinsic property has been

defined. The third production adds the values of the new

property to descriptive clusters when they will be useful.

Although all of the examples in the present paper deal with

. I

exactly two variables which can take on interchangeable values,

BACON.4 is implemented to deal with en arbitrary number of such

variables, as well as with multiple sets of them. The program can

also deal with the simpler case of associating numerical values

with isolated nominal variables.

4. The Generality of BACON.4

In an earlier section. we outlined BACON.4's discovery of

Snell's law. Below we present evidence for the generality of tho

program and its heuristic for postulating intrinsic properties. First

we summarize the system's discovery of Black's law for

temperature mixtures and the concept of specific heat. Next we

discuss Cavendish's experiment on gravitational attraction,

followed by an experiment exploring conservation of momentum,

in which BACON.4 postulates two notions of mass.

4.1. Postulating Specific Heat

In the IBGO's, J.oseph Black began systematically to mix

liquids of different temperatures together, and to observe the linul

temperatures of these mixtures. II we let t1 and t 2 represent the

initial temperatures of the two liquids, m1 and m2 stand for their

masses, and t1 be the final temperature, then Black's law may be

stated as:

lr : (c,m,t, + C2m2l2)/(c1m1 + C2m2),

The symbols c1 and c2 represent the specific heats of the

liquids being mixed. The specific heat is a numerical value

associated with a particular liquid that summarizes the role the

liquid plays in Black's equation. For example, if we let the

specific heat of water be 1.0. then the value for mercury is

0.0332, and the value for ethyl alcohol is 0.456.

BACON.4's discovery of Black's law results from a

straightforward application of the techniques discussed earlier.

The system starts with experimental control of 11 , t2, m 1, m 2, and

the two liquids being used. The first four of these variables take

on numerical values, while the last two take nominal ones. The

single dependent variable is 11. the final temperature. Upon

varying the values of t2, the program notes a linear relationship

between this term and t1. Accordingly, BACON.4 defines

theoretical terms for the slope and intercept of this line, s11 ,12 and

111 ,12. Later, BACON.4 will discover a relation between these

terms and the other variables. Although the program does not

express things in this manner, the values of the intercept may be

calculated as c 1m 1t 1t1/(c 1m 1t 1 + c2m2t2), and the slope may

be found from (t1• l)/t2.

When the values of 11 are varied as well, the program finds

that the values of 111 ,12 change, but that the values of s1,.ti are

22

unaffected. A ratio term, i11,1/1 1. is defined and lound to have a

constant value for the current values of m 1, m2, and the two

liquids. Upon altering the values of m2. the values of this new

term are affected, but so are those of the original slope term,

s11 •12. Since the values of s11,12 increase as those of 111,1/t1
decrease, the product of these terms is considered. This

theoretical term is not constant. but varies directly with the mass,

so that the term t 1s11 ,12 /m 2111 ,12 is defined. This term has a

constant value dependent on the values of m 1 and the two

liquids. When m 1 is varied. BACON.4 finds a monotonic

decreasing relationship between m 1 and the new term, leading to

the product m1t1s11 ,1/m2f11 ,12, which has a constant value

dependent only on what two liquids are used.

At this point, BACON.4 can do nothing except associate the

values of this constant product with the liquids with which they

are associated. The program defines a new intrinsic property,

which we may call specific heat. It designates a specialized

version of this concept for each of the two original nominal terms,

which we may call c 1 and .c2. Upon incorporating the values of

c2, BACON.4 finds a monotonic increasing relationship and

defines the term m 1t 1s11 ,1/c2m 2111 ,12. This has a constant

value dependent only on the first liquid used. When the values of

c 1 are related to these summary data, a decreasing relation is

found. The resulting term, c 1m 111s11 ,1/c2m2i11 ,12, has the

constant value 1.0 under all circumstances. Substituting in the

definitions of the slope and intercept terms discussed earlier, one

finds that BACON.4's summary of this fact is equivalent to Black's

law.
4.2. BACON.4 and Gravitational Mas,

in the late 1790's, Henry Cavendish designed an apparatus

to measure the value of G, the unive~sal constant of gravitation.

This apparatus consisted of 1) an object attached to an arm

which is suspended from a quartz fiber, 2) a second object which

moves toward the suspended object, and 3) a mirror and light

source which measures the resultant torque produced by

attraction between the two objects. BACON.4 can use data

collected in this experiment to find the law of gravitational

attraction. If we let m 1 be the mass of the suspended object, m2

be the mass of the movable object, D be the distance between

their centers of mass. and F be the observed force between the

two objects, the law of gravitational attraction may be stated as:

F = Gxm 1xm2 /D2

If BACON.4 is given only nominal values for a number of pairs of

objects m 1 and m2 , it cnn discover mnss as a nroperty during the

exJ,Jeriment as well. Table 5 shows the values ol data collected in

this experiment when the suspended object is object A.

SUSPl'NOED MOVEAOLE DISTANCE FORCE F'D F·o 2

OOJlCT OBJECT (rne1ers) (nr 100) (nt -m· 100) (nt-m· 1CJOi

A B O.Ql 2.001 .0200 1 .000200
A B 0 .02 0.500 .01000 .000200
A B 0 .03 0 .222 .00666 .000200

A C 0.01 2.501 .02501 .000250
A C 0.02 0 .625 .01250 .000250

A C 0.03 0.276 .00834 .000250
A D 0.01 3.001 03501 .000300
A D 0.02 .0.750 .0 1500 .000300
A D 0.03 0.334 .01002 .000300
A E 0.01 3.501 .03501 .000350
A E 0 .02 0 .875 .01750 .000350
A E 0 .03 0.389 .01 167 .000350

TABLE 5. DATA OBEYING GRAVITATIONAL LAW

In the first three rows of Table 5, the gravitational force

decreases as the distance increases. This leads BACON.4 to

calculate the product FxD. Because the new term does not have

a constant value. and because FxD decreases when D increases,

BACON.4 calculates a second product. FxD2. This has a

constant value of 0.000200 when the suspended object is object

A and the movable object is object B. BACON.4 finds similar

constants for the pairs of objects A and C, A and D, and A and

E. The values of these constants are dependent upon values that

BACON.4 knows are interchangeable. Th.us BACON.4 postulates

a property, gravitational mass, of the two ol:>jects, and

associates the values of the FxD 2 column with values of the

movable object. These values, associated with objects B, C, D,

and E, are the true masses of each object multiplied by a

constant, Gx M • . Thus all mass values are values relative to the

mass or the suspended object used in the initial experiment.

SUSPENDED MOVEABLE MASS OF F·D2 F.D2
OBJECT OBJECT OBJECT M

2 M2

110·3kg)

[l C .0025 .00333 1.333
B D .0030 .00400 1.333
B E .0035 .00467 1.333
C B .0020 .00333 1.666
C D 0030 .00500 1.666
C E .0035 .005B3 1.666
D B .0020 .00400 2.000
D C .0025 .00500 2.000
D E .0035 .00700 2.000
F ll .IXl20 .00467 2.335
E C .00:t~ .00583 2.335
E D .0030 .00700 2.335

TABLE 6. SECONO LEVEi. SUMMARY OF GRAVITATIONAL LAW

Next. BACON.4 collects more data where the suspended

object is object B, C. D. or E. Again it finds values of Fxo2 to be

constant for each pair of objects. These values are summarized

at a higher level of description, shown in Table 6. At this level,

BACON.4 can use the values of the mass of the movable object to

23

define a new term, FxD 2 /m2 . These values are constant for

each value of the suspended object. This will cause BACON.4 to

generate a third level of description, shown in Table 7.

SUSPENDED MASS OF F·D2 F·D2

OBJECT OBJECT M
2 ~ il?l'2

B .00020 1.333 6 .667 X 105

C .00025 1.666 6.667 x 105

D .00030 2.000 6.667 X 105

E .00035 2.333 6.667 x 105

TABLE 7. FINAL SUMMARY OF GRAVITATIONAL LAW

This level of description can be completely summarized by

utilizing the mass of the suspended object to define a final term

FxD2 /m 1xm2 . This term has a constant value 6.663 x ta5,

which is equivalent to the 1 / GxMa 2. The final form of the law

cou ld be expressed in terms of usual mass values as: F x o2 /

G2MA 2M 1M2 = 1 / GMA 2. This is equivalent to the normal form

of the law. The peculiar values of the masses assigned to each

object derive from the heuristic BACON.4 uses to assign

numerical values to objects. BACON.4 does not know the actual

masses of each object. If it did, BACON.4 could discover the

usual form of the law. Instead it associates va lues of the masses

B. C. D, and E which are relative for a common reference mass,

mass A. If relative values were inappropriate, the method would

fai l (see Section 5 for an example and further discussion on this

issue).

4.3. BACON.4 and Inertial Mass

BACON.4 can discover mass in a second kind of

experiment. Consider the case where two masses, m 1 and m2 ,

are connected by a perfectly elastic spring which has no inertia.

If the objects are pulled apart and then re leased. the two masses

will enter into harmonic oscillation . One can measure the velocity

of the two objects at several points in their period. This situation

is a special case of conservation of momentum, where

m 1 xv 1 /m 2 x v2 = 1.0. For this experiment, BACON.4 has

experimental contro l over nominal values for the first and second

masses. a:; well as over the times at which the observations ar.e

made: it observes the dependent values of v1 and v2 under

various combinations of the independent values.

In discovering this law, BACON.4 varies the times at which

the velocities are measured. and notes that the velocities v 1 and

v2 increase together. Accorcl1ngly, it defines the term v 1 / v2 ,

which does not vary with the time of the observation. Next the

program defines a property of the objects, inertial mass. The

. i

values of this property for m2 are discovered to vary directly with

v1 /v 2 . so BACON.4 defines the term v 1 /m2 xv 2 . This has a

constant value dependent upon the first object. BACON.4 finally

incorporates moss values of m 1, finds these are directly related to

v1 /m 2 xv 2 . and summarizes the data as m 1 xv 1 /m2x v2, which

has a constant value 1.0.

We have shown how BACON.4 can discover mass in two

separate experiments. The discovery of mass has been shown to

be a necessary step in the discovery of Newtonian mechanics [6].

Mass is a general property that is used in many laws. However,

instead of rediscovering mass in several different experiments,

BACON.4 can use a property discovered in one experiment to

facilitate discovery of a different law.

In the two previous sections, we have shown how two

different forms of mass were discovered: inertial mass and

gravitational mass. However, ii the program that discovered mass

in solving the gravitational attraction experiment was told that

objects in the conservation experiment were interchangeable

with gravitational objects, and if the same objects were used, then

the program would already have available mass values for the

objects. It would discover that gravitational mass could be used

to predict the momentum of the system. In this case, two

separate notions about mass would never have been postulated.

Similarly, if the order of experiments were reversed, BACON.4

would incorporate inertial mass values into the gravitational

experiment. without postulating gravitational mass. This again

reflects the data driven nature of BACON.4 The program will only

begin to infer properties of objects when no further

summarization ol the existing data is possible.

5. Limitations of BACON.4

In this section, we discuss a case where the present

technique of postulating properties is not applicable. Alter this,

we mention some more general limitations of BACON.4 as a

discovery system.

5. 1. BACON.4 and Friction

In an experiment to determine the force required to cause

one object to slide on the surface of another, one might vary the

composition of the sliding object, the composition of the surface,

and the weight of the sliding object. Since the sliding object and

surface material are interchangeable. BACON.4 would postulate

a property of such materials, which might be thought of as the

roughness of a surface.

24

However, it is well known that the coefficient of friction, µ.,

is associated not with a single type of material. but with pairs of

materials. In this case, the values of surface roughness would not

lead to finding constancies in the data, and BACON.4 would fail to

summarize the data. In the present system, no provision is made

to deal with such a circumstance. There are undoubtedly other

cases in the literature of chemistry and physics which are similar

to this example. In all such cases, BACON.4 will fail to find the

generally accepted laws.

The friction example illustrates an important assumption in

the present property discovery process. BACON.4 assigns

numerical values to one of the interchangeable variables when it

does not know the effect of the other interchangeable variable. In

the case of gravitational mass discussed earlier, for example, the

mass value assigned to object B was equivalent to mass B x mass

A x G, the value assigned to object C was equivalent to mass C x

mass A x G, and so on. Since mass is a transitive property, the

relationship between the values assigned to objects B and C is

the correct one. II. as in the friction example. the property is not

transitive, the values assigned to object B and C will be

inappropriate ones. Of course, the1e is no way of knowing in

advance wh~ther or. not the assumption will hold.

5.2 . Guiding BACON.4's discovery

In the present version of BACON.4, the program is supplied

with a certain amount of information about the experiment at

hand. The information includes: 1) the variables that the program

. has to manipulate; 2) appropriate levels of these variables to use;

and 3) dependent variables the program can measure. Also, by

excluding irrelevant variables, we are reducing the space of

potential laws the program must search. Undoubtedly we are

guiding the discoveries of BACON.4 by these means. Let us look

at each ol these problems in turn . We will start by looking at the

problem of irrelevant variables.

BACON.3 employed a simple heuristic for dealing with

irrelevant variables: ii an independent variable is manipulated, but

has no effect on the dependent variable(s). it is classified as an

irrelevant variable, and its level is held constant. BACON.4

incorporates the same heuristic, so that including irrelevant

variables would not prevent it from discovering any of the laws

presented here. However, the program would systematically vary

the irrelevant variable(s). and so would require more time to

discover the laws. Thus the program can be slowed by including

extraneous variables. but it cannot be disrupted by them. Our

primary interests have not been in this area, so we have no

statistics on the extent to which discovery is slowed by

introducing one or more extraneous variables.

The question ol how to decide which variables to include in

an experiment, both independent and dependent, is undoubtedly

a serious one . However, this question is outside the realm of the

present projec t. an1 we h.:we little to sny about the matter. The

only provision in the present version of BACON which relates to

this issue is BACON.4's abi lity to keep track ol properties of .

vuriubles it has discovered, and to utilize such properties when

they are useful. Perhaps some other approach wiil be more

fruitful in addressing the issue ol selecting potential variables.

The final concern . that ol choosing appropriate levels for

independent variables. might perhaps be addressed in a future

version of BACON. In order to choose such levels, additional of

·knowledge must be included in the program. Such knowledge

would include: 1) costs associated with achieving different levels

of a variable; 2) the potential range a variable might assume; and

3) extraneous effects ol a variable in the experiment (i.e., one

cannot study water at -20°c). Again this has not been a major

thrust of our project.

5.3. BACON.4 and Noise

BACON.4 has only primitive facilties for dealing with noise

in its data. Suppose the program is comparing two numbers, n1

and n 2, to see if they are approximately equal. The system takes

the larger of these values and multiplies its absolute value by a

noise factor I (0 .001 in all of the reported runs). The resulting

product is both added to and subtracted from n 1 to create an

· Interval. If the smaller number n2 fallswithin this interval (that is,

if n 1 • qn 11 < n 2 < n 1 + qn 11), the two num.bers are treated as

identical.

This technique was adequate for dealing with the roundoff

errors BACON.4 produced while calcu lating the values of

theoretical terms. However, the introduction of realistic noise into

the data may require major modifications in the system's control

structure. In particular, the regularity detectors may not be

powerfu l enough to propose unique paths through the space of

theoretical terms and hypotheses. One alternative is to enable

BACON to entertain many hypotheses at once, rejecting some as

disconfirming evidence becomes available, but generating more

as variants of those that are retained . Such a beam search

through the space of hypotheses should be sufficiently robust to

deal with substantial noise in the data.

The limitation:; shown in this section are serious ones, and

their solution wi ll requ ire considerable time and effort. However,

our present experience suggests that most' of these problems can

be solved by direct extensions of the present program.

25

6. Summary
In summary, BACON.4 is a production system that can

rediscover a number of laws from the history of physics. In the

process, the program notices regularities in data, defines

theoretical terms, postulates properties of symbolic variables, and

summarizes its data at various levels of description. We showed

how the ability to postulate properties COllld be used to discover

properties such as mass, index of refraction, and specific heat.

Thus we have evidence that the technique is a general one.

Further evidence of the generality of the BACON system of

programs is evident in that only three productions were added to

to create BACON.4. Th is is due, in part, to the great flexibility

afforded by the production system format. It is also due to the

generality of the heuristics included in the program. This

suggests that the production system format is a suitable one for

formalizing discovery programs.

Limitations of the present system include the fact that

potentially re levant independent variables must be given to the

program, values for these variables must be supplied , the

dependent variables must be specif ied, and the program has only

a limited ability to compensate for no_ise in the data. We hope to

be able to overcome some of these problems in future versions of

BACON.

REFERENCES

(1] Buchanan, B.G ., Sutherland, G., and Feigenbaum, E.B.
Heuristic DENDRAL: A program for generating exploratory
hypotheses in organic chemistry. In 8. Meltzer and
D. Michie (eds.). Mar: l1111 e lnt r, lligr!llr: e 4 . New York:
American Elsevier Publishing Co., 1969.

(2] Buchanan, B.G .. Feigenbaum, E.B .. and Sridharan, N.S.
Heuristic theory formation. In D. Michie (ed.), Machine
Intelligence 7. New York: American Elsevier Publishing Co. ,
1972, 267-290.

[3] Lena!, D.B. Automated theory formation in mathematics.
Proceedin gs ·01 the 5th International Joint Conference on
Artificial Intelligence. 1977, 833-842.

(4) Langley, P. Rediscovering physics with BACON.3.
Proceedin gs of the Sixth International Joint Conference on
Artificial Intelligence, 1979, 505-507.

[5] Forgy, C. L. The OPS4 reference manual. Technical report,
Department of Computer Science, Carnegie-Mellon
University, 1979.

(6) Simon, H.A. The axioms of Newtonian mechani .::s.
Philosophical Magazine, Series 7, Vol. 38, 1947.

. '

','

• I

INCRtMENTAL DEDUCTION IN A REAL-TIME ENVIRONMENT*

Robert Bechtel
Paul Morris

System Development Corporation

J..BS1ttkVl

S1k~ll'1.t.lt is a system for identifying objects
detected by sensors on ooard naval vessels and for
int~ractively explaining the identification
process. The system operates in a continuing
environment where later information may supercede
earlier data. New techniques are described for
facilitating and revising deductions in this kind
of developing situation. Other interesting
features of the confidence and explanation
mechanisms are discussed.

INTHODUCTION

A ship at sea has a broad range of data
collection devices which can be utilized to aid
assessment of the current situation in its
immediate vicinity. These devices include
on-board sensors like radar and sonar, and
communication links with other ships and land
bases whicn can serve as information relays from
off- ship sensors. Even with these resources at
their disposal, naval personnel can find it hard
to maintain an accurate picture of' the existing
tactical sit uation. At the lowest level · the
amount o!' data availaole can oe staggering, while
converting the low level data to useful higher
level concepts is an art at best.

A rule- based inference system called
S'l'At'.Mettl 1, 2) has been devised to nelp fill the gap
between the availaole information and higher level

• lhis paper reports on work done
N0012j-76-C-0172 for the Naval

Center, San Diego.

under contract
Oc ean Systems

26

Dennis Kibler

University of California, Irvine

concepts which are more useful in ta~ticaJ
situation assessment. STAMMEH applies it r rulPf
to a data base of assertions about ships ana
aircraft. Relatively static information about
facts like ship names and characteristics i~
'available to the system at initialization. Fro,r.
time to time, messages containing information from
sensors and communication links are received, and

.assertions representing the information are addec•
,to the data base . Typical messages indicate the
detection of an object at some location at some ·
tl~e (e.g. blip spotted at 57.4N, 13 .23W at time
0·115), but way also report on weather conditic-1s
or other factors of interest. when rules fire,
tney add their conclusions to the data base, and
.5TAM1"£1i reports to the user botn in text form .-.110
witn a grapnical situation plot.

An aooreviated transcript containing only tht
messages (indented) and conclusions follows:

riAIJAtt contact at (6j.75 -2:;.95) Time: O

11.t.PU!t'i: CO!',TACT 1 was sighted in
merchant lane LANE2

S~AR contact at (63.75 -24.09) Time: 15

A0300: CONTACT1 is somewhat likely (. 15)
to be a PATROL

SONAR contact at (63.75 -24.14) Time: 20

A0300: CON1'AC1'1 is somewhat likely (. 28)
to be a PATttOL

SONAR contac~ at (6 3.75 -24 . 1g) 1ime:2)
.':>(1'1A t\ ~ontact at (E,3 . ·15 -24 .24) Ti~IE': :,~

SUNAH contact at (63.75 -24,33) Time:40

A05'/ 0: CON'J'ACl 1 is probably not (-. 54)
a MJ:,.rlCl:JANl

SUNAfi contact at (6~.75 -24.42) lime:50

A0':>'/0: C01,1AC11 is very probably not (-.8)
a Mi,.HChANT

One of the major conclusions that Sl'AMM£H reaches
is the identification of a vessel's type from its
actions.

upon receipt of a report from the system, the
user may query the data base, trace paths of
reasoning, or manipulate the graphic display to
help satisfy himself as to the nature and scope of
the situation and the appropriateness of the
system's reasoning.

The unsolicited nature of data entry swi;gests
a data-driven approach to rule evaluation. Por
this reason, the rule interpreter operates
primarily in a bottom- up, forward-chaining mode.
Whtrn coml>i ned witn a facility for user definition
of rules, this approach has the additional
advantage of permitting the creation an.J
activation of demons to monitor messages for
particular situations of interest.

n1e de:;ign of the rule interpreter has been
strongly influenced by two considerations. First,
the form of the rules should be kept simple. To'
meet this objective, it was decided that
conditions of rules should refer as much as
possible to states of the external world, rather
than internal states of the system. In
particular, details such as confidence management
and control of repetitious firings are the
responsibility of the interpreter, not of the
rules themselves. Second, the interpreter should
be highly efficient. As the data base becomes
large, it is essential to avoid redoing work th~t
has already been done. The potential for
duplication of effort is especially great in thi~.
environment, because rule-firing attempts recur
after every message. lt is necessary to suppress
atlempts in circumstances that have occurred
before.

-i·n., data base in SlAM~11i;l1 may be viewed as a
set 01 · assertions. An assertion is essentially an
N-tuple, where the first element is a relation
name, J:,.J<.Al'IPLE: (Sl1.i11'l'ING S 1 CONNOLE) asserts

27

that S1 is a sighting of the CONNOLE. The rules
in STAMMER are primarily inference rules, which
are executed by the interpreter to modify the data
·base. Besides being executed, the rules may be
used by other components of STAMMJ:,.H, such as the
explanation system. Tne internal form of the
rules is neutral toward the various uses. Each
rule has a condition part and an action part. The
condition part is a conjunction of conditions.
for inference rules, the action part is a
conjunction of conclusions. The conditions and
conclusions of ~he inference rules have the form
of assertions in which some of the arguments are
r ep laced by variables. This allows them to
Junction as assertion patterns or templates, with
'the variables serving as "wildcard" entries. An
example of a rule is:

(SIGHTING •x •y) (STORM •z) (INSIDE •x •z) ->
(NOT~JERCHAN'l' *Y)

·The variables are distinguished by an initial
asterisk. The rule may be paraphrased as saying
that, if •xis a sighting of *Y, and •z is a
storm, and •xis inside •z, then this is evidence
that *Y ls not a merchant (ship). ~uch a rule is
founded on the presumption that merc hants tend to
·avoid storms more than other ships.

Conditions of rules may also be Boole~n
combinations of the elementary forms. L1
audition, an lJ r.Lt,;:;.:; operator is provided.

The tasl< of the rule interpreter is to
maint.ain the following situation: during
quiescent periods \i.e. after the system has
finisned responding to new information), for every
combination of assertions in the data base
matching the conditions of a rule, the
corresponding conclusions must also be present in
the data base. Moreover, these must have
appropriate confidences, based on the current
confidences in the conditions.

The notation for rules resembles that of
PAOLOG [10], and has a similar natural declarative
sense. However, PROLOG executes rules top-down,
whereas the interpreter here is bottom-up , and
includes a confidence mechanism.

lncremeotJll Deduction

ln a bottom-up (forward-chaining) system, an
oovious problem is to prevent ru-les from firing
repeatealy on the same data. One sol ution is to
have tne rules alter the data base· in such a way
as to invalidate one or more of' their conditions.
The rules in such a system might appropriately be
referred to ·81' "while-do" rules, since their·

·,

behavior resembles that of a WHILE statement in a
conventional programming language. A disadvantage
of this approach is that the rules are cluttered
with additional conditions and conclusions that
_play essentially a book-keeping role. In
addition, the rules no longer have a natural
declarative meaning. A second solution i~ to
incorporate an ad hoc mechanism that retains a
'record of prcv ious firings and intervenes to
,prevent duplications. Unfortunately, this does
notning to eliminate the wasted effort involved in
repeatedly matching initial segments of' rules. An
example will make this clearer. Consider once
again the rule:

(Sluh'l'lNG IIJ(•1) (S'l'uttM 11l) (INS11JE •x *l) ->
(NOll'll!.ilCHAN1 •1)

If the sys tem currently knows about m sightings
and n storms, then it had to do (at least) m•n
retrievals of the INSIDE relation. Now suppose a
new sighting is received. The rule is again
potentially applicable. A naive system might now
do (m+1) 11n retrieval s of INSIDE, representing all
of the possible combinations. However, only n of
these are new; the rest are redone in unchangec
circumstances. This is wasted effort. If m is
large, the cost may be substantial. Clearly, we
would wish that only the new sighting should be
used in conjunction with each of the known storms.
Similarly, if a report of a new storm is received,
then only that storm should oe considered in
relation to eacu of the known sightings. 'ft1e
proulem i s to find a mechanism to achieve this.

Suppose, ror the moment, that we could .delay
a rule rrom being considered until all the
information tnat might match its conditions is
present in the data base. ror the example above,
thi s would be at a point when we could be sure
there would be no more late reports for the
time-span of interest. Assume "executing" a rule
means systematically trying out, without
repetition, all the possible matches for
conditions by items presently in the data base .
Then it is only necessary to execute the delayed
rule exactly once, and the redundancy feared does
not occur. It is not feasible, in general, to
delay execution in this manner. A viable
alternative, however, is to distribute a single
execution over time, interleaved with the other
business of the system. Portions of the execution
ar e suspended until needed information arrives.
The effect, in terms of CPu time (ignoring
overh ead) , iz the same as if the information had
oeen µr esent from tne beginning . We call this
technique "incremental deduction."

28

A somewhat related procedure,
"s.pJitting," is outlined in Rieger [14].

called

S.tr:~

To explain the functioning of the system more
fully, it is beneficial to introduce a construct
Lhat has been used in experimental programming
.1 anguages [11, 12) (Landin[13) first described the
idea.). A ~ may be regarded as a
di.stinguished sequence of values, produced in the
c ,urse of a computation. l•or example, the history
oi' successive values of a variable constitutes a
:s ·;ream. By providing certain operators, we may
mr.1nipula te streams to our advantage. ln S'lAMMER
~~ have implemented a mecnanism wnicn allows tne
creation of' explicit streams. These may bP.
nianipulated by a MAPSTREAM operator analogous to
t ne normal i'lAPC of LJ.SP. The following imaginary
J. lSl' session illustrates how these work:

_(SelQ S (N!i;WSTHJ::AM))
((NIL) NIL)
_(PUTSTREAM S 1)
,~IL
_(MAPSTJll!;AN S 'PRINT)
1

.UL
_(PUTSTREAM S 3)
j

NIL

... create an empty
stream S

... put 1 into stream S

... attach the function
"print'' to stream S

... "print" acts on new
element

_(MAPSTHi:;AM S '(LAMbUA(X)(PRINT 2*X)
2

b

NlL
_(PUTSTttl!.AM ;:, ':,)
J
10
NlL

... new function applies
to all previous stream entries

... both functions act
on new entry.

Tne function Nl!.wS'l'Rt:AM returns a structure that
serves as the means of addressing tne stream. A
MAl'STtt~II.Med function will immediately be called on
the elements already in the stream. In addition,

-a demon will be attached to the stream structur e ,
so that any subsequent elements will also get
acted upon by the function. This provides a
natural form of parallellism in an otherwise
sequential language. In fact, MAPSTREAM may be
regarded as initiating a parallel process that
hangs while waiting for input from the stream .

Streams may be viewed as an example of
embedding control information in data structures .
Kowalski [9] discusses the role of control in
algorithms, contrasting it with that of logic.

Assume now that the assertions in the data
,base are organized into streams, with new
:· infonnation added to the appropriate streams. A
simplified definition of the interpreter may be
given as follows (in pseudo- ALGOL - the II for each

in stream .. 11 represents a MAPSTREAM):

PROCEIJUR E interp(conds ,a.ctions ,bindings)
if conds is NIL then execute (actions,bindings)
else for each x in stream matching first cond do
interp(other conds,actions,new bindings);

l'he new bindings consist of the old ones plus
those determined by the match on x.

An obvious way to implement streams is by
means ol' corout,ines. 'l'he demand s on space,
however, are so onerous that it is preferable to
build special purpose mechanisms for particular
applications. A stream addressing structure may
be considered to nave two parts: a history list,
containing elements previously put in the stream,
and a list or "suspensions," representing the
demons waiting for future items to be placed in
the stream. In our case, a suspension can be
represented economically by a pair consisting of a
context (set of bindings) and the "tail" of the
rule. Structur e sharing may be used heavily to
reduce the space occupied by contexts. Apart from
the context, the overhead required by a suspension
is a single word.

The suspensions saved are associated with
conditions of rules. A new item of information
may "arouse" a suspension and cause the
interpreter to move through a few rule conditions
before suspending again. This has done part of
the wor1< toward a future firing of the rule. This
amortization of tne cost ot' rule firing over
several messages is appropriate in the present
tas1<, where there may oe considerabl e idle time
between significant occurrences.

An i.nplication of tnis approach is that the
proolero of rule :ielec tion disappears, since each
rule is "executed" exa,ctly once. The task of
determining which suspensions are relevant to a
new item of information is handled automatically
by tne stream mechanism.

Pulsars

So far, we have ignore~ the role that
confidences play in the interpreter, A potential
deduction is suspended at a condition even though
a matc hing item is in the data base , if the
.confidence in that item is below a threshold
·value. If the confidence subsequently changes, it
may be necessary to revive the deduction at that

29

point. Since tne item is already in tne relevant
assertion stream, it cannot be placed tnere again
to trigger the suspension. We avoid this
difficulty by associating a stream of pulses,
called a pulsar, with each assertion already in
the data base (actually, the pulsar mechanism
differs somewhat from that of a normal stream) .
When the confidence changes, a pulse is added,
reviving the suspended deductions.

lr:.iJ.tJl Mainten~

An assertion which is not believed (i.e.
with low confidence) may l:ater be believed due to
fresh information. In addition, the uNLESS
operator, which permits inferences based on
absence of information, gives the logic a
non-monotonic cnaracter [4]. Thus, assertions
which are currently believed may later cease to be
believed. Nessages may be overturned. The effect
of' all tnese is two-folu: rules which failed to
fire at one point should later fire, and rules
which fired earlier should in some sense be
"withdrawn . " '!'nis is tne issue of truth
maintenance (3,5,6,8]. The first problem is dealt
wi tn in STAMMER by the pulsar· mechanism discussed
earlier. The second requirement is handled by
delayed computation of confidence. When a rule
fires, a derivation record is constructed, but no
confidence is computed for the conclusion. When a
confidence is needed, it is computed using the
existing derivation records . Then, when computing
the contribution of confidence due to a previous
rule application, the current degree of belief in
the conditions is taken into account. Thus, "dead
derivations" are in effect with drawn from the
system, although their structure remains .

One type of truth maintenanc e that i s
described in i>oyle [8] is net handl ed by .S'l'AMMt:;H.
This is the "conflict ·of evidence" situation where
Doyle's system will attempt to find a culprit and
revise tne beliefs accordingly. At present
.S'lAMM!::il merely sums evidence algebraically,
following tne approach of l'IXCII'< L7 j.

uAlA BASt.

STAM~ilirl's data base is a collection of assertions,
each of which is a statement that some relation
holds among some objects. For example, the
assertion

(LATlTUDE S1GH1'ING27 54.52)

states that the latitude of sighting27 is 54.52
(north). LA TIT UDE, S1GHTING27, and 54. 52 are all
assertion elements.

-number of objects,
Assertions may involve any
though each relation has a

I

fixed number ot' ObJect slots.

while the data base is a collection of
assertions, the assertions are organized into
streams. Retrievals produce a stream structure
that references assertions, rather than a simple
list of assertions.

Hetrievals are performed by specifying some
or all of the assertion elements which form the
desired assertions, with the remaining places
"wildcarded." Using "*" for a wildcard, the
following retrieval specifications would identify
streams containing the sample assertion given
earlier:

1. (LATl'l'Ui!t: SIUH1lliu27 54.52)
2. (LA1l'l'UDE SIGH1'ING27 *)

3, (LA1'1Tl.JDE • 54.52)
II . (LA'fl'fU[JJi: tr •)

5, (* ~luH1INu27 54.5~1
b. (• S1UH1'1NG27 •)

7 , (" • 5ll.52J
tl. (• • • I

lne first retrieval specification totally
specifies an assertion, while the rest are partial
specifications. Analysis of the rules presently
used has shown that the specifications 5-b are
never needed in this application, so they are not
stored.

The sample assertion would thus be stored in
four distinct streams. We accept this redundant
storage in return for quick access via hashin~
based on the retrieval specification. This method
permits retrieval in constant time.

CONr' IDENCES

All assertions in
confidence associated

the
with

system
them.

have a
The basic

confidence calculation is that of MYClN, where the
confidence in an assertion is taken to be the
difference oetween the measure of oelief (Mb) and
the measure of disoeliet (MD) in tne assertion.
Hules have a similar singular measure, called the
strengtn of a rule, which indicates what the
confidence in the conclusion would be if the
confidence in all conditions was 1.0. More
precisely, tne contribution of confidence to the
conclusion of a rule is given by:

MB = M:S(conditions) x STHENGTH(rule)
ML> = l'ID(conditions) x STR!!;NGTH(rule)

Note, however, that if MD> MB then the rule does
not apply. Ground assertions (those that are not
derived from rule applications) have measures of

30

belief and disbelief associated with them directly
by whatever creates them. Derived assertions get
tneir measures of belief and disbelief calculated
dynamically upon acces1i oy tracing through the
derivation to ground assertions and combining the
measures of oelief and disbelief as in MYCIN.

~xtensions to the general MYCl11 scheme fall
into three areas. l"irst, a new logical operator
(UNLESS) is introduced which provides
non-monotonic capabilities [4] by allowing rules
to be based on the absence of information. We
interpret a non-existent assertion as equivalent
to an identical ground assertion wth a confidence
of 0.0. Informally, the semantics of UNLESS
permit it to be satisfied by assertions with
negative or zero confidence. The formal semantics
of the UNLESS operator is given by:

MB = 0 if' MB-MD > 0 • 0
1 otherwise

MD= 1 if Ml:S-MD > 0.0
0 otnerwise

l'ne second and third extensions grow out of
the retained derivation record and the dynamic
demand-driven calculation of confidence . When the
derivation record is retained, it may contain
cycles. for example, a rule like

could be used to infer (FRIEND MARY JOHN) if given
(FRIENL> JOHN MARY). However, once (FRIEND MARY
JOHN) is in the data base, the rule may fire
again, providing (seemingly) new evidence for
(FRIEND JOHN MARY) ·, in an instance of cyclic
reasoning. Our solution to this problem is not to
restrict the rules but rather to cope with cycles
in calculating confidences.

The confidence computation algorithm handles
loops in the derivation structure as follows. As
it descends recursively, it marks nodes it has
seen. This allows it to detect loops. Assume the
node A is discovered to begin a cycle. Then A
appears twice in the descent path . Hules may
supply positive or negative evidence for their
conclusions. ll' the cycle represents positive
evidence for A, then the computation proceeds as
though the lower appearing A had a confidence of
- 1. If the cycle indicates negative evidence for
A, then the lower A is regarded as having a
confidence of +1. we are essentially using the
well known mathematician's tricK of assuming not X
when trying to prove X.

More explicitly, the following six types of
cycles may occur:

A --> A A --> not A
not A --> A not A --> not A

unless A --> A unless A --> not A

Note tnat no rule concludes "unless A." ln the
leftnand column each lower or antecedent A is
given a confidence of - 1. ln the righthand column
each lower A is given a confidence of +1. These
assignments yield the appropriat~ confidence in
the consequent, as can be easily checked.

The following symbolic example illustrates
the confidence calculation. Assume that we have
the rules:

R1: A-->B
R2: B-->not C
R3: C-->B
R4: D-->C

witn strengths s1, s2 , s3, and s4, respectively.
vraphically tne situation is:

s1
A---> h

s2
---> not

Sj

<---

sl!

C <--- D

Assume also that the measure of belief in A and D
are a and d respectively (with zero measures of
disbelief). Moreover let xily denote 1- (1-x) (1 -y).
Then the confidences are given by:

conf(B) = (s 1*a)/l(s3•s 41 d)

i.e. as though the situation were

s1 s3 s4
A ---> B <--- C <--- D

and cont'(CJ= s4•d - s2*[(s1*a)ils3]

i.e. as tnough we had

s1 s2
A---> h --->not s4

Js 3
·r

C <--- D

wherE, T has confidence 1.

31

ii'inal ly, rec al cula ting confidence in an
assertion whenever the confidence is requested
provides an automatic update facility for those
assertions derived from others whose confidenc~s
have changed. This updating of confidence in t ,1e
conclusion does not require a reevaluation or
refiring of the rule.

EXPLANATION SYS 1'EM

As important as the ability to make
deductions is STAMMER's ability to explain it!'
reasoning. The explanation facility is a part of
the user -interaction subsystem . As system
builders have little icnowledge about the form of
interaction users will find convenient, a
production system architecture was chosen for
defining tne interaction subsystem. About two
dozen productions were required, divided nearly
equally between those interpreting user's commands
and tnose interpreting his queries.

ttecall that STAMMEtt functions by processing
each message, reporting to the user all but the
most minor conclusions (this is controllable by
the user), and then prompting him for any
questions he may have. Typical questions that a
user might have are:

WHAT is the COURSE of SIGHTING3
Is RADAR the SOURCE of SIGHTING32
TELL me about SIGHTINGS
WHEHI> was CONTACT2 at time 115
WHY is A00345 (an assertion)
HOW does rule ID-LANE apply to A0435
WHOSE TYPE is MERCHANT
WHO is HOSTILE

These questions forms are redundant, cut add to
the naturalness ·Of the interaction. In
particular, the "Tl>LL me " command could be
used in nearly all cases, but it often retrieves.
too much information, overloading the user. To
illusLrate now simple it is to ado or modify these
language forms, tne internal LlSP form of the
above "HOW.. " query is:

(HOW "does rule" !kULE (: RUL) "apply to"
!AS::icllTION (: NODE): (RUL.E.XP RUL NODE)).

ln the above questions, the user only types
the capitalized words. The system "guides" t' ~
user by typing the lower-case wo'r·,1s. This
guidance aids both the system and thP usJr. The
user gains the sense that the system is paying
attention to him, anticipating hirn, and relieving
him of some typing. The system need not have the
capability to disambiguate such sentences as:

I

what is tne course of sightingj?
Sighting3 was on wnat course?
Signting3 was travelling in which direction?
The heading of sighting3 was?
etc.

Tnis fonn of interaction guarantees that the
system will comprehend the question and be able to .
answer it. The user is not frustrated by finally.
phra s ing a question in an ;cir.ceptable form, and
then having the system respond in some nonsensical
inanner. Of course there are means by which the
user can abort his typein, change it, or determine
the possible legal responses.

Most of the questions above deal with simple
retrieval of information from the growing data
base. Only the "WHY II query asks the system to
explain or justify some assertion. Assertions are
created by five di!terent mechanisms. Ground
assertions are those assertions which require no
rule firings. uround assertions might be i) facts
from the technical llase, such as "the maximum
speed or vessel V is speed S, 11 ii) facts received
from messages, such as "the position of ooject U

.is latitude LA and longitude LU," iii) predicates
requiring a simple computation, sucn as "}(is less
than)'., 11 and iv) default assumptions, such as
"vessel V is outside all merchant lanes" if the
position of Vis unknown. The explanation system
clearly delineates all of the above types of
assertions.

The explanation of a non-ground assertion or
inference is more interesting. Associated with
each inference is the collection of rules which
bear upon it, together with the particular
instantiating conditions of each rule. The same
rule may be applied more than once, by having
different bindings of its conditions, to yield the
same conclusion. Since each condition of a rule
is itself an assertion, the user can ask for a
justification of any condition. This process can
go as deep as the user likes until a ground
assertion is reached.

He turning, for tne moment, to the example
given in tne introduction, we could see the
following interactions occurring after time 30.

~uestion? wht is AU510
S1'AMMt:H appliea tne rule(s)
SPEtJ:J-CHANG,t;D SPE.t;lJ-CHANvED OUTSIDE-ALL-LANES

Question?PRINT rule SPEED-CHANGED
CUli!JlTlUNS:

*SHlP is a contact
•SIGHTING is a sighting of •SHIP
•slGHTlNG is the successor of •SIGHTING2

32

•sn;1ID1 is tile speed of •Sh.ittTlr.u
*61'1::lill2 is the speed of *S1Gtt'11Nl.i2
• UNU;.:,.:,•

•sPEtill2 is roughly tne same speed as •SPEED1
AC'l'lUN:
•sttH' is NOl a ~ierlL;HAN'!'
(;ONFIDENCe: +.:;

Question? HOW does rule SPE£D-CHANGeD
apply to A0570

Which occurrence? 1
The rule was applied with the assertions:
A0237:CONTACT1 is a contact
A0504:SIGHTING12 is a sighting of C01~TACT1

STAMMER gives the bindings of the assertion s
to the conditions.

At one point in time, STAMMEH may infer an
.assertion, say A0001, which it later Del ieves to
be false, as the result of later contrary
evidence. This unbelieved assertion is not erased
from tne data base, for that would not allow the
user to asK about it. The system informs the user
tnat AOU01 is no longer held to be true, al though
it once was. The user can find out why the
assertion was believed by asking about the rules
tnat led to its conclusion.

ln addition to provided textual explanation,
STAMl'l.Ell can (if the terminal allows it) provide
auxiliary graphic explanation. Maps can be drawn
which indicate land masses, mercnant lanes,
storms, and ships. Although STAMMEil will
·automatically give graphic data when appropriate,
the user may always command the system to enter
the pictorial mode. Once within this mode, the
user can change the center of attention and change
t he scale of magnification.

Other commands that complete the user
interaction subsystem allow the user to add rules,

.modify confidences, save states, enter INTERLISP,
or receive a recapitulation of STAMMER' s
conclusions.

ln summary, the user interactior.
easily modiried and easily used.

system is
lt gives the

semolance o!' a natural language front-end wi tnout
requiring
time, or
infonnation

a great deal of code space, programming
execution time. Although some
is with held from tne user (i.e.

µnreachable by any sequence of questions), such as .
the current suspended state of· many rule firings
or tne order of rule firings, the user can;
determine any assertion and derivation that
pertains to a conclusion of STAMMER.

CLOSING RJ:.t,JAHKS

S'fA1'1Mt:H is written
about 140K of core on a
lNlr.itLl~l' makes it a
language to code in.

in lN'l'tHLJ..::if' and runs in
KL-10. The environment of
pleasant ano convenient

In this paper we have shown how streams can
be used to define a clean and efficient rule .
interpreter f'o r a forward-chaining product ion
sysLem. Naturally occurrlng rules demanded the
use of the non- monotonic operator UNLESS, whose
semantics with respect to confidence calculation
were defined. To support truth maintenance, the
ideas of pulsars and delayed computation of
confidences were introduced. Finally, derivation

. records were used to aid in the in-depth
explanation of STAMMER's reasoning . The user
interface was designed to provide convenient
interaction while preventing ambiguity.

while the "suspension" interpreter is time
efficient, it requires a great deal of space. A
forgetting mechanism will be needed to discard old
or inactive or unimportant suspensions.

Although the confidence mechanism appears to.
work, all of us hope that a method will be
developed for evaluating evidence which is more
natural or reason based.

l'inally, and perhaps most critic ally, STAMMER
needs to mix its data driven method for deriving_
conclusions with a goal directed understanding of
events.

References

· [1) Bechtel, R.J. and P.H. Morris, STAMMER:
System for Tactical Assessment of Multisource
Messages, Even Radar, NOSC Technical Document 252,
Naval Ocean Systems Center, San Diego, May,1979.

[2] Morri s, P . H. , Kibler, D.I"., and R.J. Bechtel,
STAMMEH2: A !'reduction System for Tactical
Situation Assessment, NOSC Technical Document 296
(in press) .

[3J !Joyle, J., A Glimpse of truth Maintenance,
Proceedings .Q.f 1h.e. ~ International 4.Q.in.t.

Conference .Qil Artificial ID..telligence (August
1~'7~). 232-237.

L4J Mcuermott, !J. and J. !Joyle, An Introduction
to Non-monotonic Logic, Proceedings .Q.f 1h.e. ~
lnternational ~ Conference .Qil Artificial
Intelligence (August 1979), 562-567.

33

[5] Rosenberg, S.,
.Joma ins, Proceedings
<Lo.1ni .l&.rlf.e.J:fillQ e .on
tAugust 1979), 7iS- 738 .

Reasoning in Incomplete
.Q.f .t.ru:. ~ International

Artificial Intelligence

,b] Elschlager, B., Consistency of
1ueas, troceedings .Q.f .t.ru:. ~
,..oJJl.J<. Conference 2.n Artificial
; August 197Y), ~4 1-2 43.

Theories of
International
lntelligence

L 7 J Snortlit't'e , I'... h., computer-J;ased
·~onsultations;MXClN, Elsevier, 197b .

Medical

l~J Doyle, J., A Truth Maintenance System,
·Artificial Intelligence .lZ., < 1979 l, 231-272.

[9] Kowalski R., Algorithm = Logic + Control,
!&m.m..,.. AQ:1 Zl, 7 (July 1979), 424-436.

.[10) Warren D., Periera, L. M. and F'. Pereira,
PROLOG -- The language and its implementation
compared with LISP, SlGPLAN/SIGART special issue
(Aug. 1977), 109-115.

[11) Arvind, Gostelow K. P. and Wil Plouffe, An
Asynchronous Programming Language and Computing
Machine, 1ech. Rep. 114A, Dept. of Info. and
Comp. _ Sci., u. of Cal., Irvine (Dec 197~) .

(12) Ashcroft I'... A. and w. w. wad.ge, LUCID, A
non-procedural language with iteration, .Co.mm... .AQ1

~. 7 (July 19'/'7), S 19-S25.

(ljJ l'.J. Landin, A Correspondence between
ALli\JL-oO and Cnurch's Lameda notation, Part 1,
£Q!!!J!L. ACM .§.,2 (l"eb . 1905), 89-101.

[14j Rieger C., Spontaneous Computation and its
Role in AI modeling, in (D . A. Waterman and F.
~ayes-Roth Eds.) Pattern-Directed Inference
Systems, Academic Press, 1978.

. I

' .. .• ·1

AN INTELLIGENT SUPPORT SYSTEM FOR ENERGY
RESOURCES IN THE UNIT ED STATES

S. Rosenberg
Inform11tion Methodology Research Project

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

ABSTRACT

This paper describes a frames based system
for reasoning in a petroleum resources domain .
By extending the notion of frames to include
rule frames, which can then be interpreted and
applied, expertise of various kinds can he di
rectly encoded into the frame representation.
Frame based rules are useful in encoding con
straints, performing actions, noticing complex
situations, and deducing solutions. By varying
the interpretation of a rule frame, the same
competence knowledge can be used in performing
each of t~ese tasks. Rules are able to use the
frame based representation in finding other
rules, avoiding most pattern-directed invokation.
Making rules part of the frame based semantic
structure may provide a natural way to encode
plans and metaknowledge.

The Infonnation Methodology Research Pro
ject has, as one of its focuses, the goal of
developing intelligent information systems for
dealing with energy resources in the United
States. A first step in this process is the
development of a smal l test bed system within
a petroleum domain to provide capabilities cur
rently either unavailable or performed by human
analysts. In this paper I shall describe some
of our results in using a frame representation
methodology for capturing essential features of
our petroleum domain. After describing our
concept of a "friendly" representation I sha 11

focus on the use of frames as rules, and the
several ways this has proved to be a helpful
and effective extension of the frame concept.

Our goals are ultimately quite practical;
namely the transfer of A.I. "technology" into
a real world domain. This imposes certain con
straints on the design . Over 200 databases
dealing with energy resources are already main
tained by DOE . Our representation scheme must

Prepared for the U.S. Department of Energy,
Technical Information ·Center, under contract
W-7405-EMG-48.

34

be able to use this existing knowledge. Simi
larly, there are limits on the types of informa
tion which can be collected. (For example, in
the controversy over the recent U.S. oil short
age, not enough relevant information existed to
determine the cause.) Of the data available,
there are problems with validation, with in
formation gaps, with variable definitions of
terms, etc.

Several of our colleagues (Krishnan &
Cahn 1979) are developing precise formal model s
for the flow of energy resources. Any repre
sentation must capture the features of such
models so that existing databases on energy re
sources can be mapped into it. Real data in
these databases is often "messy." Crucial in
formation is sometimes missing, incomplete, or
invalid. To be useful, the representation
scheme should provide help with these problems.
Methods such as default procedures, cross vali
dation checks, caveats, and constraint monitorinq
are necessary to augment the raw data. We use
FRL {Frame Representation Language) as the basis
for our representation. In FRL, a frame can
make use of inheritence, default values, pro
cedural attachments, etc. This augmented notion
of what a data object is allows us to create the
types of "friendly" representation we need.

A "friendly" representation takes the bur
den of performing routine, if sometimes compli
cated, functions, from the reasoning component
or user. It is able to massage or augment the
data to provide more complete information. Some
of these functions are quite simple, such as
providing aggregated information, or default
values. Some are complex, such as adjusting
the representation by changing deduced conse-

quences whf!n erroneous facts are corrected.
Some we don't know yet how to do, such as hand
ling fuzzy information. The net effect of such

a friendly system is to allow a user or reason
ing component to focus on doing higher level
tasks, while leaving lower level information
processing to the· representation system. In
effect, we propose that in manY, domains, semantic
representations must function dynamically, draw
ing on interlaced procedural and world knowledge

to provide a solid basis for higher level rea
soning. An essential feature of such represen
tations is the existence of semantic knowledge
in a useful procedural form. In FRL, the aug
mentation of an attribute/value relation with
procedural attachments provides this feature.
Thus, if-added attachments can be used to en
code and execute constraint relations between
frames. For example, in the portion of a frame

for Iran shown below, the if-added attachment

on the carryover slot automatically updates
aggregation information on world supply. The
default predicate on the production slot provides
a typical value when this data is reported late.
The ability of human experts to fill in informa
tion gaps, assess credibility, etc. forms a
central aspect of their expertise. Consequently,
developinq suc h a flexible representation forms
a basis for developing expertise in our domain.

production
carryover

$default (use- last -month - value)
$if-added (add -to-world -supply)

The basic semantic system is constructed
using FRL (Roberts and Goldstein, 1977). FRL
is a Frame Representation Language based on
Minsky's (1975) notion of frames. Goldstein
and Roberts have developed this into the work
ing frame system which forms the basis for our
knowledge representation. FR' is a sophisti
cated, higher level language designed for the
representation of knowledge in a variety of
domains (e.g. NUDGE (Goldstein & Roberts 1977)).
It provides a hierarchically organized, frames
based semantics with inheritance and procedural

35

attachments among other features. FRL is in
turn written in LISP, hence is compatible with

normal LISP code.
FRL extends the traditional characteri

zation of properties as attrib11te/value oairs
by allowing properties to be described by com
ments, abstractions, defaults, constraints, in
direct pointers from other properties, and at
tached procedures. A value of a property be
comes one of a range of potential descriptors.

A frame can be thought of as a named collection

of slots which form the semantic definition of
a concept. These slots define the properties

of the frame (i.e., they form a list of such
properties). Each property can have many values.
A slot(= property) can be specified further
through the use of an arbitrary number of as
sociated user and system defined "facets." One
of these facets will be the tradit i ona 1 "value"

of attribute/value pairs in property lists.

Useful system defined facets are: Value, which
contains the value of that slot; Default, which
specifies a default value; Require, which speci
fies procedural constraints on the values for
that slot; If-Needed, which specifies procedures
that compute a value for the slot; and If-Added
and If-Removed, which specify actions to be taker,

whe" a value is added or removed. Notice that
many of these facets are procedural attachments.
Each slot can have associated orocedures which

can perform calculations when required. Thus
a frame in FRL is more than a simole datastruc

ture.
FRL allows concepts (represented as frames)

to be arranged in ~n inheritance hierarchy u~inq
the AKO (A Kind Of) slot. The value of this
slot is a generic frame of which the current
frame is a specialized instance. Thus the
frame system forms a tree structure. Generic
information is stored higher up in the hierarchy
and shared by frames lower down; specialized
frames specify new distinguishing knowled~e.
The generic knowledge, including computational

procedures, is inherited automatically. The
inheritance can be restricted, if desired.

A small testbed model provides a useful

. · I

domain for extending the scone of a "friendly"
system throuah the development of frames based
reasonino. Information is organized around the
m~,ior semantic categories of site, area, and
company. These represent the primary physical
loci where we wish to track petroleum (Rosenber9,
1979). A sit~ represents any actual physical
location at which oil is handled or consumed,
such as a city, port, tank farm, refinery or
oil field. (Foreign countries are currently
treated as single sites.) Areas, such as
states, are considered to consist of a set of
sites physically located within their boundaries.
Comoanies represent ownership of either a col
lection of sites in arbitrary locations, or
other companies.

The testbed serves as a domain for develop
ing a frame based rule interpreter for reasoning
about energy scenarios. Supoose, for example,
an overseas supplier of crude oil, such as Iran,
decreases supplies to U.S. sites. Figure l
below, shows a portion of the petroleum flow
network. In it, Iran and Dallas supply the site
of Ne1~ark. If Iran reduces production, are
there alternate supplies of petroleum? In
dealing with this and other questions, we will
need to do several things. First, we need to
model this reduction in the shipment of oil .
This ch~noe in production will alter some of
the constraints we have set in our database.
We must then notice when problems such as re
duced production occur. Next, we will need to
find alternate sources.

Senti nel l ===> Sentinel 2 ~ Alert

/ I ~.,. I 1 ~,~"~<-::
a I N~1ark I

I ran 9en "'-- / \'-... -
t """6 refinery 2

Dallas J \ ""-...

"-demand
constraint

FIGURE 1

36

To deal with these four problems of encoding
constraints, driving our model, noticing the
development of important situations, and de
ducing solutions, we have found it useful to
extend the concept of frames to include rules.
By creating a class of frames called rules, and
varying our interpretation of these rules, we
can do a11 four of these tasks. All knowledge
is represented as frames. Rules are expressed
as productions (Newell & Simon 1972) .
The rule syntax is:
(Rule type (vars)

((Frame Slot Tests)
(Body) (Body)))

More complex conditions can
e.g.:

; Condition
; Action

aJ.so be expressed,

(Rule type (vars) ; AND form
((and

(Frame Slot Test)
(Frame Slot Test))

(Body) (Body)))
These productions are in turn translated

into rule frames with condition and action slots.
The only indication that such declarative know
ledge is a rule consists in the value of the
generic pointer (e.g. = AKO rule). Thus rules
are semantically defined but represented as de
clarative knowledge in the frame tree. All
features of the hierarchical frame representation
are available, such as the use of inheritance,
the ability to use semantic relations in deter
mining an appropriate rule, and so on. Rule
frames contain competence knowledge. To use
rules, a rule frame is interpreted as a pro
cedure, with the slot values controlling the
interpretation. Thus a condition slot causes
a condition to be tested; the action slot speci
fies the action to be performed and so on.

The type slot on a rule frame holds in
formation about the way the rule can be used.
By changing this value, we can vary the inter
pretation of a rule. Variable interpretation
allows us to use the competence knowledge ex
pressed in a rule frame in different ways.

Thus Rules come in various flavors. Some
always erase themselves after success. Others
do not. Some trigger on the removal of informa
tion, others on the addition of new knowledge.

Some function as expectations, others fail if
the infonnation does not already exist in the
database. And so on . These flavors are all
useful for different purposes. By using vari
able interpretation of rule frames, all these
variations are controlled by the application
of the type knowledge in a rule frame. By
modifying this value, the same rule can be used
in different variations, depending on our goals.

Many of the relations between semantic en
tities in our model can be encoded as constraints.
For example, a refinery fire will alter the
amount of oil a consuming site needs. This in
turn affects its relation to its suppliers.
Changes in information can cause propagation of
these constraints to occur (although in a much
simpler fonn than Doyle (1978) proposes.)
Simple constraints can be encoded directly as
procedural attachments to frames. A change in
the information content of one frame triggers a
simple predicate which then modifies the informa-:
tion available at another frame. (For example,
the if-added procedure in the Iran frame.) Some
constraints either are generic (i .e. apply to a
large class of items) and/ or require some de
ductive capabilities. These are encoded as
(antecedent) rule frames, with triggers in one
frame, and the ability to modify other frames.
Figure 2 presents the constraint of Figure 1 in
more detail. Here, a generic constraint exists
whose purpose is to see that the petroleum need
ed by a site is equal to the amounts its suppli
ers intend to provide. This constraint places
a trigger in the generic site frame. Hence it
monitors all sites. If a particular site, such
as Newark, changes its monthly needs, this trig
ger is inherited, and fires. The constraint then
tries to adjust supply among the suppliers to
Newark to correspond to demand. These values
are used in turn in "shipping" oil properly .
Drastic .breakdowns in supply.'1emand relations
are treated as alerts, rather than constraint
violations.

37

Site ~ Constraint: Adjust Supply / d~a!" ""
ConslM1lf!r Site - - Producer Site "..

/ ~', I "'
S.F. Newark, Iran

I
demand

II
assert new demand

FIGURE 2

Xc.tions such as "shipping" oil, are performed by
using rules as agents. An agent consists of a

(set of) rule (s) together with an environment,
usually a single frame (although sometimes a
cluster of frames). In Figure 1, an agent is
shown "attached" to Iran, which ships the oil.
Like the constraint just discussed, this agent
could have been attached to a generic frame,
such as the site frame, and taken responsibil
ity for shipping all oil. By monitoring produc
tion and carryover in the Iran Frame the agent
determines when to ship oil. At the right time
the oil is allocated among the sites supplied,
and relevant information is modified on the
various frames involved, to indicate this. (i.e.
agents function as state change operators.)
This action can in turn trigger a new agent. Us
ing rules as agents provides a method for driving
our model to simulate the changing state of our
domain.

Given a database of changing infonnation,
we want to provide some capability to monitor
important developments, and alert us when nec
essary. (For instance, drastic changes in sup
ply are beyond the scope of constraints.) Many
subtle problems can arise in providing such a
lerts. For example, small reductions in supply
by various producers, together with changes in
demand at several sites can result in a severe
shorta~e at one particular site. However the
change at any one other site is not significant
in itself. Such dynamic noticing is done by
treating rules as Sentinels (Rosenberg, 1979)
which leave active expectations in the data
base.

Sentinels are created by varying the in
terpretation of rules to encode expectations.
Sentinels draw on the information available
about the frame organization to place data dri
ven triggers in appropriate semantic locations.
Thus, only input with a high liklihood of ful
filling the conditions triggers a sentinel.
Frame-based sentinels function as instance dri
ven demons. Consider a demon attached to the
instance slot of a particular frame. Whenever
a new instance which inherits from that frame
occurs, the demon matches its pattern against
that nevi frame. However, it does not consider
any other new frames which do not inherit from
the frame it is attached to . Such a demon or
antecedent rule, if attached to the top-most
frame in the heritage tree, is equivalent to a

. traditional demon (Charniak, 1972). Otherwise
the demon will match against only a selected
subset of new input. By choosing the appropri
ate frame to attach such demons to we insure
that they match against only likely candidates
with precise semantic relations to the expec
tation frame. Sentinels are a type of rule,
and can be created and manipulated by other
rules or Sentinels. This provides a flexible
mechanism for monitoring complex conditions and
providing alerts.

Sentinel
Site ,/I

1 ==:, Sentinel 2 ===> Alert

/Vr;d~c;;~ /

Producers

/l,
Iran ' ,

production~

assert reduced production

FIGURE 3

~
refinery

~
Newark

For example, suppose we wish to be warned
whenever a consuming site such as Newark, will
experience a severe shortfall in supply. In
addition, we would like to have as much advance
warning as possible. Figure 3 above shows in
more detail the Sentinels from Figure 1 which
do this. By taking advantage of the semantic

38

structure a frame hierarchy provides, we can
create a sentinel which places a trigger in
the generic producer site frame. This trigger
will be inherited by all production site in
stances. Reductions beyond some local criterion
expressed on the individual sites will trigger
the sentinel. Thus the assertion of reduced
production into the Iran frame causes the condi
tions of this Sentinel to succeed. A reduction
in production by one producer however, (or even
several) does not necessarily mean a shortage
of oil at a site. What sites are dependent on
this producer? How large a proportion of their
requirements are met by this producer? Are
their other normal suppliers capable of making
up the slack? Can suppliers who do not normally
ship to this site do so? Are there surpluses
elsewhere which can be rerouted? Before a short
age warning can be issued, questions such as
these must be considered. The first sentinel
will examine the sites supplied by Iran, and
try and determine if any are .excessively af
fected. If, for instance, Newark was solely
dependent on Iran for oil, a reduction in Iran
ian production can reliably be used as suffici
ent evidence for a warning. If there are
several suppliers to Newark, the best choice may
be to monitor Newark's supply more closely. In
this case, Sentinel! creates another sentinel,
Sentine12, to monitor both shipments to Newark, .
and der,iand at Newark, directly. Irani an produc-
tion is also monitored. If production returns
to nonnal in Iran, this Sentinel will erase it
self. The ability of sentinels to manipulate
their own conditions, create new sentinels, and
call on deductive procedures provides a flexible,
powerful mechanism for encoding noticing. In
some cases the triggering conditions form a pre
cise scenario. In this case, Sentinels can be
thought of as frame (or script) instantiation.
Its slots serve to define the expectations the
sentinel searches for. In other cases, the sit
uation is less well structured, and Sentinels
simply provide a way to use rules in encoding
complex sets of expectations, some of which

are determined based on the success of prior
ones. If Sentinel2 does notice a drastic supply
imbalance at Newark, it will give an alert.

Once an alert has been given, one of the
uses for rules in our testbed is in answering
questions such as those posed earlier about
possible alternative supplies. What alternative
supply sources are available for Newark? We
are exploring the uses of frame based rules for
goal directed reasoning. Such consequent rea
soning is transformed into antecedent reasoning
by treating the assertion of a condition as an
implicit goal. While appropriate rules can be
found by some variant of pattern matching {e.g.,
planner, or production systems) we take ad
vantage of the organized semantic structure to
have alerts assert information into a location
where it can directly trigger the appropriate
rule(s).

adjust supply
buyer $value Newark-Rulel
supplier
new supplier· $value Alaska-Rule2

Rule l: Condition : buyer
Action: (if((carryovcr(normal suppliers))

> (demand buyer))
=>(adjust-supplies))

(else (or (check other suppliers)
(try supply-increase))))

Rule 2: Condition: New-supplier
Action: Allocate new supplies

Rule 3: Supply - Increase

~ 1--------Rule 4: Spot Rule 5: Borrow Rule 6: Share
Market from other shortage

sites

FIGURE 4

Figure 4 shows part of an adjust-supply frame.
Sentinel2, on noticing an oil shortage in New
ark, can assert Newark into the buyer slot of
this frame. Other slots on this frame can
serve either to encode more complex conditions
or as buffers. The addition of this information
triggers a Rule, Rl. By contrast, the asser
tion of a new supplier would trigger a different
Rule, R2 . Rl first collects all normal sup
pliers to tlewark, and if these have sufficient

39

stocks, adjusts supply using these stocks.
Otherwise, it can try two alternatives; checking
other suppliers which do not normally ship to
Newark, and trying alternative methods for in
creasing supply. We show in more detail only
this second alternative. (Try supply-increase)
will cause all rules which inherit from the
supply-increase frame in figure 4 to be evalu
ated. Thus, although we do not know which spec
ific rule might be relevant, we use the frame
hierarchy representation to allow rules to call
on other classes of rules known to be helpful
in achieving their goals. In effect, the use
of frames such as adjust-supply, and a rule
hierarchy, allows us to create small contexts
of relevant rules and pertinent information .
The rules collected through [R3: Supply in
crease] are [R4: buy on spot market] [RS:
borrow from carryover stocks at other consuming
sites] and [R6: Reroute shipments to share the
shortage equally]. Any or all of these rules
might succeed. However it is obvious that even
so, these provide only a first order solution.
For instance, buying on the spot market can
drive up the price of oil . At some point this
becomes less desirable than reducing demand
by restricting gas station hours. Similarly,
we may always want to "share" a gas shortage
across all sites in the U.S. Considerations
and interactions like these are difficult to
capture directly in simple rules.

A first order solution is to augment rule
frames with caveats that must be satisfied in
order to use the rule. (Goldstein & Grimson,
1977) For instance, the caveat for buying on
the spot market might require paying a price
lower than a maximum set by DOE. However such
a solution does not handle more complex inter
actions among sets of rules. Fortunately, there
is an obvious place for such planning or meta
knowledge. Since Rules are organized in a sem·
antic hierarchy, more generic frames, such as
the supply-increase frame , provide an appr9pri
ate place for planning information. If the
Rule hierarchy is deep, several layers of plan-

I

I .,

I

. ,

ning information might be accessable. We are
just beginning to explore the feasibility of
this method of using planning knowledge.

To conclude, we have found that extending
the notion of frames to include rules has pro
ven useful in capturing much of the common sense
reasoning that occurs in our domain.

References

Charniak, E. "Toward a Model of Childen 's Story
Comprehension," AI TR-266, MIT, December 1972.

Doyle, Jon, "Truth Maintenance Systems for Prob
lem Solving," AI TR-419, January 1978.

Duda, R.O., Hart, P.E., Barrett, P., Gaschnig,
J.r,., Konolige, K., Reboh, R., and Slocum, J.,
"Development of the Prospector Consultation
System for Mineral Exploration," SRI, October
1978 .

Goldstein, I.P. and Roberts, R. B. "NUDGE: A
Knowledge-based Scheduling Program," AI Memo 405,
MIT, February 1977.

Goldstein, I., & Grimson, E. Annotated produc
tion systems. A model for skill acquisition.
Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, August
1977.

Krishnan, V.V., and Cahn, D.F. "An Aggregated
Vectorial Model of Petroleum Flow in the United
States," LBL-8874, University of California,
Lawrence Berkeley Laboratory, March 1979.

Minsky, M. "A Framework for Representing Know
ledge," in P.H. Winston (Ed .) The Psycholo~y
of Computer Vision, McGraw-Hill, 11 .Y., 197~

Newell, A. and Simon, H.A. "Human Problem
Solving," Prentice-Hall, N.J., 1972.

Roberts, R.B. and Goldstein, I.P. "The FRL
Manual," AI Memo 409, MIT, June 1977 .

Rosenberg, S. "A Knowledge Based System for
Providing Intelligent Access to a Petroleum
User Database," LBL-8720, University of Calif
ornia, Lawrence Berkeley Laboratory, January 1979 .

Rosenberg, S. Reasoning in Incomplete Domains.
Proceedings of the Sixth International Joint
Conference on Artificial Intelligence, 1979.

40

Qualitative Reasoning about Time Serles.

Dr James L. Stansfield

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge MA USA 02139

Abstract

Many large systems, such as the economy, present an analyst
with a large amoun t of numeric information. I discuss the
hypothesis that an important component of an analyst's
expertise in explaining the behavior of such systems is the
ability to dl'scribe features and structure in data that is
represented graphica lly. Symbollic descriptions of graphs form
a basis for qualitative reasoning about numeric data and
interface with th e me of knowledge-based models of complex
systems. I present a method for describing graphic information
at mu lt iple scales of detail. Descriptions are represented in a
frame based representation language (FRL). Some extensions
needed for a program that can find meaningful relationships
between syntactic forms in graphs are also described.

Introduction

It is currently impossible to construct a complete model of a

system like the economy. A reasonably complete model with all

the relevant data would still be very hard for a human e1<pert

to understand - almost as hard as to understand the real

economy. So how does an expert reason in such a situation?

What does an explanation of a large amount of numeric data

look lake and how can we construct one? How is data

summarized and described? I am investigating these issues in

the context of explaining graphic data about a sector of the

corn supply system. In this paper I propose that qualitative

descriptions of graphic data are a central component of the

process. I describe a method for producing descriptions at

multiple levels of detail and explain how these will fit into the

design of an expert system.

Acknowledgements
I. Tl,/s paper dtscribes research done at tlit Artificial lnttlligtnct
Laboratory of the Massachusetts Institute of Tecltnolog1.
Support for tlit Laboratory's artiflcta, intelligence rt1earch ts
prouidrd in part by tht Office of Naval Restarcl, under contract
N000/4-77-c-0389.

2. I am grateful to Patrick Winston, Kent Stevens and otlitr
mtmbers of the MIT Al Laborator1Jor most ltelpful conversations
about tliis work.

41

Manipulating descriptions of graphs provides a different

emphasis from other work on qualitative reasoning about

systems. Rieger (1976] has applied a vocabulary of causality

primitives to describe some simple mechanisms such as a 'steam

boiler. The descriptions were used to simulate the behavior of

the mechanism through a .series of time ticks. A program by

De K leer [1978] reasoned about a description of a simple

electronic circuit to determine the change in voltages and

currents for a given perturbation. Both systems used complete

descriptions of the mechanism and both attempt to predict what

will happen next. The systems being processed are well

understood . In contrast, the corn supply system is large and

incompletely understood. Rather than proJecting a completely

described state forward into a deterministic future an analyst

navigates through a large amount of graphic data to arrive at

a set of partial qualitative hypotheses about what happened.

These suggest further examination of the data for corroborative

evidence, or refutory facts.

Qualitative reasoning about graphs

Information about the grain market from sources such as

government reports and commercial newsletters is of two broad

types; tables of figures, and commentary. Tables give values

over time of variables such as stocks, prices, and shipments.

Meta-information can be associated with the tables giving

typical values, describing what constitutes anomalous behavior,

showing which figures are available, and relating the tablel to

each other. Commentary performs two functions. It points out

some important features of the figures and it attempts to relate

the by means of a causal argument.

Commentary relies heavily on a vocabulary of qualitath t

concepts for describing the behavior of quantitative variables.

This includes terms like "increasing", "decreasing",

"accelerating", "large", "fast", "sharp", and "moderate" which

describe the structure of data and approximately quantify it.

The number and variety of qualitative terms and the way in

·,

. i
I

which they mix with other concepts ls evidence that qualitative

reasoning about numeric variables and their changing form is

a central part of human reasoning. Trading may be frantic or

slack, there may be a glut of supplies, rainfall can be heavy and

a drought can be severe. Although this large set of descriptive

terms can be condensed into a few neutral ranges such as, small,

moderate, and large, most terms apply only to particular claues

of concept and have special overtones of meaning. "Frantic

trading" implies a rush for time. "Severe drought" refers to the

harm caused by the lack of rain.

Graphic representations are an Important tool for analyzing

and describing complex systems. Ar, Important· reason is the

visually striking way they display certain features of the data.

As a visual representation, graphs allow direct access to

absolute size, proportion, shape, peaks and troughs, gradient,

and time relationships as well as to non-localized properties

such as smoothness, sharpness, waviness, randomness and

regularity. The visual system highlights important structure in

an otherwise uniform array of numbers. These qualitative

conctpts are experienced through other than visual channels.

Kinesthetic fetdback allows us to drive a car smoothly and we

rtcognlzl' sounds with a great variety of structure. The ability

to describl' thl' form of a changing variable and to relate the

description to others and to a stored body of knowledge must

be a significant component In our natural rea~oning. How do

we manage the interface between numeric variables and logic?

Designing a program to produce descriptions and explanations

of the behavior of the corn market from graphic data is a way

to Investigate the general problem in a particular domain.

The domain

The domain concerns the movement of corn from farmers
through the transportation system to domestic users and

exporters. It is considered from a standpoint of broad patterns

rather than exact dt'ta ii. This is how an expert must reason

about the domain as a whole. A finer grain of detail requires a

smaller area of attention. Graphs of stocks, flows and prices are

provided for a selection of strategic and representative locations

and figures are given for exports from major regions and for

new export sales for the US as a whole. Samples of these

variables are given for weekly intervals over a period of Just

over a year. The time span includes a variety of significant

events and the sampling Interval provides enough data to

characterize each event.

42

.,

;oJtl\-~~tt
Mf exports

·~~------------ -------tt.l

48888.1

,,!v\/\ /'\j'-\A,r\/ ;~.,\
I ' I

] ' \ . j 'lbtal barge shiµnents

·~~ ... ·-···--·-··- -- -- . -------- - --- - --- ----··· ,, ...
Figure 1.

As an example, figure I shows graphs of total barge shipments

to Gulf coast ports, and exports from these ports. We would

expect in general that shipments would follow exports quite

closely. However, other factors affect the relationship. These

effects can be hypothesized and supported by data in other

graphs. It is clear from the figure that the grain market

showed considerable structure during this time period. This is

quite typical. Here are some events that occured.

A period of high exports caused large flows of grain along the

rivers.

Severe freezing of the rivers caused a transport blockage. Thi~

· backed up stocks inland, and tightened supplies at Gulf

Coast ports, raising prices at the coast and depressing them

inland. Alternative transport routes were strained, and the

uncertainty discouraged new export orders for a while.

Seasonal opPning of the Lakes siphoned off some of the supply

so that less corn moved to the Gulf from Northern

prooduction centers.

Onset of harvest allowed a high flow of gram without raising

the price.

The domain hu many valuable properties. It us~s real data

about a real situation of definite interest to analysts. At the

same time it is well circumscribed. This is because of the

abstraction away from details and because the domain is open

in many places. It follows that some large-sca le features of the

data, and many detailed fluctuations, are unexplainable. Even

a human expert facts this. An appropriate success criterion for

an expert program is to notice and explain some typical

situations and some which are clearly anomalous. There will be

a middle ground of mundane situations or situations for which

the program should either admit lack of data or knowledge, or

recognize that the data is too ambigous. A further property of

the domain is easy of extensibility. Some choices are to cover a

longer period and include seasonal information, to consider

severa l crops and the interactions caused by competition for

storage and transport, and to increase the number of places in

the model.

Graph Description

In the case of systems whose behavior is to a large extent

represented by graphic data, I hypothesize that symbollic

descriptions of thl' features present in the data, their rough

proportions, and their positional and subpart relationships, are

a prerequisite for recognition, comparison and meaningful

reasoning about thE' behavior of the systems. While statistical

techniques, and correlations can provide information, they are

not sufficiently logical to handle the interactions and exceptions

that occur in a complex domain. The purpose of the graph

description program is to take part of a graph and return a

symbollic description of the features present for use by the

domain expert. These descriptions are constructed from FRL

frames [Roberts, 1977) which represent the features and

assertions about them. Primitive syntactic features of graphs

include segments of various kinds and special points such as

peaks, lows, and points of maximum or minimum gradient.

Frames for the~e can be modified with properties such as

increasing, decreasing, concave, convex. They may also have

numeric information giving the ordinate and abscissa and rate

of change. Thesl' numbers are then quantized into five ranges

according to the typical values the graph takes. Quantization

Intervals can be provided externally as a property of a graph or

type of graph. For instance, the price of corn might be

considered high when it is over SlOO. Alternatively, they can be

calculated from thl' data by examining the distribution of

values and gradients. Quantization is context dependent.

Typic.11 in tervals for the time period between 1970 and 1980 may

be difftrent from intervals obtained for a different time period.

Knowledge about seasonal information will be incorporated

eventually. Similarly, a given price may be considered

abso lutely high but low for the time of year. For such

contextual quantization, the assertion that a variable has a

43

quan tization x must be annotated with information about the

con text.

Primitive descriptive elements are combined to generate a small

vocabulary of larger structural types. An increasing segment is

a concatenation of increasing atomic segments. Basic types are

the TREND, the HILL, and the VALLEY. These can be

modified with properties such as sharpness, width of shoulder,

ancl asymmetry. A related vocabulary was developed by

Hollerbach in connection with the analysis of Grecian urns

(1975). The following frames describe a trend in Chicago corn

prices which contained several hills and valleys all lying within

a narrow band of increasing price.

TREND-1
AKO: TREND
VARIABLE: PRICE-2
VARIABILITY: 80 cents
BEGINNING: May 1973
ENDING: Jan 1975
GRADIENT: 5 cents/month
PARTS: HILL-3, HILL-4 , HILL-5

VALLEY-10, VALLEY-11
PARTOF: GRAPH-6

PRICE-2
AKO: PRICE, VARIABLE
COMMODITY: CORN
LOCATION: CHICAGO
GRAPHS: GRAPH-6

HILL-3
AKO: HILL
VARIABLE: PRICE-2
QUALITIES: SHARP-10
PARTOF: TREND-1
PARTS: SEGMENT-7

SEGMENT-8
BEGINNING: Mar 1973
ENDING: Oct 1973
PEAK-AT: Aug 1973
MAXIMUM-VALUE: 13.00
HEIGHT: 80 cents
FOLLO~ED-BY: HILL-4

There is no unique way to parse a graph into these larger

structures since multiple descriptions are reasonable. Figure 2

shows a case where an export graph can be described as three

consecutive hills. The same approach applied to the graph of

barge shipments to the Gulf gives two hills. The hills in the

two descriptions do not correspond. An alternative description

of the shipments as a hill followed by a valley followed by a hill

does result in an appropriate match . An ana lyst program

would explain the first and third sections of this iituation as

• •• I

barge shipments following export highs. It would look for

possible causes of the anomalous middle section and find that a

fall in river capacity restricted transport to the Gulf preventing

shipments from following exports as otherwise expected.

/
/

/

EKports

·-----------------------.-.,
Figure 2.

Noise interferes with the description process. An exports trend

is likely to be broken during some weeks so it cannot be found

simply by noticing consecutive changes in one direction. Noise

can also seriously mislead a reasoner which attends to every

detail. A troublesome situation is shown in figure 3. Exports

increase and shipments to the Gulf follow roughly, but in some

weeks the two move in opposition. It is a mistake to try to

explain these cases since they are really too transitory at this

resolution and without more detailed knowledge. For these

reasons excess noise must be smoothed from the data .

Smoothing is done by convolving the graphs with a Gaussian

mask. Figure 4 shows the previous example with effects smaller

than one week smoothed away. The ups and downs have

disappeared and the graphs are sufficiently clean to trigger

rules that will produce a simple explanation.

.......

--------------·-···-- -----"12'

Figure 3.

44

Exports

Shipments

-----.z. e

Figure 4.

An expert attends to large scale features before small scale ones.

Th, broad description is a helpful framework for examining

details. I use the smoothing mechanism to handle multiple

levels of detail by employing smoothing masks of various scales.

The process was suggested by analogy with edge-detection in

vision processing where an image ls convolved with Gaussian

filters of different scales [Marr & Hildreth, 1979). Gaussian

filters are the optimal compromise between a spatially locali1ed

filter and a frequency localized filter. In my case, spatial

corresponds to the time axis of a graph and frequency to the

period of change of its value. A single frequency filter, used to

pick out effects of say a one week period, would sum effects

from the entire time period considered. In other words, it

would have zero spatial locali1ation. Commodity supply

analysts use simple moving averages or sometimes moving

averages with ad hoc weighting. These are not optimal.

Though not perfect, the analogy with edge-detection suffices.

Edge are fairly sharp phenomena whereas underlying causes in

the corn system may be gradual. Nevertheless, there are causes

at every different sea le of resolution.

As the smoothing mask grows to cover more of the time·axis,

the higher frequency features of the graph smooth away

gradually. Figure!'> shows three stages in this process. A large

scale hill with several perturbations will gradually lose its

perturbations. They do not disappear suddenly, nor at the

same time. Individual features have their own fade out scales.

It is impossible to make an a priori selection of scales that

results in a set of cleanly smoothed graphs each with features

only of that scale or larger. How then should we proceed?

48188.I

... ~ .. - -
48800. e

--.-.,

I (\ . r · \ - , j "--/\/\ ,. -, I\ n / , '- \. \ . __, " \ I
rredium srroothing

8 ~~---------------.
48880.8

------tt.e

;vf\ ! /\ f_.J",11\ ·. '\ /VI\
. , r, \' \ \ , ,- \ f"'- I

,.., ! I \/ ' 1.-..1 \1 v' •..) V.J j
I \I 'v

8 0 .e--
low srroothing

Figure 5.

---... e-.e

My approach is to consider each feature independently and

determine how it fades . For this purpose, features are

considered to be segments of the graphs with only positive or

only negative gradient , and segments which are concave

upwards or are concave downwards. These segments are

delimited by points at which either the gradient crosses zero or

the second derivative crosses zero. They are turning points or

points of in flexion . Figure 6 shows a three-dimensional

representation of this. The surface ls composed of a set of

graphs placed side by side. Each graph is the second

derivati ve of the origina l smoothed with a filter of scale sigma.

Sigma decreases as we move into the page. This representation

clearly shows how the features fade away as sigma becomes

larger. Figure 7 shows is a contour map showing where the

second derivative is zero. One axis is the lime axis and the

other axis is sigma, the scale of smoothing. At any particular

Figure 6.

45

sea le, the segment between two adjacent zeros represents a

segment of the original graph which is concave or convex

vertically. As the sea le increases, some of these features fade

away completely. Each feature has an approximately triangular

contour. I call the tip of the triangle a vestigial point since the

last vestiges of the feature disappear at that scale. In fact, the

fe:uure loses its significance before then. To examine this one

must look at the rate at which the value changes sign as it

crossl's the zero.

. ,

. .a. -,

FigurEl 7.

This technique leads to descriptions of features which cut across

all scales. By representing the shape of the triangle with a few

parameters we describe just how prominent the feature is at

different scales in a single description. The representation is

feature oriented rather than scale oriented. It can be used to

find the most global feiltures needed for an explanation at low

level of detail. Thl'n, more detailed perturbations can easily be

accessed.

For presentation purposes, figure 6 shows more levels of scale

than are really nel'd to construct a multi·scale description. It is

possible to do even less processing. Once features are located at

a fine sea le, their zero crossing contours can be followed around

the triangular outline so that at large scales, smoothed values

need only be calculated close to the contour. Since these are the

ones which require most computation, the saving is large.

Similarly, the inlerval between scales is really logarithmic. At

large scales, intervals need not be as close.

A further method also reduces computation. Since convolution

is associative and the convolution of two gauuians is a

gaussian with larger scale than both we have the follow mg

result where ,:, is the convolution operator.

GRAPH ,:, LARGE-GAUSSIAN

• (GRAPH t.• (SMALL-GAUSSIAN o SMALL-GAUSSIAN)

• (GRAPH,:, SMALL-GAUSSIAN)* SMALL-GAUSSIAN

Convolving with the small gausslan first returns a graph whose

values are used many times each in the second convolution.

This results in increased efficiency by saving repeated

calculations.

Graph organisation

Besides a frame description of the structure of a graph there

must be assertions which relate graphs to their meaning.

Typically, some graph might represent the price of corn at

Chicago between time-a and time-b at weekly intervals and

smoothed with a scale of two weeks. This Information Is

needed to access graphs and in deciding what to do with their

descriptions. There are also relations between graphs. Since St

Louis barge shipments are a part of total barge shipments, we

may construct a new graph showing the proportion or the two

with respect to time. Or we may subtract them to calculate the

amount of grain shipped from points other than St Louis.

Most analysis situations have a number of operations that may

represent the information In a more suitable form. Graphs

produced in this way must have assertions relating them to

their sources.

Representation

An analysis module is to be written to take these graph

descriptions and interpret them with qualitative explanations.

Descriptions will trigger rules expressed as frame structures and

implemented in a system of stntinels. The remainder of this

paper discusses the representation scheme and the sentinel

system. Since the goal is to develop an expert program and not

to investigate representation problems per se, the approach Is to

use what is available rather than to investigate the many

representation issues recognized. Most of the descriptions,

assertions and rules are easily represented using FRL. Some

issues, however, required extensions.

An FR L frame is effectively an item with a property list of

properties and values but also has facets, tnherttanct, and

proctdural attachment. Each property of a frame has a slot

associated with it. The values of the property fill only one part

(or facet) of the slot. Other facets contain different types of

Information about the slot. Inheritance works by using the

AKO slot. If FRAME! has an AKO property whose value Is

FRAME2, FRAME! will inherit all the property value pairs of

46

FRAME2. Procedures can be stored In special facets of a slot.

An important type triggers whenever a new value is added to a

slot. Since procedures are inherited, those that describe generic

concepts can be. applied to all Instances whenever the required

information is asserted.

An important convt>ntlon for using FRL frames, suggested by

Roberts, Is followed in this work. Suppose we wished to assert

that farmers sold corn heavily on July 15th. On one hand, we

need a convenient way to retrieve the assertion starting from a

frame that represents the farmers. It is reasonable to give

FARMERS a SELL slot whose value is some instance of corn.

But we also need to represent the time of the SELLING and

the fact that was heavy, so we need a separate frame for it.

The solution Is to have both the SELL slot and the SELLING

frame and to annotate the farmers sell corn assertion with the

SELLING frame.

FARMERS-!
SELL: CORN-2 ISELL-31

SELL-3
SUBJECT: FARMERS-!
OBJECT: CORN-2
BE: HEAVY

Figure 8 shows how this can be represented with a diagram.

The method allows us to have a frame for the farmers and a

frame for the sale with equal status.

SOLO
FARMERS

OCI
) CORN

HEAVY

Figure 8

An annotation represents the. assertion made by the

corresponding frame- slot-value triple. Access to them is critical

for representing many types of statement and for recording

logical dependencies between statements. Figure 9 shows how

annotations can represent that one event caused another.

Notice in this example, that is Is the fact that the selling was

heavy that was caused by the harvest progress. Annotations

allow us to focus on an assertion and say something about it.

SOLD OF

FARMERS BE :f-!-_ c_o_R_N ___ PAI CE

~ -.-:,J BE
CAUSE

HEAVY FALLING

Figure 9

It is important to distinguish between those assertions in a

frame which describe the concept the frame itself represents and

those which say something about that concept. "l'he price of

corn at St Louis increased yesterday" asserts a fact about a

concept which is itself described by assertions. Figure 10 shows

this pictorially with internal assertions separated from external

ones. I implement this with partitions [Hendrix 1975), attaching

a special partition to a frame to describe its internal structure.

A partition should be a frame object just like any other frame.

Another use of partitions is to represent an entire statement

such as the whole of Figure 9. This statement may then

suggest or justify some other statement. A hypothesis, situation,

belief structure, or argument may then be represented using a

partition of such statements. At this point there are three levels

of partition, each used for a different conceptual purpose.

- - ...
/'.,,. PR I CE -~':"', -----1-+--=,--, I NCAEASI NG / i \AT\ BE VESTE::

, CORN ST- LOUIS I
I ... - -

Figure 10

Sentinels

A sentinel [Rosenberg 1978, Stansfield 1978) is a form of

production rule which triggers when a set of assertions in the

frame data base matches the condition of the rule. The sentinel

system described here overcomes d1,iiculties in writing these

rules directly with the if-added mechanism of FRL. Several

issuse arise. One concerns the use of variables and the other

concerns control. There is also an interaction between the

inheritance hierarchy and productions which had to be catered

for by the system. I next consider these problems.

47

Suppose we are using if-added procedures and want to notice

when assertions are found that match two template assertions.

Templates are frame·sloJ·value triples and might contain

variables. A value is added that causes the if-added procedure

for the first template to trigger. It binds a variable and creates

a new If-added procedure to watch for values matching the

second template. The variable bindings must be consistent

with the first assertion. A value that triggers the second

assertion may not be asserted yet, so the new if-added may not

execute immediately. In any case, it Is unlikely that it will run

in the environment it was created in. This means that we

cannot use a fluid variable in the code of the second If-added

to refer to the value that triggered the first. Most Lisps use

nuid variables. My sentinel system um lexically bound

variables.

If-added procedures in FRL force control to follow a depth first

route and to build inappropriate run time stacks if they are

used as much as required for a rule-based system. Suppose an

if-added triggers and makes an assertion. Immediately the

assertion is made, if·addeds that match it also trigger. While

new assertions are created, the triggering will continue and will

build an unnecessary control stack. Triggering should not

require the return of control to the process that created the

trigger fact. Because of this, all triggerings in my sentinel

system are placed on a queue which is serviced at top level.

This effectively decouples the search through the production

rule space from the Lisp control structure. Control can then be

added at will by the use of explicit control statements, for

example through a COAL frame [De Kleer et al. 1977).

An sentinel which triggers whenever "heavy farm selling" is

asserted looks like this.

(SENTINEL
((NIL

(&SELL
(NIL
(&BE
(NIL

(FARMERS INSTANCE &FIi
l&F SELL &Cl I
l&C AKO CROPI I
(&SELL BE &HI I
(&H AKO HEAVY) I

••• then eMecute the body •••)

This sentinel executes its body whenever a set of assertions u e

made that match the triples in the condition. Each triple may

be associated with an annotation vartablt. If present, this

variable is bound to the annotation frame that represenu the

triple. In the example, farmers sold a crop and the annotation

frame for selling was bound to a variable so lt could be

: I

examined further . A sentinel body Is arbitrary lisp code

although there is a lexical environment associated with It. This

allows it to define other sentinels which use the variables no

matter when they are executed. In this way, it is easy for rules

to define rules.

There are both generic and individual sentinel triggers. The

first trigger of the example sentinel is generic because it looks

for instances of the generic frame, FARMERS. These may

occur anywhere down the inheritance tree from the FARMERS

frame. The second trigger is individual. It watches over the

SELL slot of a particular farmer discovered by the generic

trigger. Individual triggers are fairly simple. A complication

with generic triggers arises when we allow new Inheritance

links to be asserted during running of the system. A new link

may complete an inheritance chain allowing a trigger at the top

of the chain to fire on a whole set of new instances. Since some

of these instances may already have an alternate inheritance

path up to the top, the set has to be pruned and only the new

instances allowed to fire the trigger.

Conclusion

Q.ualitative reasoning is an important mode of reasoning in

large domains which cannot be grasped in their entire detail.

Information about such domains can often be presented

graphically and this assists an expert in reasoning about the

data . The process of describing graphs symbollicly Is a

prerequisite for interfacing graphs and reasoning. I have

presented a dumain which is ideal for investigating graphic

reasoning and have described a method for producing frame

descriptions of graphs at multiple levels of detail. These

descriptions will eventually form part of a larger system which

will apply production rules to derive explanations of graphs

from the domain. A sentinel system implements these rules in

an extension of FRL.

References

De K leer, J., [1978) "Causal rtasoning and rattonalization tn
tltctronincs." MIT Al Lab Memo·199.

De Kleer, J., Doyle, J., Steele, G. L. Jt., & Sussman, G. J., (1977)
"Explicit control of reasoning." MIT Al Lab Memo-427.

Hendrix, G.G., (1975) "Expanding tl1t utility of semantic ntts
through partitioning." fourth International Joint Conference
on Artificial Intelligence. ·

Hollerbach, J. M .. [1975) "Hitrarchical shape description of
objrcts by stltetion and modlfiaction of prototypes." MIT Al
Lab TR-'.'16.

48

Marr, D., & Hildreth, E., (1979) "TA,or7 of edge dtttctton.• MIT
Al Lab Memo-518.

Rirger, C., & Grinberg. H., (1976) "Tlit causal representation
and si~rtlation of physical mechanisms." University of
Maryland TR-495.

Roberts, R. B., & Goldstein, I. P., (1977) "The FRL Manual."
MIT Al Lab Memo-409.

Rosenberg. S. R., [1978) "Sleuth: an inttlligent notietr."
Proceedings of the second Canadian National Conference of
tht- CSCSI.

Stansfield, J. L.. (1978) • A ttst·bed for dtvtloping support systtms
for information analysts." Proceedings of tlie second
Canadian National Conference of the CSCSI.

THEOREM PROVING BY REDUCING CONNECTION GRAPHS

Donald Kuehner
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada N6A 589

ABSTRACT
A connection graph is a representation of an

~nsatisfiable set of clauses in which all potential
resolvents are indicated by links between compl e
mentary literals. Kowalski has shown that connec
tion graphs have many advantages in the organiza
tion of resolution theorem proving problems. This
paper shows that it 1s possible to predict the
complexity of the graph which would be produced
when any one of the potential resolvents is acti
vated. The search for a proof is simplified by
activating those potential resolvents which reduce
the size of the graph. When no further reduction
is possible, a minimal expansion may be attempted,
or some alternative search procedure may be em
ployed. Using graph reduction -and minimal expan
sion for complete searches for proofs produces
exceptionally efficient searches with a test
collection of problems.

l. INTRODUCTION

In the following, theorems are represented
by statements of first order predicate calculus.
These statements, in negated form, are written as
sets of clauses. Robinson's resolution rule [1]
is used to construct refutations for unsatisfiable
sets of clauses. Kowalski [2] has developed the
connection graph as a means of displaying a reso
lution theorem proving problem. A connection
graph is a representation of a set of clauses in
which all potential resolvents are indicated by
links between complementary literals as in Figure
1.

.In the search for a refutation, a link is
activated by replacing it with the resolvent which
it indicates. A new graph is formed by deleting
the activated link from the old graph, and then
linking the literals of the resolvent to the
literals of the rest of the graph. In the resolv
ent, the literals descend from literals in the
parent clauses. In a similar way, links to the
resolvent descend from links to the parent clauses.
In Figure 1, the link labelled X in the top
graph is activated to form tht: middle graph.

Clearly, the clauses of the middle graph,
with one resolution forbidden, are unsatisfiable
if and only if the clauses of the top graph are
unsatisfiable. But in the middle graph there is
one literals which does not have a link to it.
Robinson's purity principle [l] implies that any

49

Fi -- I

xi
-
A EFG --G ADE7

I __
D E FR -- H

I
\l

A ---

--~!

E G..t:_____

A0i~E~G
l_v I _
D E F H H

A ----

Figure l.

I
I

clause containing an unlinked literal can be
deleted from a set of clauses without affecting
its unsatisfiability. Deleting this clause and
its linkage results in the bottan graph of
Figure 1. The deletion of pure clauses will be
considered to be part of the activation of a
link. Thus the bottom graph is assumed to be
deduced directly from the top graph.

The purpose of this paper is to present a
method for assigning a precedence for the order
of activation of the links in a connection graph.
The precedence is assigned so that the complexity
of the graph will be reduced or, at worst,
increased as little as possible. The graph
reduction is bound to simplify the search for a
proof. Continuing the search by minimal expan
sion, although it has given encouraging. results,
is difficult to justify.

In the top graph of Figure 2, the links of
Figure l have been assigned precedence numbers.
The calculations involved are outlined in Section
3, and are illustrated in Figures 4, 5 and 6.
The second graph of Figure 2 is the result of
activating the four outer links of precedence +4
and deleting one subsumed clause. Each succeeding
graph is obtained by activating the link of
highest precedence number. Note that in the
fourth graph there is a new kind of link, a merge
link between literals of the same clause.

F i + 4

1- 3

A!.iAoE - 3 EFG_:_LG

1 ··1 _7, 1-'
I - DE FH_!_i_ H

------------------- -···-
\ I

Ii
V

+ 4 F

D<=! E '" 'Ptie:~,"
Figure 2.

50

For simple problems, these precedence rules
seem to find short proofs with a small search.
In this example, the search size is 17, and the
proof size is 14. Using SL resolution [3] or
SNL resolution [4], selecting the right-most
literal, the search size is 21 and the proof size
is 17. These sizes count the number of clauses
involved, including the input clauses.

2. CONNECTION GRAPHS

A connection graph has literals as nodes.
Any pair of nodes may be connected by one of four
different kinds of link. The first kind is a
clausal link. It connects adjacent literals of a
clause. These links are not usually displayed,
but are indicated by a close spacing between
adjacent literals. The second kind of link is a
resolvent link, and indicates a potential
resolution. It joins two literals in different
clauses which have the same predicate letter, one
being negated and the other not, and whose argu
ments are simultaneously unifiable. The unifying
substitution may be thought of as labelling the
link.

The third kind of link is a factor link.
This is like the resolvent link except that the
two literals are in the same clause and have the
same sign. Such a link indicates the potential
of factoring. The fourth kind of link is a loop.
This is like the third kind of link in that it
links literals of the same clause, but the
literals are of opposite sign. This kind of
link indicates the potential of resolution bet
ween two copies of the same clause. The unifying
substitution must assume that there are distinct
variables in the two clauses.

The activation of a resolution link generates
a new connection graph. This new graph is con
structed from the old one in four steps. First
the activated link is deleted. Next, if any
clause contains a literal which is not linked to
any other literal, then that clause is deleted
together with all of the links to its literals.
Third, the two clauses, whose literals' link was
activated, are resolved together. Finally, the
literals of the resolvent are linked in all allow
able ways by links to the other literals of the
graph. This includes the possible insertion of
factor links between literals of the resolvent.
To avoid redundancy, these factor links should
only be between literals descending from different
parents.

It should be noted that except for factors,
these new links descend from resolution links or
loops in the old graph. If the literal L' in
the resolvent descends from the literal L in
one of the parent clauses, then L' has a

-resolution link to a literal M only if there
was a link from L to M , and then only if L'
and M are unifiable.

The activation of a factor link is much the
same as the activation of a resolution link,
except that there is only one parent, and a

factor rather than a resolvent is generated.
Clausal links and loops are not intended to be
activated.

3. THE GRAPH REDUCTION SEARCH PROCEDURE

It is proposed to activate links in a
connection graph in such a way that the graph
becomes less complex or increases in complexity
by as little as possible. The complexity of a
connection graph can be indicated by a triple
containing the number of clauses, the number of
literals and the number of links. The top graph
of Figure 3 has complexity [9, 16, 9].

After activating the left-most link, the
resulting graph has complexity [8, 14, 8]. The
reduction in complexity can be represented
(1,2,1) . That is, one clause, two literals and
one link have been deleted. The total reduction
is represented by the sum of these individual
reductions, so the total reduction is 4.

F 1-- 1

I
A -- A 6 E7 E F G -- G

I _ I _
DE FH--H

FI --1

I - -
DE -- E

I -
rG - G

D E F H-- H

Figure 3.

The generalisation of the preceding example
is shown in Figure 4. In the illustrated initial
subgraph , the non-unit clause is assumed to have
m+l literals with a total of n+l links to them.
Thus, the whole subgraph has two clauses, m+2
literals and n+l links, giving it a complexity
of [2, m+2, n+l]. Whenever a link can be
identified with the initial subgraph, that link
is given a reduction estimate of four. This is
only an estimate because the unifying substitution
may make some other links fail, and factor links
may appear when two non-unit clauses are resolved.

51

initial resulting
subgraph subgraph

~}n
·{ CT},

complexity complexity
[2,m+2,n+l] [1,m,n]

Figure 4.

In order to mechanize the search procedure,
there should be a non-pictorial representation of
the initial subgraph. In Figure 4, a literal
with only one link, in a unit clause, is joined
to another literal with only one link in a non
unit clause. This description can be abbreviated
to the quadruple [one, unit, one, non-unit] or
luln. Of course, lnlu also describes the same
configuration. In a connection graph, whenever a
link can be described as luln or lnlu , then
the link is labelled with the reduction estimate
of + 4.

As with all search procedures, the highest
priority should be given to a link between two
unit clauses. Activating such a link produces
the null clause, and the search is completed.
Such a situation has link descriptions lulu ,
lusu, sulu and susu, where the s stands
for several links. Since all clauses, literals
and links are irrelevant when the null clause is
produced, the graph reduction is arbitrarily
assigned the number + 99.

In less trivial configurations, one can
make a reduction estimate only by counting the
number of other literals in the non-unit clause,
and the number of links to them. As illustrated
in Figure 5, the resulting subgraph contains not
only the resolvent, but the non -unit parent.
Here the purity principle only applies to the
unit parent. Although the unit literal and its
link have been deleted, m literals and n links
are duplicated, so the reduction estimate is
2-(m+n) .

initial resulting
subgraph subgraph

ir' }n ~~>{~"
complexity complexity

[2,m+2,n+k+l] [2,2m+1,2n+k]

Figure 5.

·.- 1
I

·· 1

i
I

In this case there is a 1-link unit connected to
a several-link literal in a non-unit, so the link,
description is lusn or snlu . Any link with
one of these descriptions has a reduction estimate
of 2- (m+n) .

For this initial subgraph, a special
reduction estimate could be used when the unify
ing substitution is empty. Then the resolvent
would subsume the non-unit parent. However, to
simplify the rules, such special cases are not
listed.

Factor links are assigned a precedence in
much the same way as resolvent links, except that
a link description does not seem appropriate.
iheir activation is delayed beyond that of most
resolution systems.

Finally, loops are arbitrarily assigned a
reduction estimate of - 99 , although the in
crease in complexity could be calculated for each
case. This ~ffective ban on the activation of
loop links is not as restrictive as it may seem.
Actually, the activation of these links is only
delayed until some other .clause resolves with the
self-resolving clause. Then the link which
descends from the loop is a normal resolution
link between the resolvent and the self-resolving
clause. This strategy prevents a general axiom
from resolving with itself until it is needed to
prove a theorem.

The surrmary of all rules for calculating
reduction estimates are displayed in Figure 6.
It should be noted that links described by rule
should always be activated irrmediately to
terminate the search. Links described by rule 2
always reduce the graph. Those described by rule
3 never reduce the graph, and usually expand it.
Links described by rule 4 are never activated.

Theorem proving by graph reduction labels
each link of a connection graph with its reduction
estimate. Then the link with the highest
reduction estimate is activated. If two or more
links have the same highest reduction estimate,
then some sort of tie-breaking rule is needed.
Although it is somewhat foreign to the graph
reduction methodology, the most reliable tie
breaking rule seems to be a preference for a link
one of whose literals' clauses has the conclusion
of the theorem as an ancestor. This is essenti
ally the set of support strategy. Next in
preference is a link to a condition of the theo
rem. If a tie remains after using these tie
breaking rules, then some arbitrary choice must
be made.

52

rule Tlnk reduction

lulu

1 lusu +99

sulu

susu

luln .

2a lnlu +4

lnln

suln
2b +2

lnsu

lusn

snlu
3a 2- (m+n)

lnsn

snln

susn
3b - (m+n)

snsu

3c factor -(m+n+k+l)

3d snsn -(ml+nl+m2+n2)

4 loop -99

Figure 6.

4. EXAMPLES

There are several advantages to the use of
connection graphs. They allow an easy combin
ation of top-down and bottom-up search, or even a
middl e-outward search. They do not allow the
repetition of deductions, and they always allow
the un ification of complementary units. These
advantages are ably pointed out by Kowalski [2].

Any subgraph is easy to reduce if its links
have positive reduction estimates. The difficult
portion of the graph is characterised by links
with numerically large negative reduction
estimates. A partly easy, partly difficult
problem is the geometry theorem

AB 11 CD & AB=CD + ACsBD

~~II £Q

11 +4

UV t WX, < uvw = < vwx

11 +
4

t:,uvw ' r.xyz, UV ; yz, <uvw;<xyz, vw; xy

+4

6uvw 1 t:,xyz,

11°
AC ; BO

Figure 7.

This can be proved using the following axioms:

uv=yz & <uvw=<xyz & vw=xy + auvw=.axyz.

uv II wx +<uvw=<vwx·

6UVW:6XYZ + uw=xz.

xy=xy.

Figure 7 above illustrates the initial connection
graph for this problem. The negation of the
theorem produces three clauses. The conditions
of the theorem, and later their descendents, are
underlined with dashes in the connection graph.
The conclusion of the theorem and its descendents
have solid underlines. Conmas are used to sepa
rate the literals of a clause. All predicates are
represented as infix relational symbols, with a
stroke through the symbol signifying negation.
The links are labelled with their reduction
estimates . The double links are those which should
be activated to fonn a proof.

The top portion of the graph of Figure 7 can
be reduced easily. The graph resulting from the
activation of the top two +4 links is the top
qraph of Figure 8. In all of the graphs of this
figure it should be noted that the links needed
for the proof have consistently higher reduction
estimates. This is an easy search since each
activation produces a positive reduction. Thus
the problem becomes easier as the search continues.
The search is 100% efficient in that only the
proof links are activated.

53

aABC ~ ~~£Q ,

+4

auvw t 1:,xyz

~£ ': ~Q

~
AC; BO

AB~ CD
-ir;
AB = CD

~~ t £Q '

-7

uw = xz

11 °
AC; BO

~~ t £Q

11+4
AB = CD

BC ; BC

11 +99
xy = xy

· Figure 8.

~~ ~ £Q xy = xy

~£ t ~£

~
xy • xy

BC ii BC
-,;
xy = xy

5. CONCLUSIONS

Although it is difficult to form an objective
judgement of the usefulness of a deductive system,
a comparison of its perfonnance relative to other
systems can indicate that it is sometimes useful.
Wilson and Minker [5] have solved 152 problems
using six resolution inference systems. Of the
first thirty, the ten simplest have been solved by
connection graph reduction. The testing of the
remaining problems will have to wait for the
completion of the computer implementation of the
procedure. The current results appear in the
following table.

The inference system abbreviations stand for REFERENCES
unrestricted resolution, linear resolution, set
of support, Pl , SL, linear plus set of support, 1. Robinson, J.A., A machine -oriented logic

'-- and connection graphs. The first six use diago- based on the resolution principle.
nal search, while the la~t uses graph reduction. J. ACM 12, (Jan. 1965), 23-41.
The problem names and the statistics for the

2. first six columns are those of Wilson and Minker. Kowalski, R.A., Proof procedure using
For each problem, the top line of statistics is connection graphs, J. ACM 22, 4
the proof size, the second line is the search (Oct. 1975), 572-595.
size and the third line is their ratio, the
efficiency of the search. A question mark for 3. Kowalski, R., and Kuehner, D., Linear
proof size indicates that no proof was found. In resolution with selection function,
calculating the proof and search sizes, all Artificial Intelligence 2, (1971)

·resolvents and input clauses were counted. The 227-260.

I
line labelled "average" is the average of the

4. efficiencies for each inference system. The Kuehner, D., Some special purpose resolution
average of 90% for connection graph reduction systems, In Machine Intelliaence 7,
seems significantly better than the next best B. Meltzer and D. Michie, Es.,
average of 65%. Edinburgh U. Press, Edinburgh, Scotland,

1972, pp. 127-128.
INFERENCE SYSTEM

UNR LIN sos Pl SL L+S CG 5. Wilson, G.A ., and Minker, J ., Resolution,
Problem refinements and search strategies - a
Name comparative study, IEEE Transactions on

Computers C25, 8, (Aug. 1976).
ANCES 18 ? 19 19 18 18 13

47 2668 45 251 84 337 13
.38 .00 .42 .07 .21 .05 1.00

8 8 8 8 8 8 8
9 9 9 9 12 9 8
.89 .89 .89 .89 .67 .89 1. 00

EWl 14 13 13 13 13 13 11
15 41 13 15 22 23 11

I .93 .32 1.00 .81 .59 .57 1.00
.I

. . . . I EW2 12 11 12 11 11 12 11
12 118 14 11 22 23 11
1.00 .09 .86 1.00 .50 .52 1.00

EW3 21 ? 21 19 18 ? 13
360 852 360 40 58 800 16

I .06 .00 .06 .48 .31 .oo .81

I MQW 8 9 8 10 11 9 8
I 16 68 11 24 65 55 12

.50 .13 .73 .42 .17 .16 .67

I NUMl 12 12 12 12 12 12 11

I
19 34 17 16 32 30 17
.63 .35 .71 .75 .38 .40 .65

QW 9 ? 9 9 ? ? 10
19 1298 19 30 1348 1720 11
47 .00 .47 .30 .00 .00 .91

. ·! ROB1 9 9 11 9 11 11 9
10 13 41 10 11 41 9
.90 .69 .27 .90 1.00 .27 1.00

LS5 9 9 10 10 9 9 7
13 25 11 12 13 17 7
.69 .36 .91 .83 .69 .53 1.00

AVERAGE .65 .28 .63 .65 .45 .34 .90

54

TOWARDS AN ITERATIVE APPROAOI TO PROGRAM SYNIHESIS

Michael A. Bauer

Department of Computer Science
University of Western Ontario

London, Ontario N6A SB9

Abstract

An approach to program synthesis based upon
modifying an existing procedure is described. The
particular synthesis problem studied involves syn
thesizing a procedure from example computations.
The paper focuses on the kinds of errors introduced
during synthesis, the way errors can be detected
by comparing a procedure to examples and describes
several rules for modifying a procedure in order
to correct certain kinds of errors.

1. Introduction

Program synthesis, in a general sense, invol
ves the formation of a program from descriptions
of an algorithm or its properties. A conmon para
digm within this approach entails a user present
ing one or more descriptions to a synthesizer
which, in turn, constructs a procedure . Then,
should the user present additional descriptions,
the new descriptions as well as previous ones,
are used to form a new procedure. The initial
procedure (or most recent) is discarded.

1n this paper an approach to program synthe
sis is described which attempts to take advantage
of the most recent procedure - essentially at
tempting to alter it when new descriptions are
presented. This same paradigm was utilized by
Sussman [4] in developing a program which improved
its performance by expanding procedures already
existing to solve more complex problems. Such an
approach may be more difficult, but may suggest
approaches to more powerful synthesis systems or
may provide insight into more fundamental problems
of how systems can cope with errors, how errors
can be analyzed and utilized.

The particular synthesis problem investigated
here involved the formation of a procedure from
examples of its computation (see (1,2]). Examples
of computations are basically traces of executions
on specific values. In the approach adopted here,
the user presents a number of examples to an
initial synthesizer ·which, in turn, produces an
initial program and, possibly, some additional
information. This information may simply be the
original examples or may be a summary of assump
tions made during the synthesi~ process. Deter
mining what kind of information to keep will
depend on how successful (or unsuccessful) the
synthesis process i s when given a program and
additional examples. In the work described in
this paper, no additional information was kept.

The user may then, or at some later point,
present additional examples of the same procedure.

55

Now, the synthesizer, given new examples, attempts
to construct a new program. The first step of
this process is to compare the existing version
of the program with the examples . The purpose
of the comparison process is to detect inadequa
cies within the program, i.e., discrepancies bet
ween the program and the examples. These discrep
ancies constitute "errors" in the program. Should
no "errors" be discovered, then the examples, in
essence, provide no new information and .the
program is left unaltered.

However, assuming that some discrepancies do
exist, the next step involves determining the in
correct portions of the program. These portions
must be removed and, using the examples, correc
tions made and a new program produced. The
removal and insertion of code must be done (1) so
that the resulting procedure can be compared and
modified, if necessary, with subsequent examples
and (2) in such a way that the code corresponding
to previously presented examples remains correct.
Once again, it is conceivable that certain "com
ments" about the modification could be produced.
In the work reported here, this was not investi
gated.

2. An overview or the initial synthesis process

Programs are represented as rooted, labelled
digraphs in which the successors of each node are
ordered (in figures, counter-clockwise). Examples,
basically sequences of instructions executed, are
represented as trees. A program has an associated
list of formal parameters and an example has an
associated list of inputs (actual parameters). An
example may include specific uses of the inputs,
say as replacements for variables or included in
temporary assignments to variables. Variables
from example to example need not be the same.
Figure 1 contains an example of a procedure and
Figure 2 presents two examples which could be used
to describe that procedure. A more complete
description of procedures and examples can be
found in Bauer (1,2].

SUM(N)

S + 0
~

I + 0

/~~
EQF,N)~ I: I+l /

RETIJRN(S) "--s + ~
Fig. 1: A procedure to sum the first N integers.

SUM(Z)

S + 0
..

I + 0 ,, " EQ(l,Z) I+I+l ..
S+ S+I

/ " EQ(I,Z) Id+l ..
S +S+l

..
EQ(l,2) ..

RE11JRN(S)

N ... 1 ..
X ... 0 ..
J + 0

/
EQ(J,N) " . J + J+l ..

X + X+J
..

EQ(J,N) ..
RE11JRN (X)

Figure 2 . Thu examples.

Given a nwnber of examples, as trees, the
initial synthesis process must (1) detennine a
graph whose nodes are labelled by instructions and
(2) determine a parameter list. The formation of
a graph is accomplished by a grouping process
which attempts to group nodes from the examples.
Each group represents a node of the synthesized
procedure and is valid if it satisfies a nwnber of
constraints. First, each instruction within a
group nu.1st be an instance of a single general
instruction (similar to the least generalization
of a Predicate Calculus foTIIUlla, see Plotkin [3]).
Second, connectivity between groups is detennined
by the connectivity between individual nodes of
the examples. If nodes v1 and v2 are placed

in the same group, then each pair of their corres
ponding successors (i.e., the first successor of
each, the second of each, etc.) must also be in a
single group. In addition, there are two remaining
types of con~traints - one on possible variable
renamings and the other on replacement and use of
actual parameters.

The result of the grouping process is a
procedure body, i.e. , a rooted digraph in which
each node is labelled by an inst1uction. Given
the procedure body and the information computed
durin:~ the grouping process, the next step is to
fonn a parameter list. This precess also re Hes
on a number of constraints based upon (1) the
actual arguments within the examples, (2) any
renaming of variables and (3) any deleted instruc
tions (essentially added assignment statements
which assign an input to a variable). Should this
phase of the synthesis process fail, the grouping
process is resumed and the search for a new proce
dure body continued. If a parameter list is
forn~d, then the construction is completed and the
resulting procedure is guaranteed to be correct
with respect to the given examples (Bauer [2]).

56

An overview of the initial synthesis algo
rithm follows:

1. Input the examples .

2. Find a procedure body •

(a) Form an acceptable grouping of nodes not
yet tried. The grouping must satisfy
connectivity and instructional con
straints. If no acceptable grouping can
be fotmd - halt with Failure •

(b) Construct a procedure body P •

(c) If P is consistent with the information
in the examples, then continue with
step 3; otherwise reject P and go to
step 2a.

3. Find an acceptable parameter list,
(X1, ... ,~) - one consistent with the vari -
ables of the examples. If none can be con
structed, then reject P and go to step 2.

4. Find parameters to replace any constants in
P , if possible.

S. Halt with procedure P(X1, ... ,~).

3. Errors: Sources and Detection

Given examples of a synthesized procedure,
the first task must be to compare the examples
and the existing version of the program. This
comparison should identify portions of the proce
dure which conflict with one or more of the
examples. Once this is done, the task of
correction can proceed.

In the existing environment, "errors"
introduced into a program originated with its
synthesis or modification. Moreover, "errors"
could only be introduced (barring implementation
problems, bad data, etc.) at points in the
synthesis process where one of a nlllllber of
alternatives was selected, i.e., choice points.
Whenever a choice is made, a nlllllber of reasonable
alternatives may have been available. If the
ntunber of alternatives could always be constrained
to one, then, of course, one no longer has a
choice, but an algorithm for computing the
appropriate result. In synthesis, one typically
has partial information and may, therefore, have
a ntunber of coo ices. This provides a general
rule: ''F.ach class of choices gives rise to a
class of potential errors".

In the synthesis algorithm described at the
end of the previous section, one can identify
three classes of choices:

1 . Group membership - Al though there are con -
straints dealing with the connectivity of
no<lcs and similarity of instructions, it may
be possible that a node could be put into two
or more groups.

Consider the following portions from two
examples:

X + X-1
.j.

1. EQ(X,O) a.

Y + Y-1
/ ',

EQ(Y,O) Z + Z+Y
.j.

Y + F(Y)
.j.

Y + Y-1
.j.

b. EQ(Y,O)

Assume that nodes 1 and a can be grouped
together (this implies that X and Y are
renamings of the same variable). Node b
might or might not be grouped with a - both
are plausible .

2. Selecting Parameters - Given a number of
variables within a procedure body and even
th:lugh there are constraints on the variables
in the constructed procedure, it may be
possible to put some variable in one or more
parameter positions .

Suppose that a procedure was to have two
formal parameters and that the argument lists
of the two examples being used to synthesize
it were (3,3) and (4,4). After synthesizing
a procedure body, assume that X and Y were
potential parameters. Based upon the inform
ation available, the parameter list (X,Y)
is as likely as (Y,X) .

3. Replacing Constants - A constant appearing
within an instruction of the procedure might
be replaced by two or more parameters.
Obviously if it is replaced, one must ch:lose
amJng the potential candidates. Suppose a
node in the above synthesized procedure body
was Z +Z+3. In this case, the 3 could
actually be a constant, or it could be X or
Y . Without more information , choosing one
of X or Y could very likely be a wrong
choice. Note that if one left 3 as a con
stant, then in some situations that too would
be an error.

Having identified these classes of choices,
one can examine the consequences of, the choices
on the resulting procedure . T1 .1s will provide a
general classification of the possible errors
within a synthesized procedure.

Suppose that an error in group membership has
occurred . This means that (1) the connectivity of
nodes within the procedure is incorrect and/or (2)
two variables identified as the renaming of

57

another are actually renamings of distinct vari
ahles. The first of these is a structural error
and the second is a renaming er ror. If a variable
·involved in the renaming error 1s a parameter
which has not been assigned to, then one has a
parameter error.

In the case of an inappropriate choice of
parameters, one may have, as above, both
parameter errors and renaming errors.

Finally, in the case where one has replaced
a constant by an incorrect variable or if the
constant should not have been replaced, then one
has another parameter error.

Two important problems with which one must
deal are (1) a single choice may yield a number
of possible errors and (2) one class of errors
is not necessarily associated with a single class
of choices.

The comparison process begins by finding a
common starting node in the procedure and each
of the examples. This is not necessarily the
first node in the procedure or in the examples.
Rather, it is based upon the first node in each
having a predicate or function (see (2) for a
more complete definition). Once this set of start
nodes has been formed, nodes of the procedure are
grouped with nodes from the examples. Since the
successors of a' node are ordered, the comparison
process simply follows the ordering. Each set of
grouped nodes is·called a match.

Suppose that in the following procedure and
examples that the set of start nodes was {2,c,b'}.

1 a a'
.j. .j. .j.

2 b b'

c,-,, "..:~
.j. I \
C c' d'
.j. .j.

5 \6 7 d e'
' 1, .j. .j.

\i 9 e f'
.j. .j.

10 f g'
.j.

11 I '\ .j.

g h h'
.j.

i
.j.

j

Then the next matches would be {3,d,c'l and
{ 4, d'} . Beyond this, the nodes of each example
would be matched with nodes of the procedure
independently, since each represents a different
conqmtation path.

The resulting matches would be:

- 1

I
I

I
I

· 1

{2,c,b'}, {3,d,c'},{ 4,d'}, {S,e}, {7,e'}, {3,f},
{8,f'}, {5,g},{ 10,g'},{6,h}, {11,h'}, {10,i},
{11,j}.

The detection of errors is based upon an
examination of nodes in a match. Nodes within a
match must satisfy local and global constraints.
The violation of a constraint signifies an error.

3.1 Structural Errors

Consider the following portions of a
procedure and an example:

1. X + HY) a. A+ f(B)

h \ / \
2. GT(i,Z~4. Y+tX) b. GT(A,X) c. B+rA)

. L RETURN(Y) S. X+h(X) d. A+h(A)

~ l
e. GT(A,X)

l
f. B+ g(B)

!
g. RETURN(B)

Assume that {1,a} is a match. Any match
must satisfy two local constraints - they nu.1st be
struct~rally similar and corresponding variables
." d constants must be consistent. This is deter
mined by a computation similar to that of comput
ing the least generalization of a predicate
calculus formula (see (1,2] for a precise descrip
tion). Intuitively, this means that the instruct
ions must involve the same functions, predicates
and constants and that the variables involved
must be used in similar ways. Given {l,a} the
instructions are identical except for variable
renarnings and there is a unique renaming: X +-+A,
Y ++ B . Once established, the pairing of a
variable in an example to one in a procedure must
be preserved throughout the matching_process.
This forms one of the global constraints (see
Section 3.2).

The next matches are {2,b} and { 4,c}. In
{2,b} the pairing X+-+A is still intact and
thepairing Z++X isformed. From {4,c}, the
previous pairings are preserved.

The next match is {S,d}. Note that the set
{3}, which follows from {2,b} is ignored, since
it only contains nodes of the procedUTe. After
{S d} t he next match is {2,e}. Hence node 2 of
th~ p;ocedure occurs in an additional match. This
will happen if the procedure contains loops.

The set {3,f} forms the next match. The
instructions are no longer similar. The match
{3,f} has revealed a structural error.

58

This situation might arise.when a node within
an example (in this case one of the form
GT (V, W)) should not have been grouped with a
similar node, but it was because of lack of
examples, in this case a subsequent computation
involving the function g .

Other structural errors can be detected in
matching nodes even if the instructions are
similar. Consider {X + f(Y,Z), A+ f(B,H)}
In forming the pairings, one has X++A, Y++B
and Z ++ B . Since Y and Z are interpreted
as distinct variables, Y and Z cannot both be
paired to B - hence no match is possible.

Similarly, consider {X +f (3), Y + f(6)}.
Here the 3 is a constant in the procedure and 6
is a constant in the example (i.e., does not
appear in the argument list). Once again, no
match is possible and an error is detected .

3.2 Renaming and Parameter Errors

Assuming nodes in a match are locally consis
tent, i.e., do not reveal a structural error, the
variable pairings are examined with respect to
previous variable pairings.

Given a variable within the procedure, it
.may be paired with at most one variable in any
example and with at most one input value in any
example. For example, consider the following:
1 X~Y a. A +Z

. / ~ / \
2. pfX)~(X) b. p(A) /A: f(A)

4. RE11JRN(X,Y) S. Y+g(Y) d. p(A) e. Z+g(Z)
t

g. p(A)
t

h. RETURN(A,Z)

Assume that {l,a} is a match. The variable
pairings are X +-+ A and Y Z . Matches and
pairings are formed as follows:

{2,b}
{3,c}
{ 2,d}
{S,e}
{l,f}

X+-+A
X+-+A
X+-+A
Y+-+Z
X+-+A, A++B

Since Y had been previously paired with Z ,
the matched set {l,f} reveals an error - a
renaming error.

As an example of a parameter error, consider
the following portions of a procedure and example:

P(X, Y ,Z) P(cl ,c2,c3)

1. A + f(Y) a. X + f(c2)

I~ I \
2. p(A) 3. A+h(A,Y,Z) b. p(X) c. X+h(X,c3,c2)

Assume that {1,a} is a match . Then {3,c} is
a match with pairings A++ X, Y ++ c3 and
Z ++ c2. Assuming that Y has not been assigned
to on the path from the root of P to node 3 ,
if c2 # c3, then Y, which is the second
parameter of the procedure, has been paired with
an input other than the second - a parameter
error.

As in the case of structural errors, it is
easy to construct examples in which the. synthe
sized procedure actually contains such errors.

4. Eliminating Errors

When an error has been discovered, the
comparison process is interrupted and an attempt
is made to correct the error. Once corrected,
the comparison process is restarted with the
modified procedure and the examples. TI1is per
mits multiple errors to be detected and corrected.
As noted, the detection of an error in a partiCll
lar match does not determine uniquely the ch:>ice
in the construction which produced that error.
Hence the elimination of an error requires (1)
isolating of one or more instructions so that
changes can be made without affecting correct
computations (if possible), and (2) deleting
erroneous instructions and inserting correct ones.

In the approach adopted here, the isolation
of nodes once an error is discovered is relatively
independent of the particular error. The correc
tion, of course, will depend upon the kind of
error.

4.1 Isolating Instructions

Consider the following portions of a proce
dure and example:

a a'

t\ b(\c'

:,/ f

e'
f

e
f f'
f

Assume that the matches are {a,a'}, {b,b'},
{c,c'}, {e,e 'l, {f,f'} and that the set {f,f'}
has revealed an error. Obviously, one would not
wish to simply remove f (and its successors)

59

from the procedure since they may belong to cor
rect computations from node b. To avoid making
changes which introduce errors, one 11Ust isolate
the co~tation path in the procedure which was
matched to nodes of the example.

This isolation is accomplished by three graph
transformations which can be applied to subgraphs
of an existing graph.

1 . Transformation SPLIT(G,pi ,n1 ,n2) - G':

G: r G': r ...
.

P1 pi Pn pi pi Pn

\-1-/ '"<?/~., nl

~ =--- ~ ~
Gl G1 G1
i i2~ nz

where:

1. r is the root of G, p1, ... ,pn are prede
cessors of ~

2. there are at least two distinct paths from r
to n1 in which n1 occurs once in each and
pi is a predecessor of n1 in one of these
paths.

3. G1 is the smallest subgraph of G such that

if n is reachable from n1, n2 is reach
able from n, (n,m) is an edge of the path
from n to n2 and m ; n2 , then m and
the edge (n,m) are in G1 .

4. n' 1 is a copy of n1
5. G' l is a copy of Gl, where if m c G1 then

m' c G1, m' a copy of m and for any

m c G1 , n i G1 such that (m,n) is an edge
of G then (m,n) is an edge of G'.

Intuitively, SPLIT duplicates a portion of a
procedure between two instructions, n1 and n7
through one particular predecessor of n1 . In
use, n2 will be the node of the procedure which

has occurred in an error, n1 and pi would be
nodes of the procedure which have been matched
prior to the error.

. • 1

I

. ..: I

I

2. Transfonnation UNWIND(G,n1) =- G':
r r

-

where

1. r is the root of G, p1, •.• ,pn are the
predecessors of n1 which can only be
reached on paths from r which include an
occurrence of n1 prior to its predecessor

2. G1 is the subgraph of nodes and edges reach
able from n1 , excluding p1 , ... ,Pn

3. Gi is a copy of G1 , ni is a copy of n1 .

UNWIND provides a way to isolate portions
of a graph by unwinding loops. One can show
that both transformations preserve computational
equivalence of G and G' . The combined
effect of using SPLIT and UNWIND on nodes along
a particular path is that an erroneous node can
be isolated and changed in the transformed proce
dure without affecting other computations.

3. Transfonnation COPY(G,n1) ~ G':

G: r G': r

nl - n'
1

~~ .u.
Gl G'

1

where
1 . r is the root of G

2. G1 is the subgrap}:l of nodes reachable from

nl

3. Gi is a copy of all nodes and edges of G1 .

This final transfonnation is used to create
a copy of the subgraph reachable from a particu
lar node. Once again, this can be used to dupli
cate portions of a graph fa order to isolate
changes.

Given a node which is involved in an error,
there is a path from the root to that node
corresponding to the path in an example. One
can, by using these transfonnations, form a new
procedure, equivalent to the original in which

60

there is a unique path from the root to the pred
ecessor of the erroneous node. In this case say
that the erroneous node has been isolated.

4.2 On Error Corrections

The previous transfonnations can be used to
isolate a portion of the procedure which can then
be modified. Corrections take the form of code
deletion or changes within instructions. Inser
tion of new code is accomplished by an algorithm
similar to the synthesis process. Hence, a
modified procedure can itself be altered since
identical classes of errors arise.

A formulation of all error corrections has
not yet been completed. However, the following
examples will illustrate the notions involved in
the correction process.

4.2.1 Structural Errors

Assume that a match has revealed a structur
al error in a procedure P. Let n be the node
of P in that set and let n be the predeces
sor of n along the matched path. Assume that
n is the k-th successor of n1 . This provides
the basis for the following:

The Correction Rule for Structural Errors:

1. Transform P into P' such that n is
isolated in P'

2. If ~ has m successors, delete edges from
n1 to successors k through m and any
nodes and edges no longer reachable from the
root of P' .

Note that only code is deleted. New code is
inserted by an algorithm similar to the initial
synthesis algoritnn described earlier.

As an example, consider the following
procedure and example:

G: 1. Z + h (Y) a . Y + a

l 1
2, X+a

/~
3. pf,~if(X,Y)

5. q(Y)~ Z+/(Z)

7. RE'IURN(Z)

g.

b. Z + h(Y)

1 x\ c .

I
d. p(X,Y)

e. Z+f(X,Y)
!

f. p(X,Y)

------ ! q(Y) h. Z+g(Y)

!
i. RETURN(Z)

where the following matches have occurred:
{l,b}, {2,c}, {3,d}, {4,e}, {3,f}, {5,g}, {6,h}.
Since the set {6,h} reveals a structural error
(they involve different ftmctions), the above
correction rule is invoked.

The first step is to isolate node 6 based on
the path 1 -+ 2 -+ 4 -+ 3-+ 6 . To do this, the
procedure is transformed using SPLIT(G,4,3,6)
resulting in:

5.

1. Z + h(Y)
1 a---. 2. X +

I
3. ;(X,Y) ~1-!JX,Y)

q(Y)~Z + h(Z) 3'. p(X,Y)

'\. 1- \:::-----' '
7. REWRN (Z) ----..___,;

Now the set {3,d} has become (3',d} and
there is a unique path from the root to node 3'.
Then the edge from 3' to 6 is deleted. In the
final phase, nodes h and i of the example
~ould be incorporated into the procedure produc
l.Jlg the correct change.

4.2.2 Renaming Errors

When a renaming error is discovered, the
following information is available: (1) the
node of the procedure, say, n, in which the
error occurred , (2) the incorrect pairing, say
X-<: B , (3) the pairing which had previously
existed, say X +-+ A and (d) perhaps a pairing
Y +-+ B . The correction rule is:

Correction rule for Renaming Errors:

1. Form P' = COPY(P,n) •

2. In the copies subgraph, replace all occurren
ces of X by W, where W is Y if a
pairing Y +-+ B existed, otherwise W is a
new variable not occurring in P.

The copy operation arises from the fact that
if a renaming error occurred then the nodes used
in the group corresponding to that node when the
procedure was constructed would have had to have
nearly identical computation paths from them.
In fact, t~ey would be identical except for vari
able renaml.Jlgs - hence the necessity of copying.

4.2.3 Parameter Errors

. A parameter error, though similar to a re
nammg error, involves a different kind of
correction. The information available is (1)
the node n of the procedure in which the error
lo/as detected and (2) the incorrect pairing
~- t , where t is either a variable A or an
mput argument c • The correction rule is:

61

Correction rule for Parameter Errors:

1. If a unique parameter Y of P can be paired
with the input c or A, then replace X
innbyY.

Unlike the previous correction rules, this one is
conditional. This is the case since an arbitrary
replacement may replace one erroneous parameter
by another. Hence, it is possible that, although
the error is detected, it cannot be corrected
without additional input. It seems that in this
particular instance the pairings of parameters to
inputs from previously used examples "°uld be
useful . Nevertheless, the uniqueness of Y can
often be determined by using the information
within the previous pairings and from the usage
of inputs within all the examples. In practice,
these errors seem to occur infrequently.

5. &.uranary and Conclusion

Based upon experience with the rules and the
synthesis process, structural and renaming errors
appear to be the most corrunon. Moreover, the
described correction rules seem to cover most of
the "common" cases. This is certainly the case
for structural errors. In the case of both re
naming and parameter errors, the rules are in
complete.

Parameter errors are interesting in that the
correction rules seem to be of a conditional form
(if one wishes to avoid replacing one error by
another). In the case of structural and renaming
errors, if the error is detected then enough
information exists to make the correction. It
appears that to guarantee this for parameter
errors, some additional information must be kept,
e.g., previous inputs. Beyond this, there seems
to be little need to keep all previous examples.

Multiple errors are handled by correcting
one error at a time, when discovered, and re
starting the comparison process. This can lead
to a proliferation of duplicate instructions. A
more realistic, but apparently more difficult
approach, 'I\Quld involve collecting information
about a number of errors and making a minimal
number of changes.

As alluded to, the final phase of the syn
thesis process involves a process similar to the
initial synthesis algorithm. By constraining this
algorithm, a modified procedure can be altered by
examples and yet be guaranteed to 'I\Qrk on the
input of previous examples - this forms the basis
for the iterative paradigm. Without these con
straints, one may face new classes of errors
arising from the introduction of errors into
already incorrect code.

References

1. Bauer, M., "Prograrraning by Examples",
Artificial Intelligence, Vol. 12, No. 1,
1979.

I

2. Bauer, M., "A Basis for the Acquisition of
Procedures", Ph.D. Thesis, University of
Toronto, Dept. of Computer Science, 1978.

3. Plotkin, G., "A Note ori Inductive Generali
zation", Machine Intelligence S, editor
D. Michie, University of F.clinburgh Press,
1969.

4. Sussman, G., ''A Computational t.k>del of Skill
Acquisition", AI TR-297, MIT Artificial
Intelligence Lab., 1973.

62

HANDLING EXCEPTIONAL CONDITIONS IN PSN

Yves Lesperance

Department of Computer Science
University of Toronto

Toronto, Canada
M5S 1A7

ABSTRACT

This paper describes a scheme for handling
both exceptional objects and classes and
exceptional conditions that arise in the execution
of programs, within a knowledge representation
formalism . The scheme consists of two mechanisms:
the excuse, which allows the justification of
specified constraint violations in instances of a
class through membership in a second class within
designated contexts, and the mapping, which
permits the specification of similarity
relationships between the definitions of two
objects, so that arbitrary elements of these
definitions may be copied or inherited (a flexible
1S- A) . Exceptions in programs are handled through
an extension of the excuse mechanism.

1.0 INTRODUCTION

In order to perform intelligently , a system
must possess a model of its world and be able to
use it to deal with the often unexpected
situations that arise. The knowledge in this
model (knowledge base) is organised in terms of a
system of categories. The cathegories may be
explicit, as in frame systems [Minsky 74), or more
implicit as in logical formalisms. Exceptions in
r epresentation systems arise as a result of (1)
the somet i mes unpredictable nature of the world,
which produces atypical situations, and (2) the
inadequacies of current representation formalisms
in dealing with "natural" concepts (as used by
peopl e). These exceptions manifest themselves
through the violation of some constraint during
the lifetime of the knowledge base.

A simple classification of excepi ~onal
conditions will help in finding ways to deal with
them. Generic exceptions can first be
distinguished fron individual exceptions, as the
former pertains to constraints violated in the
definition of a category rather· than in particular
i ndividual objects. Individual exceptions can be
further subdivided into~ exceptions, which
arise while the systems is attempting to
i nstantiate or recognize an object (basic
operations at the top-level), and dynamic
exceptions, which are encountered dur ing the
, xecution of a user defined program .

63

This paper sumarizes an exception handling
system develloped for the PSN representation
formalism [Levesque 79), which is explained in
details in [Lesperance 80). The seminal ideas for
the system came from [Minsky 74), where two ways
of recovering from failure in a frame system are
suggested. First, it may try to create an excuse
for the exceptional condition with an appropriate
reason. In this approach, the failure is seen as
arising from the fact that the defective object is
really an instance of two frames which interact,
thus the object does not satisfy perfectly the
ideal defined in one of the frames. The knowledge
necessary to make the repair should be attached to
a higher thematic context frame. The second
approach involves using the local advice embedded
in a similarity network to replace the defective
frame by a more appropriate one.

The two approaches reflect the distinction
between individual and generic exceptions. In the
first case, we do not wish to create new
categories for every single exception, thus an
~ mechanism has been devised to allow the
handling of both static and dynamic exceptions and
the maintenance of the consistency of the
knowledge base. The excuse mechanism has been
influenced extensively by exception handling
mechanisms develloped for programming languages,
[Levin 77) in particular. These mechanisms allow
the mainline of the program to be expressed
without cluttering it with the code required to
handle exceptional conditions. Moreover, the
handling code for the condition is attached to the
caller or user of the program module which raised
the exception, allowing for a context dependent
recovery from the exception. This facility
permits the use of a procedure even if the
conditions for which it was designed are not
satisfied, as long as the exceptions that will be
raised can be handled by its caller or user. For
generic exceptions, the problem lies in the
insertion of the category into the existing
hierarchies, especialy when the inheritance of
only part of the definition of the category is
desired. This has been done through a i•ppiog
mechanism inspired from [Moore 73), which makes
explicit the inheritance process or definition
elements and gives control to the user over it
when this is needed.

The developpement of this system is seen as a
step in the direction of improved flexibility for

EXCEPTION-LINK
A

EXCl>PTION-CLAS:S

XCUSE-CLASS-1

just-slot
justification. r-~~~~~~-\-~=:::~~~~~~-+-~~~~~~

exc-slot

~
exception-link-1

main-nhmnte, t=) :~::vtype-res~ ~-class ~NO-Rt:;AL-Lt;G

rDISABLED-PERSONl

'-----·- ··
1 1 [it? ARTIFICIAL- LIMB]
eg ·-

~
HUMAN-LEG

ARTIFICIAL-LIMB

exce UQ!l

Fi~ure 1 - Example of excuse for static exception.

representation formalisms, both for practical
purposes and modelling adequacy. The system can
be readily adapted to most other semantic network
or frame based formalisms. The approach taken
emphasizes the knowledge base definition aspect,
but generality has been preserved . Before the
system can be explained, an overview of its host
formalism must be given.

2.0 OVERVIEW Qf. PSN

The PSN formalism grew out of a desire .to
develop a facility for defining semantic network
knowledge bases with well defined semantics. The
formalism is basicaly procedural, as the semantics
of classes, which represent generic objects, are
defined in terms of four attached programs, which
prescribe the behavior of the class under the
operations of instantiation, removal of an
instance, testing for membership and fetching of
all instances. Classes are represented graphicaly
by their external name in capitals, for example
"HUMAN" or "EXCEPTION-CLASS" in figure 1.
Whenever an individvql ~ is made an instance

64

of a class, the appropriate attached program is
executed, this allowing the desired inferences
(antecedent theorems) to be added to the knowledge
base. Similar action is taken in the case of the
three other operations. Simple token objects are
represented in the graphic notation by their
external name in lower case, for example
"Capt'n-Kidd" in figure 1. The INSTANCE assertion
is represented by an unlabled single line arrow.
Incidental relationships between objects (the
links in traditional semantic networks) are
represented by a class of objects called
relations, whose semantics are also defined by
four programs. The instances of relations are
assertions of the relationship between two
specific objects.

This basic procedural PSN is augmented with
declarative facilities which help in the
organization of the knowledge base. The defining
properties of a class are grouped together to form
the structure of the class , which consists of a
set of~ which can have a type, restrictions,
default, etc . . The structure of a class is
represented by a box under the name of the class,
for example "HUMAN" in figure 1, and slots by

EXCUSE-CLASS PROGRAM EXCEPTION LINK EXCEPTION-CLASS

---- ~l\----------1.\i--!----~- - -i
IND-ALTERNATIVE XCUSE-CLASS-l--; RRANGE-TRIP-, ESERVE-SEAT exception-link-1 NO-SEATS-LEFT

parameters just-slot parameters j parameters

flight. justification. I flight.

exc.-slot

returns

-l .
[flight$seats-left>O]

1
i

·· ,...... ~ ·
"-,.,

~ustification

',.""'
no-seats-left-1

Figure 2 - Example of excuse for a dynamic exception.

I

their name with a node written in the box, for
example "legl 11 • These slots can then be filled
·with values when an instan~e of the class has been
created. This is represented by a link with the
name of the slot as for the "leg 111 of
"Capt'n-Kidd" is "wooden-leg-1" in figure 1. The
closure of these structural property value
relationships forms the PART-OF hierarchy. The
classes can also be organized in an ~ or
apecialization hierarchy (represented by unlabled
double line arrows, see figure 2). This
facilitates the definition of the subclasses as
the structure of the superclass is inherited by
them. The slots can be refined but are required
to satisfy the IS-A constraints, which guarantee
that the subclasses are effectively
specializations.
Slot values, in particular the four programs
defining the semantics of classes, can also be
inherited if necessary.

The instance hierarchy is not restricted to
two levels and classes can be instances of
,metaclasses. This is used extensively in the
definition of the formalism itself and many
'aspects of its behavior arise as a result of the
definition of the metaclasses: CLASS, RELATION,
OBJECT, PROGRAM,etc .• A metaclass can constrain
the structure of its instances through its
metastructure [Kramer 80), as the slots of the
instance must be instances of the metaslots in the
metastructure. Programs are represented as
classes in the formalism, and thus benefit from
ell the declarative facilities. In figure 2, the
~rogram "ARRANGE-TRIP" calls another program
"RESERVE-SEAT". Metaslots have been used to
partition the slots into different categories:
parameters, locals, etc •. To specify the desired
parameter bindings and evaluations, a form is used
(the box with no heading under "RESERVE-SEAT").
The programs are executed by creating processes
which are instances of the programs,
"arrange-trip-1" and "reserve-seat-1" in the
example. The formalism also provides a context
mechanism [Schneider 78, Schneider 80). An object
which is visible in a context is called a ~
Context are used to implement inheritance,
structures being essentialy special forms of
contexts. A slot is inherited because it is
visible (a view) in the structure of subclasses.

The only differences with some previous
versions of PSN are the use of yaluers to
implement manifestations (ex: John as a taxpayer)
as in [Schneider 78), which are needed for the
proper treatment of dynamic exceptions, and the
ability to refer to most systems assertions
(INSTANCE, type, etc.). This feature can be
simulated without any extension to PSN by
replacing the single link assertion reference by a
triple link reference to the relation and its
arguments.

66

3.0 EXCUSES

3.1 STATIC EXCEPTIONS

The~ mechanism takes care of objects
which are instances of a class while violating
some of the constraints associated to its slots.
The exceptions which are raised by these
violations must be handled by the class of the
object which has the defective object as one of
its parts (slot value), thus one level up on the
PART-OF hierarchy. This provides a basic form of
context sensitivity to the mechanism. The handler
attached to the "situation" is restricted to being
a class of which the defective object must also be
an instance, thus retaining Minsky's idea of frame
interaction in a context.

Let's explore the mechanism in more detail by
considering an example of static exception
handling represented graphicaly in figure 1.
Here, we have an object "Capt•n-Kidd", which would
be a legal instance of the class "HUMAN", except
for the fact that the value of its slot "leg-1",
11 wooden-leg-1", violates the type constraint of
the "leg-1 11 slot definition in the class 11 HUMAN 11 •

The violation is precisely that "wooden-leg-1" is
not an instance of "HUMAN-LEG". To characterize
this type of constraint violation, an
exception-class called "NO-REAL-LEG" is created.
Then this class is associated to the type of the
slot "leg-1" using an exception-link. When the
system, attempting to fill the value of "leg-1"
for "Capt'n-Kidd" will detect the type violation,
it will find the exception-link and then, if the
predicate of the link is satisfied, it will create
an instance of the exception class "NO-REAL-LEG".
The exception "no-real-leg-1" is attached to the
INSTANCE link between "Capt'n-Kidd" and "HUMAN",
which thus becomes an EXCEPTIONAL-INSTANCE link.
This is done by making the exception an instance
of an exception-class created especialy for the
link. Many exceptions could be raised on the
instance in the same way.

The rest of the mechanism concerns the
handling of the exception where the system tries
to build an excuse for the exception. For that,
it climbs up one level in the PART-OF hierarchy
and looks at the corresponding class to find an
excuse-class. In the example, this corresponds to
following the "main-character" assertion to
"story-1", then looking at its class
"PIRATE-STORY" and then finding 11 EXCUSE-CLASS-1".
This excuse-class must have been attached to the
slot whose value is the exceptional instance. For
the excuse-class to be usable, it must be
associated to the exception-class of which the
exception is an instance. If this is the case,
then the system tries to make the exceptional
object an instance of the class which is the value
of its "by" slot, which is "DISABLED-PERSON" in
this case. Any desired checking for evidence for
this type of excuse can be done at this stage. If
the instantiation has been succesful, then an
excuse is created, which associates the
justification to the exception. In the example,
this is "excuse-1". The excuse marks the

Cl'I
-..I

r -
~) t

METACLASS-MAP J)BJ £CT-MAP ,-CLAS
J ' I , . ,, '

..;), I . >. . .-'1(1 1> , bJt .
, --------CLASS-MAP--~: '

- ·· . 1· . ?I '-1---___,"-

t;::~iP:~o~- -· . ·.._ \ --, r:~ C, ·,.,

1-.:....:--_ ; ~ '\ "

r51otmap-slot. k 1/ • -.......___----.... e ·, ."" interval/. ~<1,1>

----- .

! type. L::: .._..-~ . / - -CLASS/CLASS-MAP

- 11- I' ~ I I BIRD-BEAK K
• <O,cardinality(slots(from$. '/ i . -., •11' '-........_

IS-A-CLASS-MAP type))> 1 type / II 1

•
·'Tl- r ___ .. , PENGUIN-BEAK I :1 _ _- r91ot/slot-map.., . 1 ,..,.

ID£NTITi-CLA~-Mt.P ~--y--- ' "' ' type/type . /;,-··· '

~ //' "-~-7 ~\ / / \)
r::::~%: r::::: ... ,k'''-,_r,::.=::-----,::1 f::.-~-e e
I finl. ~ .. -1~!~~- __ f}:Qm.. , to~~ ~ ---. wingl. I

,._ to ~ A

- -- - · - . ____ fr.onl __ . . to .
beak- 1/beak-2

Fi~ure 3 - Example of mapping.

succesful handling of the exception. If all the
exceptions attached to an exceptional-instance
link via its exception-class have been excused,
then the link becomes an EXCUSED-INSTANCE link.

Exception-classes in this system have a
two-fold function: they are abstract descriptions
of the violations that arise and they allow an
economical interface betw~en the excuse-classes,
which handle the violations, and the violations
themselves, assuming that some violations will be
treated in the same way. The use of the PART-OF
hierarchy as a kind of context mechanism for
exceptions is new to PSN, but resembles that of
NETL [Fahlman 79). The excuse mechanism also
works nicely for ' cases of non-existant slot
values. In this case, the special object
"nothing" is given as a value. This can be
treated as a type violation and be handled in the
normal way.

3.2 DYNAMIC EXCEPTIONS

The excuse mechanism can be used to handle
dynamic exceptions with a few extensions. It is
natural to see exception-classes as the interface
between the program context raising the exception
and the one which will be selected to handle it.
As these two belong to different levels of
abstraction, it is necessary to provide parameter
passing facilities with exceptions. These are
defined as slots in the exception-class. The
raising of an exception is similar to a procedure
·call, with the difference that the actual
:procedure to be invoked has to be selected by the
system using the information provided by the
excuse-classes. The scheme chosen requires the
exception handling program to return control to
the raiser of the exception after it has
completed, as in [Levin 77). This requires the
definition of a returns slot in the
exception-clAss.

In the example represented graphicaly in
figure 2, a type violation has occured in the
process "reserve-seat-1", which was invoked by
"arrange-trip-1". The violation is on the
prerequisite slot "p1", which checks whether some
seats are available on the flight. As the value
returned was "false", an instance of the
exception- class "NO-SEATS-LEFT" is created
("no-seats-left-1") and attached to the INSTANCE
'iink of the process. In the case of dynamic
exception handling, the exception-link does not
point directly to the exception-class, but to a
form which is a subclass of it, allowing the
parameter bindings to be indicated by "eval"
assertions. A more important difference is the
presence of a return slot value indicating which
slot of the raiser should recieve the result of
the evaluation of the exception handler.

After the creation of the exception, the
system looks for an excuse-class (having the
appropriate exception-class) attached to the slot
that was being evaluated in the .Q.llller. of the

68

process that raised the exception. The dynamic
hierarchy is used instead of PART-OF as it fills a
similar role in dynamic objects like programs to
that of part-of in static objects. Thus the
"dynamic" assertion is followed from
"reserve-seat-1" to "arrange-trip-1", where the
"EXCUSE-CLASS-1" is located, from the
"reservation" slot that was being evaluated.
Then, the form which is the value of the "by" slot
and a subclass of the "FIND-ALTERNATIVE" program
is instantiated (executed), as the exception
handler. Here again, a form is used to allow for
the binding of parameters. The instance of the
"by" class "FIND-ALTERNATIVE", is a manifestation
of the same object "reserve-seat-1" that raised
the exception. The explicit representation of the
valuers (the ovals containing the value
assignements to the slots) makes the separation of
the two manifestations clear. The exception
handling process thus appears as a tailoring of
the process "reserve-seat-1" to fit the particular
situation at hand. Once the instantiation has
completed, an excuse is created ("excuse-1") for
the succesfuly handled exception. Then, the
"result" of the handler, that is the value of its
slot which is an instance of the "returns"
metaslot, can be passed back to the exception and
to the process which raised it. This amounts in
this case to set the local slot "substitute" to
this value. Then, the process resumes after the
point of interuption. A process can trigger an
exception voluntarily by returning the special
value "fail" in the same way as "nothing" in the
static case.

3.3 INTERACTIONS WITH THE HIERARCHIES AND SEMANTICS

The immediate father in the PART-OF (dynamic)
hierarchy is not always the best class to provide
an excuse for an exception, but the scheme
requirea the exception to be reformulated in terms
of the father class before it can be passed up
higher, so as to preserve the abstraction
structure. This is done in the static case by
considering the unexcused exceptional object as
violating the type of the father. In the dynamic
case, the handler ("by" class) can also raise a
new exception of its own, as it is treated as a
part of the caller's context.

Even if it does not appears so by the
examples given, it is intended that
exception-links and excuse-classes be inherited
with the slot they are attached to down the is-a
hierarchy. They can also be refined and have to
satisfy the is-a constraints (that their parts be
identical or is-a, including the exception-class
and the "by" class). Thia can be enforced by the
formalism if these objects are defined as classes
with slots representing the links, as in [Kramer
80). However this solution is not totaly
satisfactory. A default exception-class called
"GENERAL-EXCEPTION-CLASS" is provided by the
formalism to every slot defined, through the
inheritance mechanism.

The excuse mechanism can be considered to be
simply a syntactic extension of the original PSN
formalism. The attachement of an exception-link
and exception-class to a slot can be seen as the
creation of a class which only differs from the
original class by the required presence of the
:violation which would raiee the exception. The
attachement of an excuse-class to a slot effects a
modification of its type, generalizing it to
include some of these "violation" classes.

4.0 MAPPINGS

Our goal in designing the mapping mechanism
was to define a very general construct which would
(1) provide a facility for describing similarities
that exist between objects and (2) allow the
definition~ classes .ill.~~ .2.t.h.el: classes,
including the copying of parts of their structure
on a piecemeal basis to enhance expressive
efficiency. The motivation for this came mainly
from the lack of flexibility of the current IS-A
construct, which is heavily felt whe dealing with
natural concepts. In fact, IS-A should appear as
a particular specialization of the general mapping
construct and as such, it cannot be used in its
definition.

An example of application of this more
general mapping construct would be defining the
alass "PENG UIN" in term of the class "BIRD" by
specifying a mapping from "PENGUIN" to "BIRD"
which includes, as a sybmapping, sayin~ that the
"beak" slot of "PENGUIN" has a type which is a
·particular specialization of that of the "beak" of
"BIRD". This is represented graphicaly in figure
3, where "Pb- MAP" is such a mapping (more details
.later). In this definition process, the user
creates a mapping and expects the mapping
.instantiation program to create all objects and
views not already existing and have them form the
class being defined in terms of the other, as a
side-effect of the mapping instantiation. Two
aspects of the definition of mappings can thus be
identified: their structure, which is concerned
with the description of the relationship between
the two objects, and their side-effects, which
include object creation and manipulation of the
structure hierarchy (contexts) to effect
inheritance . The rest of the presentation
concerns mainly the structural aspect as the other
~till needs to be worked out in details.

The main influences on the mapping mechanism
have been the mappingi!J of MERLIN [Moore 73), where
the recursive aspect of their definition is taken,
the "cables" of KLONE [Brachman 79), for the idea
of structured inheritance, and the similarity
networks of [Winston 75). ·

The main idea on which the mechanism is based
i s that any mapping of an object must also involve
the mapping of its type (s), as it is an essential
part of its definition. This requirement causes
the structure of mappings to mirrors closely that
of the INSTANCE hierarchy. If we return to our

69

example in figure 3, the mapping "P/B-MAP" between
the clases "PENGUIN" and "BIRD" is also a class
and an instance of "CLASS-MAP". It contains a
slot-mapping slot, "beakp/beakb", from the "beakp"
slot of "PENGUIN" to the "beakb" of "BIRD". The
type of this slot, "PB/BB-MAP", is another mapping
class from the type of "beakp", "PENGUIN-BEAK", to
the type of "beakb", "BIRD-BEAK", "PB/BB-MAP"
would itself be expanded in the same way to map
the slots of both classes. Now at the token
level, there is an instance of "P/ B-MAP", mapping
"penguin-1" to "Tweety". It has as slot value a
mapping between both "beak" slot values, which is
an instance of "PB/BB-MAP". Thus, the mapping at
the class level allows us to map the instances of
the class. The structure of the mappings is
exactly parallel to that of the classes mapped.

However, to satisfy completely our
requirement, the types of the classes "PENGUIN"
and "BIRD" must also be mapped. This is
accomplished by "CLASS/CLASS-MAP", which maps the
class "CLASS" into itself, Note that both
"P/B-MAP" and "PB/BB-MAP" are also instances of
t his metaclass. The type of "CLASS" itself,
"METACLASS", would also need to be mapped, but
eventualy this will stop as "METACLASS" is only an
instance of itself.

The classes that define mappings
{"CLASS-MAP", "METACLASS-MAP", etc.) also allow us
to create a taxonomy~ mappings and differentiate
between identity mappings, IS- A mappings and
general similarity mappings. This is done by
gradualy adding more constraints on the structure
of mappings {e.g. the "interval" of "CLASS-MAP") ,
mainly on the metaslot controling slot mappings
{"slot-map-slot"). This produces a pseudo-IS-A
hierarchy of mappings. In the example, the
"PB/ BB-MAP" is an instance of "IS-A-CLASS-MAP" and
its argument classes would satisfy the IS-A
constraints. "CLASS/CLASS-MAP" is an instance of
"IDENTITY-CLASS-MAP" as it maps a class to itself.

The mapping construct allows the
representation of similarities of similarities, as
mappings are simply objects like everithing else.
It is also a powerful tool to study relationships
involving the parts of objects as well as the
objects themselves, An interesting question
raised by the characterization of IS-A as a class
of mappings is whether its set-inclusion aspect
{instances of subclasses are instances of
superclasses) is simply a side-effect of the IS-A
constraints or a supplementary relationship. A
mapping class can also be devised which exibits
the constraints of the INSTANCE relationship.
However, this abstract comparison of existing
structures should not be confused with the
INSTANCE assertion itself, which is the result uf
an external recognition process starting from
sensory features and whose existence is assumed by
the mapping mechanism.

I

5.0 COMPARISON .IQ.~ SCHEMES

The only other representation formalism to
give significant attention to the static and
seneric exception problems is NETL [Fehlman 79).
Ita solution is much simpler than ours, being
based on the insertion of "CANCEL" links in the
virtual copy hierarchy to cancel inheritance when
,ieeded. Thia may be considered analogous to a
mapping mechanism based on differences. There is
~o need for excuses as NETL neither does include a
meparate instance hierarchy nor programs. The
mechanism is defined at a lower level of
·abstraction than ours (the user is concerned with
the inheritance process) and is affected by the
emphasis on retrieval. It does hot offer the
descriptive facilities of our solution and does
not enforce any consistency or justification
requirement.

The excuse mechanism for dynamic exception
handling has many points in common with those of
[Kramer 80) and [Mylopoulos 79). However, it
differs essentialy with that of [Kramer 80) on the
question of where control should be returned after
the completion of the exception handler. We
require the resumption of the process which raised
the exception, rather than return control to its
caller. This makes it easier to ensure that the
model is not left in an inconsistent state, is
more efficient and promotes a more natural view of
abstractions.

A more logical approach to exceptions has
recently been proposed. Exceptions are seen as
entities for which some default inference rule
does not hold [Reiter 78](e.g. birds fly unless
we can prove otherwise, for penguins the rule does
not hold). Systems based on this principle
maintain justifications for their assertions and
reevaluate them as new facts are learned, which
may contradict existing defaults deductions [Doyle
79). If a satisfactory (non-monotonic) logic can
be found to characterize these systems, it could
improve greatly our understanding of the nature of
exceptions and how to deal with them.

6.o CONCLUSION

Some work remains to be done to achieve the
full potential of the excuse mechanism . It should
be possible to extend it so as to accomodate
"structural" exceptions that arise on objects
shared among many program contexts, which need to
be propa11;ated along the user hierarchy instea·d of
the dynamic hierarchy [Levin 77). This would
involve a better integration of static and dynamic
exception handling. The side-effects aspect of
the mapping mechanism also need to be worked out
in details.

It is certainly necessary to experiment with
both mechanisms on a larger scale, to see whether
t hey are really useful and suggest improvements.
This would show in particular whether the
whole-to-part style of object definition (where

70

the object is created before its parts), which is
necessary to take full advantage of the excuse
mechanism, is practical .

REFERENCES

Brachman, R.J. (1979). "On the Epistemological
Statue of Semantic Networks",in Associative
Networks; Representation .allil. .l.l.O.C. .Qf knowledge .bl'..
computers, Findler, N.V. (Ed.), Academic Press,
New York.

Doyle, J. (1979). "A Glimpse of
Maintenance", in Artificial Intelligence;
Perspective, Winston, P.H. and Brown,
(Eds.), MIT Preas, Cambridge, Hass •.

Truth
An HI.I

R.H.

Fehlman, S.E. ·(1979) , .Nlll.l. A ml.em ill.
Representing .allil. .l1A1n& Real-world Knowledge, HIT
Presa, Cambridge, Maas ..

Kramer, B.M. (1980). "Representing Programs in
PSN". h:.Qc... .3td. b.L. ~ ~. Victoria.

Lesperance, Y. (1980). Handling Exceptions J.n
~. M.Sc. thesis, Dept. of Computer Science,
Univ. or Toronto, to appear.

Levesque, H.J. and Hylopoulos, J. (1979). "A
Procedural Semantics for Semantic Networks", in
Associative Networks; Representation .allil. .ll.4e. .Qf
knowledge .bl'.. computers, Findler, N. v. <Ed. >,
Academic Press, New York.

Levin, R. (1977). Program structures m.
Exceptional CQndition Handling. Ph.D. thesis,
Dept. of Computer Science, Carnegie-Mellon Univ.,
Pittsburg .

Mylopoulos, J., Bernstein, P.
(1979) . A Language Facility
Database-Intensive Applications.
Dept. of Computer Science, Univ.
appear in TODS.

and Wong, H.
m. Designing

CSRG-TN-105,
of Toronto, to

Minsky, H. (1974).
Knowledge. A.I.
Cambridge, Mass ..

A Framework m. Representing
Memo No. 306, MIT A.I. Lab.,

Moore, J. and Newell, A. (1973). "How Can
Merlin Understand?", in Knowledge and. Cognition,
Gregg, L. (Ed.), Lawrence Erlbaum, Potomac, Md ..

Reiter, R. (1978). "On Reasoning by Default",
f.c:.oSL.. TINLAP-2, Urbana, Ill •.

Schneider, P.F.
Knowledge 1n .a.
Formalism. Tech.
Computer Science,

< 1978 >. Organization .Qf
Procedural semantic Network

Report No. 115, Dept . of
Univ. or Toronto.

Schneider, P.F. (1980). , "Contexts in
~ .3td. .tlJ.h ~ ,CgnL_, Victoria.

PSN".

Winston, P.H. (1975). "Learning Structural
Descriptions from Examples", in .I.Ile. Psychology g!
Computer .Y.ia.1.wl., Winston, P.H. (Ed.), McGraw
Hill, New York.

Contexts in PSN

Peter F. Schneider

Department of Computer Science

University of Toronto

Toronto, Ontario

MSS 1A7

Abstract

Contexts play an important part in PSN

(the Procedural Semantic Network

formalism). This paper discusses some of

the problems that have been encountered

with contexts in PSN and gives an informal

presentation of the current definition of

contexts in PSN. Particular attention is

paid in this presentation to the notion of

inheritance along the context hierarchy

and its implications.

1. Introduction

PSN (the Procedural Semantic Network

for the formalism) is a formalism

representation of knowledge. The basis of
PSN (a s described in (Levesque 1977] and

(Levesgue and Mylopoulos 1979)) is the

notion of a class with four attached

procedures. These procedures are
responsible for adding instances to,

deleting instances fro~ , recognizing
instances of, and enumerating the

instances of a class.

PSN also contains several traditional

semantic network concepts in addition to

71

this procedural basis. These concepts

serve in part to impose order on the

heterarchical nature of the procedures.

In fact, throughout the remainder of this

paper the procedural base of PSN may be

largely ignored since the paper talks

about these organizational principles, in

particular contexts.

The main organizational semantic

network principles in PSN include the

INSTANCE-OF relationship, the IS-A

relationship, and properties of objects

(also known as the PART-OF relationship).

The INSTANCE-OF relationship relates an

object to

of. The

the

IS-A

classes it is an instance

relationship relates a

sub-class to a super-class and thus is

concerned with the specialization and

generalization of concepts. Properti~s
may be associated with any class and

define the kinds of information that can

be incorporated into the instances of the

class and thus are concerned with the
aggregation of information. All of these

organizational principles are well

described in the papers mentioned above

although an extension to properties has

been added to PSN and is discussed in

[Kramer 1980].

. . I . ,

One non-standard aspect of PSN is

that everything in PSN is an object and a

member of a class. This means that

classes themselves are members of other
classes, notably the meta-class "CLASS",

and thus may have properties as defined by

"CLASS" (such as cardinality). So in PSN

a typical object such as "John" is an
instance of a class, namely "PERSON",

which is in turn an instance of "CLASS".
"CLASS" itself must be an instance of a

class but with a little inspection it
should be clear that "CLASS" itself is the

appropriate class thus eliminating the

need for ever more higher meta-classes.

2. Contexts

There is a fourth organizational

principle in PSN which has been less

investigated and much less understood than

the above two. This principle is the

ability to group objects into contexts,

much like the contexts of CONNIVER

[Sussman and McDermott 1972] or the

partitions of Hendrix's partitioned nets
[Hendrix 1975, 1979]. Recently a formal
investigation of the properties of

contexts in PSN has turned up some

surprising aspects of contexts as they had

been developed as well as clarifying many
points concerning contexts and their

interaction with the other organizational

principles of PSN. This resulted in a
formal definition of contexts [Schneider

1979]. This paper presents contexts in

PSN in a much less formal manner than

[Schneider 1979) and concentrates on
inheritance between contexts.

Contexts in PSN are most often used
to represent alternate views of the

knowledge base. For example, one context
could be used to represent the real world.
This context, perhaps called "reality",

72

would have all the knowledge pertaining to

the real world. Another context could

then be used to represent the well known

alternate world where fairies exist. This
context, perhaps called "fairy world",

would have the same information as

"reality" in most areas but would not

correspond to "reality" in other areas and
would have some additional information in

yet others.

3. Contexts and Views

When contexts are considered it no

longer suffices to think of objects in
isolation. Instead, it is necessary to
look at an object as seen in a context,

such as "John" in "reality" or "FAIRY" in

"fairy world". It is also possible to

consider an object in two or more

different contexts such as "John" in

"reality" versus "John" in "fairy world".

In these different views "John" may have

different properties but the views are

still views of the same object.

So far this is fairly
straightforward. However, in PSN contexts
are objects (because everything in PSN is

an object). But objects and thus also

contexts cannot be considered as objects
in isolation but only as objects as seen
in a context. For example, "fairy world"

as seen in "fairy world" is different from
"fairy world" as seen in "reality". This

interaction requires a change in the

definition of contexts.

The redefinition of contexts in PSN
proceeds as follows: First a view in PSN

is defined to be an object as seen in a

context. Then a context is defined to be
a special type of view in which the view
is an instance of the object "CONTEXT". A

little inspection of this definition shows

that there is no way of creating any
non-infinite views (or contexts) since any

view must contain another view. This

corrected by creating a single

context, the universal context.

is

base

The

universal context is thus the only view

(and context) not consisting of an object

as seen in a context and must form part of

every view (and context) in PSN.

This makes it possible to create

contexts and views of varying complexity.

For example, the object "John" as seen in

,the universal context is a perfectly

ordinary view, essentially corresponding

to "John" in PSN without contexts. The

context "reality" in the universal context

is an ordinary context and "Bill" as seen

in this context is a view corresponding to

a view in other approaches to contexts.

This situation (plus others mentioned

below) is illustrated in Figure l.*

In PSN an object may be part of

several views (as is "John" in Figure 1)

and if an object forms a view in a context

then that object can be referenced in the

context. Each view of an object may have

different values for its properties, may

be an instance of different classes, and

thus also may have different properties.

*In each figure the largest box represents

the universal context and the names each

represent a view with those names that are

attached to boxes representing contexts.
The containment r~lationship in the figure

represents the 'as seen in' relationship

between objects and contexts in PSN. Also

unlabelled single arrows represent the

instance relationship, unl ~belled double
arrows represent the IS-A relationship,

and labelled single arrows represent

property values with the labels being the

property names. Property definitions are

not shown in the figures.

73

The views of "John" in "reality" in the

universal context and in "fairy world" in

the universal context in 1

illustrate these possibilities.

Figure

Also an

object

context.

"reality"

view in

need not

(For

in the

Figure 1

form views in every

example, "Bill" in

universal context is a

but "Bill" in the

universal context is not.) If an object

does not form a view in a context then it

cannot be referenced in that context and

definitely cannot exist in that context.

This is, of course, also allowed in other

context mechanisms.

However, there is no prohibition

against having more than one view of an

object being a context. This situation is

illustrated
two contexts

in Figure

using the

1 where there are

object "fairy

world". The context "fairy world" in

"reality" in the universal context may be

quite different from the context "fairy

world" in the universal context. For

example, instances of "FAIRY" in "fairy

world" in the universal context may not be

able to perform magic whereas instances of

reality fair world

PERSON FAIRY

/
John age) 28

)-,...__
~.t' . .(~DROW

27(
~ age John

Bill

I fairy
world

Figure 1

·FAIRY" in "fairy world" in
the universal context may.
additional ability of this

"reality" in

This shows one
approach to

contexts over the other, more traditional
approaches which may be of use in
deductive mechanisms or natural language

interfaces that consider the different
views of an object as being related.

4. Inheritance in Contexts

If the contexts "fairy world" in
"reality" in the universal context and
"reality" in the universal context were

rpart of a knowledge base they would

contain a lot of information not related

to fairies and thus the two contexts would
have many objects and much information in
common.
context

This indicates
should inherit

that the former
this shared

knowledge from the latter. However, not
all the objects in the latter would be in
the former and there may be other
differences between the contexts and thus
this inheritance should not be strict.

To facilitate talking about the

inheritance between contexts in PSN a
context hierarchy exists in PSN. This
hierarchy is defined by the following
rule: If a view of an object in a context
forms another context then its parent in
the context hierarchy is the context in

which it is seen. Thus the parents of
"reality" in the universal context and of
"fairy world" in the universal context are
both the universal context. Further, the
parent of "fairy world" in "fairy world"
in "reality" in the universal context is
"fairy world" in "reality" in the
universal context and its parent is

"reality" in the universal context. This
gives rise to a tree hierarchy where
inheritance between contexts goes down the
hierarchy (similar to inheritance between

74

classes down the IS-A hierarchy).

This inheritance differs from
inheritance down the IS-A hierarchy in
several ways. First, the things inherited
are different. Definitions of properties
and values of properties are inherited
down the IS-A hierarchy whereas everything
in PSN including objects, properties of
objects, and definitions of properties for
objects are inherited down the context
hierarchy. Second, the inheritance down
the IS-A hierarchy is very strict in some
aspects: as far as definitions of
properties go only additions of new
definitions and specializations of

existing definitions are allowed from a

class to a sub-class. Inheritance down

the context hierarchy is not nearly so
strict and any change can be made between
a context and its children in the context
hierarchy.

The inheritance proceeds as follows:
if an object A in context c is a view and

if B in c is a context then A in Bin c
will be a view unless explicitly deleted
by Bin c. The same is true of A being an
instance of a class inc. The properties
of A in Bin care defined, as before, to
be those properties defined in the classes
of which A in Bin c is an instance and
the property values for these properties

are inherited in the same fashion as views

and instances except that properties are
single valued so any new value for a
property will override the inherited one.

For example, if "John" in the
universal context is a view and "fairy
world" in the universal context is a
context then by context inheritance "John"
in "fairy world" in the universal context
is a view. However, this may be
overridden so that "John" in "fairy world"
in the universal context is not a view.

Further, even if it is a view then "John"

could be an instance of a different class

in the two contexts, perhaps "PERSON" in

Jne context and "FAIRY" in the other (as

in Figure 2). Here it is not necessary

for "FAIRY" to be an IS - A descendant of

"PERSON" as would be the case with IS - A

inheritance.

with "John" may

contexts, such

Other properties associated

change between the two

as "John"'s "height", and

some may in fact disappear or appear, such

as "John"'s "tribe", if the sets of

properties defined in "PERSON" and "FAIRY"

are different. Note that "John"'s "age"

is not changed in "fairy world" in the

universal context and thus will be

inherited from the universal context. Of

course this is not much different from

othe r context schemes such as Hendrix's

(Hendrix 1979) or Fahlman's [Fahlman

INTELLIGENT BEING

I life
PERSON- --------~70

1
expectency

age~ 28
John-----

~5'6''

fair world

life
INTELLIGENT-------~200

BEING expectency

i 'PERSON

II life
FAIRY.---------350

/

expectency

~5 , i • __r...__w_o_r;..:l=-;;d

John~.
:t::i.be

DROW
FAIRY

Figure 2

75

1979].

The situation is more complicated for

classes because of the interaction with

IS - A inheritance. Views of classes and

the IS-A relationship are inherited in the

same fashion as views of normal objects

and the instance relationship. The same

is true for properties of classes but for

property values there are two possible

places to inherit from, the IS - A parents

in the same context and the view of the

class in the parent context. The solution

adopted is to inherit from the parent

context if possible, and only if this

fails to produce a value inherit from the

IS - A parents. This reflects the opinion

that different views of an object are more

likely to have the same property values

than a class and its parents in the IS-A

hierarchy. This situation is illustrated

in Figure 2 where the "life expectancy"

for "PERSON" in "fairy world" in the

universal context is inherited from

"PERSON" in the universal context and not

from "INTELLIGENT BEING" in "fairy world"

in the universal context.

Property definitions have the same

problem of where to look in inheritance

with the extra added problem of the

strictness of IS-A inheritance of property

definitions. The solution is to inherit

as follows: First inherit the property

definitions from the IS-A parents . Then

if there are changes to the property

definitions in the view of the class in

the parent context, they will modify, but

only to specialize, the IS-A inherited

property definitions. Any modifications

that would violate the IS - A inheritanc l

rules are not carried out. Finally any

modifications in the class itself serve to

override the modifications inherited from

the parent context as long as they do not

violate the IS-A inheritance rules. If

there are property definitions introduced

in the view in the parent context that are

not in the IS-A parents then these are

inherited and can be changed in the class

itself. These inheritance rules serve to

retain the strict IS-A inheritance of

property definitions while allowing

non-strict inheritance down the context

hierarchy. Again, this is not much

different from other context mechanisms,

at least as far as the context inheritance

9oes.

5. Inheritance of Contexts

The new aspects of this approach

surface if different views of contexts and

inheritance of contexts down the context

hierarchy are considered. In other

context mechanisms, contexts are second

class citizens because thPy, as opposed to

regular objpcts, do not exist as seen in a

context. 'L;us they cannot have different

views and cannot be inherited between

contexts.

The context mechanism in PSN allows

both of these situations. For example,

consider the context "fairy world" in the

universal context as shown in Figure 2.

Objects, such as "John", can form views in

this context. However, "fairy world" is

an object and so it too can form a view in

the context "fairy world" in the universal

context, namely the context "fairy world"

in "fairy world" in the universal context.

This cannot be done in other context

mechanisms and the advantage to doing this

is that there may well be properties

attached to "fairy world" in the universal

context such as cautions that unusual

things may occur in it and these

properties will be inherited by "fairy

world" in "fairy world" in the universal

context although as with all context

76

inheritance this may be overridden.

Further, these two contexts are different

views of the same object and this may be

of use to deduction mechanisms and natural

language interfaces.

Note that context inheritance would

also create the context "fairy world" in

"fairy world" in "fairy

universal context and

deeper ad infinitum.

regression of contexts

problem since at some

cease to be of interest

not be explicitly stored.

more become of interest

available automatically.

infinite regression

world"

then go

This

is not

in the

on ever

infinite

really a

point they will

and so they need

If at any time

then they will be

However, this

does

calculating all inheritance

preclude

beforehand

(which is not a good idea in any case).

Another advantage of this approach to

contexts is illustrated in Figure 3 where

one of the views shown represents "FAIRY"

in "fairy world" in "John's beliefs" in

the universal context. In this figure

fairy world

FAIRY

John's beliefs Bill's beliefs

fairy world fairv world

FAIRY FAIRY

Figure 3

there are three views of the object "fairy

world", namely "fairy world" in the

universal context, "fairy world" in

•John's beliefs" in the universal context,

and "fairy world" in "Bill's beliefs" in

the universal context and all three of

these views are, in fact, contexts. Now,

the last two of these inherit from the

first because properties of objects

including the views in a context are
inherited down the context hierarchy (from

the universal context to "John's beliefs"
in the universal context and "Bill's

oeliefs" in the universal context).

the two lower (in the diagram) views

Thus

of

the object "FAIRY" are inherited from the

upper view and unless explicit changes are

made will have the same properties as the

upper view.

Even if explicit changes are made to

the lower views they will inherit the

unchanged information from the upper view

and will be generally the same as the

other lower view (unless massive changes

are made). This cannot be done by using a

context that is a sub-context of both
"John's beliefs" and "Bill's beliefs"

since the sub- context , method can only

represent situations where some knowledge

is exactly the same in two contexts.

This inheritance of contexts does

cause some complications to context

inheritance because it introduces more

than one context that can be inherited

from. The context "fairy world" in
"John's beliefs" in the universal context

can inherit views and
.from "John's beliefs"

context (its parent

other information

in the universal

in the context

~ierarchy) and also from "fairy world" in

the universal context (a slightly less
involved view of itself). Both of these

are reasonable sources for inheritance.
The solution is to inherit information

77

from both places. This causes problems if

the two sources are contradictory, such as

two different values for a property, and

in these cases no information would be

inherited. The actual resolution of these

problems

cases and

is tedious

will not

because of the many

be discussed here.

Note, however, that the simple presence of

information versus its absence is not a

will problem

simply

present.

because the

be inherited

This

information

from
more

where it is
complicated

inheritance mechanism still retains the

non-strict nature of context inheritance

by allowing all context inherited

information to be overridden while also

retaining the IS-A inheritance

restrictions.

6. Conclusion

The main contribution of contexts in

PSN is the formation of the context

hierarchy which provides a fourth

organizational principle for structuring

knowledge in PSN. Unfortunately, contexts

and the context hierarchy have been less
understood than they should have been.

The discussion in this paper of some of

the aspects of the formal definition of

PSN contexts given in [Schneider 1979]

will help to alleviate this problem.

The most significant aspects of the

treatment of contexts proposed here are

the additional possibilities inherent in

it over more traditional treatments.

These come about because contexts are not

second class citizens in PSN. Instead,

they are formed from objects just like any

other view in a PSN knowledge base. Thus

they are instances of classes (in fact

they are defined as the instances of the
class "CONTEXT") and can have properties
and participate in relationships just like

other views in PSN. This is achieved in
other systems, if at all, by extra

~achinery, such as associating contexts
with super-nodes (as in Hendrix's

~artitioned Networks [Hendrix 1979]).

Also the objects which form contexts
may form different views each of which may

be a context. These different contexts
are still views of the same object just as
a regular object may have several

different views. This allows contexts,

along with regular views, to be inherited

down the context hierarchy. This

inheritance, although it causes some

complications in inheritance between

contexts, allows large chunks of knowledge
to be inherited and shared between
contexts with modifications to portions of '
it still possible while retaining its

ability to be referenced as an entity,

something no other context formulation

allows.

There is still work remaining to be
done on contexts in PSN. Their formal

definition does not take into account the
procedural

extended
aspects of PSN and needs to be

in this direction hopefully

leading to a complete formal definition of
PSN. Also, contexts should be integrated

into the existing implementation of PSN at

the University o(Toronto (as described in

[Kramer 1980]). However, even with these
shortcomings contexts have much to add to
PSN.

Bibliography

[Fahlman 1979] Fahlman, Scott E. ~: ~

system for

real-world
representing and using

knowledge. Cambridge,
Massachusetts: The MIT Press, 1979.

78

[Hendrix 1975] Hendrix, Gary G.

"Expanding the Utility of Semantic

Networks through Partitioning".
Proceedings Fourth IJCAI, Tbilisi, u.
S. S. R., 1975.

(Hendrix 1979] Hendrix, Gary G. "Encoding

Knowledge in Partitioned Networks" in
Associative Networks: Representation

and ~ of knowledge ,ey computers,
ed. Nicholas v. Findler. New York:

Associated Press, 1979.

(Kramer 1980) Kramer, Bryan M. "The

Representation of Programs in the

Procedural

Formalism".

Semantic Network

Technical Report No.
139, Department of Computer Science,
University of Toronto, 1980.

[Levesgue 1977) Levesgue,

Procedural Approach

Hector J. "A

to Semantic

Report No. Networks". Technical

105, Department of Computer Science,
University of Toronto, 1977.

(Levesgue and

Procedural
Networks"

Mylopoulos 1979] "A

Semantics for

in Associative

Semantic

Networks:

Representation and ~ of knowledge
,ey computers, ed. Nicholas v.
Findler. New York: Associated Press,

1979.

[Schneider 1979) Schneider, Peter F. "A
Formal Definition of Contexts in the
Procedural Semantic Network
Formalism". AI Memo 79-5, Department

of Computer Science, University of

Toronto, 1979.

(Sussman ·and McDermott 1972) Sussman,

Gerald J. and Drew v. McDermott.

"From PLANNER to CONNIVER: A genetic
approach". Proceedings FJCC, Volume
41, part 2, 1972.

Representing Programs in PSN

Bryan M. Kramer

Department of Computer Science
University of Toronto

Toronto, Ontario
M5S 1A7

Ab;,tract

The procedural semantic network (PSN)
formalism for representing knowledge has as a
basic concept the use of programs to define the
semantics of classes of objects. This paper
investigates a means of representing programs
based on work done by the author ([Kramer 1979),
[Kramer 1980)). Included as an important part of
representing programs is an extension of PSN
which provides a means for categorizing the
properties of objects.

,. Introduction

The representation of programs as objects of
the knowledge base has always been an important
part of the procedural semantic network (PSN)
formalism ([Levesque 1977), [Levesque and
Mylopoulos 1979), [Schneider 1978a), [Schneider
197Bb)). This work has been continued in the
development of the language TAXIS ([Mylopoulos et
al. 1978), [Wong 1980)) which embodies many of
the concepts of PSN although its emphasis is on
the design of interactive information systems
rather than knowledge bases. The behaviour of
programs in TAXIS is used in [Kramer 1980) and in
this paper as a new basis for representing
programs in PSN. The contributions of TAXIS are
a new mechanism for associating the statements of
a program with the program and a general
exception handling mechanism.

The new proposals for the treatment of
programs in PSN are discussed in more detail in
[Kramer 1980). This discussion includes some
work on the handling of exceptions in the dynamic
environment of programs. Exception handling in
PSN, however, involves more than the correction
of such exceptions. A different kind of
exception is that which occurs in the maintenance
of an object in the knowledge base which fails to
meet some restrictions. For more details on the
handling of both kinds of exc~~ tions the reader
is referred tc [Lesperance 1980).

2. Overview S2!. ~

Programs enter into PSN
describing the behaviour of

as entities
classes and

79

relations. Every object is an in;,tance of a
~; the programs of the class specify how an
object might be made such an instance, how an
instance should be removed from the class, a test
for membership in the class, and a mechanism for
fetching all instances of the class. Binary
relations are represented by classes known as
relation;,. The instances of a relation are
assertions that pairs of objects belong to the
relation. The four programs for a relation add
assertions, remove assertions, test that a pair
of objects is a member of the relation, and given
an object "x", fetch all objects "Y" for which an
assertion of the relation between "x" and "Y"
holds.

In addition to the basic mechanism for
describing their behaviour, classes are provided
with a means of defining the properties which
instances may have. For example, one might
define the class "PERSON" whose instances are
people, and include in the definition a
description of the property "eye colour".
Instances of the class may then have values for
these properties; thus the object "John" might
have the value "blue" for the property "eye
colour". This mechanism is similar to the binary
relations. For example, an alternative to
defining "eye colour" as a property in "PERSON",
one could define a relation "EYE COLOUR" whose
domain is "PERSON" and range is "COLOUR". The
former mechanism is used for properties which the
designer of the knowledge base considers to be
definitional: properties which characterize the
objects. For example, one might consider a
person's social insurance number and sex as
definitional properties. Once assigned, the
values of such properties may not be changed.

The four programs associated with a class or
relation are attached as property values of that
class or relation. The definitions of these
properties are provided in the classes "CLASS"
and "RELATION". Thus "CLASS" contains
definitions of the properties "to add", "to
remove", "to test", and "to fetch" and "RELATION~
provides similar defini tlons for relations.
Classes such as "CLASS" and "RELATION~ which have
classes as instances are known as meta¢lasses.

The definition of a property in a class is
represented by an object associated with the
class . Such an object is called a .sl.Qt and is
said to exist in a class. Slots, being objects,

will themselves have property values. These
values serve to provide the constraints on the
property values of instances of the class. An
important exam~.e is the "type" property of a
slot. A property value of an instance of a class
must be an instance of every member of the set of
classes which is the type of the corresponding
slot. If the type of the slot "eye colour" in
the above example were "COLOUR", only colours may
be the corresponding property values, and for
·"John" to have "eye colour" "blue" it is required
that "blue" be an instance of "COLOUR". The
exact mechanism used for defining the properties
of slots is one of the concerns of this paper.

In continuing the example, there may arise a
need to discuss more specialized classes of
colours. For example, in discussing eye colours
one might wish to distinguish a class of brown
eye colours such as brown and hazel from a class
of blue eye colours. One would then use the
classes "BROWN COLOURS" and "BLUE COLOURS". It
is however desirable that any instance of these
classes remains an instance of the class
"COLOUR". This specialization can be represented
through the PSN supplied relation IS-A. If IS-A
holds between "BROWN COLOURS" . end "COLOUR",
"BROWN COLOURS" is a subclass or IS-A child of
"COLOUR" and "COLOUR" is a superclass of "BROWN
COLOURS". Now, if "brown" is an instance of the
subclass, it is automatically an instance of the
superclass.

It is the responsibility of the four
programs associated with the classes to insure
~hat IS-A behaves in the proper manner. If "B"
!ls a subclass of "A", the program which adds an
instance to "B" must also make the object an
instance of "A". In other words, once the add
program of "B" has been run with an object "b" as
a parameter, the test program of "A" must
recognize this object as an instance of "A", the
fetch program should fetch it, and the remove
program should remove from "A" (and at the same
time from "B"). The representation of programs
ln PSN provides a relationship between programs
which constrains the assignment of programs to
subclasses of a class. When this relation holds
between the programs "p" and "q" where "q" is the
add program for "A", "P" will be a valid add
program for "B".

Another aspect of IS-A which is relevant
here is the inheritance of structure (the set of
slots in a class). When one defines a class
"BROWN EYED PERSON" as a subclass of "PERSON",
the slot "eye colour" is automatically contained
in the new class. The properties of the slot may
be modified in this process of inherftance. In
the example, one would constrain the type of the
"eye colour" to be "BROWN COLOUR" so that all
instances of the new class may have only eye
colours which are instances of "BROWN COLOUR".
In general, when a property of a slot ia modified
in inheritance, the new value must be an IS-A
descendant of the inherited value (as "BROWN
COLOUR" is a subclass of "COLOUR").

80

3. Programs

Each PSN program consists of three groups of
sto.tements: the preregui111tes, the ~. and the
returns statement. Thia division of programs
into parts is intended to simplify the writing
and understanding of programs. In earlier
versions of PSN, a fourth group of statements was
included to handle cases where failure occurred
in the execution of the body. This has been
replaced by a more general exception handling
mechanism based on that of TAXIS. TAXIS programs
too include a fourth group of statements called
results or~ conditions which have not yet
been incorporated into PSN.

The execution of a program begins by the
evaluation of the prerequisites. Should any of
these not return true the exception handling
mechanism is invoked. Thia involves the creation
of an object called an exception which describes
the circumstances of the failure. The process
which failed is terminated. The calling program
may provide a procedure to handle this exception.
The value returned by this exception handler is
used in place of the value which the failed
program might have returned. Thus a program for
division might have as a prerequisite a check
that the divisor is not zero. If this
prerequisite fails, the calling routine could
replace the division by a program which simply
returns an arbitrary value, for example zero.

Once the prerequisites have succeeded, the
statements of the body are executed. These
statements perform the major functions of the
program, possibly modifying the knowledge base.
Once the statements of the body have all been
executed, the expression in the final group is
executed returning the value which is to be
returned by the program.

The statements of the body of the program
may cause changes in the contents of the
knowledge base. Such changes fall into two
categories: the first is the set of changes
caused by the interpreter as it executes the
program; the second is the set of changes a
statement is intended to perform. The first
category of changes is generally not permanent:
that is, when the execution of the program is
complete, the state of the knowledge base will be
unchanged except for the changes in the second
category. The second category of changes is
known as the set of .11.1.de. effects of the program.
As an example, one side effect of an add program
will generally be a link joining an object to a
class.

Not all of the side effects of a statement
in the body remain when the program is completed.
It is possible, for example, that a statement
near the beginning of execution will assert a
relation between two objects and that a later
statement will undo this assertion. The~ .sJ..de.
effects of a program are those side effects which
remain when execution is complete. In other
words, the set of net side effects of a program

ie the set of differences between the knowledge
base before execution and the knowledge base
·after execution. A function is a program which
has no net side effects under any conditions (for
.any set of parameters in any state of the
knowledge base). Functions are the only programs
Mhich may be invoked when the returns statement
of a program is being executed. The
prerequisites must also invoke only functions.
·Thus the side effects of any program must be
performed by the statements of the body,

The side effects of a program are further
constrained by the fact that all of the
statements in any group, that is prerequisites or
body, are to be executed simultaneously. Thus if
more than one prerequisite fails, a number of
exceptions will be raised. In the case of the
body, this implies that the side effects of one
statement may not depend on those of another.
For example, one may not include two statements
~here the first creates an object and the second
asserts that .this object participates in some
relation because one cannot guarantee that the
new object exists when the assertion is
attempted. This restriction will become
significant when the specialization of programs
is considered.

4. Programs 11.s. Classes

When representing programs in . PSN one would
like to use the tools for organizing knowledge
already existing in the formalism. Thus the
relation representing specialization of programs
tecomes lS-A And clRsses represent programs. By
associating the statements of a program with the
slots of a class, the existing inheritance
mechanisms provide restrictions on the
epecialized programs. Also, using classes as
programs allows the use of instances of these
classes to represent activations of a the
programs. Such instances of programs are known
as processe;i.

Consider as an example a program which will
compute the reciprocal of its argument. It will
have a parameter, say "x", which is a number, a
prerequisite which checks that "x" is not zero,
and a returns statement which divides one by "x".
This program can be represented in PSN as follows
(the details will be explained as the text
develops the representation):

(invert INSTANCE-OF PROGRAM
STRUCTURE

(x INSTANCE-OF parameters
PROPERTY-VALUES type NUMBER)

(not-equal-zero
INSTANCE-OF prerequt•ites
PRO~ERTY-VALUES

eval
(#1-not-equal

INSTANCE-OF PROGRAM FORM
IS.::A not-equal
STRUCTURE

(left

81

INSTANCE-OF
action_parameters
PROPERTY-VALUES eval xl

(right
INSTANCE-OF
quote_parameters
PROPERTY-VALUES quote Oll

exception [new ZERO-DIVIDE))
(divide-arg INSTANCE-OF returns

PROPERTY-VALUES
eval
(#1-divide

INSTANCE-OF FORM PROGRAM
.I.S.:A divide
STRUCTURE

(lert-d
INSTANCE-OF
quote_parameters
PROPERTY-VALUES quote 1)

(right-d
INSTANCE-OF
eval_parameter
PROPERTY-VALUES eval
x)))).

The notation used to illustrate the program
represents an object by a list enclosed in
parentheses or by an external llllJlle. which acts as
a reference to the object. In the list
representation of an object, the first string is
the external name which will be used to refer to
that object. The remainder of the list consists
of keywords followed by references to objects.
The INSTANCE-OF keyword is followed by a list of
the classes of which the object is an instance;
for example, "invert" is an instance of the
metaclass "PROGRAM". The .I.S.:A keyword is
followed by the classes of which a class is a
subclass; in the example, "#1-not-equal" is a
subclass of "not-equal". The STRUCTURE keyword
is followed by a list of objects contained in the
structure of a class. The structure of "invert"
contains the slots "x", "not-equal-zero", and
"di vide-args". Finally, the keyword
PROPERTY-VALUES precedes a list of pairs of
objects of which the first object is a slot and
the second the corresponding property value. In
the example the object "divide-ergs" has as its
"eval" property value the object "#1-divide".

The illustrations of objects will in general
include only relevant and non-redundant detail.
For example "PROGRAM" is a subclass of "CLASS",
therefore "invert" is an instance of "CLASS", but
only "PROGRAM" is mentioned in the INSTANCE-OF
list. In the case of structure, inherited
objects are shown only if their property values
differ from those they have in an IS-A parent.

The nature of a PSN program is determined by
its slots and their properties. One role that
any slot in a program plays is that of a location
for storing a value. The value stored for a
given slot in a given activation is the property
value bound to the process representing the
activation. In the language of PSN, · the slot
plays the role or a variable, although it is not
truly variable in that a property value of an

object, once bound, may never be changed. This
may at first appear to be a severe restriction
for programs requiring iteration. It is,
however, possible to implement iterative control
structures using recursion. Such an
implementation of a FOR loop is illustrated in
[Kramer 1980).

The parameter "x" of the program "invert"
illustrates the use of a PSN variable. The
object "fl-divide" is an expression in the
program; the use of "x" as the "eval" property
value of the slot "right-d" indicates that the
value of the property "x" will be used in the
division. The variable binding mechanism which
results is static: the use of "x" in the
expression "fl-divide" will always mean "x" in
the program "invert".

Such a reference to a variable in an
expression of a program may be to any dot in any
program in the knowledge base. The interpreter
will have to decide from which instance of the
program containing the slot the binding should be
taken. This situation is similar to that
occurring in recursion in other programming
languages. The use of a variable "X" in a
recursive ALGOL program refers to the value
stored in the most recent activation of the
procedure. The PSN mechanism provides the same
effect.

What is required is a mechanism for
maintaining a record of the order of activation
of programs. This is done through assertions of
the relation "dynamic" between processes. For
example, ·the execution of "invert" will be
represented by a process, say "invertl". At some
point in the execution, the program "divide" will
be invoked. An instance of "divide", say
"divide 1" will be created and linked to "invert 1"
with an assertion of "dynamic". Now, when a slot
is referenced as a variable the interpreter
searches the chain of "dynamic" links for the
first process that is an instance of a program
containing that slot. Thus, when the reference
to "x" occurs in 11 divide1", the interpreter will
search along the "dynamic" assertions starting at
"dividel". Since "invertl" is an instance of
"invert" which is the class containing "x", the
value of the variable is associated with
"invertl" .

The second role played by slots in a program
is that of statements of the program. A
statement consists of a slot and an associated
I.Q.c.m, a PSN object which represents an
expression. Examples of forms in "invert" are
"fl-not-equal" and "fl-divide". When the
statement is executed, the value resulting from
the execution of the form becomes the value of
the slot in its role as a variable. For example,
if the process "invertl" had value "5" for the
property "x", it would receive value "true" for
the property "not-equal - zero" after the execution
of the form "fl-not-equal" (five does not equal
zero).

The expressions associated with the slots in

82

programs are objects which provide a value,
either as calls to other programs as in the slot
"not- equal-zero", or as references to the values
of other slots as in the slot "left" of
"fl-not-equal", When used as a call to another
program, the form provides a mapping between the
parameters of the program to be called and
variables in the scope of the calling programs
(or expressions in such variables). In
programming languages this binding is usually
represented positionally. For example, in ALGOL
a procedure of two arguments called "FOO" is
called by the form "FOO(X,Y)" where "X" and "Y"
are variables known in the oalling program. The
values are bound to the parameters appearing in
the same position in the definition of "FOO".
PSN, however, performs this binding by including
explicit links from the parameters of a copy of
the program to variables or other forms. This
copy of the program is an instance of the class
"FORM" and at the same time an IS-A child of the
program. It therefore inherits the structure of
the program, and in particular the parameters
slots of the program. The bindings of the
parameters are represented by "eval" property
values of these slots.

Often in a form one will wish to use a
constant instead of another expression. In such
cases, the value provided for a parameters slot
is taken, not from an "eval" property value, but
from a "quote" property value. Thus there are
two ways of binding the parameters of a program
to produce a form. A PSN form is either a slot
or a subclass of a program whose parameters are
bound by either an "eval" property to another
form or by a "quote" property to any object. In
the example, the "quote" property is used in the
form "fl-not-equal" to bind the parameter "right"
to the value "0".

5. Metastcuctuce

When the various constructs in a program are
represented by slots there must be a mechanism
for distinguishing the functions of these
objects. The interpreter must be able to decide
whether a given slot is, say, a prerequisite or a
parameter. Also, it will be necessary to fetch
all the prerequisites or all the slots of the
body. In addition, a mechanism is required for
associating expressions with slots. The
metastructure concept is introduced to enable
these operations.

The objects in the structure of a class are
categorised because they must be instances of
classes. These classes are contained in the
structures of metaclasses. If "A" is a class and
B is the set of metaclasses of which it is an
instance, then each object in the structure of
"A" must be an instance of some object in the
structure of some member of B. The metaclasses
therefore organize the structure of the class.
For example, the metaclass "PROGRAM" contains the
objects "prerequisites", "body", and "returns",
therefore the slots of a program may be

distinguished by the classes of which they are
instances. In the program "invert" of the
previous section the slot "not-equal-zero" is an
instance of "prerequisites" and the slot
"divide-arg" is an instance of "returns".
Objects in a metaclass whose instances are slots
are known as metaslots and the subset of the
structure containing metaslots is called the
metastrycture of the class.

Since they have instances, metaslots must be
classes. As classes, they may define the
properties of their instances. The prime example
of a metaslot in this role is the class "slot"
which has all slots as instances. This class is
a part of the metastructure of the metaclass
"CLASS" thereby allowing any class to contain
slots. The structure of "slot" consists of
definitions for the type, default, and
restriction properties of slots. It is
interesting to note that the structure of "slot"
·is made of instances of itself. This works
because it is an instance of "CLASS" as well as
being a member of the structure of "CLASS".

The class "slot" is important in PSN because
only instances of this object define properties
of instances of classes. Thus any metaslot must
be · a subclass of "slot". One reason for
specializing "slot" is to provide more properties
to a class of slots. For example, the metaclass
"PROGRAM" contains a met as lot called
"action_slot" which defines a new property called
'"eval" . The value of the "eval" property of a
slot is the associated expression necessary in
the definition of programs. Since "action_slot"
is a subclass of slot, any instance of the
metaslot will have all of the properties of
regular slots.

In inheritance, all elements of a structure
are treated uniformly. Slots and metaslots are
inherited in the same way. If "8" is a subclass
of "A" and C is the set of classes of which "8"
is an instance, 11 8" will inherit all objects in
the structure of "A" which are instances of some
object in the structure of some member of C.
When objects in a structure are inherited,
property values may be modified subject to the
rule that the new values must be IS-A descendants
of the old. (Where the values are not classes
they must remain unchanged.)

A new aspect of inheritance is that the
inherited object may be made an instance of more
classes so long as it remains an instance of each
class of which it was an instance in the IS-A
parent. For example, the parameters of certain
subclasses of programs may be of one of two types
represented by the subclasses "a~tion_parameters"
and "quote_parameters" of the metaslot
"parameters". When a program is specializ.ed,
parameters slots which are simply "parameters" in
the IS - A parent may become instances of one or
the other subclasses of "parameters". This is
illustrated by · the slot "left" of the form
"#1 - not-equal" as shown in the example of section
four. In the program "not-equal" from which it
is inherited, the slot would be an instance of

83

the metaslot "parameters". In the form
"#1-not- equal" it is an ins~ance of
"action_parameters". The specialized slot will
however also remain an instance of "parameters"
and thus satisfy the rules of inheritance.

The class "slot" in particular, and
metaslots in general, must be instances of
objects in the structures of higher levels of
classes. The class "METACLASS" containing the
metaclass "metaslot" is introduced for this
purpose. "METACLASS" is an instance of itself,
as is "metaslot". In this way one avoids the
introduction of an endless chain of class es each
providing the means for the definition of
structure in its instances. "metaslot" is an
instance of an element of the structure
"metaslot" - -- of a class --- "METACLASS" --- of
which its containing class is an instance.
"METACLASS" is the class of all metaclasses and
"metaslot" the class of all metaslots. However,
an instance of "METACLASS" is a true metaclass
only if it is a subclass of "CLASS", and
similarily, an instance of "metaslot" must be a
subclass of "metaslot" to be a true metaslot.

In many cases it will be desirable to limit
the number of instances of a given metaslot in a
class by specifying upper and lower bounds on
this number. For example, programs may have only
one slot whose associated expression which
computes the value to be returned. PSN
introduces the slot called "interval" to the
class "metaslot", ("metaslot" may have slots
because it is itself a class and metaclass.) The
interval of a metaslot is an ordered pair of
numbers which specify the minimum and maximum
number of that kind of slot which may appear in a
class. This pair is used by the add program of
"CLASS" as the last operation: for each metaslot
in each parent class it will fetch the instances
of the metaslot in the newly created object and
check that the number of such instances falls in
the interval of the metaslot. The metaslot
"slot" has an interval [O,•) where the •
represents infinity meaning that any class may
have any number of slots.

One can now discuss how the various aspects
of programs can be represented as slots. All
programs will be instances of the metaclass
"PROGRAM" which has . a metastructure describing
the various parts. Hence there are metaslots
called "parameters", "prerequisites", "body", and
"returns". Any slots which are not instances of
these metaslots may be used as local variables.
The metaslots now provide the mechanism for
distinguishing the purpose of the slots of a
program. For example, if the interpreter needs
the prerequisites of a program it can search tPe
set of slots making a list of all those which are
instances of the metaslot "prerequisites".

An earlier example showed the definition of
the property "eval" which is used for associating
expressions with slots. This definition is
contained in the metaslot "action_slot" in the
metaclass "PROGRAM". The various categories of
executable slots acquire this property because

I

·· 1

the metaslots "body", "prerequisites•, and
"returns" are subclasses of "action_slot",
inheriting its structure. Two other special
properties are defined for executable slots in
:the same way. These are the "exception" property
which is an expression which may be evaluated to
create an exception should evaluation of the slot
fail, and an "exception_action" property which
specifies exception handlers to be used should an
;exception be created.

In p:eneral a program mAy have an arbitrary
number of statements in each class. Hence the
intervals for the parameters, prerequisites, and
body are [O,•). However, the "returns" slot must
be unique, so the interval for "returns" is [1,1)
so that a value to be r.eturned is always
computed.

6. Specialization

A primary reason for representing programs
as classes is the consequent ability to
specialize programs through the use of IS-A.
This allows uniform treatment of the inheritance
of property values between IS-A related classes.
In general, the property values of a subclass
should be IS-A descendants of the corresponding
property values of the superclass. Since
programs are property values of classes, the use
of IS-A is clearly indicated.

The structural constraints imposed by IS-A
on related programs are however not sufficient to
:insure that the four programs of a subclass act
~orrectly with respect to IS-A. It is necessary
to consider programs in terms of their side
effects and the values returned.

A first consideration is the add program of
a class. An object is made an instance of a
class through the side effects of the add program
of the class. If a subclass of this class has an
add program whose net side effects include those
of the original add program, any object of the
subclass must surely be an instance of the
superclass. Thus one constraint on the
specialization of programs is that the net side
effects of the specialization include the net
side effects of the original.

The structural
inheritance combined

constraint
with the

of IS-A
simultaneous

execution of body slots goes a long way towards
this goal. Any new slot added in inheritance may
not undo the side effects of an inherited slot
because one cannot be sure that the new action
will be performed after the inherited action in
any execution of the program. One cannot remove
en object from a class before it has been made an
instance of the class.

The net side effects of an inherited program
can, however, exclude some of those inherited
because there exists in PSN a way of causing
forms to be executed sequentially. This is done
through the use of the program "BEGIN". This

84

program takes two arguments called "arg1" and
"arg2" of types "OBJECT" (that is any object) and
"FORM" respectively. Evaluation is simple: if
the second parameter has aa value the object
"NULL_FORM", the program returns the value of the
first parameter, otherwise it applies the
interpreter to the value of "arg2". The value
returned in the latter case is the result of the
evaluation of the form. If a chain of forms
calling "BEGIN" is formed with the first
parameter of each form having as an "eval"
property a form and the second parameter having
as a "quote" property value the next subclass of
"BEGIN", one has a chain of forms which will be
executed sequentially. The object

(begin-chain
INSTANCE-OF FORM PROGRAM
lS.::A BEGIN
STRUCTURE

(arg1
INSTANCE-OF action_parameters
PROPERTY-VALUES eval F1)

(arg2
INSTANCE-OF quote_parameters
PROPERTY-VALUES

quote
(begin-chain2

INSTANCE-OF FORM PROGRAM
lS.::A BEGIN
STRUCTURE

(arg1
INSTANCE-OF
action_parameters
PROPERTY-VALUES eval F2)

(arg2
INSTANCE-OF
quote_parameters
PROPERTY-VALUES quote
NULL_FORM))))

for example, is a form which calls "BEGIN" in
which the form "F1" will always be executed
before the form "F2". This results because the
execution sequence begins by the creation of an
instance of "begin-chain" for which parameter
values are supplied by evaluating the value of
"arg1" thus evaluating "F1", and taking the value
of "arg2" as is. "F2" is evaluated only when the
interpreter is applied to "begin-chain2" after it
is discovered that the value of "arg2" is not
"NULL_FORM".

When inheriting such "BEGIN" structures, one
may have a problem with side effects. Any form
may be a subclass of "NULLJORM" .(because it has
no structure). Thus one can modify an inherited
"BEGIN" chain by adding more calls to "BEGIN" at
the end because any form (eg. a call to "BEGIN")
can be a subclass of "NULLJORM". Thus the
structural IS-A constraints will be satisfied.
However these additional forms will always be
executed after the inherited forms in the same
"BEGIN" chain and therefore may undo the side
effects intended by the inherited forms. For
example, a valid IS-A descendant of "begin-chain"
is represented by

(subclass-of-begin-chain
INSTANCE-OF FORM PROGRAM
lS.=A begin-chain
STRUCTURE

(arg2
INSTANCE-OF quote_parameters
PROPERTY-VALUES

quote
(subclass-of-begin-chain2

INSTANCE-OF FORM PROGRAM
IS..:A. begin-chain2
STRUCTURE

(arg2
INSTANCE-OF
quote_parameters
PROPERTY-VALUES

quote F3).

The IS-A constraints are satisfied in
"subclass-of-begin-chain2" because the only
change is a modification to a property value of
"arg2" in which the new value, "F3", is an IS-A
descendant of the old value. The new form "F3"
will always be executed after "F1" and "F2" and
therefore may with certainty undo some side
effects performed by the original forms.

The PSN solution to this problem is to
provide an additional constraint on the use of
IS-A for specializing programs. IS-A may hold
between two programs only if in any possible
knowledge base the set of net side effects
produced by the specialization must contain the
set of net side effects which would be produced
by the IS-A parent if run with the same
parameters.

A final constraint on the use of IS-A for
:programs results from consideration of the values
returned by the programs. In particular, the
.results of test programs are interesting. If
class "B" is a specialization of class "A", and
"Pb" and "Pa" are the respective test programs,
one finds that if "Pb" returns true, "Pa" mu.st
return true because an instance of "B" is always
an instance of "A". However, "Pa" may return
true for an instance of "A" which is not an
instance of "B". The relation between the values
re turned is logical implication: the value
returned by "Pb" implies the value returned by
"Pa". Now nothing in the structure of programs
obviously relates the values returned.
Therefore, a program "P2" may only be a
specialization of "P1" if, when returning Boolean
values under identical conditions, the result of
"P2" implies that of "P1" and when not returning
Boolean values, the results of the two programs
under identical conditions are identical.

The two extra conditions on programs cannot
be tested in a knowledge base Jystem. However,
i f an effort is made to minimi ~e the changes to a
"returns" slot and to avoid adding statements
causing side effects to "BEGIN" chains, it should
be possible to write programs for which IS-A may
.properly be asserted.

85

7. Conclusion

The representation of progr ams as objects in
the PSN formalism has several useful
consequences. Most important is the interaction
with the IS-A hierarchy. Programs themselves
participate in a strictly controlled IS-A
relationship which constrains the programs which
play the various roles in the definition of a
class in a way that insures that classes related
by IS-A behave in the appropriate manner. In
addition, the inheritance resulting from IS-A and
the separation of programs into separately
inheritable statements provide a powerful and
flexible programming tool. In specializing
programs one may add and modify parts of a
program and automatically inherit the unchanged
parts.

The representation of programs as objects
within the formalism allows the manipulation of
programs by other programs. One can therefore
write programs which create or modify programs,
and, as in LISP, one can write an interpreter for
the formalism as such a program. The explicit
representation of program activations provides
similar flexibility. Programs may themselves
alter the flow of control to produce back
tracking and concurrent processes through
manipulation of the assertions of the relation
"dynamic".

A final result is the introduction of
metastructure. Metastructure provides a means of
organizing and constraining the slots in the
structures of classes. This has found immediate
use in organizing the slots of a program to
provide the different functional divisions. It
is anticipated that metastructure may find uses
in other representation formalisms.

8. Acknowledgements

I would like to thank
Mylopoulos for his efforts in
this work. I would also like
Levesque, Alex Borgida, Peter
Lesperance for their valuable

Professor John
the supervision of
to thank Hector

Schneider, and Yves
comments.

Financial support was received from the
Natural Sciences and Engineering Research Council
of Canada, the Government of Ontario, and the
Department of Computer Science at the University
of Toronto.

9. Bibliography

[Kramer 1979) Kramer, Bryan M. "Representation
of Programs" in "Topics in a Procedural
Semantic Network Formalism." Al-Hl!:HO
79-3, Department of Computer Science,
University of Toronto, June 1979.

' I

(Kramer 1980] Kramer, Bryan H. "The
Representation of Programs in the
Procedural Semantic Network Formalism. "
Technical Report No. 139, Department of
Computer Science, University of
Toronto, 1980.

(Lesperance 1980] Lesperance, Y. "Handling

(Levesque

'(Levesque

Exceptions in the PSN Formalism," M.Sc.
thesis, Department of Computer Science,
University of Toronto, to appear.

1977) Levesque, H. "A Procedural
Approach to Semantic Networks."
Technical Report No. 105, Department
of Computer Science, University of
Toronto, April 1977.

and Hylopoulos 1979) Levesque, H.,
Hylopoulos, J. "A Procedural Semantics
for Semantic Networks" in Associative
Networks: Representation .a.Ql1 ~ ~
Knowledge 12X. computers,
Findler, N. V.(ed). Associated Presa,
New York, 1979.

i[Hylopouloa et al. 1978) Hylopoulos, J.,
Bernstein, P. A., Wong, K. T. "A
Language Facility for Designing
Int_eracti ve Database-Intensive
Applications," Paper presented at
SlGMOD conference, Austin Texas, Hay
1978. (to appear in TODS). Also
appears in CSRG Technical Report No.
105 (= AI-MEMO 79-4), University of
Toronto, July 1979.

(Schneider 1978a) Schneider, P. F. "Organization
of Knowledge in a Procedural Semantic
Network Formalism." Technical Report
No. 115, Department of Computer
Science, University of Toronto,
February 1978.

(Schneider 1978b) Schneider, P. F. "Organization
of Knowledge for a Procedural Semantic
Network Formalism" in the Proceedings
~ .t..b.e. ~ National - conference ~
.t.he. Canadian -society Is1J:. .t.he.
Computational studies~ Intelligence,

· Toronto, July 1978.

(Wong 1960) Wong, H. ~ .a.Ql1 Verification~
Interactive Information Systems, Ph.D.
thesis, Department of Computer Science,
University of Toronto, to appear.

86

ORGANIZATION OF MODALLY EMBEDDED PROPOSITIONS
AND OF DEPENDENT CONCEPTS

Alan R. Covington and Lenhart K. Schubert

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2HI

Abstract

This paper is concerned with content-oriented
retrieval of Information from a potentially very
large semantic net, such as would be needed to
support a natural language system with an
unrestricted discourse domain. Spec if ica I ly. the
paper focuses on three issues. The first is the
organization of propositions embedded within modal
opera tors such as propos i tiona 1 attitudes and story··
operators. A subnet structure is described which
permits recursive embedding of various "conceptions
of the world", and a previously developed topical
access mechanism is extended to operate within this
structure. The second is the associative access1nq
of concepts within subnets accord ing to their type.
The third is the design of data structures and
mechanisms for the inheritance of parts
relationships from generic to lmorei particular
concepts. The proposed methods have been
implemented and their effectiveness demonstrated
with the aid of a query system.

1. Introduction

Our long-range objective is the design of an
Eng li sh conversational system with a theoretica ll y
unlimited domain of discourse. Such a system must
be able to store a very l arge knowledge base. and to
use the stored knowledge without succumb ing to
combinatorial catastrophe during routine inferencing
In support of l anguage comprehension, consistency
checking, and simple question answering.

Consequent ly we have concentrated our recent
efforts on the design of a semantic net organization
permitting fast, content-d irected insertion and
access of concepts end propositions in an
arbitrari ly large net. The methods we have
developed ere more than "book-keeping" methods.
Because the insertion and retrieval mechanisms are
sensitive to conceptua l content and utilize an
Inheritance scheme , they rapidly estab li sh logica l
connections which would ordinarily require search
and nontr iv fal inference. Thus they should go a
long way towards "keeping the lid on" combinatoria l
exp losions.

In pr·evious work on our system, Goebel 11977)
Implemented a net structure with the expressive
power of higher-order modal logic , and added
taxonomic structures and algorithms for topic·
orienten Insertion and retrieva l of propositions.
traversal of "topic access ske letons" enabled
selective retrieva l of exactly those proposition~
about a giv£>n concept I such as "Clyde" or "zebra'·)
which pertain to a more or less specific topic (such
as "colouring" or "appearance"), An ear li er version
of the system , without a topical access structure
but with a simple English front end had been built
by Cercone (1975). These connected eftorts are
motivated, sunmarized and extended conceptually in
Schubert et a l . (1979 1. The recent changes and
additions to the system are fully described in
Covington (1980) .

The first of the followir- sections (Sec . 2 1
out I i nes the net f orma I ism and t, ,e mod a I c l a use form
In which propositions are currently represented.
Maximal "structure sharing" is used to economize
storage and to simplify the recognition of logical

• This research was supported in part by Operating
Grant AB818 of the Natural Sciences and Engineering
Research Council of Canada .

87

relationships (especially equivalence I among
different sentences.

The original semantic net system permitted fast
topical retrieval of the system's "knowledge about
the world", but not of propositions belonging to
a lternative conceptions of the wor ld, such as those
making up some person's "mental world", or those
making up a fairy tale. This was not due to any
lack of expressive power • modal propositions were
readily represented but rather to a lack of
organizing principles for grouping and accessing
modally embedded propositions. Sec. 3 describes the
first part of the so lution to this problem. All the
propositions which make up a particular individua l' s
(or particular story's) conception of the world,
such as Alice's beliefs, hopes. intentions, etc.,
are placed in a subnet. Subnets, like the main net,
have logical dictionaries and contain "virtual
concepts" as access points to the propositions
making up their conception of the world. They may
be recursively nested, and the insertion routines
ensure that clusters of propositions s uch as those
describing Tom's conception of Alice's mental world
are organized as coherent subnets .

Sec. 4 then describes the so lution of the
generalized retrieval problem. based on the use of
topic access skeletons within subnet s and on
extensions of the topica l c la ss i fication and
accessing a lgorithms to process nested modal
sentences. A greatly improved "descendant bracket"
representation is used within the current
implementation of topic hierarchies, reducing time
and storage requirements.

Topical accessing so lves the problem of finding
the propositional knowledge which is immediately
relevant to a question (or other task), given the
conceptua l referents of the question. However,
question-answering (and prob lem-solving) often
requires the "inverse" of this type of access,
called associative access: concepts must be found on
the basis of certain given propositions about them.
An efficient method for one important kind of
associative accessing is described in Sec. 5. The
method uses "concept access ske letons" attached to
subnets and implemented in much the same way as
topic access ske letons.

Both topical accessing and concept accessing can
be regarded as weak but fundamenta I ly important
kinds of inference. The former answers quest ions of
the form "What properties of such-and -such a type
does object I or predicate I x have?" , and the I a tter
quest ions of the form "What objects within a given
conception of the world are of such·and·such a
type?" A third and somewhat stronger Kind of
inference which also permeates a ll forms of
cognition is property inheritance, or more
general ly, relationship inheritance. Thi s involves
the transfer of the properties of a generic concept
(such as "bird" I and of relationships among entities
functional ly dependent on that concept (such as the
parts of a birdl to a particularization of tha t
concept (such as a generic or a particu lar robin and
its parts I. Previously proposed mechanisms for
relationship inheritance suffer from logical and
technical difficulties. These are overcome in an
approach described in Sec. 6, based on indexing the
nodes (variables) functionally dependent on a given
node (variable) In a function table attached to that
node. Relationship inheritance is then obtained by
table look-up for concepts in a type hierarchy (or
lattice! .

·1

Sec. 7 contains a sketch of a query system which
serves to demonstrate the retrieval and inheritance
mechanisms based on the network organization. The
concluding section suggests extensions of the subnet
structure, concept accessing mechanism and function
table organization, as well as other directions for
further work.

2. Net logic and normal form

We use semantic net termino logy in referring to
our propositional representation without, however,
attaching a great deal of significance to that
terminology. Essentially, the network syntax
provides for the representation of formulas in
higher-order moda l logic, wit h constant s, functions,
existentia lly and universally quantified variables,
and the usual truth - functional connectives. Of the
modal operators, only the necessity operator a is
predefined, propositional attitude operators (such
as "hopes" and "believes") and other modal operators
being treated as higher-order predicates.

Semantic nets are computer-oriented
representations of sets of propositional formulas .
They are designed to show the access paths from
propositions to their participating concepts and
from concepts to the propositions about them
explicitly. We call these paths "forward links' and
"back links' respectively. Examples of propositions
expressed In the network representation of Schubert
(1976) are shown in Figs. 1- 3.

Fig . 1. "Tom gives Alice the book"
(Tom gives Al ice book 1 I

Fig. 2. "Every dog likes some human'
Vxlyf fx dog]•>l (y human]&lx likes y]JJ
The broken circle indicates
quantification, and the dotted arrow
precedence (scope inclusion).

universal
quantifier

~ PRED

Fig . 3 . 'Mary wants to marry a millionaire"
(Mary wants lxl!Mary marries xl&lx millionaire]]]
The dotted arrow indicates operator-quantifier
precedence, and would be missing in the
transparent reading, "There Is a millionaire whom
Mary wants to marry".

88

No explicit back links are shown; these are easily
visualized as the inverses of the forward links.
Back links could be implemented as linear lists of
pointers, but In our implementation the pointers are
attached to tree-structured "access skeletons"
(Sec. '11. The graphical representation is derived
from the network formalisms of Quillian (1968),
Shapiro (1971), and Rumelhart et al. (1972). Its
correspondence to standard predicate calculus
notation is particularly clear. Some of the
features illustrated in Figs. 1-3 are n·ary
predication, with n>2 (Fig . 1), quantification and
scope inclusion (Figs. 2 & 3), and modal predication
(Fig. 3). The figure captions give standard
predicate calculus renditions of the sarrp le
sentences. However, note that we are using infix
notation: a sentential formula is a list In square
brackets headed by the first argument of the
sentence predicate or operator, followed by the
predicate or operator symbol, followed by any
additional arguments .

The representation logic also provides a special
syntax for functions and for time. The lexical
notation for functions is LISP - like . For exarrple,

I (height-in-cm John) • 1821.
states that the height In cm of John Is 182. The
corresponding graphical notation is described in
Schubert et al. (1979). The lexical and graphical
notation for moments or Intervals of time can also
be found there.

In order for a system to be able to reason in a
human·liKe fashion, it must be ab le to represent
belief strengths (e.g., see Colby et al., 1969,
Schank & Rieger, 1974). We currently attribute
degrees of belief to the system and to other
entities by means of explicit propositions such as

II John loves Maryl has·credlbi lity . 91 ,

!Mary believes !John loves Mary] di
& Id exceeds .5],

where d represents a numerical degree of be l ief. We
could equally well use non-numerical degrees of
belief. Hopefully, degrees of belief can be
Interpreted within a formal framework such as that
of Moore (1979).

In the following discussion of propositional
normal form and on many subsequent occasions, we
will make reference to "type predicates". By this
we mean predicates of the kind conrnonly used in
taxonomies of.entities, such as "human being " ,
"tree·, 'nation", "poem', etc. Examples of non - type
predicates might be "grey", "happy", "vi ll ain " , etc.
Though somewhat arbitrary, the distinction is
nevertheless very useful .

In the early stages of our work on the network
system, it was unclear whether internally stored
propositions shou ld be unrestricted in form, with
arbitrary quantifier and operator ent>edding, or
should be cast in some normal form . We are now
firmly committed to normalization, because
normalization simplifies topical classification
(Sec . 41 and pattern matching (such as that required
for property inheritance, Sec. 61 and qu ick l y
reveals many log1cal equivalences which wou ld
.otherwise have to be inferred. .,

Uncovering logical equivalences is important for
storage economization as well as inf~renGe. For
exarrple, in a knowledge base containing both

!Eve loves Tomi II Ann loves Tomi

(where I is the logical "or ") and

!Tom hopes II Eve loves Tom] I !Ann loves Tomi] I.

the shared formula need be stored only once:
second proposition would slrrply point to
formula. This would not be the case if the
formula were represented equivalently as

the
this

first

~(Ann loves Toml => [Eve loves Tom].

Furthermore, this latter r epresentat ion ~ould make
it harder to estab l ish that Tom's hopes were
fulfil led . Our revised imp lementation makes maximum
use of subformu la sharing, maintaining a formu la
hash table for determining whether a given
subformula is a l r eady in the semantic net .
(Subformulas which are the s ame except for the
variable nodes they ref erence are not treated as
identi cal : ways to minimi ze the number -----.=if distinct
variab le nodes and hence maximi ze s ubformula sharing
are mentioned below. I

A particularly convenient normal form for the
purposes of topical classification is clause form ,
in which formulas are reduced to se ts of purely
disjunctive clauses with implicit quantification.
In Schubert e t al. (19791 a kind of implicative
normal form quit e similar to clause form was
proposed. However , universa lly and existentia l ly
quantified variables were to be shared within type
hierarchies to facilitate property inheritance .
This scheme ha s proved to be logically flawed and
unsuitable with regard to topical accessing !see
Schubert, 1979 and Covington, 1980/.

We have theref0re chosen a normal form which is
closer to c lause form than the origina l ly proposed
form. In fact, the only difference from clause form
(for non-moda l propositions) is tha t universa lly
quantified variables are shared among
generalizations about ent ities of the ~ type .
For example, all c lauses con taining ~[x robin] among
their disjuncts, where x is some universally
quantifi ed variable, use the ~ univer sa lly
quantified node for x. On ly one mod ification of
this ru le i s requir ed, for clauses such as

~[x e lephant] 1~[y e lephant] I [x likes y]

(i.e ., e lephants like themselves and each other I,
containing two or more negated type predications
with identical type predicates but distinct
variables. In such cases one of the variables is
arbitra rily chosen as the variable (node I to be
shared with all other generalizations about entities
of that type, while the remaining variab les (nodes)
are kept distinct from the shared variable.

No spec ial rules are required for clauses
involving distinct type predicates, such as

~ [x e lephantJ [~(y mouse)[[x afraid-of y].

Here the shar ed "elephant variable " wou ld be used
for x and the shared "mouse variab le" for y. By
thus minimi z ing the number of distinct universa l ly
quantified variables, we conflate numerous type
predications, saving storage and facilitating
inference.

We have extended the normalization procedure to
app ly to modal propositions in the following sort of
way . Consider the propos ition

(Ann hopes lx[I x carJ&(Tom owns xi i

(i . e., Ann hopes that Tom owns a earl. To convert
this proposition to "modal c lause form", we first
rep lace x by a new constant c embedded in the
cont ext (Ann hopes ...). Symbolizing this embedding
relation is a problem in the lex ical syntax, but not
in the network syntax. As in Fig, 3, we simp ly run
8 scope incl us ion link from the embedding
proposition to the embedded constant. Not e that
omission of the link would yield the nonequivalent
proposition that there i s a .§l'l~c ific car which Ann
hopes Tom owns. Next we s e,>arate the moda l
proposition into a pair of moda l propositions, each
contai ning "ha 1f" of the embedded conjunct ion. The
resu lt could be written as

(Ann hopes (c earl], (Ann hopes (Tom owns c) I,

if it were not for the fact that c is errbedded

89

within the context (Ann hopes ...] . The only correct
lexical representation of these propositions i s the
orig inal CCJl!l)OUnd proposition with an explic it
existential quantifier. (A lexical syntax capable
of representing modal clause form could be des igned,
but we haven't done so.)

In general, a sentence whose top-level operator
is modal (with one sentential argument I is converted
to modal clause form by recursive ly converting the
errbedded sentential formula to modal clause form,
inserting scope inclusion links from the top - leve l
sentence node to universal and existential nodes
whose quantifiers lie within the modal context, and
distributing the modal opera tor over the embedded
clauses. Modal c lause form prepares the way for the.
recursive net organization described in Secs . 3 & 4,
in which the tabular and taxo11omic organizing
structures used to access top- level propositions are
carried over into modal contexts.

3 . Modal subnets

The modal predicates we have chosen to consider
are those which take an individual as first argument
and a propos.ition as second argument. This format
appears to accommodate not only propositional
attitudes but also stories. For examp le, the story
of Cinderella might be represented in the form

(c is · a·story·in·which lulvlw . .. I (u girl]&
Iv stepmother-of ul& lw pumpkin)& ... I],

where the story itself is treated as an individual
which is related to i ts propositiona l content by the
moda 1 rel at ion "is·a·story· in -which". The treatment
of s tories as individuals also a l lows other kinds of
sta tements to be made about them, such as statements
about their name and origin .

To understand what goes on in people's minds and
in stories, an understanding system must be able to
access and manipulate modally embedded propositions
in much the same way as top - level propositions. We
have therefore extended our network sys t em by
introducing subnets, which provide access to
alternative conceptions of the world and may be
recursively nested. Similar kinds of subnet
organization were previously proposed by Hendr i x
(1975, 19791 and Cohen & Perrault (19761, among
other s. What is distinctive about our subnet
organization is the principle according to which
propositions are collected into subnets (discussed
below) and the topical and associative access
structures supported by subnets (discussed in
Secs. 4 & 5 respectively!.

Automatic creation and maintenance of subnets
requires computable criteria for decicting which
modal propositions "be long together". Our initi a l
inclination was to associate a distinct subnet with
each moda 1 context, such as "John be 1 ieves ... ",
"John wants ... " , "Mary hopes ... ", "I n the story of
Snow White . . . ", e tc . The modal context would then
be spec ifi ed uniquely for each subnet and wou ld not
have to be repeated for each propos ition within the
subnet. However, this advantage is offset by the
space inefficiency of having a separate s ubnet for
each mental attitude of each individua l , with its
own dictionary and concept access skeleton (Sec. 51.
Most important ly the beliefs, hopes, wants, dreams .
etc., of an individual are so closely bound up with
each other that they should be accessible together.
For examp le, the answer to the question why John
plans to paint the fence may be that he believes it s
present colour to be ug ly, or that he wants it to be
white. It should not be necessary to jump from
modal subnet to modal subnet to collect t; ,-,,
information required about a particular concept,
s uch as the information about the appearance of the
fence in John' s mental world.

Thus we have chosen to associate at most one
modal subnet with each individual concept in the
main net and, recursively , in each subnet .
Propositions ,belonging to a subnet are stored in

I

full; for exa,rple, the modal context 'John believes
that , . . • is repeated for each of John's beliefs
(however, the associated degrees of belief are in
general different!.

Subnets differ from the main net in one irrportant
respect: their nodes are 'virtual nodes' serving
exclusively as knowledge access portals, never as
propositional constituents. For exarrple, John's
belief that Mary loves him would be stored as a main
net proposition accessible froni the virtual nodes
for John and Mary in t-he subnet of John's men ta 1
world, as well as from the node for John in the main
net. Since a11 prepositions are stored in the main
net, subnets do not affect structure sharing . For
exarrple, since all the nodes participating in the
propositions

~(Mary loves John), (John wants (Mary loves John))

belong to the main net, the conrnon subproposition
can be shared between them.

Like the main net, subnets contain node
dictionaries. More irrportantly, subnets and their
virtual nodes hold the same kinds of taxonomic
access structures as the main net and its nodes.
These are described in the next two sections.

4. Tgpical classification and accessing

When a very large, heterogeneous knowledge base
1s used to support language understanding or problem
solving, it is essential that retrieval be highly
selective. For exall'ple, a question answering system
confronted with the question

?lx(Clyde afraid-of xi

('ls Clyde afraid of anything?"! would be courting
c01Tputational disaster if it treated all of its
knowledge about Clyde and about being afraid as
1mnediately relevant to the question. Facts about
Clyde's appearance, food preferences, pastimes,
etc., are unlikely to be helpful, as are the
majority of known instances of one thing being
afraid of another. such as Myrtle's being afraid of
spiders. The system would do better to confine its
attention, at least initially, to its knowledge (if
any I about Clyde's fears, or if that is unhelpful.
about Clyde's emotional attitudes and dispositions
1n general, or if that is still unhelpful. about
these sorts of properties as they pertain to members
of Clyde's ~ind I type I. This topic - specific
information cou d be conibined with general knowledge
about being afraid le .g . . that if x is afraid of y,
then x will try to avoid yl in trying to infer an
answer to the question .

These kinds of exarrples suggest the need for a
topical classification of the knowledge available
about each concept. This need is also indicated by
questions which are explicitly topical. e.g., 'What
does Clyde look like?", or ''What do you know about
Clyde's emotional make-up?'. Further motivating
exa,rples can be found in Goebel (19771 and Schubert
et al. I 19791. Reder & Anderson I 19791 offer some
psychological evidence for a topical (thematic)
organization of knowledge about individual concepts,
although they appear to have in mind a single-level
taxonomy. Rychener I 19791 proposes a single - level
taxonomy for knowledge associated with concepts in a
COITpuler-aided design system.

To be of any use, a topical organization lllJSl
meet three requirements: the topical taxonomy on
which it is based must be coherent in the sense that
it brings closely related topics (i.e., those 1 ikely
to be relevant to the same sorts of questions or
problems! into close proximity: the topical category
or categories of any sentence must be readily
conputable ; and topic-specific knowledge about a
given concept lllJst be readily accessible .

Schubert et al. 119791 supplied a hirly
c01Tprehensive and intuitively coherent taxonomy of

90

knowledge about physical objects (with en,:,hasis on
static properties as opposed to behaviour) . The
taxonomy 1s hierarchic, apart from some minor
violations of hierarchy which are easily eliminated.
A fragment of the hierarchy is shown in Fig . 4. The
pairs of numbers attached to the topic nodes are
explained below.

12, 12 l
olouring

{]

orm

appearanc 13,131
1, 15) ranslucency

14, 14 I
ex ternA 1 lex ture 1

... -quality· our (15,151
(10,20) 6, 16) texture2

I 18, 18 I
tactile-quality-Ehardness
(17,201 (19,19)

resilience
(20,201

Fig. 4. Topic hierarchy fragment

The requirement that the topical categories of
arbitrary sentences be effectively computable is
readily met for the sample hierarchy. Some basic
classification mechanisms were reported in Goebel
(1977), and extensions of theGe to deal more
adequately with a wider range of sentential forms
were proposed in Schubert et al . l 19791. These have
now been implemented, with generalizations to allow
for nested modal sentences.

The classification algorithm assigns clauses to
topics relative to each of the predicates and
existentially quantified variables occurring in
them. For exarrple, the clause

~(x spider II !Myrtle afraid-of xi

(Myrtle is afraid of spiders) might be classified as
an ·emotional attitude" proposition relptive to
~. and as an 'emotional effect" proposition
relative to "spider'. The classification algorithm
relies on 'indicator links' attached to predicate
nodes, on the position and quantification of the
arguments of the clause, and on the signs !negation
or none) of the predicates used in the clause . For
example, the topical categories of the above clause
are based on indicator links from "afraid-of" to
'emotional attitude" and 'emotional effect". on the
position of 'Myrtle" in the "afraid-of" predication,
and on the negation of "spider' and the universal
quantification of Its argument. For details of the
classification algorithm see Schubert et al. 119791
and Covington (1980).

One difference between the current algorithm and
earlier versions Is that modal propositions are
appropriately classified as beliefs, goals,
narrative assertions, imperatives. etc.. assuming
that the requisite indicato~have been supplied.
More irrportantly, the new algorithm recursively
classifies the clauses modally embedded within the
input clause. Insertion and access within a
particular subnet uses the classification at the
appropriate level of modal embedding. Modal
operators such as necessity, credibility, and
causation are ignored at present, i.e.. the topic
categories of the embedded sentence are transferred
to the embedding sentence.

The third requirement for a topical organization,
that propositions involving a particular concept and
pertaining to a particular topic be readily
accessible, may seem hardest to meet. Note that the
problem is not to taxonomize the knowledge stored in
the semantic net as a whole. but to do this for
every concept. The storage requirement& of such a
scheme could be prodigious .

The topical organization developed by Goebel
(1977), Schubert et al. (19791 and Covington (19801
does provide concept-centred topical access. yet

avoids excess ive storage costs. The data structures
used include a represent at ion of the gener.a l topic
hierarchy in the main net and tree -structured 1QQJ.£
tccess ske letons attached to al l concept nodes
othe r than universally quantified nodes I within the

main net and all subnets. The access ske letons can
be thought of as the smallest fragments of the
genera l topic hierarchy needed to ta xonomize the
propositions actua lly availab le about each concept.

An example wi 11 clarify the method. Suppose that
the topic hi e rarchy includes the fragment previous ly
shown in Fig. 4, and that the semantic net contains
propositions to the effect that a ball is round and
resilient. The two propositions, say p and q, would
be c lassified as "form" and "resilience"
propositions re lative to "ball". If these are the
only "external-qua lity" propositions about "ball",
then the part of the access ske leton of "ball"
corresponding to the hierarchy fragment of Fig. 4
would have the form shown in Fig. 5.

external (12,1 21

{

form (pl

... -qua 1 ity
(10, 20 I

resilience (qi
(20,201

fig. 5 . Path -contracted access skeleton
fragment corresponding to Fig. 4.

Note that only paths leading to propositions have
been retained in the access ske leton. Furthermore,
linear path segments have been contr·acted, so that
every non-terminal node has at least two direct
descendants : in particular, the "appearance" and
"tacti le -quality" nodes have been e liminated by path
contraction. It is the pruning and contracting of
paths which makes possible concept-centred, topic
oriented accessing of knowledge with modest storage
overhead.

A version of path contraction was proposed in
Schubert et al . (19791 and was shown to yield access
skeletons whose storage cost is only twice that of
the unstructured linear back · link lists which they
supplant. The current implementation improves on
that proposal by retaining the lowest instead of the
highest node of a contracted path, thus avoiding the
need to recompute the classification of accessed
propositions.

A more important innovation in the new version of
the topical organization is the use of pairs of
numbers to characterize nodes in the general topic
hierarchy, as indicated in Fig. 4. These are
assigned and used as follows. The first of each
pair of numbers, ca ll ed the identification number
(!NI of the corresponding topic, is the number
ass igned by a pre-order Ii .e . , depth-first)
numbering of the topic hierarchy . The second
number, the "highest descendant" (HDI, is the
maximal IN among descendants of that node . Then all
descendants of a node have identifi cat ion numbers
within the "descendant bracke t" I IN, HDJ determined
by the pair of numbers at that node. The topic
access ske leton nodes are not explicitly numbered .
but contain pointers to the topic hierarchy nodes
they represent.

Without descendant brackets, access to
propositions subsumed under a particular topic
within a particular topic access ske leton requ1red
an initial ascent in the general topic hierarchy and
involved c0ff'4)1ications due to path contraction .
With descendant bracke ts, the initial step is merely
a look -up of the IN of the desired topic: this is
followed by a descent in the . acess skeleton such
that the descendant bracket of t he node selected at
each step contains the desired IN. For example, the
"exter nal -quality" branch in Fig. 5 would be chosen
when accessing the "form" proposition p because the
IN of "form" is 12 and this lies within the bracket
I 10,20] of "ex ternal-quality" . The design of
efficient algorithms for expanding access skeletons

91

when inserting new propositions, and for finding all
propositions subsumed under a topic access skeleton
node deleted by path contraction, has also proved to
be quite straightforward; for detai Is see Covington
(1980].

As we have emphasized, the "virtua l " nodes of
subnets serve exclusive ly as knowledge access
porta l s. More specifica lly, each virtual node
points to the root of a topic access skeleton. The
propositions et the terminals of an access ske leton
are "about" the concept referenced by the virtual
node, at the level of modal embedding appropriate to
the level of the subnet. In this way subnets
provide concept -centred, topic -oriented access to
propositions decribing alternative conceptions of
the wor ld . That 1s half of their function; we now
turn to the other half.

5. Concept accessing

People can readily recall objects associated with
stories they know, given some of their key
properties. What animals are there in "Little Red
Riding Hood", what veh icles in "Cindere ll a", what
CO!T'4)Uters in "2001"? The identification of entities
with specified properties is often called
associative access (or retrieval I . It i s of direct
use in answering questions such as those just given.
and may also be important in determining remote
referents of noun phrases in story understanding.
(For exarrple, the centra l narrative in Hemingway's
The Old Man and the Sea contains widely separated
references to "the boy", who is nevertheless easily
identified as the old man's young friend Manolin. I

The methods usually suggested for implementing
associative accessing without Specia l hardware
involve enumerating all known entities with the
desired properties and checking whether they belong
to the current context, (e.g., Scragg, 1975, Hayes,
1977), or enumerating a ll entities in the current
context and checking whether they have the desired
properties (e.g ., Brown & Burton, 1975, Hobbs,
1975) . The latter type of method seems more natural
and potentially more efficient than the former;
however, efficiency depends on the search context
being small, and this is not a lways the case . For
example, the search for "vehic les" in the Cinderella
story is likely to be quite time-consuming if
implemented through exhaustive testing of al l
entities mentioned in the story. PLANNER (Hewitt,
19711 permits pattern-directed retrieval of
assertions, but still relies on enumerative search
if no explic itly matching assertions exist in , the
data base.

We have implemented a non -enumerative method of
accessing instances of any given type of concept
within a story subnet, or any other kind of subnet.
The method uses concept access skeletons, first
proposed for this purpose in Schubert et al. (19781.
However, the proposal there was to attach concept
access skeletons to all concepts, which we now
believe to be both impractical and unnecessary.
Instead, concept access skeletons are associated
with subnets . Each is a tree which echoes fragments
of a type (generalization, JS-Al hierarchy and whose
nodes point to c lauses containing unnegated type
predications at the appropriate level of embedding.
For example, the subnet for the story of Little Red
Riding Hood would contain a concept access skeleton
with a "wolf" node pointing to the clause

ILRRH 1s -a·story-i n·which lw wolf II,

where w is a 'modally embedded constant" as
described ih Sec. 2.

The construction and use of concept access
skeletons is entirely analogous to that of topic
access skeletons. A · general type hierarchy,
analogous to . the general topic hi era rchy (and in
fact structurally united with it in the current
implementation), resides in the main net. In effect
this hierarchy duplicates the collection of main net

·. _. I

~; , . .,, :, ' ~-·, .. ·• ' ~• ~- ·,.•.• ~ . .:.-... • .. ~ . -~,,;.,, • . ,.; !..-....;.. ;._ ,.;...J,. ··.:. ,w; ... "'-"v'-o.'"- -'-~~ -•· ~ ···- -· ··~- · ···· ·

pred I cat 1 ons of the form (c P J or ([x PI • > [x OJ J ,
where P and O are type predicates, but uses a
simplified representation geared toward efficient
concept accessing. Like the topic hierarchy nodes,
the type hierarchy nodes are labelled with numeric
descendant brackets. The concept access skeleton of
a subnet contains the paths needed to access the
type proposinons relevant to that subnet, where
these paths have again been contracted to eliminate
linear segments. As in the case of topic access
skeletons, access to a proposition via a concept
access skeleton requires only a look-up of the
identification number of the desired type concept,
followed by descent in the appropriate concept
access skeleton with the aid of the descendant
brackets associated (via pointers to the general
type hierarchy) with access skeleton nodes. Thus
descent towards ·anima l" propositions within the
story net for Little Red Riding Hood, for example,
would lead directly to the "wolf" proposition, even
though the wolf has not been explicitly described as
an animal in the story. This is because the
identification number of ·wolf" is included in the
descendant bracket of "animal" .

6. £.c.Qp_ll!:.!Y_a..!:!f!. re 1 at i onsh in i nh_er it ance

A system possessing knowledge about entities in a
taxonomy of types will often have to combine
knowledge about a given entity with knowledge
inherited from higher - leve l entities . For example,
in a system knowledgeable about birds in general and
owls in particular, the fact that an owl's beak is
curved might be an exp licit piece of owl -knowledge,
but the fact that the owl can use its beak to seize
food is more likely to be implicit in its bird
knowledge. To interpret both properties as
properties of the ~ beak, the system must
recognize the correspondence between the bird's beak
and the owl's beak.

As already mentioned in Sec. 2, a •variab le
sharing" method proposed by Hayes (1977) and
Schubert et al . (1979) has proved unworkable. A
logically and technically satisfactory alternative
Is to use parts functions. For example, If f is a
function which picks out a bird's beak, then bird
knowledge and owl knowledge will take the form

~(x bird] I [(f x) beak-of x], ...

~(y owl I I ((f y) curved),

where x and y are the primary variables (nodes)
associated with "bird" and "owl" respectively (see
Sec. 2) . Establishing the correspondence between (f
x) and (f y), once x and y have been matched, Is
then just a matter of locating the nodes
representing the values of f for argument nodes x
and y .

In Schubert (1979) a " function table" scheme was
suggested for locating values of functions quickly.
This scheme has now been Implemented. The "scope
inclusion" field of any (non-virtual I node may
contain a pointer to a hash table. The table is
lnde >ed by function name, and the value tabulated
for a given function name is a pointer to the node
repre5enting the value of that function applied to
the concept to which the table is attached. limit ed
provision has also been made for inverse access from
11 functionally dependent node to the node on which
it depends; however, the inverse pointer is
avai labl e for only one functional dependence of the
node, and only if the node does not itself have
functionally dependent nodes.

With the help of function tables, properties and
relationships are easily mapped downward to a
concept and its parts from more general concepts,
irrespective of the number of intervening concept
levels . For example, the fact that Clyde's head
joins his neck is easily obtained from the "animal"
concept. using functions which yield those parts;
this is no more difficult than obtaining a property
of his proboscis by referring to elephant knowledge,

92

even though ·animal" might lie several levels higher
than "elephant·.

However, 11 requirement in both of these examples
is that the names of the functions determining
Clyde' & head, neck, proboscis, etc., be known and
usable as keys in Clyde's function table . In the
current implementation this information is supp li ed
"by hand", using utility routines for inserting
entries in function tables and setting up inverse
dependency pointers. For statements of the form
¥x1y[... J the Skolem function(s} introduced for the
existentially quantified variablelsl are
automatically inserted in the function table(sl of
the appropriate universally quantified variable(&).
But again hand-coding is needed to make the Skolem
functions introduced by !J!(Q such statements
identical, unless the statements have been supplied
as an explicit conjunction sharing the same
universally quantified variable. In other words, we
have not attempted to deal here with the general
problem of automatically inferring that a node is a
value of some function already known to the system.
(For some proposals with regard to this problem see
Schuber t , 19 7 9 . I

The use of func tion tables has been integrated
with the topical accE,ssing mechanism in such a way
that topic -oriented retrieval of knowledge about a
(given part of a) given concept wi 11 automatically
"pull down" relevant information from concepts
dominating the given concept in the ta,onomy of
types . This combination of topical retrieval and
property Inheritance is illustrated in the next
section .

7. Querying the semantic net

In addition to the structure building routines,
the system implementation includes a limited query
language which can be used to demonstrate topical
access, concept access, and property inheritance.
Some examples of queries follow, with rough English
translations and with the responses they might
elicit, assuming that the requisite knowledge has
been placed in the semantic net.

(1) ?(Clyde animal]
" Is Clyde an animal?"

Yes.

(2) ?s m(Clyde ?p(tp.appearance)J
"What do you know about Clyde's appearance?"

(Clyde handsome), I Clyde big) , [Clyde grey).

(3) ?mlClyde likes?,),
"What (or whom) does Clyde like?"

[Clyde likes John). (Clyde likes Dumbo).

(4) ?m(?x ?p(tp.gen:elephant) I,
"What elephants do you know?·
Clyde, Dumbo.

(5) ?s m(John believes !Clyde
?p(tp.appearance)J J,

"What does John believe about
appearance?"
(John believes (Clyde ugly) I ,
(John believes (Clyde pinKI I.

(6) ?s m[LRRH is -a-s tory - in -which
[?x ?p(tp.gen : animal)] I .

Clyde's

"What animals are there in the story of Litt le
Red Riding Hood?"
(LRRH is -a-story-in -which [w wolf]) .

Queries are propositional schemas preceded by a
question mark and possibly the· flags s or m. A
proposition a 1 schema i s either an atomi c proposition
with constant arguments (as in (1} I, or such a
proposition with its predicate and/or some of it s
arguments replaced by query variables la s in (2 1-
(4}), or another propositional schema embedded
within an unquantified modal predication (as in 151
& (6}). Query variables are prefixed with ?; they
match any node unless fol lowed by a topic or conceot

restriction enc losed in braces. Topic restrictions
take the form tp.<top ic> and concept restrictions
the form tp.gen:<concept>.

The response to { 1) is obtained by accessing
genera li zat ion Ii .e .. type) pr ed icat ions about Clyde
and if necessa ry, about concepts which genera li ze
Clyde. The response to 121 1 ists the monadic
predications attached to the "appearance" node and
its descendants in the topic access skeletons of
Clyde and the concepts which generalize Clyde. If
the s l subhierarchyl f lag were missing from query
121, only the nonspecific appearance propositions
dire0..!.Y attached to "appearance" nodes in the
appropriate topic access ske letons would be
accessed. Thus on ly the first of the propositions
in the response to 121 might be returned, assuming
that the others are attached to the appearance
subtop ic s "size" and "colouring". If the m (many I
f lag were mi ss ing, the search would terminat e with
the fir st matching proposition found. The response
to 131 is found via the topic access skeleton of
Clyde or concepts which generalize Clyde . The
respons e to 141 is obtained via the concept access
ske leton of the main net. The response to 151 i s
obtained much as tor i£1. except that the topic
accezs skeletons and generalization propositions
uti l ized are those be longing to the subnet
associated with John. The response to 161 is
obtained via the concept access ske leton of the LRRH
subnet. lw is a constant embedded in the moda l
context IL RRH is-a -s tory - in-which . . . J. I

All of the previous examp les may involve property
inher itance of a simp le sort. The proposition
IC 1 yde grey I in the response to query 12 I , for
example. may be obtained by ascent to "elephant" (a
genera li zat ion of Clyde), access of appearance
propositions about this concept, and matching of the
query against the accessed proposition

- I x e lephant JI I x grey].

Property and re lationship inheritance for ~.
which makes use of function tab les, is illustrated
by the fol lowing queries and responses.

(71 ?m lCneck connected-to ?xi,
"What i s Clyde's neck connected to?"

ICneck connected-to Ctorso l,
ICneck connected-to Chead l .

(81 ?s mlCtrunk ?p{tp.appearance} I
"What do you know about the appearance of
Clyde's trunk?"
ICtrunk long I , ICtrunk tapered].

191 ?s mlCtrunk ?p{tp.phys-rel} Cmouth]
"What is the relationship between Clyde's

trunk and his mouth?"
ICtrunk in-front-of Cmouth J ,
(Ctrunk next-to Cmouth J .

Here it is assumed that
consta nt nodes already
referenced in a function
for Clyde.

Cneck, Ctrunk, etc., are
existing in the net and

table attached to the node

The processing of query 171 begins with a topical
access to physica l relationships about Cneck and an
attempt to match the accessed clauses to the query.
Then a check is made for functiona l dependency of
Cneck , yielding its functional dependence on Clyde.
The function found is looked up in the function
tables of the genera li zations of Clyde, and the
nodes thus loca ted are examined for further physica l
relationships matching the query. Thus the response
to 17) may be based on knowl edge about Clyde and/or
know ledge about generalizations of Clyde . In much
the same way responses to 181 o d 191 may be based
on knowledge reached at severa l l eve l s of
generalization with the aid of function tables.

Finally we should mention that topic-oriented and
concept-orient ed retrieval of time-dependent
Information, such as the events of a story, presents

93

no special problems.
(19801.

For examples see Covington

B. Concluding remarks

We have described knowledge organizing principles
which permit fast topical and -associative retrieval
of knowledge from an arbitrari ly large network
containing recursively nested "conceptions of the
world". As the examp les of the last section showed,
the retrieval mechanisms incorporate a rudimentary
inference capability, based on property and
relationship inheritance and on structura l and
conceptua l matching of queries to c lauses. We
believe that the eff ic ient implementation of these
essential processes in our system provides a firm
foundation for further work on mechanized inference
and c~rehension.

However, most of the inference mechanisms remain
to be bui l t, and even some of those built do not
ful l y achieve their purpose. We mention some of the
modifications and extensions which seem immediately
feasib le.

First, we need to decide on a suitab le normal
form for sentences invo lving modalities other than
stories and propositional attitud~s. such as causal
constructions and counterfactual conditionals.
These permit di str ibution of the moda l operator over
a conjunct ion of consequences lwi th _the aid of
"embedded constants" I but not over a conjunction of
premisses. The classification and access mechanisms
should be extended to handle such propositions.

Subnets need to be attached to type concepts as
well as individual entities. These would contain
conceptions of the world characteristic of entities
of those types. For example, knowl edge about a
particular person's menta l world or about a
particu lar fairy tale would be obtained not only
from the subnets of those individua l entities but
also from subnets for humans and fairy tales in
general. Clearly, much of our knowledge of what
goes on 1n people ' s minds lor in fairy tales I is
general rather than specific.

It also seems desirable to introduce subnets for
certain sets of propositions which are not modally
embedded, such as the propositions making up a true
story, or a general pattern of events !script?), or
the propositions relating to the parts of a system .
After al l , subnets have no logical significance.
serving only to aggregate knowledge into co·
accessible, topical ly and associatively organi zed
clusters. Thus they may be suitab le as context
structures for contexts other than menta l worlds and
stories.

The present concept accessing mechanism
presupposes a hierarchical taxonomy of types , which
may be hard to design for some kinds of objects.
For example, artifacts are best categorized by their
purpose, but some artifacts are multipurpose (e.g . ,
a knife can be a cutting tool or a weapon!.
However, it appears to be possibl e to extend our
current methods to deal with mild infractions of
hierarchy or with sma ll numbers of alternative
hierarchies. Another l imitation of concept
accessing is that it provides access only on the
basis of a sing le type specification. Thus it does
not help to locate object s on the basis of non-type
properties such as being an "antagonist" of a story ,
except to the extent that non - type predications
imply ty~e constraints le .g. , antagonists are
usually animate beings). Al so, concept accessing
does not obviate the need for "intersec tion
searches" for objects satisfying multiple
constraints such as commonly occur in PLANNER·liKt
problem so lving systems. a l though it may provide an
initial set of candidates of a suitable type .
Finally, concept accessing may be ·useless for
accessing parts of entities, given the type of part,
such as "nose", "rudder", or "department head" ,
since parts tend to form hierarchies "orthogonal" to
type hierarchies (Hayes, 1977 1. Parts accessing may

I

call for separate "parts access skeletons".

The organization of function tables needs to be
modified to allow multi-argument functions, composed
functions (e .g., the fingernail of the index finger
of the left hand of John), and entities which are
the value of more than one function or of the same
function applied to more than one argument. The
most natural way to allow for multi-argument
functions appears to be lo detach function tables
from concepts, making them indexable · by the
arguments as well as the names of the functions.

More radical than these extensions will be the
introduction of partitioning lattices to represent
both taxonomies of types and parts structures,
coupled with special inference mechanisms such as
those proposed in Schubert (19791. The standard
sort of representation of type and parts
relationships used at present (exemplified by "All
elephants are ma1TY11als" and "A ll ma1TY11als have a
head") make reasoning about types and parts
unnecessarily difficult. Also computationally
convenient representations of syts of entities, such
as groups of people or an anima 's set of legs need
to be intrOduced.

With these extensions most of the substrate for
higher-level "combinatory" inference and
comprehension processes will be in place.

References

Brown, J, S., & Burton, R. R. (19751 . Multiple
representations of knowledge for tutorial
reasoning. In D. G. Bobrow & A. Collins,
.,.,.Re=p"-,--r e=s=ee-n~t~a~t~i~o~n~a~n=d~U~nd=e=r~s~t anding , Ac . Pr es s , New
York, NY.

Cercone, N. (19751. Representing natural language
in extended semantic networks. Ph.D. thesis,
Dept. of Conputing Science, Univ. of Alberta,
Edm~nlon, Alberta.

Cohen, P. R.. & Perrault, C.R. (19761.
Preliminaries for a computer model of
conversation. Proc. 1st CSCSl/SCE!O Nat. Conf.,
Univ. of British Columbia, Vancouver, B. C.,
Aug. 25-27°, pp. 102 - 111.

Colby, K. M., Tesler, L. & Enea, H. (19691 .
Experiments with a search algorithm on the data
base of a human belief structure. Stanford Al
Project memo Al -94, Stanford Univ ., Stanford, CA.

Covington, A. R. I 1980).
representation of knowledge
M.Sc. thesis, Dept. of
Univ. of Alberta, Edmonton,

Organization and
in a semantic net .
Computing Science,

Alberta.

Goebel, R. (1977). Organizing factual knowledge in
a semantic network. M.Sc . thesis, Dept . of
Computing Science, Univ. of Alberta, Edmonton,
Alberta.

Hayes, Phi lip (19771. On semantic nets, frames and
associations. Proc. lJ CAI 5, MIT, Cambridge, MA,
Aug. 22-25, pp . 99-107.

Hendrix,G.G. i1~751. £xpand1ng the ut1lity of
semantic networks through partitioning. Advance
Papers of IJCAI 4, Tbilisi, U.S .S.R . , Sept. 3-B,
pp. 115 - 121 .

Hendrix, G. G. (1979 1. Encoding knowledge in
partitioned networks. In N. V. Findler led. I.
Associative Networks - The Representation and Use
of Knoviledqe by Computers, Ac. Press, New York,
NY, pp. 51 - 92 .

Hewitt, C. 119711 . Procedural embedding of
knowledge in PLANNER, Advance Papers of the 2nd
Int. Joint Conf. on Artificial Intelligence,
Sept. 1-3, Imperial College, London, pp. 167-182.

Hobbs, J . R. (19751 . A general system for semantic
ana lysis of EnQlish and its use in drawinQ maos

94

from directions.
Microfiche 32.

Am. L ~ linguistics.

Moore, R. C. (19791. Computational models of
beliefs and the semantics of belief-sentences .
Tech. Note 187, Al Center, Stanford Research
Institute, Menlo Park, CA.

Quillian, M. R. (1968) . Semantic memory . In
M. Minsky (ed . I, Semantic Information Processing,
MIT Press. Cambridge, MA, pp. 227-270.

Reder, L. M. & Anderson, J. R. (19791. Use of
thematic information to speed search of semantic
nets. Proc. IJCAI 6, Tokyo, Aug. 20-23, pp . 708-
710.

Rumelh11rt, D., Lindsay, P. & Norman, D. (19721. A
process model for long term memory. In
E. Tulving & W. Donaldson (eds . I, Organi zation of
~. Ac. Press, New York, NY, pp. 198-221 .

Rychener, M. D. I 19791.
production rules in
computer structures.
Aug. 20-23, 738-743.

A semantic network of
a system for describing

Proc. IJCAI 6, Tokyo,

Schank, R. C. & Rieger, C. (1974). Inference and
the computer understanding of natural language.
!..J..:. _2, pp. 373-412.

Schubert, L. K. (19761 . Extending the expressive
power of semantic networks. !..J..:. z. 163 - 198 .

Schubert, L. K. (19791 . Problems with parts.
Proc. IJCAI 6, Tokyo, Aug. 20-23, pp. 778-784 .

Schubert, L. K., Cercone, N. & Goebel, R. (19781.
The structure and organization of a semantic net
for comprehension and inference.
Tech. Rep. TR78·1, Dept. of Computing Science.
Univ. of Alberta, Edmonton, Alberta. A condensed
version appeared as Schubert et el. (19791 .

Schubert, L. K. , Goebel , R. & Cercone, N. (1979 I .
The structure and organization of a semantic net
for comprehension and inference. In
N. V. Findler (ed. I, Associative Networks The
Representation and Use of Knowledge by Comput ers.
Ac. Press, New York, NY, pp. 121-175 .

Scragg, G. W. (1975). Frames, planes and nets: a
synthesis, Rep. No. 10, Inst . for Semantic and
Cognitive Studies, Univ . of Geneva, Centre
Universitaire d' lnformatique, Geneva.
Switzer land.

Shapiro, S. C. (1971). A net structure for semantic
information storage, deduction, and retrieval.
Advance Papers of IJCAI 2. Imperial College,
London, Sept. 1-3 , pp. 512-523.

~ .9!. ~ ATTRIBUTE GRAMMAR .!Ji NETWORK-BASED REPRESENTATION SCHEMES

Clifford R. Hollander
IBM Scientific Center

1530 Page Mill Road
Palo Alto, CA 94304

USA

ABSTRACT

This paper discusses a technique whereby an
a ttribute grammar can be used to formally define,
calculate, and propagate semantic information
within the conte xt of a network-based knowledge
representation scheme. The goal here is to
produce a set of (stored) descriptions, coded as
collections of attribute/ value pairs, which can
serve to ·characterize the semantics, at least from
the viewpoint of certain inference tasks, of the
entities and relationships represented by the
network. The descriptions are generated in a
s traightforward mechanical fashion by applying an
appropriate attribute grammar to node/link
expressions formulated' in a given knowledge
,specification language.

l . INTRODUCTION

~etwork- based representation schemes * l* have
proved to be useful tools in organizing, building,
and utilizing knowledge bases [3] pertaining to a
variety of problem domains and tasks. Ultimately,
however, the effectiveness of a representation
depends upon the ease with which semantic
information can be associated with the various
objects and relationships depicted within the
network. One way to facilitate this is to look
for a formal method by which arbitrary semantic
properties of these constituent elements can be
mechanically derived from their syntactic
characterizations. Ideally such a method will
include: (1) A definitional component for
statically introducing semantic properties and for
e xpressing the rules gover ning the assignment of
v a lues to properties . (2) A calculational or
p ropagational component for dynamically evaluating
s emantic rules to yield values for the properties
bound to various syntactic constructs . In
general, this may entail relating the properties
of a subject phrase to those of its syntactic
ancestor, descendant, and (even) sibling phrases.
(3) An inferential component fo r utilizing these
derived property values to e f. . ect certain search
and deduction operations.

* l * The tenn 'networ k - based representation' is
intende d to to embrace both s emantic networ ks
[1] a nd frame systems [2].

95

The approach taken in this
attribute grammar [4,5] to
of a particular knowledge
e.g., KRL [6] . As an
technique is exercised on
in [7], which defines what
system.

paper entails using an
fonnalize the semantics
specification language,
extended example, the
the language introduced
is essentially a frame

2. REPRESENTATION SCHEME

A semantic network (or a frame system) permits the
conceptual primitives of a highly structured
problem domain to be conveniently represented as
an interlinked collection of descriptions. Often,
a single formalism can be used both (1) for
statically characterizing the objects, activities,
and relationships which underlie the domain and
(2) for dynamically instantiating pieces of
problem specifications and their solutions. This
uniformity of representation can greatly
facilitate the integration of static and dynamic
infonnation where appropriate.

For this discussion, the knowledge structures of
interest are composed of descriptive blocks, here
called entities. Each entity has a number of
identifiable components, each with certain
properties, . and participates in various
relationships, both explicit and implicit, with
other entities. An entity is defined by a set of
named slots, which elaborate its properties via
sets ~(nested) descriptive clauses. The
ordering of slots within an entity or of cla uses
within a slot is irrelevent, in that it should not
influence the eventual overall effect produced by
their processing.

For the purpose of exposition, consider a fragment
drawn from the specification language used in [6],
as defined by the grammar shown in Fig. l. In
coding these productions, metasymbols beginning
with an asterisk denote tenninals, a list of
<xxx> phrases is denoted by <xxx-1 . . N>, and a n
optional phrase is enclosed within squa ~e
brackets. The principal constructs of the
language are (1) names, (2) numeric and string
values, (3) relational expressions, (4) entity
references, possibly qualified by lists of slot
constraints, (5) slot references, and (6)
specia lization constraints. For simplicity, it is
assumed that no two entities have the same name

I

<entity> : , ...
<Slot> : , ...

<clause> : : "'

<Val spec> : : •

<entref> : ,.,
<entcon> : :•
<slotcon> : :•
<slotref> : '"'

<*ent-name > <Slot-1 •• N >
<*slot-name> <Clause-! •• N>
spec <entref>
<*relop> <Valspec>
is <entref>
T*value>
<alotref>
<*ent-name> [<entcon>]
with <slotcon-1 •• N>
<*slot-name> <clause>
~ <*slot-name> of <entref>

Fig l. ~ Sample Grammar

and that
same name;
[1]).

no two slots within an entity have the
this is not absolutely essential (see

Explicit linkage within the network is used to
build specialization hierarchies (spec edges) and
reference relationships (is and slot edges) among
domain elements. Specialization "'ciiains represent
successive refinements or restrictions of domain
classes into nested subclasses. In general, an
entity possesses two kinds of descriptive
attributes. Each child entity inherits all ·of the
attributes (slots) belonging to its parent (some
of which are further constrained by the terms of
its specialization), and synthesizes any new ones
required for defining the characteristics of its
subclass. Each parent entity, therefore,
constitutes a factoring of constraint information
which must be satisfied by each of its
descendants, including entities dynamically
created during a specific problem solving session.
Each reference declares a slot of the referring
entity as being logically bound to (a possibly
constrained version of) the referent entity or one
of its slots. (Note: In many cases references are
bi-directional, ~e sense that each entity has
a slot which nominates the other.)

Fig. 2. diagrams some of the kinds of structures
developed within the system discussed in [7].
Displayed here are portions of six entities, their
slots, and their interrelationships within a pair
of specialization hierarchies. Specialization
relationships are indicated in two ways here: (1)
a dashed line connects each child entity with its
parent and (2) those slots of the child which are
constrained by the terms of the relationship are
so indicated. Therefore, the existence of a spec
slot as suggested by the syntax is formal rather
than actual. Reference relationships, on the
other hand, exist as actual values and are
depicted by solid arrow.

One hierarchy imposes a ~onomy over a set of
device descriptions. The top-level DEVICE entity
defines two slots, MODE and ASSOC. Although no
constraint is imposed upon the MODE slot h~re, the
ASSOC slot must contain a reference to a DEVICE FN
entity or one of its descendants (see below). The
SENSOR entity is a descendant of DEVICE (actually
through several levels of specialization). It
defines a SIGNAL slot without constraints, a

96

DEVICE FUNCTION

MODE I NPUTS ;? l

ASSOC !!_ DEVICE _FN - 0 UTPUTS ;? l

I
I
: .
I
I

SENSOR

MODE m'INPUT'

SIGNAL

MIN VAL ~ 0

MAX VAL > !!£!.
MIN VAL

of SENSOR
I

--
I
I

ART_PR_S ENSOR

SIGNAL 'ANALOG'

MIN_VAL -0

MAX VAL -250

J

TYPE

i
I

DEVICE FN

TYPE • 'DEVICE'

ASSOC is DEVICE

AI

INPUTS

OUTPUTS

ASSOC _

I
I

SAMPLE

.. 1

.. l

is SENSOR
with SIGNAL
• 'ANALOG'

SAMP _SIZE ;? 1

Fig, 2. Sample Entity Structures

MIN VAL slot which must be filled with a
non;egative number, and a MAX VAL slot which must
be filled with a number larger than the contents
of the MIN VAL slot. The ART PR SENSOR entity is
used to represent the subclass of arterial blood
pressure sensors. Although it does not define any
new slots, it specifies that its SIGNAL, MIN VAL,
MAX VAL slots must respectively contain the values
'ANALOG', O, and 250.

The other hierarchy is concerned with describing a
class of processing functions. At its top level
is the FUNCTION entity, which defines three slots:
INPUTS/OUTPUTS slots which indicate that a
function must have at least one input and one
output, and a TYPE slot which here is
unconstrained. One of its descendants, the
DEVICE FN entity, represents the class of
functions which service devices, as opposed to
those that say perform arithmetic operations or
data transformations. Thia entity constrains its
inherited TYPE slot to contain the value 'DEVICE'.
It also defines an ASSOC slot which must contain a
reference to a DEVICE entity or one of its

descendants. At a still lower level, the
AI SAMPLE entity is used to represent the subclass
of- analog input sampling functions. It states
that it has exactly one input and one output, and
further that its ASSOC slot must contain a
reference to a SENSOR entity which itself has the
value 'ANALOG' in its SIGNAL slot. (Note:
ART PR SENSOR and its descendants satisfy ""tiirs
latter- constraint.) AI SAMPLE also defines a
SAMP SIZE slot which must-be filled with a number
whose value is at least one.

As an aside, it is easy to imagine several schemes
for arbitrarily extending the set of defined
relationships : (1) New edge types could be
explicitly introduced into the language, each with
an accompanying syntactic construct. (2) New

, kinds of relationships could be represented
implicitly by introducing dedicated linkage
entities and using these to capture the attributes
and referents of each relationship. For instance,
either of these techniques could be used to
implement an entity-level notion of connectivity
or flow among the various elements of a system.
In [7], CONNECTION entities indicate data and
control flow among device/function elements in an
instantiated user application.

3. SEMANTIC ATTRIBUTES

An attribute grammar is a context-free granunar for
which fixed sets of synthesized and inherited
attributes are associated with each nonterminal X.
Also, bound to each production

is a set of semantic rules which define how to
calculate the values of the synthesized attributes
of X and the inherited attributes of the
nonterminals appearing in B.

Typically, the parse (tree) which results from the
successful syntactic analysis of a piece of text
is used to drive its semantic processing. Each
node of the tree corresponds to a phrase in the
text and to the application of a single production
in the parse. One can view each node as being
serviced by the appropriate set of semantic rules
which compute its attribute values. In order to
perform these calculations that rule set requires
the values obtained at the parent and child nodes
to respectively handle inherited and synthesized
attributes. Therefore, observed as a whole, the
evaluation process ca1Jses attribute values to flow
up and down the tree.

The remainder of the paper is devoted to
developing sets of attributeR and semantic rules
for the syntactic grammar gi ven in Fig. 1. The
goal here is to be able to associate with each
phrase, Q, information pertaining to the
entity/slot context which constitute its
environment, the nature of the constraint which it
imposes upon that environment, and the degree to
which static analysis has been able to resolve
those constraints. An important point to note
here is that in addition to providing a semantic

97

characterization of the network, attribute
evaluation can serve both a consistency-checking
and a binding function with respect to the rather
loosely-coupled elements out of which it is
fashioned. In the discussion which follows,
semantic rules are developed relative to these
semantic attributes:

Inherited Attributes

enx(Q): internal index of entity context
~- for evaluation of Q.
slx(Q): internal index of slot context
~- for evaluation of Q.

Synthesized Attributes

~(Q): resolution status derived from
Q; an element drawn from the
ordered set of symbolic values
RESOLVED>PARTIAL>UNDEFINED>CONFLICT.

val(Q) : value(s) resulting from the
~- semantic evaluation of Q.
con(Q) : constraint type(s) associated
- with val(Q).
found(Q): result of the search, if any,
~~,pecified· within Q.

The ensuing description is organized into a number
of sections. Each section contains (1) a name
which identifies a type of construct, (2) a
syntactic production, (3) its associated semantic
rules, coded in pseudo-Algol form, and, where ·
appropriate, (4) a set of conunents on those rules.
For brevity, Land R (possibly subscripted) are
used to denote, respectively, the nonterminals
appearing in the left-hand and right-hand sides of
the production. Also, any attribute which does
not explicitly receive a value during an execution
of a rule set is deemed to have been implicitly
assigned the value NULL.

ENTITY SPECIFICATION

<entity> ::E <*ent-name> <slot-1 .. N>

enx(R) + ENTINDEX(<*ent-name>)
stat(L) ... MIN(~(R[l. .N]))

Conunent: Remember identity of entity; process its
slots.

.2!£!. SPECIFICATION

<slot> ::• <*slot-name> <clause- 1 •• N>

SLID<+ SLOTINDEX(enx(L),<*slot-name>)
slx (R[1. --:i'r) + SLNX

ATTR + CONMATCH(<con(R),val(Rl,stat(R)>)
<con(L),val(i:J:"stat(L)> + ATTR
- SLOTBIND(SLm<,ATTR)

COMMENTS, Remember identity of slot1 process each
of its clauses, use CONMATCH to
consistency-check and resolve clauses, record
result.

SPECIALIZATION SLOT
<slot> 1 1• spec <entref>

stat(L) + stat(R)
""eii'x (R) + enx (L)

IF stat (R'f""i" PARTIAL THEN
SPECBIND(.!!!!!_(L) .~(R) •ill(R))

Comments: Process entity reference, establish and
record specialization relationship.

CLAUSE SPECIFICATION

<clause> ::• <*relop> <valspec>

CASE stat (R) OF
[RESOLVED: [IF INCOMPAT(<*relop>,val(R))

THEN stat(R) + CONFLIC~
ELSE IF°'7*relop> • ' • '

THEN stat(R) + RESOLVED
ELSE iitat(R) + PARTIAL;

con(L) + <*relop>;
val (L) + ill(R)]

PARTIAL: PARTIAL1
UNDEFINED: UNDEFINED1
CONFLICT: CONFLICT]

Comments: Process value spec, check operator/value
conformance; record value, constraint, and
status.

CLAUSE SPECIFICATION

<clause> 1 :• .!!_ <entref>

con(L) + 'ENT'
val(L) + found (R)
stat(L) + stat(R)

~ SPECIFICATION

<valspec> ::= <*value>

val(L) + <*value>
stat (L) + RESOLVED

~ SPECIFICATION

<Valapec> 1:• <alotref>

val (L) + val (R)
atat(L) + stat(R)

98

ENTITY REFERENCE

<entref> 1 :• <*entname> [with <entcon>]

ENTNX + enx (R) + ENTINDEX (< *entname>)
IF LENGTH(ENTNX) • 0
THEN stat (L) + UNDEFINED
ELSE JF"'NoENTCON

THEN [stat(L) + RESOLVED;
found(L) + ENTNX]

ELSE [vai('i;') + val (Rl ;
ii'tat (L) + stat (R)
found (L) + found (R)]

~ REFERENCE CONSTRAINT

<entcon> ::• <slotcon-1 •• N>

enx (R[1. .NJ) + enx (L)
stat(L) + MIN(stat(R(l..N]))

IF stat(L) ? PARTIAL~~
THEN[val (L) + val (R) 1

found (L) .;:--
~~+ INTERSECT(~(R[l .• N))))

Comments: Resolve individual slot constraints;
find their (most specialized) intersection.

~ CONSTRAINT

<slotcon> 1:• <tslot-name> <clause>

SLNXl + SLOTINDEX(enx(L),<*slot-narne>)
IF LENGTH (SLNXl) • 0 -
THEN stat(L) + UNDEFINED
ELSE r-sE°NX2 + SPECINDEX(enx(L),<*slot-narne>)

ATTRL + SLOTFETCH(SLNX) ,SPECFETCH(SLNX2);
ATTR + <con(R),val(R),stat(R)>1
ATTRN + CONMATCH (ATTRL ,ATTR) ;
ENTNX + MOSTSPEC(enx(L),ATTRN);
SLNX + SLOTINDEX(ENTNX,<*slot-narne>)
IF LENGTH (ENTNX) ? 1
THEN stat(L) + CONFLICT
ELSE [ATTRS + SLOTFETCH(SLNX) ;

ATTRQ + CONRES (ATTRN ,ATTRS) ;
stat(L) + STATUS(ATTRQ);
val (L) + <SLNX,ATTRQ> 1

found (L) + ENTNX] J

Comments: Check for existence and binding of slot;
check consistency of binding with new clause,
find moat specialized entity which fits;
determine residual constraint over and above
its binding,

§!£!:_ REFERENCE

<alotref> 1 :• !!£!. <*slot-name> 2f <entref>

SLNX + ENSLMATCH(found(R),SLOTINDEX(<*alot-name>))
IF LENGTH (SLNX,--;;-0

THEN stat(L) + UNDEFINED
ELSE IF stat(R) • RESOLVED

THE~ATTR + SLOTFETCH(SLNX);
IF LENGTH(ATTR) = 0
THEN stat(L) + UNDEFINED
ELSE ~(L),val(L),stat(L)>

--+ ATTR] --

ELSE stat(L) + ~ (R)

Comments: Process entity reference; select proper
slot and get its binding .

4. ~ EVALUATIONS

Fig. 3 exhibits the parse trees for the clauses

> slot MIN VAL of ART PR SENSOR - - - -
and

is SENSOR with SIGNAL= 'ANALOG'.

Attribute evaluation will now be performed
relative to these parse trees. In each case, the
calculation and flow of attribute information is
traced node by node. For brevity, nodes are
referenced by tag number. Motion between nodes is
explicitly indicated via a trace line. The
general scenario at each node is: (1) compute
inherited attributes, (2) begin computing
synthesized attributes until a descendant node's
attribute values are need, (3) process descendant
node(s), (4) resume computing synthesized
attributes.

•==•== BEGIN CASE-1 ======

*** > ~ MIN_ VAL 2!_ ART_ PR_ SENSOR ***

MOVING TO NODE 1 =•••••

MOVING TO NODE 2
For convenience, each nonterminal node is labelled
with a number and a phrase symbol, and each val (2) + ~(3)

2:<valspec>

3: <slotref>

4:<entref>

SENSOR

l:<clause>

2:<entref>

3:<entcon>

5:<clause>

Fig. 3. Sample~~

terminal node contains the appropriate token.

99

=•=••• MOVING TO NODE 3

SLNX + ... found(4) ...

...... MOVING TO NODE 4 •=•===

ENTNX • e(ART PR SENSOR)
•entity-index

stat(4) • RESOLVED
foundW-• e (ART_PR_SENSOR)

•••••• RESUMING NODE 3 ==--••

SLNX = s(ART PR SENSOR.MIN VAL)
*** D slot index ••• -

ATTR = <'=',O,RESOLVED>
con(3) • '='
7a1(3) • 0

stat(J) • RESOLVED

••••=• RESUMING NODE 2 =•..,.=•

va1(2) • 0
stat (2) • RESOLVED

•••••• RESUMING NODE 1 ==•=••

stat(l) - PARTIAL
--c-on (l) • '>'

val(l) • 0

END CASE-1

!!. SENSOR ?!.!!h. SIGNAL - I ANALOG I

----- MOVE TO NODE 1 -••==

con(l) • 'ENT'
val (l) + ~(2)

I

I

I
·I

.I

---- MOVE TO NODE 2 mm

l''!T!'!X = enx (3) • e (SENSOR)
.!!!!. (2)!!!!. (3)

•••••• MOVE TO NODE 3 ••••..,

enx(4) • e(SENSOR)
stat(3) + stat(4)

====•• MOVE TO NODE 4 •=====

SLNXl = s(SENSOR,SIGNAL)
SLNX2 • p(SENSOR,SIGNAL)

•spec index
ATTRL"' NULL

*** no binding***
ATTR + <,£2!!.(5), ,,,>

••••-- MOVE TO NODE 5 =•s•• •

.£!.!!!. ~ (6) ...

••••am MOVE TO NODE 6 ••=--•

val(6) • 'ANALOG'
stat(6) • RESOLVED

==•--- RESUMING NODE 5 =••--•

stat(S) • RESOLVED
--con (5) • '•'
val (5) = 'ANALOG'

•••••• RESUMING NODE 4 ==•••=

ATTR • <'=','ANALOG',RESOLVED>
ATTRN • < '•' , 'ANALOG' , RE.SOLVED>

ENTNX • e(BLOOD PR SENSOR)
*** • parent of ART-PR-SENSOR***

*** abbreviate BPS***
SLNX • &(BPS.SIGNAL)

ATTRS • <'x', 'ANALOG' ,RESOLVED>
ATTRQ • NULL

*** no residual constraint***
!!!1(4) • PARTIAL

*** PARTIAL because BPS• subclass, ***
*** so reference not fully resolved***

va1(4) = <s(BPS.S),NULL>
- ~(4) • e (BPS)

• •••=• RESUMING NODE 3 • ==•••

stat(3) = PARTIAL
val('j'f"':" <s(BPS.S),NULL>
- found(3) = e(BPS)

• •=....., RESUMING NODE 2

va1(2) = <s(BPS,S),NULL>
- stat(2) = PARTIAL

found(2) • e(BPS)

...... RESUMING NODE 1

val (1) • e (BPS)
stat(l) • PARTIAL

100

• • ---- END CASE-2 .. a•a •

S. CONCLUSIONS

This paper has explored the idea of employing an
attribute grairanar as the basis for formally
defining, calculating, and propagating arbitrary
amounts of semantic information within a broad
class of network-based knowledge representation
schemes. This approach gave rise to a
straightforward mechanical procedure for
generating structured collections of
attribute/value pairs, which could then aid in
efficiently characteri zing the contents of the
network.

ACKNOWLEDGEMENTS

The author would like to thank H. c. Reinstein for
his substantial contributions to the ideas
discussed here and to the i r realization in an
actual system [7).

REFERENCES

[1) Fikes, R. and
representation
system, Proc.
235-246.

Hendricks, G., A network based
and its natural deduction

5th ~, M,I,T . , 1977, pp.

[2) Waterman, D. and Hayes-Roth F. (ed.),
Academic Pattern-Directed Inference Systems,

Press, New York, 1978.

[3) Feigenbaum, E., The art of AI: themes and case
studies in knowledge engineering,~· 5th
~, M.I.T., 1977, pp . 1014- 1049.

[4) Knuth, D., Semantics of context- free

[5)

languages, ~. Syst. Theory 2, pp . 127-145.

Neel, D.
attributes
Proc. ACM
1-10.

and Arnirchahy, M., Semantic
and improvement of generated code,
Annual~., San Diego,]974, pp.

[6) Bobrow, D, and Winograd, T., An overview of ·
KRL, a knowledge representation language,
Cognitive Science 1, 1 (Jan, 1977) , pp. 3-46 .

[7) Hollander, c. and Reinstein, H., A
knowledge-based application definition system,
Proc. 6th ~. Tokyo, Japan, 1979, pp.
397-399-. -

SELECTIVE INFEHENCING

Jerry R, Hobbs
SRI International

Menlo Park, California

Abstract

Ten thorny problems in the study of language
comprehension are discussed anrl shown to depend
upon arbitrarily detailed world knowledge and
access to context. A "selective inferencing
system" is sketched for formalizing context and
the use of world knowledge, and it is shown how
each of the ten problems reduces to the single
problem of how the system selects the appropriate
inferences, This spawns a new set of subproblems,
but they are problems of a very different flavor
from the original problems.

1. Some Linguistic Problems

ProblemA nnrl solutions oftnn ~ut the world in
di ff'etent w1Jyo. lleAe11rch in lsn111mtr.e ftequently
takes the fotm of choosine a particular linguistic
problem, like pronoun resolution, or compound
nominals, or metaphor, and seeking a solution,
But there is no guarantee that solutions will
partition the linguistic space in the same way
that problems do. The solution of a particular
problem may require a number of components, but
each of these components may generalize over many
other problems as well. In this paper I want to
propose just such a repartitioning of linguistic
space, in which many traditional problems collapse
into a single problem, that of selecting the
appropriate inferences, which in turn decomposes
into several subproblems with a flavor quite
different from the original problems,

I want to look specifically at ten problems
in laneuage comprehension:

1) Q_ompoun~ !!_Ominals: First let us consider
.noun-noun combinations, like "wine glass", To
comprehend this, a language user must discover the
relation implicit between the two entities, some
unspecified portion of wine and the glass. Levi
(1978) proposed that the implicit relation must be
one of a small fixed set of primitive predicates,
including FOR, IN and PRODUCT, Her work is an
example of an attack on a single problem, and the
"solution" is particular to that problem, in that
it solves no other problems on the side.

nut there are several difficulties with her
proposal. Fixst of all, it fail s to capture the
complexity that usually characterizes the implicit
relation. Thus, "wine glass" is not just a glass
FOR wine, but a glass FOR wine to be IN, and that
is a simple case. In Hobbs ; 1979b) I analyzed my
favorite compound nominal, from a ~wsweek
article, "veto pitch", which is a bill Congress
"pitches" to the President and which is easy for
him to veto just as a pitched baseball might be
easy for a batter to hit, We could weaken the
claim to say that the implicit relation must be
one of the primitive predicates ~ some level _of

101

gener~~. but that l eads to the second
difficulty -- the set of predicates are so general
they almost cover the world, There is little they
exclude, so the proposal lacks empirical content.
The relation in "veto pitch" would be perhaps
"pitch PRODUCES veto", but that would be
unilluminating at best . The proposal does make
one prediction however, and that is that the
relation cannot contain negation, Thus, a wine
glass cannot be a glass that is not for wine. But
here's the third difficulty -- ~he prediction is
wrong. On a Gray Line tour of Vancouver last
December I learned about the monkey tree, A
monkey tree is a tree with spines pointing
downward so.that it is the only tree that a monkey
can NOT climb.

Downing (1977) gives further examples of
nrhitrary, hi~hly context- dependent relations
between the nouns of compound nominals , For
example, in a particular context, "apple-juice
seat" ia the seat at the dinner table that has the
apple juice at it. The implicit relation can be
anything, and what it is is very dependent on
context and arbitrarily detailed world knowledge.

2) Denominal verbs: Clark and Clark (1980)
give several thousand examples of nouns used as
verbs, such as

The paper boy porched the newspaper.

Like Downing, they argue that virtually any
relation can obtain between the noun that has
surfaced as a verb and the explicit arguments of
the verb , For example, suppose we both know my
cousin Max has a habit of sneaking up behind
people and Iubbing the back of their legs with a
teapot. Then you will understand me if I say

Oh no, Max just teapotted a policeman,

Again, arbitrarily detailed world
sensitivity to the context is
interpretation.

knowledge
required

and
for

3) Metonymy, ~ indirect reference: We
commonly refer to one thing as a way of referring
to something related to it. For example, we can
say

T points to a binary tree,

as a way of saying

T points to the root node of a binary tree .

Nunberg (1978) has investigated this phenomenon
extensively and produced a wealth of examples that
lead to a similar conclusion. Consider for
example,

I

John sold hie Ford for $3000.
John sold hie Ford for 57 3/8.

In the first, we mean

John sold hie ~a..!_ manufactured El. Ford
for $3000,

In ·the second. we mean

John sold his _!toe~ issued El. Ford
for 57 3/8,

Nunberg shows that recovering
function that will take us from
referent to the intended referent
arbitrarily detailed world knowledge
dependent on context.

4) Met~ho~: Consider

the implicit
the explicit
can require

and is highly

John is a real hog.
John is a real hog.

let me talk.

He weighs 300 pounds.
He wouldn't shut up and

How do we pick out the features John and hogs
share? In the first case, it is physical
char~cteristics; in the second, the
ovetconsumption of a limited resource. For the
interptetation of metaphors, again world knowledge
and context.

Now some coreference resolution problems:

5) ~finite no~ .E_hrase resolution: In a text
we will work again and again,

(1) John can open Bill's safe, He knows the
combination,

how do we know what "the combination" refets to?

6) Pronoun resolution: In (1) how do we know
whether .,,..h~refers to John or Bill? Knowing the
combination can be inferted both from being able

. to open and owning.

7) Resolution of omitted arguments: In (1),
the combination of what? And how can we find out?

Finally, some ambiguity problems:

8) Lexical ambiguity: In (1), what sense of
"combination is being used, the combination of a
lock or the combination of several objects? And
how do we know?

Syntactic ambiguity:

9) _!h~ ~_!~tional phrae_e_ ~blem: In

I drove down the street in a cAr,

we need to know about streets, care, and dtiving
to be able to parse the sentence correctly. In
the old favorite,

T RttW the mttn in the park with thn telA8Cope,

it ie not enough
and telescopes.
situation. Once
apply H?

to know about seeing, men, parks,
We need specific knowledge of the
we have that knowledge, how do we

102

10) Very compound nominals· Compar e "Stanfotd
Reseatch Institute" and · "Cancer Research
Institute". In the first "Stanford" bears some
direct relation to "Institute", not to "Research",
In the second, "Cancer" bears the direct relation
to "Research", not to "Institute", Thie kind of
ambiguity infects the syntactic analysis of
complex texts almost as much as the ptepoeitional
phrase problem.

All these problems point in the same
ditection. Atbitrarily detailed world knowledge
is required to solve them, and the interpretation
has to be done ar,ainet a very · specific context.
Linguists frequently see in this observation the
hopelessness of finding solutions. Workers in
natural language processing (NLP) tend to be a bit
more brash and see in it a challenge. It ie a
challenge I propose to take up for the rest of
this paper,

First we should be cleat about the nature of
the solution we ate looking for. For many of the
ptobleme, thete are efficient methods that work on
the majority of the cases, Fot example , there is
a fairly simple algorithm for ptonoun resolution,
wotking strictly on the patse ttees of the
sentences in the text (cf , Hobbs 1976a), that is
correct mote than 90% of the time in published
texts. But it doesn't work everywhete, fot
instance, on the kinds of examples Charniak (1974)
came up with,

For many compound nominals, such ae "wine
glass", the computationally efficient solution is
simply to stick it into yout lexicon as a phtase.
This is even principled in cases like "wine
glass", for there ate things we know about wine
glasses, e.g., they have stems, that can't be
deduced from our knowledge of wine and glasses.
But this method does not help with novel
combinations, like "turpentine jar",

On a highet level, if we have sttong sctipt
like knowledge about what we'te trying to
comptehend and our understanding need not be de ep,
the solution to many of these problems simply
falls out or becomes unimportant in script-based
ptoceesing (Schank and Abelson 1977, Schank,
Lebowitz, and Birnbaum 1980). Suppose for example
I'm skimming reviews of TV shows, I know the show
has a title, a topic, and some actots, and that
the reviewer will evaluate the show. The title is
in bold-face: the topic will come immediately
after and will be a description of a sequence of
telated events; the actors' names will be
capitalized: and the evaluation iA likely to be
expteesed in terms of evaluative Hdjectives used
literally. This ie my script, and using it, I can
ptocese the text quite IApidly and understand
enough for me to decide whether to watch the s how .
But if I want to understand something about the
source of the reviewer's opinions and how much hie
evaluation would coincide with my own, neithet
this TV-review script OI any other TV - review
script will suffice. Single-script processing
does not help us when we are trying to make sense
out of a novel text, or make deep sense out of any
text.

What is common to all these efficient partial
rethods is that an interpretation problem is
~ransformed into a simpler recognition problem ,
ft is important for NLP researchers to study these
~ethods, but they should not lead us to abandon
the search for full solutions.

P.ven in cases where the simple methods work,
euch as treatin~ "wine glass" and "monkey tree" as
pingle lexical entries, it is still of interest to
know why the particular usage is motivated
(Fillmor e 1979): "wine glass" is not an entirely
arbitrary way of referring to wine glasses, in
contrast with "jug", which is an entirely
arbitrary way of referring to jugs. We would like
the ~otivation behind an expression to be given by
the way its interpretation would be computed, even
~hough it usually isn't computed. But a finer
pistinction is necessary, between the computable,
like wine glass", and the noncomputable but
~otivated, like "monkey tree". While both are
stored and recognized as single lexical entries,
the correct interpretation of the former could be
computed. For the latter, there is a reasonable
explanation of the correct interpretation, but a
naive language user would not necessarily be able
~o choose that interpretation over other possible
~nterpretations if he had to compute it himself .
Figure 1 summarizes all this.

-- ~ -~~~
~rhitrery Motivated
. I ~- ~

"jug" Not Computable Computable

I /~
"monkey tree" Not Computed Computed

I I
"wine glass" "turpentine jar"

Figure 1.

As processes of comprehension, the solutions
we will be seeking in this paper are relevant only
to the rightmost case, the computed. But as the
processes that underlie or motivate the cultural
existence of a particular expression, the
solutions will be relevant to all but the
leftmost.

2 , Selective Inferencing

2. 1. Deductive Systems in Mathematics

If we are goi ng to take up the challenge of
full solutions to these ten problems, we need a
mechanism for dealing with world knowledge and
context, for going beyond what is given
explicitly. Perhaps the best guide we have in
this enterprise is the deductive systems of
math ematics (D S) , so these are outlined first.
But if our aims are not the development of
mathematical theories, but the analysis of
lincuistic texts, we need to modify the DS in
certain ways, and these are discussed next. The
result is what I will call a "selective

103

inferencing system" (SIS). Much of i ,t is a
recapitulation of common practices and principles
of AI, but I hope it includes a few new
suggestions. In the course of developing the SIS,
I will "solve" the ten linguistic problems, by
reducing them to the single problem of how a SIS
selects the right inferences. The subproblems
this spawns are di scussed as we go along and
summarized in Part 3,

A DS can be characterized
used, the process of using
mathematician's commitment to it.
each in turn.

by the formalism
it, and the
We will look at

1) Formalism: The formalism consists of a set
of symbols-iind- means of combining them into
expressions. Certain expressions are designated
axioms. There are a few rules of inference, such
as ~o_c!_u_s_ ponen~ and universal - instantiation,
according to which expressions can be manipulated ,
When applied to axioms, they yield the~~·

2) Process: Anything derivable from the
axioms by11pplication of the rules of inference is
a theorem. But in practice, the mathematician,
viewed as the one who turns the crank on the
deductive engine, doesn't go about enumerating all
theorems; he only proves the interesting ones. At
any given moment in the deductive process. some
axioms and theorems are highly focused, in the
spotlight, so to speak, while most remain very
much in the background, And most theorems he
simply lacks the resources to prove. I mention
these facts because we will have to formalize
aspects of this process.

3) Commitment: The mathematician assigns to
each symbol in the formalism an individual or set
in some Platonic universe whose existence he
accepts as unproblematic, at least for the
purposes of the enterprise. Legal ways of
combining symbols into expressions are assigned
corresponding set construction operations in the
universe, in such a way that the axioms correspond
to statements about the universe. In positing an
expression as an axiom, the mathematician commits
himself to the truth of the corresponding
statement about the universe. The rules of
inference preserve truth, so the mathematician
also commits himself to the truth of the
statements about the universe corresponding to the
theorems.

I am not cal ling all this by its usual name
"semantics". "Semantics" is by now hopelessly
ambiguous in an interdisciplinary field like
cognitive science. Philosophers mean one thing,
psychologists another. ("Meaning" is even worse,
since it means something to ordinary people as
well.) But the real difficulty is that logical
semantics assumes we can talk reasonably about the
world in a way that is independent of someone's
perception and interpretation of the world. L~ke
many people in AI, I find myself very
uncomfortable in that mod e of discourse, and
bereft of intuitions. But I can make sense of
talk about the social enterprise of building and
using formal systems, What surfaces in logical
semantics as "meaning" surfaces here as
"commitment".

. I

·,

It is good to take a DS as our starting point
and depart from it only where we have to. In this
way we run the least risk of that plague of AI,
reinvention.

2,2. A Selective Inferencing System

We wish to construct a mechanism which, when
· presented with a text in a particular context,
will apply the appropriate world knowledge,
including knowledge of the context, to solve the
linguistic problems posed by the text, including
those laid out in Part 1. We will assume a
syntactic component has already recognized
predicate- argument relations and reduced the text
to the mechanism's internal language, perhaps with
some annotations signaling where the problems are.
Later in the paper I will discuss some features of
the internal lanP,uai:i:e necessary to make this
assumption reasonable.

We need a label for this component of
language processing. The undes irability of
"semantic" was discussed above. "Deduction" won't
do, since that's what we're contrasting this
mechanism with. "Entailment" is a bit too strong
for what I have in mind . "Implicature" means two
things, conversational implicature and
conventional implicature, and these turn out to
require two quite different mechanisms when made
precise. "Reasoning" implies a conscious
activity, whereas the processing of the sort we
will try to simulate ranges from barely conscious
to deeply unconscious. "Interpretation", or more
metaphorically, "comprehension", is what the
mechanism does, but not how it does it.
"Understanding" is too loaded to be a useful
technical term: hermaneuticists tell us it's
obvious that machines will never be able to
understand; there's something to that; machines
without toes will obviously never understand "John
stubbed his toe" in the way we do .

So we will settle upon the label AI has
already chosen -- "inference". To verb the label,
we will say the mechanism "draws inferences". But
how to nominalize the process is a problem. "The
drawing of inferences" is too cumbersome.
"Inferring" seems more appropriate for the single
act of drawing an inference than for the process
that underlies those acts. So we will again bow
to AI custom and use the illiterte term
"infe rencing". The mechanism will be designed to
draw inferences selec tively : hence, the title
"Selective Inferencing".

We can divide our discussion into five
sections. Corresponding to the formal language of
a DS, we need to specify our language of
re_Rresentation. Corresponding to the axioms of a
DS, we need to discuss the knowledge to be
representeq. Corresponding to- --~rules of
inference, we need to talk about the operations
that use the knowledge by manipulating the
representations. Corresponding to the process of
applying ru les of inference to derive theor ems is
the mechanism of control for the operations.

'Finally, we need to discuss our commitment to our
formal system.

104

By cleanly separating these five issues for
the purposes of this discussion, I do not mean to
imply they should be cleanly separated in
implementation. There may be many good
implementation reasons for mixing the categories.

For the Iest of Part 2, differ~nces between
the deduction systems of mathematics and the
selective inference system required in NLP will be
forced upon us. But first I will tip my hand .
Figure 2 summarizes the differences and should
help the reader keep track of where we are.

Representation:

few predicates

few constants &
vaiiables play a
Iole at given time

Knowledge:

few axioms

deep proofs

Operations :

simple calculus: rules
of inference only

Control·

in theory, no resource
constraints, no
control over proof
process

Commitment:

commitment at symbol
level

Figure 2,

Selective Inferencinll_

about 1 predicate/
English morpheme

about 1 constant or
vaiiable / moipheme
in t ex t

about 1 axiom/ fact we
know about the world

shallow proofs

complex calculus: rules
of inference under
control of higher
discourse operations

means for controlling
proof process
formalized

heuristic commitment to
axioms as used by
by operations;
ultimate commitment
to external behavior.

2.3. Representation

Our
criteria:

formal language should satisfy two

1) It should be close to English. The
mechanism is responsible for comprehending. and
ultimately, generating English texts. The
translation between English and the formal
language is likely to be easier the closer to
English the formal language is. The ideal choice
by this criterion is English itself, but it fails
monumentally on the second criterion.

2) It should have a simple syntax. This
:eases the manipulation of the representations, and
manipulation is what the mechanism does most of
the time. Much of the complexity of English
syntax, e.g. the division of predicates into
nouns, adjectives, verbs, adverbs, and
prepositions, reflects a conceptual scheme that is
better captured in the axioms than in the syntax
of our formal language. Hence, we will stick to
the language of predicate calculus, a language of
predicates, constants, variables and quantifiers.
To satisfy criterion (1), there will be nearly a
one- to-one mapping of the morphemes of English
onto the predicates of the formal language; "onto"
sinc:°e there will be other predicates as well. For
any text processed, there will be about one
predication and one constant or variable for every
morpheme in the text. Rather than taking the time
to define the language formally here (it is done
in Hobbs (forthcoming)), I will simply paraphrase
all the formal expressions I have occasion to use.

Thus in our language of representation, we
need to depart very little from what is provided
by a DS, although a SIS, because of its profusion
of symbo1 s, will have a very different look to it.

2 . 4. Knowledge

In a D;, , we typically build on a small number
of carefully crafted axioms, and proofs of
theorems ar e generally quite deep. A SIS, on the
other hand, mu s t be axiom-rich. The axioms encode
the knowledge we have about the world, and I would
expect there to be about one axiom for every fact
we know -- that is, lots. There would be little
point in an effort toward an elegant, independent
set of axioms. Because of resource limitations,
proofs will have to be shallow, and many
expressions that could be proven as theorems will
have to be s tored as axioms anyway. For example,
even if it _were possible to deduc e many of the
details of our economic system from reneral
ideological principles, the SIS should not have to
do so every time it reads a text about
supermarkets. Nevertheless, facts should be
stated at an appropriate level of generality.
Thus , some of the things we know about
supermarkets are just facts about supermarkets.
But mo s t are facts about food stores, or stores,
or Luyin~ and ncllin~ in ~eneral.

My prefe rence is for the facts about the
world to be stated in as atomic a form as
possihle. For example, I prefer a system to have
a bunch of small facts about baseball, along with
the facts that th.ey are about baseball, easily
accessible from each C>ther, rather than having a
lar ge-scale baseball schema that has to be used as
a unit. Then we can use our knowledge about
baseball selectively. For example, in
interpreting "veto pitch" we could access facts
about pitchers and batters without accessing facts
about third basemen and outfie lders. However, I
have no objection to including such large-scale
schemata, and would view them simply as other
axioms.

105

I don't think it's useful to distinguish
among kinds of knowledge, except as we are forced
to by differences in the way the operations
manipulate the knowledge. In particular, the
distinction between the dictionary and the .
encyclopedia, or the distinction between lexical
and world knowledge, as well as the distinction
between analytic and synthetic truths, will
probably turn out to be useless in our system.
Thus, both

A husband is a male,
and

A husband usually lives with his wife,

will both be expressed by axioms of the same sort
and will have the same status in the system.

2.5. Discourse Operations

So far we have had to depart very little from
a DS. But now a radical departure forces itself
upon us.

In theory, in a DS, there are only a f ew
rules of inference, like modus .IJE.ne'!_~ and
universal instantiation, and whenever they apply,
we have to live with whatever they produce. In
practice, only a few things are really proven; the
rest just lies in reserve.

For us, things cannot be as simple as a DS is
in theory. We have to formalize the practice.
The standard rules of inference will have to be
under strict higher control. One reason for this
is the likely inconsistency of our set of axioms ;
this is taken up below. Another reason is that of
the vast number of inferences we might draw from
the information in a text, only a small number
will be relevant.

We need to divide the expressions into two
r. ategories: a knowledge base, our repository of
axioms waiting- 'iass-fv-ely . - "to be used. and a
spotlight (to use a technical term no one e lse
will be tempted to adopt), which contains

1) the current sentence being processed,
2) a representation of the previous text, and
3) some representation of the external

environment,

together with the inferences drawn from the
knowledge base that are determined to be relevant
to the interpretation of the text . The inferences
are not the axioms themselves, but the
instantiated conclusions of the axioms.

Given this structure and our language of
representation, what would it be for our SIS to
comprehend a sentence in the text? It would have
to relate the sentence to itself, to the prev ~ou s
text, and to the representation of the external
environment. The problem of relating the sentence
to itself arises from two phenomena of English
discourse:

1) English allows predicates to be applied to
arguments rather freely. Metaphor and metonymy

.I

, I

I

i

.1
I

I

are examples, Predicates and
to be interpreted in such a
congruent, This leads to
.E_redicate inte~etation.

their arguments have
way that they become

the operation of

2) English allows some predicates to be
implicit, Compound nominals and denominal verbs
are examples, These predicates should be made
explicit, Thie leads to the 1:_nte~retation of
implicit .P!_edicate~.

Relating the sentence to the previous text
involves two kinds of problems:

3) English is linear and when something
appears in several grammatically unrelated
predications, it has to be mentioned more than
once, If the text is to be comprehended, the
identity between the mentioneds has to be
recognized, Hence the operation of coreference
resolution.

4) What the current sentence asserts should
be related to what was asse.rted in the previous
text. Thus, we should discover ~o~~rence
relations,

5) Finally, the sentence has to be related to
the external environment, This could be broken
down in a number of ways, but in this paper, I
won't,

These five discourse operations are dictated
by the nature of the mechanism and the lanr:uage of
representation. They each seek to satisfy certain
requirements imposed by the text. The
requirements are expressed in terms of inferences

' to be drawn from the knowledge base. The
discourse operations work by searching the
knowledge base for inferences satisfying the
requirements, When they find them, they
instantiate them into the spotlight, and perhaps
make certain minor modifications to the original
representation of the text, These five discourse
operations encode our hypothesis about what it is
to comprehend a text. Hence, rather than drawing
inferences freely as in a DS, we will draw
inferences only as dictated by these discourse
operations, They constitute the fundamental
mechanism for selecting appropriate inferences,
Moreover, it is here that we see our ten
linguistic problems translated one by one into the
problem of selecting the appropriate inferences,

Let us look at each operation in greater
detail:

1, Predicate inte~retation: Elements of the
text have to fit into their local environments.
This can be viewed as a more active version of the
old check on selectional constraints. It can be
stated roughly as follows:

(2) Given proposition p(A), from PROPS(A), infer
RF:Q(p),

where "PROPS(A)" is the set of properties of A, or
the set of propositions in which A occurs as an
argument, and "REQ(p)" is the set of requirements
associated with the predicate p, In the simplest
_case this checks selectional constraints, For
example, the sentence

106

T points to the root of a binary tree,

might be represented

point(T,R) where root(R,B), binary-tree(B),

That is, T points to R where R is the root of B
and Bis a binary tree, REQ(point) would be
"node(R)"; that is, variables can only point to
nodes, PROPS(R) would be "point(T,R), root(R,B)",
The knowledge base would include the axiom

(3) (Ax,y)(root(x,y) --> node(x)),

that is, if xis the root of y then xis a node,
In Katzian terms, this is equivalent to having the
feature +NODE attached to "root". The axiom would
be used· by the predicate interpretation operation
to satisfy requirements of (2), "Node(R)" would
be instantiated and placed in the spotlight.

But predicate
more active than
metonymy.

interpretation is
this. Consider

in general
a case of

T points to a binary tree,

or

point(T,B) where binary-tree(B).

"REQ(point)" is the same, PROPS(R) is
"point(T,B), binary-tree(B)", There is an axiom

(4) (Ax)(Ey)(binary-tree(x) --> root(y.x)),
that is, a binary tree has a root. Axioms (4) and
(3) lead to the satisfaction of (2), "root(R ,B)"
and "node(R)" are instantiated with some new
constant R, and the original assertion is changed
to "point(T,R)", In this modification, it
resembles the type coercion found in some
programming languages.

It is often a problem to determine what the
requirements REQ of a local environment are. In

John sold his Ford for 57 3/8,

we would have to determine from "sold ,, . for"
that "57 3/8" has to be interpreted as money.
Only stocks are priced in eighths, so we need to
infer a relation between stocks and Ford, Once we
know that, we can use axioms that Ford is a
corporation and that corporations issue stock.
But the reasoning leading to "REQ = stocks" is not
simple,

2, Interpretation ~f_ .!_mpli<!_it ~ -d_i_c_a1:_e_s_:
The operation for finding the implicit relation
between the nouns in a compound nominal can be
stated roughly,

Given r(N1 ,N2), find P such that P can be
inferred from PROPS(N1) and P can be inferr~d
from PROPS(N2) (Find an intersection between
PROPS(N1) and PROPS(N2)),

For example in resolving "wine glass", we have
r(N1 ,N2) where wine(N1) and glass(N2), that is, N2

is a elass and
wine . We can
the axioms

N1 some non-specific portion of
determine the relation r py using

(Ax)(wine(x) - - > liquid(x))
(Ay)(Ex)(glass(y) --> purpose(y, contain(y,x))

& liquid(x)),

That is, wine is a liquid and the purpose of
glasses i s to contain liquids. The intersection P
is "liquid(x)". We instantiate into the spotlight
the proposition "liquid(N1)" and replace
" r(N1 ,N2)" by "purpose(N1 ,contain(N1 ,N2))".

De nominal verbs are similar to compound
nominals, In the pattern "N1 N2ed N3" we need to
find some plausible action, or "doing", of N1 that
involves N2 and N3. Roughly,

Find an intersection P between PROPS(N1),
PROPS(N2), and ~ROPS(N3) such that from P,
"do(N1)" can be inferred,

For exampl e , in

Th e paper boy porched the newspaper,

we mie,ht use th e axioms

(Ax)(Ey,z,w)(paper-boy(x) -->
deliver(x,y,z) & newspaper(y)
& near(z,w) & front-door(w)),

(Az)(Ew)(porch(z) --> near(z,w) &
front-door(w)),

saying that paper boys deliver newspapers to
places near front doors and that porches are near
front doors, to interpret the denominal verb
"porch" a s "deliver to the porch",

In giving the example in Part 1,

Ma x t eapotted a policeman ,

what I did by setting up the context was to place
an action by Max involving teapots and people into
your s potlieht. That action would thus be used to
interprnt thn Anntence.

3) ~ -r~ (~_r_e_~c_e_ ~~o~!_i._o_T!_: 'rhis includes
resolution of definite noun phrases, pronouns and
impli cit arguments .

Th e re a r e two me thod s for r esolution, Th e
r i r :i l i:1 di r,-,ct.
pr e vi ou s t ext
pr ope rti es of
Roughly,

Wn nend to find nnmn thin~ in the
from which we can prove the
the constant to be resolved .

To resolve A, from PREVIOUS.TEXT, infer P
where Pis in PROPS(A).

For example , returning to (1) ,

(1) John can open Bi 11 's safe. He knows the
combination.

we look for something in the previous text that
implies the existence of a combination. We find
it us ing the axiom

107

(Ax)(Ey)(safe(x) --> combination(y,x))

or a safe has a combination.
pronoun "it" in

Similarly,

John can open Bill's safe, He knows its
combination.

would be resolved using the same axiom.

the

The second method is more common for pronouns
and implicit arguments. It is what in Hobbs
(1979a) I called "petty implicature". When other
discourse operations would succeed if only a
certain identification were made, we assume the
identity as a kind of conversational implicature,
and solve two problems at once. For example, in
(1) the second sentence can be seen as an
elaboration of the first by the coherence
operation mentioned below if only we identify "he"
with John. So we do,

Coreference resolution can also be used to
resolve many syntactic ambiguities. But let's
work into this gradually, looking first at a real
corefe rence problem -- reflexives . Usually there
is no problem. In

Jane gave Bill a picture of himself,

"himself" can o~ly refer to Bill ,
instances, such as

But in

John gave Bill a picture of himself.

rare

"himself" is ambiguous. The resolution is a
problem for selective inferencing to solve. But
we would like syntax to pass on to the inferencing
component all that it has been able to find out.
In this case, it's quite a bit -- "himself" can
only refer to John or Bill, We ca n encode this by
representing "himself" with the "ambiguous
constant", "[John/Bill]". It must be resolved,
but it can only be resolved to one of the two
entities,

The same device will extend to some syntactic
ambiguities, including the prepositional phruse
problem. Our representation of the classi c

I see the man in the park with the telescope,

will include

see(S, I ,M), in([S/M),P), with(IS/M/P],T)

That is, S is a seeing action by I of the man M,
e ither Sor Mis in the park P, and eithe r Sor M
or P has the telescope T, The inferen~e component
can then solve the problem by finding something
that implies the properties of the ambiguous
constant, or by pe tty implicature, This reductton
of the prepositional phrase problem to a
coreference problem is a fairly natural one, as
seen by the pair

John drove down the street in a car.
John drove down the street. It was in a car.

. I

..
In both cases we have to decide whether the street
or the driving is in the car.

Similarly this device extends to the problem
of "very compound nominals". In "Stanford
Research Institute" there are two implicit
relations, one "rl (R,I)" between research and the
institute, and the second "r2(S,[R/I])" between
Stanford and either research or the Institute, In
seeking to interpret r2, we look for a link both
from the properties of Rand the properties of I.
Whichever results in success will cause the
ambiguous constant to be resolved,

I do not mean to imply that all syntactic
ambiguities translate so elegantly into
coreference problems . For example, I see no easy
way to deal with the old favorite

They are flying planes,

in this way , For such e xamples, we may just have
to turn the inference mechanism loose on all the
parses to see which it can make sense out of
first, or alternatively, that frequently urged
approach, let the inferencing get a piece of the
parsing action.

4, Discovering coherence relations: Hence,
discovering the structureof-the text-:- In Hobbs
(1978) I proposed a reasonable number of possible
coherence relations and made the rash claim of
exhaustivity. To give an example, one of the
coherence relations is "Elaboration", and its
requirements can be stated roughly,

Given current sentence SI, find a sentence SO
in PREVIOUS.TEXT for which there is an
intersection P between ASSERTION(SO) and
ASSERTION(S 1) ,

That is, infer an intersection between the
assertion of the first sentence and the assertion
of the second. Thus in (1), we wouln use an axiom
saying that if someone can cause a state to come
about, then he knows an action that will cause it,
an axiom that it is common knowledge that one can
dial the combination of something to open tt and
an axiom that one knows the implicatiops of what
one knows. The intersection would be that John/he
knows some action (dialing) that will cause the
safe to be open, The relevant propositions are
instantiated and some representation of the text
structur e i s encod ed.

Klapholz and Lockmqn (cf. Lockman 1q7s) s ee
some of the coherence relations as examples of
coreference resolution between structures in the
text larger than simple constants, and this may be
a useful point of view.

5) Relating the text to the world: This seems
like a broad requirement that defies
formalization, but in AI we have been able to
described formally certain well-behaved portions
of the world by means of task models, scripts,
plans, grammars and the like. Where we can do
th is, it becomes one of the discourse operations
to relate the text to the model of what is going
on in the environment. I take most work in NLP to

108

be efforts on this problem . For example, Grosz
(1977, 1980). A, Robinson (1980), Hobbs and
J. Robinson (1979) attempt to relate task- oriented
dialogs to a model of the task . Mann, Moore and
Levin (1977) relate dialogs to dialog games
encoding the expected course of the dialog.
Schank and Abelson (1977) and Wilensky (1978)
relate what is said in stories about the
characters to the characters' conjectured plans.
Allen (1979) attempts to relate utterances to the
speaker's plan.

A simple version of this discourse operation
might be stated

Given PLAN in the spotlight and a sentence S
to be interpreted, from Grow(PLAN), infer
ASSERTION(S).

We assume what is said is a general statement
referring to the specifics of the plan, so we try
to infer the general statement from some specific
information in the plan, growing the plan 'to a
deeper level of detail if necessary.

Two of our ten problems do not seem to reduce
easily to one of the five discourse operations
metaphor and lexical ambiguity. Th e probl em of
metaphor is treated from the perspective of
selective inferencing elsewhere (Hobbs 1979b).
Here I will mention the approach jus t briefly.
When a speaker uses a metaphorical predicate, as
in "John is a hog", he intends the listener to see
certain similarities between John and hogs, say
the similarity that both overconsume. On the
other hand, it is intended that other properties
of hogs, such as four-leggedness, won't be
inferred. That is, to comprehend a metaphor, the
listener must select certain inferences as
appropriate and reject others -- just the process
of selective inferencing. In Hobbs (1979b), it is
shown how the discourse operations frequently lead
to the correct interpretation of the metaphors,
especially the operation of predicate
interpretation in the case of spatial me taphors,
by selecting the right inferences .

Now lexical ambiguity: Ambiguity is not a
property of expressions but rather q relation
between an expression in one repr esentational
system and a second representationul system. Por
example, "men" is not ambiguous between "two men"
and "more than two men" unless we ar e translating
into a language with dual as well a s plural forms.
If we are translating into a pictorial
representation that requires a s pecific number of
men, it is infinitely ambiguous. Otherwise the
term is not ambiguous but merely vagu e .

It is usually possible to devise o
propositional target representational system in a
way that will make an expression's translation
vague rather than ambiguous. One way of doing
this, say for the pair "bank!" of a river and
"bank2" wher~ you get loans, is to have a general
predicate "bank" that is implied by both of the
specific predicates:

(5a) (Ax)(bankl(x) --> bank(x))
(5b) (Ax)(bank2(x) --> bank(x))

This may seem implausible -- what do
of banks have in common? But what
common is precisely what is captured
(5) -- they are both called banks,

the two kinds
they have in

by the axioms

How is the
vagueness made more
workhorse example:

ambiguity
precise?

resolved, or the
Let's return to our

John can open Bill's safe, He knows the
combination,

We have the axioms

(Ax)(Ey)(safe(x) --> combination1 (y,x))
(Ax.y)(combination1(y,x) --> combination(y,x))
(Ax,y)(combination?(y,x) --> combinntlon(y,x))

The solutions to the definite noun phrase and
coherence problems use the first two axioms and
not the third and thus require us to instantiate
an expression with "combination1", not
"combination2", So the lexical ambiguity problem
is solved as a by-product of other discourse
operations.

I would guess that this is typical, that most
lexical ambiguities that matter woulrl be solved by
the ordinary workings of the discourse operations.

2. 6. Control

In defining a DS, we need not be explicit
about the proof process itself. In defining our
SIS, we must, in particular about the order in
which searches for proofs are conducted, The
problem of AI is how to control inferencing and
other search processes, so that the best answer
will be found within the resource limitations,
fairly quickly, and before other plausible
candidates, In an NLP system with a rich
knowled~e bane, the last of these problems is
likely to be the most severe. The difficulty will
not in general ·be that no proof satisfying the
requirements of the discourse operations will be
found. It is that too many will be found, each
leading to a different interpretation. This
remains a major research issue, but I can suggest
three leads.

First, the axioms should have associated with
them a measure of salience. In part this would
include a measure of a fact's "natural salience":
for example, the fact that an animal has a head is
naturally more salient than the fact than an
animal has a pancreas. But it would also include
a component of dynamically varying salience which
would encode the likely relevance of the axiom to
the particular context: when reading an article
about politics, axioms about ice hockey would have
a low salience, but if ice hockey is mentioned,
say, in a passage Bh?ut the President
congratulating the Olympic hockey team, then the
salience of axioms about ice hockey is increased,
Such an increase could overcome an axiom's natural
low salience.

The search for the appropriate inferences
would then be conducted in an order determined by

109

the salience of the axioms and the length of the
proofs. The inference chosen would be the first
one encountered in this process that satisfied the
requirements.

This already gives us a concise explanation
of certain features of some of the linguistic
problems. Nunberg (1978) developed a framework
for analyzing indirectly referential expressions,
in which one got from an explicit referent to the
intended referent by applying functions derived
from world knowledge, such as "stocks issued by",
"owner of", and "father of", He proposed what he
called the "Identity Principle", which says
roughly that if a function or sequence of
f,unctions has already arrived at a referent that
sntisfies the requirements of the local linguistic
environment, we cannot apply a further function to
get to the intended referent. This explains the
fact that, while we can point to a car and say
"He's crazy," meaning the owner of the car is
crazy, we cannot point to-a~-picture of George IV
and say "He was crazy," meaning the father of
George IV (George III) was craz~ George fv
already satisfies the requirements imposed by the
predicate "was crazy".

Nunberg's functions translate directly into
our inferences. Then in terms of a salience-and
length-ordered search, the Identity Principle
simply says that we draw the first inference that
satisfies the requirements of the discourse
operations, Predicate interpretation on the
predicate "crazy" requires that it's argument be
human. In the first case, the fact that a car has
an owner gets us to the intended referent. In the
second case, George IV already satisfies the
requirements so we do not look further.

My second suggestion is that we should take
advantage of the natural redundancy of almost all
texts (Joos 1972), The nature of the language
makes texts highly redundant anrl we do well to
assume the maximum redundancy possible in our
interpretation of a text. Let us look at (1)
again:

(1) John can open Bill's safe, He knows the
combination.

There are at least five plausible solutions to
problems posed by the text. Solution 1: If
someone owns the safe then he knows the
combination, so Bill is a candidate for the
referent of "he" . Solution 2: One sense of
"combination" is of an arrangement of several
similar entities, and the set consisting of John
and Bill satisfies that. Solution 3: The
inferences and associated petty implicatures
involved in recognizing the Elaboration relation
described above, result in the resolution of "he"
and "the combination" both and solve the text
structure problem as well. Solution 4: Since if
someone can open a safe, he probably knows the
combination, John is a good candidate for the
referent of "he", Solution 5: Since safes have.
combinations, a good guess is that "the
combination" of the second sentence refers to the
combination of the safe of the first sentence,

There are two ways in which redundancy
.operates. First, in Solution 3, the fact that one
solution solves three problems reflects the

' redundancy of the information in the text.
Secondly, in Solutions 3, 4, and 5, we have
consistent, redundant solutions to the coreference
problems. Figure 3 summarizes this.

Interpretation

Solution 1

he • Bill

Elab(SO, S1)
he • John

comb of safe

Interpretation 2

Solution 2 ------
comb = (J,B)

Interpretation 2

he = John

Solution 'i

comb of safe

Fip,ute 3.

Here we see one solution, Solution 3, solving
three problems and two examples of two solutions,
Solution 3 + Solution 4 and Solution 3 + Solution
5, solving the same problem consistently. This
example suggests that the way to capitalize on the
text's redundancy is by looking for single
solutions that solve multiple linguistic problems
and fot consistent multiple solutions for single
problems, and favor the resulting interpretations
over others.

My final suggestion is to use metarules, as
suggested by Davis (1977), to guide the
inferencing. Few such rules have been proposed,
but one possibility arises in the problem of
reasoning about s omeone else's reasoning (e.g .
McCarthy 1979). In one approach, you need an
axiom that says someone will draw the valid
inferences of what he knows. It turns out that
much of the inferencing in this domain is driven
by that axiom. Thus, it would be good to have a
metarule specifying the circ~mstances under which
that axiom should be tried first (cf. Hobbs
forthcoming).

It might be useful to collect into one place
all of the ways in which context enters into the
selective inferencing system. Fiist of all, the
salience on the axioms varies with the context,
thus varying the order in which the knowledge base
is searched. Secondly, what is in the spotlight
has the highest salience, so the text itself and
the previous inferences are part of the context
that influences interpretations. Thirdly, the
previous text has a structure deriving from its
coherence relations, and this influences the
salience of expressions in the text (cf. Hobbs
1976b). Finally, the model of the external
environment has a structure that influences search
order (cf. Grosz 1977). In short, context is
foimalized as what is known and the order in which
whnt is known is accessed.

110

2.7. Commitment

Let's begin with an analogy of the sort we
AI -ere are fond of . Suppose you build a veiy
complex clock, telling the time of day, the day of
the week, the date, the phase of the moon, the
season, perhaps even the sign of the zodiac each
planet is in. In other words, your clock
simulates a number of astronomical phenomena.
When you sell the clock to me with this
description, you are committing yourself to the
described correspondence of its external behavioI
to the astronomical phenomena, and if the
correspondence fails to hold, I will have a right
to complain and you will have an occasion to woriy
about what went wrong.

But suppose I open up the clock and demand
that you tell me which sstionomical object
corresponds to each gear -- where's Mars, for
example. At this point I have exceeded the level
of detail of your commitment.

In a DS, the level of commitment is maximal.
We can not only demand that it produce cor1ect
formulae for us to compute trajectories with. we
can look inside the formal system and ask what
each symbol stands for, learning foI example that
"2" stands for the Platonic two. The axioms
correspond to true facts in the univer se, and the
rules of inference preserve truth. In short,
there is a correspondence between each gear and
something in the world.

There is a serious problem when we try to
carry this level of commitment over to the
inference component of an NLP system. It is
probably impossible to axiomatize any complex
domain consistently in a way that would be useful.
Achieving a consistent axiomatization of set
theory required some of the world's greatest minds
working fox half a century, and set theory is
about the simplest domain imaginable. When we get
to domains as complex as the entities occupying
our world, our management of the events in our
lives, and social relationships, there seems to be
no hope for a consistent axiomatization. FoI
example, we would like our system to know that
birds can fly without worrying each time about all
the circumstances in which they can't. We
frequently have and use contradictoiy general
principles:

Haste makes waste.
A stitch in time saves nine.

When Me come to axiomatizing our knowl edge about
social relationships, there is enough variation
among people that there are probably no useful
statements that are universally true.

There are several possible approaches to this
difficulty. One is to try to axiomatize complex
domains consistently anyway, such as Pat Hayes is
doing in his interesting work on naive physics
(Hayes 1978b). Another is to develop nonmonotonic
logics (McDermott and Doyle 1978), in which there
are axioms of the form

p(x) & M q(x) --> q(x).

That is, if p(x) is true and it is consistent to
assume q(x), then q(x) is true.

These researchers' efforts are still
tentative and it is not clear whether they can
succeed in a way that will satisfy our criteria of
a formalism, clonenen2 to F.nelish and a 2imple
s.vntrix. Whi lP. T wiFih them wflll, T Am RkPptical
about their pro,1pects, ,'lnd bein1; lmp11li"nt like
most people in AI, I want to get on with the
problems of primary interest to me in the
meantime.

So I would like to see mechanisms for dealing
with inconsistent sets of axioms. Selective
inferencing can be just such a mechanism. We need
it anyway to avoid being swamped by irrelevant
inferences. We may as well use it to avoid
inconsistencies, by building into the discourse
operations the feature that they back away from
placing contradictory propositions in the
spotlig~t. When about to place a proposition Pin
the spotlight, if not-P is already there, the
system retracts one of the two inferences,
presumably on the relative strengths of what
warrants each inference (cf. Carbonell 197g , de
Kleer & Harris 1979, Doyle 1979). This is just a
generalization of common practice in AI as old as
Collins and Quillian (1971) who said that birds
can fly but penguins can't.

Now that we have decided to allow
inconsistent sets of axioms, let us look at a
couple of extreme cases. We can not only include
normative facts such as "Birds can fly, " along
with the marginal exceptions. We can include
directly contradictory axioms,

(Ax)(chair(x) --> has-arms(x))
(Ax)(chair(x) --> Not(has-arms(x)))

The first axiom would be used for chairs
arms were mentioned or implied, the second
chairs whose armlessness was relevant, and
discourse operations would insure that no
was assumed to be both armed and ar mle2s.

whose
for
the

chair

Another example is Fregean set theory, which
I've always felt was right, in some intuitive
sense. It is too compelling on other grounds for
Russell's paradox to be more than an obscure bug
that we can live with. Frege's offending axiom
schema, the principle of comprehension, says that
for all predicates p,

(Ex)(Ay)(member(y,x) <--> p(y))

Corresponding to every description p there is a
set of entities satisfying that description. I
think we use this axiom all the time, for example,
in making sense out of

Will all those who disagree please stand
up and be counted.

We assume there is a set that can be counted that
contains all those who satisfy the predicate "x
disap;rees". When we try to use the axiom schema

111

for the predicate "y is not a member of itself"
and spot the paradox,. we simply shrug our
shoulders and call it an exception, and so should
our system.

All this, of course, makes it impossible to
maintain the maximum level of commitment to our
formalism. We have to pull back somehow. The
extreme possibility is the clockmaker's stance.
We are writing pro~rams that will perform well
l i.np;uisti,:1Jl ly and if our pror,nun does th11t you
have no business looking inside at the gears.
Ultimately, that is the only commitment I think we
should accept. Just because I call one of my
gears "bird" doesn't mean it has anything to do
with real birds. As long as the mechanism says
appropriate things about birds, you have no
grounds for complaint.

But as Pat Hayes has pointed out (personal
communication), it is highly unlikely that we
could build such a mechanism with no more to go
<Jn~~ We need at least a heuristic commitment at a
mor e detailed level. Very complex processing
takes place in the system, and if we don't have
some intermediate checks on the corr es pondence
between the formalism and the world, it is
unlikely that we will have the proper
correspondence between the ultimate behavior and
the world.

In order to state a reasonable heuristic
commitment, we need to back up and state again
what the problem is. I have frequently said that
model theoretic semantics is a translation from
some formal language, say, lambda calculus, into
the language of set theory. Loeician friends have
objected vehemently, calling it a mapping from the
formal language into things in the world. That
raises difficulty for those of us who are
methodological solipsists, verging on real
solipsism. We can't make sense out of "things in
the world" independent of some conceptual
framework. The solution is to move up a level,
climb to the top of Mount Olympus with Zeus. Zeus
looks down and sees a society of people, two of
whom we'll call the Maker and the Buyer; he sees a
formal system that the Maker has just made and is
trying to sell to the Buyer: and he sees a number
of languages, or conceptual frameworks, that exist
as "social objects" in this world and are used by
the Maker and the Buyer for communicating . From
this perspective, what looked like semantics when
we were in the hurly-burly of earthly life, now
looks like a translation from a representational
system or conceptual framework at one level (the
formal system) into a conceptual framework at the
next level up (the society). The advantage of
this perspective is that it allows us to talk
about which of the conceptual frameworks at level ·
two, the society, is the most appropriate tar get
of the translation. The question is -- when :he
Maker makes a commitment to the Buyer about the
nature of his formal system, what language should
they use?

Model theoretic semantics assumes that the
target should be the language or conceptual
framework of set theory. This works weli for
implication and quantification, and thus is an

I

appropriate choice for a deductive system in
mathematics. But it sheds little light on the
bulk of what we talk about in natural language.
It does little good to be told that

America is the bastion of democracy

means that the ordered pair of America and
democracy is in the set of ordered pairs denoted
by the relation "is the bastion of".

A common way around this objection is to
enrich one's ontology with received t heories and
use the entities they provide as targets of model
theoretic interpretation. For example, one might
attempt to map our language of spatial
relationships into coordinate geometry, our
laneuage of motion into Newtonian physics, and
presumably our language of beliefs and emotions
into Freudian psychology. That is, one candidate
for a target representation is a "suitably
enhanced" set theory.

Another perfectly viable candidate is the
:conceptual framework provided by natural language
itself. All of us, as Makers and Buyers, are just
as comfortable in natural language as we are in
set theory. The usual objection to natural
language is that it is frequently ambiguous, so we
will modify our candidate to "suitably
unambiguous" English.

The choice is thus between a suitabl y
enhanced set theory and suitably unambiguous
English. Suitably enhancing set theory is a
project science has been embarked on for centuries
and will continun on for centuries to come.

·suitabl y disambiguating English, on t he other
hand, is something all of us do all the time. So
the latter choice seems the more judicious one.
Moreover, since it is a mechanism for simulating
natural language behavior that the Maker and Buyer
are discussing, the correspondences will be easier
to state with the latter choice, for natura l
languages and scientific theories tend to carve
nature at very different joints.

The intermediate check, the heuristic
commitment, that I as the Maker am willing to give
to t he Buyer then is this: I claimed a fairly
straightforward translation between expressions in
the formal language and English sentences. If in
the course of processing a sentence in a text, the
discourse operations place an expression in the
spotlight, I will feel committed to it in the
following sense: Translate the expression into
English and put it in the frame "You mean ••. ?"
The resulting utterance should be an appropriate
request for clarification in the circumstances and
should be answered positively. Suppose the system
is told "John is a hog." Then it is appropriate
for it to draw the inference

ovetconsume(J,F) & food(F),

since the response "You moan John overconsumes
food1" would usually be answered positively. It
would not be appropriate for it to draw the
inference

112

four-legged(J),

since the response "You mean John has four legs?"
would be answered negatively. Similarly. for an
expression that was read in as part of the text,
if the requirements of the discourse operations
have been satisfied and any necessary
modifications made, then I am willing to make the
same commitment. Turn it, as modified, into an
English request for clarification and the answer
should be "yes". The commitment associated with
including an axiom in the knowledge base is that
there is some situation in which t he discourse
operations should draw that inference and place it
in the spotlight, with the associated commitment.

Rather than map the formal language into a
scientific language at the level of the social
enterprise and judge truth, we map the for mal
language into natural language at the level of the
social enterprise and judge appropriateness.

3. Summary: What Are the Real Problems?

Here's a possible program for advancing the
study of language. Take our ten linguistic
problems and give one each to our ten best
graduate students, and let them work for severa l
years. The arguments of this paper lead to a
prediction of the outcome. Ten percent
explorations of aspects special to the particular
problems, ninety percent overlap, The space of
what we don't know about language would have been
cut along the wrong axis.

I have sugeested another way of partitioning
t he space. In this, the problems are devising a
language of representation, encoding various
chunks of world knowledge, refining the statements
of the discourse operations, and discovering
methods of control. The first of these is
probably the least interesting; most work on the
problem has just resulted in a reinvention of
predicate calculus. This leaves three problems to
focus on.

In the project of encoding knowledge, we
should concentrate on those basic areas that lie
at the core of language and occur in almost all
discourse -- space, the meaning of prepositions
(cf. Herskovits 1979), time, tense and aspect,
naive physics (Hayes 1978a, 1978b), belief (Moore .
1979), number, and so on. A difficulty with such
efforts in the past has been that definitions of
terms won't stay constant under shifts of context.
Ways of representing normative know l edge and
mechanisms for context-dependent selective
inferencing, such as presented here, should ease
this difficulty. Much work has been done on these
areas already in AI, but there is a common pitfall
here. Many such efforts fail to pass the
Grandmother Test. They tell us no more than our
grandmother could have told us. There may be
domains in which all there is to do is write dow"
the obvious, but it's probably best not to waste
our time on those domains for now. Our approach
to the basic areas can be sharpened by the .
existence of several simple but challenging
puzzles, such as McCarthy (1979) has suggested for

the domain of belief,
interpreting linguistic

•contribute.

A few good puzzles in
expressions would also

The program indicated by the discourse
,operations has two stages. In the first stage,
various linguistic phenomena are reduced to one or
moie of the five discourse operations. The ten
linguistic phenomena discussed in this paper by no
means exhaust the field, There are also the
problems of interpreting adverbials, resolving
quantifier and conjunction ambiguities, and
resolving "one" anaphora (Webber 1978), to name
just a few. The second stage is to define the
discourse operations in terms of the selective
inference process. The definitions I have given
are only first approximations. For predicate
interpretation, we need methods for computing the
requirements of complex predicates, such as "x
sell y for 57 3/8". For textual coherence, we
need to search for further constraints on the
definitions of the coherence relations, For the
probem of relating the text to the world, the
time is probably ripe for someone to look at the
diverse work that has been done in the field and
summarize it all in a coherent framework,
chazacterizing in the most general terms the
structures used to model the world, and the
procedures used to relate various aspects of
English discourse to the models, Such a
consolidation would give us a plateau from which
to advance.

For control, we need to follow out the three
leads that were suggested -- salience measures,
using redundancy, and metarules - - as well as
other leads, such as parallel search mechanisms
(Fahlman 1979), The idea of using redundancy is
particularly intriguing, because it involves
exploiting an inherent property of natural
language to solve the search problem , It would be
good to find other inherent properties of natural
language with similar computational payoffs,

Acknowledgments

I have profited from discussions with Armar
Archbold, Herb Clark, Dave Evans, Chuck Fillmore,
Barbara Grosz, Pat Hayes, Stan Rosenschein, the
members of the Bay Area Discussion Group on
Semantics and Pragmatics 1q1A- q, and the members
of tht? 'l'INLIINCH Discussion Group at SRI. This
work was supported by the National Science
Foundation under Grant No, MCS-78- 07121 and by
the Defense Advanced Research Projects Agency
under Contract No, N00039- 79-C-0118 with the
Naval Electronic Systems Command.

REFERENCES

Allen, J. 1979, A plan-based approach to speech
act recognition. Technical Report No , 131/79,
Dept. of Computer Science, University of
Toronto.

ll3

Carbonell, J. 1979, Subjective
Computer models of belief
Thesis, Yale University.

understanding:
systems, Ph, D,

Charniak, E, 1974, Toward a model of children's
story comprehension. AI-TR-266, Artificial
Intelligence Laboratory, Massachusetts
Institute of Technology.

Clark, E, & H, Clark 1980, When nouns surface as
verbs. Language, Vol. 48, 767-811.

Collins, A. and M.R. Quillian. 1971, How to make a
language user. In Tulving and Donaldson Eds,
Organization of memor..l., 309-351,

Davis, R, 1977, Interactive transfer of expertise:

de

Acquisition of new inference rules.
Proc~~ International Joint Conference
~ Artificial Intelli~n~e, 321-328,
Cambridge, Massachusetts. August 1977,

Kleer, J, & G, Harris
systems in problem
to Artificial

1979, Truth maintenance
solving. Paper deli_vered

Intelligence Workshop,
Electrotechnical
August 1979,

Laboratory, Tokyo, Japan.

Downing, P, 1977, On the creation and use of
English compound nouns. Language_, Vol. 53,
No, 4, 810-842,

Doyle, J, 1979, A truth maintenance system. AI-TR-
521, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.

Fahlman, S, 1979, NETL: A ~tern for ReJ> esent~
and Using Real-World Knowled1te, Cambridge,
Mass.: MIT Press,

Fillmore, C. 1979, Innocence A second
idealization for linguistics. Pro_ceedi~~
!'_i_t:._1:_h._ A_!l_~u_a_l 1'.!_e!_1:_i_n_e_, B_!!_r_kel_e_y lJ.n.~u_i~_!_i_c_s_
Societ~, 63-76, Berkeley, California,

Grosz, B, 1977, The representation and use of
focus in dialogue understanding. Stanford
Research Institute Technical Note 151,
Stanford Research Institute, Menlo Park, CA,
July 1977,

Grosz, B. 1980, Focusing and description · in
natural language dialogues. In A. Joshi,
I, Sag, & B, Webber (eds.), Elements of
Discourse Understandinit~ Proc. of~ !orkshop
on Computational A_spects of g~uisti~
Sti:_uctur~ and Discourse Settin!l· Cambridge
University Press, Cambridge, England.

Hayes, P, 1978a, The naive physics manifesto.
Working Papers. Institute for Semantic nnd
Cognitive Studies, Geneva.

Hayes, P, 1978b, Naive physics I: Ontology for
liquids, Unpublished manuscript. August 1978,

Herskovits, A. 1979,
situation types.
October 1979,

Space, prepositions, and
Unpubl !shed manuscr i.pt,

.,

·. j

. I

I

Hobbs, J. 1976a, Pronoun resolution. Research
Report 76-1, Department of Computer Sciences,
City College, City University of New York,
August 1976.

Hobbs, J . 1976b. A computational approach to
discourse analysis. Research Report 76- 2,
Department of Computer Sciences, City
College, City University of New York.
December 1976.

Hobbs, J. 1978. Why ia discourse coherent? SRI
Technical Note 176, SRI International, Menlo
Park, California. November 1978. To appear in
F. Neubauer (Ed,) Coherence in natural
language _ _texts. - ----

Hobbs, J. 1979e, Coherence and coreferenca,
C~itnitive Science. Vol. 3, No, 1, 67-qO,

Hobbs, J. 1979b, Metaphor, metaphor schemata, and
selective inferencing. SRI Technical Note
204, SRI International, Menlo Perk,
California. December 1979.

Hobbs, J. forthcoming. Representing beliefs about
belief flatly .

Hobbs, J . a J. Robinson 1979, Why Ask?
froc~~~. Vol, 2, 311 -318.

Discourse -----

Joos, M. 1972, Semantic axiom number one.
Language, Vol, 48, 257-265.

Levi, J, 1978, The syntax and semantics of complex
nominals. New York: Academic Press.

Lockman, A. 1978. Contextual reference resolution
in natural language processing. Ph.D. thesis,
Department of Computer Science, Columbia
University, May 1978.

Mann, W., J. Moore and J. Levin 1977, A
comprehension model for human dialop,ue.
Proceedings, International Joint Conference
on Artificial Intelligence, 77-87, Cambridge,
Mase. August 1977,

McCarthy, J. 1979. Formalization of two puzzles
involving knowledge. Unpublished manuscript •

•
McDermott, D. and

logic I,
Intelligence
Ineti tute of

J. Doyle 1978, Non-monotonic
A.I. Memo 486, Artificial

Laboratory, Massachusetts
Technology. August 1978,

Moore, R. 1979. Reasoning about Knowledge and
Actions. Ph. D. Thesis. Massachusetts
Institute of Technology. Cambridge, Mase.

Nunberg , G. 1978. The pragmatics
Ph .D. thesis, City University
New York, NY.

of reference.
of New York,

Robinson, A. 1980, The interpretation of verb
phrases in dialogs. SRI Technical Note 206,
SRI International, Menlo Park. California.
January 1C}AO,

114

Schank, R. and R. Abelson 1977.
~ and understanding.
Laurence Erlbaum Associates,

§.c .!.!_P.te, plane,
Hillsdale N. J.:

Schank, R., M. Lebowitz, a L. Birnbaum 1980. An
integrated understander. American Journal of
Computational Linguistics, Vol. 6, 13-30,

Webber, B. 1978, ·A formal approach to discourse
anaphora. BBN Report No. 3761, Bolt. Beranek,
and Newman Inc, Cambridge, Mase, May 1978.

Wilensky, R. 1978, Understanding goal-based
stories. Yale University Dept. of Computer
Science Research Report 140, September 1978.

INTERPRETING VERB PHRASE REFERENCES IN DIALOGS
Ann E, Robinson

Artificial Intelligence Center
SRI International

Menlo Park, California 94025

ABSTRACT

This paper discusses two problems central to
the interpretation of utterances: determining the
relationship between actions described in an
utterance and events in the world, and inferring
the "state of the world" from utterances.
Knowledge of the language, knowledge about the
general subject being discussed, and knowledge
about -the current situation are all necessary for
this, Presented and discussed are the kinds of
knowledge necessary for interpreting references to
actions, as well as algorithms for using that
knowledge in interpreting dialog utterances about
onp,oinr, tllskB nnd for drnwine infernnces nhout thtt
task situation that are based on a given
interpretation.

I INTRODUCTION

Two problems central to the interpretation of
utterances are determining the relationship
between actions described in an utterance and
events in the world, and inferring the "state of
the world" from utterances. Knowledge of the
language, knowledge about the general subject
being discussed, and knowledge about the current
situation are all necessary for this, The problem
of determining an action referred to by a verb
phrase is analogous to the problem of determining
the object referred to by a noun phrase. Although
considerable attention has been given to the
latter (Donellan, 1977; Grosz, 1977a, 1977b;
Sidner, 1979; Weiier, 1979), little has been done
with the former.

Th e need to identify an action is obvious in
utterances containing verbs like "do", "have", and
"use", as in "I've done it", "what tool should I
use?", or "I have it". In these utterances the
verb does not name the action, but rather refers
to it more generally, much as pronouns or
"nonspecific" nouns (e .g., "thing") refer to
objects. Even when more specific verbs are used,
complex reasoning may be required to ascertain the

* This research has been funded under three-year
NSF Continuing Research Grant No, MCS76-22004,
This paper and the research reported in it have
benefited from interaction wt th all the members of
the natural-language research group at SRI.
Barbara Grosz, Jerry Hobbs, Gary Hendrix, and Jane
Robinson have been particularly helpful in the
preparation of this paper.

•• A problem related to identifying verb phrase
referents--interpreting verb phrase ellipsis--has
been investigated by Webber (1979) ,

llS

particular action being referred to. For example,
the utterance "I've glued the pieces together" can
refer to different steps in a task--depending on
what objects "the pieces" refers to, because each
gluing action is a different step in the task
(Werner, 1966) , Similarly, the verb "cut" refers
to different types of cutting actions when used
with different objects, as in "cut grass", "cut
wood", or "cut cake" (Searle, 1978).

This paper presents algorithms that combine
knowledge about language, the problem domain, and
the dialog itself to interpret references by
verbs, The algorithms have been implemented and
tested in a computer system ('l'nu:;) that
participates in a dialog about the assembly of an
air compressor (Robinson, 1980), The system acts
as an expert, guiding an apprentice through the
steps of the task,

II KNOWLEDGE NEEDED

Interpreting any utterance and relating it to
a task requires knowledge about the language and
the task, as well as the relationships between
them, This paper will outline briefly some of the
knowledge needed to identify actions. The
research builds directly on the concepts of global
and immediate focusing, through which certain
entities are highlighted (Grosz , 1977a, 1977b;
Sidner, 1979), General familiarity with that
research will be assumed. More detailed
descriptions of other aspects of the knowledge
needed for interpreting utterances can be found
elsewhere (Gros z, 1977a; Hendrix, 1977, 1979;
Robinson, 1980; J, Robinson, 1980).

A, Actions and Goals

Interpreting verbs requires knowing about
events that have occurred, are occurring, or can
occur in the domain, Knowledge about events
typically includes the steps necessary to perform
the actions associated with the events, the
possible participants, the conditions that must be
true before the actions can be performed, and
their results (e.g., the goals they achieve or
their possible side effects), Knowledge about
actions and events includes both general knowledge
about possible actions and events and more
specific knowledge about those that occur during a
particular task.

A recently developed formalism, process
~ (Grosz et a.I., 1977; Appelt et al., 1980)
is used in TDUS for encoding information about
actions. The knowledge encoded includes a

: I

. :I
I

specification of hierarchical decomposition of
actions into subactions, as well as a description
of individual types of actions. The
representation is an extension of the network
formalism used for representing other knowledge
about objects and relationships, as described by
Hendrix (1979) .

Related to knowledge about current actions is
knowledge about the goals of the dialog
participants. The goals that are expressed or
implied by an utterance can be of many types.
These include "domain goals" related to the
subject domain; "knowledge-state goals" related to
changing the knowledge of one or more of the
dialog participants; and "social goals" arising
from both the social context in which a dialog
takes place and the inte4personal relationships of
the dialog participants.

The goals of dialog participants affect the
interpretation of verbs in at least two ways: (1)
interpreting verbs entails recognizing the
speaker's goals as expressed OI implied by the
utterance; (2) current goals are a part of tie
context within which ve1bs are interpret~d.

The TDUS system handles two kinds of goals:
domain goals and certain knowledge-state goals.
Domain goals concern states to be achieved by
task-related actions in the domain, while
knowledge-state goals concern states to be
achieved by acquiring a specific piece of
information.

Figure 1 illustrates the relationship
between actions and goals. The hierarchy shown is
a simplification of a portion of the.11sembly task
hierarchy currently encoded in TDUS. Each node
represents an action and its associated goal. The
hierarchy encodes the substep relationships: child
nodes represent substeps of their parent nodes.
The top- level node in the tree, node (1),
represents the action of attaching a pump whose
associated goal is that the pump be attached.
Nodes (2) and (3) represent substeps of this
attaching process--the actions of positioning the
pump and tightening the bolts, with the associated
goals that the pump be positioned and that the
bolts be tight. The action of locating bolts,
represented by node (4), is not an explicit step
in the task, but is necessary for its performance.
Node (4) has an associated knowledge-state goal:
"know the location of the bolts", All these goals
have associated actions that, in the process model
formalism, are specific instantiations of actions,
not action schemata.

* The distinction between domain and knowledge
state goals was drawn by Appelt (1979).

** The current implementation of goals in TDUS is
an extension and partial revision of one by
Sidner, described in her dissertation (1979),

*** Although the assembly task currently encoded
in TDUS involves strong structuring of actions and
goals, our representations and procedures are
applicable to less structured domains.

116

(21

(11

POSITION PUMP
goal : IN POSITION

ATTACH PUl\jP
goal: ATTACHED

141

TIGHTEN BOLTS
goal: TIGHT

LOCATE BOLTS
goal: KNOW LOCATION

Figure 1 Goal/Action Tree

We distinguish two classes of goals: "direct
goals" achieved by actions the apprentice has
explicitly or implicitly said.!!!_ bei~ performed
now or have been performed; "potential goals"
mentioned by either participant that have not been
acted~ but might possibly be, In--the context
of the task steps shown in Figure 1, "I am
attaching the pump" states that the speaker is
performing an attaching action represented by node
(1) . Thus the utterance establishes that the pump
be attached as a direct goal. "Should I tighten
the bolts?" indicates that the speaker might
perform the tightening action represented by node
(3) and thus establishes that the bolts be tight
as a potential goal,

A knowledge-state goal can also be a direct
goal. For example, the goal associated with node
(4), "know the location of the bolts", can be
introduced by utterances like "where are the
bolts?" In the current implementation, knowledge
state goals cannot be potential goals. This
limitation arises primarily because knowledge
state goals have not been as fully explored as
task goals,

Direct and potential goals are distinguished
from one another because of the different roles
they play in the interpretation of verbs.
Basically, direct goals are those that are known
as existing or former goals associated with
actions that are being or have been performed.
Potential goals are possible near-term goals
associated with possible future actions.
Depending on the type of utterance, one or the
other class of goal might be considered first.
The different roles of the two goal clasees will
be illustrated when the interpretation of verbs is
discussed in detail below.

Besides recognizing a goal, it is necessary
to recognize whether the goal is th~ current one,
one ·that has already been achieved, or one that
has been abandoned. It is also necessary to
recognize when goals are no longer potential.

A direct goal is assumed to be current when
an utterance states that en action that will
achieve the goal is in progress. A goal is
assumed to have been achieved when one of the
following conditions has been satisfied:

(1) An explicit statement sue~ as "I have
attached it" or "I'm done" or "OK" indicates
completion of the action that achieves the goal.

(2) An explicit statement indicates
compl e tion of an action intended to achieve the
goal .

(3) The start of a new action implies
completion of its prede1issor and thus achievement
of the associated goal.

An utterance such as "never mind" is
interpreted as signaling the abandonment of a
goal.

Potential goals are not achievable as such.
Rather, they can either become direct goals
through the mechanisms for establishing direct
goals or disappear when a new potential goal is
recognized.

B. Knowledge about Language

Knowledge about language is also required,
encompassing what is generally characterized as
syntactic, semantic, and discourse knowledge .
nyntnctic nn~ semantic knowledge includes
knowledge ahout tense and aspect and about the
r e lationship between words/phrases and .domain
entities.

.Dis course knowledge is knowledge about how
the domain and dialog contexts in which an
utterance occurs contribute to and are influenced
by the interpretation of the utterance.

A key element of discourse knowledge is
knowledge about discourse focus, through which the
participants in a dialog focus their attention on
only a small portion of what each of them knows or
believes. As a dialog progresses, the partici
pants continually shift their focus and thus
form an evolving context within which utterances
are produced and interpreted. This research
builds directly upon the concept of discourse, or
global, focusi~osz, 1977a, 1977b, 1980).

In addition to global focusing, we have built
upon the concept of immediate focus (Sidner, 1979)
through which a single discourse entity is
isolated. This is a more localized focusing
phenomenon that is closely related to the use and
recognition of anaphora, as v~11 as to changes in
global focusing.

*Seethe discussion in Grosz(1977a) of the roles
of OK,

** As Sidner(1g79) points out, in the first two
cases the information comes from the utterance,
while in the third case it is from the task model.

117

C, Shared and Joint Knowledge

In our framework, the dialog participants ere
assumed to•i~are knowledge about processes in the
task model and the history of the task
performance to date, along with knowledge about
direct and potential goals and focused entities.
We view this shared knowledge as composed of at
least two parts: (.1) the processes in the task
model and the history of its performance comprise
knowledge about the world that is assumed to be
shared by the participants independently of the
dialog; (2) knowledge about the goals and
focusing, which is assumed to be shared as a
result of the dialog. We will distinguish these
two types of shared knowledge and their roles in
the interpretation of utterances, and use the
terms shared and joint to refer to them.

We use shared knowledge to refer to what is
known by both participants because of their common
background and experiences, end is assumed by them
to be shared, but has not been explicitly
discussed by them, This includes knowledge of
both language and the domain.

We use joint knowledge to refer to whet has
been explicitly communicated between the dialog
participants. The steps of the task that are
explicitly mentioned are joint knowledge, as are
other focused entities that have been mentioned,
Since we are considering dialogs in which the only
mode of communication is verbal (there is, · for
example, no shared visual context) only what is
nctually said is assumed to be known jointly.

This analysis identifies as "joint knowledge"
essentially what Clark and Marshall (1980)
characterize as the mutual knowledg11 that results
from "linguistic co-presence." Our use of the
term "shared knowledge" covers the mutual
knowledge they describe as resulting from
"cultural co-presence" Iii a limited form of
"physical co-presence". *

Assumptions about things that are jointly
known play a critical xole in the interpxetation
and production of utterances (Clark and Marshall,
1980), as the use of anaphora illustrates.
Pronouns and pro- verbs (when used felicitously)
always refex to jointly known concepts, so tha.t
any utterance containing a pronoun ox pro-verb
must drawn upon joint knowledge.

--------*** Note that the apprentice knows neither all the
steps in the task nor their ordering--otherwise
there would be no need for the expert. However,
the apprentice does know how to perform most of
the basic actions, such as bolting and tightening.

**** Physical copresence is limited by the sensory
constraints of the computer system. The system
can assume that both it and the apprentice are
aware of the physical situation, but it can verify
its assumptions only on the basis of the
appre_ntice's actual utterances in the dialog.

III INTERPRETING VERBS

In this section we sddiess issues that Biise
in using domain and linguistic knowledge to
interpret veibs and to infer the current situation
on the basis of that interpietstion.

The possible referents of a verb phrase are
constiained by both the context and the utterance
itself, Coordination of the constraints is
necessaiy for interpieting verbs in a computeI
system.

Contextual constraints are deiived fiom two
sources: the domain and the dialog. Knowledge
about the domain and, in particulaI, the task
being performed, is part of the knowledge shared
by the participants at the beginning of the
dialog, includinp, knowledge as to which actions
can be perfoimed, how to peiform them, and when ,
The dialog provides knowledge about the actual
progiess of the task: it causes certain entities
to .be focused, as well as providing information
about the goals of the participants. This
knowledge is the joint knowledge we described
previously,

Utter~nce constiaints include tense and
aspect information and the type of action denoted
by the verb. The tense and aspect of the
utterance restrict the alteinatives within the
task model and limit the ROBls that might be
con:iidered as referents. Generally, pressnt tensfl
and piogressive aspect are used when IefeIIing to
a new action, indicsting ·that it has been started,
Only if the utterance is somehow marked, as in
"I'm still tightening the bolts", will the
refeience be to an sctio·n that has already been
mentioned as in progress, Consequently, when TDUS
is interpreting a piesent and progressive
utterance, the actions consideied in the task
model aie those closely related to the most recent
action performed, The only goal considered is the
potential one since a direct goal is associated
with an action already under way.

Past tense and/or perfective aspect indicate
that an action has been finished. However, the
hesier may or may not have known that the action
was in piogress. Consequently, the actions known
to have been in progress and those that can be
subsequent steps are possible referents, as sie
actions associated with all direct goals and the
potential goal.

The search for the Iefeient of a verb can be
conducted eitheI top-down or bottom-up. The top
down search useo contextual constraints to find
the place in the task that the utterance fits and
utterance constraints to limit alternatives. The
bottom-up mode uses information from the
utterance, such as veib type, to find its
relationship to the task. If the top-down search
is successful, the action and its place in the ·
task are identified simultaneously.

118

In the cuirent domain, in which all the
utteiances are directly Ielsted to the task and in
which the system has already encoded all the
Ielevant steps to be performed, top-down
constraints are stiong enough to allow a top-down
seaich to be conducted fiist--and only if that
fails is a bottom-up search conducted. In a
domain where theie is less structure piovided by
the task, a bottom-up seaich will clearly play a
more centisl Iole. This sesich can be improved by
doing more extensive reasoning based on the verb
in the utteiance. FoI such domains, we have been
examining what other linkage between actions
should be introduced,

One of the major limitations of previous
natural-language systems has been a lack of
cooidination of the strategies for identifying
referents of noun phrases and pronouns with one
anotheI or with the interpretation of: the verb.
Tn fact, except for the pronoun resolution
piocedure that ueed a very simple goal recognition
slgoiithm (Sidner, 1979), the veib phisse was not
even taken into account. However, since the
interpretation of each of these utterance elements
cannot be caIIied out in isolation, the previous
stiategies have been modified and now the
procedures for identifying noun phtase and pronoun
Ieferents are coordinated with the search for the
verb .phrase referent, Details of this modified
sttategy will be discussed in conjunction with
elucidation of the ·verb phrase strategy.

A. Ths Top- Down Algorithm

Different types of utterances can draw upon
different contextual constiaints. Three major
factors are considered by the interpretation
algotithm in determining which contextual
constraints to draw upon. The fsctois are (1)
whether or not a pronoun is present in the
utterance; (2) whe~her or not all the noun phrases

· in the utterance refer to focused entities; (3)
whether or not the main verb is "do", The
presence of a pronoun indicates that joint
knowledge, particularly goals · and immediate focus,
is being drawn upon, If no pronoun is present,
other factors weigh more heavily in determining
constraints. When all the definite noun phrases
refer to focused · entities, focusing information is
also a key in interpreting the verb. If the
referents are not focused, knowledge about the
task and its structure must be used. When "do"
appears as the main verb, joint knowledge plays a
more central role than when other verbs ate used.
The particular usage of "do", as signaled by the
other constituents, indicates which aspects of
joint knowledge are most important.

We will discuss the interpretation algorithm
by examining the interpretation of utterances
resulting from various combinations of these
factors. The utterances we will discuss are those
containing the verb "do", those containing verbs
other than "do" plus pronouns, and those
containing verbs other than "do" plus definite
noun phrases.

Within the first type of utterance--those
containing "do"--we further distinguish utterances
like "I've done it" from utterances like "I've
done the screws," In the former, "do" refers to
the performing of an action, "it" to the action
itself. In the latter, "do" refers to a
particular action, such as remove, Our discussion
will first cover these two types of utterances
containing "do", then utterances with other verbs
and pronouns, finally utterances with other verbs
and definite noun phrases.

1 . Do and Pronouns

In interpretinR verb phrases such as "do
it", knowledge about the context is used first to
determine possible referents. If "it" has been
used felicitously, it must refer to an action
jointly known to the dialog participants. As we
have discussed, joint knowledge in TDUS is
represented by goals and focusing. Goals are a
subset of all focused entities and, by definition,
those actions that could possibly be performed by
the apprentice. Consequently, possible referents
are contained in the subset of joint knowledge
represented by the most current direct goals and
by the potential goal.

The main utterance constraints are
derived from tense and aspect, which, as we have
observed, limit the goals whose associated actions
could be referents, The three cases we '
distinguish are past tense, present tense and
imperfective aspect, and future tense .

As we have discussed, direct and
potential goals can be referred to in a past- tense
utterance. For such utterances, the algorithm

·examines the moat recent direct goal first. If it
.is associated with a domain action (i.e., not a
knowledP,e-state goal), the action is taken to be
the referent of "it" because that is the action
known to be in progress, Utterance (3)
illustrates such a reference to a task ·goal,
(1) A: I'm doing the brace now,
(2) E: OK
(3) A: I've done it,
Here "i t" refers to the action of installing the
brace, the action associated with the current
goal.

Because of restrictions in our current
implementation, the most recent direct goal is not
considered as a referent if it is a knowledge
.state goal. Instead, the action associated with
the potential goal is taken to be the one refetred
to, since it is always a domain action, Clearly,
,if potential goals were extended to include
knowledge-state goals, a more sophisticated test
would be required.

Utterances (4) thro~gh (10) --taken from
an actual dialog with TDUS--i lluatrate reference
to a potential goal,
(4) A: What should I do now?
(5) E: Install the aftercooler elhow on the pump,
(6) A: I've done it,
(7) E: OK,
(8) A: Should I instal l the aftercooler?

119

(9) E: Yea,
(10) A: I've done it,

The apprentice's Utterance (4)
establishes a direct knowledge-state goal of
knowing what action to perform, while the expert's
reply establishes a potential goal that the
aftercooler elbow be installed. Utterance (6)

·refers to the potential goal. Utterance (8)
similarly establishes a direct knowledge-state
goal of knowing about the action--in this case,

·whether the action is installation of the
aftercooler; here the apprentice's utterance
establishes the potential goal that the

·aftercooler be installed. Utterance (10) refers
again to the potential goal.

An utterance that is present-tense and
progressive (e.g., "I'm doing it") refers to an
action that has been previously mentioned but only
just started,· As we have seen, a potential goal
is associated with such an action, so that the
latter is taken as the referent. For example,
Utterance (10) could have been "I'm doing it",
referring to the action of installing the
aftercooler,

For a question referring to a future or
a hypothetical action (e.g., "What should I do
now?"), no attempt is made to identify the action
as part of the interpretation. Instead, the
reasoning process makes use of the task model to
identify the appropriate reply.

2, Do and Definite Noun Phrases

For the other use of "do" (e.g., "I'm
doing the screws"), where "do" refers to an
action, an action of that type must be part of
joint knowledge. However, only the action type
may be jointly known and not the specific action
referred to. For example in the sequence:
(11) A: I've attached the pump,
(12) E: OK,
(13) A: I'm doing the pulley now.
Utterance (11) makes joint the attaching action
for the pump. In Utterance (13), "do" refers to
another attaching action, but this one involves
the pulley, and is thus a separate act ion. "Do"
is not referring to the same specific action, but
rather to the same~ of action, i.e.,
"attaching".

To interpret such utterances, the
contextual knowledge used is joint knowledge and
knowledge about the task . The joint knowledge
used is focusing information, because an action of
the same type as the one referred to should be
focused.* The interpretation algorithm scrutinizes
focused actions for a type capable of having the
newly mentioned participating objects. For
example, the algorithm might find "attach pump" as
a focused action, determine that it is an "attach"

* Goal information could be used by examining the
types of the actions associated with domain goals.
However, access to the action type is more direct
through fa.cueing information.

and that therefore a pulley can also participate
in an "attach" action. If an action is found,
task knowledge is used to determine if an action
of that type with the indicated participants is an
appropriate action in the current situation.
Thus, if attach+ pulley is an appropriate action,
"attach pulley" is taken as the referent of "do".

Tense and aspect information from the
utterance help determine which actions in the task
model are appropriate. As we noted, a preaent
progreaaive utterance indicates initiation of a
new step, whereas the past tense could be used
with either a new step or one in progress.

Utterances (14)-(16)
(14) A: Should I install the pulley now?
(15) E: No.

The next step i~:
Install the aftercooler elbow on the pump.

or
Install the brace on the pump.

(16) A: I'm doing the brace now .
illustrate a related situation. Here two steps

' have been mentioned and are essentially equally
focused and both potential goals, so "do it" could
not refer unambiguously to one of the actions.
However, both actions are "install" actions, so
"do" can refer to an "install" type of action.
The interpretation algorithm outlined above works
for this case as well.

3. Pronouns with Verba Other Than Do

For utterances containing verbs other
than "do" and pronouns, contextual constraints
also stem from joint knowledge, since the object
or objects referred to by the pronoun must be
joint knowledge--in our case, mentioned in the
dialog. The way the referent of the pronoun was
introduced into the dialog affects the
interpretation of utterances that contain
pronouns. The distinction we make is whether the
object was mentioned as a participant in an action

;comprising part of the task, (e.g., "I attached
the pump.") or was not mentioned as a participant

'in an action (e~-:-.-"where is the pump?"). In the
first case, if the object has been mentioned as
participating in an action, the action will be
recognized as a direct or potential goal and all
its participating objects will be focused. In the
second case, if no action has been mentioned but
the object is a participant in some task action,
,the action will be inferred through the potential
goal recognition mechanism and thus become a
potential goal. However, in this case only the
,object mentioned will be focused and not the other
iparticipanta in the action. An example of the
~econd case ia:
(17) A: Where are the bolts?

[Immediate focus• bolts]
[Potential goal ~ THE BOLTS ARE BOLTED]

(1
1
~) E: OK

(,) A: I've tiRhtened them with the wrench .
, [with the wrench not in focus]
~n this situation, the first reference to the
bolts has established the potential goal that the
~olta be bolted.

uo

In both these situations the object
mentioned is focused and, when appropriate, an
action it participates in is established as a
goal. The difference between the two is whether
the actions and the other participating objects
are also focused. Thia difference affects the
interpretation of successive utterances containing
pronouns.

Three cases are distinguished in the
algorithm: (1) If there is a pronoun and there are
no definite noun phrases, the actions associated
with the moat recent direct goal and the potential
,goals are considered as possible referents of the
verb, since either of the two cases described
above could obtain. (2) If there are definite
noun phrases, all of which refer to focused
entities, then the actions associated with the
most recent direct goal and the potential goal are
the most likely referents. Since all the objects
are focused, the action was presumably mentioned,
as in the first case described above. (3) If a
pronoun and definite noun phrases occur together,
but not all of the latter refer to focused
entities, then only an action associated with a
potential goal is a possible referent. Since a
direct goal associated with this object could not
have been established, only the second case
described above could obtain.

In all three cases, utterance
information about tense, aspect, and action type
(from the verb) is used either to verify that the
action associated with the goal is a possible
referent or to choose a matching action type amon"
possible referents.

4. No Pronoun or Do

When there is no anaphora in the
utterance, the contextual knowledge used for
interpretation is provided by focusing and the ·
task model. Focusing is used to determine the
relationship between the utterance and focused
entities, including the current action. The task
model, including the record of task progress, is
used to determine which actions can reasonably be
talked about in the context. First, focusing
information ia used to determine if the referents
of any definite noun phrases associated with the
verb are currently focused.

a. All Noun Phrases in Current Focus

If the noun phrase referents are
focused, it indicates that the action involves
objects currently being discussed by discourse
participants and that the action is related to the
current step (because it involves the same
objects). The task model provides information
about actions the apprentice can perform and has
performed, Tense and aspect information from the
utterance and the verb type restrict alternatives
within the task model.

Aa we discussed earlier, present
progressive utterancaa generally r-efer to -newly

initiated actions. rhus, the actions in the task
model considered are those closely related .to the
most recent action performed and that involve
objects referred to in the utterance. Possible
actions might be a substep of the last step
started but not completed; the potential goal; a
step, not involving any different objects, that is
closely linked in the plan to the most recent step
started or completed (i.e., a step that is a
substep of or successor to the last step, or
succeeds a parent of the last step).

For example, "I am attaching the
pump 1s a present-progressive utterance with a
noun phrase referring to a focused object. In
this instance, the pump-attaching step is a
substep of the last step started--installing the
pump.

For utterances that are past tense
and/or perfective aspect, actions in the task
model known to have been in progress and those
that could be next steps are possible referents.
The alternatives considered during interpretation
are: a step in progress; the potential goal;· a
substep of the last step started; a substep of any
step in progress; and a step closely linked to the
last step started or completed. For example, "I
attached the pump" refers to a completed action
that was a step in progress--attach pump. The
verb in the utterance "I've installed the pulley"
refers to a completed action that was the next
step to perform, but was not explicitly mentioned
as having been started, i.e., install pulley.

b. Not all Noun Phrases in Cur.rent
Focus

If the referents of the noun
phrases are not currently focused, the focusing
hierarchy is searched because it indicates
previously focused objects that might become
focused again. If the noun phrase referents are
identified somewhere ·in the focusing hierarchy,
the action named in the utterance is matched
aRainst any action occurring at that place in the
hiernrchy.

If the utterance contains noun
phrases referring to objects participating in the
action and those objects cannot be identified
among focused entities, the actions associated

· with direct goals are eliminated as possible
referents of the verb . This happens because all
actions associated with direct goals have been
mentioned, which has caused all their participants
to be focused.

Possible referents of such verbs
include: the action associat~J with the potential
goal; a ~ubstep of the current step in progress; a
substep of all the steps in progress (if the
utterance is past and/or perfective); any action
which can achieve some current goal (e.g., knowing
a location-> found the object). Since the
objects described in the noun phrases and the
action both have to be tested when the substeps
are examined, the algorithm first checks the

121

objects described by the noun phrases to see if
they are participants in any of the substeps (by
looking at the binding space) ; and if so, it then
examines the actions to ascertain whether one of
them matches the input action.

B. Bottom-Up Search

Currently the bottom-up algorithm consists of
a search for the most specific occurrence of an
event in the model whose participants are
compatible with those in the utterance. This
strategy is being expanded to include a search for.
a more general event that can then be found in the
task. This can be either the most specific event
type compatible with all the elements in the
utterance, or a more general or 'similar' event
type that is both compatible and can be found in
the task. An example of the first is an utterance
containing "tighten the bolt". The verb "tighten"
refers to a general tightening action that can
have more specific applications--such as tighten
screws, tighten bolts, etc. From the knowledge
that one kind of tightening is bolt tightening and
from the concomitance of "bolts" in the utterance,
it can be inferred that the "tighten bolts" action
is intended. In the second case, a more specific
verb might have been used (e.g., bolt the pump) to
mean securing the bolts. The verb "bolt" might be
initially interpreted as referring to a specific
action of tightening bolts. However, that might
not be an explicit step in the task, but rather,
perhaps, only some general securing step. From
the bolting action and knowledge of the more
general actions of which it is a subset (e.g.,
securing) , the relation of that action to the task
model can be found.

C. Setting Limits to a Search

Knowing when to stop searching for a referent
of a verb is another important element of the
interpretation process. In general, the extent to
which a verb reference is interpreted depends on
the type of utterance. For example, a verb may
refer to an action that does not fit into the
current task context, such as one that could not
or should not be performed at that time. If the
verb is contained in a question (e.g. , "Should I
cut the end off now?"), a reasonable assumption
may be as follows: if the action cannot be
identifies, it is not the appropriate one to take,
as illustrated in Utterance (14). On the other
hand, if the v~rb is contained in a statement
(e.g., "I have cut off the end."), it is more
important to identify the specific action
performed, since a model of the current situation
could not otherwise be maintained. Thus, any
process for identifying a verb referent should oe
able to determine what resources it should expend
in each situation.

Another factor to be considered when
determining how much effort to expend in
identifying the referent is the extent to which
the speaker can be assumed to be cooperative, and,
consequently, .hie or ·her utterances to be

I

relevant. If eome fairly direct connection
between the utterance, the task, and/or dialog
context can be postulated, devoting more effort to
the search fore connection ie more reasonable
than in a leee task-oriented dialog, in which euch
a connection may not even exist. In the TDUS
eyetem it ie assumed that the ueer is cooperative
and that all hie or her utterances are relevant,
Thus, considerable effort is expended, when
necessary, to relate a statement about an executed
step to the teak of which it is a part.

IV FUTURE DIRECTIONS

In this paper, we have discussed the problem
of identifying the actions and events referred to
by verbs, In particular, we have considered
dialogs about en ongoing task, We have examined
some of the knowledge needed for identifying the
actions and have presented a strategy for finding
them. Thie problem is of interest both because it
ie en important part of interpreting utterances
end because it illustrates the need for combining
knowledge of many types in the course of that
process.

The reeeerch discussed here shows how the
knowledge about language and about the domain that
ie currently identified and repreeented in a
computer system can be used when interpreting
verbs. Important extensions of this research
include determining: (1) how top-down and bottom
up searching can be combined more effectively; (2)
on what basis decisions can be made to stop
looking for a connection between an action and a
plan; (3) what exteneione of thie algorithm are
necessary for handling dialogs in which the lack
of a strong model of the taek being performed
reeulte in weaker top- down constraints. Further
research on finding referents of verb phrases,
building on the algorithm presented here, should
contribute to solving the more general natural
language processing problems of determining what
other knowledge is necessary for interpreting
utterances and how that knowledr,e can be used mont
effectively.

V REFERENCE:S

Appelt, D, R., 1979, Planning Natural Lan~age
Utterances to Satisfy Multiple Goals, Thesis
proposal, Stanford University, unpublished.

Appelt, D, E., Grosz, B, J., Hendrix, G, G,, and
Robinson, A, E., 1980, "The Representation and
Uee of Pr ocees Knowledge". Technical Note ~07.
Artificial Intelligence Center, SRI
International, Menlo Park, California.

Clark, H, H,, and Marshall, C, 1980, "Definite
Reference and Mutual Knowledge". In Elements
of Discourse Understanding, A, K, Joshi,
I, A, Sag, and B. L, Webber, eds., Cambridge
University Preas, Cambridge, England.

122

Donellan, K, s., 1977. "Reference and Definite
Description." In Naming, Necessity, and
Natural Kind., S, P, Schwartz, ed., Cornell
University Press, Ithaca, New York,

Grosz, B, J,, 1977a, "The Representation and Use
of Focus in Dialogue Understanding," Technical
Note 151, Artificial Intelligence Center, SRI
International, Menlo Park, California.

Grosz, B, J,, 1977b, "The Representation and Use
of Focus in a System for Understanding
Dialogues," Proceedings of the Fifth
International Joint Conference on Artificial
Intelligence, pp, 67-76, Cambridge,
Massachusetts, 22-25 August 1977,

Grosz, Barbara J, 1980, Focusing and Description
in Natural Language Dialogues. In Elements of
Discourse Understanding, A, K, Joshi,
I, A, Sag, and B, L, Webber, eds, Cambridge
University Preas, Cambridge, F.ngland.

Grosz, B, J,, Hendrix, G. G,, and Robinson, A, E,,
1977, "Using Process Knowledge in
Understanding Task-Oriented Dialogs , "
Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pp, 90,
Cambridge, Massachusetts, 22-25 August 1977,

Hendrix, G. G, , 1 977, " Some Gener al Comments on
Semantic Networks," Panel on Knowledge
Representation, Proceedings 2..~ the !ifth
International Joint Conference on Artificial
Intelligence, pp. 984-985, Cambridge,
Massachusetts, 22-25 August 1977,

Hendrix, G, G,, 1979, "Encoding Knowledge in
Partitioned Networks," In Associative
Networks-The Representation and Use of
Knowledge in Computers, N, V, Findler, ed.,
Academic Preas, New York, New York.

Robinson, A, E,, 1980, "Interpreting Natural
Language Ut terancee in Dialogs About Tasks."
Technical Note 210, SRI International, Menlo
Park, California,

Robinson, J. J., 1980, "DIAGRAM," Technical Note
205·. SRI International, Menlo Park, Calif,

Searle, J, R,, 1978, Literal Meaning.
Erkenntnis, 13, pp. 207-224,

Sidner, C, , 1979, "Towatde a Computational
Theory of Definite Anaphora Comprehension in
English Di scour ee," Maseachueet te Institute of
Technology, Cambridge, Massachusetts, PhD Th,

Webber, B, L,, 1978, "A Formal Approach to
Discourse Anaphora," BBN Repott No. 3761,
Bolt, Betanek, and NelfDlan Inc. Cambridge ,
Massachusetts,

Werner, 0, 1966, Pragmatics and Ethnoscience.
Anthropological Linguistics, 1966, 8,8 42-65.

Correcting Misoonoeptions About Data Base Structure

Eric Mays

Department of Canputer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

This paper presents a method for cx:mputation

of intensional failures of presumptions in queries

to a natural language interface to a data base

4ystern. These failures are distinguished fran

fxtensional failures since they are dependent on

~he structure rather than the content of the data

~e. A knowledge representation has been
,nvestigated that can be used to recognize
intensional failures. When intensional failures
~re detected, a form of corrective behavior is
' t;>roposed to inform the user about possibly

~elevant data base structure that is related to

1j.he failure.

INTROOOCTIOO

In the course of interacting with a natural

1anguage data base query system a casual user may
I!08e queries based on beliefs about tpe danain

which are incXJ!patible with those of the system.

Kaplan [Kaplan 79] has investigated one such class

of beliefs which can be cx:mputed fran a query and

qorrected, namely, extensional failures of

presumptions. This paper introduces aoother
dlass, that of intensional failures of
presumptions, outlines the kind of knowledge
representation needed for their cx:mputation, and

proposes an appropriate form of corrective
!

Qehavior.

A presu~ition is a proposition that is
Ejntailed by all the dir<;!Ct answers of a

question(*). A presumption is either a

~resu~ition or it is a proposition that is

entailed by all but ~ of the direct answers of a
question [Kaplan 79]. Hence, presu~ition is a
stronger version of preSlll'ption, and a

123

presupposition is a presumption by definition.

For example, question (la) has several direct

answers such as "John", "Sue", etc., and, of

course, •no a1e". Proposition (lb) is entailed by

all the direct answers to (la) except the last '
one, i.e., •no one". Therefore, (lb) is a

presumption of (la). Proposition (ld) is a

presupposition of (le), since it is entailed by

all of the question .. s direct answers.

la) Which faculty members teach CSEllO?

lb) Faculty members teach CSEllO,
.le) When does John take CSEllO?
ld) John takes CSEllO.

Presumptions can be classified on the basis
of what is asserted - i.e., an "intensional"
statement about the structure of the data base or
an "extensional" statement about its contents.

Thus an extensional failure of a presunption ·
occurs based on the current contents of the data

base, while an intensional failure occurs based on

the structure or organization, For exanple,

question (2a) presumes propositions (2b), (2c),

and (2d). Presumption (2b) is subject to

intensional failure if the data base does not
allow for the relation "teach" to hold between
"faculty" and "course". An extensional failure of
presumption (2b) would occur if the data base did

not contain any faculty member that teaches a
course. Also note that the truth of (2b) is a
pre-oondition for the truth of (2c),

(*) The OC11plete definition of presupposition

includes the oondition that the negation of a

question, direct answer pair entails the

presu~ition,

• I

· I

· I

l

I
I

2a) Which faculty members teach CSEllO?

2b) Faculty members teach courses.

2c) Faculty members teach CSEllO,

2d) CSEUO is a course.

Although a presumption which fails

intensionally will of neccesity fail

extensia'lally, it is important to differentiate

between them, since an intensional failure that

occurs will occur consistently for a given data ·

base structure, whereas extensional failure is a

hansitory function of the current contents of the

~ta base. This is oot meant to imply that a data

t>ase structure is oot subject to change. However,
I

liuch a change usually represents a fundamental
i
~ification of the organization of the enterprise

that is modelled. One can observe that structural

tlodifications occur 011er long periods of time

(many nonths to years, for example), while the

<3ata base contents are subject to change over

felatively shorter periods of time (hourly, daily,

~r nonthly, for example) .

The problem this paper addresses is the

tecognitia1 of presumptions which fail
I
intensialally. In that case, the failure should

~ carmunicated to the user and a form of

¢orrective response produced which informs the

user about the relevant data~ structure.

DA.TA BASE MXlEI. ------
A data base model based primarily on the

entity--relationship model of Chen [Chen 76] with

the addition of an inheritance hierarchy can . be

used to detect the intensional failure of a

presumption. This loodel is similar to that

proposed by Lee and Gerritsen [Lee and Gerritsen

78], which incorporates the generalization

dimension developed by Smith and Smith [Smith and

Smith 77] into Chen .. s model. Although Lee and

qerritsen, and Chen allow entities to participate

ln n-ary relationships, this discussion will be

restricted to binary relationships. Entities

participate in relationships along two orthogonal
dimensions, aggregation (among dissimilar

124

entities) and generalizatia1 (among similar

entities), as well as having attriootes that

assume values.

an entity

Along the generalization dimension

inherits the attriootes and

relatialShips of its super-entities. All

individuals of a particular entity set are members.

of any of that sees super-entity sets. Sane

:individuals in an entity set may be members of a
sub-entity set, therefore participating in

relationships of the sub-entity set and having

attriootes of the sub-entity set.

A simple subset operator is oot adequate for

generalization in this context however, as is

illustrated by the following example, Consider

the data base model fragment shown in figure l.

Entity sets are designated by 011als, aggregation

relationships by diaironds, and generalization

relationships by edges fran the super-entity set

to the sub-entity set. Here "men", "wanen",

"faculty", and "students" are all subsets of

"people", with "students" participating in a

"take" relationship with "courses". Fran this it

can be determined that a "take" relationship can

exist between "men" and "courses", since it is

possible that there are sane "people" who are both

"men" and "students". But by this same reasoning

we may also assert that a "take" relationship

might exist between "faculty" and "oourses", which

is certainly oot the case in most universities.

The essential difference that needs to be ooticed

is that a non-empty intersection is possible.

between "men" and "students" and is oot possible

between "faculty" and "students".

The incorporation of an operator that

partitions an entity set into several nutually

exclusive sub-entity sets eliminates this problem.

This distinction can be made by prohibiting the_

traversal of a path in the data model that

includes two entity sets which are mutually

exclusive, Furthernr:>re, the path in the

generalization dimension is restricted to "upward"

traversals followed by "downward" traversals. An.

upward (downward) traversal is fran a sub-entity,

{super-entity) set to a super-entity (sub-entity)

(OVRSES

Fl<.vRE I

set. This restriction is made to prevent
I
over-specialization of an entity set when
traversing downward edges. The set of inferences
~t can be made in the presence of this
restriction is not overly constrained, since any

j:11«) entity sets that have a cx:moon intersection

~sub-entity set) will also have a cx:moon union
ksuper-entity set). As an exarrple of this type of
4itructure, consider figure 2, where partitioning
~s denoted by parallel arcs across edges • .
(Usually sane attribute of an entity serves as the
basis for the pu!·u~.l,m. l"or exarrple, "sex"

us

partitions "people" into "men" and "wanen" .) In
_this fragment of information about university
organization the possibility of a "take"
·relationship existing between "faculty" and

"cxiurses" is precluded by the fact that "faculty"

and "students" are nutually exclusive. Observe

that the path fran "students" to "unenployed"

would include "people" rather than "undergrads" or
"unsupported". If either "undergrads" or
"unsupported" were included, "students" would be
unnecessarily restricted.

Although it might seem at first that a
"teach" relationship might be possible between
"undergrads" and "cxiurses" since all
"undergrads" are "students", and "students" and,

"teachers" are not mutually exclusive - this is
not the case. Closer inspection reveals that all_
"undergrads" are "unenployed", and "unenployed"

. and "teachers" are nutually exclusive, thus
eliminating the possibility. The inferencing

about mutual exclusion required to produce this
result would proceed in a fashion similar to that
proposed by Fahlman [Fahlman 79] • Very briefly,
markers are propagated upward fran the two entity
sets which are assumed to be disjoint. If a split

node (which denotes 11'1ltual exclusion) detects
markers fran both entity sets, they are not

· 1

' I

• I

disjoint. Fahlman uses this operator to enforce
restrictions on updates to a knowledge
representatioo.

INTENSIOOAL FAIUJRE

In this data base model, intensional
koowledge can be equated with the ability of an
entity to participate in a relationship with
another entity. Here, intensional failure ocx:urs
when such a relationship can not be established.
for instance, the question "Which faculty take
courses?" inoorrectly pres1.1nes that a "take"
~elationship can exist between "faculty" and

~courses" entities.

A method for the oanputatioo of a significant
class of presllllptions in the data base query
~in is described by Kaplan [Kaplan 79]. The

t~roach taken there involves the generation of
pie meta-query language (MJL) fran the natural
tanguage input. The M,JL is essentially a IOC>dified
parse tree that closely reflects the surface
I structure of the input query. An exalli)le is shown
tn figure 3 for the questioo, "Which students in
! .
QCJIP.lter science took CSEllO?". Kaplan oanputes
t:he extensional failures of presumptions in a
~ery fran the M,JL by checking the result of the
rorma1 data base query of each oonnected sub-graph
<l>f the M,JL for emptiness. That is, the contents
~f the data base are accessed to determine if a
presllllptioo has a oon-empty extensioo.

FIC,uQE '3

The intensiooal failure of presllllptions in a
query can be oanputed in a similar fashioo. The
essential difference being that the data model

126

image of the r,o.. representatioo must be checked to
insure that each relationship can be established
in the data model. The data IOC>del image of a node

or arc in the M,JL is the entity set or
relationship set, respectively, in the data IOC>del
which is designated to oontain the referent or set
of referents for it. This is basically equivalent
to disambiguating the lexical items, since the

arcs and nodes in the M,JL have lexical i terns
asscx::iated with them. Coosider the question,
"Which faculty take CSEllO ?" and its

corresponding M,JL representation in figure 4.

Here the entity set "courses" is designated as the

data model image for "CSEllO" since it is m::ist
likely to refer to a "course" entity. This query
contains the presumption that "faculty take
courses" which can be recognized as failing
intensionally because a "take" relationship does
not exist between "faculty" and "courses".

'

t1m1: \ll

(ff\U.)L'T'f) ~ (c!uRsfS)

Reoognizing the intensional failure of
presllllptions is only part of the problem - it is
also useful to provide the user information with·
respect to related intensional knowledge. Given a
relation R, entities X and Y, and a failed
presumption (RX Y), salient intensional knowledge
can be found by abstracting on either R, x, or Y
to create a new relation. For exarrple, using the
university data base model fragment, consider the
following hypothetical exchange:

Q: "Which faculty take courses?"
A: "I don .. t believe that faculty can take

courses.
Faculty teach courses.
Students take courses."

Here the presumption that faculty take courses can

be recognized as failing intensionally. This can

be camunicated to the user by paraphrasing its
I

pegation, noting as well what possible relevant

relationships do hold.

HIGmR ORDER FAILURES

A ITOre cxrnplicated interaction of

presumptions with the data ITOdel can also cause a

presumption to fail intensionally. These failures

occur in sub-graphs of the~ which oontain two

fr ITOre arcs. It may be the case that a

telationship can be established for each arc that
I
~ts two nodes in the~. but there is still
~ cxinnected sub-graph (a presumption) that fails
intensionally. The relationships in a particular
~;ub-graph may irrpose restrictions on the nodes
that will form empty response sets which can be

recognized solely fran intensional knowledge. An

example of this is shown in question (3a) • The

restrictions on "teachers" involve two entities in

the same partition. Question (3b) oontains the
I same intensional failure. Both presume identical

fropositions, although in (3a) it is not as

•warent.

3a) Which teachers that advise students take

courses?

3b) Which teachers are both faculty and

students?

A corrective response for this type of
failure involves identifying the entities that
participate in the relationships in addition to
the failed presumption. In response to (3a), for

example:
"Faculty advise students. ,
Students take oourses.

I dcrl't believe that a teacher can be both a

faculty member and a student."
It doesn't ai;pear that any related knowledge need

be oc:mnunicated, although sane information

regarding the various partitions of an entity set
flight be helpful. An adequate procedure for

determining relevant knowledge along the

generalization dimension has not been thorooghly

127

investigated.

RELA~ RELATIOOSHIPS

An interesting situation arises when

attempting to determine related intensional

knowledge for a failed presumption with regard to

relationships. Consider an enterprise which has a

matrix organization as in figure 5. The "in"

relationships are conceptually similar but must be
represented distinctly. The following behavior is

desired for this data ll'Odel:

Q: "Which employees are in areas?"

A: "I don't believe that employees are in

areas.

Dnployees are in divisions.
Projects are in areas."

f Ml'LO'fffS P~orens

l)iVISIOIJ<; C IIRE1b)

But this will not be achieved given the

method outlined earlier of abstracting on one of
R, X, or Y for a failed presumption (R X Y). If
"in-1" is picked as the data ll'Odel image for "in" ,

the response will not include the fact that
"projects are in areas". Similarly, if "in-2" is

chosen, "employees are in divisions" will not be

included. This can be remedied by introducing an
operator (R-sm') which denotes the conceptual

similarity of relationships as in figure 6. 'l'he
procedure for determining salient intensional

knowledge can be ITOdified to include relationships
in the same "R-sm'" when abstracting on a

relationship. Although this might appear ad hoc,

it should be noted that this would be the first

' .
I

I

step towards develcping a hierarchy for
relationships.

Em\>Lo'fff.S

AREAS

FluVRE ~

Note that there may be sane basis for

~ing the danain of a particular predicate fran

t semantic relatedness measure. For instance, if
two distinct "teach• relationships existed,
between "faculty" and "oourses", and "grads" and

•oourses", the question "Which undergrads teach
oourses?" would indicate that the "teach" between
•grads" and "oourses" should be coosen.
I

Intensional failures of presunptions in
queries occur when the user .. s beliefs about the

structure of the data base diverge fran those of
the systan. The use of a partitioned subset
hierarchy is essential here to determine those
intersections of entity sets that are empty by
definition. It is inportant to distil'X}Uish
between structure and ex>ntent, since there is a

significant difference in the rate in which they

change. When responding to intensional failures
of presunptions, sinply pointing out the failure
is in most cases inadequate. The user 111.1st also
be informed with regard to related krXMledge about
the structure of the data base in order to

forlllllate queries directed at solving his/her

partiwlar problan. A straightforward, but

effective, method for producing such responses was
outlined here.

128

I would like to thank Aravind Joshi, Bonnie
Webber, and Kathy Mc:Reowen for their ocmrents and

suggestions on the various drafts of this paper.
This work was partially supported by a grant fran
the National Science Foundation, NSF-M::S 79-08401.

[Chen 76]

Chen, P.P.S., "The Entity-Relationship Model

- 'l'cMards a Unified View of Data", 1tOt

Transactions on Database Systems, Vol, 1,

No. 1, 1976.

[Fahlman 79]

Fahlman, Soott E., NETL: ~ System for
Representing and Using Real-World Knowledge,
MIT Press, Cambridge, Ma., 1979.

[Kaplan 79]

Kaplan, S.J., Cooperative Responses ~ !
Portable Natural Language Data Base Query
~. Ph.D. Dissertation, Canputer and

Information Science Department, University of.
Pennsylvania, Philadelphia, Pa., 1979.

[Lee and Gerritsen 78]

Lee, R.M. and Gerritsen, R,, "A Hybrid
Representation for Database Senantics",
Working Paper 78-01-01, Decision Sciences
Department, University of Pennsylvania, 1978.

[smith and smith 771
smith, J.M. and smith, D.C.P., "Database
Abstractions: Aggregation and

Generalization", 1tOt Transactions on Database
Systems, Vol. 2, No. 2, June 1977.

SEMANTICS AND PARTS OF SPEECH

Abe Lockman

Department of Computer Science
Rutgers University

New Brunswick, N.J.08901

Researchers in Natural Language
Processing have long recognized the need
for an adequate semantic representation
language (SRL) in computer systems for
the analysis of general natural language
texts. One of the primary requirements
for any SRL is that it be computable
whether or not two formulas in the SRL
have the same meaning. (We are, in this
paper taking no position on whether this
computation should be done through the
use of some canonical form or through the
use of meaning-preserving
transformations.) This requirement
forces the creator of an SRL to define
its primitive terms by fully specifying
the inferences that may be drawn when
they appear in a formula; i.e., we define
a predicate P to be used in an SRL by
specifying which other propositions may
be inferred to be true whenever we know
that P(a) (possibly in conjunction with
some set of other propositions) is true
for some a.

While many researchers have
1proposed various approaches to SRL's, the
full definitions of the primitives

.Proposed have rarely been well-defined in
terms of the inferences to be dr.awn. In
particular, little attention has been
paid to the problem of how an SRL might
represent the meanings of words which,
while different parts of speech, seem to
refer to the same basic concept.
Consider, for example, the adverb
"speedily," the adjective "speedy," the
abstract noun "speed," the agentive noun
"speeder," the nominalization "speeding,"
and the verb "to speed." Obviously the
meanings of these words share a common
concept, which we might approximate as
"some event or set of events taking
relatively little time." Unless an SRL
can rigorously represent the proper
relationships in meaning between the
representations which it uses for the
meanings of these words, it cannot
satisfy the previ0 " sly mentioned
requirement of computable meaning
equivalence. That is, an adequate SRL
must not represent "x has speed" by P(x)
and "y occurs speedily" by Q(y) unless
the inferences defining P and Q are
properly related. Failure to meet this
requirement would result in the inability
to note the contradiction in a text such

129

as: "That horse has speed. He does not
run speedily." (Of course, a reader
could force a consistent interpretation
of such a text, in the example presented
perhaps by inferring that the horse is
sick, drugged, etc., but this forcing is
caused by his noting that a normal, i.e.
using default knowledge, interpretation
causes a contradiction.) The problem of
representing such commonalities of
meaning has been noted, as in Fillmore
1971, Schubert 1974, and Cercone 1975; in
Leech 1974 a sketch is made of what is
needed to capture it.

We investigate such commonalities
of meaning by exploring and
characterizing the ocurrence of part of
speech variants for various verb
categories of English. The fact that
certain groups of verbs do not have
certain part of speech variants suggests
the usefulness (in semantic
decomposition) of new verb categories
beyond the traditional ("activities,"
"situations," etc.) ones. We formulate
sets of general expressions for various
verb categories, whereby. the meanings of
part of speech variants may be expressed
in terms of one basic meaning which
constitutes the component common to a set
of variants. The question of what form
such a basic meaning should take (i.e.
which part of speech variant•s meaning,
if any, might be considered basic) is
discussed for various verb categories.

The evaluation of such
expressions during the processing of a
text must, in general, incorporate the
use of context and world knowledge (CWK).
For example, the sentence "x is speeay"
means (to a reader) that each (or the
typical) member of a certain set Y of
events in which x plays an agent/theme
role takes relatively little time.
Exactly which events Y contains depends,
however,~ontext and world knowledge.
If x were known to be a brickl c1er
(and/or the sentence appears in a
bricklaying context) Y would be different
than if x were known to be a racehorse
(and/or the sentence appears in a
horseracing context).

this
An

task
attempt is made
of CWK-dependent

to seperate
ev al.uat ion

I

from that of capturing the variation in
meaning (from a common concept) due to
part of speech. To this end, we utilize
,in our expressions special quantifiers
which represent calls to be made to a CWK
maintenance mechanism when an expression
.is to be evaluated; these calls ask this
mechanism to supply appropriate
instantiations for those constituents
which are CWK-dependent variables in the
expressions. For the above-mentioned "x
is speedy," for example, such a special
quantifier would be attatched · to the
"certain set Y of events in which x plays
an agent/theme role" as a call to the CWK
maintenance mechanism to find and
instantiate the most appropriate such
set. Our expressions, therefore, are an
;approximation to the definition of that
portion of the meaning of a word that is
:carried by its part of speech marking, a
,portion which must be extracted during
natural language analysis in order to
ensure proper semantic representations.

Referen·ces

Cercone, Nick (1975): Representin~
Natural Language in Extende
Semantic Networks," Technical Report
TR75-11, Department of Computing
Science, The University of Alberta,
Edmonton.

0

Fillmore, Charles J. (1971J: "Types of
Lexical Information," in D.D.
Steinberg and L.A. Jakobovits (eds.)
Semantics: An Interdisplinary Reader
in Philosophy, Linguistics, and
Psychology, Cambridge Universfty
Press, Cambridge.

Leech, Geoffrey (1974]: Semantics,
Penguin Books Ltd., Harmondsworth.

Schubert, L.K. (1974]: Extending the
Expressive Power of Semanffi
Networks, TechnTca! Report TR74-18,
Department of Computing Science, The
University of Alberta, Edmonton.

130

PSI·KLONE

Parsing and Semantic Interpretation
in the BBN Natural Language Understanding System

Robert J. Bobrow
Bolt Beranek and Newman. Inc.

Bonnie L. Webber
Deparlmenl of /11fom1a1ion and Compuler Science.

University of Pennsylvania

Introduction

This paper describes the syntactic and semantic processing
components or a natural language undnstanding system
currently un,kr development at HBN . There arc several
interesting features or this system which this paper will
highlight. The first is a f'ramcwork for nntural language
parsing (called the RUS parser) which combines the
efficiency of a semantic grammar with the flexibility and
extensibility of modular syntactic-semantic processing.
The second (the PSl·KLONE interface) comprises two
descriptive taxonomies represented in the KL-ONE
formalism [Brachman, 1979] which represent, first the
system's knowledge of interpretable syntactic-semantic
patterns, and, second, the system's semantic knowledge of
possihle objects, events and relationships. These
taxonomies facilitate the two major tasks of the system's
semantic processor:

1. providing feedback to the syntactic processor.
and

2. providing semantic interpretations for
individual phrnses.

/\ third interesting lcature or the system will he tuuched
upon only briefly · its treatment or natural language
q11antilk:1ti1111 in terms or a combinatoric problem to be
solved. lo whatever extent necl'ssary, hy a
pragmatics/discourse component.

I. An ovcnirw of lhc BBN nalurnl lani,:uagr sysll•m 1

'Ilic task of the sy).lem in which l'Sl·A'/.ONI:' and RVS
ar.: embedded is to prol'iclc a na: ·.ral language interface to
un intelligent display system in a command and control

1
This section .111d the appendix dcscrihing Kl ·ONE .ire slightly

rcvisl'd and shortened ver.;inns ol' portions of lllrad1111an. 19791. We
arl' grall'f'ul to Ron llrad11na11 Ji,r giving us permission lo use them
here.

131

environment. As well as being able to create and modify
displays, the system should be able to :mswer factual
que).tions about what is on the display screen. Questions
and commands addressed to the sysh.:m typically

1. make use of ekments of the preceding
dialogue,

2. can be expressed indirectly so that the surface
form does not rellect the real intent, and

3. can refer to a shared non-linguistic context (the
graphic display)

The issues of anaphora, (indirect) · speech acL'>. and
deix is nre thus of principal concern.

·n1e natural language system is organized as follows.
The user sits at a bit-map terminal equipped with a
keyboard and a pointing device. Typed input from the
keyboard (possibly interspersed with rnordinatcs from the
pointing device) is analyzed by a version or the R US
parser. The parser produces a K 1.-0N E representation of
the syntactic structure of an utll.:rance. The production of
syntactic constituents incrementally triggers the creation of
the local. sentence-level (non-discourse) semantic
interprctation or these constituents. This interpretation
structure is then processed hy a disrnurse expert that
attempts lo determine what was really meant. In this
process, anaphoric and qLwntifkr-rclated aspects or the
utterance must be resolved and indirect speech acts
recognized. Finally, on the basis of what is determined to
be the intended force of the utterance. the disCllurse
component decides how the system should respond. It
plans its own speech or display actions, and passes them
llff to a language ccnerntion componcnl (not yet
implemented) or display expe11.

. . 1

. I

2. The organiznlion or this paper
The next section of this paper discusses the R US

parsing framework - first. the structure of its cas~:aded
interactions with the semantic interpreter. then, tedmiqucs
used to minimize bm:ktnu.:king in RUS. Section 2
diS<.:usses semantic interpretation in PSl·KLONE, with a
detailed example of the dialogue that the parser and
interpreter carry on in parsing a sentence and constructing
the descriptive part of its semantic interpretation.
C',0mbinatoric aspects of a sentence's interpretation are
discussed in the latter part of this section. For readers
unfamiliar with the KL-ONE formalism, an appendix
provides a brief introduction.

1. The RUS natural language pnrsing framework

J.I. lnlrotluction
RUS is a framework for natural language proel.!ssing

that is as efficient as a semantic grammar. and as flexible
and extensible as a modular syntactic/sl.!mantic processor.
It is based on a non·dl.!tcrministic ATN parser, but it
parses without backup in virtw1lly all cases that Marcus's
"ddcnninistic parser" docs !Marcus. l977J. In addition.
because of the ATN's ability to operate
non-deterministically, RUS can handle phl.!noml.!na not
covered by Marcus· purser.

We have achieved this co111hina1ion of eflieiency and
cxten~ihility by c11smt!i11g (sec (Woods. 19801) the syntactic
and semantic processors - making calls to the scmanlir
processor at signilicant points in the parsing process. The
near-determinism results in part from two new arc-types -
GRO(I I' arcs and almost-GROUP arcs - and in part rrom a
new control structure for ATNs.

The following two sections describe the li:alurcs or the
,ynlactic rrocessor. Section 1.2 covers those li:aturcs that
MC _in~_p_orl:lllt i<>r the l":ISl':ldcd inh:raclion of synl:IX and
semantics. Section 1.3 discusses the modi lications to the
grammar and the normal ATN co1itrol structure that
increase the dderminism of the parsing process.

1.2. Synta,·tic l..ahclling and C:1sc:1ded lnternclions

1.2.1. Syntax and Function:11 Rehtlions among
Con.'ititucnts

We view parsing as a mechm1ism for providing a
functional description of the relations that hold among the

132

pieces which form a syntactic unit (phrase). This
description notes the phrase's constituent syntactic units. as
well as labelling the functional relations that hold between
the constituents and the phras~~s a whole. These labels
arc based on a constituent's functional role in the higher
phrase, and not simply on its internal syntactic structure.
For example, a noun phrase (NP) can serve various
functions in a clause. including logical subjl.!ct (I.SU BJ},
logical object (LOBJ}, logical indirect object (UN['()HJ).
surface subject (SSU BJ). and first NP (Fl RSTNP). It is up
to the syntactic procl.!ssor to determine which or these
possible labds is appropriate for a given NP constituent of
a clause.

These functional labels me primarily intended to
provide inlormation f<>r semantic interprclation and
discourse processing, and not to screen oul ungramnwtical
constructions. l.ogirnl labels sud1 as I.SUB.I and I.OBJ
provide a coupling to the case relationships that arc the
basis of lc.xical semantics. while Fl RSTNP helps determine
discourse focus ISidncr. 1979) and SSUBJ wnstrains the
use of a clause as the source of later verb phrase ellipsis
[Webber, 1978).

1.2.2. Casl'aik intcrnl'lion between syntax and wmantks
The parser docs not interact with the semantic

interpreter by sending it a complete syntal"lic analysis of a
sentence labelled with the functional relations discussed in
section 1.2.1. Rather. the parser and intcrprcta engage in
a dialogue consisting of a sequence of transmissions from
syntax and resp'onses from semantics.

An individual transmission consists of a tmnsmit triple,
which represents a proposal by syntax of the addition of
())anew constituent with (2) a labr! indicating a purticular
functional relation to (3) the phrase currently under
construction by both syntax and semantics. Semantics
either rejects the proposal or returns a pointer to a
data-structure which represents semantics· knowledge of
the resulting phrase. These pointers are all thal the R US
syntactic processor knows about the internal operation of
th,: sl.!mantic component. and they arc simply saved to act
as part of the third component of lt1tcr trnnsmission triples .
Thus the RUS framework has no commitment to any
panicular internal structure for semantic interpretations.

A transmission occurs as part of an arc action in the
ATN, with the success of that arc depending on scnrnntics'
response to the trunsmission. The failure of an arc because
of a semantic rejection is treated exactly like the failure of

an urc becuuse of a syntactic mismatch; alternative arcs on
the source state are attempted, and if none arc successful, a
back -up occurs.

Transmit actions only occur when enough syntactic
structme has been analyzed to confidently r,ropose a
functicmnl label for the transmitted constituent. In
particular, transmit actions arc always postponed until
after the head of the current phrase has been recognized.

In a simple active sentence2 likc

"The three boys ate two pizzas."

the NP "The three boys" can be labelled as FIRSTNP
immediately, and as SSUBJ and LSURJ immediately after
the head verb is recognized. In passive sentences like

"The dog was given a steak bone."

"The dog was given to the first boy who asked
for it."

it is impossible to tell if the Fl RSTNP "The dog" should
be labelled LOBJ or LIN DOBJ until the NP after the main
verb is parsed.

Note that in this paradigm the parser docs not per se
produce a static syntactic structure. For any given path
through the ATN the syntactic structure is implicitly
rcpn.:scnted in the sequence of transmissions, however,
and a parse tree can easily be constnrcted from these
transmissions.

Semantics' responses to a transmission from syntax will
be discussed in more detail in section 2.2.2. The important
thing to note here is that this response is not n<'c<'ssarily the
incrl'ment,il interpretation of the phrase currently under
com,1ruction. It may simply verify the existence of an
interpretation (projection) rule (or ruks) hy means or
which the interprewtion or the phrase could be extended
by the mldition of the proposed new constituent. This
buys eflicicncy by rejecting constructs which have no hope
or semantic interpretation · and not paying for the
construction of a semantic interpretation until a phrase is
syntactically checked.

.,
'That is. with the exccp1ion of sentences such as '"John I like.", or

any active sentence in whid1 1npicati1.ation or \' -movement has
occurred.

133

1.3. Approaching Dctcrminislk Parsin~
The basic ATN is a non-deterministic parsing

mechanism: when more than one arc leaves a stale in the
ATN. the parser must treat that state as a potential
branch-poinl. That is, the purser must select an arc to
follow, and if its path from that arc becomes blocked, it
must be prepared to back-up to previous branch points
and try alternative arcs. A deterministic parser, on lhc
other hand, must be abk to treat a state with many arcs as
a choice point, and make the comxt choice of which arc to
follow. without allowing for any back-up to that stale.

By analysing the back-ups that occurred in a typical
non-determ in istic ATN parser (i.e., an early version of the
ll US system}, we found them to have th ree major causes:

1. the existence of unnecessary branch-points in
the /\TN,

2. the preponderance of "hypothesis-driven" (as
opposed to "data-driven") charnctcrizations of
English grammar found in the ATN, and

3. the intera~tion of the normal depth-first
control structure of the ATN with the
capability for semantic rejection of
constituents.

hi a typical ATN there arc many states that arc not true
non-dt:terministic branch-points. That is, for any given
sentence there is at most one acceptable arc from· such a
state. In those cases, tl1e parser should be abh: to take the
correct arc and not have to provide for back-up to that
state. In the RUS parser, we have taken advantage of r.n
extension to the nonnal ATN notation [Burton; 1976) thnt
pennits any set of arcs from n single state to be combined
into one GROUP arc. The arcs within a GROUP are ther.
treated as strict alternatives -- at most one can succeed at
any point ·in a parse, and so there is no need to allow for
any back-up. The arc sets or many stales in R US could be
GROU/>ed immediately. When this w:is not the case, it
w11s often possible to GROUP arcs bv allowing th_em to
examine not only the current ,\'ord but one or two words

ahead.
We havl! also introduced the notion of an

"almost-GROUP." This effec1ively splits a single node in
two, with one GROUP splitting the situation into
deterministic and non-detcn11inistic cases, and anot,1er
(,'ROUP for the deterministic case. This captures our
intuition that most sentences could pass deterministically
through a given state, nnd moreover, it would be easy to
distinguish the sentences which had to be treated
non-detcrm i nsitically.

I
I

I

I

The second cause of back-up mentioned above has
been pointed out by Marcus [1977] - the typical use of
ATN's as a top-down. hypothesis-driven parsing
mechanism. Toot is. when a point in the parsing is reached
where it is possible for a constituent o.f type X lo appear.
the parser PUSH1.-s to a network which actually looks for
an X. In top-down analysis this is done purely on the basis
of the structure found up to that point in the sentence.
Back-up can be avoided if such PUSH arcs arc not taken
when it is clear that thl' current word (or the next few
words) prl'dudcs such a constituent. For example. there
arc pl:ll'l'S in the analysis of a clause where a PP is optional.
We do not want to PUSII for a PP there if the next word
dearl, precludes iL<; presl'nce - e.g. if the next word is not o
pn:position.

After unalyzing situations where the RUS ATN
PUSHcd for constituents lhal were "obviously" not
present. we inserted tests that blocked the offending PUSH
arcs when the next words were obvimtsly inconsistent with
the PI.JSH arc. These tests required looking no further
than the next three words. and often no further than the
next word. This is consistent with Marcus' "three chunk"
look-ahead. Ahhough there arc cases where a three
constitlll'nt look-ahead would have been t\·quired to
compll.'tcly avoid backup. three wunl looh1head suflin:s

to drnstically reduce the back-up normally caused by,
ll>p·down parsing.

111c third source of back-up· lay in the very heart of U1e
R US npproach. namely the incremental semantic testing of
constituents, coupled with the ATN's standard depth-first
control structure. For cxampk. PUSH actions ndmit the
possibility that several constituents of the type pushed for
(e.g. several PPs) arc present at the given place in the
string, differing in length or in internal structure. RUS
may reject the first result of the PUSH becnuse it is
sem:intically unacceptable in the context of that PUSH. A
"depth-first" control structure will produce all possible
alternative constituents of the desired cntcgory before
trying any alternatives to the PUSH.

However, as the parser becomes more nearly
deterministic. the first semantically meaningful result
returned from a PUSH is likely to be the best description
of what actu:illy occurs at that position. This is particularly
true for optional constituents, such as prepositional phrnse
modifiers (especially those specifying location or time). A.
frequent cuse is where an embedded NP PUSHcs for a PP,
the pmscr finds one, and the semantic interpreter rejects it

134

as a modifier of the NP. This situation can occur when the
first PP found by the parser is actually a nwdi lier of' the
matrix clause or NP.

For example. consider the sentence

"That professor teaches undergraduates about
languages for processing complex types of list
structure."

Whl~n the parser is processing the embedded noun
phrase "undergraduates" it will PUSH for a PP and find
"about languages for pro<:cssing mmplcx types of list
slntcture" us a semantically coherent PP. This is indeed
the corTccl PP at this point in the string, as opposed to
"about languages" or "about languages for processing",
nnd so on, but it is not a ·pp- that ~an modify
"undergraduutes." In this situntion a depth-first control
structure will gcnernte useless parses of meaningful but
irrelevant PPs before determining that in this sentence the
NP "undergrnduates" hus no PP modifiers, and that
"about languages for processing complex types of list
st ructurc" is actually a modifier of the clause.

To avoid this difficulty we have implemented a control
structure that produces the first semantically acceptable
result of each PUSH 3 but postpones brnnch-points that
might produce alternative results4 for that PUSH. When
this control structure is combined with the wc/1·/ormed
substring facility (WFS) which is a no1mal part of the
parser we get an eflicicnt technique for placing optional
modifiers where they arc semantically acceptable. If un
optional constituent is semantically rejected becuusc it was
PUSHcd for by the wrong level of network, it is stored in
the WFS. If some other phrase then PUS~ les li.n the same
type of constituent ut the same place in the string ,t will
find that constituent in the WFS wilhout any further
parsing.

The net effect of these changes has been to remove
almost all inst:1nces of backtracking in the operation of' the
parser. Most or the cases where the parser actually has to
back up arc ones which cannot be resolved on the basis of
ILx:al evidence, and in which humans olkn garden path.

1111is usually is lhe longest semantically cohcrent L·onslit11cnt of the
type l'USlled for.

\11cn hy dropping off s.•111.intkally ,ll'l'L'plahlc h111 syntactic.illy
optional posl·modificrs

2. Sl•manlic inkrprl'l:1lion in PSl·KLONE

2.1. lnlroduction
This section describes both the scnwntic interpretation

assigned to an input sentence and the process hy which it is
assigni:d. As we indicated in section l, semantic
interpretation is merely an inkrmcdiate stage in the
processing of a si:ntcncc. The linal stage is processing by a
discourse component which has access to

· the results of the syntactic analysis of the
sentence

· the semantic inti:rpretation ofthl! sentence

· general pragmatic knowledge

· i:volving modl!ls of

•the speaker's knowledgi:, beliefs and
current focus

•the objects, events and relationships
under consideration in the current
discourse

·111c semantic interpreter produces a representation of
the input sentence bas1:d on the functional syntactic
analysis of the sentence (sec Section 1.2. l) and a
knowledge of lexical semantics to be described here.
There arc two distinct types or information included in thl!
output or the semantic interpreter · m111hi11moric
inf'ormation and dcsaiptfre inltinnation. This distinction
can be viewed as a generalization of the distinction
between quantifiers and formulas with free variables
(matrices) in quantified predicate logics. and we introduce
it by means of an analogous distinction in typed·quanti ficr
predicate logic.

Consider a typed-quantifier predicate logic with the
following properties:

I. quantified variables arc typed·· each variable is
limited to range over a particular domain.
which is specified by a predicate.

2. variables arc allowed to stand llir sets as well as
for individuals,

3. types are not limited to simple predicates on
individuals or sets, hut can be complex
predicates that may themsdvcs dercnd on the
binding of other variables in the expression,
and

135

4. expressions are written in Prcnex Normal
Form, with all quantifiers pulkd out to the left.
leaving an open formula to the right.

TI1e advantages of such a logic as a representation for
the semantics of English sentences arc discussed by
Webber (Webber, 1978). The first three properties allow
the information conveyed by noun phrases to be kept
separate from the information conveyed in the clause.
Properties I and 2 reflect the fact that in English one
predicates allributes of u set, such as cardinality, in
addition to predicating attributes of its members. Finally,
prope1ty 3 prov;dcs for both explicit and implicit
dcrendcncies between noun phrases. by allowing the
type-predicate for one variable to explicitly depend on the
value of another variable.

To illustrate this. consider the sentence

"Each boy gave each girl he knew three
peaches"

which we can represent by the typed predicate logic
llmnula

(Ax: Boy)
(Ay: >.(u: Girl)[Know x,u])

(Ez: >.(w: SClc!/lPeach))[lwl • 3])
Gave x,y,z

1 lcrc the rcrrcscntation of the dausc is simply the uren
ltmnula

"Gave x,y,z",

while the noun rhrnscs correspond to clements in the
411:111ti lier prefix. The variable x is shown to range over
individual boys, the variable y is shown to range. for each
boy, over individual girls he knows · an explicit (non
Skolcm·function) dependency · while the variable z rnnges
over sets of individual peaches whose cardinality is 3.
Note that cardinality is a property of sets rather than of
individuals. (This particular notation is discussed further
in Webber [Webber, 1978). where its value is pointed out
for understanding various anaphoric and elliptic
phenomena. In PSl·KLONE, we arc using the KL·ONE
formalism. which provides these properties. as well o<; an
inheritance hierarchy for the efficient indexing of relevant
inference rules.)

'Ilic reason we have introduced this typed predicate
calculus representation is that in Prcncx Normal Form, the
open fonnula to the right of the quantifier prefix can be

viewed as a pa11em - a way of describing a set of ground
literal formulas by giving their 5:yntactic shape. The literals
in this set will vary according to how individual constants
arc substituted for the variables in the rattern. The
quanti lier rrelix. on the other hand. can he viewed as a
combinatoric speciflcatio11 which determines what ordered
combinations of constants can be assigned to the variables
to instantiate or slamp 0111 copies of the pallcrn.

To summarize, we view a semantic rcpresentution as
having both a descriplive part and a combina/oric part. In
the representation we arc using, the descriptive pa1t of a
semantic interpretation consists of an interlocking and
interdependent collection of Generic descriptions in
KL-ONE, to be instantiated to Individual Concepts in
ways specified by the combinatoric part.5 Among the
combinatoric constraints on individual instantiations are
dependency, distribution and c.irdinality. All or these will
be discussed in section 3.3.

Finally, we believe that a quantified sentence like

"Which windows were delivered to each
house?"

poses an u11derco11s1rai11ed combinatoric problem which the
listener must solve, in order to respond appropriately to
the sentence. It is our view thut semantic interpretation is
only responsible for delineating the problem to be solved,
whereas it is the responsibility of the discourse component
- using whatever pragmatic and discourse information is
availahlc to it - to solve the prohlem to the extent required
to respond appropriately. TI1e procedure to be used by the
pragmatic/discourse component to solve this prohlem is an
active area of research.

2.2. Scnmntic lntcrprch1tion: Descriptive Information

2.2.1. Introduction
ll1is section further describes the dialogue between

syntax semantics. There arc two things that a cascalkd or
interactive semantics must do:

I. provide semantic interpretations for individual
phrases, and

2. provide feedback to the syntactic processor.

5n1esc nre not necessarily descriptions of things in tile outside
world, hut nither of objects, cvenL~ and relationships consistent with
the system's long term semantic knowledge.

136

If one considers two major existing models for
computer based parsing - the framework used in the
LUNAR system [Woods et ul.. 1972]. and semantic
grammar framework [81111011, 1975) - one can sec that in
both cases there is one mechanism that checks properties
or particular constituents and. if those constituents satisfy
those properties. then there is another mechanism thut
shows how to build or add to the interpretation of the
whole phrase depending on how those properties arc
satisfied.

In LUNAR, the pallern-match on the left-hand-side
(LHS) of a semantic interpretation rule corresponds to the
first mechanism. while the actions specified on the
right·hand-si<lc (RHS) of the rule. correspond to the
second mechanism. In a semantic grammar, on the other
hand. PUSHing for a pa11icular syntactic/semantically
shaped constiluenl (e.g. "an NI' which is intc1pret:ible as a
measurement") corresponds to the lirsl mechanism, whilt~
some "BUILD action" into a register corresponds Lo the
second.

In the PSI-Kl.ONE interface, each interpretable
sylllactic/semantically shaped pauern corresponds to a
KL·ONE Generic Concept. These Concept; are arranged
into a KL-ONE taxonomy which can be used both as a

discrimination net and as a mechanism for inheriting
appropriate interpretation rules. Semantic checking of
potential assignn-ents of constituents to particular
functional syntactic roles in a phrase involves infonnation
that may be used in building the interpretation of the
completed phrase. On the other hand, semantic
interpretation only occurs after the entire phrase has been
recognized, and the possible rules for semantic
interrrctation have been collected.

2.2.2. Usini.: KL·ONE taxonomies to huiltl wmantic
intcq1rl'latiom;

To illustrate the use of the larnnrnny of
syntactic/Sl'niantic shnpcs in the PSI· K LON F intnl:,cc,
consider the sentence

"That professor teaches undcrgraduati.:s about
Lisp on ·nrnrsday."

Figure 2· lshows a fragment of a possible
syntactic/semantic taxonomy that covers some statements
on teaching. We will rnnn:ntrak on the activity al the
clause level and ignore the details of parsing at the NP and

Figure 2-1: A KL-ONE syntactic/semantic taxonomy

Figure 2·2: A simplified ATN for clauses

PP levels. Figure 2-2shows a fragment of a toy ATN that
could be used as a (non-deterministic) parser of various
types of clauses.

The first step in parsing the example is PUS I-ling for an
NP. This parses tht: string 'That professor" and produces
the Individual Concept NI'# I which is an instance of the
Generic Tl:AC/IER-Nrl', with an associated semantic
interpretation not shown in this diagram.

At this point NP# I is trnnsmittcd as the FmSTNP of
the (currently empty) cluusc, although the parser docs not
yet have enough informution to : ;cide on other roles it

fills.

6
The justification for having a special dass of Ni's which can he

in t,•rprctcd as lCal'hcrs is hasi.•d on the fo~t that various modifiers like
"tenured" ,ire specifically .,pplicahlc to such Ni's. and others. like "at
lkrkcley", may r,·t·cive sped.al tr,·atmenl.

137

Tut: parser then discovers that "teaches" is the main
verb of the clause, and transmits the Individual Concept
\'/'EACH\ (we use the character\ to bracket the names of
concepts that stand for morphological units, \TEACH\
corresponds to the morphological root of "teaching") as
the HEAD of the current clause. 111c PSl·KLONE
interface can now begin to place the clause within the
syntactic/semantic taxonomy, as a subConcept of
TEACH-CLAUSE. This Generic Concept carries the
information common to two types of "teach" clauses -
those whose LOBJ is a subject of study like "John teaches
calculus" (represented by TEACII-SUBJEC7:cLAUS£),
and those (represented by Tl:AC/1-STU·C/,AUSE) whose
I .OB.I is human (or at least sentient). The interpretation of
a clause of either type is an individuator of the Concept
'/'!:'AC/I I NG, and bolh types of clauses must have an
I .SU BJ whose interpretation is an instance of l'ERSON.
Additionally, both clauses arc examples of clauses that can
lake PP time modifiers. Such clauses correspond to the
Generic Concept '/'/ M /:'/'l'-CI.AUSE and
'f'l:AC/1-Cl,A USE is a suhConcern of
'/'I Ml:'f'l'·CI.AUSE.

'll1e PSl·KLONE interface responds to RUS with a
pointer to a newly created subConccpt TC. I of

'f'EAC/1-CLAUSE, with its HEAD role filled by
\'/TAC/I\ and its FmSTNP role lilled by NP#/. Since
the clause is not passive. the parser transmits NP# I as the
LSUBJ of TC.I. From the point or view of semantics.
since NI'# I is an instance of a PERSON-NP (by
inheritance through TEACHER-NP), it can fill the
LSUBJ role of TC.I. Thus semantics fills the LSUBJ
Role with NP# I and returns a pointer to TC.I to RUS 7

RUS then parses "undergraduates" as an NP,
producing the Individual Concept NP# 2 which
individuates STUDENT-NP. The parser cannot transmit
th is NP yet, because it cun function as either the LOBJ or
LINDOBJ ofa "teach" clause.

We have glossed over an intert:sting point here •• the
fact that it was a restriction on the l'PMOl>IFIERs of
STUDENT-NP that prevented "about Lisp" from being
included as a PPMODIFIER of"undergraduates." This is
an example of th: use of semantic information to rt, .:ct
syntactically plausible parsings.

7 Actually, a new suhConcepl of TC.I is created with its IA"lJIU role
filled by NI'# I. This strategy facilitates sharing of infonnmion
between alternative paths in the parser, hut we will ignore it in the
remainder of this example.

I

I

I

I

Once RUS determines that no NP directly follows
"undergraduates" it can trnnsmit NP#2 as the LOBJ of
the clm1sc TC.I. This is done on the JUMP arc between
VP/NP and VP/OBJ. In this case, PSl·KLONE notes that
there is a subConcept TEACll·STU-CLAUSE of
TEACll·CLAUSE which allows a PERSON-NP as the
lillcr of iL., LOHJ role, and sn PSl·KLONE makes TC.I a
subConcept of TEACll·STU·CLAUSE and fills in its
LOBJ role with NP#2.

RUS then parses "about Lisp" as a PP, producing
PP#/, an instance of an ABOUT·SUBJ/:'CT·PP.

· Allhough a PP in this position may play a special syntactic
role in a clause, like a "by ... " PP in a passive clause, PP# I
docs not, so the parser transmits it to PSl·KLONE as
simply a PPMODIFIER of the clause TC.I. Since TC.I is
now a subconcept of TEAC/1-STU·CLAUSh', it can take
such a PPMODIFIEltR In fact, there is a specialized
version of the PPMODIFIER role present at
TEACll·STU·CLAUSE, the role AboutSuhjcl'IPP, which
can accept PP# I as a filler. The response 10 this
trnnsmission is a pointer to TC.I, which now has PP# I
filling its AboutSubjectPP role.

Finally, RUS parses the PP "on Thursday", producing
PP# 2, an instance of TimePP. This is trnnsmittcd as a
PPMODIFIER to TC.I, and PSl·KLONE determines that
it can fill the TimcPP role that TC.I inherits f'rom
TIMEPP·CLAUSE. PSl·KLONE returns a pointer to
TC.I with its TimePP role filled by Pl'# 2.

At this point the parser is al the end of the clm1s: (and
string) and signals this by a transmit triple whose label is
POP. This signals semantics to check that all necessary
Roles are filled and that all inter-Role restrictions arc
sutisfied. Now PSl·KLONE creates the descriptive part of
the semantic interpretation of the clause by collecting the
pro}<'ction rules that TC I inherits hy virtue of its position
within the syntactic/semantic taxonomy. These rules arc

1979b]. There arc two reasons for this: one, JARGON is
ensily read and understood, and two, its interpreter
impk:metits an algorithm · the MSS algorithm [Woods,
1979a] · that automatically inse11S KL·ONE Concepts
described in JARGON at the appropriate place in the
taxonomy of Concepts. This makes it possible for the
descriptive part of a semantic interpretation to inherit all
appropriate inference rules that are stored in the long-term
semantic taxonomy.

A slightly simplified form of the JARGON phrase that
describes the semantic interpretation of the sentence "that
professor teaches undergraduates ubout Lisp on Thursday"
is

A TEACHING WHOSE TEACHER IS THE
INTERP OF (LSUBJ) AND WHOSE
STUDENT IS THE INTERP OF (LOBJ) AND
WHOSE TIMEl'REDICATE IS THE INTERP
OF(TimePP)

In JARGON, phrases can refer to both concepts and
their roles. For example, the construction "THE I NTERP
OF (LOHJ)" refers to th.e Role n.11111:d INTERJ> of the
Concept which is the value of the variable LOHJ .

'Ilic JARGON phrase given uhove is a conjunction of
smaller parts, including "A TEACHING", "WHOSE
TEACHER IS THF INTERP OF (I.SUB.I)". and so on.
These parts indirnte the source of a ranicular piece of
information on the syntnctic side (e.g. "THF INTFRP OF
(LSU BJ)") and the Role that the piece of information is to
lill in the semantic interpretation (e.g. "WHOSE
TEACH ER", which means the TEACH ER Role of the
sem:intic interpretation of the clause).

·11,csc pieces of .IA RGON constitute the semantic
projection· rules hung on roles in the syntactic/semantic
taxonomy. For example, the ruk "WHOSE
TIMFPRFDICATF IS TIIF INTFRP OF (TimePP)"

attached as data on various Roles and Concepts in the hangs on the Role Timl•PP of the Conl'epl
taxonomy. 'f'IMl:'PP·CLAUSE. '/'C.I, the Concept describing the

PSl·KLONE expresses semantic projection rules in a
formal, styli1.ed subset or English called ./ARGON [Woods,

8Note th.n Tl:'ACll-.\'/1/1./l:'(TCI .AUS/:' cannot take such a
modilkr. so that in a string likl• "a professor who teaches algchrn ahnut
I .isp", the PP "about Lisp" would have to he a modifier of something
else other th,m the "teach" cl.msc. as in "John told a professor who
ll'achcs alp.chra .ihout 1.isp" wlwrc "ahout l.isp" is una111hig11011sly .i
modilicr of the "told" clause.

138

syntactic/senrnnlic shape of Lhl! s.:ntenl'c "that proli.:ssor
... ", is a subConccpt of TIMl:'I'l'·CLAUSI:·, and has an
explicit liller (PP# 2) fiir the Role Time PP. it inherits the
projection rule. Similarly. TC.I inherits the rule "WHOSE
TEACHER IS THE INTERP OF(LSUBJ)" from Role
I.SUBJ of TEACll·CLAUSE and the rule "WHOSE
STUDENT IS THE INTERP OF (LOBJ)" from the Role
LOBJ ofTEACll·STU·ClAUSE, and so on.

Whi:n the R US parser trnnsmits the triple labelled
POP, the PSI-KLONE interpreter creates a new
Individual Concept TC#/ as an individuator of TC.I.
This action triggers an allached procedure hung on the
highest-level syntactic/semantic concept, Pl/RASE, which
collects the projection rules inherited by TC# I and forms
a JARGON phrase. It then hinds the vnriablcs occurring
i.herc to the tillers of the appropriate Roles (e.g. the
variable LSU BJ is bound to NI'# I. the 111kr of LSUH.J of
TC/), and then calls the JARGON intepretcr which
builds the KL-ONE concept described by the JARGON
phrase. and inserts it at the proper position in the semantic
taxonomy. Finally, it tills the INTEUP Role of TC# I
with the Concept in the semantic taxonomy produced by
the cull to the JARGON interpreter.

2.J. Srm:mtk intrq1rl'lation: Comhinatork information
·mere seems to he a point in the processing of a

sentence where there is sllmc indication or the type of
events, objects and relationships hcing described, hut
where things have not hccn resolved into a form which can
he represented in an unambiguous predicate calculus type
or quantification. People of'ten believe that they have
unclerstood the sentence without further elaboration or this
part or the interpretation. without rcali,ing that there arc
rcnwining quantilicr srnpc ambiguities !Van 1.chn, 1978].
Van l.ehn suggests that correlations between syntactic
structure and 411antifier scope interpretation arc
l'piplH.:nomenal - i.e .. llwt there arc no processes based
purely on syntactic information that can disambiguate
quantifier score. Our belief is somewhat stronger - that
there arc few, if any, processes that can compktely
disambiguate quantifier scope simply on the basis of
syntactic and semantic information, without making use of
discourse-level and pragmatic information.

We believe that this is not accidental - i.e. not a
performance error - but rather represents a naturnl split
between the results of the syntactic/semantic component
and the activity of later discourse and pragmatically based
processes. That is, it is not at the level of the sentence that
the information needed to resolve things is available: ifit is
available at all, it is at the level of the discourse. Moreover,
the degree to which scopc ambig,.i ities will be resolved is
itself dependent on the purposes of the discourse. In some
cases in fact, those purposes can be met withm1t raising the
spectre of ambiguity at all.

139

2.J.I. The comhinatork aspects or semantic interprel,,lion
·111c purpose of this section is to illustrate the

combinatoric aspects of a sentence's interpretation that
should be identified by semantics, and, if necessary,
resolved by pragmatics. Although the current system docs
nut yet treat the combinatoric p,irt of a sentence's
interpretation in line with this presentation, we arc
currently designing a semantic component for
PSI-Kl.ONE which docs.

ll1cre arc qualitatively three types of combin:1toric
constraints embodied in an English sentence:

1. depcndcncil.'s

2. iterations

3. cardinalities

To illustrate these types of constraints. consider the
following sentence

'Two windows were tested in each house."
and the situ.itions in which someone might generate it. In
any such situation, the usc of "each house" indicates, at a
syntactic level, that the speaker has in mind a dclinitc set
of houses. (This treats "each house" as equivalent to the
phrase "each of the houses".) For this example, label the
clements in this set of houses h l, ... ,hk. There is also
something being said about some set (or seL'i) of two
windows. "Two" is cardinality information about the
number of windows in each set. What is not specified is
how many sets there arc. This can be determined only after
implicit dependencies have been made clear. There arc
three possibilities: there is 110 dependency of one thing on
anything else, or there is a minimal constraint
(Skolcm-functional) depcndcncy or an discourse or
definitional dependency on some other variable.

No dependency. In this case, the speaker has in mind
two rarticular windows (call them wl and w2). There is no
dependency, since independent of house. it is w l and w2
that were tested there. We might represent this in terms of
ground literals as

Tested-in(w1, h1)
Tested-in(w2, h1)

Tested-in(w1, hk)
Tested-in(w2, hk)

Notice llrnt there arc two terms for windows and k terms
for houses. Pragmatic.illy, there arc as many rclcrents for
windows and houses as there arc terms.

windows tested in some olhcr house 'I. In tcrr1's of ground
Ii Lera ls,

Tested-in(f1(hl), hl)
Tested-in(f2(hl), hl)

Tested-in(f1(hk), hk)
Tested-in(f2(hk), hk)

where f1(hi) = / = f2(hi). Nolice thal there arc 2k
diffen:nt terms for windows here and k different krms for
houses. However, all we know about the number of
different referents for windows is that there arc at least 2.

Discourse or definitional dependency 011 the one iterative
variable. Here again the speaker is iterating over houses in
the set. For any house hi, the two windows tcsled Lhcrc
(wlhi and w211 i) not only depend on the house, but arc
members of some previously established, definite set of
windows W(hi) tL1t either belong to that house or have
been associated with the house through the discourse. 10 In
terms of ground literals this can he represented as follows:

Tested-in(wlh1• hl)
Tested-in(w2ht• hl)

Tested-in(wlhk• hk)
Tested-in(w2hk• hk)

where wlhi =I= w211i' and W is a function · from a
house to the set of windows belonging to (or associated
with) that house. Herc again we have 2k different tcm1s
for windows and k different terms for houses. Moreover,
since W(hi) is a previously established set, one may have
additional infonnation by which the referents of wlhi and
w2hi can be further constrained. for example, in the case
of ddinitional dependency, pragmatic knowledge tells us
that, since a window can only belong to one house, there
arc 2k different referents for windows.

'l.1·1 · t I . I I "'I' 11s may)e t: carer m t 1l' an,1 ogous scnt,'ncc wo songs were
sung hy cad1 hoy.", in whid1 it is possible that more Lh,111 one hoy sings
somc panirnlar song.

JOI . I ·., I ·or cxamp ,·.1:ons1ucr L tc sequence

"The contractor dclive1'l~d some experimental
windows to each house on the block.

Two windows were tested in each house."

140

2.4. Next steps in representing combinatoric semantic-.
An important goal of our current research in semantic

interpretation is to develop a formalism in which there is a
clean split between the descriptive and combinatoric
aspects of semantic representation. The number of
alternative ground level interpretations of a sentence
increase rapidly, as the number of noun phrases (and
hence quantifiers) increase in the sentence, and as the
numher of possible dependcncil!s among entities increase.
It is inellicicnt to try to represent large numbers of such
alternatives as an explicit disjunction, both because or the
amount of space such a representation would normally
require, and becm1se of the complexity of the case analysis
that would be necessary to reason forward from such a
representation.

We want to provide an ellicicnt representation for that
part of the meaning of a senten,c in a disrnursl.' that c:rn he
provided on the basis of its internal syntactic/semantic
strul'111re :,lone. This would include explicit information
on the cardinality restrictions on ,ari:1hlcs associ:11l·d with

NPs. restrictions on which variables arc likely to be
iterated, and information on possible dependencies among
variables, including those suggested by long-term semantic
know ledge, and restrictions on dependence based on
syntactic structure. We believe that it should be possible
to represent such knowledge as a set of constraints on the
set of ground level literals to which the sentence might
possibly expand.

Such a representation would provide an input to the
pragmatics/discourse component, which could reline it
and add constraints based on discourse in formation and
perhaps some variants of the heuristics suggested by van
Lehn. It is not always necessary for the
pragmatics/discourse component to totally disambiguate
the combinatoric aspects of semantics in order to satisfy
the requirements of the discourse.

We are investigating a number of possihle
representations in KL-ONE, in the context of a broader
study of the use of mc1a·dcscriptio11. the use of K L·ON F.
structures to describe (classes ol) other KL-ONE
structures.

J. Summary

1 n this paper, we have tried to give a reeling fi.H the
methods and scope of syntactic/semantic processing in the
natural language system heing devclopl'c.l at BBN. What
we feel is most significant about th·.: work to date is the
near-determinism of the KUS parsing framework, the
effec ti ve use of cascaded semantics both to guide the
parser and to construct the descriptive part of a semantic
interpretation, and the separation made between the
descrirtive and the combinatoric rart of an interrretation.
We expect 10 have more to say in a later paper about the
details or the representation of combinatoric infiirmation
and its interact inn with descriptive structures.

Ack 11, 1w/ccl~c111c111s

Our work 011 the sy11tactic/sem;1111ic side of Lhe system has not

been done in 1•arno · our ,ollcaguc•s in this research clfort include Ed

lbrt1111. Rllll llrad1man. l'h il Cohen. l>al'id lsral'I. I krto r I .cvesque.

C111Jy SiJ n~r. ;111J Hill Woods. We hop,• 1his p;1pcr rcfkcts well 011

our juint dl<irt.

·111c ;1u1hors wish to thank I .yn lla1es. Ron Brachman. David Israel,

i\r:11 incl foshi. C111dy Sidner. Brian Smilh and Bill Woods for 1hcir

hdpltil c1H11111t• 11ts on e;trlicr versions of this p;1per. Our special thanks

!\I' tn S11s.111 Chase. who holstered our somewlwt nagging spirits with a

magnificent cclchration fea5t. somewhere between near-deterministic

parsing and combinatoric aspects of semantic interpretations.

111is research was supported by the Advanced Research Projects

Agency of the Department of Defense, and was monitored by ONR

under Contract No. N00014-77·C·0378.

I. :\ hril·f i11lrotlul"lion to KL·ONE
Kl -()NI'. i, a u11il<1rt11 l;t11gu;1gr li1r !Ill' explicit l\'Jll'<.:sc·ntation of

conn·1H11;il i11li1rnwtio11 based on the itka or s1m,·111rt'd i11/wril//11cr

11,·111, •1-ks I llrad1111;111. . I 'J7X. l 1J7<JI. St'VL'ral or its prom incnt features ;1rr
or partirnl:1r importance in l'SI -KI ()NI-: - its se111antit-ally ckan
i11"1wri1;111n: or structured descriptions. taxo110111ic classilkation of
gc•1wric- know ledge. inttnsional stn11:turL0 S li1r runL·tion;1l roles
(ind11di11g Lh,· possibility ol' multiple fillers). and proceJural
;1l1:1d1111L'lll (wi1h ,11110111<1tic invoc;1tion).

Thr principal rcprese11t;1tio11al dc•ments of KI ·ON F arc (·1111cr111s.

or which there• are two n1ajor typL'S · (ien,riL· and lndi1idual. <,L'llL' ric
Conc-L"J)ls ;ire arr;1ngc•d in an inhL·ri. 11ct' slniclut\'. exprL·ssing
J.1ng·tc·1rn ~,n,·rir knowkdgc as a taxonomy. i\ singk Gt•neric

Concept is a descri111ion 1c11111lalt'. fr,nn 11,hicl1 individual dc~riptions
(in 1hc fonn of Individual C,n1cL'pts) arc fonned. A (ienrric Concept
can spccialilc one or more other Generic Com:epts (its su1w1('m1t'l'()IS),

to which it is attached hy i11/wri11111cc· Cable.~. ·111csc Cables fmm tl1c
h;1l'kbone of the network and carry structured dc:;criptions from a
Cnnccp! to its suhConcepts.

141

KL-ONE Concepts ,ire highly strucwred ohjc,ls. A s11bConcert
inherits a s1ruc1urf'<i definition from its parent and c.111 modify it in a
number of structurally consistent ways. The main clements of tl1c
st ructu re arc Roles, which exprrss relationships between a Concept
and other closely associated Concepts (i.e., its prnpenies. parts, etc.).
Roles themselves have structure. including descriptions of potential
fillcrs. 11 modality infonnation, and names. 12 There arc basically two
ki nds of Roles in KL-ONE: RoleSr!s und /Ro/rs. RolcSets have
po1c111ially many fillers and may carry a restriction on the number of
po,siblc lillcrs (e.g .. the officer Rotc0 ,,fa particul,tr COMPANY
would be lilied once for each person who is an officer of that
company). /\ RoleSct on a Generic Concept represents what is known
in general about the fillers i>f that Role. A RolcSet on an Individual
Concept stands for the panicular set of fillers of th;H Role for that
indi1id11al (e.g .. the officers of a panicular crnnpan}). I Roles (for
'l11st;111cc Roles') appear only on lndivid11al Conccpls, and arc used In

n·p1'1°,L'nl particular bindings or Roles lo Individ ual Conrer1s (q\.. the
pn·sid,·nt 01';1 parlirnlarCOMl'/\NY). (Thc•n• would he on,· !Role liir
,ach offker position in a parlicular crn11p.111y, regardless of the actual
11 11mhcr of people rlaying those Roles.)

TherL' ;ire sel'cral intL'r·Rolc rd11ii111ship:; i_11 KI -ONI' .. which relate
lhL' Roks or a Conrqll to llwse ol' a s11p,· rC011n:p1. S11rh rdt1io1tships
;1rL0 carried i11 lhe inheritance C;1hlcs mentiom·d c•arlier. ThL'Y indudL':

· restriction (of Ii Iler descrip tion and/or n11111lwr): e.g .. that a
p;irlirnbr ki11d or COMl':'\NY will haw L'xartly three
offi,·crs. all ofwho11111111st hL· over 45

- differentiation (of a Role i11to suhlfolcs): e.g ..
di fferc111i,1tiJ.1_g till' offi,·crs or a COMPANY i 1110 prc~idcnt.
vkr-prt•sidcnl. etc. This is a relationship hetween RolcScts
in which the more specili.: Roles inlwrit ,111 properties of
the rarent Role except for the number restrktinn (since
tl1at applies to tJ1c set and not the tillers):

· panicularirntion (of a RolcSc1 fo r an Individual Concept):
e.g.. the officers of BIIN arc all
COII.FGE-GRADUATEs: tl1is is the relationship
hetwt·en a RolcSet of an lndividu.il Concer1 and a RolcSet
of a p;1re111 Generic CotKCpt.

- s.itisfaction (binding of a particular filler description into a
partiClllar Role in an Individual Concept): e.g.. the
prcsid1•11t of BBN is STEVE-LEVY: this is the relationship
between an !Role and its parelll RolcSet.

I I.I hL·sc li11111:1tio11s 011 lh!.! for111 of panirular lil!l·rs an.' r:lllcd "Valw· H<..'.'ilrirtio11 :-,."
(V/H"s). 1r 1111m~ 1hn11 011c V/H. 1s a11plirahlc at :1 gi ,cn l(ok. lhc rcstrir1io11s ilrl' lakcn
c,111junrlivcly.

12 !'1>..:;uncs :ut 111 ,t used hy lh<' s~·SIL'lll 111 any w;1~ ' llll'~ ·m· nwr~I) l1111,c11icm'l's t'or
the user.

1\111hc h..'\I 1ha1 fullow!'I. l(ulc!'I will hL' indir;IIL'd as holtlli1n•tl 11a111L'!'I and< ·omqll.\

wi ll hr inchratc<I hy all UJlJllT r:JSL' L'\j\ll'SSIOIIS .

I
I

Figure 3-1: /\ piece ofa KL·ONE taxonomy

Fi[!lire .l· 1 illus1rall'S thl' use of' Cahks and 1h,· slnu.:ture of
Concepts inn piece of' lhl' Kl ·ONI(1axo1u1my dcscrihin[! an /\TN
gr;11 :1111ar. Concepts arc presented as dlips,·s (lndividu,11 CollCl'JllS arc
shad,·<.!). Roles as small M.juarcs (I Roles al\' filled in). ,md Cables as
douhle·tined arrows. The most general Concept.
/\TN·CONSTITUl:NT. has lwo suhC'oncepls · ST/\TI: and /\l{C.
These each inherit the general propl' l'lil'S of' /\TN wnstillll'nts. namely.
ead1 is known lo ll.lVl' a dis11layForn1 assol'iatl'd with it. The
suh11e1work bl• low /\RC expll'sses 1hc classilkation of thl' various
lyp,·, of ;ires in 1hc /\TN .uul how lhdr rnnceptual slrul·lurcs vary.
For ,·xan1pk, a l'ONNH.TIN(i·/\Rl' has a m•,ISlah• (lh1.• slall' in
\I hil'i1 1111: 1ra11si1io11 It-av,·~ 1h,· 1iarsi11g pro1.·ess). whik lilr 1'01'·/\RCs
1h,· 11·1m i, 11ol ui.·ani11µ1'11I (i.,· .. 1h,·n· is no m•,ISlah• lfoll'). I inks Ihm
wn111.·,·1 1111.· Roi,·, of' mo1t· sp,·1.· 1lic (·011,·l'Jlh with wn ,·,111111ding lfoks
in 1heir parent Concepts arc considned to lravct through the
approrria1,· Cahlcs. Finally. the s1ruct11rc of ,111 lndivid11.1I Concept is
illuslriilcd hy C/\T/\RC#Oll7. l-:ad1 !Role cxprc,ses the filling of a
Rok inheri1cd from the hicrnrchy above·· because C/\T/\RC # OJ 17 is
a C/\T·/\RC. it has a ci11l-gory; because it is also a
CONNECTING·/\RC. il has a ncxlSlatc, etc.

·111crc is one important feature of Kl.·ONE that is worth pointing
oul, allhough it is not yet used in the current natural language system.
The l:111glwgc carefully distinguishes hctwcen purely dcscriptional
structure and assertions about corcforence, existence, c1c. /\II of the
structure mentioned above (Con..:ep1s, Roles. and Cables) is
dcji11itio11a/. /\II assertions arc made relative to a Context (anolhcr type
of KI .·ONE object) and thus do nol afTcd the (descriptive) taxonomy
of grnail.' knowledge. We anlidpale Lhat Co1 11cx1s will he of use in
reasoning about hypothclicals, beliefs. anil wants.

142

The final fealurc of Kl.,ONE relevant to our discussion is the
ahilily to att.1cl1 procedures ,md data to s1ruc1url'S in lhe network . /\s
menlioned previously, Kl.·ONE is used in several places in our
language understanding system • these include the syntactic taxonomy
used lo constrain pnrsing and to index semantic in1crprctalion rules.
and the s1rucLUres used in the syn1ac1iddiscourse inlcrl:icc to ex.press
Lhc lileral scmanlic c1.:1lent of an uucrance. The parser uses Kl.·ONI,
lo describe Lhnse synlactically correct strucllar,·s for which there arc
known interrret.111<111 rules. l11tcrprc1.1tion 11rr sc is .ichievcd using
atlachcd procedures and data, with ,cmanlic projection 111lcs expressed
.1s d;ila attached lO Roles of 1hc synlal lic Conccpls.

11111 LIO< ;It-\ I 'II\

llra,h111an. It /\ S1rui:1ural Paradigm l\1r Rcprcsl·n1ing. K nowkdgc.
Tci:hnical l<eporl .1605. llolt llcranl'k & Newman Inc. Ca111 hridp.c II.I/\ .
1978.

llrad1man. It On Lhc l(pis1c1110togical S1a1us of S1.•m,1111ic
Nc1works. In As.1vci,11i1•e NN1l'llrk.l. N.VYindlcr (l'd.). N,•w York:
/\cad,•mic Press. 1979.

Bur~in. R. Scmanlic Grammar: /\n engin,•ering 1,•d111iquc for
c1111s1n11.:1ing nalmal language undc1'Slandin[! syslcms. 'l'l•chnical
Rcpol'l .145 .1 . llolt llcranl'k & N,•wman Inc .. Cambridge MA. 1976.

.lal'kendoff. It .\'·har Sy11111x: A .wu,~r ,f 11/imsf' .1·1r11c11m·.

l'a111hridgl' M .'\: MIT Pr1.•ss. 1977.

M;1rl'us. M. /\ Thl'Of)' of Synlal·lk' lkrngnilion li1r Nalural
I .anguagc. I'll.I>. th,·sis, MIT. l'IT/. (/\lso p11hli,h1.·d h) MIT l'1l'Ss.

1979)

Sidner. C. Tow:1rds a Comp11talional Theory of Definite /\11:irhora
Comprehension in Fnglish Discourse. Tedrnk-al Report 5.l7. MIT /\I
I.ah. C:amhridi1c Ml\. 1979.

V,111 l.chn. K. lktcrminin[! the Swpc or 1·:nglish ()u;1111ifiers.
Technirnl Report 48.1. MIT/\ I I.ah. C.1111hridgc M /\, 1978.

Webber. II./\ Formal /\pproach 10 l)iS(;ourse /\naphora. Technical
Repon 3761. Bolt llmnck & Newman Inc .. Camhridµe M,\, 1978.

Woods. W. Thcorelical Studies in
Undcrswnding: QPR 6. Tcdinkal Rcpon
Newnrnn Inc., Cambridge Ml\, 1979.i.

Natural lagnauge
4&61. Holl Beranek &

Wt~1ds, W. Theoretical Studies in Natural Language
Undcrstm1ding: /\nnu:11 report. Technical Report 4332. lloll lleranek
& N(·wman In..:., Camhridgc MA, 1979h.

Woods. W. Cascaded /\TN Gr;1mmnrs. Amer J. Ccm1pu1111io11a/

/.i11guil1ics, ll(I), Jan·Mar. 1980. pp.I· 12.

Woods, W., Kaplan, It & Nash·Wcbher. II. The l.unar Sciences
Natural l.anguag1.• lnl\Jnna1ion Sys1c111: Final rcporl. T,·drnical Report
2378. lloll lkrnnek & Ncwman Inc. , C.1111bridgl' Ml\, 1972.

THE ROLE OF DISCOUHSE STRUCTUUE IN LANGUAGE PRODUCTION

David D. McDonald1

MIT Artificial Intelligence Laboratory
Cambridge, Massachusetts 02139

Ahstrnct

A technique is described whereby descriptive discourse
structures can be used directly to plan texts, nrnnage
details, and insure grammaticality. Constituent structures
arc intcrrrctcd as plans of action, executed by a
controller that walks the tree, interpreting categories and
features as latent actions or as constraints on further
decisions. Under this interrrehltion, linguistic
descriptions become programs for achieving rhetorical
effects in the output text. One can then use production as
an experimental laboratory to test the effectiveness of a
given linguistic analysis.

The Nel'li for a Planning Language

Purposeful language production is a planning

process no di f'l'ercnl, in many respects, from guiding

robots or stacking blocks into towers. Goals must he

defined, means and ends analyzed, and, most important

of all. there must be a planning language: a means of

representing texL'i2 in progress, linguistic and rhetorical

actions that have been scheduled hut not yet carried out,

and pending goals at all levels of rclincmcnt.

The central problem of language prnduction is to

translate a speaker's goals from their original internal

form to a linguistic one. In n(m·trivial rnscs, the process

requires deliberating between alternatives and advance

planning; otherwise a decision made for one goal will

I. This rl'fH>rt c.ksnihes rl·search done at the Artificial lllll'lligl'lll'e
I .;1hora1ory or lhc M;1s~ad111sl' ll s l11sti1 ... c or Tcdmology. Support
fi1r lhl· l;,hor;uory's ;1rtiliri;il intdlip.l'lll'C ll'Sl';1rch is prnvic.kc.J in part
hy thl' t\dl';mc,·d lfrsea rch Prnjl-c.:ts t\gl'lll'.\' or the I kpartn1ent of
I kkncl' 111Hkr Oflkr or Naval lh·sc.';1rch rnntracl
NOIJll 14-75-C'-(k,4.l.

2. For praclii;al n:asons. my resc.irch has involw<l only the
prod 11ctio11s or II rittl'll tl'Xts r;Hher llwn acoustic signals. t\lso only
nnc n;1lural langnagc, l·:nglish. lws hcen used.

143

often make other goals impossible. A speaker cannot

perform this reasoning in tem1s of alternate finished

texts: the space of possible texts is unmanageably large;

and. more to the point, the detail of a finished text is

rarely relevant to the decision-making (unless perhaps

the speaker is a poet) and only serves to obscure those

facts that are relevant. A planning language gives the

speaker the ability to reason at the right level of detail, to

postpone decisions that are of lesser importance or arc

determined by others, and to have a concise record of

what actions have been taken, what arc planned, and

what remain possible (i.e. grammatical) in that context.

The proper planning language for naturnl language
production is linguistic struclurc.l itself: synlaclic
and morphological structures for planning
s1.•nlenl·e-level details, mul discourse structures for
planning largl'·scale texts and rhetorical relations
at :ill levels.

This assertion is made, of course. in the context of a

very speci fie proposal for how production is lo be clone

and how the linguistic structure is to he interpreted. This

proposal is the subject of my dissertation [McDonald

1980). I have developed a theory of the linguistic

component of the process, based on the psycholinguistic

hypothesis that our (human) fluency as speakers stems

from the use of an incremental. indelible4 process that
produces utterances in time linear with the number of

clements in the source message. The dissertation

l lly "linguistic stn1c.·1me" I llll'illl Sfll'cilic,lly a s11rfoce· ;,w t.
i111n1cdi.tll' n111s1it11,·nt strncture trl'l' of the 11s11.1l sort. Thl' trel'S i11
my c.Ji,scna1i11n we11· ;11111ota1ec.J by c,ltl'gmy, had li1ncti11nal lahds for
rnnsti111ent positions. incl11c.J,·d li.·alures (as in systrn1k gr;1111111ar
11 lalliday l<J701), and usc.•c.l tracl'S !Chomsky 197.lJ. None ol' these an·
ahsolute requirements howewr.

4. I.e. "writtl' ll with indclihk ink"-- onre a 1kcision has hcen made
it cannot he takl·n hark or rl'Vis('d. only relinl'd .

: i

I

presents the theory and the experiments with the LISP

program that embodies it, with emphasis on syntactic

level design decisions.

In the present paper, I want to focus on the

application of the proposal to discowsc structure. I do

not have a theory of discourse structure to present, rather

I will show how a constituent-oriented theory would be

applied to control discourse production.

Linguistic structures as planned ;1ctions

The process begins with an abstract description of

what is lo be said (a "message"). This description may be

or any size or level of detail, provided that it can be

relationally decomposed into a well-ordered hierarchy of

elements. This hierarchy is very important: As we will

sec, the description is going to be its own production

program-its well-ordered hierarchy will be what dictates

its order of execution.

The knowledge base of the process is a "production

dictionary", written specially for each new speaker and

problem domain.5 The dictionary has an "entry" for

every relation (or relation type) that could appear in a

description. This entry is a schematic dcscription of the

possible realizations that the relation could have and the

conditions: prngmatic, intcntional. and grammatical, that

will dictate whid1 realiwtion lo choose in a spedlic

situation. ·11ie entry is where the internal vocabulary und

representational culculus of the speaker is translated into

a linguistic vocabulary and representation. Realizations

arc specifications of linguistic structures: phrases, words,

rhetorical effects; typically they are translations of the

relation proper. that incorporate the arguments to the

relation intact for realization at a later point.

To sce how a description can use the dictionary to
become "ils own production program", let us look at a

5. 'Ilic computer program is designed to he ,1 separate "linguistic
component" th,11 is llwn spcciali1cd to new dom,1i11s hy writing a
dil'lion.iry and a set of simple interface functions. So for, !lie
program has hccn usi:d with five dirti.·renl "spl·akl·rs" using as many
different t°l'prcscntations including !Ill' prcdicall' calculus.
pallt'rn·m,1lrhing aSSl'l'lion~. and Kl ONI' lllrad1111an 197</I.

144

simple example. Assume that what we want to say is
described by the classic expression:

\f(x) man(x) = mortal(x)

This hns a clear, well-ordercd decomposition: first the

qunntificalion, then the implication, then the two

predications. Thal then will he the order of the

realization decisions: first the quantification, then the

implication, and so on.

We want Lhc production process lo be incremental:

no one entry should he responsible for more than it has

the actual cxpcrtise to decide. This mcans that the

quantilicalion should make its decision in terms of

picking a context for the implication, mid the implication

in terms of a context for the two predicates.

TI1c contexts arc givcn in the planning language, i.e.

the linguistic structures sclcctcd by earlier rcalizations.

They arc expressed as constituent structure trees with the

yct-to-bc-rcalizcd relations cmbcddcd al their leaves.

(Mcssage relations ("clements") can remain in their

original representation since their dictionary entries will

act as interpretcrs.) When an clcment is rcalizcd, it is

replaced in the tree by the syntactic phrase (or word, or

subclement) that was chosen for it.

There arc very specific dependencies between

decisions. Ry making the decisions in a specilic order. i.e.

top-down thn>ugh the message and top-down and lcft-to

right through the incrcmcntally growing constituent tree,

we can gunrantee the production i11 one pass of u

grammatical text that satisfies the speaker's description

(The organization of that source description must also

meet certain criteria, sec [McDonald 1980].) We enforce

the ordering by vesting control of all processing in a

simple dispatching routine ("the controller") that walks

the constituent structure along the desired path. When it

reaches a message relation, it dispatches to the

appropriitte entry; when it reaches a word. it has it

printed out: and when it reaches a linguistic descriptor (a

category name, a lcature, or a labclcd position). it runs an

atlached procedure. relining the context or directly

printing a function word.

Most realization decision will require multiple

actions to implement, yet can only have one action

performed at a time (i.e. the morphemes of the text must

be printed in order). The "pending" actions thus 11111st be

stored until their time comes. Since what an entry

dccicks is lo use arc instances of linguistic constructions, ·

fixed phrases, or words, the form of the storage should be .
a linguistic description.

fly inll'rprcting the usual desniptive linguistic
strul'lurt•s as the s11el'ilkations or constraints and
as a sour'l'c of "dl'f:11111" grammatk:rl :1l'lions
triggcrt•d by the pass:ri.:e of the controller, we can
use the structures as :r representation for 11cnding
decisions.

I .ct us f<>llow this process for the example ltmnula.

We st:.irt out with no context (i.e. no prior decisions and

therefore no constraints). As the first action, the

controller dispatches to the entry for the quantification.

That entry makes some tests on the logical structure and

linguistic potential of its argument (the implication) and

then chooses a realization. Let us say that it decides that

the implication can be given as a statement and that the

quantificntion per se should be given us the determiner of

the variable (i.e. "afl men").

The quantification entry cannot implement these

nctions directly because they involve realization decisions

that haven 't huppem:d yet. Instead. it must make a

record of its decision-create a linguistic context that will

force the implementation of its decisions at the

appropriate time. To do this, it (I) installs the

implication in a "sentence" context, and (2) it creates a

"premature instance" of the variable with its determiner

decision rrecn1rted to be "express-quantification". (The

preempted decision will take effect much later the first

time the v,1riablc is realized. We will pick up its trail

then.)

top·of·thc·t rec

145

Since its context is marked us requiring a sentence, the

entry for the implication is now constrained Lo pick a

clause (i.e. it can't choose "111or1a/ 111r11"). Let us say that

it decides to translate the consequent as a statement about

the antecedent. (The actual entries used arc included in

[McDonald 1980).) It implements this decision by

: placing the two predications in a context that identifies

: them as the subject and predicate of a clause, i.e.

I

tup·1ff.-thc·trcc
I

I

sc~tcncc]
cJ.1usc· l

~
[suhjcctJ (predicate)

man(x) mortal(x)

The point of a label like "clause" or "subject" is not

description for description's sake. These labels are a

succinct representation of pending grammatical actions

and constraints: the presence of a clause node in a

sentence slot will initiate agreement once the controller

reaches the main verb; the subject label will indicate

where to find the element to agree with. ·nie clause

"node" defines a region with specific grammatical

properties and provides a context-binding mechanism.

Having "man(x)" in a subject slot will constrain its entry

to choose a noun phrase realization. (l'hc slot label

actively filters out the ungrammatical altcrnlltives as the

entry is interpreted.)

The construction of the noun phrase itself is bnjken

down within the entry into a set of near independent

decisions organized by linguistic category: the referent of

.,1e phrase is the variable "x"; its "head" is taken from

the name of the predicate; its "determiner" is fixed, in

this ·case. by the earlier decision or the quantifier but

would otherwise have been decided on the basis of tests

for generic/specific. This internal organization of t 1e

entries is a linguistic structure just like the constituent

structure and may have atlached procedures and

transformations on the same basis.

I

:J

By building on explicit, abstrucl structu1 ~ to slrndow

the produced text, we not only gain an eflicicnt
representation of pending decisions, but we can design
transformations, monitors, und decision heuristics that

apply on the basis of the structures themselves and do not

need to know anything ubout the contents of the

purticular message. If we arc then careful about using

well-motivated linguistic structures, we will recoup

effective general procedures from our investment.

Unphinncd coherence

The primary things that make a discourse more than

just u sequence of sentences are mallers of content: a
common topic, common references, a progression of
temporal and cnusul chains, or u rhetorical "point" or

moral. Also necessary however arc the S<>·culled
"coherence phenomena" at a linguistic level: using
pronouns and definite noun phrases, not repeating facts
that have been recently mentioned, or using ellipsis to
condense texts with a common linguistic structure.

Many coherence phenomena con be introduced into

a text "automatically"-without the speaker actively

planning to use them- by associating them with

discourse-level structures. Below arc the first few
paragraphs from a long (if boring) text written by my

program by reading out the relations in a semantic net.
'The only aspects of this text that were specifically

planned were the order of the paragraphs, and the order
of the focts within them (e.g. whether there was to be a
summary, or whether one · foct was to be attuchcd to

another by a relative clause). Every other effect was

controlled by a gcncrnl purpose rule.

l'/11rm! is 1hc 1011 of lite 11rt. Ifs illlerp role
111us1 he a rnni·,•pt . a11t! ifs modifier mfr and ifs
head role 11111s1 /I(' p/1ra.\'e.\'. Its suhco11c,•11ts arc pp
. np. aJjunl.'t. i11dobjdause, and word.

l'p has the roll's: pobj , prep . interp , and
ppobj. Pohj 111us1 br a np , prep a prep , interp a
relation, and ppobj a pp . l'p s subco11c1•p1s are
ofperso11pp. and in.~ubjectpp,

Ofperson has a pobj role which mus/ be a
/1umanp. a11d a prep role which mus/ be an of.

146

lnsuhjectpp :~ pobj role mus/ be a .~ubjectnp .
its prepro/e 011 in. and ifs interp role a subject .

Np is another subconcepl of phrase ...

The instances of subject merging and gnpping were
controlled by local monitors associated with the

conjunctions. ll1e pronominalizntion was controlled by a

record of mentioned items that was sensitive (1) to the

paragraph structure (items in earlier paragrnphs6 were
considered too "old" to pronominalize) and (2) to each
paragraph's "focus" ,7 defined here as the network node

whose prope1ties were being described. Focus also
triggered several order transformations whoSt! aim wns to
position the focused item in an early, "given" location in

the construction, e.g. saying "ifs interp role" rather than

"1heititerp roleofphmse".

A further unplanned effect wus the omission of

"given" information, i.e. if a fact hud appeared once it
was not be repeated. Thus in the second paragruph, it
snid "Pobj mus/ be a np ", rut her than "The pobj role

mus! ... " because the fact thut "IK2b.i" was a role had just
been given in the previous sentence. Similmly, the

originally planned first sentence or that paragrnph: "Pp

is a subconcept or p/1rase" was left out bemuse it had just

been given in the last sentence of the previous paragraph.
Sensitivity to what information is alrcudy "given" is part

of the controller's entry interpreter.

The problem with unpl,111ned coherence cl'l~·cts ,ll'C

that they arc sometimes insensitive to the range of

altcrnutivcs that arc possible- their triggering conditions

nrc usuully myoric. Consider an cxamrlc from yet

another domuin, the annutntion of games of tic·tac·tuc.8

Suppose we h:1vc two moves as shown below nnd wish to

6. An exception is the "topic scn1cnce" of thl' paragraph . These arc
pl'l'sumcd lo Ill' more salient than the hodics. and i1cms menlimwd in
them .ire kepi in an alternate chronologkal record. This is how the
subsequent rL'lc1'l'nL·e 10 "011i1J.h!:l subco11crp1 of phrasl'" was
motivated.
7. Focus in the St'nsc of hcing what the paragraph is "ahoul". Sec

(SidnL'r 19791 ,md (Cirosz 1977(.

K. Unlike llll' l'arlicr lo{Zil' and "nctworh,~·ohjcl't" domains. the
dictionary for the tk·taL··toe domain is still hdng. d~·vcli>pl'd. Not
much more tl1an the examples given in this papl'r ha1c actually hcen
imr,kmcntL'd thus for. ·111e model for tl1is domain is thl' l'('ry fine
work on discourse prodlll'lion donL' hy Antlmny I)avcy (I >avey 11'741.

describe them as two instances of the predicate "take a

corner".

If we join the two clauses with a conjunction, then we

have at least the following alternative phrasings:

(1) B01h you and I took a corner.

(2) You look a corner and so did I.

(3) You /Ook a corner and I did too.

(4) You !Ook a corner and I took another one.

(5) You took one corner and I another.

The problem comes when you consider that the

order of those sentences is the same as the order in which

the controller will pass through each of their triggering

monitors. If those monitors are set to trigger every time

they arc applicable, then we will always get sentence one,

since its monitor will be reached first, and it will always

apply, preempting the others.

There arc, of course, "kludgy" ways to get around

this problem: e.g. defining a system of five enabling

features, and allowing only one feature from the system

to be "alive" al a time, varying the choice on some

pseudo-random basis.

A better way (but one we do not understand well

enough to implement) would be to dCLcrmini.: what

rhetorical clTccts arc bi.:st served by each construction and

to then label the context according Lo the effect the

speaker want to achieve. ·niat would give us very specific

triggers where formerly we had only the most general

one- "make the text more coherent" .

A large part of motivating a speaker to make such

specific and varied distinctions in intention is having

them employ a rich discourse structure. In the remainder

of this paper, I want to look at some examples of a

complex discourse/plnnning structure that motivate

distinctions in text length and con. ~11t. While not nearly
as subtle as those required above, these distinctions will

be of the same type.

147

Planning a Discourse

Let us imagine that we arc to describe the game

below:

*' * The first thing that we must determine is the level of

description to use. Obviously, this will affect the lexical

choices open to us: more interestingly however. it will

also greatly affect our options for discomse structures. I

will look at three different levels in turn: each will permit

successively richer structures, and finer control over the

details.

A description just in terms of squares-taken can

hardly motivate any discourse structure at all, because

each move is conceptually the s:1111c as the next. Since

both six separate sentences or a six-long conjunct arc

stylistically unacceptable, a content-free default of

conjoining pairs is used. ·n1e conjuncts will then

motivate some default coherence strategics.9

source description: (and I .l) (and 5 9) (an<l 6 4)

Resulting text:
You took a comer and I took another. You ,ook
the center and I took the comer below mine and
opposite yours. You took the middle square
between my corners and I took the middle square
opposite it.

9. In the ligur,· below and those lhal fi>llow. mows arc referred to
hy till' numhcr of the square taken. where squares arc numhcrcd
,tarting wi1h "I" lop to hot10111 and kl\ to right

. I

If we now move up to the tactical level of "threats"

and "blocks". we find a much richer semantic structure
tying the moves together, and it becomes possible to plot

out a rhetorical structure that will emphasize the semantic
one. We begin by laying out the tactical description of

the game:

1. nothing
2. nothing
3. threat
4. block & threat
5. block & threat
6. block => draw

The next step it to "parse" this description and work

out a patlern of rhetorical connections, e.g.

[1 and 2]
[3 but 4]
[Then 5 but 6]

At this point we should consider what the entry for

a "move" should be. Semantically, a move is a locus of

relations at many different descriptive levels: no one level

is primary, and combinations of levels can be effective

(i.e."/ thrcatc11cd you by laking the cc111cr"),

We can control a "multi-facet" entry like this

through a combination of explicit directives and

contextually controlled defaults. Most of the directives

will come from the discourse structure that we build by

combining the tactical description and the rhetorical

parsing into a constituent structure10 with the moves as
the leaves.

I 0. Note. pan of the lnl'aning t11csc "rhctorkal categoril·s" is a
pn11:cdurc triggered hy the controller that causes t11e conjunctions
"but". "then". and so on to he printed dil'l'Ctly without ever
on:upying a con,titucnt position in t11c tree.

148

~
(U1rcat](block·&·thrcatJ

3 4
·111cn·A·but· B

..-::::::::: ~
(block·&·thrcat)[block=>drawJ

5 6

You may recall that the earlier text made extensive

use of "corners" in its descriptions of squares taken. If a

fact like that can be seen at "planning time". it can be

turned into a discourse directive to use constructions that

emrhasizes the corner description though deletion (see

the lirst sentence of the output text below). This is one

example of a rhetorical effect that can serve to pick out a

speci lie construction.

"fl1e default for the move entry- what it docs when

the move is in a constituent p~ition that is not marked

for a particular relation-will be to give the square-taken

intcrprctalion. Fu1ther let us say that when the rel:1tion is

specified, the entry will add the relation of the next, more

concrete level of description as a default. The result is

given below: (The choice of constructions for "block and

threaten" is controlled largely as synonymous

alternatives.}

You took one comer and I a1101 ltcr. You
threalened me by taking the i:cnter, but I blocked
you and threalcncd you in tum by 1aki11g the corner
he/ow my corner and opposite yours. Then you
blocked me with a threat from the middle square
between my corners, bu/ I blocked ii by taking the
opposite middle square, resulting in a drawn game
because there were no more lines 10 lake.

At an even higher level of abstraction. consider the
frame below, constructed from a study of the tactical

description and reasoning about alternatives. 11

missed-opportunity-37
player·who·did·it "you"

summary·missed·action "fork"

summary·actual·outcome "draw"

summary·possible·outcume "win"

had·move 3/5

possihlc·movc 3/9

lcad·in·moves (1/1. 2/J,)

actual ·fnllowing·movcs (4/9. 5/6, 6/4)

possihk·following·movcs (4/5, 517. c,/{4.81)

By developing an entry lor a "misscd·tipportunity".

we GIii start the production process directly with this

frame. ·111c entry will be fundamentally just like any

other entry: recording alternative realizations and the

conditions that select between the111 . The difference will

be that its output is a srecilkation for a discourse rather

thun for a syntactic phrase. with an output vocabulary in

terms of the focets of the frame and di ITerent rhetorical
speci ficntions.

The <.:lustering and labeling of' moves in ter111s of' the

semantically charged facets makes it possible to sum

marize them, or to treat them as units in the discourse
that can be commonly marked, say, as hypotheticals, as in
this possible realization:

lf·A· then· B (hypothetical)

~a ken] [game]

A·inste<id·of·B summary,missed,e'wf~&IMil

~ ~me: 3/
(A] [II]

3/9 3/5

11. Moves arc giVl'n here as <mnnhcr of movc>/<mnnhl' r of
squarL·>. The cxa111plc game is rcpcalL'd for convenience.

149

which. if selected, would eventually lead to the text:

If. on your second move, you had taken the opposite
corner instead of the center, you could have forked
me and won the game.

Another alternative would be:

(sentence]

A·hccausc· II

(focus·on game] [event)

summary-actual-outcome missed-opportunity-37

"'/11e ~ame was a draw, because you missed an
opportunity for a fork."

Because this alternative is constrained to be a single
sentence, the entries for the two focels arc inhibited from

adding any "default" elaborating clauses because that

would strain the heuristics defining good sentence size.

Realizations at !his discourse level arc as amenable

to intentionally directed transfomwtions as at any other

level. and can be organized into families of alternative

orderings, alternate lhcuses. or alternate assumption

about what information is dedudblc and should be

omiLLcd; though it is certainly not cllw at this juncture

what the correct organizing rules and heuristics for this

kind of reasoning will be.

I lowever, by sludyini.: discourse hl•uristks from the
point or view or l.1111-:uai.:c produl·tiou, we ha,·c a
strnighHorward way to test our ideas, namely to
run the process, produce the texts, re,ul lhcm, and
determine if the choke of rhetorical devices met
our goals.

The direct control over the process parameters that a
study of production affords us will allow it to make

powerful contributions to our understanding of all

aspects of natural language.

lkforcnces

Brachman, R.J . (1979) "On the Epistemological Status of
Semantic Networks", in Findlcr ed. Associative
Networks: Representation and Use of Knowledge by
Computers, Academic Press, New York.

Chomsky, N. (1973) "Conditions on Transformations" in
Anderson and Kiparsky, eds., A Feschrifl for Morris
Ila/le, Holt, Rinehart, and Winston, New York.

Davey, A. (1974) The Formalization of Discourse
Production, Ph.D. Dissertation, Edinburgh
University.

'Jrosz, B. (1977) The Representation and Use or Focus in
Dialogue Understanding, Ph.D. Dissertation,
University of California al Berkley.

Hall iday, M.A.K. (1970) Functional Diversity in
I .anguage as seen from a consideration or Modality
and Mood in English. Foundations of l.angua~e. (!,
322· 361.

McDonald, 1).1). (1980) Natural Language Production as
u Process of Decision-making Under Constraints,
Ph.D. Dissertation, MIT.

Sidner. C. (1979) Towards a Computational Theory of
Delinite Anaphora Comprehension in English
Discourse, Ph .D. Dissertation, MIT.

150

.. ,.· . ~· ,, , -: .:, ·~: .. ·:·· - ~· ... · ,, . . :.

NATURAL LANGUAGE QUERI ES FOR A LINGUISTIC DATA BASE USING PROLOG

Richard Kittredge

Department of Linguistics
University of Montreal
Montreal, Que. H3C 3J7

ABSTRACT

METAVERB is a small user -designed system for
consulting a data set for the linguistic study of
English verb syntax. A question -answer control
component, written in PROLOG , a flexible language
for logic programming, links the reply to a query
to the success in deriving the semantic structure
of the query as a theorem from the data set, using
the techniques of resolution theorem proving.
English queries are analyzed into their semantic
representations simultaneously with syntactic par
s ing in 'metamorphosis grammar', a super-Q option
within PROLOG. The problem of analyzing meta
linguistic queries, which may both use and mention
the same verb, is also considered.

1 . INTRODUCTION

The programming language PROLOG (Colmerauer et
a 1. , 1972, 1979) has been designed to facilitate pro
gramming in first order logic using the techniques
of resolution theorem proving (see also van Emden,
1977) . Its applications until now have included
formal integration, medical diagnosis, speech re
cognit ion, and certain data base query systems,
Colmerauer's addition of 'metamorphosis grammars'
to PROLOG (Colmerauer,1975) has simplified the
treatment of strings and tree structures, and hence
made PROLOG more accessible to linguists interested
in natu ra l language analysis.

Thi s paper describes METAVERB, a functioning
natural language query system which answers ques
tions about the syntactic properties of English
verbs, such as "Which verbs is NPN an object type
of?" or "I s each object type of ' acc use ' an object
type of a verb whose subject type is THS?" .
Although t he query language is quite limited and
particular to the domain of syntactic research in
linguistics, t his system illustrates a number of
interesting possibi lities in the use of PROLOG, for
specify ing the semantics of a subset of natural
language, and metamorphosis grammars, for control
ling t he compositi onal build-up of semantic repre
sentations during the process of syntactic parsing.

*Virtually every aspect of this system has been
influenced by the work of the Groupe d'Intelligence
artificielle of the University of M~rseille-Luminy.
In addition to references to published work, I
should like to acknowledge the collaboration of
Alain Colmerauer during the design and testing of
an early vers ion of this system, particularly with
regard to the implementation of his proposals for
the treatment of linguistic quantifier expressions.

151

After a brief description of the data set in
~2. we consider the semantic representation given
to the basic query types in §3. He then review
certain relevant aspects of PROLOG and illustrate
the control and semantic sections in §4. In §5
we examine the syntactic parsing of queries, which
is coupled with the construction of the desired
semantic representations using metamorphosis gram
mars. Finally, in §6, we consider the problem
specific to METAVERB of parsing sentences from the
metalanguage of English syntactic description .

2. THE DATA BASE

The query system is designed to answer ques
tions about the syntactic properties of verbs,
based on a data set for roughly 800 English verbs,
including most verbs which take a wide variety of
prepositional and sentential complements. A syn
tactic study by Kiss & Kittredge (1976) provided
in tabular form the information on each verb ' s
potential to take any of six possible subject
forms and any of the 40 possible object strings.
For the purpose of the t1ETAVERB experi rients, each
verb's potential was given in a tree structure
having the form of a positive PROLOG literal in
which the verb name, list of possible subject
forms and list of possible object forms are the
three branches. For example, the verb "accuse"
has a data representation:

+VERB(ACCUSE, N.NIL, N.NPN.NPVGO .N IL).

where ''." serves as a list concatenator. The
three non-NIL elements of the object list corres
pond to the three possible oject strings for this
verb:

Noun (phrase) e.g accuse Fred.
Noun+Preposition+Noun
- e.g accuse-Fred of treason.
N+P+Verb+inG+Object
- - e-:-g accuse the boy of creating a

disturbance.

At the moment, relatively little is known
about the dependencies between syntactic proper
ties, or the possible groupings of verb s accord
ing to partial similarities of their propertie ~.
To advance this kind of research a query system
is required with maximum flexibility to compare
property lists, permit definitions of new compos
ite properties, etc.

.1

It might be a relatively simple matter to
tailor-make an artificial query language which
would permit efficient access for a large number
of kinds of query . The decision to use natural
language is due to several factors including the
following:
(a) Considerable insight into linguistic semantics

is gained from the exercise of specifying pre
cisely the functional structure of each query
word, and from observing the interactions with
other words.

(b} Natural language is undoubtedly the most flex
ible query language. The pitfalls which pre
sent themselves during an attempt to program
natural language are of interest for the
theoretical foundations of syntax and seman
tics in linguistics.

(c) The queries required for this data set involve
distinguishing the use and mention of certain
verbs which may show up in both functions.
Since little is known of the linguistic pro
perties of English metalanguage, such a system
provides one possible controllable situation
in which metalanguage properties, in addition
to the data set properties, may be studied for
their own interest.

3. THE SEMMITIC STRUCTURE
OF QUERIES

In the traditional distinction between ~/no
questions and wh- questions, lin9uists have tended
to represent a question such as (la) semantically

.as (lb) , and a question such as (2a) as (2b):

(la) Did Max come?
(lb) I ask that (you tell me whether(

(Max came)OR NOT(Max came)

(2a) Who came?
(2b) I ask that (you tel 1 me whether(

(Max came) OR
(Fred came) OR

.)
where the potentially infinite disjunction in (2b)
is formed from substituting in the sentential for
mula "x came" the name of each individual in the
universe of discourse which obeys the selection
restriction for "came". Because of the occurrence
of "I" and "you" in the semantic paraphrases (lb)
and (2b), a true semantic analysis would require
a model of both the interrogator and the system
in 11JJch more detail than we wish to provide.

We therefore adopt the following conventions
in accordance with Colmerauer ' (1977) :
Ql. We can reply in the affirmative to a ~/no

query provided that we can prove the corres
ponding declarative sentence (cf. the first
part of the disjunction in (lb))

Q2. To a wh- question containing "which P", where
Pis representable as a predicate of one argu
ment, we may reply "n" if n is a proper name
such that P(n) is true and the expression
obtained by replacing "which P" by "n" in the
declarative form of the query is true.

As an example of Q2, consider the query "Which
verb is NPN an object type of?". We may reply

152

"accuse" (among other answers) if we can show that
verb(ACCUSE) and "NPN is an object type of ACCUSE",
or rather its semantic representation, can be
proved as theorems.

3.1 Quantifier expressions

Colmerauer's proposals for quantifiers are
in fact much more precise and far-reaching than
indicated above. His treatment of quantifying
expressions (including articles) such as le,un,
chague and aucun in French assumes that eachsuch
expression acts as a kind of semantic functor,
creating a complex quantifier expression out of a
variable, x, and two sentential functions in which
x occurs free. Consider the simple sentence
"Each man loves Brigitte", whose translation in
standard predicate logic is:

(Vx}(man(x) -1 ove(x,Bri gitte)) .

Note that in this translation the variable x
appears in two simpler sentential functions ,
man(x) and love(x,Brigitte). The resultant complex
quantifier expression is represented as :

(3) each
/ 1-----

x man love
. /" I / B . . t x x r1g1t e

or , 1 inearly:

(4) each(x,man(x), love(x,Brigitte))

For each quantifier , the corresponding complex
expression can be converted by simple rules into
a form more easily evaluated by PROLOG. In par
ticular, (4) becomes:

(5) not(exist(x,and(man(x),not(love(x,Brig)))))

What is significant about this treatment is the
fact that when all quan tifiers and articles are ·
given a lexical representation calling them predi
cates of four arguments, e.g.

(6) s3)
~

resultant complex

each(x, sl, s2,
,.----7 f /

variable sententia l
formulas quantifier expression

it is possible to maintain full control over the
construction of semantic representations during
unification of variables. This is particularly
important when sentences with several quantifiers
must be given the proper hierarchical semantic
structure. Colmerauer's hypotheses for these
construction principles are incorporated into the
parsing rules of t5.
3.2. Relative clauses

Restrictive relative clauses serve to delimit
the set of possible referents of a noun phrase,
over and above the conditions on reference speci
fied by the noun itself and any prenomina1 modi-

fiers. This fact is reflected in the representa
tion of a relativized noun phrase as the conjunc
tion of two sentential functions, both containing
a free occurrence of the same variable . For exam
ple, (7) is represented as (8) , where the under
lined portion of (7) corresponds to the portion
of the tree within the dotted line.

(7)

(8)

the !1_1_a~Jlho loves Brigitte is Canadian

the
/"" \----

x and Canadian
/·~, I

man love x
I / ""-·. x x' Brigitte

Given these conventions on representing quant
ifier expressions and relative clauses, it is now
possible to give a representation of a more com
plex query:

(9)

(10)

Is each object type of ACCUSE an object
type of a verb whose subject type is THS?

each (declarative form)

~e~~a
/ \ /1 -----

x ACCUSE y and object type

/ \ / "'
7rb j~YJ~ x y

y THS y

In the form evaluated by METAVERB this becomes:

(11) not
l

/j1St
x and

I - -
object type

x/ Ac2usE

·--not
I. exi st

-------- I y and
/"" -

and

------- \ verb subject type

1 Tf{ ~
3. 3 Wh - ques t ions

~ject type

/ '"' X y

The word which (or what) al so falls under the
uniform treatnier£of quanf ifi(expressions out-
, ined above . In the query :

(12) ~Jhich verbs is PNWHS an object type of?

what is requested is essentially:

(13) (The set of) those x such that

153

xis a verb and
PNWHS is an object type of x

We set up a semantic predicate "those" , similar
to CollllE!rauer's "ces" giving a two-branched seman
tic tree for (1 2) as:

(14) those
~ '""-x and

/ -------. verb object type
I / ~
x PNWHS x

4. PROLOG AND THE COMTROL COMPONENT

4.1 Some relevant features of PROLOG

We summarize here some of the basic features
of PROLOG given in the introduction to Colmerauer,
Kanoui & Van Caneghem (1979).

PROLOG is a very high level programming
language based on first order logic. The only
operation in this language is the unification of
two logical terms, which are represented as trees .

A program in PROLOG can be viewed in both a
declarative and a procedural perspective. Declar
atively, it corresponds to a set of regular clauses
in first-order logic. These clauses express the
relations between the various subparts of a proof.
Procedurally, the program, with the help of a
simple control language, describes how the theorem
prover constructs a proof.

On the syntactic level a program is a set of
regular clauses, each of which consists of an
ordered sequence of literals. The head literal
(o r positive literal) is followed by zero or more
negative literals, which make up the tail of the
clause. For example:

(regular) clause
~ - ····· ··'-----...

(15) +P -Q -R -S
J l.....'.....--y-'

head literal tail of clause (negative
1 iteral s)

A literal is an atomic formula of logic (predicat)
or its negation. A predicate expresses a relation
among terms, which are the objects manipulated by
PROLOG:-fo the tree

(16) list

/ "" a list

(\

(also represented as
1 is t (a , list (b , ~))

the variable xis underlined to distinguish it
from the constants a and band the binary function
"list". The name of a variable is local to the
clause in which it appears. The following simple
program calculates the concatenation of two lists :

·I

+concat(list(~,11),_2,list(~,13))-concat(~1,12,.f3)
+concat(nil ,1,!J

Here "nil" is an atom.

An instance of ii tr.rm or clausr. ic; obtained
by unifori11iy- -s·ubstituting terms for variables.
The declarative semantics defines those predicats
which can be proven true. +P', the head of an
instance +P' -Q' -R ' -S' of the clause +P -Q -R -S
is said to be true if all the predicates in the
tail of the clause, q,R' ,and S' are true. This
definition does not make use of the order of the
clauses or the order of the literals within a
clause.

A bundle of clauses is a set of ordered
clauses, all having the same head predicate.

The procedural semantics interprets each bun
dle as a procedure definition, each clause repre
senting one possible definition of the procedure.
The literals of the tails of the clauses corres
pond to procedure calls.

Resolution consists of executing a sequence
of procedure calls. Unification is the operation
which searches for the most general common instan
ce of two terms. In other words it is the search
for those substitutions which particularize varia
bles the least while still making the two trees
equal . To execute a procedure call P, the inter
preter se~rches, in the bundle corresponding to
the definition of P, for the first clause for
which the head literal can be unified with P. If
this unification succeeds, the unification of the
tail of the instantiated clauses is attempted
(unless the tail is empty) , resolving each literal
in order. If the tail is empty, we attempt to
reso lve the next literal in the waiting list. If
the unification fails, or if no clause is found
with a head which can be unified against the pred
icate to be resolved, then backtracking occurs.
Upon backtracking, the interpreter returns to the
last choice point, undoing all substitutions made
after that point and then starts off in the new
direction, trying to resolve the same predicate
with another clause.

Certain predicates are interpreted directly
and do not pass through the resolution mechanism.
Some, such as plus(x,y,z) , defined for integers,
could be written in PROLOG. Others, such as those
which read or write a character, can only be de
fined procedurally.

4.2 The Question-Answer control component

We give here only the essential parts of the
control section, which can be written as five
clause bundles:

+GO -AJOUT(+(AGAIN).NIL) -L IGNE -LIGNE -COMEON .

+COMEON -SENTENCE(*L) -TESTEND (*L).
+COMEON -LI GNE -LI GNE -AGAIN -COMEOtl

154

+TESTEND(GOOOOYE.*X) -LIGNE -SORM("SO LONG")
- / -SUPP(+(AGAIN).NIL).

+TESTEND(*L) -ANALYZE(*L,*S) -L!GNE -SORT (*S)
- LIGNE -LIGNE -ANSWER(*S).

1ANSWrR(T1 1osr(*X,*S)) -/ -TRUF(*S) -sorn (*X)
-SORM(" ! ") .

+ANSWER(*S) -TR UE(S) - / -SORM("YES'.").
+ANSWER(*S) - / -SORM("NO'.") .

+ANALYZE(*L,*S) -S YN(QUEST{ *S).NIL ,*L) -/.
~ANALYZE(*L,*S) -LIGN[-SORM("IT' S HIGII TIM[

YOU DID SOMETHING ABOUT YOUR SPELLING'.")
~LIGNE -IMPASSE.

The relational symbols AJOUT,LIGNE,SORM,SUPP,SORT,
SYN, and IMPASSE are all predefined in PROLOG.
All others in these clauses are defined within
METAVERB. When the goal statement -GO! is entered
the first clause becomes applicable. Evaluation
of the first negative literal causes the cla.us e
iAGAIN to be added to the system, allowing for
repetition of queries. Two lines are skipped and
COMEON is evaluated. When a query has been enter
ed, this triggers the evaluation of SENTENCE fol
lowed by TESTEND. The first of these calls up a
bundle of clauses, not given here, which read ~he
input characters and convert that string to a list
of words. TESTEND first checks whether the input
is a closing statement "goodbye ... " in which case
a reply is printed anrl the repeat clause +AGAIN
is suppressed. Otherwise, TES TEND tries to ana 1-
yze the word list *L into the question structure
*S, print the structure (which is the value of) *S
and provide an answer to *S. ANALYZE(*L,*S)
succeeds if the tree structure QUEST(*S) can be
constructed using the metamorphosis grammar rules
(called by the predefined relati.onal syrrbol SYN)
out of the word li st *L. Failing that, a message
is printed. If the tree *Sin the last negative
literal of the fifth clause is of the form
THOSE(*X,*S) we use the sixth clause and try to
show that *Sis true for each such *X, and if
successful we print the value of *X followed by
"'" If the *S tree of the fifth cl a use was not
of the form for a wh- question, ~,e can answer
"YES!" provided that *S can be shown true. Other
wise the answer is "NO!" .

4.3. The semantic component

All queries handled by the METAVERB system
as described here can be analyzed into semantic
trees using the seven predicates those,~xi2.!_,~nd,
.r:i..<?1, verb, _? Ubject_~. and object type_. The
semantic component, then, specifies the semantics
of these predicates , as well as that for TRUE:

+ TRUE(*S) -*S.

+EXIST (*X ,*S) -*S.

+AND(*S1,*S2) -*S l -*S2.

+NOT(*S) -*S - / - IMPASSE.
+NOT(*S).

+VERR(*X} -VERB (*X,*Ll,*L2) .

+SUBJECT TYPE (*X,*Y } -VERB (*Y,*Ll,*L2)
-DANS (*X,*L 1).

+OBJECTTYPE(*X,*Y} -VERB (*Y,*Ll,*L2)
-DANS(*X,*L2) .

A formula *Sis said to be true if *Scan be
proved from the data base. There exists an *X
such that *S provided *Scan be proved. We can
prove AND(*Sl,*S2) provided we can prove both *Sl
and *S2. To show NOT(*S) we specifically try
first to prove *S, and if successful bring the
system to a halt. Failin9 to find any contradic
tion, we may conclude NOT(*S). To show that *X
is a verb it suffices to find *X as the first
branch of a VERB tree in the data base. To show
that *Xis the subject (obj ect) type of *Y, it
suffices to show that *Y is in a VERB tree of the
data base and that *Xis in the list of subject
(object) types, given as the second (third) branch
of that tree. The relation DANS, which is easy to
define declaratively, is predefined.

5. PARSING QUERIES IN METAMORPHOSIS GRAMMAR (MG)

Metamorphosis grammars were designed by Col
merauer(l975} to facilitate the syntactic and
semantic analysis of natural languages and other
sets of complex strings within the general frame
work of PROLOG. Rules which manipulate strings
of trees are expressed directly, with the possi
bility of representing subparts of trees by means
of variables. In this respect MGs bear a certain
resemblance to Colmerauer's Q-system grammars
(1971).

MG rules, as they are used in METAVERB, are
written like context-free production rules, except
that non-terminal symbols may be complex, having
the general form of tree structures, as elsewhere
in PROLOG. Non-terminal elements are preceded by
the symbol ":" and terminals, by"#". For example
the two rules:

:NCOMP(*X.*L,*Sl,*S) == :NCOMP(*L,*Sl,*S2) #OF
:NP(*X,*S2, *S).

:NCOMP(NIL,*U,*U} ==.

state that a noun complement may, in the general
case, con sist of a noun complement followed by the
string "OF" followed by a noun phrase. Or,
:NCOMP(...) may be the empt) string . The varia
bles within the non-terminal trees are arranged
so that when values are assigned during unifica
tion , there is control over the recursive process
by which pieces of the semantic representation are
built up, corresponding to the recursive analysis
of syntactic constituents.

5. 1 Example

The process of syntactic-semantic analysis
can be seen by following a simple query:

(17)I s NPN an object type of ACCUSE?

155

through the following MG rules (numbering serves
only for reference in this discussion):

(f) :QUEST(*S) == :YESNO(*S }.
(V :YESNO(*S4) == :BE (*NB) :NP (*NB-*X,*S3,*S4 }

:ART(*NB-*X,*Sl ,*S2,*S) :NC (*NB -*X.*L,*Sl)
:NCOMP (*L,*Sl ,*S3) #?.

~ -' :NP (SIN-*X,*Z,*Z) = a :NPROP(*X}.
(4_. :NP (*X,*S2,*S4) == :DET (*X,*Sl ,*S2,*S3)

:NC(*X. *L, *Sl) :NCOMP (*L, *S3, *S4)
([.i :NCOMP (*X.*L,*Sl ,*S) == :NCOMP(*L,*Sl ,*S2)

#OF :NP (*X,*S2,*S)

~
:NCOMP(NIL,*U, *U) == .

Z :NPROP(*X) == #*X -OBJTYP(*X}.
:NPROP(*X) == #*X -VERB(*X,*Ll ,*L2).

(]J :ART (SIN-*X,*Sl,*S2,EXIST (*X,AND (*Sl ,*S2)))
== :A.

QO• :A == #AN.
(1J> :BE (SIN) == #IS.
QZ,1 :NC (SIN-*X.*NB-*Y.NIL,OBJECTTYPE(*X,*Y))

== #OBJECT #TYPE.

Rules 7 and 8 show an important difference from
the others. A negative PROLOG literal appears
to the right of the MG rule proper, indicating
t hat the rule applies only if the literal can
be proved.

The question-answer control component,
discussed in~4.2 above, is activated upon receipt
of a query terminated by"?". After some initial
steps, we are in the position of trying to show
+SYN (QUEST(*S).NIL,*L), as seen in the next-to
last rule of that section. The predefined rela
tion SYN calls the metamorphosis grammars, trying
to unify variables in such a way that the sentence
li st *L can be generated from the tree QUESTl*S) .
We can develop the left-hand member of rule CJ) in
the form of the riatl_t-hand member of rule~by
setting *S of rulel.};,equal to *S4 of rule(bi
The first non-terminal of the right of rule CZ:, can
be resolved agatnst the input terminal "IS" ~
applying rule@. Hence the value of *NB in 2'
becomes SIN. In order for :NP(SIN-*X,*S3,*S4 to
match against the proper name NPN, which is the
next element of the input sentence string we must
apply (X;~nd(J), which returns the value NPN for *X
in rule~s string representation . As a result of
the application of ruleG)we also have *S3 set
equal to *S4, by virtue J;.,_f the fact that both are
set equal to *Z of rule(J). As we continue in this
way the ,X(!lues in the variables of the right side
of rule(Z)are progressively instantiated in such
a way that we build up a semantic representation.
In order to show more precisely how this occurs,
we represent in figure 1, on the fo l lowing page,
the direction in which values are assigned to
variables for the remainder of the input string,
using the instantiations assigned up to this point.
We describe only some of the major events in th is
assignment: (;.) When :ART (...) is resolved against
#AN by rules (2) and ®, the va 1 ue of *S in the top
line becomes EXIST(*X,AND(*Sl ,*S2)) ; (b) When
:NC (...) is matched against #OBJECT #TYPE, the
value of *Sl becomes OBJECTTYPE(NPN,*X-,; (c) The
value of this last *X~becomes equal tor.;{'CCUSE by
virtue of the match using rules QJandl,;

. I

. _- ·J

1

r-- - .. --·· ····- . --:.:, ... ---... ,r ~
:ART(SIN-NPN, *S 1, *S2, *S) :NC(S IN-NPN. *L, *Sl) : NCOMP(*L, *Sl , *Z) #? _ ____ / --- -- ~ .-., .A -- _._, /'/ '\ "\ '\

--- --- --- -- ,/ _.,. :NCOMP(*X'.*L',*Sl,*S)

/ ,------,\..... --- -- ...------L__,, ___ .. · , /
:NC(SIN-*X.*NB-*Y.NIL,OBJECTTYPE(*X,*Y)) .

I Ye.0
:NCOMP(*l,*Sl ,*S2) #OF :NP(*f,*S2,*S) ';) ~ "\ "'··, :NCOMP(NIL, *U '*U) :_NP (SIN -*X'~ *Z I '*Z I)

/

(1,/\ r
:NPROP(*X?

_/,,,/ ~, l
,,.- #*x·

// 1 ' . / 1',-''I

#OBJECT #TYPE /I #OF #ACCUSE #?

figure 1. Transfer of value assignment during unification of variables

(d) *Sl is put equal to *Z by virtue of certain
equalities assigned during the development of
:NCOMP(...) ; (e) *L is set equal to SIN-ACCUSE.
It is the value of *Sl in the top line which is
transferred, via *Z,*S3 and *S4 to become the
value of the variable *Sin :QUEST(*S). The
final result of the resolution process for this
question is :QUEST(OBJECTTYPE(NPN,ACCUSE)). The
tree structure containing EXIST(...) is not used
in this case.

6. PARSING METALINGUISTIC QUERIES

The metalanguage of English (M) is a subset
of the language which constitutes a §ublanguage in
the sense that it is closed under the transforma
tional operations which can be set up for describ
ing English grammar. The subset of English which
is appropriate for describing the syntactic poten
tial of verbs is a tiny subpart of M, which in
fact also constitutes a sublanguage.E Although
we have not explored the properties of this smaller
sublanguage in any systematic way, it is clear that
it has a number of special properties which simpli
fy the parsing granmar and the semantic representa
tions. One example is the lack of any tense vari
ation out of the simple present. Another is the
restriction on the size of the lexicon used in
metalinguistic statements, and the tighter selec
tion restrictions on the verbs (and other pred
icate words) when used metalinguistically.

Certain pitfalls, however, are also present
in metalinguistic parsing, which are relatively
uncommon in typical texts. Even in the restricted
context of the METAVERB system, we may wish to
use a verb which is also mentioned in the study of
verb properties:

(18) Does HAVE have a property which no other
verb has?

156

Without resorting to special marks to differenti
ate use and mention (such as the use of capitals
for clarity above), it is virtually always possi
ble to distinguish the two functions for both
syntactic and semantic reasons. It is a fortu
nate property of metalanguage that the shift of
levels throws mentioned expressions into the
category of proper noun on the higher level,
regardless of their category on the object lang
uage level. During parsing only by assigning
the category NPROP to the first occurrence and
V to the second will a successful parse be pro
duced.

In a system such as METAVERB where the
semantics of each query expression is tightly
controlled, there are also semantic reasons for
not confusing use and mention of verbs. The
semantics of HAV[as a meta-verb will be defined
only to allow words functioning as two-place
predicates as its syntactic direct object. Thus
any local syntactic arrbiguity, such as where the
second"have'of (18) is interpreted as direct ob
ject of the first, will be weeded out semantica lly
at an early stage.

Some of the problems which have shown up
in trying to extend the query language have
sharpened our awareness of the semantics of
natural language. The sentence (18), for example
raises the question of quantifying over properties
which have been defined in the system. In the
absence of a second-order logic programming 1 ang
uage , we must be content to handle such situations
in a rather ad-hoc manner .

** This work was supported in part b_y a CAFIR
grant from the Quebec Ministry of Education.

BIBLIOGRAPHY

Colmerauer , A. (1975) "Les grarrmaires de mi!tamorphose"
Grouped' Intelligence artificielle, University
of Marseille-Luminy

Colmerauer,A. (1977) "Un sous-ensemble int~ressant
du frani;ais " Groupe d'Intelligence artificielle
University of Marseille-Luminy

Colmerauer,A., Kanoui,H. ,Pas~ro,R. & Roussel,P.
(19 72) "Un sys t~me de communication homme
mach i ne en frani;a is" Groupe d' I nte 11 i gence
artificielle, University of Marseille-Luminy

Colmerauer ,A., Kanoui,H., Van Caneghem,M. (1979)
"Etude et r~alisation d'un syst~me PROLOG"
Grouped' Intelligence artificielle, University
of Marseille- Luminy

Kiss,K . & Kittredge,R. (1976) "Verb Tables for
English" Contrastive Syntax Project, University
of Montreal

van Emden,M.H . (1977) "Programming with Resolution
Logic" in Elcock & Michie (eds) Machine Intelli
_g_ence 8

157

I

TOWARDS SYNTHETIC IMAGES IN SCENE ANALYSIS
Brian V. Funt•

Computer Science Department
State University of New York at Buffalo

Amherst, New York 14226

Abstract are illustrated by the three scenes in

In the course of interpreting an image
of a scene, a machine vision program can
evaluate its progress, obtain new clues
about the correct interpretation, and be

led to new hypotheses by comparing its
input image with a synthetic image. This

is a hypothesis, and to test it a vision

system which uses this type of comparison

for feedback is being implemented. The

system constructs its synthetic image on

the basis of its current understanding of

the scene's contents and lighting condi
tions. Then to evaluate the similarity of
the actual and synthesized images, the

system compares features extracted from
each image. This paper discusses the

motivation for the system, gives an over

view of its design, and reports on its
current status.

I. Introduction

Research in Machine Vision over the

past fifteen years has uncovered many
hurdles which are only gradually beinq

overcome. The essential difficulty is
that a machine vision program must derive

invariant features of a three-dimen
sional scene, such as object shapes and
positions, from hiqhly variable features
of the intensity data which are (i) only
two-dimensional, (ii) dependent on the
lighting conditions and the relative

positions of the objects, and (iii)

affected by both noise in the camera and

noise due to such things as dust specks in
the scene. Some of these problems

•Author's new address: Computing Science,
Simon Fraser Univ., Burnaby, British
Columbia V5A 156.

158

Figure 1. The two-dimensional image of
the cube changes from scene (a) to scene
(b) as the orientation of the cube chanqes;
the image of the cylinder is affected in

(b) by the cube occluding it, and in (c)

by the cube casting its shadow on it.

Also in (c) changing the light-source

position will create a different shadow.

A number of techniques have been

developed to deal with these complexities.

Horn [1975), Barrow and Tenenbaum [1978),
and Marr [1979) have shown how a careful

analysis of scene illumination, surface
reflectance properties, and the surface

characteristics of common objects, can

lead to a surprising amount of information

about the orientation of surfaces in the

scene as well as reasonable estimates of

their relative distance. Other research
ers (Shirai [1975), Hanson and Riseman

[1978)) have built into their programs

knowledge of what can be expected in
typical scenes, and this knowledge helps

guide the scene interpretation process.
Baumgart [1974) implemented a three

dimensionill geometrical modelin~ system

which was to be used for the type of
feedback vision described in this paper.
Although he developed many interestinq
image synthesis techniques, methods for
extracting polygon descriptions of two

dimensional images, and a polygon matching
algorithm, he did not implement a complete

vision system based on comparing actual
and synthetic images.

II. 1 Overall System Design

In order to provide an overview of
the central ideas in the vision system
currently being implemented,· I will

(a)

Object
Hypothesizer

Feature
r;xtractor

Legenc.J.:

Region
Grower

features

regions

Input
Intensity

Image

(b)

Figure

System Overview

updates

Image
Comparator

(c)

object types
& positions

Image
Synthesizer

Prototype
Object

Descriptions

Feature
r:xtractor

for processes;

Region
Grower

sythetic
Intensity
Image with
pixels
labelled a
to origin

D for data;

for type and direction of data flow.

Figure 2

159

discuss its analysis of the scenes in
Figure 1 (the actual input is an intensity

array, not a line-drawing). The general
aim of the system is to construct a three-

1mens1ona mo el useful representation)

of the given scene. This means that it

must recognize the objects and determine
their relative positions and orientations.

To do this it must have knowledqe of the

objects it is to recoqnize and use some

assumptions about the qeneral environment.

The following assumptions are made in the

system:
(1) all objects are restinq on a flat

horizontal table
(2) all object surfaces have the same

reflectivity
(3) the dominant lighting is with

parallel rays from a known
direction

(4) there is a uniform low level

background illumination
(5) the camera is at a sufficient

distance from the objects so that
the image is a relatively orthog

onal projection of the scene
(6) the system knows the dimensions of

the objects it is to recognize

This last assumption means that the system

does not recognize the class of rectangu
lar parallelpipeJs, but rather the single

2-by-3-by-6 box. This assumption is
needed to help determine the distance of

an object from the camera. Although for
boxes it may seem a bit strong, it is not
an entirely unrealistic assumption since

humans, it would seem, use knowledge
about the standard sizes of such objects
as telephones and typewriters.

II.2 Feature Extraction
The first processing stage (see Figure

2) seqments the input intensity image into

regions usinq techniques similar to those
of Brice and Fennema (1970]. These
regions are then input to a special set of
parallel feature-extraction algorithms

160

(Funt (1980)) which handle the regions as

patches of area rather than just proces

sing their boundaries. The featur e
extraction algorithms determine such
properties of a region as its area, its
center-of-area, its neighboring regions,

its corners (if any), its degree of

bilateral symmetry at each of 36 orienta

tions about its center-of-area, and its

degree of rotational symmetry also at

each of 36 different orientations. In

addition the feature-extraction

algorithms can find the degree of simi
larity of two two-dimensional shapes
under any combination of translation,
rotation, and scaling. Rather than

finding all features of all regions in

the image in advance, they are co:nputed

on request by the object-hypothesizer or

feature-comparator.

II.3 Object Hypothesis
The object-hypothesizer uses the fea

tures available from the feature-extrac

tor to conjecture which objects are in
the scene and to produce a rough estimate

of their positions and orientations.

This is the least developed part of the

system because it is not central to

testing the suggestion that synthetic

images might be useful in scene analysis,
and there has also been a good deal of

work on the problems of recognition and
scene labelling (Roberts [1965), Nevatia

and Binford (1977], Waltz (1972], Guzman
[1968], Falk (1972], Mackworth [1973)).

But there is a difference here because
the object-hypothesizer need only make
reasonable guesses as to the objects and
their positions. The guesses it makes
will be either rejected, confirmed or
improved upon by the image-comparator at
a later stage in the processing.

The hypothesizer makes hypotheses

about only one object at a time starting

with any unoccluded objects first. It is

organized as a set of "specialists"--one

for each object in its repetoire. Each
specialist decides whether a subset of

the regions under consideration could
possibly have arisen as a result of

the presence of its object in

the scene. The box-specialist, for
example, looks for evidence such as:

(1) three mutually abutting regions
(2) approximate symmetry under a

rotation of 180° of the overall
shape (symmetry is always esti

mated about a shape's center-of

area) of the three regions

considered as one large region.
(3) approximate symmetry under a rota

tion of 180° of each of the three
regions taken independently.

When satisfied that a set of regions

may have resulted from the box, the box

specialist then estimates the box's

orientation. For this it uses the angle

that a horizontal line would make with
the bottom edge of one of the lower

regions of the box. By measuring the
area of one of the box sides in the image,
compensating for the effect of the known
rotation, and comparing the resulting
area with the side's area stored in the

box model, an estimate of the box's

distance is obtained.
II,4 Image Synthesis

Sin.ce it is possible that some other

object might have caused the same set of
image features, the hypothesis, a box in

this example, must be tested further. In

order to evaluate it, the system generates
a raster graphics image which contains a

box of the same size and position as the

one it has hypothesized to be in the
actual scene. An existing computer
graphics system (Herman r • 979J) has been
used for the image synthesis. Modifica
tions are being made so that each pixel

in the synthetic image will also carry a

label identifying the object or object

faces which the pixel represents. The

161

pixel intensities and labels can be

accessed by the feature-extractor and
then used by the image-comparator. It

compares the synthetic and actual images

of the scene, and accepts the box-hypo

thesis if the two are sufficiently

similar.

II.5 Image Comparison
Horn and Brachman [1978] had consid

erable success with statistical matching

of images on a more constrained domain,

but in general two images will not match

very well on a pixel-by-pixel basis, In

addition, we want the system to be able
to determine how to modify its current
hypothesis in order to improve the match.

For this we need more information from

image comparison than a single statisti

cal measure of success or failure. The

solution is to compare the images at the

level of the features found by the feature

cxtractor, These features are more mean

ingful for comparison than the actually
pixel intensities because they result

from global properties of the object's
position and orientation as well as the
illumination and imaging process. A
region missing in the synthetic image

can be a sign that the wrong object has

been hypothesized; a region of slightly
the wrong size, but the correct shape, on

the other hand, is more likely to indicate
that the object has simply been placed at

the wrong depth, The system's strategy,
therefore, is to use the same feature

extraction algorithms on the synthetic
image as on the actual image, and then

compare the corresponding sets of

features. Discrepancies discovered in
the comparison lead to a further analysis
of their probable cause, an improved
hypothesis, and a new synthetic image.

The first task of the image-compara

tor is to make sure that the current

hypothesis doesn't invalidate any of the

previously accepted hypotheses. This

. I

··i

• 1

would occur, for example, if a new object
was hypothesized at a depth which placed

it in front of an already-accounted-for
object. Since the pixels are labelled as
to their origin, the image-comparator can
detect when a newly hypothesized object
occludes an established object, thus
invalidating either the current or
previous hypothesis. When this happens,
the current hypothesis is thrown out and
the hypothesizer is called and informed
of the reason.

From this point on the image-compara
tor can concentrate solely on those
portions of the two images which are
affected by the current hypothesis. It
first counts the number of regions the
feature-extractor finds in ~hat part of
the synthetic image with pixel labels
representing the newly hypothesized
object. The hypothesizer, when it calls
the comparator, passes it a list of the
regions it thinks that it has accounted
for in the input image as well as a
designation of which part of the object
each region represents. Ideally, the
number of regions found in the synthetic
image will correspond to the number the
hypothesizer expects it has accounted for,
and it will be possible to correlate the
regions from the two images with one
another. However, even in cases where
the hypothesis is correct this may not
always be the ease. The synthetic image

is produced by an imperfect graphics

system which has only an approximate
model of the surface reflectivity and
lighting conditions and does not take
into account such factors as self-illu
mination, while the input image is
produced by an imperfect camera which
introduces noise and distortion.

The first stage in finding the
corre~pondence between the individual
regions is to compare the overall shape

of the object as it appears in each image.

The overall shape of the object in one of
the images is defined by the union of the
regions which make it up. The similarity
tester finds the translation, rotation
and scaling required to overlay the two
shapes as closely as possible. If there
is a relatively high degree of similarity
in the overall shape then the comparator
proceeds to the next stage in finding

correlates for the individual regions;
otherwise, it can use the lack of similar
ity to adjust the hypothesis. In parti
cular, if one shape needs to be scaled in
order to correspond to the other then
this is strong evidence for a translation
in depth of the hypothesized object, On
the other hand, if one of the shapes needs
only to be moved in order for it to
correspond to the other then this is
evidence for a translation parallel to
the image plane. A complete lack of
similarity in the overall shapes is
evidence that the hypothesis is totally
incorrect. If a translation is called
for, the image-comparator updates the
current world model and calls the image

synthesizer to generate a new synthetic
image (see Figure 2),

Once the image-comparator receives a
synthetic image in which the overall
shapes are in the same relative positions
and are of the same size, it begins
establishing the correlation between the
individual regions in the two images. It
takes the largest of all the regions, L,

and sees which regions from the other
image would lie under it (minor overlap
is ignored) if the two images were super
imposed. Then L's shape is compared with
the combined shape of the regions i t
covers. If there is a reasonably good
match without any translation, rotation

. or scaling then the relationship between
these regions from the two images is
recorded, and an attempt is made to find
~ corresponding set of regions for

162

the next largest region. This process is
repeated until all the regions have been
exhausted. There is one further circum

stance which must be taken care of and
that is when L only partially covers one
of the regions, R, from the other image.

In this case the regions R covers in L's

image are found and combined with L. If
a satisfactory mapping between the regions
of the two images cannot be found then
the comparator calls the object hypothe

sizer and rejects the current hypothesis.

After correlating the regions, the

image-comparator considers whether a

rotation of the hypothesized object is
required. Since it is assumed that the
objects are resting on a flat table, any
rotation which keeps the same face of the

object in contact with the table must be

about a vertical axis. The hypothesizer
postulates both the object and the face
it rests on, so if the object cannot be
made to match using rotation about only a
vertical axis then the hypothesis is re

jected. If there is a good match between
the correlated regions of the last step
then no rotation is necessary and the
oomparator accepts the current hypothesis.
A poor match between some of them, on the

other hand, may be resolved by a small

rotation. A rotation will change the

shapes in the image because they are two
dimensional projections of surfaces in
three-dimensions.

The comparator estimates the direction
and angle of rotation by comparing the
sizes of correlated regions. For simple
objects such as boxes and cylinders, a
clockwise rotation (as viewed from above)
will cause regions from the right of the
object to grow and regions from the left

to shrink. The more different the sizes
of the related regions, the further the

object will have to be rotated. Whenever
the need for a rotation is established the
world model is updated and a new image is

163

synthesized.
When the image-comparator is satis

fied and accepts the curr ent hypothesis,

it calls the object hypothesizer which
attempts to make a hypothesis about one
of the other objects in the scene. When
the hypothesizer is unable to generate

any new postulates, execution terminates.

III. Concluding RemArks
I expect the benefits of this

approach--image feature extraction,

object hypothesis, image synthesis,

feature comparison, hypothesis adjustment

--will arise most clearly on the more
complicated scenes of Figure· 1 (b) and
(c). In them the two objects interact,
in Cb) by occlusion and Cc) by shadowing.
After the box is confirmed, there will be

sufficient features to hypothesize the

presence of the cylinder, but not enough

features to confirm the hypothesis
directly. The technique of synthesizing
an image of the hypothesized scene is
particularly powerful in this case,
because in the synthetic image (assuming

the hypothesis is correct) the same

portions of the cylinder will be occluded

or in shadow as in the actual image;
therefore, the features derived from the

actual image will match those derived from

the synthetic image even though they would

not have matched those of a standard
cylinder in isolation.

TO improve the performance of the
system, parallelism can be used in both
feature extraction and image synthesis.
In fact, one of the advantages to the
system of using synthetic images is that
they are a geometrical representation of
its hypotheses to which parallel proces
sing can be applied. A parallel proce~sor
consisting of at least 1000 individual

processors each connected to its inunediate

neighbors via conununication links has been
assumed. For the time being this
processor is simulated on available

I

sequential hardware. To process an image,
it is first mapped onto the entire

parallel processor in such a way that

each individual processor represents one

small portion of the image, and neighbor
ing processors represent neighboring

image regions. By mapping small image
areas onto some processors and large

areas onto others, the parallel processor
as a whole "sees" the image in varying

degrees of detail in a manner analogous
to the way people ·see less detail at the

edqe of their field of view. If the

mapping from image to parallel processor

is done correctly, then rotation and
scaling of two-dimensional shapes can be
performed by simple neighborhood communi
cation between individual processors.
This is the same basic parallel proces

sing structure as used in WHISPER (Funt

(1980]), and some of the same feature

extraction algorithms have been used
directly (e.g. center-of-area finding,

similarity test), while others have

required improvement (e.g. the symmetry

test, vertex finding),

The implementation of the system is
well underway, and some preliminary exper
imental results are expected soon. At

this time many of the feature-extraction
algorithms are running, the image
synthesis problem has been largely over
come by interfacing the system's three
dimensional world model to an existing
image synthesis system (Herman (1979]),
and the object-hypothesis, image-compari
son and hypothesis adjustment procedures

are partially coded for the case of an
isolated object.

Acknowledgements

Roland Berg, Alan Mackworth, Tony
Maida, Dennis Martin, Jeff Posdamer,

Stuart Shapiro, Mann-May Yau, and Han

Yong You have all contributed to this
work. The financial support of the
University of Buffalo Foundation is also

164

gratefully acknowledged.

References

Darrow, H.G., and Tenenbaum, J.M., (1978]

Recovering Intrinsic Scene Character

istics from Images, SRI International
TN-157.

Baumgart, G.B., (1974] Geometric Modeling
for Computer Vision, PhD Thesis,

Stanford University AI Memo 249.
Brice, C.R., and Fennema, C.L., (1970]

"Scene Analysis Using Regions",

Artificial Intelligence, vol. 1, pp205-

226.

Falk, G •. (1972] "Interpretation of Imper
fect Line Data as a Three Dimensional
Scene", Artificial Intelligence, vol. 3,
pp.101-144.

Funt, s.v., [1980] "Problem-Solving with
Diagrammatic Representations", Artifi

cial Intelligence, (in press).
Guzman, A., [1968] "Decomposition of a

visual scene into three-dimensional
bodies", AFIPS Fall Joint Computer

~, vol. 33, pp.291-304.
Hanson, A,R,, and Riseman, E.M., [1978]

"VISIO~lS: A Computer System for Inter
preting Scenes", Computer Vision Systems,
(ed.) Hanson and Riseman, Academic Press.

Herman, G.T., (1979] Representation of

3-D Surfaces by a Large Number of Simple

Surface Elements, SUNY at Buffalo
Medical Image Processing Group
Technical Report 26.

Horn, B.D., (1975] •obtaining Shape from
Shading Information", The Psychology of

Computer Vision. (ed.) Patrick Winston,

McGraw-Hill Co.

Horn, B.K., and Brachman [1978] "Using
Synthetic Images with surface Models",

communications of the ACM, vol. 21 i11,
pp.914-924.

Mackworth, A. (197 3 J "Interpreting

Pictures of Polyhedral Scenes",

Artificial Intelligence, vol. 4, pp.121-
137.

Marr, D., (1979] "Visual Information
Processing: The Structure and Creation
~f Visual Representations", Proceedings

of the Sixth International Joint
Conference on Artificial Intelligence,
Tokyo, August 1979.

Nevatia, R. and Binford, T.O., [1977]

"Description and Recognition of Curved

Objects", Artificial Intelligence,

vol. 8, pp.77-98.

Roberts, L.G., [1965] "Machine Perception
of Three-Dimensional Solids", Optical

and Electro-Optical Information Pro
cessing, (ed.) Tippet et al., MIT
Press.

Shirai, Y., (1975] "Analysing Intensity

Arrays Using Knowledge About Scenes",
The Psychology of Computer Vision, (ed.)

Patrick Winston, McGraw-Hill.
Waltz, D., (1972] Generating Semantic

Descriptions from Drawings of Scenes
with Shadows, PhD Thesis, MIT AI TR-271.

165

I

• I

Mediation Between Central and Peripheral Processing: Useful Knowledge Structures

Roger Browse
Department of Computer Scie~ce
University of British Columbia

Vancouver, B.C. V6T 1W5

Abs tract

This paper outlines a computational vision
research project aimed at the development of
techniques for the mediation between central and
peripheral processes. The key ingredients are
structural relations between image and scene
domain hierarchies, and a representation which
emphasizes the dependencies that exist within the
knowledge. These constructs may be used to select
areas of the image to process in greater detail on
the basis of the progress of interpretation; the
nature of the task which is motivating the visual
system; and the contents of both peripheral and
foveal vis ion.

1. Introduction

Information extraction is an essential com

ponent of intelligent behaviour. This extraction

often involves the selection of sequences of

intense, localized processing within contexts of

less detailed global processing. The locomotion

of an organism through its environment provides

locations from which detailed information may be

obtained. Of course the extent to which informa-

tion may be received from locations nearby may

vary, but it is always constrained by the
1

capabilities of the organism. Similarily the

saccadic eye movements of the visual system,

together with the acuity structure of the retina,

1. Rowat (1979) has implemented a computer model
which demonstrates the intricacies of these
processes.

166

provides a sequence of select locations in the

visual environment which may be intensely processed

within the context of acuity-limited peripheral

vision. 2 Visual attention may also be viewed as

the selection of locations for more detailed

processing, both within the information available

in a single fixation of the eyes, and within the

knowledge which is involved in the visual

processing. 3 To extend the idea to its limit,

thought may be a sequence of ~vailabilities of ·

information within the mind. 4

Visual attention and thought have no directly

observable manifestations as do locomotion and eye

movements, and hence the patterns of their

operation must be inferred from psychological

experimentation and from introspection and will

thus always remain speculative.

The interesting questions which arise are:

1. Is there some uniform computational process

which can mediate between detailed, local

information extraction and less detailed,

global information extraction?

2. l~hat is the role of such a process

2. see Rayner (1978) for a sunmary.
3. see Kahneman (1973) for an explanation of these

different forms of visual attention.
4. see Bartlett (1932) for a discussion of the

ballistic nature of thought.

in intelliqence?

This paper describes part of a research

project which is aimed at the development of

answers to these questions. The context is a

computational vision system which interprets line

,drawings of human- like body forms. 1 Of particular

concern is the interaction between interpretation

and the selection of locations to process with

;foveal acuity.

2. A Computational Model

A fixation within the image is represented

computationally as the availability of information

at different levels of a detail hierarchy: at

any qiven time , a small location will have the

actual lines of the drawin~ available, and the

periphery has available nnly information about the

density of line in each unit area. In addition, a

data structure is available which encodes knowledoe

about the hierarchical relations al'lOn~ body parts,

and represents the possible confinurations that

comprise different postures . Thus a very clear

distinction is maintained between ima!]e and scene

domains (Clowes, 1971). The key to the operation

of the system is the relation between these two

hierarchical structures. Primitive imaoe features

can be detected at any of the detail levels, and

these features act as cues for the existence of

scene domain elements at a correspondinn level of

the body form knowledge hierarchy. For example, a

foveally located line vertex (the most detailed

level) may act as a cue for the connection of a

f inger to the hand, while a vertex at some coarser

l. The drawinqs are similar to those used to
illust rate the movement notation of Eshkol and
!•lachmann (1958) .

167

level may cue the connection of an arm to the body.

Previous computational vision systems have

exploited the power of operatinq at more than one

level of detail in an image (Kelly, 1971; Shiri1i,

1973) but the present system differs through the

introduction of structural dependencies bet~ieen

model knowledge hierarchies and these levels of

available ima!Je information. Such structural

dependencies permit the interaction of processinn

at these levels in a way which is (at least)

analooous to the interaction of peripheral and

foveal vision.

Computational vision systems often utilize

the relations found within the scene domain (see

Havens, 1978 ; Mulder, 1979). Usually, however,

hinher-level scene domain elements are confirmed

by a structure which relies on low-level input

information. Issues of top-down vrs. bottom-up

processina are then addressed within a context

similar to that of !]rarrnatical analysis in which

the existence of i1ny non-terminal is supported by

evirience which is ultimately traceable to a

sinnle level of input representation (the terminal

string). Processing top -down or bottom- up, the

resultin,:, surport evidence is the same. Addressed

within PsycholoC1.v, issues of the direction of

processino assume the availability of support for

hiqh level scene doMain elements independent of

low level information (Kinchla and ~nlfe, 1979;

11erMelstein, Banks and Prinzmetal, 1980).

The present system has been designed to be

responsive to several influences in the selection

of locations to process within an image: the

on~oino interpretation and the critical

I
. I

I

ambiguities which arise; the nature of the task

which is motivating the visual process; and the

contents of both foveal and peripheral vision. As

a result of these requirements, a declarative

structure has been chosen which will make explicit

the details of the hierarchical relationships

among components. The remainder of this paper
•

will describe that knowledge structure and point

out some of the more interesting processing

capabilities which it provides.

3. Representation

The body form knowledge is centered around

schemata-like structures called CONCEPTS, 1 which

may be related to one another via SUBCONCEPT

·relations, and which may be related to entities in

the image through INSTANCE relations. For example:

The CONCEPT hand may have SUBCONCEPTS left

hand and right hand. One structure in the

imaoe may be related by an INSTANCE pointer

to the left hand CONCEPT, while another may

be an INSTANCE of the CONCEPT hand.

From the example it is shown that incomplete

knowledge can result in image entities being

specified as INSTANCES of more abstract CONCEPTS.

The binding of image entities to the CONCEPT

structure is a critical aspect of the interpret

ation process, and requires a richer form of

representation than the simple INSTANCE pointer

(see Stefik, 1979). This discussion, however, will

1. Some words used in the description of the
knowledge representation are the same as
English words. When the meaning within the
system is intended, the word appears in
capitals. Names of CONCEPTS and ATTRIBUTES
appear underlined.

168

center on the internal structure of the CONCEPTS,

which has been fashioned in a way similar to that

of Stanton (1968,1971).

Each CONCEPT has a NAME,ATTRIBUTES and

DESCRIPTIONS. DESCRIPTIONS are named lists of

CONCEPTS which characterize the described CONCEPT.

For example:

The CONCEPT arm has the part-of DESCRIPTION

giving the list (upper-arm lower-arm hand).

CONCEPTS may have ATTRIBUTES. For example:

The CONCEPT !!J!! may have ATTRIBUTES such as

posture, orientation, etc.

Only entities in the image may take on actual

ATTRIBUTE values. The CONCEPT does, however,

specify the range of values that ATTRIBUTE can

take on, and also specifies other ATTRIBUTE

values which are necessary in order to compute the

value. For example:

The development of a value for the ATTRIBUTE

posture for the CONCEPT arm (whose values

may be either straight or bent) may require

values for the ATTRIBUTES orientation of

both upper-arm and lower-arm.

Thus the development of ATTRIBUTE values for a

CONCEPT may depend on the ATTRIBUTE values of

CONCEPTS found in its DESCRIPTIONS.

The existence of a CONCEPT cannot be assumed

just because of the existence of the CONCEPTS

which are given in one of its DESCRIPTIONS, there

are DESCRIPTION RELATIONS which must hold amono

CONCEPTS, or more specifically, among the

ATTRIBUTES of the CONCEPTS. For example:

The DESCRIPTION RELATION connect must exist

between the ATTRIBUTE distal-end of the

CONCEPT upper-arm and the ATTRIBUTE proximal

end of the CONCEPT lower-arm before the

existence of these two CONCEPTS can confirm

the existence of the more general CONCEPT arm.

This outline of the knowledge structure may

be adequate to point out the intricate chain of

dependencies among ATTRIBUTES of CONCEPTS. By

laying bare these relationships, they may be

exploited in the decisions to be made in the

processing of images representative of the

CONCEPTS. To complete this capability, corre

spondences have to be established between image

domain and scene domain elements.

The advantage of having available all of the

dependencies among ATTRIBUTES relies upon the

assumption that a vision system is better off

spending its energies deciding upon useful loca

tions to process rather than processing in a

somewhat arbitrary order and determining the

usefulness of the information later. This mode of

operation seems most reasonable for human vision

because saccades consume up to 250 ms (Yarbus,

1967), and attentional shifts 50 ms (Eriksen and

Hoffman, 1974) . At least in the case of saccades,

there is a serious loss of visual capability

during the shift (Latour, 1962). In addition,

there is compelling evidence that humans fixate

very rapidly on the most important aspects of a

scene (Loftus and Mackworth, 1978).

4. Using the Knowledge Base to Select Locations

By examining the knowledge involved in the

169

visual task, intelligent decisions can be made as

to candidate processing locations. For example:

The discovery of an L-vertex at some coarse

level of detail may signal either an elbow

or a knee. To process in the proximal

direction may result in the discovery of a

vertex which could either be the connection

of the arm or the leg to the body, and hence

the ambiguity would not be resolved. More

differences are expected in the distal

direction toward either the hand or foot, so

processing would move in the direction of

the distal portion of the vertex.

If the task presented to the vision system can be

expressed in terms of ATTRIBUTES to be evaluated,

then the dependencies among them can be used to

mark the entire set of ATTRIBUTES (at all levels)

which are critical to the task. For example:

If the task at hand is to determine if the

body is standing upright, (i.e., if the

posture ATTRIBUTE has the value standing

upriqht), then the method by which this

value can be obtained is examined, and it

is found that the values of the ATTRIBUTES

orientation of the CONCEPTS middle-body and

lower-body are necessary. These ATTRIBUTES

are marked, as are the requirements for their

evaluation, etc. Subsequent decisions about

the choice of processing locations will take

into account the expectation of finding

information relevant to these specially

marked ATTRIBUTES.

In the more general case, the existence of a

·1

• I

·1

declarative, analyzable ATTRIBUTE dependency

structure provides the basis for the application

of an inclusive hierarchy of support for any

particular CONCEPT node.

l. A CONCEPT may be only "suggested" through the

existence of the CONCEPTS found in one of its

DESCRIPTIONS (within some reasonable image

area).

2. A CONCEPT may be "confi nned" through the

validity of its DESCRIPTION RELATIONS.

3. A CONCEPT may be "understood" through the

evaluation of its ATTRIBUTES.

Each of these processes relies on the availability

of different ATTRIBUTE values at different levels

in the knowledge structure. The different levels

of support are dependent on one another. For

example, one CONCEPT may have to be confirmed

before it can be used to suggest another, and some

ATTRIBUTES will have to be evaluated before other

CONCEPTS can be confirmed, etc.

The distinction drawn between (1) and (2)

above is a computational counterpart of the

1jistinction between attended and non-attended

feature analysis in the Feature Integration Theot.y

of visual attention (Treisman and Gelade, 1980).

While the identification of features may take

place simultaneously over an image, the assemblage

or integration of thasedeatures into larger

perceptual units requires the application of atten

tion which operates sequentially over smaller areas

of the image.

170

References

Bartlett, F .C.
1932 RememberinQ Cambridge University Press.

Clowes, M.B.
1971 On Seeing Things. Artificial Intelligence,

2 pp. 79-112.
Eriksen, C.IL and Hoffman, J.E.

1974 Temporal and Spatial Characteristics of
Selective Encoding from Visual Displays .
Perception and Psychophysics, 12 PP.201-4.

Eshkol ,N. and Wachmann,A.
1958 A Movement Notation, Weidenfield and

Nicolson, London
Havens, W.S.

1978 A Procedural Model of Recognition for
Machine Perception. Ph.D. Thesis, Dpt .
of Computer Science, U. of British Columbia.

Kahneman, D.
1973 Attention and Effort. Prentice-Hall,

Englewood Cliffs, N.J.
Kelly, M.D.

1971 Edge Detection by Computer using Planning.
in Machine Intelligence 6 B. Meltzer and
D. Michie {eds.) pp . 379-410.

Kinchla, R.A. and Wolfe, J.M.
1979 The Order of Visual Processing: Top-down,

Bottom-up, or Middle-out. Perception and
Psychophysics,__li pp.225-231.

Latour, P.
1962 Vision Thresholds During Eye Movements.

Vision Research, f pp. 261 -262.
Loftus, G.R. and Mackworth, N.H.
1978 Cognitive Determinants of Fixation

Location During Picture Viewing. Journal
of Experimental Psychology, Human Perception
and Performance, 4 pp. 565-572.

Mermelstein, R., Banks, W.P . and Prinzmetal, W.
1980 in press Perception and Psychophysics.

Mulder, J.A.
1979 Representation and Control in a Program that

Understands Line Sketches of Houses. M.Sc .
Thesis, Department of Computer Science,
U. of British Columbia.

Rayner, K.
1978 Eye Movements in Reading and Information

Processing. Psychological Bulletin,85,3,
pp. 618-660.

Rowat, P. F.
1979 Representing Spatial Experience and Solving

Spatial Problems in a Simulated Robot
Environment, Ph.D. Thesis, Department of
Computer Science, U. of British Columbia.

Shirai, Y.
1973 A Context Sensitive Line Finder for

Recognition of Polyhedra. Artifical
lntelligence,.1_ pp . 95-199.

Stanton, R.B .
1969 Graphical Communication and Computer

Graphics . Proc. 4th. Australian Computer
Conference. pp. 279-286.

Stanton, R.B.
1971 RAMOS: A Description Based Language.

Stefik, M.
1979 An Examination of a Frame-Sturctured

Representation System. Proc. IJCAI-79,
pp. 845-852.

Treisman, A.M. and Gelade, G.
1980 A Feature-Integration Theory of Attention.

Cognitive Psychology, Feb. 1980.
Yarbus, A.L.
1967 Eye ~vements and Vision. (B. Haigh trans.)

New ork : Pelnum Press .

171

. . . . I

i

I
_,

. 1

SCHEMATA-BASED UNDERSTANDING

OF

HAND-DRAWN SKETCH MAPS

William S. Havens

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin
53706

Abstract

This paper describes current research in ap
plying schemata-based recognition methods to the
understanding of hand-drawn sketch maps. In this
system, schemata are employed as representations
for models of the cartographic objects and sys
tems of objects possible in sketch maps. The re
sulting hierarchical network is then searched
using a combination of both data-driven and model
driven methods. Low-level models are invoked by
primary cues computed directly from the input
image. Once invoked, schema models apply object
specific procedural methods to complete their
recognition. Completed schema instances are then
used as abstract cues to invoke other models
higher in the schema hierarchy. A multiprocess
ing control regime is utilized to permit a number
of schemata to apply their recognition proce
dures concurrently.

1. 1.!l.!!'oduction
In order to cope with the enormous complex

ity of visual information, computer vision sys
tems must employ extensive model-specific knowl
edge of the visual world . A major problem in
model -dri ven vision systems is the invocation of
appropriate models to interpret a given image.
Typically, data-driven methods are employed to
generate low-leve l image cues to select likely
models as hypotheses . It has been pointed out
that this method is ineffective. Low-level cues
are highly ambiguous matching to many inappro
priate high-level models.

As a solution to this problem, we are cur
rently integrating model-driven and data-drive
recognition in schemata representations by em
ploying a recursive hierarchy of cues and models .
Schema models are invoked both by primary cues
computed directly from the image and by abstract
cues created recursivel y as the result of recog
nition. The successful recognition of a schema

172

Alan K. Mackworth

Computer Science Department
University of British Columbia

Vancouver, British Columbia
V6T- 1W5

instance at one level in the hierarchy yields a
context-sensitive cue to invoke schema models at
higher levels.

Sketch maps have been chosen for this re
search for the following reasons:
l) We believe that the conventional semantics of

of cartography accurately reflects geographic
features in real aerial and satellite imag
ery.

2) The use of vector graphic input data greatly
reduces the amount of low-level processing
required while still capturing the essential
difficulties of geographic image analysis.
The research is therefore able to focus on
issues of cue generation and model invoca
tion.

3) The enhanced abilities of this approach can
be easily compared to a previous sketch map
system, MAPSEE, [Mackworth, 1977a] employing
a constraint network representation and a
network consistency search method [Mackworth,
1975]. By testing both systems on the same
input maps, we should obtain a quantitative
measure of the expected improvement of sche
mata over constraint network methods.

2. Model-Drive.!l_ ~ecogni_!ion
Computer vision can be characterized as the

task of mapping a two-dimensional sensory image
into an abstract symbolic description of the
three-dimensional scene represented by that image
[Clowes, 1971]. This process necessarily in
volves the interpretation of sensory signals that
are voluminous in their quantity and simu l ta
neously highly ambiguous in their possible mean
ings. In order to cope with this complexity, com-

puter vision systems must employ both model
driven and data-driven recognition methods.
Model -driven recognition utilizes knowledge of
the objects and their abstract relationships
possible in the visual world . Conversely, data
driven methods exploit spectral knowledge about
the signal source and physical knowledge about
the processes of image formation and surface re
covery. Indeed, the representation and coordi
nated application of knowledge is the central
problem in computer vision [Reddy, 1978].

We are exploring a recognition paradigm
for computer vision that integrates top-down,
model-driven recognition with bottom-up, data
driven methods in hierarchical schemata-based
knowledge representations [Havens, 1978a]. A
major problem in model-driven vision systems is
the invocation of appropriate models to inter
pret a given image. In most current systems,
data-driven methods are employed to generate
low-level image cues to select likely models as
hypotheses . Cues can be regions of statistical
ly homogeneous properties or edges inferred
from characteristic changes in image intensity.
It has been pointed out that this methodology is
ineffective [Barrow & Tenenbaum, 1975]. Region
and edge-finding algorithms have no knowledge of
the real objects to which they may belong. As
a result, low-level cues are highly ambiguous
matching too many inappropriate high-level
models.

As a solution to this problem, we argue
that high- level object models must be invoked
by appropriate high- level cues. The discovery
of such abstract cues is , of course, recursively
the recognition problem, thereby necessitating
the use of a recursive hierarchy of cues and
models. Schema models must be invoked both by
primary cues computed directly from the image
and by abstract cues created recursively as the
result of recognition. Tht successful recog
nition of a schema instance at one level yields
a context-sensitive cue to invoke schema models
at the next higher level.

To realize this recognition paradigm, we
are employing a multiprocessing progranrning

173

language methodoiogy that supports the concurrent
execution of top-down and bottom-up search pro
cesses in hierarchical knowledge representations
[Havens, 1978b].

3. Schemata B~resentations
Recent research has focused on the applica

tion of schemata [Bartlett, 1932] as a represen
tation of knowledge [Minsky, 1975] [Bobrow &
Winograd, 1977] [Rumelhart & Ortony, 1976].
Schemata have been used or proposed in a number
of computer vision systems [Freuder, 1976]
[Hanson & Riseman, 1978b] [Brady, 1978]. Schemata
are object centered representations which repre
sent complex concepts as specific compositions of
simpler schemata thereby forming hierarchical
knowledge structures. By exploiting composition,
a finite number of schema stereotypes can be used
to represent an arbitrary number of object in
.stances . Schemata may contain both active and
passive knowledge. Passive knowledge represents
descriptive models of stereotypical objects.
Active knowledge is represented as procedures
attached to schema models to guide the recogni
tion process for instances of those schema stereo
types [Winograd, 1975].

The recognition process in schemata-based
systems can be characterized as a search of the
schema hierarchy to find a best match of the in
formation present in the input image to the knowl
edge represented in the knowledge-base. Havens
[1976] has shown that this search can be neither
a strict top-down nor bottom- up search. Instead,
recognition must be an integration of top-down,
hypothesis-dri ven search and bottom-up, data
driven methods [Rumelhart & Ortony, 1976] . Sche
mata represent models providing expectation and
guidance for top-down search. At the same time,
features discovered in the image provide cues for
the bottom-up selection of particular schemata
as likely hypotheses.

We are investigating the integration of
model-driven and data -driven recognition by em
ploying both a model hierarchy and a cue hier
archy within a schemata knowledge representation.
The interactions between model-driven and data-

driven processes in computer vision are poorly
understood [Brady, 1978]. This research is con
cerned with characterizing that 1nteract1on.

A preliminary schemata knowledge representa
tion for sketch maps is _illustrated in Figure 3.
The nodes in this tree represent schema stereo
type models of various cartographic objects and
systems possible in sketch map scenes. The arcs
represent composition with nodes higher in the
hierarchy being composed of connected nodes lower
in the hierarchy. The interpretation of the
arcs, however, depends on whether a top-down or
bottom-up search method is being applied. Using
top-down search, the arcs are possible subgoal
paths. To recognize a Road-System, for instance,
this schema can selectively call the Town, Road
and Bridge schemata as subgoals. Using bottom
up search, on the other hand, the arcs represent
cue paths to select possible supergoals. As an
example, if the Bridge schema has satisfied its
expectations for a bridge instance in the input
image, it must invoke plausible higher schemata
as supergoals. In this case, both Road-System
and River-System are very likely to be found in
a sketch map scene containing a bridge.

For this sketch map system, the image is
represented as plot vectors taken directly from
a vector graphics tablet. Conceptually, the
data consists of connected image points called
Links and blank space called Patches. We have
employed a simple recursive quadrant-splitting
region finder to yield a conservative first seg
mentation. For this domain, regions are thought
to be poor cues. Instead, a line finder which
attempts to connect plot vectors into chains is
used to provide primary cues. This algorithm is
again chosen to be conservative, forming chains
only where the distance between links is small
and there is no ambiguity as to chain direction.

4. Cycles of Perception
Unfortunately, to completely segment a com

plex image requires the use of model-specific
information about the scenes interpretation, yet
that information is only fully available after
the segmentation has been performed. In order

174

to avoid this "chicken and egg problem" [Mack
worth, 1977b] [Havens , 1976], an integration of
low and high-level processing must be achieved .
Mackworth [1978] has advocated a "cycle of per
ception" theory for computer vision to avoid this
problem (see Figure 1). Kanade [1977] defines a
si mil ar cyclic model. An initial conservative
segmentation is used to generate primary cues
that invoke appropriate object models. Once in
voked, these models can guide a context-sensitive
resegmentation of the image, thereby providing
new more powerful cues to repeat the cycle.

f
CUE

DISCOVERY.

MODEL ... ~11------.
ELABORATION ~

MODEL
VERIFICATION

"-_ MODEL
"'-~..;)lo., INVOCATION

_)

Figure l

We argue that this cycle of perception can
as well be characterized as a recursive process.
When all the expectations of a particular model
have been satisfied, the instantiated model be
comes an abstract cue to recursively invoke ap
propriate models higher in the knowledge hier
archy (see Figure 2). Instead of relying only
on primitive context-free cues, the recognition
of schema instances at intermediate levels in
the hierarchy can provide context-sensitive cues
for the next level.

invokes (
EXPECTATIONS

matches_

SCHEMATA~
directs y

OBSERVATION

pri~~ success

DI~~6VERY j
i abstract
'-...:.:..:.. COMPLETION

. Figure 2

5. Prograrrming Methodology

The development of prograrrming methodology
for such tasks as computer vision is an active
area of research [Bobrow & Raphael, 1974]. Re
cent work has focused on the development of
schemata-based prograrrming languages such as KRL
[Bobrow & Winograd , 1977] and MAYA [Havens,
1978b] . Such languages define data structures
for representing and accessing schemata and for
constructing schemata networks. A method of
copying stereotype schemata to provide specific
schema instances is also essential. Since sche
mata may contain both descriptive and procedural
knowledge, a mechanism must also be included for
allowing attachment of procedures to data within
schemata [Winograd, 1975].

The procedures associated with each schema
are considered model -spec ific methods for guiding
the search process for that schema. Procedura l
methods can be used in both top-down and bottom
up search of the schema hierarchy. Both require
multiprocessing capabilities. Top-down, subgoal
search can be realized by using generators [Suss
man & McDermott, 1972] as independent processes
that can be recalled on failure to repeatedly at
tempt alternative solutions to their subgoals.

Bottom-up search requires that .a number of
models be allowed to be active hypotheses simul
taneously. Therefore, each procedural method as
sociated with an active schema must be realized
as an independent process . Each such process is
allowed to guide the recognition process for its
schema stereotype. The coordination of multiple
competing processes in goal-directed systems is
poorly understood [Brady, 1978]. KRL defines a
hierarchy of scheduler processes but leaves the
specification of these schedulers to the program
mer.

To the contrary, MAYA defines four control
primitives for implementing bottom-up, data
driven recognition in scherr .. ca networks. The
first primitive, PROCESS, creates a new process
associated with some schema and begins its execu
tion. This process may attempt to satisfy its
schema's model by employing subgoal search or by
invoking low-level iconic processes to generate

175

primary cues. If the search is unproductive, the
process can suspend itself, using SUSPEND, to
simple n-tuple patterns representing the unful
filled expectations of the schema model. When
such information is discovered later by a lower
process, the process can be restarted, using
RESUME, by a successful pattern match to its pat
tern. A number of schemata can, therefore, con
duct their recognition in pseudo-parallel being
activated by the discovery of cues or information
matching their model's expectations, applying
their methods, suspending themselves when infor
mation is not avail able, and being resumed later
by the discovery of additional matching cues of
information. See Fig ure 4.

This iterative cycle continues for each
acti ve schema until some schema succeeds in
satisfying its model's expectations. If the
schema is intermediate in the schema hierarchy,
then the completed schema instance is an ab
stract cue. The control primitive COMPLETE al
lows this schema to perform two essential control
operations. A pattern match determines which
higher schemata processes are waiting for the in
formation provided by this completed instance.
The completed process is suspended and the
matched higher- level processes are resumed, in
turn, to continue their own methods .

6. Cone l us ion
This research is concerned with extending

the use of model -driven recognition methods in
computer vision. By employing a recursive hier
archy of cues and models, represented as sche
mata, the acknowledged difficulties of invoking
models by low-level cues are avoided. By using
a schema-based multiprocessing programming en
vironment, a number of models can simultaneously
be active hypotheses applying their object
specific methods concurrently. Finally, by test
ing these techniques on the idealized domain of
cartographic sketch maps , both qualitative anJ
quantitative measures of their performance can
be obtained.

·,
. i

I

References
Barrow, H.G: & Tenenbaum, J.M. (1975) Representa

tion and Use of Knowledge in Vision,
Tech. Note 108, Artificial Intelligence
Center, SRI International, Menlo Park,
Ca.

Bartlett, F.C. (1932), Remember{ng, Cambridge
University Press, Eng and.

Bobrow, D.G. & Raphael, B. (1974) New Programming
Languages for Artificial Intelligence
Research, fomp. Surveys 6, #3, Sept .
1974, pp . 53-174. -

Bobrow, D.G. and Winograd, T. (1977) . An Over
v~ew of KRL: A Knowledge Representa
tion Language, Cognitive Science, Vol.
1, #1, January 1977.

Brady, J .M. & Wielinga, B.J. (1978) Reading the
Writing on the Wall, in Hanson &
Riseman [1978a], pp. 283-302.

Slowes, M.B. (1971) On Seeing Things, Artificial
IntelliJence 2, pp. 79-116. ~-~~~

Freuder, E. (1976 A Computer System for Visual
Recognition Using Active Knowledge
Ph.D. Thesis, AI -TR-345, MIT AI Lab
Cambridge, Mass. '

Hanson, A.R . & Riseman, E.M. (1978a) (eds.)
Computer Vision ~stems, Academic
Press, New York. ~~

Hanson, A.R. & Riseman, E.M. (1978b) VISIONS: A
Computer System for Interpreting
Scenes, in Hanson & Riseman [1978a].

Havens , W.S. (1976) Can Frames Solve the Chicken
and Egg Problem?, Proc. 1st National
Conference, CSCSI, Vancouver, Canada,
August 1976.

Havens, W.S: (1978a) A Pr?cedural Model of Recog
nition for Machine Perception, TR-78-3
Ph.D. Thesis, Department of Computer '
Science, University of British
Columbia, Vancouver, Canada.

176

Havens, W.S. (1978b) MAYA Language Reference
Manual, TM-13, Computer Science Depart
ment, University of British Columbia,
Vancouver, Canada.

Kanade, T. (1977) Region Segmentation: Signal
vs. Semantics, Proc. 3rd IJCPR.

Mackworth, A. K. (1975) Consistency in Networks of
Relations, Artificial Intelligence 8,
#1, pp. 99-TIB. -

Mackworth, A.K. (1977a) On Reading Sketch Maps,
Proc. 5IJCI, MIT, Cambridge, Mass,
August 1977, pp. 598-606.

Mackworth, A.K. (1977b) How to See a Simple
World, in Machine Intelligence 8, E.W.
Elcock and D. Michie {eds.), Halsted
Press, New York.

Mackworth, A.K. (1978) Vision Research Strategy:
Black Magic, Metaphors, Mechanisms,
Mini Worlds, and Maps, in Hanson and
Ri seman [1978].

Minsky, M. (1975) A Framework for Representing
Knowledge, in The ~chology of Com
~~.!:'. Vision, P.Winston (ed-.1, -
McGraw-:miT; New York.

Reddy, R. (1978) Pragmatic Aspects of Machine
Vision, in Hanson and Riseman [1978a],
pp. 89-98.

Rumelhart, D.E. & Ortony, A. (1976) The Represen
tation of Knowledge in Memory, TR-55 ,
CHIP, Dept. of Psychology, Univ. of Ca.
at San Diego, La Jolla, Ca.

Sussman, G:J. & McDermott, D. (1972) Why Conniv
ing Is Better Than Planning, AIM-255A,
A.I. Lab, MIT, Cambridge, Mass.

Winograd, T. (1975) Frame Representations and the
Procedural Declarative Controversy, in
Representation and Understanding, D.G.
Bobrow & A. Collins (eds)., Academic
Press , New York, pp. 185-210.

MAPSEE2 COMPOSITION HIERARCHY

8
Figure 3

177

I

1

ll'V('l 3

level 2

c\ f/iqher COhC€pts

\
CCMPI.ETICN COMPLETION

_) .

al:stract cues
context-sensitive

C
FXPECTATJON-...

SCHEl',A-1J""'Zcxpectation/matcbinq
cycle

level 1 HATCHING '
A

l,,rio,iH" cuon ---z_ from ot,sec,atic,
co11te;,.;t-f nili

Figure 4

178

Push and Pop on Pictures:
Generalizing the Augmented Transitia, Network Formalism

to Capture the Structure and Meaning of Images

Heinz Breu and Alan K. Mackworth

Department of catplter Science
University of British Columbia
Vancouver, B.C., Canada V6T lWS

Abstract

This paper presents a generalizatia, of the
Augmented Transiticn Network formalism to allo.,
the writing of picture granmars. 'Ille generalized
A'IN is used to write a picture granmar for a
subclass of Heraldic Shields. 'Itlis awlicatioo
serves to illustrate such (usually linguistic)
terms as "anomaly", "ambiguity" and "paraEflrase"
as awlied to pictures. 'Itle paper also suggests
two obstacles to progress in picture granrnars and
concludes that the proposed system 01Terocxnes
them.

1. Introduction

1.1 OJerview

The linguistic awroach to image

understanding pushed the analogy between

sentences and images to the point of designing

picture granrnars as generalizatioos of string

granrnars (Miller and Shaw 1968, F\J 1974, Ledley

1964, Ellans 1969). _Such attenpts were successful

in highly circumscribed two-dimensiooal scene

domains , but the awroach has not made much

further progress. 'Iwo reasons for the lack of

progress are, first, the failure to allo., for the

expressioo and exploitatia, of graEflical

relaticnships and, second , the weak expressive

po.,er of conventional granmars as a progranming

language in which to write effective recognitia,

procedures.

179

we propose a substantial generalization of

the Augmented Transitia, Network formalism for

string granmars (Woods, 1970) to allo., the

writing of picture granmars. 'Itlis m:x:lificatia,

required the soluticn of the follo.,ing problems:

- the A'IN must look at suitable picture
primitives rather than words

- the A'IN must work with many graEflical
relatioos not just ooncatenaticn and
carp:,sitia,

- the noticn of "get next token" must be
generalized for pictures

- the notia, of "end of sring" nust be
extended to pictures

'Itle solutia,s to these problems are presented in

detail. 'llley required the generalization both of

the A'IN formalism for granmars and its associated

parser.

'Ille m:x:lified A'IN was used to write a picture

granmar for a subclass of Heraldic Shields. 'Itlis

picture granrnar takes, as input, an image of the

shield represented as an array of pixels with

colour values. It then outputs a linguistic

descripticn of the shield called an Heraldic

Blazcn.

1.2 Heraldic Shields

we will restrict ourselves to the class of

shields that can be described by the class of

blaza,s generated by the granmar of (Baker,

1977). '!he granmar for this class is presented

belcw.

<shield> ::= <field>.
<field> : :• <c:x>lours>, <charges> I

per pale: a, the dexter <field>: and
on the sinister <field>

per fess: in chief <field>:
and in base <field> I

quarterly: I <field>: II <field>:
III <field>: Ill <field>

quarterly: I and Ill <field>:
II <field>: III <field>

quarterly: I and Ill <field>:
II <field> and III <field>

<colours>::• <tincture> I
<partitioo> <tincture> and

<tincture>
<tincture> ::• argent I or I azure I

gules I sable
<partitia,> ::m per pale I per fess I quarterly
<charges> : :c: <centred charge> I

<minor charges> I
on <centred charge>,

<minor charges> I
<palewise ordinary> and,

<fesswise side>,
<minor charges> I

<palewise ordinary> charged with
<minor charges> and,
<fesswise side>,
<minor charges> I

<fesswise ordinary> and,
<palewise side>, ·
<minor charges> I

<fesswise ordinary> charged with
<minor charges> and,
<palewise side>,

_ <minor charges> I
<centred charge> : := <ordinary> I

<ordinary> between
<minor charges>

<ordinary>::• <palewise ordinary> I
<fesswise ordinary> <cross>

<palewise ordinary> : := a pale I
a pale <colours>

<fesswise ordinary> : := a fess I
a fess <colours> I
a bend I
a bend <tincture>

<cross> ::=across I a cross <tincture>
<fesswise side> : := a, the dexter I

a, the sinister
<palewise side> : := in chief I in base
<minor charges> ::= a billet <tincture> I

<number> billets <directicn>
<tincture>

<number> : := two I three I four
<directia,> : := in pale I in fess <e!Tpty>
<enpty> ::=

'!he terminology of heraldic blazons is bound to

be unfamiliar to IICSt readers. 'lb aid in the

reading of this paper, a descriptiCl'I of these

180

terms is provided in the following figure.

chief

base
[E
~

[JJ 8
A Pale A Fess A Bend

A Cross A Billet

~ [IJ 8
Three Billets Three Three Billets

Agent Or

Billets
in Pale

in Fess

Azure Gules Sable

Argent, on a cross
azure between four
billets gules, two
billets in pale or.

Argent, a bend gules
and, in chief, two
billets gu l es.

2. Generalizing the A'lN

'!he MW is generally regarded as an

"off-the-shelf" tool for writ ing string granrnars.

The nature of the words in the dicticnary and en

the WRD arcs are left to the granrnar writer.

('nle WRD arc is an extensicn to Wood's original

proFO,Sal that requires the presence of a

particular word next in the string,) Similarly,

the nature of the functicn MJRPH is also left to

the user. (M'JRPH is the mori:tier that, given a

derived word not in the dicticnary, finds its

root form in the dicticnary and adds the required

inflecticnal features.)

Our picture granrnar MW is to be treated

this way also. We found h<:Mever, that discussicn

of the A'IN concepts is facilitated by the use of

an example awlicaticn. With this end in mind,

let us first examine the heraldic shields danain,

2.1 Dana.in Specific Concepts

We would like to solve the follCMing

problems:

- define the picture primitives

- identify the picture primitives

- choose the relatiais needed to describe
picture structure

- write a granmar and define the associated
semantics

These problems will ro,, bP examined in more

detail.

Primitives.

A subset of the primitives defined is sh<:Mn

belcw. The names underneath are the "words" a,

181

the WRD arcs of the granrnar.

+ I ~ I

cross pale bend-4 billet

:o·
II II

II I c::::J
Iii •

pale-3 3-billets-in-fess fess-4

llll IBl II

' II 1111 Ii

2-billets 4-billets bend

There are 24 primitives in all. The unshaded

objects above are for illustratiai aily and are

not part of the primitives.

F.ach primitive is qualified by its ooords

which uniquely determines a primitive's size,

shape, and ooordinates. For example, (BEND

CXX:JRDS) where CXX:JROO .. (Q-I SHIELOO), means only

the primitive:

Note that "ooords" is used in a slightly

non-standard sense. This word here refers to the

region in which the primitive is enclosed. For

example, (CJQ;S (Q-I SHIEID)) is the shaded

regiai belCM,

A billet in the middle of this regiai is

indicated by (BILLET <XX>ROO),

Identificatioo

These primitives are detected by the WRD

arcs of the gramnar. The WRD arc requires the

CXX>IaJ as an argument. A simple pattern matcher

checks the occurrence of the primitive and

returns its oolour, Fbr example, suppose the

word is BF1ID and the ooords are (Q-I SHIELD) .

The folla,,ing pattern would then be generated: ~----:
:~ I
I I

~)
' ~ ' ,,. ,...,

Note that aily the boundary of the primitive is

generated as the pattern. 'l'his is to allCM

charged charges (e.g. a billet oo a fess). 'l'he

inside of the pattern is an "I don't care"

regioo. 'l'he boundary must be a uniform oolour

(which is returned) , and the pixels adjacent to

it oo the outside must be a different oolour.

A possible matcher is shown belCM

(DEFtJN MATCH (OOJECI' COJRDS)
(<nm ((APPLYl ' (IAMBo.a. (PATI'Em)

(DIFFERENI' (RIM PA'l'l'Em)
PATI.'Em)) .

(GENERATE OOJECl' COJRDS))
(ER1'SE OOJECl' COJRDS))

(T NIL)))

where

GENERA'lE returns a list of x,y coordinates making
up the pattern i.e. ((X1 Y1) (X2 Y2) ...
(Xn Yn))

RIM returns a list of x,y coordinates making up
the rim of the pattern (i.e. the outside
boundary)

DIFFERENI' returns T if PATI.'Em is a unique oolour
in the picture and (RIM PATI'ER'<l) consists
of any oolours different fran those of
PATI'Effi

ER/ISE SEID;22's every point of the object to a
deletia, figure (the object is all points
within PATI'ER'<l of PATI.'Em's oolour) and
returns the oolour of the object

MATCH therefore returns the oolour of the object
or NIL if the CXlllditiais are not met

182

PATI'Effi is a list of x,y ooords

Upoo recognitioo, the object is deleted.

'l'his is best done with a "bug" (or several, if

need be) placed oo the object, which "eats" <May

the ooloured object. Fbr exarrple,

.. I ~ G .. .
:::. ·-··

Note that the differently coloured billet in the

centre is left untouched.

In our system, this deletioo should be done

using SE'IQ2. 'l'his is an undoable functiai in

LISP/Ml'$ and is chosen here to allow backtracking

in the granrnar. 'l'his notioo of deletioo

oorresponds to that of string advance in the

regular A'lW parser.

Relatioos

'l'he relatioo a.ncng words in string gramnars

is that of ooncatenatioo. Another way of

thinking of a sentence is as a series of slots

into which the words fit. Aloog these lines, we

consider a picture as a oollectioo of regions

into which the prmitives fit. 'l'hese regioos are

the ones used in describing the shields with

· blazons. Namely,

DEXTER
SINISTER
CHIEF
~
aa;s
PALE

Q-I
Q-II
Q-III
Q-IV
m;s
BmD

colours, as well, are considered to be

relations. 'l'his holds not so much for

primitives, as for entire regioos. 'l'his is

tested by looking at several points in the regia,

where charges oould not be. All the points must

be the oolour being tested for.

2.2 Generalization of~ Concepts

The A'IN parser was designed for string

granrnars, consequently sane rrodificatiais were

necessary to enable use with picture granmars.

String Advance

The area of interest is restricted on PUSH

arcs by sending (via SENOR) the desired CXX)RDS to

the net of the subpicture being PUSHed for. For

example, suppose we were looking for a cross in

quadrant I of the shield and that we were

presently at the top level. We \«>uld

(SENOR CXX)RDS (Q-I (Gm'R CXX)RDS)))

to the ~ / net. Here CXX)RDS is the

register containing the current regiai and Q-I is

a functiai which returns the regiai which is the

first quadrant of the regiai defined by its

argument.

The notiai of "advancing the inp..1t picture"

is realized by the following acticns:

(1) Upcn recognitiai of a primitive, that

primitive is deleted from the picture (replaced

by deletioo characters) . This occurs on WRD

arcs.

(2) Upcn detectioo of the colour of a regicn,

that colour is deleted for that regicn. This

occurs en TST arcs. For examp1"',

detectioo of

(SABLE SHIELD)

~~++--·---
++·
+++
+++J
++
++

+

Note that the two billets in fess sable are not

deleted due to the nature of the bug method of

deletiai.

183

End of String

The noticn of, "a string granmar parse is

successful when the entire string is accepted",

is generalized to that of, "a picture granmar

parse is successful when the entire picture is

accepted". This oonditiai is detected in our

system by a functiai (EMPTY CXX)RDS) which tests

if all the objects within the regioo specified by

CXX)RDS have been deleted. "Erd of Picture" is

determined by calling (EMPTY SHIELD/) •

WRD arcs ---
These are now used to detect picture

primitives, rather than \«>rds. This arc now

takes OXlRDS as an argument. This is necessary

to canpletely specify the primitive as explained

earlier in the sectiCX'l ai primitives. An

internal variable, PR:>PERTY', is set to (MA'Iai

OOJECl' OXlRDS) . This could be anything the user

desires, in this case, the colour of the object.

Following the conventicns of (Reiter, 1978) , the

WRD arc definiticn appears below:

(WRD <word> [coords] [test] [acticn] *>

If "test" evaluates to non-NIL, and if the

primitive "\«>rd" is found at "coords" by MATCH

(user defined functicn), perform the sequence of

actioos. The last action must be ('IU <state>) .

* is bound to the tuple (\«>rd PIDPERTY') , where

PIDPERTY' is returned by (MA'Iai \«>rd coords) • WRO

"advances the inp..1t picture".

MEM arcs ---
As for WRD, cnly MEM allows a list of

primitives (in ooly cne regioo, CXX)RDS) all of

which are checked. The format for MEM arcs is:

(MEM <words> [coords] [test] [action)* >

where <\r,'Ords> is a list of possible

• . • !

alternatives,

'IST arcs

'lbese are usea to test relatioos. In the

SHIELOO exairple, they are used to test for the

colours of regioos. As such, 'IST still "advances

the in{1lt picture".

PARSE

Since no sentence is being parsed, the

flD'lctioo PARSE need not acx:ept a sentence as an

argument. 'Ihe new format for calling PARSE is:

(PARSE <state>)

All string advance calls have been eliminated

from the parser, as have the CAT arc and the

calls to MJRPH.

3. 'Ihe Heraldic Shields Gramnar

3.1 Semantic Tests

A few words need to be said about the

semantic tests used. At present, these tests are

only simulated but their designs are presented in

the following discussion.

Q-'!E.5T
PALE-TEST
FffiS-TEST

These tests return T if the regioo specified

by the argument is divided quarterly, vertically

(per pale), or horizontally (per fess)

respectively. These. tests would work as follows:

EB
Tests are ma:le at the points (.) iooicated

184

above. 'Ihese points are chosen so as to avoid

charges. 'Ihe numerals in the tests below are to

be interpreted as

<NlJo1ERAL> = colour of <NlMERAL> quadrant

Q-TEST (I 'f II) AND (II 'f IV) AND
(I 'f III) AND (III 'f IV)

PALE-TEST {I = III) OR (II = IV)
FffiS..Jm;T (I = II) OR (III a IV)

Q-(X)Ul.JRED
P-COUXJRED
F-<X>Ul.JRED

'Ihese are tests to determine if a given

regioo is coloured by quarterly, palewise or

fesswise division respectively. 'Ihe tests

themselves are the same as those above, but the

tests are made on all the lD'IShaded · points below:

Points of one quadrant ~ be of lD'liform

colour.

3.2 EMPTY

'Ibis test determines if the region specified

by its argument has had all objects deleted,

which is the case if the entire region is ma:le up

of deleticn characters. It is used en POP arcs

to ensure that a given regioo has been correctly

parsed before going oo to the next regioo. For

exanq:,le, we would like to know that quadrant I

has been correctly parsed before attempting to

process quadrant II. It is also used on some

PUSH arcs to prevent looking for something in an

erpty regioo.

Note also the use of SENOR in restrictioo of

the area of interest by narrc:Ming down of the

OX>RDS,

3.3 Successful~

A simulaticn of the proposed system has been

implemented. This includes:

a) a m:xUfied A'IN parser
bl the gramnar
c) simulated semantic tests

'ltiat is, the entire system has been implemented

oo the AMDAHL/470 at UBC, except the semantic

tests, which are not autanatic, but require

interacticn with a human operator. This

implementaticn CX)rrectly translates shields into

blazoos for those shields described by Baker's

heraldic blazon gramnar. For example, when given

the two example shields of Figure 1, the program

yielded exactly those blazons oorresponding to

the shields in Figure 1. Shields not describable

by that gramnar are said to be · ananalies.

Anomalies are CX)rrectly rejected by our system.

The figures bela., show how the picture is

processed.

.

.... •,·,• •.',;,,.

3.4 Ambiguities

An interesting point that arose in this \\Ork

is the existence of ambiguous shields. A shield

185

is said to be ambiguous if it can be described by

nore than ene blazen. An example of such a

shield aleng with two possibie blazens is shown

bela.,,

(1) Per pale: en the dexter per fess: in
chief azure, a cross gules: and in base
argent: and en the sinister argent

(2) Per fess: in chief per pale: en the
dexter azure, a cross gules: and en the
sinister argent: and in base argent.

Note that the abolle shield CX)Uld also be

described as divided quarterly, but this would

not be a valid parse in our system due to the

semantic Q-'l'E.ST. The ambiguity is resolved in

our system by arc ordering. The A'IN is thought

of as being a parallel process, but this is, of

CX)Urse, not the case in any sequential machine

implementatien. In our case, the arcs are tried

in the order in which they appear. Hence, if we

put the arc for PER PALE divisien first, then it

will be tried first. This is equivalent to

saying that if a shield can be divided both PER

PALE and PER FESS, then divide it PER PALE.

Blazen (1) is therefore the CX)rrect descriptien

· as generated by our parser •

4. Directions for Further ~rk -- --

Due to the nature of our pattern matcher,

multi-coloured primitives are not permitted (e .g.

a two tooe bend) • The matcher CX)Uld be extended

to allCM such objects, which are permitted in

Baker's granmar.

The present system's recognitioo of regicn

· 1

I
I

• 1

'

colours is unsatisfactory. It must avoid all

charges that might be a, the regia, in its

detectia, and nust be careful to delete around

them. A re-<>rder ing of nodes and arcs ~ld have

the system look first for dlarges, then for the

colours of the regia,. Deletia, would rn, mean

extending the colours over the deleted charge.

The semantic test EMP'lY would require

roodificatia, to oonsider a regia, of pure colour

as "enpty". As well, the granmar could no laiger

rely a, kl'XMledge of the regia, before checking

for dlarges (e.g. at present, if a cross is

detected , dlarges a, the cross are looked for •

The new design would fioo the charges a, the

cross first (and then realize that they are en a

cross later , then look for the cross) • An

exan;ile of how the new system would process

shields is diagranmed below.

0
Since our pattern matcher effectively

generates each primitive, we could, by m:xlifying

this matcher into a generator, generate shields

by running the granmar "in reverse". That is, we

(or some program) could decide a, precisely what

arcs to take (i.e. the parse is pre-selected),

This, together with our notioo of shield

ambiguity, gives us a method of paraphrasing

blaza,s. If we oonsider our arc ordering as

being "standard", then our parse can be

186

oonsidered to be a "standard blazcn", In

particular then, we have a method for the

standardizatia, of non-standard blazons:

- use the na,-standard blazcn to generate a
shield

- parse the shield
- the output will be the standardized blazoo

s. Conclusions

This paper has shown that A'm's are

mxlifiable to allow the writing of picture

granmars. We have dem::ristrated this for a

picture granmar for heraldic shields exhibiting

oontext-sensitive properties, such as identity of

quadrants.

We have fouoo that the syntactic method (in

our granmar) yields useful information (blazcns)

about the structure of heraldic shields,

Anomalous shields are rejected and a notion of

"standard blazon" eliminates ambiguity,

We feel that generatioo of shields is

possible by running the granmar "in reverse", and

that heraldic blazons may be paraphrased by

oonsidering shields to be the semantics of the

blazon.

We see that relatia,al richness is provided

in our A'm by our use of "layered" regioos. That

is, we look for things on crosses, etc. An

alternative way of thinking of this, perhaps roc>re

indicative of its ~er, is as "restricted"

regioos. That is, when we PUSH for (Q-I ooords),

we are actually fcx::using our attentioo on this

restricted area of ooords.

Finally, we conclude that our system has

inherited the ease-of-progranming associated with

string granmar A'l'Ns.

Baker, J. Gramnar for Heraldic Blazoos. In UBC
CPSC 215 Notes, 1977.

Evans, T.G. Descriptive pattern analysis

F\J,

techniques. In (Grasselli 1969), 79-96

K.S. ~tactic Methods in Pattern
Recognition. Academic Press-;- New York,
1974.

Graselli, A. (~.) Autanatic Interpretation and
Classification of ~- NA'IU Advanced
Stl.lly Institute, Pisa, 1968. Ledley, R.S.
High-speed automatic analysis of bianedical
pictures. Science _l46, 9 (1964), 216-223

Miller, W.F. and Shaw, A.C. Linguistic methcxls
in picture processing~a survey. Proc.
AFIPS Fall (1968) Joint carjiuter
Conference, 279-290.

Reiter, R. 'llle WX>ds Augmented Transitioo
Network parser. Technical Note 78-3,
Department of CPSC, UBC, 1978.

Woods, W.A. Transitioo network gramnars for
natural language analysis. c.arm. 1\01 13,
10 (1970), 591-606

187

. I

I

I
I
I

Autanatic registraticn of Landsat images
using features selected from

digital terrain models

James J, Little
Department of CalpJter Science
university of British Colurri)ia
Vanoouver, B.C., ,Canada V6T lWS

Abstract

Before two Landsat M.SS images can be
corrpared, they must be registered by being
brought into ex>rrespondence with some reference
pat um. 'lbe reference can be cne of the images, a
·synthetic image, a map, or other symbolic
representaticn of the area imaged. A novel
metl'x:ld is presented for determining the
transformaticn to align an image to a digital
terrain model, a structure which represents the
topography of an area. Parameters of an affine
transformaticn are 00111?Uted from the
correspondence between features of terrain
extracted from the digital terrain model, and
brightness discontinuities found in the Landsat
image.

1. Introduction

A Landsat M.SS image measures scene ra<'liance

in each of four spectral bands, at a nominal

ground resoluticn of 80 x 80 meters. The

positicn and attitlrle of the satellite is kna.m

with limited precisioo, After bulk processing,

the estimated ground locaticn of a pixel may

differ from its true positicn by as much as 10

km. Further processing is required to make the

coordinate systems of multiple images oarparable.

Registratioo can benefit from the availability of

accurate digital terrain models. A digital

terrain model (IYIM) is accurately located in a

geographic coordinate system. A Landsat image

registered to a digital terrain model can be

directly oarpared with other sources of

geographic informaticn, and other images.

188

Horn and Bachman (1978) used synthetic

images generated from digital terrain models to

register Landsat images. Their work assumes that

the transformaticn between the synthetic image

and the Landsat image can be described in term.s

of rotaticn, translaticn and scale change. A

correlatia1 of the real and synthetic images is

used as measure of goodness of fit to guide the

adjustment of the parameters of the

transformaticn. Horn and Bachman's method is

based upon an areal ex>rrelatia1 which can be

CO!Tplltatiooally expensive. 'llle authors avoid

some of this expense by first using la.,,

resolutia1 images to produce rough estimates of

the registratia1 parameters. The full resoluticn

of the data is used to OCJll1?Ute the final

correctioos to these estimates.

~rk by Horn and ~ham (1978) has shown

that an affine transformaticn is sufficient to

register small subsectia1s of a Landsat image to

a synthetic image, or, in our case, a r::Yll-1, In

the technique presented here, the Landsat image

and the IYIM are each characterized by a set of

curvilinear features. A ex>rrespondence between

the elements of the two sets of features is

established which satisfies both geometric

(shape) constraints and topological (adjacency)

constraints. The matching between elements

provides the inp..1t to a least-squares estimator

for the parameters of the affine transform. 'lb

test the method, a lOOxlOO pixel subsection of a

Landsat image (figure l) is registered to a

digital terrain mcrlel. The Landsat image was

acquired on September 14,1976 (frame ID

11514-17153). The digital terrain mcrlel was

digitized from a 1/50000 series contour map, NTS

sheet 82 F/9, St. Mary Lake, centered on latitude

49 degrees, 37.5 minutes and longitude 114

degrees, 15 minutes. This area is southwest of

Cranbrook, British C.olumbia.

Fig.l Landsat image subsection (100 x 100)

2. Extracting features of terrain

The terrain representation used is the

Triangulated Irregular Network (Peucker et al.,

1978) which represents the terrain surface as a

mesh of contiguous, non-overlapping triangular

facets. The structure of terrain can be

represented by the network of ridges and

channels, or divides and streams. The ridges are

189

convex linear surface features which,

theoretically, connect passes (saddle points) to

peaks (relative maxima). In practice we find

that the set of ridges on a surface also includes

convex linear features which connect to the main

ridges that do join passes to peaks. Channels

are concave linear features similarly defined.

These elements of surface structure are

explicitly represented in the mc<lel as the edges

of triangular facets. A synthetic image

generated from the test area IYIM is shcMn in

figure 2.

Fig.2 Synthetic image from the D'IM

After determining the sun position

corresponding to the Landsat image, it is

possible to select those ridges which will appear

in the image as linear brightness

discontinuities. A simple mcrlel of surface

reflectance is used (Horn and Bachman, 1978) .

'Ihe slope of each surface facet is derived and

the brightness of the surface determined using

the assumed reflectance function. Those ridges

are selected which are bounded, on one side, by a

·,

self-shadc:,,.,,ed facet (one which receives oo direct

illuminatioo) , and, on the other side, by a facet

whose predicted brightness is relatively high.

The ridge sectioos are merged into curves when

they are adjacent and are consistent in

directioo. O'lly those curves are output which

represent, on average, a strong brightness

discontinuity. Figure 3 shc:Ms the features

extracted from the JJIM.

-,

,,., ~ 1/ tf

I - /
c;. / 0 ,,..
'B

(/)
I I

-6
,/

:1i / *
/

- ~../
J

/
..

Fig.3 Features extracted from the lJIM

3. Extracting Features fran the Landsat Image

In the Landsat image, these ridges will

appear as boundaries where a transitioo occurs

between a bright and dark regioo. Desirable

boundaries are those formed by m:>untain ridges

oriented perpendicular to the azimuthal direction

of solar illuminatia,. Shadow boundaries may

also be found, rut, since the directia, of the

incident illuminatia, is knc:,,.,,n, they can be

distinguished from the transitia, features formed

by ridges. Shadows are dark en the side of the

190

edge nearer the light source.

3.1 Filtering

The Landsat image is convolved with a 5x5

Sobel operator (Iannioo and Shapiro, 1979), which

is oorrposed of two orthogooal canpcnents. 'nle

ratio of the outputs of these provides an

estimate of the directia1 of the boundary element

passing through the pixels tested. By checking

this direction against the azimuthal angle of the

sun position, it is possible to reject any

brightness discontinuities caused by shadc:,,.,,s.

The 5x5 filter gives high values not only at

discontinuities, but also at pixels offset fran

the discontinuities. 'nlis produces secondary

lines lying parallel to the original. In order

to eliminate these as early as possible a scheme

of Nevatia and Baro (1979) is used. An edge

element is ju:lged to exist at a pixel if

a) the magnitu:le of the filter output is
above a threshold
b) its magnitude is higher than that of its
two neighbors in the direction normal to the
estimated edge directioo, and
c) the edge directioos of these neighboring
pixels are within 45 degrees of the
directia1 at the central pixel.

If any of these conditioos do not hold then no

edge element is present. 'nle effect of this

process is to suppress the 'echo ' elements at an

early stage, eliminating the need for later curve

thinning procedures.

3.2 Line Grc:,,.,,ing

'nle output of the filter is used in the

constructia1 of the linear features, which

·i.mplelllP.nts the method of Bajcsy and Tarakoli

(1976). A histogram of the values of the filter

outµ.it is derived. 'Itlis histogram is used to

l:Hrect the process so that lines are 'grCMn' fran

toose points which had the highest outµ.it from

the filtering step. A cumulative distribution

function is derived fran the histogram. At each

step in the line growing process, the filter

':hreshold is is relaxed so that five percent oore

9ixels are above it. Initially the threshold is

set at the 95 percent level.

At each stage in the line construction

process, the threshold is set at the proper level

and all points are tested in the order in which

they are stored in the image. 'Itle thresoold is

lowered a level, and the process repeated, until

the minimLDTI level is reached. Lines are

constructed incrementally in this first stage: at

first a line consists of a single point. When

another adjacent point lies above the threshold,

and cannot be joined to any existing line, it is

joined to the single point and forms a two-point

line. To ensure that the lines found have oore

than a certain minimLDTI curvature, points are

added to an existing line only if they are

adjacent to the endpoints of the line and the

segment connecting the new point to the endpoint

lies within 45 degrees of the direction of the

nearest segment in the line.

'Itle result of the first stage is a set of

lines each consisting of a Sc - of connected

pixels. In the next stage, these lines are

merged into larger connected lines when two

conditions hold: first, the lines must be

adjacent at their endpoints, and, second, they

191

must each be corrpatible with the orientation of

the line segment at the end of the other line.

To aid in this process, a piecewise linear

approximation is derived for each of the curves.

3. 3 Approximatioos to Lines

A piecewise linear approximatia'l to a

digital line (Ramer,1972) approximates a line to

a given precisia'l by a set of linear segments

connecting points on the line. In its

constructia'l, the first and last points in the

line are connected by a straight line segment and

those extreme points are found which lie farthest

in perpendicular distance fran the line segment

(figure 4, A and B). 'Itlese extreme points are

included in the approximatia'l if their distances

from the segment are above the specified

threshold. 'Itle line is then subdivided into the

three sets of points to the left, between and

right of the selected points. 'Itle .three subsets

of the line are processed recursively in a

similar fashia'l. If the point farthest fran the

segment in a particular subset is within the

threshold distance, then processing of that

subset of the line is stopped, and O'll.y the

endpoints of the line segment retained. 'Itle

process of finding such an approximatia'l is

termed 'generalizatia'l',

Fig.4 A curve and its extreme points

' .,

I
I
I

·I

M:>st of the lines contain many colinear

points, so the line ai:proximatia, process reduces

the number of points in the lines substantially.

Using the ai:proximatia,s, directia,al decisia,s

involving the orientatia, of line segments are

less affected by any perturbatia,s at the end of

curves caused by quantizatia,. '!he outp..it of the

feature-detector is the set of lines in

generalized form, which are la,ger than a

specified minimum length(figure 5).

/
,,

I I ,
(' ~.

/ e

,. /,a
I

(-G

D~ I ~

/1 \
,

1, I

Fig.5 Landsat features

4. Matching

The original scheme proposed matching the

edges fran the Landsat to those in the lYIM by

using the intersectia, of linear features when

these formed vertices of degree more than two.

Nodes of s imilar degree were to be paired,

starting with those of highest degree. 'lhe

orientatia, of the edges incident upc:n these

nodes would be oompared to determine the

correctness of the matching. However, because it

was difficult to fi!¥'1 nodes of degree higher than

192

two in the Landsat image, the design of the

matching process had to be nmified. '!he

matching is instead driven by the structure of

the curves themselves and the spatial

relatia,ships aJOCJng them, rather than their

intersecticns.

4.1 Previous work

Q.ir method is an extensioo of the techniques

used for image registraticn developed at SRI

(Bolles et al.,1979) . In their method, the

transformaticn fran the test image to the

reference is nmelled as a functioo of the camera

parameters, such as focal length, X,Y, z,

heading, pitch and roll. An essential part of

the SRI method is that there is a gcxxl 'a priori'

estimate of the camera parameters and of the

errors in these parameters. 'lhese estimates are

used to predict the extent of the regicn in the

image which is to be searched for an element from

the reference image. 'llle predicted search region

for an element is termed its 'uncertainty

regicn'. Cxice an element is located within its

search regicn, it is possible to reduce the

search regia,s for other elements: the pairing of

reference element and image element provides new

inforrnaticn, which is used to improve the camera

parameters and reduce the errors. Both linear

and point features are hand- selected fran the

reference image for registration. 'llle SRI system

utilizes the notion of local support for the

verification of linear features. For example,

highways are composed of several parallel lanes:

in detection of a highway the system searches for

locally offset lanes to confirm the matching of

others. The matching of elements provides

informatia, for the correspcndence refinement

process which solves the nonlinear camera

i;>arameter estimatia, problem.

4. 2 The Method ----

Our registratia, method proceeds in several

stages, folla,ling a similar scheme. The inp..1t

consists of the features found in the Landsat

'images, which we will term the "1-edges", and the

ridges selected from the DIM. The elements of

:both feature sets are the result of

'generalizing' the appropriate curves using the

same approximatia, technique and the same

':hreshold. If a curve is represented in its

generalized form by a straight line segment, then

tt is 'simple'. Pny curve whose generalized

~epresentatia, requires interior points, other

.than its endpoints, is said to be 'structured'.

During all stages of the registraticn process,

features in both images are ordered by the anount

of structure in their generalized representaticn.

The transformaticn applied to register

f'*ltures from Landsat to terrain nodel

coordinates is an affine transform, an operator

of 6 parameters. Finding the tranformaticn

parameters requires pairing at least three points

from each image. These are CCl!lllla'lly supplied

manually by selecting ground · ..>ntrol points from

ooth images. If rore than three are supplied, a

least-squares estimate of the transform can be

corrputed. M 'a priori' estimate of the

(l()E!fficients of the affine transform can be

193

derived from the parameters of the satellite's

orbit (Horn and ~ham, 1978). This transform

least constrains the translatia, COll'EJOl'lent, so

the practical strategy is to determine the

necessary translaticn. The ncminal positicn of

the Landsat data indicates the center of a search

regia1 for a terrain element, and the known

errors determine an 'uncertainty regicn',

The ridges are considered in the order of

their structural oonplexityi it is assumed that

the rore strongly an element differs from a

straight line the less likely it is to be

incorrectly matched. The goal of the matching

process is to pair a sufficient number of

features from the Landsat image and the terrain

nodel to CCJnilllte the transform parameters

correctly. Note, however, that we ccrnpute the

transformaticn directly rather than estimate

camera parameters.

Once three feature pairings have been

established, the affine transform can be derived.

Exhaustive examinaticn of all such triples is

clearly too expensive. Knowledge of the

constraints imposed in the problem, especially in

the image formatioo process, rrust limit the

search space.

4.3 Construction of the Matching

The matching starts by selecting a ridge and

ranking the 1-edges in its search regioo by tr. ·

strength of the match found. The carparison

procedure determines a translaticn vector which

will match the ai;:propriate points of the ridge

and the transformed 1-edge. F.ach 1--edge is

• I

.I
I
I

. I
·1

'transforme3 according to the 'a priori' transform

estimate, and cmpared with the candidate ridge.

To assess a pairing of features, it proceeds as

follcws:

a) If neither feature has structure, thElll
the 1-edge is tested to see if its endpoints
lie within a band about the test ridge. If
so, the measure of goodness of the match is
the rosine of the angle between the two
curves.
b) If the ridge feature is structured, then
the 1-edge is cmpared with each element in
the ridge at the second level, in a similar
fashim.
c) If both have structure, then the angles
of the 'bends' in the curves are oompared.
If they are sufficiently similar, a matching
is constructed which identifies the points
at the 'bends' • Otherwise the best match of
substructures of the two features is
returned.

My oomparisons which yield a high value, near

l.O, are said to succeed.

4.4 Support for 2- Matching

A su::cessful match specifies a translaticn

'vector. Each subsequent pairing must be

!oonsistent with the previous pairings, that is,

the translatia, required to oonstruct the pairing

must be similar to those previous. 1-b.rever,

,experimentaticn with the feature sets has shc:Mn

that this is not enough. To eliminate iocorrect

matchings, we must also use the local spatial

structure of both the ridges and the 1-edges to

guide the matching.

When an initial pairing of features is made,

nearby ridges are examined and a tally is kept of

the number of nearby ridges which can be paired

with 1-edges in a matching oonsistent with that

under oonstructicn. 'l'1e pairing of ridge and

1-edge is chosen which has the highest tally

(i.e. which can be best locally extended). 'Ibis

194

strategy can be understood as a generalizatim of

the scheme of determining local support for

linear features enployed in the SRI system.

'l'1e matching is extended to include three

lllltually ocnsistent pairings of features. With

the six values fran the matching, an affine

.:ransform can be determined. Each pairing of a

ridge and an 1-edge provides a point-t.o-point

match for the parameter determinatim. Detectia,

of the terminatim of a boundary in the Landsat

image is unreliable, so the endpoints of an edge

are not entirely satisfactory choices for

,natching in all cases. Ibolever, when an 1-edge

is matched to a,e of the arms of a structUfed

ridge, or vice versa, the appropriate endpoint

can be directly matched to the bend point. In

other cases the center of the segment (the

average of its endpoints) is used.

'Ibis first estimate of the transform

conp.1ted fran the three pairings is tested for

self-oonsistency by using the new transform to

predict the overlap of the transformed 1-edges

and their matching ridges. If they overlap, the

new transform is used to predict the the locaticn

of the remaining 1-edges in the terrain m:x:lel.

'!be number of 1-edges which overlap existing

ridges is used as the measure of the quality of

the matching. If the enough features can be

matched in this way, the set of pairings is used

to form an extended matching, fran which a

least-squares estimate of the affine transform

parameters is OCtll)Uted. 'Ibis transform, in turn,

is used to predict the locaticn of the 1-edges in

the IJIM. If the matching grows, a new

least-squares estimate of the transform is

canputed. 'lhis iterative process terminates when
I

ithe m.unber of matched features does not increase.

5. Discussion and Conclusions

5.1 Results

In our test case, the initial search regioo

for a ridge feature was set at 0.75 km, or

approximately 10 pixels. 'lhe registratioo

determined from the matching found by our system

.resulted in an average error of less than 10

'1!eters, much less than half a pixel. 'lhe points

matched are labelled A-K in figures 3 and 5.

Further experiments will examine the capacity of

the method to register images when the error in

the original estimate is larger.

Several improvements in the method are

envisiooed. 'lhe relatiooship arrcog features is

not used in the feature-to-feature matching.

particular, feature pairings should be

In

a::mstrained to ensure that cx:>linear 1-edges are

matched to cx:>linear ridges. Presently,

line-to-line matching is based only upon line

shape. 'l'1e inclusioo of other informatioo, such

as the shape of the intensity profile across a

line, srould improve matching

5.3 Cairnents and Conclusions

'l'1e present system extends the work of

195

Bolles et al. in several areas. First, the

features used for matching are autanatically

generated fran the surface representatioo,

aonsistent with the analysis of the image to be

registered. Our method generalizes the notioo of

support for matches by using the local spatial

structure of the features. Since the system is

guided by the structure of elerrents, it can

rapidly discover distinctive matches. 'lhe

technique of searching for supporting evidence

eliminates false matches readily. 'lhese aspect.s

of the method recomnend it as a registratioo

technique, aonsidering the volume of satellite

images to be processed.

Bajcsy, R. , and Tavakoli, M. catp.Jter
recognition of roads fran satellite
pictures. IJCPR2, 1976.

Bolles, R.C. · et al., "Autanatic Determinatioo
of Image-to-Database Correspcndences",
IJCAI-79.

Horn, B.K.P. and B.L. Bachman, "Using Synthetic
Images to Register Real Images with Surface
Models", Cami • .ACM 21, 11 (Nov. 1978) ,
914-924.

Horn, B.K.P. and R.J. WOodham, "Landsat MSS
Coordinate Transformatiais", Proceedings of
the Fifth Annual Symposium on Machine
Processing of Rem'.>tely Sensed Data, Purdue
university,, 1979.

Iannino, A. and s. Shapiro, "An Iterative
Generalizatioo of the Sobel F.dge Detectioo
Operator", Proceedings of the Pattern
Reoognitioo and Image Processing
Conference, IEEE, August 1979, 130-137.

Nevatia, R. and K.R. Bab..!, "Linear Feature
EKtractioo and Description", IJCAI79.

Ramer, u. "An iterative procedure for the
polygonal approximation of planar curves·' .
catp.lter Graphics and Image Processir.g 1,3
(1972).

Peucker, T.K., R.J. F'aoller, J.J. Little, and
D.M. Mark, "'lhe Triangulated Irregular
Network", Proc. of the Digital Terrain
Models Synposilun, May 9-11, 1978.

I
I

.1

I
I

Quantification and Characterization of the Shape of a Moving Cell

M.O. Levine and Y.M. Youssef

Electrical Engineering Department
McGill University
Montreal, Quebec

Canada

Abstract

Cell movement is a fundamental proces::; of
some importance to embryological development and
to host defence mechanisms. However there is no
existing method for quantifying the observable
changes in nucleus and membrane shape that occur
during locomotion. This paper outlines an image
interpretation system capable of analyzing the
structural changes in the shape of a moving cell
from a sequence of pictures. It is used for ana
lyzing a cine film to detect, quantify, and symbol
ically describe the dynamic changes in the cell's
nucleus and membrane. The system consists of two
main analysis processes: static scene analysis, to
provide a numeric and symbolic description of the
static cell geometry and location; and dynamic
motion analysis to quantify and analyze the dyna
mics of the cell motion and shape changes. The
different computational processes of the system
cooperate through a colTUl\On relational database
structure using two different memories, a Short
Term Memory (STM), and a Long Term Memory (LTM).
The processes interact through the STM using the
information stored in the LTM, until a complete
description of the dynamic cell motion and shape
is obtained. This type of analysis may be exten
ded lo consider moru than one cu ll intcract.ing
with each other.

1. Introduction

In the study of the effect of substances
which modify cell locomotion at the cell membrane
level, we are interested in quantifying the observ
able changes in membrane shape that occur in loco
motion. Advances have been made recently in the
characterization of locomotory paths taken by cells
in vitro and how these are affected by various
substances [49). The internal mechanisms for cell
locomotion are also reasonably well understood and
the role of microtubles, microfilaments and con
tractile proteins is receiving much attention [48].
However progress has been much slower as to how
the cell monitors these external substances so
that internal mechanisms might be modified. This
interaction between external factors and internal
processes has to occur at or within the cell
membrane; yet presently we have no means of quan
tifying the observable changes in membrane shape
that occur in locomotion. Consequently, it is
difficult to study at the membrane level the effects
of substances which modify cell locomotion . To
achieve this objective using the techniques of
digital image processing, this paper outlines a
computer vision system capable of analyzing the
structural changes in the shape of a moving c~ject
from a sequence of pictures. The system must be
able to recognize the various image patterns,

196

segment and interpret the desired object, and
detect significant changes in the location and
shape of the object. Using such a system to
analyze a cine film of a moving cell, quantifi
cation and symbolic description of the cell's
geometry are provided and in this way we can
characterize dynamic changes in the shape of the
cell nucleus and membrane.

A review of the background and related areas
of study to the developed system is given in
section two. A general overview a nd its structure
is presented in section three. Finally, in section
four, we conclude with the present status of the
project.

2. Background

The research reported here is related to three
different areas of study: automatic image proces
sing of cell images, tracking of moving objects,
and shape analysis and description. This section
is a brief review of the significant work that
has been done in each of these areas.

The early history of . automatic processing of
cell images can be traced to the l950's, and is
directly related to development of the so-called
television microscope [57) . Most of the work
which has been done in this fiel<l has dealt with
static pictures of blood smears for the purpose of
classification or counting [3, 19, 20, 40, 58).
More recently, this has led to the development
of experimental and also practical systems whose
perforrnance in many cases equals that of the human
technologist. With reaara to the analysis of cell
movement, most of the effort has been concentrated
on tracking cell paths, rather than studying cell
interaction characteristics (6,10,15, 50, 16].
However, our earlier work(32,33,70] was rather
different, because it addressed the problem of
analyzing a group of live cells. This system was
able to quantify the cell path and compute the
steady-state probabilities, from which the
ultimate direction of the cell population could be
predicted.

Except for the work on cell mitosis reported
in (13], there is no existing system which concerns
itself with the analysis of the structural changes
in the cell membrane which occur during locomotion,
the main concern of our current work.

Extending our consideration to the general
problem of processing dynamic scenes, either by
motion detection or motion analysis (38], this
field has been largely restricted to the detection
of locomotion changes of an object rather than the
dynamic alteration of its shape (2,9,29,30,36,37,
42). In some recent work by Nagel (4 5], the
problem of detecting the shape of a moving vehicle

was considered. However its motion was subject to
many constraints, so that changes in its shape
could be predicted given a knowledge of the pre
vailing situation. In our case, we are considering
two kinds of changes with time, one in locomotion,
the other in shape, and both can :change randomly
from frame to frame.

The third problem our re s earch is related to
is shape discrimination. This is a central issue
to pattern recognition and as such has received
attention in many papers dealing with recognition
of characters, waveforms, chromosomes, cells,
machine parts, etc. In a recent review by Pavlidis
[51], he has classified the methodologies used in
shape discrimination under two categories; whether
they examine only the boundary or the whole area,
and whether they describe the original pictures in
terms of scalar measurements or through structural
description. Most studies of shape and pattern
·analysis are based on global feature measurements
which then constitute a feature vector used for
the shape representation. However more recently
there has been great interest in syntactic pattern
recognition techniques· [53,55] which analyze
patterns by a parsing process of hierarchial de
composition. The advantage of such an approach
suggests that it might be appropriate to study
hierarchial shape representation in more detail as
a vehicle for cell shape description. We also
note that, to date, nwneS'i.o~ descriptors have been
used for shape measures; however in order to
provide a readable analysis for an interested
physiologist, we are endeavoring to provide a
symbolic descriptio'n.

3. SYSTEM OVERVIEW
3.1 General Approach:

The basic requirement of the desired system
is to be able to detect and analyze the structural
changes in the shape of a moving object. To
achieve this, we postulate two main analysis stages:
static scene analysis to provide a numeric and
symbolic description of the static cell geometry
and location, and dynamic motion analys is to quan
tify and analyze the dynamics of the cell motion
and shape changes. The different computational
proce sses of the system cooperate through a common
relational database structure, such as described
in Shaheen and Levine [63]. using two different
memori e s. The Short Term Memory (STM) is designed
to work as a communication channel for all of the
processes. It contains a record of the instant-

aneous cell motion and shape chancres, c\S well as
global description of the cell behaviour. The,
Long Term Memory (LTM), on the otht~r hand, is also
a r e lational database and contains the general
model of the morphology and dynamics of the cell.
The dif fe rent processes interact through the STM
using the stored information in the LTM, until a
comple t e des cription of the dynami c cell motion
and s hape i s obtained. Figure Ll)shows a block
diagram of the different computational processes
of the system. This section will give a brie f
descriJ , tion of the data structure o f the system
,rnd tlir, obj.,ctivc of each process.

3.2 Static _scene Analysis

The main goal of this module is to process

197

one frame in order to provide a numeric and sym
bolic description of the cell geometry and locat
ion in the current frame or any specific frame.
Figure (2) shows a block diagr am of the sequential
processes in this module, a brief description
of which follows:

Preprocessing (Initialization); Initates the input
device such as disc, magnetic tape, 16 mm cine
film, or a real time device (may be microscope
connected to a TV camera interfaced with the
computer viewing live blood cells).

Segmentation of the Cell: This task analyses the
histogram to define the threshold(s) which seg
ment(s) the complete cell(s) from the background
(protoplasm) . It also defines the coordinates
of the cell boundary points (membrane) and labels
the regions which belong to the different cell
parts (nucleus, and cytoplasm.) The procedure
is slightly different in the first frame from
the others. In the first frame the desired
cell is selected interactively, whereas following
this it is tracked automatically.

Polygon Representation: Based on an approach
introduced by Ramer [59], this process approxi
mates the boundary points of the cell, as well as
its parts, and represents them as connected
polygons. This stage has the effect of grossly
reducing the data which are manipulated by t he
higher level processes. The main factor here
which controls the whole procedure and thus the
result is the approximation level "threshold".
This value must be selected very carefully in
order to achieve a maximum decrease of data
(minimum polygon vertices)· while at the same
time preserving all important information regard-

ing the original shape. A similar approach to
polygon representation was used by Liu [35] to
classify the age of the neutrophil cell. He found
that the represented polygon not only decreased
the amount of data but also reduced the noise
around the boundary points resulting from the
digitization of the original object.

Polygon Decomposition: This technique is us ed to
decompose the polygon making up the ce ll into
simpler components. It was originally introduced
by Feng and Pavlidis [12] to decompose a concave
polygon into simpler convex ones for character
and chromosome analysis. In our case this de
composition is not as simple. We are us ing the
decomposition technique as a vehicle for recog
nizing and describing the different parts of the
cell and for detecting and quantifying the dynamic
changes in e ach of its parts. Connecting the
centroids of these simpler components, we may
simulate a type of medial axis transform which
gives the simplest representation of the geometry
of the cell shape.

Feature Extraction and Measurement : This t ask ' ,,
executed in parallel with the previous proces ses
to compute the necessary features s uch as : area,
centroid, perimeter, orientation, elongation,
circularity, etc. The features are selected in
such a way as to minimize the number needed to
give a comple te description of the cell's geome try
and location.

· I

' J

Shape Description: Based on the numeric feature
measured, this step provides a global numeric and
symbolic description of the morphology of the cell
and its different parts (nucleus, cytoplasm, and

,membrane) . First the numeric features are conver
' ted into symbolic ones using a "mapping table" • .
'Second, comparing the numeric and symbolic features
:with the LTM information about the general model
'of the cell, a description of the static cell's
geometry and location can be given. For example,
a description of the cell as "bended" or "segmented"
can be computed from the decomposition of the cell.
Other descriptions such as "small", "circular", or
"elongated", can be computed from t he features
giving area, circularity, and elongation. The
location of the cell within the frame can be

: described using the coordinates of the centroid
' and the two farthest points (the diagonal line),
or other critical points on the boundary
(membrane).

3.3 Dynamic Motion Analysis:

The objective of this module is to quantify
and analyze the dynamics of the cell motion and
shape changes. A brief description follows of the
function of each computational process of this
module shown in Fig. (1).

Incremental Location Change Detection: To define
the changes in the cell location from frame to
frame (cell tracking), the displacement of the
cell's centroid between two frames is the most
important factor. However it is possible that the
centroid exhibits some displacement without any
change in the cell location because all of the
cell's elements are in continuous random motion.
For this reason, in detecting the change in cell
location, we must take into consideration besides
the centroid displacement, tne changes in the
coordinates of other critical points such as the
centroid of the best fitted rectangle, the centroid
of the maximum containing rectangle, and the
farthest points around membrane in both length
and width. This process also computes the speed
and direction of the cell motion between any two
frames.

Incremental Shape Change Detection: This compu
tation is used to detect and quantify the change in
cell geometry from frame to frame. The dynamic
change in shape can be quantified by computing
the incremental changes in the features that
describe the cell geometry. Some of these changes
may describe global change in the cell shape, for
example: "The cell changed from bended to
segmented (or vice versa)". Such a description
can be derived from the change in the decomposition
of the cell's polygon. Furthermore, the ultimate
local change in the s hape of any of the cell's
parts can be described using the incremental
changes in the features of the subpolygon making
up this part, such as: The number of sides, length
of each side, the angles between the sides, and
the coordinates of each vertex. The selected
features, symbolic terminology, and the type of
description given by .the system can be easily
changed according to the application. Currently
we are most interested in dynamic changes in the

198

cell membrane, and are therefore giving more
attention to features which describe the boundary
(angles, sides, curvature, etc.) rather than those
which describe the interior of the cell.

3.4 Global Motion and Shape Characterization:

This stage is concerned with characterizing
the cell behaviour by analyzing the processed data
of the motion and shape changes. After the
analysis of each frame this module examines the
details derived from each image as a coherent
sequence, rather than as an individual increment.
It compares the results of this analysis with the
LTM data from which the dynamics characteristics
of cell motion and shape can be given. For
example, the motion of the cell can be character
ized as: "From t tot the cell exhibited a
constant velocit1 V in2direction 012,and from t 2to
~ its motion was ra\iaom. From ti tot· there was
acceleration A. . in direction 0. . . Js i ng the same
methodology thc1Jdynamic changes \ln the shape can
be characterized: "The cell started at t.0with a
small area and circular shape. At t 1it showed
slight elongation towards the north-east. At ti
a pseudopod began growing at the lower left hand
corner with a short joining base line".

These dynamic motion and shape characteristics
are updated after processing each frame in order
that at any given time the system can give the
behaviour of the cell from the first (tj to the
last (t ,)processed frame. However the module can
be oper~ted interactively by the user to inves
tigate the cell behaviour through a specific
period of time, or to examine the dynamic changes
within a specific part of the cell in more detail.

4. CONCLUSIONS

This research deals with the quantification
and characterization of the shape changes of a
moving cell, a fundamental process of some impor
tance to many aspects of cell biology. However
there is no existing method to quantify the
observable changes in nucleus and membrane shape
that occur in locomotion. This paper outlines an
image interpretation system capable of recognizing
the various image patterns, segmenting and inter
preting the desired object (cell), and detecting
significant changes in the location of the object
as well as in its shape. Using such a system to
analyze the structural changes in the shape of t he
constituents of a moving cell, a quantification
and symbolic description of the cell's geometry
could be provided, thereby characterizing changes
in the shape of the cell membrane. Investigation
of the characteristics of the dynamic shape change
and motion of the cell might provide clues to the
nature and distribution of"receptors" on or within
the membrane which might be a vital link in the
interaction between external factors and cell
internal processes.

To date, the stati~ shape description, the
incremental location change detector, and the
incremental shape change detector have been
largely completed. Attention is now being focussed
on the last most important stage which is respon
sible for providing the global description of the

cell shape changes.

It is interesting to note that this technique
employing a general purpose database in conjunction
with general purpose analysis processes is also
applicable to other similar problems. Examples
are the visual monitoring of the behaviour of rats
under the influence of various protocols, or the
quantification and analysis of the changes of
growing plants in different soils or under the
effect of different fertilizers.

REFERENCES

(1) Alt, F.L., Digital Pattern Recognition by
Moments, J. Assoc. Comput, Mach. 11, 1962,
pp. 240-258.

(2) Arking, A.A., Lo, R.C., and Rosenfeld, A.,
An Evaluation of Fourier Transform Techniques
for Cloud Motion Extimation", Computer
Scie nce Technical Report TR-351, University
of Maryland, Jan. 1975.

[3] Bacus, J.W., An Automated Classification
of the Peripheral Blood Leukocytes by Means
of Digital Image Processing, Ph.D. Disser
tation, University of Illinois, Chicago,1970.

[4] Bacus, J.W., A Whitening Transformation for
Two Color Blood Cell Images", Pattern Recog
nition, Vol. 8, 1976, pp. 53-60.

[5] Bacus, J.W., and Gose, E.E., Leukocyte Pattern
Recognition, IEEE Trans. on Systems, Man, and
Cybernetics, Vol. SMC-2, No. 4, Sept. 1972.

[6] Barer, R., J. Opt. Soc. Am.47, 545, 1957.

[7] Blum, H., A Transformation for Extracting New
Description of Shape", in Symposium on Models
for the Perception of Speech and Visual Form,
M.I.T . Press, 1964.

[8) Blum, H., Biological Shape and Visual Science",
I.J. Theor. Biol. 1973, pp. 205-287.

[9] Bristor, C.L. Frankel, M. and Kendall, E.,
Some Advances in Automatic Determination of
Cloud Motion and Growth From Digitized ATS-1
Picture Pairs, Manuscript submitted to Weather
Motions from Space ATS-1, University of
Wisconsin Press, Madison, 1970.

[10] Cilusley, D., and Young, J.Z., in Research A,

1953, pp. 430-434.

(11] Chow, W.K., and Aggarwal, J.K., Computer
Analysis of Planar Curvilinear Moving Images,
IEEE Trans. on Computers, Vol. C-26, Feb.
1977, pp. 179-185.

(1 2] Feng, H.Y . , and Pavlidis, T., Dc,composition
of Polygons into Simpler Components: Feature
Extraction for Syntactic Pattern Recognition,
IEEE Trans. Computers, C-24, 1975, pp. 636-650.

(13] Ferrie, F.P., Levine, M.J., Zucker, S.W.,
Cell Tracking: A Modelling and Minimization
Approach, IJCPR, Miami, Florida, Dec. 1-4,
1980.

[14] Giuliano, V.E., Jones, P.E., Kimball, G.E.,
Meyer, R.F., and Stein, B.A., Automatic
Pattern Recognition by a Gestalt Method,

199

Inform. Cont. 4, 1961, pp. 332-345.

(15] Greaves, J.O.B., The Bug-System: The Software
Structure for the Reduction of Quantized Video
Data of Moving Organisms, Proceedings of the
IEEE, Vol. 63, No. 10, October 1975.

(16] Greene, F.M., and Barnes, F.S., System for
Automatically Tracking White Blood Cells, Rev.
Sci. Instrum., Vol . 48, No.6, June 1977.

(17] Hannah, M.J., Generalized Automated Pattern
Recognition: Pattern Classification by
Moment Invariants, M.Sc. Thesis, Industrial
Eng. Dept. University of Missouri, Columbia,
June 1971.

[18] Hawksley, P.G.W., Blackett, J.H., Meyer, E.W.,
and Fitzsimmons, A.E., Brit. J. Appl. Phys.
5, pp. 165-173, 1954.

[19] Ingram, M., Nargren, P.E., and Preston, K. Jr.,
Automatic Differentiation of White Blood Cells,
in Image Processing in Biological Sciences,
ed. by D.M. Ramsey, Ed. Berkeley, Calif. Univ.
Press, pp. 97-117.

[20] Ingram, M., and Preston, K. Jr., Automatic
Analysis of Blood Cells, Sci. Amer. Vol. 223,
pp. 72-82, 1970.

[21] Izzo, N.F., and Coles, W., Electronics 35,
pp. 52-57, 1962.

(22) Kaufman, L., et al., Contour Description
Properties of Visual Shape, Final Report on
Contract AF19(628)-5830, Sperry Rand Research
Center, Sndbury, Mass., Sept. 1967.

[23] Klinger, A., Kochman, A., and Alexandridis,N.,
Computer Analysis of Chromosome Patterns:
Feature Encoding for Flexible Decision Making,
IEEE Trans. Computers, c-20, 1971, pp. 1014-
1022.

[24] Kolers, P.A., The Role of Shape and Geometry
in Picture Recognition, Picture Processing and
Psychopictorics (B.s . Lipkin and A. Rosenfeld,
Eds.) pp. 181-202, Academic Press, New York,
1970. '

[25] Langridge, D.J., On the Computation of Shape,
Frontiers of Pattern Recognition (S. Wafanabe,
Ed.), pp. 347-365, Academic Press, New York,
1972.

[26) Ledley, R.S., Analysis of Cells, IEEE Trans.
on Computers, July 1972, pp. 740-753.

(27] Ledley, R.S., Rotolo, L.S. Golab, T.J.,
Jacobsen, J.D., Ginsberg, M.D., and Wilson,
J.B., in Optical and Electro. Optical Inf.
Proc., MIT Press, Cambridge, 1965, pp. S<Jl-
613.

[28] Ledley, R.S., High Speed Automatic Analysis
of Biomedical Pictures, Science, 146, 1964,
pp. 216-223.

[29] Leese, J.A., Novak, c.s., and Taylor, V.R . ,
The Determination of Cloud Pattern Motion
from Geosynchronous Satellite Image Data,
Pattern Recognition Vol. 2, Dec. 1970, pp.
279-292.

[30] Leese, J . A. , Novak, C.S., Clark, B.B., An

, I

I

· 1

Auto111ated Technique for Obtaining Cloud
Motion from Geosynchronous Satellite Data
Using Cross-correlation, J. Applied Meteor
ology, Vol. 10, Feb. 1971, pp. 118-132.

[31) Levine, M.D., and Youssef, Y.M., An Automatic
Picture Processing Method for Tracking and
Quantifying the Dynamics of Blood Cell Motion,
Fourth International Congress of Cybernetics
and Systems, Amsterdam, the Netherlands, Aug.
21-25, 1978.

[32) Levine, M.D., and Youssef, Y.M., A Real Time
Laboratory Device for Tracking and Quantify
ing Blood Cell Movement, TR No. 78-2R , Jan.
1978, Elec. Eng. Dept. McGill University,
Montreal.

[33) Lillestrand, R.L., Techniques for Change
Detection, IEEE Trans. on Computers, Vol.
C-21, July 1972, pp. 654-659.

[34) Limbo, J.O, and Murphy, J.A., Estimating the
Velocity of Moving Images in Television
Signals, Computer Graphics and Image Pro
cessing Vol. 4, 1975, pp. 311-327.

[35) Liu, Huei-Chi Richard, Shape Description and
Characterization of Continuous ~hange, Ph.D.
dissertation, State univ. of N.Y. at Stony
Brook, 1976.

[36] Lo, R.C., and Parkih, J.A., A Study of the
Application of Fourier Transforms to Cloud
Movement Estimation from Satellite Photo
graphs, TR-242, University of Maryland, 1973.

[37] Lo, R.C., and Jahr, J. Applications of
Enhancement and Thresholding Techniques to
Fourier Transform Cloud Motion Estimates,
TR-326, University of Maryland, 1974.

[38] Martin, W.N., and Aggarwal, J.K., A Surv0y
on Dynamic Scene Analysis, Dept. of Elec.
Eng., The University of Texas at Austin,
Dec. 1977.

[39] Mckee, J., and Aggarwal, J.K., Finding the
Edges of the Surfaces of Three-Dimensional
Curved Objects by Computer, Pattern Recog
nition, Vol. 7, 1975, pp. 25-52.

[40] Mendelsohn, M.L., Mayall, B. H., Prewitt,
J.M.S., Bostrom, R.C., and Holcomb, W.G.,
Digital Transformation and Computer Analysis
of Microscopy Images, in Advances in Optical
and Electron Microscopy, V.E., Coslett, Ed.
New York : Academic Press, 1968, pp. 77-150.

[41] Montanari, U., Continuous Skeletons from
Digital Images, J. Assoc. Comput. Mach. 16,
1969, pp. 534-549.

[42) Moore, G.A., Application of Computers to
Quantitative Analysis of Microstructures",
National Bureau of Standard Report No. 9428,
1966.

[43) Mott-Smith, J.C., Medial Axis Transformation,
in Picture Proc0ssing and Psychopictorics,
l:!. s. Lipkin and A. Rosenfeld, Eds., pp. 267-
283, Academic Press, New York, 1970.

[44) Mui, J.K., Bacus, J.W., and Fu, K.S., A
Scene Segmentation Technique for Microscopic

200

[45]

[46]

[47]

[48]

[49)

[50)

[51)

Cell Images, Proceedings of the Symposium on
Computer Aided Diagnosis of Medical Images,
No. 11, 1976.

Nagel, H.H., Formation of an Ojbect Concept
by Analysis of Systematic Time Variations
in the Optically Perceptible Environment,
Computer Graphics and Image Processing,
Vol. 7, pp. 149-194, 1978.

Nagy, G,, Feature Extraction on Binary
Patterns, IEEE Trans. Systems Sci. Cybernet,
SSC-5, 1969, pp. 272-278.

Nakimoto, Y., Nakata, K., Uchikura, Y., and
Nakajima, A., Improvement of Chinese
Character Recognition Using Projection
Profiles, in Proceedings of the First Inter
national Joint Conference on Pattern Recog
nition (1973), pp. 172-178.

Noble, P.B., Personal Conununication.

Noble, P.B., and Lewis, M.G., Lymphocyte
Migration and Infiltration in Melanoma,
Pigment Cell, Vol. 5, pp. 171-181, 1979.

Parpart, A.K., Science 113, pp. 483-484, 1951.

Pavlidis,' T., Survey: A Review of Algorithms
for Shape Analysis, Computer Graphics and
Image Processing, Vol. 7, 1978, pp. 243-258.

[52] Pavlidis, T., Computer Recognition of Figures
Through Decomposition, Inform. Contr. 14,
1968, pp. 536- 537.

[53) Pavlidis, T., Analysis of Set Patterns,
Pattern Recognition 1, 1968, pp. 165- 178.

[54) Pavlidis, T., Representation of Figures by
Labelled Graphs, Pattern Recognition 4,
1972, pp. 5-17.

[~5] Pavlidis, T., Structural Pattern Recognition:
Primitive and Juctaposition Relations, in
Frontiers of Pattern Recognition, S. Watanabe,
Ed., pp. 424-454, Academic Press, New York,
1972.

[56] Philbrick, O., A Study of Shape Recognition
Using the Medial Axis Transformation, Report
No. 288, Air Force Cambridge Research Labor
atories, Nov . 1966 .

[57] Preston, K., Digital Picture Analysis in
Cytology in Digital Image Analysis, Azriel
Rosenfeld, Ed., New York : Springer-Verlag,
in Press.

[58] Prewitt, J.M .S. , and Mendelsohn, M.L., A
General Approach to Image Analysis by
Parameter Extraction, in Proc. Computers in
Radiology, Chicago, 1966.

[59] Urs Ramer, An Iterative Procedure for the
Polygonal Approximation of Plan Curves,
Computer Graphics and Image Processing,
Vol. 1, 1972, pp. 244-256.

[60) Rosenfeld, A., and Kak, A.C., Digital Picture
Processing, Academic Press, New York, 1976.

[61] Rosenfeld, A., and Weszka, J .S ., Picture
Recognition and Scane Analysis, Computer 9,
1976, pp. 28-38.

[62] Rutovitz, D., Centromere Finding: Some Shape
Discriptors for Small Chromosome Outlines,
Machine Intelligence 5, 1970, pp. 435-462.

(63] Shaheen, S.I., and Levine, M.D., Image
Segmentation and Interpretation Using a
Knowledge Data Base, Second National Con
ference of the Canadian Society for Comput
ational Studies of Intelligence, Toronto,
Ontario, 19-21, July, 1978.

(64] Spinard, R.J., Machine Recognition of Hand
Printing, Infor. Contr. 8, 1965, pp. 124-142,

[65] Ulstad, M.S., An Algorithm for Estimating
Small Scale Differences Between Two Digital
Images, Pattern Recognition, Vol. 5, 1973,
pp. 323-333.

[66 } Wied, G,L., Lipkin, L.E., and Shapiro, N.H.,
Scir•nco lfifi, lfl0-204, l'l68.

[671 Wong, E., and Steppe, J,A,, Invariant
Recognition of Geometric Shapes, in Methol
ogies of Pattern Recognition, S . Watanabe,
Ed., pp. 535-546, Academic Press, New York,
1969.

[68] Young, J.Z., and Roberts, F., Nature 167,
231 (1952) Nature, 169, 963 (1952).

(69] Young, I.T., Automated Leukocyte Recognition,
Ph . D. dissertation, M.I.T., Cambridge, 1969.

[70} Youssef, Y.M., An Automated Picture Processing
Method for Tracking and Quantifying the
Dynamics of Blood Cell Movement, Master
Thesis, Elec. Eng. Dept., McGill University,
June 1977.

(71) Zahn, C.T., a11d Roskies, R.Z., Fourier
Descriptors for Plane Closes Curves, IEEE
Trans. Computers, C-21, 1972, pp. 269-281.

201

. . ,

' I

• I

LTM

l. Model of the
cell

Static
shape

descriptor

Incremental
location
change

detector

Incremental
shape change

detector

Global Motion
& shape change
characterizer

COMPUTATIONAL PROCESSES

STM

Static
description

global
description

Figure 1: The main modules of the processing system for quantifying and
characterizing the change in cell morphology.

202

Image

description

Polygon -- Preprocessing Segmentation - Representation - Polygon -
Decomposition

'

-Feature and
Boundary - I Extraction

- SHAPE

DESCRIPTOR

Figure 2: Block diagram of the processing steps for a particular cine frame.

203

. I

P.r.aowat and R.S.Rosenberg
Department of Computer Science
uni•ersity of British Columbia

vancou•er, e.c., V6T 115.

.A.Qstr~!
An oYerview of a siaulated

robot-environaent syste• and the design of
a robot-controller are presented. The
en•ironaent is a flat tabletop with fixed
and mo•able objects on it and the robot is
a mo•ing point that can pickup, move and
drop an ob1ect. The robot uses an eye
with Yarying resolution to •iew tbe
tabletop and construct a world model of
the environment. A novel approach to
path-finding frobleas that uses tbe

.skeleton of the empty space is outlined.

This work was animated by a desire to

understand the c onnect:ion between

perception and action. Every day we do

~uch simple things as

aYolding all obstacles in crossing a

cl ut tPre•l coo11

navigating through an unfamiliar house

making and exPcuting a mental plan to

go to the local shop or cross a ca~pus

moving an awkward piece of furniture

around a housP..

In order to explore tbe abilities

required to exhibit such skills ve have

proceeded as follows:

1.

2.

To design and implement a sim~lated

robot vorld which reflects to a

certain extent the spatial asp~cts of

a cluttered room or thP floorplan of

a house,

To specify a class of tasks of a

204

spatial nature which the robot algbt

reasonably be expect'!d to solYe in

this world, and

3. To design computat:ional process'!s

which enable the robot

these tasks in a

intelligent aanner.

The

carP-fullf

si•ulated

designed

robot

to

to handle

reasonably

world

enforce

is

a

non-triYial treatment of the int'!raction

bet.ween perception and ac•io11. The

robot•s sensory input from distant parts

of the environm'!nt ls either non-existent

or very inexact and fuzzy, in accord vl+h

real world organisms; yet plan~ h~,e tn be

made and actions executed.

The information-processinq component

of any organism that physically int'!racts

vit.h the outside vorld ~ust consist of

three distinct parts: sensory roceptors,

action eff~ctors, and an intermedi~rr that

relates the senses and the ~ctions. our

~ain interest is in a sufficient design

for the intermediary, which will be

Its aajor task, in order to iapro•e

the organism's survival chances, is to

build a ~ .!.Q~: a model of the

outside world. In infocaation-processing

teras, a world model is a data base of

tacts which, toggther with interpretive

procedures, enables the prediction of

future sensory input. Equivalentl7, it is

a data structure and procedures for making

predictions about tbe outside world. Tbe ·

purpose of a world model is to allo• the

construction of plans and thus to better

achieve the organisa•s goals. A world

model must be built to explain the sP.nsory

input r~ceived so far, using sensory

inputs as the primitive items of evidence.

Thus the world model of an organisa is a

function of the design of its receptors,

and furthermore can never te assumed to be

correct.

The interface between an organisa and

the out.side world is defined by the

~rganism•s sensory receptors and action

effect.ors, and is necessarily always

sloppy.

The discussion so far is summarized

in figure

functions,

perpetual

1. our robot-controller

at the top l~vel, by the

repetition of the ~tio~ £:!~!~,

a loop containing three parts: perception,

planning, and action. In our

robot-controller these three processes are

?erformed in serial order, whereas in most

living organisms they

performed in parallel.

presumably

205

l ~~ overvie!

The s7stea consists

prograas: TABLETOP, that

of three

siaulates

aain

the

outside world; UTlK, that simulates the

robot: and PPl, the robot-controlling

program.

1-1 IA!U&~, ill! environment si1ulat2~

TABLETOP siaulates a frictionless

tabletop vitb a

boundary or verge.

polygonal shapes

fired and soae

polygonal restraining

There may be arbitrar,

on the tabletop, soae

aovable. ThesP. shapes

constitute the ob1ects of the outside

world. There are nevet any holes in an

obiect. On this siaulat~d tabletop the

everyday laws of physics bold: the shape

of an ob1ect remains invariant durinq

motion, and if the path of a moving ob1ect

is obstructed by another ob1ect or the

verge t.hPD the moving object comes to an

ifflmediate standstill with a small gao

between it and the obstruction. Pigure 2

shows a sample world.

].1 YI!~, !rut ~~R2! ~imulat.or

UTAK simulates

to as Otakl, who is

dimensionless point

the robot, (referred

reprPsented as a

and is free to move

wherever •here is empty space. Ke cannot

pass between two objects in contact. He

can grasp an adjacent aovable ob1ect, and

can translate, rotate, or release such a

obiect.

Utak senses his environaent with an

eye having a limited field of view and

· I

. 1

llaYing a Yarlabll! resolot.iou: fine in the

centre or foYea, progressiYely coarser

towards tbe periphery. the ere •a y be

thought of as a TV camera, suspended at.

the top of a stalk sticking Yertically up

fro• Utak, with the camera pointing

directlr dovnvards at the tabletop and its

field of Yiew centered on Utak. Thas the

eye gets a two-dimensional viev of part of

the tabletop and an image of Utak alvays

appears at the centre of the field of

view.

The retinal geometry of the eye is

sbovn in figure 3(a). Each little square

constitutes a !§.1.i.na! ~ld, and covers a

certain area of the task environment

position. depending Uta k 1 s

corresponding to l!ach retinal field there

is a retin4l ~l!, vhich reqist~rs a

~~~. or int~ger in the range O - 7, 

that deFends on the ratio of obiect to 

total area in the part of the task 

~nvironment covered by the retinal fiP,ld. 

A~~ impression is the structured set 

of grayle9els registered by all the 

retinal cells at one particular instant in 

time. Pigore l(b) shows an exaaple of a 

retinal illpr<!ssion. 

~tactile" r'!Ceptors, 

eight basic compass 

Utak also has eight 

one in each of the 

directions, which 

~llow hiM to sense the colour of an 

iaaediately adiacent object. 

i!.21:f§§!.2! is the structured set of eight 

colors registered by the tactile receptors 

206 

at one particular inst.ant of time. 

In sua, Dtak inhabits aa outside 

world which aay be likened to a tabletop 

vith confining Yerges, where he can vanaer 

around and aoYe objects, and wh•re his 

sensory contact with this world consists 

of a series of retinal and tactile 

iapressions. The task for ?Pl, the 

robot-controlling prograa, is to make 

sense of the sensory input and create a 

world aodel for planning purposes. 

Otak is giYen path finding ("Go to 

the north-east corner") and object moYing 

tasks ("Push the square 110Yable object 

into the next room"). The statement of a 

task may require considerable changes to 

Utak's world 11odel. Consider, 

instance, the ob1ect-mo9ing task 

for 

iust 

11entioned. If Utak has so far seea a 

square movable object but has only 

explored what he thinks is one end of a 

single room, his world model before the 

task statemen+ vill simply consist of & 

room vith one square aovable object in it; 

but after "understanding" the 

statement his vorld model will include an 

extra room with a doorway which connects 

it to the rooa he's currently in at a 

position consistent with bis accaaulated 

sensory experience to date. 

PP~, the robot-controller, is diYided 

into three parts: ACCO~. SPLA~. and ACT. 

?PA operates by continaally eye l illg 



through these three pacts cocrespondinq to 

perception, planning, and action. ACCC~ 

accepts a retinal impression and modifies 

(accoamodate~ the current world aodel in 

the light of this nev evi~ence; SPLA~ is 

the §RA!ial .2!~~! and is responsible for 

£lways aaintaining a valid plan to achieve 

the current task by creating a new plan or 

by updating an old one, while ACT simply 

co~putes from the current plan the next 

action to he executed. 

A world model, a task, and a plan are 

~efined at all times in PPA, whate•er 

Utak•s actual situation, including the 

aoment before Utak "opens his eye" and 

receives his first retinal impression. So 

far, the following defaults ha•e been 

used. The world model is taken to be a 

large empty square centred on Otak•s 

initial position. The default task is to 

explore the assumed vorld, which aeans 

"collect evid~nce (i.e. sensory input) to 

confirm the current world model". If the 

default task results in the specific task 

of, say, "go to the north-east corner", 

then ~he current plan would consist of 

walk actions to the hypothesized position 

of the north-east corner. Other possible 

iefaults are "sleep" or "find food". 

The ACCO~ prograffl, responsible for 

understanding incom. ng sensory 

impressions, 

&CC-INIT 

accoaodates 

into two divides 

artd ACC-SUB. 

initial default tha 

parts, 

ACC-[NIT 

world 

207 

model to the very first retinal impression 

while ACC-SOB carries out all subsequent 

accoaodations of the vorld aodel to 

inco•ing sensory iapressions. 

The spatial planner SPLA" depends on 

a subsystea called SHAPE to sol•e 

path-finding and object-aovinq probleas. 

SHAPE makes extensiYe use of the vorld 

mo~el. The basic vorld aodel is 

maintained in a format of points an~ lines 

specified by means of Cart~sian 

coordinates and will sometimes be referred 

to as the ~A~t~§.i.J! !2.!11 ~~l or th-. 

£~.[!~ ~!~!n.tA!i2ll• SHlP! functions 

by projecting and re-pro1ecting all or 

part of the Cartesian vorld model onto a 

digital array (the ~cre2a). Path-finding 

and object-aoving problems are solved in 

siaple cases from one projection on thP. 

scre9n; more interesting cas-.s rP.quire 

se•eral projections. A pro1ection of the 

Cartesian representation onto this digital 

array will soaetimes be referred to as an 

1~2 !~!!~!.!!!~!lsm-

The aost iaportant part of SHAPE is 

the collection of algorithms for solving 

path-finding and ob1ect-moving probleas. 

These are based upon the concept of th~ 

~~~!2~ of a tvo diaensional 

shape[Blum,1967]. The skelgton was found

to be a useful tool for path- f inui ng

problems, and would be a useful heuristic

foe object-mo•ing problems pro•ided

algorithms could be de•lsed to coapute it.

I

.. ·1

.,

?be skeleton of the empty space ina

!usLBTOP world is shown in figure "· It

turned out, for reasons ghen in

[Bovat,1979,1980] that tlae publisbed

~teleton algorithas were unsatisfactory.

!fowever, it was possible to aodify one of

these to provide a satisfactory skeleton

111 go ri t ha.

The skeleton of a planar shape aay be

'described as follows. Imagine the shape

to be the boundary of a dry grass prairie

and imagine a fire set at all points of

the boundary siaultaneously. Tbe fire

advances as a wavefront with unit velocity

into the interior of the shape. At

'certain points tvo or more sections of the

wavefront eaanating fro• distinct points

of the boundary aeet and mutually

~xtinguish themselves. The locus of these

points of extinction for• a set of

connected lines called the skele~al ~~Eh,

while the time from the setting of the

fire to the time of extinction at a point

of the skeletal qraph is known as the

!IJ!!DS~ function. The value of the quench

function giv9S th~ radius of the maxiaal

circle that fits inside the shape at that

poini:.

The third component of PPl is ACT,

the progra• that coaputes the nqxt action

for Utak fro• a coapleted plan. This is

not entirely trivial because the nature of

the next action has to b~ a function of

the confidence Utak bas in the details of

208

the world aodel in the vicinity of his

current position and of tbe accuracf with

which he can ezecute an action.

Anf coaplete organisa-controller for

Utak requires the following progra• steps.

These can be stated here without

specifying data structures or processes.

All tbat is needed is a vortd aodel, a var

to receive a retinal iapres&ion, and an

action effector.

ll!lll!ItlllTIO! ~
1. Set the current world mod~l equal to

soae default world aodel.
2. Re~eive the first retinal iapression.
l. lnaly~e the retinal iapression into

regions and borders.
"· Interpret the regions in the retinal

iapr~ssion and identify the iaage of
Utak in the retinal iapression.

5. ~odify the default world model to be
consistent witb the interpreted
retinal impression.

6. Accept a task and interpret it in
teras of the world model. This •af
require substantial modification of
the world model, for instance the
addition of an object if one is
aentioned in the task but no ob1ect
is "•isible" in thg current retinal
impression.

.U!!
7. construct a plan to achieYe

using tbe spatial planner.
!.I!! !£I.12! £1~1]

the task,

.A&I
8.

9.

1 o.

Test whether the task
co•plete. If so, STOP.

is

Decide on thP next action to
take, by examining the initial
portions of the plan and the
degrees of confidence a~sociated
with those parts of the world
model close to the planned
actions.
Execute the next action and
receive the next retinal
i111pression.

l,llg!,!!
11. Interpret the n~w r~tinal

W!

iapression on the basi~ of the
current w~rld model, ~nd aodify
the world model as necessarr to
sake it consistent with the
current retinal imprPssion.

12. Is the plan still Yiable? If so

u.
go to a.
Otherwise, re-compute all or
part of the plan, as in step 7,
ud go to a.

The parts of the action cycl• correlate

with figure 5 as follows. Steps 8, 9, &

10 are carried out by ACT; Step 11,

~perceive", is carried out by ACCO~, and

Steps 12 g 13 are carried out by SPtl!.

A task statement as required in step

'6 is presented as two paraa@terized world

models, a starting and a goal world model.

Por example the world models c,orresponding

to the task "Push the square object into

th@ next room" will have two rooms, a

square object, and a connecting doorway,

the only diffP.rence b~twee.n the start and

1oal world aodels being in the position of

the square object. The problem in step 6

ls to reconcile. the current default world

model with tbe world model implied by tbe

task statement.

lie have briefly introduced a

simulated environment and simulated robot

and have sketched the design of a

·robot-controller capable of executing

~i11ple tasks in this robot world.

A spatial reasoning module is an

i111portan t and essential part of any

robot-controller. It makes plans for

.action on the tasis of the currPnt

collection of hyfotheses about the form of

the environment.. We have outlined a new

~pproach to problems of spatial reasoning

209

i>a sed on the

two-dimensional

use of

shape.

th~ skeleton of a

llaen t:be

P.n,iron1ent bas been drawn on an array of

points like a screen, ctn Herathe

algorith• requiring a constant a1ount of

computation reduces any 1>athfinding

problem to a graph-traversal problea.

Each edge of the graph corresponds to a

path between two objects, each node

corresponds to a junction of three or 1ore

pa tbs, while the number of nodes is

reduced to a ~inimua. Thus the amount of

subsequent search is reduced. There are

other vays to do this that are based on a

Cartesian representation of the shapes of

obiect.s, but. vhich may require more se11rcb

if the shapes in the en,ironment ha,e much

extraneous detail.

An interesting technical problem was

found in this approach, that ve call the

rope-tightening problem. Namely, when one

reasonable obstacle-avoidinq path between

two points has been found, how can this

path be optimized to be as short as

possible?

Though there ha,e been se,eral robot

simulation programs written before, ours

is among the first to handle the movement.

and collision of two dimensional shapes.

Of the previous two ma 1or robo+

simulations, [Becker & "erriam,1973J u~a~

a CaC't@sian representation and [1Hlsson &

Raphael,1967] used

representation of shapes.

a digital

The Cartesian

represents shapes dS a series of points

Jiven by Cartesian coordinates vhile the

digital represents a shape directly as an

array of points like a screen. Of the

pre,ious rigid object motion siaulations,

·(Eastaan,1973) and [Pfeff~rkorn,1975] used

Cartesian re pre sen ta ti ons vhile

(runt., 1976] and (Balter, 1973) used digital

representations. our siaulation uses a

coabination of the Cartesian and the

digital representations to simulate •he

motion and collision of ob1ects on a

tabletop. The TABL!TOP and UTA!(

siaulation programs, vhich execute actions

and produce tactile and retinal

impressions, have been implemented. For

aach aore detail see the first author's

tbesis [Rovat, 1979].

!c5powledge1en!§

This research was supported in part

by the Natural Sciences and Engineering

Research Council of Canada under grant no.

A-5552.

(BakP.r, 1973)
Baker, Richard. A
oriented information
which simulates the

spathlly
processor

aotions of
rig id objects.
Int .lili.9.i.!!~ , !!
pp.29-ffO.

lltilli!i.!
(Spring 197J),

(Becker & ,.erriaa,1973]
Becker, ,1. D., and !1erria11, w.
"Bobot" computer problem-solving
systea. Report 2646, Bolt, Beranek
& Newman Inc., 1973.

(Blu11, 1967]
Blua, H.
extracting
shape. In:

A transfor11ation for
new d~scriptors of
w.walt.hen-Dunn (ed.),

210

.!12del~ 2l. lli perceetw 2.(~ll

.Ill~ ~l ~. ~IT Press, 1967,
pp. 362- 380.

(Bastun, 1973)
!ast11an, Charles "· A uto•ated
space planning.
.Intelliqen£!, !Ll1l.

&rtif ichl
(1973),

pp.41-64.

(P'unt, 197 6]
Brian v. Punt. WHISPER: l
computer impleaentation using
analogues in reasoning. Technical
r~port no. 76-09, Departaent of
Coaputer Science, University of
British Col ua bi a. 19 7 6.

(Nilsson & Raphael, 19671
ftilsson,M.J., and Baphael,B.
Preliainary design of an
intelligent robot. Com2yter ~D1
in~BA!lo~ §cience§, 7(131 (19671,
pp. 235-259.

[Pfefferkorn,1975]
Pfefferkorn, c. !. A heuristic
problem sol•ing design system for
equipment or furniture layouts.
~.!.l.!!ni..£A.ti2!!§ 21 !A! A~!! , llili
(fh y 1975) , PP• 286-2'J7.

[llowat, 1979]
Rowat, P.P. Representinq
experiencP. and solving
problems in a simulate~
en,ironment. Technical
79-14, Departaent of
Science, Oni,ersity of
Col um .bi a, 1979.

(Rovat,1980)

SP,atial
spatial

robot
r-.port

Computer
British

Rowat, P.P'.
algorit.hm for
planar shape.

l nev iterati,e
the skeleton of a
In preparation.

A
WOCLII MOOEL

PI.ANN/IH,

.SLOPPY
IN TE:R FACE

I

r-,,.:-vi~i;. I. . : ~1 l .~ ,. ·n l · N l 'f < I."'·

F IXII) PIOCT1TIO/I

c:O·-· CltflCT

llrAK A

FIGURf 4-.

~fTIN,'1.
•MP~OSIC>N
r•c.e,iv•J "v

11TAic,

r

FlCUll 3 (Cl) The retinal 1•oaetry •

bO 000000

i,O 000000

6 2. 2.

6 0 2. 0

0 0

6 O 0 0

0 0 0 0 0 0

7 '=> ' ' FIGURE :3(6,)Th• inteaen tn the •quarea fora
the retin•l iapreaaion correapondin&
to Utak'• poattion in Ptaure I.2.

/Jti(CalNIT

Accor,(
""-« •IU"

Wot1•t> l'\00,1.

Sl'LAN
"<.l,e ,,.t>.i. ·'""""'

W<KILD MO~l

!
r11t O\IT!,1\)1! '4)C)~L'O

''"'"''"A.,.,n av·
-,-,.~e 'tOC)

,.,..,...r,., .. o.w

\
1'

lc.UIN

211

I
Moi'bl'\
OUTPuT AC.T

)-
..... oi

,.,. T\111£

·-

t:-••• ut.,k. ~ C.c»~Put~\ ~f'(T" PLt>,N
Ac.'ttoN

f I ~URE: 5.
f LA ~o ~A,T'ED

A(. TlON (~(L.E

I

I

.·.1

I

I

I

I

. I

I

I

Causality Analysis in Cha11

David E. WIikin,
SRI International

Menlo Park, Callfornl1 94025

Ab1tract
CAPS, KAISSA and PARADISE perform causality reasonln1
In chess. This paP.er defines the problem, demonatratH
Its difficulty, describes the contributions of PARADISE, and
comparH the approaches of the thrN provame.

1. Introduction
Human cheaa masters discover thln11 during their
searchin& proce11 that they then use for analysis. For
example, suppoee a master mentally searches a move in a
position and discovers that the move lose, becauee of a
three-move mate he had not previously noticed. Havin&
discovered this three-move mate, he will not mentally
search other moves unle11 he knows they will avoid this
mate. Most che11 provams will 1earch all moves In thi1
situation, continually rediecoverina the mate each time
(which may mean aeneratlna a Iara• and expensive tree).

Three proa,ems, KAISSA [1], PARADISE [5,6], and CAPS
[21 try to avoid this by doin& causality reasonlne.
KAISSA uees a technique called the •method of analoaies·,
CAPS ltt •causality facllltt. PARADISE also employs a
causality facility, which is based on the ideas used in
CAPS, but with some improvements and clarifications.
These provams all try to determine the •tnfluence• a
su11ested move mi&ht have on an already searched line,
so that moves that cannot influence a winnlne attack by
the opponent are not searched. The term •causality
facility" will be used in this paper to refer to all three
methods (i.e., includH the method of analoaiH), Sections
2 and 3 of this paper define the problems facina a
causality facility and illustrate their difficulty. Section 4
describes the improvements PARADISE has made on the
cau111ity facility In CAPS, while Section 5 briefly
compares the three approaches.

Figure 1
blac• to mon

212

2. The Problem
The polition in Fiaure 1 derivet from an actual master
eeme (position 6 in [4]) after White plays his rook from
b6 to b7. (This 11vet the rook from capture by the Black
pawn.) Suppose now that a provam doe, not notice
Black'• threat of a back rank mate, and attempts to save
Black's rook by playina it to cS. White replies R-b8
which a proeram like PARADISE recognizet II equivalent
to mate. After backine up to the position in Fleur• 1, the
provam has additional sugaestion1 to move tl:le Black
rook to dS, eS, and fS. The idea behind the causality
facility Is that the provam will racoenize the threatened
back rank mate in the refutation of R-cS eo that it does
not repeat Its mistake. If the discovery of the mate had
taken hundreds of nodes of 1earchine, it would have been
expeoaiYe to try these three other rook moves. In Flaure
1 PARADISE, for example, uses Its causality facility to do

. this type of reasonina, and reject R-d5, R-e5, and R-f5
without 1earchin1 (after searchina R-cS).

Fiau,e 1 shows the type of reaaonlne the causality facility
It Intended to do, but Fleur• 2 shows how difficult the
problem can be. in Fleur• 2, R-c5 fail, just as it did In
Flaure l; now, however, R-eS 1hould not be rejected,
althoueh R-d5 and R-fS should be. The only influence
R-iS has on the back rank mate is to attack one of the
1quare1 over which the "final" check Is elven. If the
system were to say that R-es Influences the matlne line
because It attack• a square over which an attack la eiven,
It would search many mov11 that should be rejected (e.a.,
R-f5 and R-d5 In this position). On the other hand, a
eeneral analysis of which poHlble Interpositions may
work it extremely difficult. Each side may have a number
of pieces bearine on the Interposition squarei some of
which may be pinned Thi, example shows the subtle
ways In which a move may Influence a line.

Figure 2
blac• to mon

Figure S
black to move

The above two position, ahow thal pasaible
counterattacks by the opponent may subtly modify the
influence I move mi1ht have on a line. In Fi1ure 3, there
Is no way Black can eave hie queen. Suppose a proaram
first plays 8-d7 for Black (for lack of anythin1 better). It
qulckly find• that white obtain• a diatlnct advantage after
the White blahop capturea the queen and Black
recaptures. It is fairly obvious to human masters that
P-b6, N-h6, and other auch movea cannot save the Black
queen. The causality facility should prevent a program
from aearchin1 such moves, since they do not Influence
the lo1in1 line produced for B-d7.

Now consider Black's move K-d7. It seems obvious that
this cannot Influence white'• wlnnln1 of the queen, and so
should not be searched In Fi1ure 3 this is true, but in
Figure· 4, K-d7 should be searched because it allows a
Black counterattack that may save the position. The only
difference In the positions Is that the White king is moved
over one square in Figure 4, but now if White answers
K-d7 by capturing the Black queen, Black can reply N-e3
winning White's queen. The fact that K-d7 help• prepare
a counterattack influences White•, winning line In Flaure
4. Such subtle lnfluencea are hard to recoanlze.

3. Tradeoffs
There is a tradeoff between recognizing 1eneral
influences (i.e., viewln& any type of interaction as an
influence), and recognizing only more specific Influences.
By reco1nizing 1eneral influencea, it is possible to make
almost no mistakes at the cost .. · searching many moves
that the program thinks influence a line (although a human
could see that some of them have no Influence). By
reco1nlzln1 more specific Influences, it is po11ible to
reject more moves without searchin1 at the coat of
poHibly lntroducin1 more errore.

213

Figure 4
black to move

The performance of PARADISE'• causality facility on the
above examples illustratea this. PARADISE handles the

problem In Fi11Jre 2 by recognizing the Influence of an
attack on a square over which an opponent•, attack is
given only when the side on move already has a piece
bearin1 on the square, and the opponent•, attack is a
check. This Is fairly specific and may introduce errors.
PARADISE handles the problem in Fi11Jre 4 In a more
1eneral way. Neither PARADISE, CAPS, nor KAISSA would
be able to reco1nize the difference in influence of the

mo•e K-d7 between Fi1ures 3 and 4. It appeare that the
causality facility in CAPS would not see K-d7 as avoidin1
the loss of the queen, 10 It would not search that move in
either position (thus makln1 an error In Figure 4). It also

appears KAISSA would not notice that K-d7 can Improve

the situation In Figure 4. PARADISE assumes K-d7 can
influence the 1018 of the queen, since the queen is no
longer captured with check. It searches this move in both
positions, thus avoidin1 the error made by the other

pro1rams, but at the cost of unnecessarily searchin1 it

and similar moves in position, like thoae in Fi1ure 3. In

this case PARADISE lean• towards areater 1enerallty and
elimination of errors.

These examples show what the causality facili ty is
Intended to do and alao ahow how difficult the problet: is.
PARADISE, CAPS, and KAISSA have facllltlea for doln& thia

type of reasonin1, but they all make compromiaea

between effediveneH and correctneH when decidina the
specificity of the Influence• to be noticed.

• <

. 1

I

4. PARADISE'• Contribution,

The causality facility rea1ons about a move and a tree

produced by 1earchin1 en unsati1factory line. (CAPS and

KAISSA do not have trees to analyze, only certain sett -

see Section 5 for a discuselon.) To reject a proposed

move without Herchln,, two determination, must be

made by the caueelity facility. Flret, It mu,t conclucte that

It w11 not the flnt move In the un11tl1fectory line that

permitted the ensuina consequences. This Is referred to

as a PERMIT determination in PARADISE. Second, the

causality facility must decide that the proposed move

could have no Influence on the unsatisfactory line. This le

referred to as an AFFECT determination. CAPS does not

distioguish between these two functions, but PARADISE

shows that the distinction can be important and useful.

For example, the PERMIT determination Is also used by

PARADISE In Its defensive search to lnetiaate a null move

analy1l1 (I.e., lettlna the opponent make two moves In a
row durina the search) when all defeneive moves have
permitted their refutations (see [5]).

Durina the PERMIT determination, PARADISE looks for any

of seven permittina influences the 1iven move may have

In the tree (e.a., vacatin1 a square which wae moved over

by the opponent, removing protection from a piece that
w11 captured). These influence, are described in detail

in [Sl If any influences are found durina the tree

traversal, the move permit. the unsati1factory tree. To

reject a proposed move from consideration on the basis
of an unsatisfactory tree, the causality facility first doee a
PERMIT determination usin1 this tree -- with the first

move of the unsatisfactory tree being the one checked
for permitting i(lfiuences. if any permitting influences are
found, thit tree normally cannot be used to reject another

proposed move since its first move permitted the

refutation. At this point, CAPS gives up. However,

PARADISE next check, whether the proposed move

permit. the unsati1factory tree. if it permitl the tree for

all the same reasons that the first move in the tree
permitted it, the tree can still be used to reject the

propoted move since the propo11d move would aleo

permit the tree. (See below for an example.) CAPS

cannot do this, because its equivalent to the PERMIT

determination return, a ye, or no an1wer Instead of a list
of Influences.

If the PERMIT determination finds that the unsatisfactory

tree did not permit its own refutation (or that the

proposed move permits the refutation for all the same
reasons), an AFFECT determination is done to find any

214

influences the proposed move might have on the

uosatlsfaclory line. Thi• Involves another tree traversal,
in which the causality facility looks for possible

counterattack, and any of ten affectin1 influences which

are deteribed In [5l If any influence, ere found during

the tree traversal or counterattack analysis, the propo1ed

move affect, the unsatl1factory tree. If the proposed

move doe, not affect the tree, it Is rejected without

searchina. If it does, then PARADISE check, whether the

first move in the un11tl1factory tree also affectl the tree.

If so, the proposed move it rejected unle11 it affectl the

tree for some reason that the orlainal move In the tree

did not. Aaain, this l11t test It not performed in CAPS

since it does not have a list of influences.

How PARADISE'• causality facility 1olvea the problem in

Fieurea 1 and 2 should help clarify thi1 description of it.

In Fl,ure 1, the unsatl1factory line consists of a tree with

only two nodes: one for BR-c5 and one for WR-b8.

PARADISE first checks whether BR-c5 permita this line

and find• one reason why it doet 10. While looking at the

node for WR-b8, the causality facility notices that BR-cS

unprotecta a 1quere over which the white rook delivers a
check, and that black h11 another piece bearln& on that

square. Thus PARADIS£ realizes the black rook could

have interposed on 18 if it had not moved. This line

cannot be used to reject another move unle11 the

proposed move also unprotects 18 (thus permittine this

line for all the same reasons). PARADISE next does a
PERMIT determination for BR-e5 end finds that this move
also unprotects g8, thus permittine the line for all the
same reasons R-cS does. An AFFECT determination is

then done for R-eS and this line; however, since no
reasons are found R-e5 is rejected without searching as

it does not affect the line. BR-d5 and BR-f5 are rejected
in the same manner.

In Flaure 2, the eame unsatisfactory line is 1enerated for
R-cS. All PERMIT determinations produce the 1ame
results as in Fi1ure 1. However, the AFFECT
determination for BR-e5 now discovers one reason why

the move affect, the line: It 1ttack1 e8, a po1Sible

interposition 1quare for the check from b8, that it alto

attacked by another Black piece. An AFFECT

determination is now done for BR-cS to see if this move

affects the line for all the same reasons. R-c5 is found

not to affect the line, 10 BR-e5 la not rejected.

PARADISE finds that BR-d5 and BR-f5 do not affect the

unsatisfactory line, so they are rejected without •
eearchlna.

5. Comparl1on of Cau1111ty FacllltiH
KAISSA, CAPS, and PARADISE have different
implementation• of causality reaeonin1. The causality
facillty In PARADISE is explained above. The causality
facility in CAPS reaeon1 about an ~satisfactory llne. Like
PARADISE, II ascertain, whether the llne wa, permitted

by lt1 flret move. If not, CAPS trlee only movee

1enerated by the cau11lity facility II countercaueaf
move• (I.e., they should Influence the un11tl1factory llne).

The effect Is the 11me II In PARADISE, where movH
generated by any mechanism (countercausal analysis or

otherwise) are checked for their countercau11I nature by
the causality facility. PARADISE h11 a major advantage

over CAPS In that It can compare the Influence . two
different moves have on the 11me line 1ince It return, a
list of Influence,.

The method of analo1ies (used In KAISSA) le considerably

different from these two causality facilities. It reasons

about two positions: the current one, and one that has
already been searched and found to be unsatisfactory no
matter which move Is played. For the method of

analogies to apply, all admiHible moves (defined in (1) as

·movee which make sense In the 1trate1iee under

consideratlon1 in the current position must also be
admiHible in the unsatisfactory poeition. The method of

analo1ies then determine, if any of the differences in the
current po,ition can influence any of the unsatiefactory

llnee. (Information about the lines le retained as a number

of sets, as described below.) If not, the new position can

then be a11umed un11tl1factory without 1earchin1 any
move, in It.

Unlike those of CAPS and PARADISE, KAISSA's approach
to causality cannot reason about individual moves, but can
only determine that a whole position is unsatisfactory.
The method of analogies Is only applicable when all lines
from one position have failed and when there is another
position whose admissible moves are all admissible in the
unsatisfactory position. It seems that such a situation
would not occur frequently, and KAISSA's authors do not
asaeH, even subjectively, how the method of analo1ie1
has performed in their proaram. Reasoning about
Individual moves is useful, for example, In positions where
there is only one 1ood move and many bad ones that lose
to the same complicated att~k. Once CAPS and
PARAOlSE have tried one bad move, their causality

facllltles ehould eliminate all the other bad move, without

eearchlAi them. KAISSA would have to try all moves, and
the method of analo1ies would help only if it could be
applied to position, deeP9r in the tree.

215

The major difference amon1 theee three causality
· facilities ie the wealth of information returned from a
prevlouely analyzed line In PARADISE. In both KAISSA and
CAPS, all that 11 returned from an analyzed line Is a
number of aete. These 11t1 contain square, that were
moved to, 1quare1 that were moved over, piecee that
moved, 1quare1 that were newly attacked by moves that
were made, plecee that were attacked, and so forth.
These 1et1 do not contain sequencin1 Information (e.g.,
what order moves occurred In, whether new attacks
existed simultaneously), and do not 1how which move
caused which effect, (e.1., for a square in the eet of
•squar~s moved to•, it Is not possible to determine which
piece moved to that 1quare). PARADISE, on the other
hand, doe, return thie kind of Information. After searching
a tine, PARADISE returns a tree that contain• every node
1enerated during the search. Each node describee which
piece was moved, its ori1in and destination squares, and a
number of attackin& patterns (including discovered attack
patterns) that matched at that node. With such a tree
PARADISE can determine which attacks were happening
simultaneously, which moves were first, which pieces
moved to which squares, and which moves caused which
attacks. Returning this much Information would probably
not be practical in KAISSA elnce It producee much larger
trees than PARADISE.

As described above, it is very difficult to notice all the
subtle ways a move might influence a line. Any of these
three caueality facilities can make a mistake by not
reco1nlzln1 a subtle Influence, which may cause the
proaram to reject 11 1ood move without eearching it. ([1]
cites a "proof• that the method of analogies never makes
a mistake. However, the definition given in the proof for
"influence• ie inadequate and does not appear to
receiinize such subtle influences as those described in
Section 2. For example, all moves in Figure 3 fall and It
appears that the method of analogies would be applicable
to Figure 4, yet would not detect the Influence.) There is
always the tradeoff of recognizin1 general influences and
making almost no mistakes at the cost of searching many
unnecessary moves, and recognizing more specific
inflaences that will search fewer moves at the cost of
possibly introducing more errors.

It is difficult to compare performance of the three
implementations. There are a few examples of CAPS's
causality facility in (2). and PARADISE appears to make
more causality cutoffs over this small set than CAPS .. oes

(see (5)). (PARADISE'• Improvements on the causality
facility In CAPS have already been mentioned.) The
author is aware of no published example or subjective
evaluation of the method of analo1ies in KAISSA. The
aliiorithme of the three proarams are not similar enou1h

• ·I

1
I

I

. I

.· ··1

" I

to verify 1ub1umptlon, alnce eech proaram uee1 different
tradeoffs In aenerallty when checking for a particular
Influence. One thln1 Is clear: PARADISE has enou1h
Information available both to make fewer mi1take1 and
make more cutoff, then either CAPS or KAISSA. (It would
be a dlfflcult project at preeent to ahow that either of
theee ha, actually been accompllahed.) Thie Is clear
becauae PARADISE'• treea contain 10 much more
Information than do the aet1 in the other proarame. By
usin1 lta knowled1e baH to produce small annotated
trees, PARADISE provide• more knowledae for Its
cauaallty feclltly to uae.

6. Summary
The difficulty of the causality problem has been ahown,
and PARADISE'• contribution described. PARADISE tries
to avoid errora by noticina many kinds of lnfluencea. The
causality facility has been effective and error-free over
PARADISE'• teat domain of 92 poaitlon1 (1ee [5]). (The
trees aenerated by PARADISE are so small that all
caosality decisions can be checked.) However, neither
the PERMIT nor the AFFECT Influences are adequate to
handle all middle aame positions without errors (see [5]).

It is not clear at present how to formulate a causality
facility that would never make error,, yet be effective
for re)ectina moves without searchina. It is not even
clear whether it is poHible to do ao. ([3] diaeu88ea
these issues.)

Acknowled1ement1
The author ls Indebted to Hans Berliner for hie continuing
&Hlstance and couneel during this research, to the
Stanford Artificial Intelligence Laboratory which provided
the neceHary environment and tool, for doin1 this
research, and to SRI International which aupported the
writing of this paper .

REFERENGES

~1] Adelson-Velskiy G M, Arlazarov V L, Donskoy M V,
Some methods of controllina the tree search In che88

proarama", Artificial Intelligence&, pp. 361-371, 1975.

(2) Berliner H, "Che88 as problem solvine: The
development of a tactic, analyzer•, Unpubli1hed doctoral
theala, Carne1ie•Mellon Univeraity, 1974.

[3] Berliner H J, "On the uae of domain-dependent
deacriptlons in tree aearchin1•, In: Perspectlns on
Computer Science, Jones, A.K. (Ed), Academic Press, 1977.

[4] Reinfeld F, Win At Chess, Dover Book1, 1958.

[5] Wilkins D E, "Using patterns and plans to solve
problems and control search•, AIM-329, Computer Science
Department, Stanford University, 1979.

(6) Wilkin, D E, "Usina plans in che88•, Proceeding, of
Six-th International Joint Conference on Artificial
Intelligence, Tokyo, Japan, 1979, pp. 960-967.

216

PATTERN-BASED REPRESENTATIONS OF KNOWLEDGE:
IN SEARCH OF THE "HUMAN WINDOW"

M.A. Bramer

Mathematics Faculty,
The Open University,
Milton Keynes, MK7 6AA,

England

Abstract

The focus of much recent Artificial Intelligence
research into Computer Chess has been on programm
ing the endgame. This paper discusses some of the
specific reasons for complexity in the endgame and
considers the effects of such complexity on human
chess-playing strategy, textbook descriptions and
the development of programs, In programming the
endgame the researcher is faced with a range of
decisions concerning the quality of play to be
aimed at, the balance between knowledge and search
to be adopted and the degree to which the playing
strategy should be understandable to human chess
players. The term "human window" has been used to
describe that range of programs which not only
perform at a high level of expertise but are
comprehensible to subject experts, A model for
representing pattern-knowledge is described which
has enabled the development of algorithms to play
a number of endgames. Three algorithms represent
ing different levels of performance for the
endgame King and Pawn against King are compared,
in order to discuss the tradeoff between complexity
and completeness, on the one hand, and compactness
and comprehensibility, on the other. Finally, the
role of search in reducing the amount of knowledge
to be memorised is considered and an extension to
the basic model to incorporate a deeper searching
element is discussed,

Introduction

The game of Chess has been used as a task area for
Artificial Intelligence research for over a
quarter of a century, as one in which complexity
is combined with a well-defined structure, together
with an extensive background culture against which
a given standard of program performance can be
evaluated,

The focus of much recent research into computer
chess has moved towards the study of endgames (i . e.
subgames with only a small number of pieces remain
ing), Endgames retain much of the complexity of

' the full game of chess whilst in many cases
affording the possibility of controlled experi
ments and precise quantitative analysis. It is
also notable that conventional chess-playing
programs using deep search with simple evaluation
functions generally perform ve ry badly in endgames,
where knowledge, rathe r tha t. calculation, is
probably the major factor i n human play.

Studies of fundamental endgames such as King and
,Pawn against King (KPK) and King and Rook against
King (KRK) or of slightly more complex ones such

:as King and Rook against King and Knight (KRKN)
have revealed surprising complexity, Knowledge
based algorithms for a variety of endgames have

217

been given by Bramer (1977b), Bramer and Clarke
(1979), Bratko, Kopec and Michie (1978) and else
where, in each case developed after a lengthy
series of trials and careful refinement.

There are a number of reasons for this unexpected
complexity.

(I) Limitations of current theoretical knowledge
of chess. Experiments have revealed important
errors and omissions in the known theory of
particular endgames, with erroneous evaluations
previously made by experts and counter-intuitive
moves and results found in several important
positions,

KPK and KRK are believed to be fully understood
theoretically by reasonably strong players.
Nevertheless there are difficult cases which are
not given in the majority of widely available
textbooks, or (in some cases) in any of them. The
authors have either been unaware of the difficul
ties or have excluded them as unimportant.

(2) Boundary effects caused by the board edge.
Inability to manoeuvre beyond the Rook files or
the first or eighth ranks leads to difficulties and
"special cases" affecting general strategies
(particularly for KPK).

(3) "Discontinuities" in the rules of chess.
Stalemate, the option of an initial double Pawn
move and Pawn promotion can be viewed as
"discontinuities" in the normal rules (being un
able to avoid King capture loses, pieces move in
the same way anywhere on the board) and both are
significant in endgame play.

(4) Chessboard geometry, The geometry of the
chessboard is non-Euclidean (and varies from piece
to piece). Measuring in terms of King moves (one
square vertically, horizontally or diagonally at a
time) the distance from square Al to square A7 is
6 units either directly or via two sides of a
triangle (AI-B2-C3-D4-CS-B6- A7). The situation is
compounded by the existence of squares on to which
a King may not legally move, which alters its
"effective distance" from a given square. Some
analysis of effective distance in the KPK case is
given in Bramer (1977a).

With this geometry it is difficult to de f ine tven
apparently simple geometrical relationships, such
as "Black King can take Pawn" for KPK.

From the above it is clear that endgames,
especially those with only a small number o.f
pieces, differ from middlegames by being much more
highly ill-behaved with numerous special and
unexpected cases arising. Moreover the traditional

computer chess technique of using a sophisticated
search algorithm with a fa i rly simple evaluation
function is not applicable (at least without major
modification) to endgames, where it is easy to
find examples of positions which would require a
search of 30 ply or more deep to find the one
(counter-intuitive) winning move.

Although simple in structure, chess endgames are
not a "toy" domain (such as the blocks world) but
a highly complex and badly-conditioned one. It
is not that conventional programming has proved
ineffective for the endgame which is surprising,
but that human players with even a small amount of
training should appear to ignore the difficulties
and play so well.

Textbook descriptions of endgame strategies

From the chess literature it is evident that end
game play depends much more on the use of plans
based on a knowledge of significant configurations
(or patterns) of pieces than on deep analysis of
possible variations.

For fundamental endgames such as KPK and KRK, the
plans are very simple (e.g. "move as close to
White's Pawn as possible") and the search very
shallow, in fact almost non-existent.

In conventional chess-playing programs, storing
chess knowledge (of weak squares, say) can be
viewed as helping to reduce the amount of search
required, In endgame play (especially with a
small number of pieces) it is probably more
accurate to think of using search as a means of
reducing the amount of knowledge that must be
stored, either for a person or for a program.

A typical textbook description comprises a small
number of general "rules of play" together with
some example variations from diagranmed positions.
The rules are normally only imprecisely worded and
omit important details which have to be inferred
from the variations given. Nevertheless, this
information is considered to be a complete and
sufficient explanation for the reader and it is
intended to have essentially the same meaning for
every reader of the text.

Although standard textbooks such as Fine (1941)
are often thought of as definitive and exhaustive,
this is far from true. Aside from gaps or errors
in chess theory as mentioned previously, there is
no attempt made to deal with all possible
situations which can arise even in the simplest
endgames, Fine remarks "I have given a large
number of rules which are at times incorrect from
a strictly mathematical point of view, but are
nevertheless true by and large and are of the
greatest practical value". Thus he concentrates
on the typical cases to the exclusion (in general)
of rarely arising exceptions even when these are
known .

· Even in the highly analysed and practically
important case of KPK, it is clear that no effort
has been made to demonstrate the most efficient

· strategy (in the sense of the shortest possible
win in every position). The emphasis is on the
simplest possible explanation of how to handle
this complex endgame in practical play and the

218

reader is required to supplement the knowledge he
has gained from the textbook as a r esu lt of
inference and practica l experience.

Prograuming the endgame

In attempting to model the strong player's know
ledge of the endgame, the researcher is faced by
a number of decisions. One is whethe r to adopt a
structural or a procedural representation,
another is the level of performance f or which he
should aim. A helpful distinc t ion can be made
between winning algorithms which are optimal (i. e .
the stronger side wins whereve r possible in the
smallest possible number of moves) and those which
are correct (the stronger side wins wherever
possible but not necessarily as quickly as
possible). The evidence and examples given in
Bramer (1978) strongly suggest that, even fo r KPK,
strong players perform sub - optimally, although
almost certainly correct ly. For complex endgames
it is quite possible that strong players do not
always perform even correctly.

There is a principle of sufficiency involved here .
The game-theoretic maximum nuaber of moves needed
for the stronger side to win any winnable KPK
position is only 19. The rules allow for SO
moves (without any piece taken or any Pawn moved)
before a draw can be claimed. It is simply not
worthwhile to overload the memory with numerous
special cases (or spend time performing a deep
analysis) to achieve optimal play, even as s uming
this is feasible, if there is a simple algorithm
which suffices for correctness, still well within
the constraints of the SO-move rule .

On the other hand, the endgame King, Bishop and
Knight versus King is thought to require up to
34 moves to win in some cases and, in practice, an
error in certain critical positions can easily
lead to an exceeding of the SO move limit. In
these cases it is worthwhile memorizing much mo re
detail of difficult cases, although not necessar
ily all of them.

Clarke (1977) draws attention to the tradeoff
between knowledge and search. At the extremes are
a program which has full knowledge and uses no
search (i.e. it simply looks up the best move in a
table) and one which uses extensive search and has
no non-trivial knowledge (i.e. it uses only the
definitions of won, drawn and lost t enninal
positions). In general, programs will lie some
where along this spectrum, with recent Artificial
Intelligence research concentrating on programs
towards the "knowledge" end.

Kopec and Michie (1979) have described another
tradeoff: this time between the per f ormance of a
program and its comprehensibility to subject
experts. High- performance programs which are also
comprehensible are referred to as lying inside th e
"human window". The importance of this concept
can be seen by considering a hypothetical program
which performs medical diagnosis and reconmiends
treatment, such as major surgery. Gi ven the we ll
known prevalence of "bugs" even in we ll - t ested
systems, it is essential for med i ca l pra cti t ioners
to have confidence in such a di agnos t ic system
even when it makes pr oposa ls which conf lict with

their own experience and judgement. With an
appropriate representation, such as the production
rules used by Mycin, it may be possible to satisfy
subject experts of the accuracy of such judge
ments, for example by describing the factors which
were taken into account, the weighting given to
each, the diagnostic rules applied and the reli
ability attached to the result.

Such considerations argue strongly in favour of
the choice of a structural representation,
particularly one based on rules or patterns. It
would be extremely hard to justify a decision
based on deep search, possibly recursive, and
fine tuning of the weightings of terms in an
evaluation function such as that used in standard
tournament chess-playing programs. Another
advantage of a pattern-based approach is that as
well as judging the value of the rules given,
subject experts can add their own experience in
codified form.

An interesting case where trust in an unfathom
able program was required has already arisen in
chess. Michie (1977) reports that the grandmaster
Bronstein has made use of a database of the best
move in every position for part of the King,
Queen and Pawn against King and Queen endgame for
analysis of an adjourned position. This comprises
more than a hundred million positions stored on
nine magnetic tapes. If the move retrieved from
the database had conflicted with Bronstein's own
judgement it would have been virtually impossible
to check whether it arose from an error in creat
ing the database or was in fact accurate.

Rule-based representations of a body of knowledge
can be viewed as having two possible functions:
one as a replacement for the textbook, to be
committed to memory by the chessplayer, the
general medical practitioner etc. and used as
required, the other is as an expert computerized
assistant typically used in an interactive mode.
In both cases, there is an important need for
comprehensibility. However, a set of rules for
the former will generally need to be much briefer
than for the latter, to match the limitations of
human short-term memory, and again there is a
tradeoff, this time between accuracy (or complete
ness) and compactness within a given framework.

A desirable feature of a r ule-based expert system
is that learning within it will generally proceed
monotonically, i . e. that adding a new rule should
not invalidate old ones but should lead to an
improvement in performance. This is only likely
to be true if the underlying representation is
well chosen. The proliferation of rules each
covering a small number of cases which the subject
expert would not regard as reflecting aspects of
the complexity of the domain in question is a
good indication that the repr , sentation is
probably not appropriate.

The weakness of a general - purpose representation
such as the hierarchical model used by Negri
(1977) for KPK and the standard form of inductive
learning performed within it is that it fails to
take into account the specific features of the

219

domain under consideration. Thus it may be that
in specifying the "King can catch Pawn" predicate,
some descriptors should always be used in
preference to others where possible or that some
descriptors should only be used in conjunction
with others, or if others do not appear, etc.
Given such knowledge for KPK, a much more compact
description may be poseib le for "King can catch
Pawn".

A model for representing pattern-knowledge for
chess endgames

A representation designed to enable the chess
player's knowledge of an endgame to be represent
ed in a structurally simple and compact form,
capable of incremental iterative refinement to
improve its performance whilst preserving its
initial properties, is given in Bramer (1977b)
and Bramer and Clarke (1979) and summarized below.
It is assumed that the problem is to construct an
algorithm to find a move for a chosen side (say
White) in any position p, for a given endgame.
The basic move finding algorithm is then ss
follows:

(a) generate the set Q of immediate
successors (Black to move) of p

(b) find the highest ranked member of Q,
say q

(c) play the move corresponding to q.

To achieve step (b) an implicit ranking is
defined on the set Q* of all legal BTM (Black to
move) positions for the endgame in question.
Each such position is assigned to exactly one of
a number of disjoint and exhaustive classes which
partition the set Q*.

The ranking of each BTM position is then
determined by its class value (which is constant
for all the positions in any class) and the
values of a number of associated ~unctions.
These vary from one class to another, in general.
For positions in the same class, the functions
used are always the same although their values
will vary from one position to another. To
compare the values of two positions , their class
values are compared, with the larger value
indicating the higher-ranked position. If there
is a tie, the first associated function is used
for comparison. If there remains a tie, the
second associated function is used, and so on.
(Any ties remaining after all the associated
functions have been used are resolved
arbitrarily.) When comparing the values of
associated functions, in some cases the larger
value is preferred, in some cases the smaller is,
depending on the particular function. The
intention is that each class should correspond to
some significant static feature of the endgame as
perceived by chessplayers, e.g. "Black is in
check". The associated functions correspond to
relevant numerical values, such as the distance
between the two Kings.

Assigning a position q to a class is achieved by
working through a series of predicates (called
rules) in turn until one is satisfied.
(Subsequent rules are not evaluated.) A position

q is defined to belong to a particular class N if
and only if rule N is satisfied by q and none of
the preceding rules are satisfied.

This procedure ensures that each position belongs
to only one class and helps to simplify the
definition of the rules. To ensure that each
position belongs to some class, the final rule is
defined to be always~ for any position q.

This model was used initially to develop an
algorithm for the stronger side (White) of KPK
which was thought to be a fully correct strategy

as a result of extensive testing, reported in
Bramer (1977b). Subsequent analysis revealed
that the algorithm was not entirely correct.
An optimal strategy was developed by a process
of iterative refinement using a database of the
shortest-path winning move (or moves) in every
position. A correct algorithm has now been
refined from the original 'near correct version'
by .the aemi-automatic refinement process based on
inspection of "Win-trees" given in Bramer (19 79)
and is summarized in the Appendix . (The develop
ment of a correct algorithm for KRK is described
in Bramer (1979).)

Three algorithms for King and Pawn against King - a compgrison

The following figures give basic information about each of the algorithms.

FiS!:!re I - Three algorithms for KPK

Alsorithm De.scription Classes Associated FunctiOJlS Max. -~e1;:t~- -,
of win (1;:ly)

A "near correct" strategy 19 9

B correct strategy 20 10 44

C optimal strategy 38 13 38

Figure 2 - "Optimality Levels" for algorithms A (near-correct) and B (correct)

Algorithm A"' Algorithm B
Move played is optimal 59,888 (95.93%) 60,462 (96. 77%)
Move played increases depth by l 1,526 (2 .44%) 1,075 (l. 72i.)

II II II II II 3 673 660
II II II II II 5 251 222

II II II 7 68 47
II II II II 9 19 11
II II II II 11 5
II II II II II 13
II II II 15 2 2

Total

(Breakdown for all legal WTM positions, which are theoretical wins).

"' Excluding non-win preserving moves

Figure 3 - Class membership for algorithm B (correct strategy)

! Class Number of positions Class Nuni>e r of positions I

l (BTM) (BTM)

I 10,093 (10 .3%) 12 60
2 9 13 176
3 12,985 (13. 3%) 14 I ,620 (I . 7%)
4 35,026 (35. 7%) 15 8,507 (8 . 7%)
5 14,422 (14 . 7%) 16 2,632 (2.7%)
6 694 (0. 7i.) 17 I
7 so 18 4,971 (5. 1%)
8 6,045 (6. 2%) 19 5
9 42 20 4

10 66 Total 97,992 11 584 (0.6%)
(Pawn on file A-D, ranks 2-8.)

Classes 2 7 9 JO 12 13 17 19 and 20 total to ether 413 members 0. 42i. .

220

Figure 2 shows the "Optimality Levels" for
· algorithms A and B; i.e. the amount by which the
· move selected in each theoretically won wrM
position changed the maximum depth. For an
optimal move the depth is decreased by one ply,
for all other moves it is increased by an odd
number of ply (the fewer the better). The figure
shows that in both cases the great majority of
moves are either optimal or increase the depth by

· only one ply. The differences between the two
algorithms are small and, in fact, algorithm B
was formed from A by the addition of one new class
(with only one member) and one new associated
function plus slight changes affecting a few other
classes.

However, the difference in performance is sub
stantial. Algorithm A fails to win from as many
as 4,602 theoretically won positions (WTM) and
4,3Sl (BTM). Only in 48 positions (Wl'.M) is a
move played which does not preserve White's winn
ing advantage, the other positions simply
transform into one another in cycles. This result
reinforces the evidence given in Bramer (1979) for
the KRK endgame that a change to the move played
in a small number of positions can drastically
alter the overall performance of an algorithm.
Testing even by expert human players might never
reveal that A was not a correct algorithm. Its
errors will in general result in a cycle but this
may be after many moves of otherwise expert play,
possibly in response to poor play by Black.

To improve the performance of KPK from correct (B)
to optimal (C) requires an increase from 20 to 38
classes and from JO to 13 associated functions.
This near-doubling of the size of the algorithm
results in a relatively minor improvement in
performance. The number of individual positions
played optimally rises from 96.777. to 1007. and
the maximum depth is reduced from 22 moves (44
ply) to 19 (38 ply). The definitions of 38
classes would probably be too many to commit to
memory, if the algorithm were to be used as a
replacement for the textbook, whereas 20 classes
would probably be acceptable. Either number
would be satisfactory for an expert computerised
assistant. The pattern of distribution of depths
for algorithm Bis very similar to that for C
(theoretical maximum depths), and this is also
true for algorithm A, which would tend to support
the appropriateness of the representation adopted.
In making the transition from algorithm B to C, it
is clear that a "diminishing returns" effect is
involved. The maximum depth of 22 moves for
algorithm B is still well within the SO-move.
drawing limit. For a practical player to take on
the additions: ! memory burden required to play
optimally wc·..1ld simply not be worthwhile, an
unnecessary violation of the principle of
sufficiency.

The class membership table for algorithm B
(Figure 3) shows that a fairly small number of
classes account for the great majority of
positions. The nine smallest classes contain less
than a half of one percent of the positions, and
four classes contain less than ten positions each.
It is useful to consider whether classes with a

low-level of membership reflect "special cases"
of the domain in question or merely result from
the particular representation used. In the case
of algorithm B, the classes concerned do seem to
correspond to clear special cases arising from
the boundary effects, rule discontinuities etc.
referred to previously. For example, Class 17 is
used to deal with recognized difficulties with a
Knight Pawn and Class 2 contains all the
positions where Black is stalemated. Some of
these special cases although important are not
given in the major textbooks (or not in all of
them) and this is more markedly so for algorithm
C (optimal strategy). Bramer (1978) gives
several examples of positions which are clearly
special cases but are of no practical signific
ance and would certainly never be quoted in
textbooks. It is evident that textbooks omit
many special cases, even those which are
necessary for correct play, and that a major
reason for thi s is to reduce the amount to be
memorized.

It is not certain that algorithm Bis a minimal
correct strategy for KPK, i.e. one with the
fewest number of rules possible. By removing
certain of the special cases or by other changes
it might be possible to construct an algorithm
which was still correct but had a greater maximum
depth, although still within the SO-move limit.
Such a strategy would doubtless still have to
include classes to deal with a (possibly reduced)
number of special cases. If the aim were not to
achieve correctness, but to perform expertly in
practical play or to serve as a teaching document

/ superior to standard textbooks, it could be
argued that an abbreviated algorithm which
omitted special cases but was still reliable in
the great majority of cases was preferable. To
return to the idea of the "human window", it may
be that the window includes all three algorithms
A, Band C and a spectrum of others including
some which are not fully correct. In each case
there is a tradeoff between complexity and
completeness, on the one hand, and compactness
and comprehensibility, on the other.

Extending the model

The most important way in which people reduce
the amount of knowledge memorized is by making
use of analysis or search.

For experienced players, search plays little
part in playing simple endgames (although exact
counting does) but increasingly more as the
problem becomes more complex. Unfortunately,
tournament chess-playing programs have found it
necessary to use search of a volume and kind
which is most unlike that of expert human players.
An extension of the model previously described
enables the use of pattern-knowledge to be
combined with search deeper than one ply, but
which is capable of careful control.

The final class (defined to be always true) is
called the residual class; those with class
values greater than that of this class are called
positive, those with lower values are called
negative. These latter two categories broadly

221

I •

reflect features of the endgame which are
particularly desirable or especially undesirable.
The most likely source of difficulty in programm
ing complex endgames lies in specifying a
sufficiently large number of positive or negative
classes, with many important positions thus fall
ing into the residual class.

There are four possibilities for a given set of
successor positions:

(a) at least one belongs to a positive class;
(b) all belong to negative classes;
(c) all belong to negative classes, except one

which belongs to the residual class;
(d) two or more positions belong to the residual

class and the remainder (if any) belong to
negative classes.

In cases (a), (b) and (c) the most favourable
position can be found statically using position
values in the usual way. In case (d), either the
positions in the residual class can be taken as
terminal and the associated functions used to
calculate the value statically, in the usual way,
or an analysis tree can be generated from each of
the residual class positions, with the negative
class positions rejected altogether.

Constructing an analysis tree (either depth-first
or breadth-first) in this way has the effect of
reducing the amount of search by pruning all
branches to positions in negative classes (unles s
there is no alternative) and defining terminal
states of a given set of positions . as a whole
(cases (a), (b) anI"cc) above). Since a residual
class position can, at any stage, be regarded as
terminal, with the static value of the position
backed up the tree, the amount of analysis
perfot"l!led is subject to close control. In
gener•l, this forln of the model is distinguished
from conventional tree-searching in that search
is intended to be used in a controlled way only
as necessary to supplement the pattern-knowledge
which it is believed is the fUrtdamental component
of th·e chessplayer's endgame knowledge. It
corresponds roughly to the high-level rule "if in
an unfamiliar situation, search for possible
forcing variations into known positions" . An
implementation of this extended model, known as
Kappa 2, is currently in progress.

Appendix

A correct algorithm for the endgame King and Pawn against King

Figure 4 - Classes for King and Pawn against King (Summary)
,_=::::::=:;:==============================:;::::====:::::~-----------·

Class

I
2
3
4
s

16
6

17

7

8

9

10

I I

12

13

14
18
19
20
I'S

Property of position q
(Black to move)

Pawn en prise
Black is stalemated
Pawn is on eighth rank
Pawn can "run"
Black King is effectively closer
to the Pawn than White (adjusted
for second rank case)
(Some Rook Pawn cases)
Black can move to "blockade" square
(Knight Pawn position - special
case)
White is on the "blockade" square
and Black can take opposition
Black King at least two files from
White King on same side of Pawn,
White King not below !:'awn's rank
Kings on critical squares on same
rank
Kings on critical squares, Black
one rank above White
White King on Pawn's rank, above
Pawn
Kings in vertical opposition, with
the White King on a critical square
Kings in opposition, White King
above Pawn or both on sixth rank
White King on a critical square
White King on a file above Pawn
(Pawn on sixth rank-special case)
(Pawn on fifth rank-special case)
(always true)

Class
value

I
2

20
19
3

4
5

I I

6

18

17

16

IS

14

12

10
9·
8

13
7

Associated Functions

2, 3

I
2, 3

I, 2, 3

I, 4, 7

) • 7

r, 6, s, 10
4, r, 8

2, 3, 7 ,. 9'
"' --··-'---------------------L----'----------------'

222

Figure 5 - Associated Functions for King and Pawn against King

Function Value of function

I The Pawn's rank"'
2 The file or rank distance between the Kings, whichever

is the larger"'"'
3 The file or rank distance between the Kings, whichever

is the smaller"'"'
4 The file distance between the White King and the Pawn"'"'
5 The file distance between the White King and the Pawn"'
6 The number of ranks the White King is above the Pawn"'
7 The White King's rank"'
8 The rank distance between
9 The file distance between

IO The White King's file"'"'

"' The largest value should be taken
** The smallest value should be taken

References

Bramer, M.A. (1977a) . King and Pawn against
King: Using Effective Distance.
Open University, Faculty of Mathematics,
Technical Report.

Bramer, M.A. (1977b). Representation of
Knowledge for Chess Endgames: Towards
a Self-improving System. Ph.D. thesis,
Open University .

Bramer, M.A. (1978). Representing Pattern
Knowledge for Chess Endgames: an
Optimal Algorithm for King and Pawn
against King. To appear in
Clarke, M.R.B. (ed.), Advances in
Computer Chess 2, Edinburgh University
Press.

Bramer, M.A. (1979). Testing C-9~~~
of Strategies in Game-playing Programs.
Proceedings of the Sixth International
Joint Conference on Artificial
Intelligence.

Bramer, M.A. and Clarke, M.R.B. (1979).
A Model for the Representation of
Pattern- Knowledge for the Endgame
in Chess. Int. J. Man-Machine Studies,
II, pp. 635-649.

223

the White King and the Pawn**
the Kings"'

Bratko, I., Kopec D. and Michie, D. (1978).
Pattern-based Representation of Chess
End-game Knowledge.
Computer Journal, 21 (2), pp. 149-153.

Clarke, M.R.B. (1977) . A Quantitative Study of
King and Pawn against King. In Clarke,
M.R.B., Ed., Advances in Computer Chess I.
Edinburgh University Press, pp. 108-118.

Fine, R. (1941) . Basic Chess Endings.
David McKay, New York.

Kopec, D. and Michie, D. (1979). Problems of the
"human window". Paper presented at AISB
Summer School on Expert Systems, Edinburgh,
July 1979,

Michie, D. (1977) . End-game Secrets. Computer
Weekly, 3rd November, (Chesslab) .

Negri, P.G. (1977). Inductive Learning in a
Hierarchical Model for Representing
Knowledge in Chess End Games. In
Elcock, E.W. and Michie, D. (eds.),
Machine Intelligence 8. Ellis Horwood,
Chichester, pp. 193-204.

. J

I

I

I

Searching Game Trees In Parallel

Selim G. Akl, David T. Barnard and Ralph J, Doran

Department of Computing and Information Science
Queen's University

Kingston, Ontario
Canada
K7L 3N6

Abstract

Preliminary experiments are described
with a program that simulates concurrency
.to process game trees in parallel. The
alpha-beta algorithm is implemented to
·search disjoint subtrees simultaneously
using knowledge about the behavior of the
s equential algorithm to increase the num
ber of cutoffs. This approach is found
to result in a considerable speedup of the
search. Some future research directions
are suggested.

1. Introduction

"Even though the real world is
inherently parallel, our algo
rithmic view of it is basically
sequential. This is due in part
to 300 years of sequential math
ematics and more than 20 years of
sequential Fortran programming."
[9]

Tr~e search occupies a fundamental
place in artificial intelligence research
[14]. In particular, the majority of game
playing programs generate and search game
trees. To date all game playing programs
have sequentially searched the trees they
generated. With the advent of concurrent
processing technology, however, this state
of affairs is very likely to change.

Two papers have recently addressed
some of the problems associated with pro
cessing game trees in parallel. In [6]
the emphasis is on developing a specific
structure of microprocessors in a master
slave configuration to minimize the solu
tion time of certain tree decision prob
lems. One particular application is dealt
with in the paper: that of two ply chess
move generation. It is shown that, for
the typical two ply move, the total real
solution time decreases with the increas
i ng number of slave microprocessors. A
theoretical upper bound on the number of
use f ul slaves for this particular problem

This research was supported by the Natur
al Sciences and Engineering Research Coun
cil of Canada under Grants NSERC-A3336 and
A3014.

224

is also derived .

In [3] the alpha-beta pruning algo
rithm is studied. It is argued that in a
parallel implementation which explores
different subtrees of the game tree con
currently and independently, the power of
the algorithm would be lost . As an alter
native, the paper suggests that the prob
lem of finding a path in a game tree can
be viewed as the problem of locating the
root of a monotonic function over some in
terval. A parallel implementation of the
algorithm is thus proposed in which the
processes work independently by searching
the entire game tree for the solution over
disjoint subintervals. Here the efficien
cy of the alpha-beta pruning algorithm is
measured by the average number of terminal
nodes explored during the search. The
main result is that when the degree k of
parallelism, i.e. the number of processes
cooperating in the search, is small (k=2
or 3), the parallel algorithm shows an
improvement over the original algorithm by
a factor which is larger thank. The max
imum speed-up achievable, however, is
believed to be limited to 5 or 6. The
author concludes by suggesting that a bet
ter way to implement the alpha-beta prun
ing algorithm with a large number of pro
cesses in parallel would be to combine
both his strategy of decomposition and the
independent exploration of different sub
trees of the entire game tree.

The present paper describes prelimi
nary experiments with a program that sim
ulates concurrency to search game trees in
parallel. As our model of computation we
use a parallel computer of the MIMD (Mul
tiple Instruction stream Multiple Data
stream) type as defined in [8] . The ma
chine we intend has a number of asynchro
nous processors with a communication fa
cility provided by common memory or com
munication lines. A processor can initi
ate another processor, send a message to
another processor, or wait for a message
from another processor. Apart from these
interactions, processors proceed independ
ently.

The simulated environment provides
multiple software processes and multiple

hardware processors. A process is created
for each node that is searched. The num~
,ber of processors is a parameter of the
program.

Unlike the algorithm of [3], our im
plementation of the alpha-beta algorithm
:searches disjoint subtrees concurrently.
,It uses knowledge about the behavior of
'the sequential algorithm to simultaneously
increase the number of cutoffs and reduce
the search time. The major experimental
finding reported in this paper is that
this approach results in a considerable
speedup, thereby contradicting the claims
in [3].

We assume the reader is familiar with
the sequential alpha-beta algorithm and
the associated tree search jargon insofar
'as the terminology is unified (11,13,14].
,We will essentially use the nomenclature
used in (13] . As usual, the trees to be
searched are those of a two-person, zero
sum, non-chance, board game of perfect
information (10]. In Section 2 we outline
the basic principles used in the design of
our parallel implementation of the alpha
beta algorithm. The algorithm itself to
gether with the procedures it calls are
described in Section 3. In Section 4 we
present and analyse the results of our
experiments.

2. Basic Design Pri~ciples

It is shown in (16] that the minimum
number of terminal nodes scored by the
alpha-beta tree search algorithm under the
best circumstances is

where Bis the branch factor and Dis the
maximum depth of the (uniform) tree. This
is illustrated in Fig. 1 where the tree is
perfectly ordered so that the best moves
for both players are always to the left.In
such a tree, the terminal nodes shown with
a score (and only these terminal nodes)
must be examined in order to determine
the principal continuation (PC), i.e. the
best sequence of moves found for both
sides to follow based on the computer's
finite depth search [2].

This fact represents the basis for our
parallel implementation of the alpha-beta
algorithm: assuming that the tree to be
searched is perfectly ox :ered, those nodes
that have to be scored are (concurrently)
visited first. The algorithm is designed
with two objectives in mind: to minimize
the run time of the search and to perform
as many cutoffs as possible, thereby min
imizing the cost of the search (total
number of op~rations).

225

In order to achieve these goals a
distinction is made among the sons of a
node. The first son of a node is called
the "left son". The subtree containing
the left son is called the "left subtree"
and the process that searches this subtree
is the "left process". All other sons of
a node are called "right sons" and are
contained in "right subtrees" which are
searched by "right processes". This is
illustrated in Fig. 2.

The left subtree of a node is searched
by a left process (which is spawned by the
parent node) until a final value for the
left son is backed up to the parent node.
To obtain this final value, the left son's
process spawns processes (lefts and rights)
to search all of the left son's subtrees.
Concurrently, a single, temporary value
is obtained for each of the right sons of
the parent node. These values are then
compared to the final value of the left
son and cutoffs are made where appropriate.

The temporary value for a right son is
obtained by the right son's process spawn
ing a process to search its left subtree.
This new process searches the subtree,
backs-up a value to the parent's right
son, and then dies. If after a cutoff
check the right subtree search continues,
then a process is generated to search the
second subtree of the right son. This
procedure continues until either the sub
tree is exhaustively searched or the
search is cut off.

It is clear that, by applying the
above method, those nodes that must be
examined by the alpha-beta algorithm will
be visited first. This ensures that need
less work is not done; a cutoff check is
performed before processes are generated
to search subtrees that may be cut off.

In a search with more processors than
running processes it may be possible to
minimize the run time of the search by gen
erating processes to search the sons of a
right node concurrently using the idle
processors. This brute force approach is
not used since it conflicts with the other
aim of our design, namely minimizing the
cost of the search. The cost of any tree
search consists mainly of the cost of up
dating the system in moving from parent to
son and in the cost of evaluating or scor
ing a node. Therefore even though a pro
cessor (which could be doing concurren~
work) is idle, the overall cost in oper
ations is minimized by not searching sub
trees which may not have to be searched.

In Fig. 3 (assuming an infinite number
of processors running at the same speed)
the root node process generates processes

I
J

I

• I

.1

·Pl, P2, and P3 which execute concurrently.
1Pl being a left process generates proces
•es Pl.l, Pl.2, and Pl.3 to search all of
the subtrees of the left son of the root.
:P2 and P3 are searching right subtrees and
.therefore generate only processes to
jsearch the left subtrees of the right sons
'of the root (P 2. l and P3 .1 respectively) .
After generating its son processes, a
:parent process suspends itself and waits
'for its children to terminate, backup a
value, and die.

At this point an interesting question
arises. We stated earlier that one of our
.design objectives is to increase the num
ber of cutoffs; How do we expect our al
gorithm to perform in this respect com
•pared with the sequential version? To
;answer this question we shall make a dis
:tinction between shallow and deep cutoffs.

1) Shallow Cutoffs

(i) All shallow cutoffs that would
.occur in a sequential search due to the
'. (temporary) value backed up to a node from
:1 ts left son also occur in a parallel
;search. This is because all temporary
~alues obtained for the right sons of the
node are compared to the backed up final
.value of the left son for a cutoff check
before the right subtree search continues.
An example illustrating this situation is
shown in Fig. 4. Initially, the root is
assigned (temporarily) the final value of
:its left son, i.e. 8. The two right sub
~rees are searched in parallel, resulting
.in temporary values of 3 and 5 being as
'signed to the first and second right sons
irespectively. Clearly the circled sec
tions of the two right subtrees are cut
off in exactly the same way as in a se
quential search.

A right subtree that is exhaustively
searched and not cut off compares its
final value to the temporary value of the
~arent and changes the parent's value if
necessary. Any cutoff that would have
occurred in other right subtrees due to
the value backed up to the parent from its
left son will also occur due to any right
son value that changes the parent's value.

(ii) Some shallow cutoffs that would
occur in a sequential search can be missed
in the parallel search due to the way in
which processes are generated to search
game subtrees. In the example of Fig. 5
a sequential search would cut off the cir
cled portion of the tree whereas the par
allel search would not. The parallel
search misses the cutoff since a process
is generated to search that subtree before
the first right subtree of the root com
pletes its search and updates the root's
value.

226

(iii) Some cutoffs that are missed in
the sequential search may occur in the
parallel search due to the way in which
processes are generated. A right subtree
search that terminates early and causes a
change in the parent's value, may cause
cutoffs in other right subtrees that would
not occur in the sequential search, as in
Fig. 6.

In Fig. 6 both right sons of the root
compare their initial values, 6 and 7
respectively, to the final value of the
left son, i.e. 5. Neither right subtree
search is cut off so processes are gen
erated to search the second sons of the
right sons of the root. But since the
second right son of the root has only one
son, its subtree has already been exhaus
tively searched and, therefore, the root's
value is updated to 7. Thus when the fir
st right son of the root performs a cut
off check, this time a cutof f occurs.
This cutoff is missed by the sequential
search.

2) Deep Cutoffs

In order for deep cutoffs to occur at
a node, values from searches of other
parts of the tree must be available. In a
sequential search the values or scores at
each ply are known to every node and are
stored in a single global score table. In
a parallel search this is impossible since
the best sequence of moves (found so far)
from the root to a leaf is not always
returned.

In Fig. 7 the left son of the right
son of the root is searched at the same
time as the son of the left son of the
root. If the right son is backed up the
value 3 at ply 1, and then the left son is
backed up the value 1 (overwriting the
score table value of 3 at ply 1), then
when the second subtree of the right son
is searched its value of 2 will not be
recorded at ply 1 (since 1 <2 and we are
minimizing at ply 1) . Therefore the value
of 2 will not be backed up to the root as
it would be in the sequential search.
This means that instead of returning the
best sequence of moves (m2,m5) from the
root, the sequence, ml,m3 will be
returned.

Since there can be no global score
table, an individual score table is as
signed to each node when a process is gen
erated to search the subtree containing
that node. This table is initialized to
the values in the score table of the
node's parent. Therefore, the information
necessary for a deep cutoff to occur is
not available in general, s ee Fig. 8.

In practice, a node is not given a

:complete score table, but rather just a
,small table containing the scores for the
!two previous plies and the node itself.
·This means that the complete score table
/for a node (as described above) is actu
ally distributed throughout the tree along 1

1
the path from the root to the node. With
this structure it would be possible to
!obtain additional deep cutoffs as follows.
!suppose that during a search of the tree
!in Fig. 8 (b) the following sequence
!occurs:

(i) the search of the left subtree (of
the root) begins,

(ii) the search of the right subtree
beg inri, and

(iii) the search of the left subtree
~ompletes, backing up a temporary
score to the root.

At this point searching along some paths
in the right subtree could be cut off, the
information indicating this being availa
ble in the score table of the root node.
However, to effect this deep cutoff, the
information must be propagated down the
right subtree. The algorithm could be ex
.tended to deal with this circumstance but
·as "deep cutoffs have only a second order
effect on the average behavior of the
alpha-beta pruning algorithm" [3), we have
avoided the additional psychological com
:plexity and administrative overhead.

This Section has described some basic
·principles that were considered in the
design of the parallel adaptation of the
alpha~beta algorithm. The algorithm it
self is presented in the next Section.

3. The Algorithm

There are seven main components of the
algorithm: Initialize, Handle, Score, Gen
erate, GenerateMoves, Apply, and Update.

l) Initialize reads in the original
board position (i.e., the configura
tion for the root node of the search
tree) and the depth to which the tree
will be searched. Handle is then in
voked to create a process for the root .

2) Handle is a recursively-defined
process. It searches a node in a game
tree by calling either Score (for a
leaf) or Generate (for a non-leaf) and
then calling Update.

3) Score is a static evaluation func
tion. It accepts a - parameter a board
configuration, and returns an integer
representing the value of the position.

4) Generate is called to search a sub
tree that is not a leaf. It calls
GenerateMoves to produce a list of
moves from the current position. If
the root of the subtree is a left node,

then Handle is invoked once· for each
son. The processes thus created run
concurrently, and Generate waits until
they all terminate. If the root of
the subtree to be searched is a right
node, then the sons are searched in
sequence by calling Handle for one of
them, waiting for it to complete, and
performing a cutoff check before
searching the next son. Procedure
Apply is used to produce board config
urations for sons.

5) GenerateMoves accepts as parameter
a board configuration and produces all
of the legal moves from that position.

6) Apply accepts as parameters a board
configuration and a move, and produces
the board configuration that results
when the move is made.

7) Update waits until the parent's
score table is free and then copies
the value derived as a score for the
current subtree into the table, if
applicable.

This algorithm has been implemented in
order to empirically investigate its be
havior. Experiments with the implemented
algorithm yield statistics on the cost of
a tree search in terms of the total run
time, the number of nodes scored, and the
number of nodes visited. By varying the
number of processors used to search the
tree we can investigate the value of par
allelism in the algorithm. This experi
mental procedure can be applied to a num
ber of search trees.

Since we did not have a multiprocessor
available on which to implement our algo
rithm, it was necessary to simulate phys
ical parallelism. The simulation language
GASP IV (15] was chosen as a vehicle for
thi '~ because it would easily simulate a
variable number of processors and because
it facilitates writing complex transactions
(in our case: processes to search a tree
node) in a high level language (FORTRAN).
Additional details can be found in [l].

4. Experiments and Conclusions

"I think we're coming more and
more to the frontier where what
artificial intelligence is waiting
for is the mechanization in hard
ware of the sorts of parallel in
teraction which will allow an or~
der of magnitude increase in i ~
telligent behavior with a given
outlay of cost." (12)

The implemented parallel alpha-beta
algorithm, executing in the simulated mul
tiprocess-multiprocessor environment, -was
tested for various inputs. The purpose

227

pf our experiments was to study the ef
:fects of parallelism on the cost of a tree
search, this cost being expressed in three
different forms: (i) run time of the tree
•search, (ii) number of terminal nodes
,scored and (iii) total number of non-ter
~inal and terminal nodes visiteq.

Essentially, a uniform tree of a given
depth, D, and branch factor, BF, was gen
:erated and stored prior to the search.
(Note that this is just for experimental
purposes~ in a typical decision tree
search, the tree is generated as it is
searched and only the relevant parts of
the tree are stored.) The terminal nodes
of this tree were assigned scores chosen
from a particular probability distribu
tion. The principal continuation was then
sought using a varying number of proces
·SOrs and the three measures of cost re
.corded each time. These values were
·averaged over several trees with different
terminal node scores but keeping the depth,
branch factor and probability distribution
:of the scores fixed. The entire procedure
was then repeated by altering these latter
characteristics. Typical results of these
experiments are shown in Figs. 9-12.

The curves in Fig. 9 show that the run
:time decreases sharply with an increasing
number of processors doing the search.
For a given depth of search the savings
:in run time are more noticeable, however,
for large branch factors than for small
ones . It is also clear that a saturation
point is eventually reached after which
the run time remains constant for an in
'creasing number of processors. As expect
ed, the total number of nodes visited as
well as the number of terminal nodes scor
ed also increases with an increasing num
ber of processors. Surprisingly, in this
case the increment is relatively small and
a saturation point i,s quickly reached as
can be seen in Figs. 10 and 11. Finally,
the curves in Fig. 12 indicate that the
algorithm exhibits the same behavior for
various distributions of the terminal node
scores.

A few remarks regarding future work
are now in order. The experimental res
ults presented above indicate that paral
lelism is of value in alpha-beta search
ing. Some modifications are possible in
our algorithm. For example, minor changes
in the strategy for generating processes
to search a subtree, or in process prior
ity assignments might make significant
differences in performance. It is also
worthwhile investigating the value of deep
cutoffs in parallel searching. Because
of the different order of node evaluation
introduced by parallelism, deep cutoffs
may become more than a second order effect.
The simulation environment is a natural

228

one in which to investigate these issues.
Changes in either the algorithm or the
hardware configuration can be implemented
and experimented with easily. We believe
that the next logical step would be to
incorporate the parallel alpha-beta algo
rithm in an actual game playing program
and study its behavior. It will then be
possible to address more pragmatically
the issues pertaining to the saturation
points mentioned above -- in particular
how they are related to the depth of
search and branch factor. More important
ly, it will be possible to determine how
the quality of the game played by a game
playing program is affected by parallel
tree search. Naturally, one may predict
that with the faster processing of trees
provided by parallelism, it will be pos
sible to search deeper trees in a given
amount of time and hence improve the
quality of the play. This is not certain,
however. In fact the artificial intel
ligence community seems to be divided on
this matter. In [SJ Neil Charness as
serts that

"Adding a few plies does not pro
duce tremendous change in perform
ance. What is gained by adding
more lookahead capacity is rapidly
lost in time spent evaluating the
hundreds of thousands of new ter
minal positions .•. Humans have
two major advantages over comput
ers. They have both a vast know
ledge base about chess and a set
of procedures for efficient man
ipulation of that base".

These statements are to be contrasted
with what Hans Berliner (4) recently
wrote in an article reviewing the com
puter chess state-of-the-art:

"Strangely enough (from my point
of view and I believe AI's in gen
eral) the breakthrough has come on
speed rather than knowledge. From
this I must conclude that human
chess players largely delude them
selves in believing that chess is
a 'conceptual' game. Apparently a
large part of chess can be solved
by exhaustive searching (as done
in CHESS 4.6) and it remains to be
seen whether such an approach will
ultimately allow a machine to be
come World Champion by taking ad
vantage of small inaccuracies in
human play to win a material ad
vantage and then hold on through
the end game (where conceptualiz
ation still appears to be needed)
to win anyway. I believe this
will not happen, but such machines
may come very, very close. It is
already clear, however, that a

full width search going to a depth
of six plies plus quiescence will
discover things that even a Grand~
master will overlook on occasion."

We hope
~owards the
'3ial point.
in [7J).

that our work will contribute
resolution of this controver

(Similar issues are discussed

In conclusion we point out that search
ing trees in parallel, in our opinion, not
only provides a considerable increase in
speed, but in addition could allow us to
naturally simulate one of the several as
pects of human game playing, namely per
ception. Indeed -- taking the game of
chess again as an example -- a generally
accepted theory for Grandmaster play as
serts that a highly sophisticated pattern
recognition ability is used by the skilled
human player while analyzing a chess pos
ition in order to choose the next move.
As Charness writes: "The process of choos
ing a move seems to involve perception as
a primary component, and in particular,
the recognition of thousands of stored
patterns" [SJ. Whether this pattern rec
ognition ability (simulated using paral
lelism or otherwise emulated) will be es
sential in the attainment of high-level
game-playing by computers is yet another
open question.

Acknowledgement

Thanks to Bob Tennent and Glenn
MacEwen for reading a preliminary version
of this manuscript.

References

(l] Akl, S.G., Barnard, D.T., and Doran,
R.J., Searching game trees in parallel,
Technical Report 79-87, Department of Com
puting and Information Science, Queen's
University, Kingston, Ontario, Canada,
November 1979.

[2J Akl, S.G., and Newborn, M.M., The
principal continuation and the killer
heuristic, Proceedings of the ACM Annual
Conference, 1977, Seattle, Washington, pp.
466-473.

[3J Baudet, C.M., The design and analysis
of algorithms for asynchronous multipro
cessors, Technical Report CMU-CS-78-116,
Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1978 .

[4J Berliner, H.J., A ch. o nology of com
puter chess and its literature, Artificial
Intelligence, Vol. 10, 1978, pp. 201-214.

[SJ Charness, N., Human chess skill, in:
Frey, P., Ed., Chess Skill in Man and
Machine, Springer-Verlag, New York, 1977.

(6J Coraor, L.D., and Robinson, J.P.,
Using parallel microprocessors in tree

229

decision problems, Proceedings of the
International Symposium on Mini and Micro
Computers, IEEE, Toronto, Nov. 8-11, 1976,
pp. 51-55.

[7J Fishburn, J.P., Finkel, R.A., and Law
less, S.A., Two papers on alpha-beta
search, Computer Science Technical Report
375, University of Wisconsin-Madison, Dec
ember 1979.

[BJ Flynn, M.J., Very high-speed computing
systems, Proceedings of the IEEE, Vol. 54,
No. 12, December 1966, pp. 1901-1909.

[9J Goodman, S.E., and Hedetniemi, S.T.,
Introduction to the Design and Analysis
of Algorithms, McGraw-Hill, New York, 1977 .

[lOJ Jackson, P.C., Introduction to Art
ificial Intelligence, Mason and Lipscomb,
New York, 1974.

[llJ Knuth, D.E., and Moore, R.W., An
analysis of alpha-beta pruning, Artificial
Intelligence, Vol. 6, No. 9, 1975, pp.
293-326.

[12 J MacKay, D., in: McCorduck, P., Mach
ines Who Think, W.H. Freeman and Co.,
San Francisco, 1979, page 8 0 .

[13J Newborn, M.M., The efficiency of the
alpha-beta search on trees with branch
dependent terminal node scores, Artificial
Intelligence, Vol. 8, No. 2, 1977, pp.
137-153.

[14J Nilsson, N.J., Principles of Artifi
cial Intelligence, Tioga Publishing Co.,
Palo Alto, California, 1980.

[lS J Pritsker, A.A.B., The GASP IV Simula
tion Language, John Wiley & Sons, Toronto,
1974.

[16J Slagle, J.R., and Dixon, J.K., Ex
periments with some programs that search
game trees, JACM, Vol. 16, No. 2, 1969,
pp. 198-207.

ROOT(Ll

LR R L R

Fig. 2

Fig. 3

Fig. 4

. ·I Fig. 5

5

Fig. 6

L - LEFT
R· RIGHT

MAX IMIZING

MINIM IZING

Fig. 1

MAX IMIZING

MIN IMIZING

MAXIM IZING

MINIM IZING

230

PLY 0

PLY I

m3

PLY 2
3 2

M/1.X IMIZ ING

MINIMIZING

Fig. 7

IIIE CIRCLED PORTION IS CUTOFF

PLY

-• '~

PLY
()

2

3

4

0

~)(I

2 -*)I{ X2 _
SCORE TABLE

- CX)

*2
- CX)

~2

- ~o
'----

~6~/.~ (,~\ \~LB~~E~FHTl~eG GLOBAL SCORE TAOLE

PASSED DOWN IHE SCORE TAOlE
WH l lE THE ROOT'S RIGHT SUB -
IRtE IS SEARCHED. Fig. 8 (a)

THERE IS NO IHEP CUTOFF
'- I NCE Ill! NODES or fltE
'!GIii SUR f kll. liAVE SCOH
lABlfl ll·Jll l AL l llD 10 Ill!
IC0RErAB1.E Of IHE PARCNII
AND DO NOi CO NTAIN TH!
ICOR! OF T/lf LEFT ION
oF me Roo r. f

-·-~ ·0)
-·---- -----w

~E: ~r::;
Fig. B(b)

0 - I -2 - 3

z
;:,
a:

SERf'lCH DEP fH 4

u•lfOHH OISTnlBUJ ION Of JfRHl tinL NOOf SCOHfS

- URnN(H FnC JOA

BRANCH FACT OR

BIIANCli fllCTOR

BMNCH Fn(JOA

OR~NOI FAC JOA

2

~: ' - -··•-·--···- ------•---~--- • . ·--- ·---·------·--t-,, .__......, ... __ .. , _..._..__.
"b . CIO l.ltO 8.CIO ,z . uo 1r, . (JO .! U. (JO 2.., , c,o lO . C>O

"' " C ~

0 .. ~
z;:
• J ,,
,, "

.~ ~
w -

NUH eE R OF rnocr sson ·, USED JU sr.nnr. 11 THE rnEE

Fig. 9

SF:nRCti DEPTH 4

IH< If OAH Gl~IRIBUJ ION Of J[RM I NAL NODE ;·--------
BRANCH f AC J OR .. BAqN(II fAC JOA

OHn!lf.11 F AC JOA 4

8Rqll(H f<lCTOA

.,.,.
~ . -~--.. ·--- -·-.---·-·· ·-· -·-•

... --------··-----•-- ·--- •-- ·-- -·- - ·It·· ·---·-•

~ .,._---- •---- .. -· -·--~-----•

SCOAtS

'\ M1 .;\r, 8~.;-CJ-- -~~·7io--it7,Q / ~~~C)-····~ ~-;;z---~ .llO
tllJMP.r.A or rnoCf_'j~(H1~ IJ Sf. O L J(nflCtl Tit (fll(f,

Fig. 10

231

a:

SEARC li DEPTH Lj

UNIFORM DISTRIBUTION Of IERHINAL NOOE SCORES

BAnNCtl FACTOR

BRANCH FACTOR

anm1c11 f AC I OR

w 0

a.,~~-~i
z -

.--,--·- • ---- ··- .. •·· ···------·--

------·--+---- -•---·------•
7o. (JO --.'.-•• --ti,~-----,~~~o·--2tc;o-z~oO----:i. . (10

NUHef.A Of PAOCC,SOAS U,f.O JO ,EnACII l•tE JRU

~

., .

n
0

Fig, 11

5ERRC II DEP fli :. 5

BRANnt FACTOR = LI

Oi 5 TR1BUfl0N or JERH(NAL NOOE SCORES

UN I FORH

EXPONENJIAL

~b.~o-- - ·-- -- - ·-+ ·------.. -- - -·- --+-- - - ·-+----•-------. 'l , <Jo a. c,o ,<' . l'.IO 16 . CIO 10.00 l11.oo 1e.co
NUMC[R UF PAU CESS OH S USt O ro S(RAC II IHE IREE

Fig. 12

APPLICATIONS OF THE CONTRACT NET FRAMEWORK: SEARCH

Reid G. Smith

Defence Research Establishment Atlantic
Box 1012

Dartmouth, Nova Scotia, B2Y 3Z7, Canada.

Abstract 1

We discuss the implementation of heuristic
search algorithms in a distributed problem solver
whose processors interact according to the contract
.D.tl. protocol. Task distribution is viewed as a
local mutual selection process based on a two-way
transfer of information between processors wit h
tasks to be executed and processors with knowledge
sources capable of executing those tasks.

As an example of the approach, we consider the
N Queens problem. We then derive measures of the
speedup that can be expected from the application
of a distributed processor to search problems that
involve regular trees, and discuss the effect of
coupling between processors on speedup . Bounds are
developed for the number of processors that are
required to achieve maximum speedup .

Introduction

Distributed problem solving is the cooperative
solution of problems by a decentralized and loosely
coupled collection of knowledge-sources (KSs), each
of which may reside in a distinct processor node.
The KSs cooperate by sharing tasks and/or results.
By decentralized we mean that both control and data
are logically and often geographically distributed;
there is neither global control nor global data
storage. Loosely coupled means that individual KSs
spend most of their time in computation rather than
communication. Such problem solvers offer the
promise of speed, reliability, extensibility, the
ability to handle applications with a natural
spatial distribution, and the ability to tolerate
uncertain data and knowledge.

Search problems are attractive as applications
of distributed problem solving for three ma jor
reasons. First, exploration of a search space of
the size commonl y encountered in Al applications
consumes a large amount of computing time (see, for
example, discussions of Meta-Dendral [Buchanan,
1978], and CONGEN [Carhart, 1976]) . Thus, the

1 This work was supported in part by the
Advanced Research Projects Agency under contract
MDA 903-77-C-0322, and the National Science
Foundation under contract MCS 77-02712. Some of the
work described is being pursued i n coll11boration
with Randall Davis at MIT. Joe Maksym also made a
number of valuable comments.

232

speedup promised by the distributed approach is
attractive. Second, search problems are often
modular in form. Numerous relatively independent
subtasks are created during the course of a search.
These subtasks are ideal candidates for
distribution to individual processors. Finally,
search is one of the major problem-solving
paradigms . It is therefore important to develop
tools for applying the new VLSI technology to
search problems.

2 Task-Sharing And Contract Negotiation

The contract .D.tl. protocol [Smith, 1978],
[Smith, 1979] facilitates cooperation of multiple
processors in the solution of a problem. Dynamic
matching of tasks and KSs is effected by
negotiation. A contract is an explicit agreement
between a processor that generates a task (the
manager) and a processor willing to execute the
task (the contractor). (Note that a processor is
assumed to contain one or more KSs.) A contract is
normally established by a process of local mutual
selection based on a two-way transfer of
information. In brief, available contractors
evaluate task announcements made by several
managers until they find one of interest . They
submit a bid for that task. The manager then
evaluates the bids received from potential
contractors and selects the one it determines to be
most appropriate. Both parties to the agreement
have evaluated the information supplied by the
other and a mutual selection has been made.
Control is distributed because processing and
communication are not focussed at particular
processors, but rather every processor is capable
of accepting and assigning tasks.

Contract net messages contain slots for
information that aids negotiation. A task
announcement contains three such slots. The
eligibility specification is a list of criteria
that a processor must meet to be eligible to submit
a bid. It enables a processor receiving the
message to decide whether or not it is able to
execute the task. This specification red uces
message traffic by pruning processors wh0se bids
would be cleArly unacceptable. The task
abstraction is a brief description of the task to
be executed. It enables a processor to rank the
announced task relative to other announced tasks.
An abstraction is used rather than a complete
description in order to reduce the length 0f the
message. The bid specification is a description of
the expected form of a bid. It enables a proce3sor
to include in a bid only the information about its

capabilities that is relevant to the task rather
than a complete deiscription (called a node
abstraction). Thiis simplifieis the task of the
manager in evaluating bids and further reduces
meseage traffic.

3 Distributed Search: Overview

In thiis section we discus:, some general
characteristics of diistributed search. We then show
how the contract net protocol can be used to
organize a distributed problem solver to perform
such a search.

Consider the exhaustive search of a tree in a
distributed processor. To make clear the flow of
the search, we make the following assumptions: (1)
the basic task for each processor is generation of
a successor node in the tree, (ii) as soon as a
processor generates a node, it distributes that
node to another processor for further expansion,
(iii) generation of each node requires a constant
processing time, (iv) there is a sufficient number
of processors so that the expansion of a node can
be commenced by one processor as soon as the node
has been generated by another, (v) a processor can
distribute a successor node to another processor
concurrently with generation of another successor
node, and (vi) distribution of a node to a
processor and reporting of results require a
negligible amount of time compared to the time
required to expand the node.

The flow of the search process is shown in
Figure 1 for a regular tree of branching factor 2
and depth 3. The numbers inside each node circle
indicate the time unit at which the node was
generated and the processor that generated it (in
the format "time / processor").

Figure 1. Distributed Search or A Regular Tree.

At time 1, one successor of the root node is
generated. This successor is distributed (we
assume instantaneously) to A~other processor, so
that at time 2, two successors are generated. The
number of processors involved in the search rises
from 1 to 4 and then decreases again to 1 before
completion.

It is apparent that problems that entail a
large amount of search are especially amenable to a
distributed approach--they have the potential for
large speedups. In addition, trees comprised of QB.

233

nodeis lend themselves more readily to concurrent
exploration than do those comprised of Mm. nodes.
This is because less processor synchronization is
required for their exploration. Trees with
Ordered-AND nodes (1. e., nodes that must be
expanded in a particular order) are the least
amenable to concurrent exploration because they
require the greateist amount of synchronization
(which inevitably means that some processors will
stand idle waiting for results to be generated by
other processors).

In Appendix A we present performance measures
for exhaustive distributed search of regular trees.
It is shown that speedups that are close to linear
in the number of processors are possible. It has
been shown elsewhere (e.g., [Imai, 1979]) that
better than linear speedups are possible. This
result follow:, for problems in which application of
multiple processors can eliminate fruitless
expansion of a large number of nodes. We also see
from the analysis that trees that are bushy near
the root lead to larger speedups than trees in
which bushiness occurs at larger depths. This is
due to the fact that more processors get involved
quickly, and the nodes they generate can often be
queued for later expansion with no increase in
search time (because of the decreased demand for
processors as the search nears completion).
Finally, it is shown that loose-coupling must be
maintained if maximum speedups are to be achieved.

3.1 Node Selection

In a distributed search, selection of nodes
for expansion and generation of their successors
are asynchronous, local processes. Node selection
is especially different from the uniprocessor case,
where a global evaluation function is used to
select one node to be expanded next. Distributed
search strategies have a local character because
many nodes may be selected concurrently for
expansion by individual processors, usually based
on a more local evaluation.

If interprocessor communication is severely
constrained, then as a processor generates new
nodes, it queues them locally for expansion and
processes them alone as soon as it can (in an order
dependent on its search strategy). Only when a
processor is idle and has no nodes queued for
expansion does it communicate with other processors
to acquire new nodes. We call this~ queuing.
The result is a local approximation to one of the
familiar uniprocessor search strategies.

It is possible to impose a global search
strategy on a distributed processor by transmitting
all nodes ready for expansion to a central
repository. A global evaluation function can ~hen
order the nodes, and idle processors can remove
them (in order) from the repository. We call this
.&l.Q.Qa.l queuing. Unfortunately, it can lead to
bottleneck and reliability problems. In addition,
when communication costs are high, it can lead to
lower speedups than local queuing (see Appendix A).
The main advantage of global queuing is that it

1

: I

I

i
.'·

offers the potential for ensuring that the ~
nodes are expanded first because the evaluation
function has a global perspective. When local
queuing is used, other measures must be taken to

. approximate a global perspective. This is an
example of the general problem of achieving
coherent behavior in a system that uses distributed
control. Distributed control is necessary if the
advantages of distributed problem solving are to be
achieved--but it leads directly to a problem in
maintaining global coherence.

Better approximations to global strategies are
obtained at the price of interprocessor
communication. The intent of a best-first search in
a uniprocessor, for example, is to select the most
appropriate node for expansion at any given time.
If interprocessor communication is severely
constrained, then an individual processor can only
select the best of the nodes that it has stored
locally; and none of these nodes may be the overall
best node to be expanded. If the processors can
communicate more extensively with each other, then
several of the overall best nodes can be
concurrently selected for expansion by separate
idle processors. We will see how this is done with
the contract net protocol in the next section.

4 Example: The N Queens Problem

The goal of the N Queens problem is to place N
queens on an N x N chessboard in such a way that no
two are on the same row, column, or diagonal. We
discuss one possible implementation of this problem
as a simple introductory example of the issues that
arise in an application of distributed problem
solving. Section 4.1 shows sample messages
transmitted by processors during the solution of
the problem.

The processor at which the problem is started
(the top-level processor) begins with an empty
board. It generates N subtasks, each of which
corresponds to a partial~ with 1 queen in the
first column and in a different row for each
subtask. These subtasks are announced. Bids are
submitted by other idle processors. Successful
bidders are awarded contracts for the task of
extending the partial boards to completion. The
top-level processor is the manager for this task.
(It is now free to become a contractor for future
subtasks.)

This process is continued recursively for each
column of the board; that is, the contractors
trying to extend partial boards (here, with 1 queen
already placed) Renerate independent subtasks by
placing a queen in the next column (here, the
second column) under the no-capture constraint.
They then distribute the subtasks (and take on the
role of manager for them) .

There is thus only one type of task for all
processors--extension of a partial board. When a
processor node places the Nth queen, and thus has a
complete solution to the problem, it reports to its

234

manager. (Similarly, when a processor cannot
further extend a partial board, it reports to its
manager.) Further reports ripple upward to the top
level and the search terminates when some pre
specified number of solutions has been compiled;
that is, when any manager has received the required
number of solutions, it terminates any outstanding
subtasks within its span of control and reports to
its own manager. This manager in turn terminates
outstanding subtasks, and so on. Ultimate ly, the
top-level node reports the solutions to the user .

The task abstraction of each task announcement
specifies the type of task to be executed and the
present .ll.t.al;& of the task, relative to the goal
state (in this case, the number of queens that have
already been placed on the partial board). The
number of queens placed gives a potential
contractor a method for ranking announced tasks in
order to select a task for submission of a bid . It
is used by processors in this example to effec t an
approximation to the desired global search
strategy . A breadth-first strategy, for example,
is implemented by ranking boards that have a small
number of queens placed higher than those that have
a larger number of queens placed. Bids are
submitted first for these boards, and they are
therefore generally executed before the others.2

We pointed out earlier that one of the
problems associated with distributed control is
approximation of the global perspective that
enables a uniprocessor to select the best nodes for
expansion at any time. This problem is handled in a
contract net as follows: Each processor listens to
all task announcements and maintains a list of
recent announcements. When a processor goes idle,
it selects, according to its own criteria, the
current optimum task for which to submit a bid from
among the tasks contained in its list. Each
processor therefore has a kind of ~ through
which to view the currently available tasks. This
window lends a more global character to the search
strategy because node selection is based on
information received from a number of processors.
The cost is local storage (for the list of tasks)
and communication (to gain information about tasks
available from other processors).

Two possible eligibility specifications are
shown. The first is a null specification . The
assumption here is that all processors have the
necessary procedures for executing the extend- board
task. A bid then simply indicates that a processor
is willing to execute the announced task, and the
contract is awarded to the first bidder. In the
second case, the eligibility specification names
the required procedures. The assumption here is
that not all processors are pre-loaded with the
necessary procedures. A potential contractor can
submit a bid indicating that it needs the
procedures to execute the task . In this casJ the
contract is awarded to the first processor that has
the procedures, or, in the absence of any such

2 It
different
processors.

is of
search

course possible
strategies at

to execute
different

bidders, to the first bidder. This is an example of
dynamic transfer of knowledge. (See (Smith, 1978)
for a more extensive discussion.) A simple award
strategy (i. e., award to the first bidder) is
possible for this problem because any processor
with the procedures has the capability to execute
the task.

4.1 Sample Messages

<The processor given responsibility for the top
level task issues messages of the following form as
it generates the first subtasks.>

To: • <"*" indicates a broadcast message.>
From:
Type: TASK ANNOUNCEMENT
Contract: 1

Task Abstraction:
TASK TYPE EXTEND-BOARD
BOARD QUEENS 1

Eligibility Specification:
NIL <or> PROCEDURE NAME EXTEND-BOARD

Bid Specification:
NIL

To: 1
From: i
Type: BID
Contract:

<Idle processors respond.>

Node Abstraction:
NIL <or> REQUIRE PROCEDURE NAME EXTEND-BOARD

To: i
From:

<To the successful bidder.>

Type: AWARD
Contract: 1

Task Specification:
BOARD SPECIFICATION (...)
PROCEDURE NAME EXTEND-BOARD CODE (...)

To: k
From: q
Type: REPORT
Contract: j

Result Description:
SUCCESS

<If required.>

<Eventually, messages like
this are transmitted.>

BOARD SPECIFICATION (...)
<or>

FAILURE

235

To: n
From: m
Type: TERMINATION
Contract: i

5 Summary

<When enough solutions have been
accumulated by a manager, it

sends messages like this
to its contractors.>

We have shown the use of the contract net
protocol in the solution of a search problem. The
negotiation process is particularly simple for this
problem and a minimal amount of information needs
to be transferred between processors. Consequently,
only a degree of the power of the approach is
demonstrated. The main use of the protocol in this
example is to make connections between processors
for reliable distribution of the processing load
and communication of results. Processors are
efficiently used because they can take on multiple
roles: A processor tha t has generated all 1-queen
extensions to the current board and distributed
them to other processors (contractors) need only
deal with reports occasionally (in its role as
manager). It is therefore · free to act as a
contractor for other tasks. The result is that no
processors remain idle as long as there are tasks
to be executed. Furthermore, processors are able
to obtain the procedures necessary to execute tasks
as part of the negotiation process. Finally, The
explicit manager-contractor links assist in rapid
local pruning of the search space (via termination
messages) when a sufficient number of solutions has
been found. Each manager can directly terminate
the execution of subtasks being executed by its
contractors as soon as it becomes aware that the
results are no longer required. The net does not
have to wait for reports to reach the top-level
processor before subtasks are terminated.

We have demonstrated the utility of
negotiation as an approach to the problem of
maintaining global coherence in a system that uses
distributed control. The problem is by no means
solved, however, and is a focal point for further
research, One of the extensions currently under
examination is to have processors listen more
carefully to the message traffic around them. At
present, only task announcements are examined by
all processors. It may prove beneficia l for other
messages (e.g . , bids, awards, and reports) to be
subjected to the same scrutiny. It may, for
example, lead to more informed bid and award
strategies.

Appendix A

Distributed Search Analysis

We derive bounds on the performance that can
be expected from distributed search of regular
trees. Although we only explicitly consider
regular trees in this analysis, the results are
easily extended to a more general class of trees-
those that are compositions of regular trees. (See
(Smith, 1978) for details.)

I
·1

. I

A. 1 Speedup

The total number of nodes, n, in a regular
tree structure with depth d and branching factor b
is,

n = (bd+l 1)/(b - 1) . (1)

The number of tip nodes, nt, in such a tree
is,

(2)

The time required for the search is the most
appropriate measure of performance for a
distributed processor. The traditional
uniprocessor measure of number of nodes examined is
still a valid measure of the power of the search
strategy, but is insufficient to capture the effect
of multiple processors.

A. 1. 1 Uniprocessor Search

The search time divides into two components:
the time to expand a node, te, (i . e., the time
required to generate all successor nodes of a
node), . and the time to select a new node for
expansion, ts. The time to expand a node can be
rewritten in terms of the time required to generate
a single successor node, tg, as follows,

te = b·tg. (3)

The minimum time to find one goal node in
regular tree is achieved if the tree is searched i"n
a depth-first fashion and no false paths are
explored. Und~r this assumption, the uniprocessor
search time, tmin• is,

t~in = ((d - 1)·b + l)·tg + (d - 1)•t5 • (4)

We have assumed that a node is completely
expanded (i.e., all successor nodes are generated)
before a new node is selected for expansion, and
that the goal node can be recognized as soon as it
is generated. We do not consider search strategies
where only some of the successors of a node are
generated before a new node is selected for
expansion. (See [Smith, 1978J for treatment of this
type of strategy.)

The maximum uniprocessor time, t~ax, is
achieved when exhaustive search of the tree must be
performed before the goal node is found. In this
case, the search time is,

A.1.2 Distributed Processor Search

We assume the search strategy is as presented
in Section 3; that is, a node is distributed for
expansion by another processor as soon as it is
generated; there is thus no time required for
selection of nodes and the search time depends on
the time to generate a successor node, t~, and the
time to distribute a node to another processor, tc.
We assume that the tc cost must be incurred any

236

time the expansion of a node is started by a
processor, even if the node was generated by that
processor. This is the case if ilobal queuing is
used. It leads to a somewhat pessimistic estimate
for search time (and therefore speedup) but
simplifies the analysis. We will later drop this
assumption.

The minimum time for a distributed §rocessor
to find a single node in a regular tree, tmin• is,

d
tmin = d·tg + (d - 1) ·tc. (6)

The maximum time, d
tmax• is given by,

d
tmax = d·b·tg + (d - 1) ·tc. (7)

This is equivalent to the time required to expand
the nodes that border the tree on one side .

A.1,3 Comparison

The speedup for exhaustive, or maximum,
search, Smaxe• is given by,

(8)

Note that Smaxe is not the maximum attainable
speedup for a regular tree. It is, however, a
convenient measure for comparison. We will later
derive the address of the tip node for which the
maximum speedup is attained.

Note also that as the selectivity of the
search strategy is augmented, thus diminishing the
need for exhaustive search, the advantage of
concurrent computation is also diminished.

In order to draw some simple conclusions from
the Smaxe equation, we will assume that ts « tg.
Under this assumption,

smaxe ::: (n - 1)/(d·b + (d - 1) · (tc/tgl) . (9)

tc/tg is a measure of the coupling between
processor nodes for the distributed search problem.
We call this ratio the processor-coupling-factor,
C , (Note that it depends on both the
cRaracteristics of the task and the characteristics
of the distributed processor.) Thus, rewriting (9),
we have,

Smaxe::: (n - 1)/(d·b + (d - 1)·CP). (10)

Figure A. 1 shows the variation in S axe as a
function of CP for a regular tree of °!;ranching
factor 3 and depth 6. The cost of a mismatch
between the task grain size and the communications
characteristics of the distributed proces~or is
apparent: Loose-coupling must be ensured by a
proper match of task grain size to distributed
processor communications characteristics if a
significant speedup is to be achieved.

Figure A.2 shows the maximum speedups
attainable for exhaustive search of th1·ee regular
trees, of branching factor 2, 3, and 6, as a

function of
C = 0. Also
tRe minimum

depth, under the assumption that
shown is Smin, obtained by comparing
time for a distributed processor to

search a regular tree, t~in• with the minimum time
required for a uniprocessor, t~in, assuming that
all successors of a node must be generated before a
new node can be selected for expansion.

1., Noraalised Speed•p

It• 3, d • 6

•••
e.&

....
8.2

e.e-+---.-,-,......,....--.-'l'"T'!..._.--.....,....,.., __,....,..,..,..,.,.,.,

1,-2 1,-1 1 18 112

•

Processor Coupling Factor

Figure A.1. Speedup And Coupling

Speedup

C. • •

S.1a

a

L.-,~------&
~i:::::--------3

~=----------2

2 .. & 8 1t
Tr•• Dapt.h

Figure A.2. Speedup For Three Regular Trees

237

A.2 Processor Requirement

We derive lower and upper bounds on the number
of processors, Pmax• required in a distributed
processor to obtain the maximum speedup for the
exhaust! ve search of a regular tree. We assume
that tc = O, and that tg = 1.

As a lower bound, it is apparent that at least
Smaxe processors are required to achieve a speedup
or smaxe. This is overly optimistic because it
assumes that all processors are fully utilized
throughout the period of the computation. Near the
start and end of the search, however, very few
processors are in use.

In order to improve the estimate, consider the
rate at which processors are pressed into service
as the search progresses. The number of new tasks
generated at each successive time unit in the
search of a tree of infinite depth and branching
factor b is given by the following generalized
Fibonacci series of order b,

p* • • • j = (Pj-1 + pj-2 + + pj-b). (11)

j = 1,2, 3,

p*
j = o, j < -1.

• p• p -1 • 0 = 1.

where the "*" superscript is used to indicate
that the series is writ ten for a tree of infinite
depth. To account for the finite depth of the
trees of interest, the equation can be modified as
follows. Observe that whenever a processor reaches
a tip node in the tree, the effect is to prune a
subtree from the infinite tree. This pruning begins
after d time units. We can account for the pruning
of these subtrees by subtracting Fibonacci series,
that start at times when processors reach tip
nodes, from the original series. The number of
series to be subtracted at each time instant
corresponds to the number of tip nodes reached at
that time instant. The number of tip nodes reached
at each instant of time (starting at the dth time
instant, when the first tip node is reached, to the
b • d th time instant, when the search is completed)
is given by,

j = d, d+1, d+2,
kj = o, j < d,

(12)

.... b·d.
j > b•d .

where Cm('lh k) is the coefficient in the nth row
and the k column of the m-arithmetic triangle.
In general, the Cm(n, k) obey the equation,

Cm(n, k) = Cm(n-1, k) + Cm(n-1, k-1) + (13)

... + Cm(n-1, k-m+1).

0 < k ~ n· (m-1), n > 0.

Cm(O, 0) = 1.

Cm(1, k) = 1, 0 < k < m-1.

Cm(1, k) = o, k > m.

Thus the number of processors required, Pj, is
given by,

pj = p~ - kd·P~-d - kd+1·P~-(d+1) - (14)

• ..• - kb•d.pj-(b•d)·

j = 0,1,2, ... , b·d.

And an upper bound on the number of processors
required is given by,

Pmax = MAX(Pj). (15)

0 ~ j < b·d.

This estimate is an upper bound because of the
assumption that nodes cannot be queued for later
expansion, but instead must be expanded as soon as
they are generated. This is not generally required
because of the lower demand for processors as the
search nears completion.

Proceaaora

C, • •

2

112345678911
TrH Dept.al

Figure A.3. Processor Requirement

238

Figure A.3 shows the two bounds for the
required number of processors for exhaustive search
of the same three trees as used in Figure A.2. Also
shown (by dash£d lines) is the actual number of
processors required to achieve the maximum
exhaustive search speedups (as determined by
simulation).

Figure A.4 shows the increase in normalized
speedup for a tree of branching factor 3 and depth
6 as the number of processors is varied. Also
shown is corresponding decrease in efficiency
(i.e., speedup per processor). This is a
conservative estimate of efficiency, in that it
includes processors that stand idle near the start
and end of the search. These processors might be
applied to another top-level problem during this
time in a general-purpose distributed processor .

We noted earlier that the speedup estimates
for distributed processor search are slightly
pessimistic, because of the assumption that the
cost tc is ~ incurred when a processor
acquires a node for expansion. In Figure A. 5, we
show the effects of dropping this assumption. The
figure compares the possible speedups for varying
numbers of processors on a tree of depth 6 and
branching factor 3 for both the global queuing of
nodes to be expanded and the local queuing of such
nodes. The speedups are normalized to that
attainable with a global queuing strategy. A small
number of sample points are marked with symbols to
allow the reader to distinguish between the curves.

• 25 St 75 1H 125 151
N~•b•r of Proceaaora

Figure A.4. Speedup And Efficiency

Noraa\1aed Spe•dup
1.2 ..

C, • 1

1., ..

,.att

.. , .. 1
I -,

e.2e,J
C

<> -
6 -

Global Breadth firat
Global D•pth first
Local Breadth firat
Local Depth firat

••• ,,_..~~~ ~~~....-~~-T~~~~

I
8.e .. s.e g9.e 135.8 188.8

Nuaber of Proceaaora

Figure A.5. Speedup And Queuing Strategy .

Local queuing strategies are useful when CP is
high. In Figure A.5, C = 1. We see a small
improvement for local queufng in each case.

For further comparison, two selection
strategies have been used for the figure: breadth
first and depth-first. We see that a breadth-first
strategy leads to slightly better speedups than a
depth-first strategy, mainly because tasks get
distributed to idle processors earlier in the
search.

A.3 The Maximum Speedup

We now derive the address of the tip node at
which the maximum speedup is attained. As in the
previous section, we assume that CP = O, tc = O,
and tg = 1.

We can write the address of a tip node, ak, as
follows,

ak = k + n - nt. (16)
0 < k < nt.

where k is the .illil.U of the tip node. ak is also
the number of time units required by a uniprocessor
to reach the tip node with that address, using a
breadth-first search algorithm, under the above
assumptions.

The number of time unJ• s , tk, required by a
distributed processor to reach the node with
address ak -is given by,

(17)

where w j = { O, 1, ... , b- 1}, 0 < j < d-1 are

239

the values of the bits in the b-ary representation
of the index, k.

Hence, the address of the node for which the
maximum speedup is attained, asmax• is the ak that
maximizes ak/tk.

References

[Buchanan, 1978]
B. G. Buchanan and T. M. Mitchell, Model
Directed Learning Of Production Rules. In D.
A. Waterman and F. Hayes - Roth (Eds.), Pattern
Directed Inference Systems. New York: Academic
Press, 1978. Pp.297-3 12 .

[Carhart, 1976]
R. E. Carhart and D. H. Smith, Applications Of
Artificial Intelligence For Chemical Inference
XX. Intelligent Use Of Constraints In
Computer-Assisted Structure Elucidation.
Computers In Chemistry, Vol. 1, 1976, p . 79.

[Imai, 1979]
M. Imai, Y. Yoshida, and T. Fukumura, A
Parallel Searching Scheme For Multiprocessor
Systems And Its Application To Combinatorial
Problems.~. 1979, pp. 416-418 .

[Smith, 1978]
R. G. Smith, A Framework .E.2I:. Problem Solving
In A Distributed Processing Environment. Ph.D.
Dissertation, STAN-CS-78-700 (HPP-78-28) Dept.
of Computer Science, Stanford University,
December 1978.

[Smith, 1979]
R. G. Smith, The Contract Net Protocol: High
Level . Communication And Control In A
Distributed Problem Solver. Proceedings 2f. ~
.F.ir:.l1t. International Conference Qn Distributed
Computing Systems, October 1979, pp. 185- 192 .

I

I
I

. I

I

I

1
. I
I

A GEOMETRIC MODEL APPROACH TO REPRESENTING
GRAPH-SEARCH PROBLEMS: FIRST RESULTS

John Gaschnlg

Artificial Intelligence Center
SR I International

Menlo Park, CA 9402S

Abstr .act
A change in representation can sometimes simplify a

problem considerably. Given a prob lem (defined in some
specific representation or encoding), it would be useful
then to be able to find alternative representations for
it, preferably ones that simplify the problem. Better yet
would be the ability to generate such "simpler"
encodings automatically. This paper introduces a new
approach toward these goals, based on geometric models
of graph-search problems (i.e., embeddings of the
vertices of the problem graph in a d-dimensional
Euclidean space). We show how the hmlliar English
description of a problem can be mapped into its
corresponding geometric model, and we give examples of
the "familiar" geometric model and alternative
geometric models of several well known problems
(including a "Seven squar·es 11 version of the Water Jug
problem that is simpler to solve than the familiar
version). We propose an "operator partition entropy"
measure of the simplicity of any geometric model of any
problem graph; by this measure the alternative
geometric models displayed in our examples are simpler
than the "familiar" geometric models, suggesting that
the example problems are not inherently as complicated

as the "tamlliar" models would suggest. We comment on
possible extensions to these first results, including the
possibility of searching for problem representations in a
state space of geometric models of a graph, using the
operator partition entropy measure as a heuristic to
guide the search. Note that the characteristics of a
model or representation that make a problem easy or
hard to solve are beyond the scope of the present
paper; here we are explicitly concerned only with ways
to devise alternative models for describing a problem,
leaving for future work the connection between the
ease of describing a problem and the ease of solving it.

1. Introduction
Research to date on problem representation has

spanned several approaches and problem domains. The
closest in spirit to the present work have focused on
identifying and exploiting symmetries in problems (e.g.,
[Amarel 1968}. [Cohen 1977]). The present paper
examines the same broadly-defined class of
graph-search problems considered in the latter work , a
class that includes familiar problems such as the Tower
of Hanoi and the Eight Puzzle as elementary examples.
The object is to find a path from a given Initial node to
a given goal node. This class of problems has also been
studied extensively as a domain for the A• best-first
search algorithm (e.g., [Nilsson 1971]. [Pohl 1977 J.
[Gaschnig 1979a]). One advantage of this particular
class of problems Is that since a problem is defined as a
graph, questions about a problem's representation, or
alternative representations, or the "simplicity" of such
representations can be formulated in precise terms.
This paper attempts to be precise in Its statements,
although sometimes informal for illustrative purposes.

Amarel [1968) investigated a sequence of
alternative models for the Missionaries and Cannibals
problem, successively grouping the nodes of the graph
into larger equiva lence classes, and defining new
operators (and macro-operators) accordingly. Cohen
[1977} extends Amarel's work by proposing a mechanism
for partitioning the nodes of & graph into equivalence
classes reflecting certain sorts of symmetry. Hence
both Amarel and Cohen attempt to identify abstract
problems equivalent (in a certain sense) to the given
problem, but having a smaller state space (i.e., number
of nodes). In contrast, the present approach Involves
relabeling the nodes of a problem graph so as to
partition the ~ (r ather than the nodes) into a new
set of operators that may simplify the problem.

2. Geometric Models of Problem Gr&phs: Basic Concepts

Figure 1 illustrates a basic notion that the
appearance of regularity or symmetry in a graph
depends on how it is described or depicted. The three
graphs depicted in Figure 1 are isomorphic, differing
only in the assignment of nodes of the graph to
coordinates In the plane. (The coordinates assigned to
some of the nodes are printed in Figure 1.) One might
say (Informally) that regularity Is inherent In the
topology of a graph, but is realized (or expressed or
revealed) in the arrangement by which the graph is

depicted or encoded. To find paths between arbl trary
nodes in Figure la is trivial, in Figure lb nearly so, but
apparently more difficult in Figure lc.1

Now consider the following well known problems
(fam i I i ar I t y w i th wh i ch i s presumed) :

240

,Th. . f .
1s 1n ormal claim could be stated more formally in

terms rel1ting to the performance of the A• algorithm
using as a heuristic function the orthogonal disun'ce
metric in the Euclidean plane. Such a heuristic
function would estimate distances between points in the
griph of Figure 1 exactly In the case of Figure h,
~ather accurately in the case of Figure lb, and poor IY
1 n the case of Figure 1 c.

No, of nodes No, of edges

Water Jug i .
14 372

(jug capacities 3 and 4)

Missionaries and Cannibals 16 17
(3 missionaries, 3 cannibals,
boat capacity 2)

Tower of Ha noi (3 d I SC S) 27 39

Eight Puzzle 91 = 362,880 483,840

Table 1. Sizes of graphs of faml 11 ar problems

It Is common to encode these problems In practice In
a concise form, for example, in which the configurations
of the problem (i,e,, nodes of the graph) are
represented as tuples whose elements ar.e drawn from
finite sets of number s, and in which the legal moves of
the problem (1,e,, the edges of the graph) are spanned
(disjointly and exhaustively) by a set of operators, each
of which Is a function that takes a tuple as argument
and returns the tuple of a node connected to the
argument node, If any exist for that operuor (1.e,, If
the precondition of the operator is satisfied for that
argument tuple). For example, In Figure la one such
operator might be defined as RIGHT (x, y) = (x + I, y).
whose precondition Is satisfied If x < 4.

The configurations of the Water Jug problem can be
represented in this way by tuples of the form (Cl, C2),
where Cl Is the current contents of jug 1 (I.e., O, 1, 2,
or 3 units of liquid), and C2 is the current contents of
jug 2 (0, 1, 2, 3, or 4 unlts),3 The commonly defined
operators for this problem can be called EMPTY-1 (I.e.,
empty jug 1), EMPTY-2, FILL-1, FILL-2, POUR-1 (i.e . ,
pour the contents of jug 1 into Jug 2 until either jug 1
Is empty or jug 2 is filled), and POU R-2. Similarly, the
Missionaries and Cannibals configurations can take the
form (M,C,B), where M, C, and B denote the number of
missionaries, cannibals, and boats on the left side of the
river (i.e., 0, 1, 2, or 3 missionaries; 0, 1, 2, or 3
cannibals; 0 or 1 boat; certain combinations are
forbidden). Similarly, a configuration In the Tow er of
Hanoi problem can take the form (D1, D2, D3), where
DI denotes th e number of the peg on which disk i
currently resides (the pegs are numb ered 1, 2, and 3),
Similarly, a configuration in the Eight Pu.zzle can take
the form (Tl, T2, ... , TS), where Ti denotes the square
of the board on which the tile numbered i currently
resides (the squares are labeled 1 through 9 in some

2No t e t ha t edge s i n t he Wat e r J u g gr a p h are
directed (since some operato rs have no Inverse) ,
wh i I e those in the graphs of the oth er prob I ems
cited in Table 1 are undirected.

3certain combinations are precluded by the
preconditions of the operators.

241

convenient ordering),4

The present appr oac h Is to consider each instanc e of
such a tuple as the coordinates of a point in Euclidean
space. Then the ;above tuple encodings determine an
assignment of the node s of the problem graph to
coordinates In space, and the edges connect pairs of
coordinates In space, Hence the familiar English
description can be m;ipped Into ;i geometric picture.
Figures 2a, 3a, and 4a depict the geometric models
corresponding to the Water Jug, Missionaries and
C;innibals, and Tower of Hanoi encodings given above.
In Figure 2a the sequence of edges labell ed Pl, P2, P3,
P4, PS, P6 indicates the moves to transform the initial
state (0,0) into the goal state (2,0),

3. Examples of Alternative Geometric Models

It Is clear that an infinite number of geometric
models of the Water Jug problem (or of any other
problem graph) is pos s ible, si nce the nod es o f that
graph can be ass igned to arbitrary distinct coordinates
in N- dlmensional space (for ar bit rary N > 1). Our
objective now Is to find models that appear to be
simpler than the one in Figure 2a (or Figures 3a or 4a,
by analogy). Figures 2b, 3b, and 4b depict alternative
geometric models for our example problems. The origin
of these alternative models reflects divers e sources an d
methods: trial and error, observations made In previous

work for other purposes [Nilsson 1971, p. 82]. [Amar e l
1968, P• 145]. and a method similar to that In [Cohen
1977] for identifying equivalence classes of nodes in
the graph that reflect topological symmetries. (For
example, in the "Seven Squares" model depicted in
Figure 2b and describ e d In English subsequently, the
pairing of nodes reflects a symmetry discovered by this
mechanical method.) The sequence of edges Pl, P2, ••• ,
P6 in Figure 2b correspond to those having the same
labels In Figure 2a, and the nodes connected by these
e dges are similarly in correspondence. Visu a lly at least,
the alternative models given in Figures 2b, 3b, a nd 4b
appear simpler than the corresponding "familiar" models
in Figures 2a, 3a, and 4a. Apparently these problem
graphs ,-re not so complicated as the " familiar" models
would suggest.

Just as we transformed an English d esc ription into
Figure 2a, so we can attempt to describe Figure 2b in
English, thus:

There Is a board consisting of seven squares
In a row, numbered O through 6, and a checker
that is colored white on one side and b lack on
the other. The checker can occupy any square
with either color facing up. From any
(color, square) state, the checker may move to
either adjacent square without flipping color .
(Th e end squares of co urse have only on e
adjacent square.) These mov es (I.e., edges) could
be covered by operators RIGHT and LEFT

4 Note that the Water Jug probl e m is a directed graph
(since some operators have no Invers e), whereas the
oth e r problems considered here are undirected graphs,

..

. I

·,

defined as for Figure 1 a. If the checker is on
square 6, it may flip color and remain on square
6 {this set of moves covered by an operator
called FLIP6). From any state, it may)U'J'P to
square 1, flipping color If it jumped from an
even-numbered square, and not fllpplng If from
an odd-numbered square (operator JUMPl). It
may jump to square O from any state, flipping if
It jumped from squares 1, 3, or 4 (operator
JU MPO-F LIP), and not , flipping otherwise
(operator JUMPO-NO-FLIP).

Although finding a minimal-length path in Seven
Squares may not be trivial, It is trivial to find a
non-minimal length path for any Initial state S and goal
sute G: if S and G are the same color, simply move
RIGHT (or LEFT as the case may be) from S to G,
otherwise move RIGHT to square 6, flip, then move
LEFT to G,5

Superficially the Water Jug problem and the Seven
Squares problem are not similar at all, yet tli~ir graphs
are isomorphic, Just as Figure 1a Is an apparently
simpler isomorph of Figure 1 c, so Figure 2b is an
appare ntly simpler isomorph of Figure 2a,6,7

SThis approach ignores (I.e., doesn't use) the JUMPO,
JUMP1, JUMPO-FLIP, and JUMPO-NO-FLIP operators.
In a sense, then, we are thereby finding paths In a more
constrained graph, l,e,, the variant of Figure 2b In
which the edges corresponding to the JUMP operators
are deleted, An aspect of the impllcatlon of deleting
edges in problem graphs is considered in an "edge
subgraph" approach to devising heuristics [Gaschnig

1979b J.

6There does not appear to be any simply stated rule
for mapping between states in Figure 2a and the
corresponding states in Figure 2b, This Issue of mapping
between geometric models may turn out to be important
for practical considerations, but is beyond the scope of
the present initial Investigation.

4. An •operator Partition Entropy• Measure
So far we have demonstrated how a problem

representation can be mapped to a geometric embedding
or model of a graph, and have presented instances of
such models for several common problems, includlng
"familiar" models and alternative models that appear to
be simpler, at least with respect to one's visual
Intuition. Now we propose a quantitative measur e of
the simpllcity of an arbitrary geometric model of an
arbitrary problem graph.

The definition of operator partition entropy is
motivated (although only loosely) by the information
theoretic approach of Chaltln [1975], In the present
context, we observe that a theory about problem
representation can try to account for and measure the
information content of a problem,8 Any member of the
particular class of finite, stronaly connected graphs
considered here can be reconstructed from the closur e
of applications of the oper at ors to any arbitrary node,
Hence here we seek a measure related in some way to
the amount of information required to specify the
operators, .i,e,, to encode the precondition and "action"
of each operator, In this first effort, we ignore the
precondition and consider only the "action" of an
operator.

242

Our approach is that each geometric model of a

7our discovery of the "Seven Squares" model of the
Water Jug was aided by the results of a mechanical
process for partitioning the nodes (as opposed to the
edges) of the Water Jug graph into seven equivalence
cluses corresponding to the seven squares, each class
containing two nodes (corresponding to the checker's
color), This symmetry-factoring algorithm involves only
topological considerations, and is similar to a method
described by Cohen [1977], The method successively
spllts the classes of an initial partition, according to
the following principles : (1) initially partition the nodes
according to the number of incident edges; (2) associate
a symbol (e.g., A, R, etc.) with each such equiV1ience
class; (3) choose one equivalence class (e,g,, A) and
associate with each of its member nodes n1 the list of
the nodes n1 connecting n1 by an edge; (4) in the list
associated with each such node n1 replace each node nj
by the symbol denoting the equivalence class to whicli
nl belongs, hence associating with each node n1 a
multiset of class names (e.g., {A,B,B,C); (5) partition
the nodes n1 Into new equivalence classes, each of
whose members have identical associated multisets, The
method proceeds {details omitted here) until no further
partitions ensue,

8To be concrete, the Eight Puzzle graph has 9! nodes
and 4/3*91 edges, but its connection matrix can be
constructed from instructions far less verbose than 91
bits ,

graph (I.e., assignment of the nodes to distinct points In
an N-dimenslonal Euclidean space) should determine a
unique partition of the edges into exhaustive, mutually
dlsfolnt subsets, I.e., into equivalence classes. (By our
approach each equivalence class will correspond to an
operator.) From this partition of the edges of the
graph we shall compute a number.

To illustrate the approach, consider Figure la. It Is
convenient in practice to partition the edges of Figure
la Into four oper.ators: RIGHT, LEFT, UP, DOWN.
Hence for all (x, y) such that x < 4, RIGHT(x, y) =
(x + 1, y) specifies a (directed) edge from the node
(x, y) to the node (x + 1, y). We adopt the shorthand
notation RIGHT (x, y) = <1, O> to Indicate that
R IGHT(x, y) adds 1 to Its x argument and O to Its y
argument. We call <1, O> the action expression of
RIG HT. By this convention the action expression of
DOWN Is <O, 1 >. Hence the edges of Figure la are
covered by four act ion expressions: <1, O>, <O, 1 >, <-1,
O>, <O, - 1 >. In this way a geometric model determines
a set of action expressions covering all the edges.
(I.e., the operators are not ·chosen freely but are
determined by the geometric model). For simplicity and
convenience we shall actually consider undirected edges
rather than directed edges, and say that Figure la
determine two action expressions: HORIZONTAL = <1,
O> and VERTICAL= <O, 1>.

Similarly, Figure 1 b determines the action
expressions <1, O>, <1, 1>, and <1, -1>, covering 12, 6,
and 6 edges respectively. Simllarly, Figure 1 c
determines action expressions <1, O>, <1, -1 >, <1, 1 >
<1, -2>, and <1, -4>, covering 9, 9, 4, 1, and 1 edges,
respectively. This approach applies to the models in

Figures 2, 3, and 4 as well, so that in general a
geometric model determines an action class partition (or
operator partition) of the edges.9

With each operator i we can associate the fraction

P1 of the total number of edges covered by that
operator (i.e., action expression). This suggests the
entropy formula standard in information theory:

where c is the number of operators (i.e., equivalence
classes in the partition). H0 p takes the maximum value
log2 m when each of the m edges belongs to a distinct
equivalence class; H0 p takes the minimum value O when
all m edges belong to the same equivalence class.

We make no claim that H0 is the most appropriate
measure of the simplicity of pa geometric model, but
simply that investigations of its properties may provide
insight for future extensions of the present results.
Nevertheless, we do no·u the fundamental result in
Information theory (Khlnchin 1957, Shannon & Weaver
1972 J that the number of bits to transmit a symbol
chosen from a finite collectlor , of c symbols, each

symbol s, having probability Pi of being selected for
transmission, is given by the H0 p formula above. Hence

9The approach Is generalized somewhat in the case of
the Water Jug problem.

one could transmit them edges of a graph using m•H
0

p
bits. (Whether this is of more than simply metaphorical
significance In the present case is debatable.)

The model in Figure la has two operators
(HORIZONTAL and VERTICAL), each spanning 12
edges, hence P = .5 for each operator. He nce we

obtain H0 p = - (.S log .5 + .5 log .S) = 1, compared
wl th the maximum value Hrnax = log 24 = 4.58.

In Figure lb there are 3 operators, having P = 0.5,
0.25, and 0.25, respectively, giving H

0
p = 1.s. The

operators In Figure le span 9, 9, 4, 1, and 1 edges
respectively, giving H0 p = 3.605. As fractions of the
maximum value 4.58, the H0 p values of Figures la, lb,
and le _are F0 p = Hop/1-\nu = 0.22, 0.33, and 0.79,
respectively.

Tab I e 2 s i mi I a r I y comp ar e s the " fam I I i a r • and
a I t e r n ilt I v e g e ome t r I c mode I s of the Wat er J u g ,
Missionaries and Cannibals, and Tower of Hanoi.
Besides the version of the Water Jug problem having jug
capacities 3 and 4, the following table lists analogous
r e s u I t s tor a v er s i on ha v I n g j u g cap a c i t I e s 5 and 8. No t e
that the •seven Squares• model general lzes in the
l atter case to the 11 13 Squares" model, having. an
appearance and operator partition similar to the those
of the "Seven Squares" model. Note that sealing the
Wllter Jug problem parametrically In this way causes
little change In the value of H

0
, for either the

"familiar" or alternative modefs, because the
par ame t t i ca II y I a r g er I a r g e r prob I ems s I mp I y have mo r e
edges covered by each oper.ator (as defined in terms of

243

action expression) rather than introducing new
operators (I.e., new action expressions not included
among those for the sma 11 er variant).

Hop
(fam.)

Hop
(a It.)

Hmax Fop
(fam.)

Fop
(a It .)

Water Jug(3, 4) 2. 783 2.40 5.64 o.49 0 . 43

Water Jug(5, 8) 2. 787 2.35 6.62 0.42 o.35

Miss. & Can. 2. 19 1. 13 4.09 0.54 0.28

Tower of Hanoi 2.06 1. 58 5.29 o. 39 0.30

Table 2. Comparative operator partition entropy
values for fami I iar problems
(fam. = f.aml liar model, a It. = alternative model,
as discussed in text)

We have thus proposed one possible measure of the
simplicity of a geometric model of a problem graph.

Although H0 P. captures a very Incomplete notion of
"simplicity", its values tabulated above are reasonably
consistent with intuitlon.10

101nformation measures of graphs were apparently
first Introduced by Rashevsky [1955 J in a chem .c a l
appliHtion, and later Investigated by Trucco [1956 !.
Mowshowitz [1968]. Boncher, et al. [1976) and others,
although they putitioned the nodes of the graph in a
topological manner similar to Cohen [1977]. as opposed
to partitioning the edges according to geometric
considerations as In the present work.

, I

s. Application to Larger Problems

So far we have presented geometric models of
several problem graphs having no more than 27 nodes
and 39 edges, which classify as "toy" problems, While
the examples may be of some theoretical interest,
proving practical significance of the present approach
r equires applications to larger problems, The Eight
Puzzle, having 91 = 362,880 nodes and 4/3•91 = 483,840
edges, Is a suiUble candidate,

Tho "hmlllar• model of the Eight Puzzle
(corresponding to the II-tuple encoding mentioned in
Section 2) Is a structure in 8-dimenslonal Euclidean
spa.ce. Clearly we desire an alternate encoding having
fewer dimensions. It is also clear that we do not
actually want to draw a model of the complete graph
(although we note that chemists do make 3-D models of
large molecules), More practical would be an attempt to
devise a model of · part of the graph, and attempt to
derive insight about the structure of the Eight Puzzle
by examining It,

The previous section presented evidence In the case
of th e Water Jug problem that It Is possible to scale a
geometric model to a parametrically larger version of a
problem, This suggests that we approach the Eight
Puzzle by first considering the Five Puzzle, a 3 by 2
version having 61 = 720 nodes, Even this graph is
relatively large, and smaller versions of the puzzle are
degenerate,

To approach the Five Puzzle we take a new Uck,
namely to identify a probl e m that Is similar to the Five
Puzzle or Eight Puzzle, but which scales down to
smaller sizes. One such problem Is called the
"MAX SWAP" problem, introduced by Gaschnig [1979b l in
another context, This problem Is to sort permuliltions
of the sequence 1, 2, ... , N by Iteratively exchanging
pairs of elements , subject to the restriction that the
e lement N must participate In every swap (i,e,, swap N
with some other element), The correlate of the Five
Puzzle takes N = 6, and for the Eight Puzzle N = 9, The
element N In MAXSWAP corresponds to the hole in the
Eight Puzzle or Five Puzzle, so that 9MAXSWAP Is like
the Eight Puzzle except that any tile can jump into the
hole (as opposed to only tiles adjacent to the hole).
Hence 9MAXSWAP and the Eight puzzle both have 91
nodes, but 9MAXSWAP has more edges than the Eight
Puzzle (exactly 3 times as many, in fact). Considering
problems that have more edges than the Five Puzzle (or
Eight Puzzle) would seem to make the task of finding a
geometric model harder rather than easier, but at least
we can start with a very small case, namely 3MAXSWAP,
and attempt to scale It to larger versions of MAXSWAP,
and then attempt to devise ii geometric model for the
Five Puzzle similar to those for MAXSWAP graphs, This
is exactly what we shall do, as follows,

The 3MAXSWAP graph has 31 = 6 nodes and 9 edges,
A "familiar" encoding can take the form (Pl, P2, P3),
where Pi denote s the position In the permutation of
element I, Figure Sa depicts ii two-dimensional
perspective drawing of this "hmillar• 3-dimenslonal
mod e l of the 3MAXSWAP graph, Figure Sb depicts a
two -- dlmenslonal alternate model for 3MAXSWAP, H

0
p =

1,58 and 0, 92, respectively for these two models,
compared with the maximum value log 9 = 3,17,

The 4MAXSWAP graph has 24 nodes and 36 edges.
Figure 6 depicts a two-dimensional geometric model of
4MAXSWAP , for which H0 p = 1,69, compared with the

244

maximum nlue log 36 = S,17, and th e va lue of H
0

p for
the "familiar" encoding, na mely 4, 17,

The generalization of the •rectangular" model from
3MAXSWAP (Figure Sb) to 4MAXSWAP (Figure 6)
suggests that it may generalize further, and may
possibly serve as a guide for a simple model for the
Five Puzzle, Accordingly, we expanded a portion of the
Five Puzzle graph having 147 nodes and 155 edges (i . e.,
a breadth- first expansion to S levels below a particular
starting configuration), and attempted to devis e a
recungular-llke geometric model for It, Figure 7
presents the result, depicting approximately half of the
partial model we devised. To visualize the geometric
model, imagine that the points labelled A, B, and C are
not on the page, but instead are placed in sp1ee one
unit of distance above the page, Now imagine ii copy
of the structure In Figure 7, except for points A, B, and
C, raised. 2 units of distance above the page. Call by
the names X 1, Y 1 , and Z' the points in this raised copy
corresponding to the points labelled X, Y, and Z,
respectively in the copy on the page. Now Imagine X
connected to A, X' connect e d to A, Y to B, Y' to B, Z
to C, and z, to C. Hence the model has two parallel
structures (on the page and above the page), each
having 72 nodes, connected to three intermediate
points, The node labelled A was the root node In the
breadth-first expansion, In this model there are 8
action classes, covering 86, 40, 1 S, 8, 2, 2, 1, and 1
edges, respectively, yielding li 0_p = 1.78, compared with
the maximum value log 1 SS = 7,28. Note that in this
portion of the Five Puzzle graph, to go from any point
in the portion on the page to any point In the portion
raised above the page (or vice veru), one must go
through one of the intermediate points A, B, or C, (Of
course, the further expansion of this graph beyond the
present 147 nodes may uncover other nodes connecting
the two portions of the model presented here,) The
factorlna of this portion of the Five Puzzle graph into
two symmetric portions and three intermediate nodes
was discovered by the use of a symmetry factoring
method similar to that of Cohen [1977 J.

Intuition suggests that extending the "rectangle"
model to the entire 6MAXSWAP or Five Puzzle problems
may prove problematic. By way of considering other
structures, the symmetry In Figure 6 suggests wrapping
around the two ends of the long axis Into a regular
polygon. Figure 8 shows a •cartwheel" geometric model
for the 4MAXSWAP graph,

The exercise presented In this section suggests at
least the feasibility of devising geometric models of
graphs having more than a few dozen edges, a nd the
possibility that devising such mAd.els may promote
insight about the structure of the problem, Future work
may be able to expand upon these Initial efforts,

6, Discussion

We have demonstrated severill examples of a generill
approach to studying some Issues of problem
representation in a restricted context, Given an
English description of a problem, we convert It to a
"tuple format" suggested by the English description,
then partition the edges into equivalence classes
(operators) In .i me chanical fashion accordl'ng to the
arithmetical differences between the tuples representing
nodes incident to each edge (e.g., all edges having the
effect of. "Move right 1 unit" belong to the same class),

then compute Hop based on the frilction Pi of edges in

e1ch edge class i, and then 1ttempt to find an
1lternatlve geometric model whose H0 p is sm1ller than
that for the "familiar" model. All but the last of these
steps are (mor e or less) methodical.

These first results leave many questions unanswered.
Our Intention here has been merely to introduce the
Ideas for further consideration by other researchers.
Hence the remainder of this discussion focuses on
possible extensions to the present initial efforts.

To be concrete, we Imposed several simplifying
usumptlons, e.g •. , to ignore the preconditions of
operators, to consider only additive action express io ns
for operators, to consider only the H0 p measure.
Altern1tive assumptions and generalizations a lso merit
Investigation.

At present we rely mostly on human creativity to
find alternative geometric models for a given problem
grilph. The present approilCh suggests the fusibility of
searching for problem representations in il state space
of geometric models of il grilph, guiding the search
heuristically by means of ii metric such as the proposed
operator partition formul1. The size of this state space
Is so enormous, however, u to require ii careful
consideration of efficiency requirements, perhaps In
genera.ting cilndldate models selectively, or In devising
i1.ddltlon1I heuristics as alternatives to Hop• One
possibly fruitful approach may be to generue
alternulve models for il given problem lnterilCtlvely,
illlowlng the user to guide the exp lor ation for il simpler
model.

The practlcill benefit of discovering an alternative
simpler representation of a given problem to be so lv ed

depends on the ilbility to translate a specified instance
of il given problem into its new encoding, solve the
Instil.nee therein, and translate the resulting solution
path bilCk into the terms of the original representation.
Our example of the Willer Jug/Seven Squares lsomorphs
suggests the possibility that simp le mappings between
alternate encodings may be difficult to identify,
especially between encodings that seem intuitively to be
rather different. Such a finding (assuming It could be
formilllzed) cou ld severely limit the practical utility of
this whole approach, although perhaps theoretical ly
Interesting.

The exilmples suggest in a concrete way that the
hmillar representation of a problem m1y be far from
the simplest .possible. It would be interesting then to
know whether there exist simpler versions of other
common problems, or yet simpler versions of the present
examples (I.e., an issue of optlmill geometric models).

Despite the limitations of our Initial results, one
advilnUge we perceive of the present approach is that
a geometric model of a graph can be visualized and
manipulated as a structure in Euclidean space, which
seems to promote some insight or intuition about the
elusive concept of problem representation. For
example, some two-dimensional models of a problem
graph may prove useful in analyzing a given heuristic
for. the problem, since the value assigned to each node
by the heuristic can be plotted as an elevation above
the plane. Then the heuristic can be viewed as a
polyhedral surface, whose "hills" and "valleys " ma y
permit a visual analysis of the efficiency of the

245

heuristic function.11

In any case, funher investigations of this geometric
modelling approach to understanding more quantitatively
some Issues of problem representation would seem to be
merited on both theoretical and (,po tentially) practical
grounds.
References

1. Amarel, s., "On Representations of Problems of
Reasoning about Actions," in Machine Intelligence
3, D, Michie (ed.) American Elsevier Publ, Co,, New
York, 1968,

2. Bonchev, D., D, Kamenskl and V, Kamenska,
"Symmetry and Information Content of Chemical
Structures," Bulletin of Mathematical Biology, Vol.
38, 1976, pp, 119-133,

3, Chaltin, G,, "Randomness and Mathematical Proof,•
Scientific American, M1y 1975,

4, Cohen, B,, "The Mechilnicill Discovery of Certain
Problem Symmetries," Artlflclill Intelligence, Vol, 8,
No, 1, 1977, pp, 119-131,

5, Guchnlg, J,, "P erformance Measurement and Analysis
of Certain Search Algorithms," Ph,D, Thesis, Dept,
of Computer Science, Carnegie-Mellon Uni versity,
Pittsbu~gh, Pa., May 1979 (19791),

6. Gaschnlg, J,, "A Problem Similarity Approach to
Devising Heuristics: First Results," Proc. Sixth
Intl, Joint Conf. on Artlflclill Intelligence, Tokyo,
August 1979 (1979b).

7. Khlnchln, A, I,, Mathemuical Foundations of
lnformuion Theory, Dover Publications, Inc., New
York 1957.

8. Mowshowltz, A,, "Entropy and the Complexity of
Grilphs: I, An Index of the Relulve Complexity of a
Grilph," Bulletin of Mathematical Biophysics, Vol.
30, 1968, PP• 175-204,

9. Nilsson, N., Problem So lvin g Methods in Artificial
Intelligence, McGraw-Hill, New York, 1971,

1 O. Pohl, I,, "Practical ilnd Theoretic al Considerations in
Heuristic Search Algorithms," in Machine
Intelligence 8 (E, Elcock ilnd D. Michie, eds,), Elli s
Horwood Ltd., Chichester, Englilnd, 1977.

11. Rashevsky, N., "Life, Information Theory, and
Topology," Bulletin of Mathematical Biophysics, Vol,
17, 1955, pp, 229-23S,

12. Sh1nnon, C, and W, Weaver, The
Theory of Communication, University
Press, Urbana, Illinois, 1972 edition.

M1thematical
of Illinois

13, Trucco, E,, "A Note on the Information Content of
Gr1phs, 11 Bulletin of Mathematical Biophysics, Vol,
18, 1956, pp, 129-1 3S,

11 For example, Gaschnlg (19791, p, 2SO) discusses il
particular Eight Puzzle heuristic as descending toward il
"trench" ind then following it to the goal node,

t l, ') +--+-+---t

(a)

. 1

(o,o)

(J,J)

(bl .

Figure I, Different geometric models of isomorphic graphs

<•>
rtauu 2. 0 , .. 1uar11 aeoaetric aodel (a) and 0 Sevan Square•" aitOMtric aodel (b)

for the Vaur Ju& probl•

(l,l,I)

(O, I) (0 ,2) (O,l) (0,4)

V,)
.. l

(•)

Figure 3. "Faaiili1r11 (1) end alternate (b) ge0111etric aodeh for
the KiuionariH and Cannibah probl••

246

(Ir)

(c\

'\2:2)

1•.•I

Figure 4 . 11 Familiar" (a) and "Triangle"~. geo•etric 110d11la for the Tower ot' HAno'i Prob l eu

liJ

(1,1) (1,2) (1,3)

(2,1)~,l)

Figure 5. (a) "Familiar" 3·0 geometric aodel of JKAXSWAP problem Jtnph
(Note: origin h (l, l, 1).)

(b) Alt.r·nattve "ncungular" aeoae tric aodel of JHAXSWAP problem

' ,,, .. ., . ,,
I

. 1
;
'

Figure 6, "Rectanaular" a•ometric aodd ·of 4KAXSWAP problem graph

' i Figura 8 , "C.Ttvheel" geo•trtc model of 4KA.XSWAP problt111
araph (Co111pare vith Figure 6) ; Piaur• 7. Po~tion of • a~o•tric aodel fo't ..

.(S'• teXt:) .

poi-~ion of the itw Puu:le gnph

; : i · · : '.
:: ;: ·1

Note : Sh edgea PHI through t h• cenur of rhe
P!~!~:~: but there 11 no node of the guph

247

PLANNI NG IN A DYNAMIC MICROWORLD

Gordon I. Mccalla
Department of Computational Science

University of Saskatchewan
Saskatoon, Saskatchewan

Abstract

Thia paper discusses a planning system that
works in a dynamically changing geographic
microworld (an abstraction of the world faced by
a taxi driver). The discussion concentrates on
explaining how geographic knowledge is
represented in a single data structure, the
route; how plans are constructed from such
routes; and how such routes can be automatically
acquired to augment the knowledge base. The
important lesson to be learned from this
approach is the usefulness of taking an
integrated view of planning, execution, and
acquisition.

Introdyct1on

Recently there has been some discussion ln
the literature (Sacerdoti (1979)) about the need
for complete planners, i.e. planners which not
only produce plans, but also execute them.
There has also been interest (e.g. Sacerdoti
(1979)) in the problems of planning for a
changeable or dynamic mlcroworld. For the last
couple of years (Mc Calla At, .11. (1978), Mc Calla
and Schneider (1979)) we have been working on
such a complete planning system to produce and
execute plans for a dynamic geographic
microworld, Specifically our planning system is
designed to produce and execute plans that guide
a simulated robot taxi driver (named ELMER)
through a simulated city which not only contains
streets, intersections, and other unchangeable
features, but also contains dynamic features
such as traffic lights, other cars, and
pedestrians.

The architecture of the ELMER system is
shown in Figure 1. Basically, a plan to go from
some point x to some other point y is produced
by the Planner (using route information provided
by the Map) and sent for execution to the
Executor. The Executor then augments the plan
with common world sense (e.g. how to maintain
speed, how to avoid pedestrians, how to stop at

248

Peter F. Schneider
Department of Computer Science

University of Toronto
Toronto, Ontario

red lights or stop signs, etc .) and proceeds to .
carry it out. Once the plan has been
successfully completed, the "instantiated" plan
is sent to the Map where it is adapted to form a
route from x toy. This route can then be used
by the Planner to aid ln future plan production.
What we have, then, is not only a complete
planning system which operates in a dynamic
microworld, but also a planning system which can
in some sense learn from its past behaviour. In
this regard the ELMER system supports Simon's
(1979) contention that learning may once again
be an appropriate AI endeavour.

The complete ELMER system has been
described in Mc Calla At, .11. (1978) and the
Executor has been further elaborated in McCalla
and Schneider (1979), Thia paper discusses the
Planner and the Map. A forthcoming technical
report (Reid and McCalla (1980)) describes the
implementation aspects.

The Map stores all information using a
single data structure: the route (in contrast to
Kuipers (1977) where multiple representations
are used ·for geographic knowledge). Figures 3
through 6 illustrate typical routes through
Simon City (Figure 2), Figure 3, for example,
describes a path along Kuipers Crescent. Each
box represents the traversal of a particular
region in Simon City. the lower the box, the
more local the region. Thus, box 16,
representing a route along Kuipers Crescent from
Lenat Lane to Schank Strip consists of three
sub-~oxes (boxes 17, 18, and 19), representing
routes through the obvious three sub-regions.
Box 17, in turn, is still further specified.
(Note that for clarity many of the low-level
route boxes have been omitted from Figures 3-6.)
The labelled arrows leaving a box represent
transitions from one route to another; the
associations in a box are pointers to other

routes which are related to this route in the
sense that it is "easy" to get from this route
to those other routes. Transitions are
important in plan execution but are not
especially significant to the Planner or Map.
0, the other hand, associations are critical to
the planning process and should be further
explained.

To illustrate the nature of associations,
it is instructive to look at an example. Sub
route 41 in the v.inat route (Figure 4)
associates into sub-route 17 in the Kuipers
route (Figure 3) since if ELMER were driving
along IJ!nat from Schank to Kuipers (a la sub
route 41) he could readily transfer so as to be
driving along Kuipers from !Anat to Winograd (a
la sub-route 17). Similarly sub-route 82
(entering the IJ!nat@Kuipers intersection from
the west) associates into sub-route 70 (leaving
the IJ!nat@Kuipers intersection heading north).
But note that sub-route 90 (leaving
Lenat@Kuipers heading east) does not associate
into sub-route 70 because such a transfer would
require ELMER to make a U-turn and retrace his
steps. This emphasizes the one-way nature of
both routes and associations. It is important
to realize, however, that if there is an
association from route A to route B, there is an
inverse association (inassociation) from B to A,
thus allowing associations to be traced both
directions.

3 IM Planner

The Planner is charged with the task of
producing a plan to go from some start region x
to some end region y. (From the Planner's point
of view points are just very small regions.)
Eventually we would like to enhance the Planner
to force it to produce plans satisfying
constraints as to how fast a destination must be
reached or specifying certain milestones which
must be passed en route (as in for example
Hayes-Roth and Hayes-Roth (1979)). Currently
the Planner is satisfied with producing the
first successful plan that it comes upon.

The Planner basically works by adapting Map
routes to satisfy the requirements of its
current task. Initially the start region x must
be defined by a route X from the Map and the end
region y by a route Y from the Map. These
defining routes for all intents and purposes
become the Plan~er's start and end points.
Essentially, routes containing sub-routes into
which X associates are candi~ates for getting
ELMER off to a good start, and routes containing
sub-routes to which Y inassociates are
candidatP.s for gP.tling ELMER to his dP.stination.
If there is a route C containing a sub-route
Ri(C) into which X associates and another sub
route Rj(C) to which Y inassociates, and if the

249

instantiated plans

Executor Planner Map

plans routes

customer goals

windows ("sensory" information from Microworld)

Figure l - Basic fystem Architecture

_ ,_. ... N

Schank Strip

Brachman Boulevard

I

17

70

go from Kuipers@Lena
to Kuipers@Winograd
assoc: 5 dir: N
inassoc: 41

leave Kuipers@Lenat
inassoc: 82

go from Kuipers@Lenat to
assoc: 1 inassoc: 40 1

at
Kuipers@
Winograd

18 go from
KUipers@Winograd
to Kuipers@Pylysh

'----'i~n-""a2 soc: 4 dir: N

at
Kuipers@

Pylyshyn

ank

go from
Kuipers@Pylyshyn
to Kuipers@Schank '.
dir: W

past i71
Kuipers~Lenat)

go along Kuipers ~
(Lenat to Winograd j

see iTiarrive ,
Winograd

I
Kuipers@Winograd

_ assoc: 100

Figure 1 - Kuipers Route

40 go from Lenat@Schank to Lenat@Pylyshyn at
assoc: 16 dir: E f-~L-e_n_a-t""'P-y~l-y-s..--y-n~ '--------------------~~---'
~

)
'4--i--;o from Lenat@Schank
[___ aRSOC; 17

to Lenat@Kuipe~l at 42 go from Lenat@Kuipers to
I Lenat@ 'i Lenat@Pylvshyn

/80

124

'

120

leave
Lenat@Schank

= -=~.--c=------~
past 181 go along Lenat r see 82 arrive
enatn (Schank to Kuipers) lr""ti1pers Lenat@Kuipers

Schank I assoc: 70

!23 go from Reiter@Winograd to Reiter@Brachman at

leave
Lenat@Kuipers

inassoc: 3 Reiter@Bra chman

go fr= Rei<e,@Wioog<od Z,@Schub;,l __ at 25 go from Reiter@Schubert to
inassoc: 8 dir : N Reiter@ Reiter@Brachman

K:huhert di r: E

leave
Reiter@Winograd
inassoc: 62

;s=_-==------r ~
past ,121 go alon,; Reiter _!I~~-~ 122 arrive

R~i ter@ 1 (h'inq;rad to Schubert Schubert I Reiter@ ~hubert
Winograd i --------- - ------ _____ ~----------'

~ l - Reiter Route

250

4
go from

Winograd@Schank
to

lHnograd~uipers
assoc: 18

100

go from
l:inograd@ S::han

to
Winograd@Papert

assoc: 16
inassoc: 16

5

at
Winograd@

Papert

at
Winograd@
Kuipers

go from
Winograd@Kuiper

101

to
\./inograd@Pylyshy
inassoc: 17 --- -----'

leave past go along see
Winograd@,___1_; _in_o_g=r_a_d_@ _ _,,
Kuipers Kuipers

inassoc: 72

Winograd Pylyshyn
(Kuipers to

Pylyshyn)

go from
Winograd@ Schank

to
Winograd@Brachman
dir: E

2
go from

Winograd@Papert
to

\./inograd@Duda

at
1Jinograd@
Brachman

at

3

go from J
Winograd@ \./inograd@Duda

1----D~u~d~a--~~~ to
Winograd@Brachman\
assoc: 23

8 9
at

Winograd@
Pylyshyn

go from go from at go from
Winograd@Pylyshy Winograd@Duda Winograd@ \./inograd@Reiter

to to Reiter to
Winograd@Papert Winograd@Re l ter~ IW~grad('lirachm,Hij

---"/_/_/~ ,~~~ ~-,--.-. _____ J

;
~~I

arrive
Winograd@

Pylyshyn l
60

leav~ past 161

go along see ~ 62..rrivcc ·1
Wino grad@ ~~~ra~!_ Wf.n ograd R~ter_ 1/i nog ra d@ '1

Duda Duda (Duda re teer
to Reiter ass oc: 120 1

--- ~- ·- - ·- ·- , 1-· - · · ·· --- · -

(naming convention: the first street named in an intersection pair is the
street along which ELMER is heading)

Figure~ - Winograd Route

r-1
lO
N

. I
I

• I

I

, I

I

sub-route Ri(C) comes before (i.e. to the left
of) Rj(C), i.e.

A~
R (Cl-+ , , , - (Ci--. .. , __,. (C)--+ · · • --+R (C) I lf) n

'.< .u~ociat•• lnto/ '.v lna1111oc1Aces to

then C can be rather easily adapted to form the
plan to get from x toy. This process requires
further elaborating Ri(C) (because of a
different start region x) and further
elaborating Rj(C) (because of a different end
region y) but adopting Ri+1(C) through Rj-,CC)
exactly as they already exist. The ability to
use such large chunks of pre-planned routes
makes the planning process very efficient.

If a route C containing both an association
from X and an inassociation from Y cannot be
found, then a route A containing an association
from X must be spliced with a route B containing
an inassociation from Y. The process is more
difficult but is still manageable and reasonably
efficient (since large parts of A and B can
still be adopted intact). The current Planner
implementation does not try such splicing,
although the algorithm is well defined (see
below).

3,2 Detailed Planning Algorithms

In the above overview of the planning
process it was briefly described how a problem
of the form "go from region x to region y" could
be reduced to the three sub-problems . "go from
region x to sub-route Ri(C) of an existing Map
route C", "adopt the intermediate sub-routes
Ri+1(C) to Rj-,CC) unchanged from C", and "go
from sub-route Rj (C) to region y". After making
this initial breakdo~, the Planner attempts to
solve the: first sub-problem in its entirety
before proceeding to the other two sub-problems.
This enables it to complete a partial plan as
quickly as possible to pass on to the Executor
so that ELMER can begin his travels without
undue delay. Although this contrasts with
NOAH's (Sacerdoti (1977)) complete level by
level expansion, there doesn't seem to be the
potential for the sub-goal conflicts which
NOAH's methodologies were meant to avoid. This
is due to the lack of unordered conjunctive
goals (the kinds of goals leading to most of the
difficulties) and due to the fact that the
Planner is largely adapting previously
successful routes.

Three types of problems have been
illustrated so far: the region-!&.-~
problem, the region-12,-~ problem, and the
adapt-~-routes problem. There are two other
types of problem: the route-to-~ problem and
the ~-to-region problem. To solve an
adopt-sub-routes problem, the Planner need only

252

copy over the sub-routes from the existing Hap
route. Solving a route-to-region problem is
completely analogous to solving a region-to
route problem. All that remains, therefore, is
to give detailed algorithms for solving region
to-region, region-to-route, and route-to-route
problems.

3. 2. 1 Solving Region-12,-region Problem§

The following algorithm is called in when
it is necessary to solve the problem of going
from region x to region y. First the defining
routes X and Y must be sought out (currently
these are predefined). In the algorithm s (e)
marks those routes into which X (Y) directly
associates (inassociates); S (E) marks those
routes which have a sub-route into which X CY)
directly associates (inassociates) . The
algorithm iterates through steps 2 to 5 looking
for the elusive route C conMcting X to Y. If
such a route isn't found during an iteration,
the current version of X (Y) is replaced by its
super-route before proceeding around the loop
again. This corresponds to replacing initially
small regions by larger regions that are more
likely to be connected by an existing Map route.
The g•rneralization stops when both X and Y have
the same super-route. This is analogous to
finding a region containing both X and Y,
implying that no further information can be
gained from the Map, In this case step 6 is
called in to try route splicing. The algorithm
proceeds as follows:

1. Mark route X (Y) with an s (e) and go to step
3,

2. Find all routes which are both
1. not marked with ans (e) and
11. direct super-routes of routes marked
with ans (e) and not marked with an e or E
(s or S)

and mark them with an s (e) ,

3, For all routes that have just been marked
with an s (e), mark any associated
(inassociated) routes not already marked with an
s (e) with ans (e).

4. Mark all routes which use a route marked with
an s (e) as a sub-route (not necessarily
directly) with an S (E).

5. If some route C is marked with both an S and
an E and, moreover, has a sub-route Ri(C) marked
with ans or Sand a sub-route Rj(C) marked with
an e or E and i~j, then C is a route from some
region containing x to a region containing y and
the region-to-region problem can be solved by
adapting C as follows:

/ . "~ '"""" . '" "'"" '
. T(c) I \ ~

go from reg ion X ~ R. () R () ~ t from route
to routt R

1
(c) i+l c · · · j-1 c Rj c) to region Y

6. If in step 2 or step 4 no routes are marked
then there is no single connecting route C. In
this case a pair of routes must be found and
spliced together. This is done by searching all
routes marked Sande or E ands for a pair of
routes C1 and C2 with the following properties.
First, C1 is marked Sande and C2 is marked E
and s. Second, C1 associates into C2. Third,
C1 has a sub-route Ri(C1) marked s or S and C2
has a sub-route Rj(C2) marked e or E (so Ri(C1)
"contains" x and Rj(C2) "contains" y). Fourth,
C1 has a sub-route Rk(C1) which associates into
sub-route Rm(C2) of C2 (i{k, mij). Then the
region-to-region problem can be solved by
adapting C1 and C2 as follows:

3.2.2 Solving ~-.!.9.-.r.2.lrul Problems

Region-to-route (or route-to-region)
problem expansion is slightly different from
region-to-region expansion. It may not be
necessary to find a new route if the region and
route are close enough together but may suffice
to refine the node slightly, For the problem
"go from region x to route A" (and once again
assuming xis defined by route X) the algorithm
proceeds as follows:

1. If A has no sub-routes then
1. if X associates into A, then their
common region must be very small (e.g. an
intersection or a single block) so expand
by fabricating Executor commands to get on
route A from X. (These ~111 be commands
such as 'left turn' o, · 'follow signs to
A'.) In the interests of plan brevity
replace the problem node in the developing
plan by these fabricated low-level
commands.
11. otherwise treat as a region-to-region
problem except that in any sub-nodes
produced A is labelled as a route.

253

2. Perform the marking portion of the region
to-region algorithm starting at X only to see if
some sub-route Ri(A) of A is marked by an s or
s.

3, If so then expand as follows:

4. a;herwise treat as in region-to-region
expansion except that Y becomes the set of sub
routes of A ({Ri(A)l) . Tilat is, attempt to find
a route connecting X to one of the Ri, say Rm.
The expansion results in:

... ~21·~="" · ::c ·~~~)
nq1cn X route l
to route \ R: (C) to
k (C) R. (C) T , (') ~out< T_(A) p (A)

1 j- 1 R,,(A) ~ WT

3.2.3 Solving .l!.2..ru.-.!.9.-~ problems

Route-to-route expansion is essentiall y
region-to-route expansion with minor changes.
For the problem "go from route B to route A",
the algorithm proceeds as follows:

1. If B has no sub-routes, then treat as a
region-to-route problem except that sub-nodes
produced will have B labelled as a route.

2. If A has no sub-routes then treat as a
route-to-region problem except that sub-nodes
produced will have A labelled as a route.

3, If some sub-route Ri(B) of B or one of its
sub-routes associates into some sub-route Rj (A)
of A or one of its sub-routes, then expand as
follows:

~go from route B to ,octe ~

R (B)---. • . . • ~go from lute R. (~) T~ (A'
l to route Rj(A) , ·

4. Otherwise treat as a region-to-region problem
except X be.:iomes {Rn(B)} and Vbecomes {Rn(A)}
and a route connecting one of the {Rn(B)}, say
Rk(B), to one of the {Rn(A)}, say Rm(A), should

• ··1

1

be chosen. The problem expansion looks like:

ll Example

Figure 7 shows a plan produced by the
Planner for the problem "go from LP.nat@Kuipers
to Reiter@Schubert". Assuming the routes in
Figures 3 - 6 are in the Hap and that ELMER is
sitting on Lenat at the intersection of
Lenat@Kuipers, the defining route for ELMER's
start region is sub-route 82 of the L1mat route
(Figure 4). Further assuming that ELMER wants
to get exactly to the Reiter@Schubert
intersection but doesn't care which direction he
is facing when he arrives, the defining route
for ELMER's end region is sub-route 122 of the
Reiter route (Figure 5).

Indicated under each plan node in Figure 7
is information . about the node's origin. Some
nodes are copied unchanged from Hap routes.
Others must be further expanded using one or the
various planning algorithms, in which case
particulars of the algorit_hm are specified, and
a sequence number indicating the order of
expansion is prov idP.d.

Note the similarity of the plan to the Hap
routes from which it has been constructed. Q\ce
the plan has been suitably augmented and
successfully executed by the Executor, it can be
passed to the Map where information glP.aned
during exP.cution (P..g. as to speed limits,
directions, etc. discovered en route) can be
abstracted up the plan hierarchy to the
appropriate level of detail and where
associations and inassociations can be made
between this plan and existing Hap routes. Both
tasks are relatively straightforward,
surprisingly even thP. latter since the plan was
originally built · out of Map routes whose
associations are known. To illustrate, new
sub-plan 300 can associate into old sub-route 16
(since sub-route 1 from which new sub-plan 300
has been built is so associated) and,
conversely, old sub-route 16 can inassociate to
new sub-plan 300: Q\ce these two tasks have
been accomplished, the recently created and
executed plan can take its place as the newest
addition to the pantheon of Map routP.s.

254

5 Conclusion

The most important contribution or this
work is the unified approach to planning that it
promotes. The system is not only capable of
efficiently making plans but also executing
these plans and acquiring the knowledge
necessary to enhance its ability to plan. Next
steps in the research involve more closely
integrating planning and executing to allow re
planning after a plan goes awry; enhancing the
Hap and Planner to more extensively incorporate
knowledge as to the relative merits of routes in
order to allow the "best" plan to be
constructed; figuring out how to allow the Map
to infer "hypothetical routes" based on world
knowledge (e.g. the reverse of an existing route
may also be a valid route some of the
Kuipers (1977) and Hayes-Roth and Hayes-Roth
(1979) geographic knowledge structures may be
appropriate here); and finally discovering
whether other applications (e.g. process
control?) can benefit from this app~oach.

6 Acknowledgements

We would like to thank Larry Reid, Hector
Levesque, and Robin Cohen for their
contributions to this research. The financial
support of the National Sciences and Engineering
RP.search Cou!lcil is acknowledged.

7 References

Hayes-Roth and Hayes-Roth (1979). (3. Hayes.'.Roth,
F. Hayes-Roth, "A Cognitive Model of
Planning", Cognitive Science 1, 4,
~t .-Dec.

Kuipers (1977). 13 .J. Kuipers, "Representing
Knowledge of Large Scale Space", .Al-1.ll.-!!..lll.,
AI Lab., MIT, Cambridge, Mass.

Mccalla and SchnP.ider (1979). G.I. Mccalla,
P. F. Schneider, "The Execution of Plans in
an Independent Dynamic Microworld", .f.I:££..
IJCAI-.2., Tokyo, Japan.

McCalla et al (1978). G.I. Mccalla, P.F.
SchneidP.r, R. Cohen, H. LevP.sque,
"Investigations into Planning and Executing
in an IndP.pendent Dynamic M.icroworld", Al
Memo 1.a--'., Dept. of Computer Science, u. of
Toronto, Toronto, Q\tario.

Reid and McCalla (1980). L. Reid, G.I. McCalla,
"Planning and Executing in the Taxi
Microworld: An Implementation Guide",
Technical Report, Dept. of Computational
Science, U. of Saskatchewan, Saskatoon,
Saskatchewan (forthcoming).

Sacerdoti (1977). E. Sacerdoti, A Structure fQ.r:.
Plans and~ehaviour, Elsevier, New York.

Sacerdoti (1979). E. Sacerdoti, "Problem Solving
Tactics", Proc. IJCAI-.§., Tokyo, Japan.

Simon (1979). H. Simon, "Artificial Intelligence
Research Strategies in the Light of AI
Models of Scientific Discovery", .f.!:9£..
IJCAI-.2., Tokyo, Japan.

Iv
UI
UI

00 go from Lenat@Kuip~
to Winograd@Papert
2:(adapted from route l;

at
Winograd@

expanded using region
-to-route step 3)

apert

303 go from Lenat@Kuiper-;-
to Winograd@Pylyshyn
):(adapted from route 5;

at
Winograd@

expanded using
-to-route ste

1

305 306
left turn go along

1

90 ~ {uipers
4:(adapted ~ (Lenat
using1 • to

! region-to ~ Winograd)
-route ~ (adapted
step 1 (i) ·; unchange
to solve :.:: from
"go from
Lenat@
Kuipers
to
route 70"

route 71

'O

"' k
oc;
0
r::

::::
QI
QI
U)

Py ys yn

po1
I riP,ht tur
190
5:{adapte
using
route-to "' k
-route eo

0

step 1 r::
to i.olve ;:;,:

"go from ...
(I)

route 72 "' 0.
to route
100")

299 go from Lenat@Kuipers to Reiter@Schubert
1:(initial problem; expanded using

301

re ion-to-re ion ste 5)

go from Winograd@Papert
to Winograd@Duda
(adapted unchanged from
route 2)

at
Winograd@

u a

302 go from Winograd@Duda
to Reiter@Schubert
6:(adapted from route 3;

expanded using route
-to-re ion ste 3

go from Winograd@Pylyshyn
to Winograd@Papert
(adapted unchanged from

310 go from Winograd@Duda·--·
to Reiter@Schubert
7:(adapted from route 8;

route 6)

'~,
309

go along arrive
llinograd Jinograd€
(Kuipers Pylyshyn
to :; (adapted
Pylyshyn) r:: µnchanged >,
(adapted .c from U)

unchanged >, route
from >, 102) p..

route QI

101) QI
U)

expanded using route
-to-re ion ste 4L __

311 312 313 I
leave go along left turn , ~ ,go along
Winograd@ ~

1

Winograd j90 1 t i Reiter
Duda '5 (Duda l8 : (adap te g II (Winogra
{adapted ® to using .-;1.._,. to
unchanged ~ Reiter) route-to t I Schubert
from ~ (adapted ~ -route !: (adapted
route -~ unchange ,!:! step 1 ~ .

1

unchange
60) :;,: from /!}_ to solve P:: from

~ route
~ 61)

QI "go from
~ route 62

to route
120")

~ I route
[121)

I

,~---
·, stop at \

Reiter@ I
I S:hubert i
I 9: (adapted

ti using] I rouu:-to
jl -region
~ \ step l (1)

QI to solve
:: "go from

route 122
to
Reiter@
S:hubert"

(note: associations and directions are left out for clarity)

Figure J... - A Plan Constructed~ the Planner

What's The Point?*

Robert Wi 1 en sky

Computer Science Division
Department of EECS

University of California, Berkeley
Berkeley, California 94720

1 ,0 INTRODUCTION

Research into story understandin~ has
become an important concern of Artificia l

f
ntelligence natural la1gua~e understanding,
e, g~, Charniak, (1974 ~ chank and Abelson
1977 Cullinl!ford ('j78 , and Wilensky
1978). Stories constitute a naturally

occurring domain of coherent texts through which
problems involving real world knowledge and
contextual understanding may be conveniently
studied , Thus stories provide the researcher
with both an important set of problems and a
realistic domain in which those problems may be
productively pursued,

Attempts to produce computer story
understanding systems have generated A number of
interesting ideas, particular in the areas of
knowledge representation and organization,
However, many very basic questions still remain
largely unaddressed, In particular, the idea of
what actually constitutes a story has never been
clearly delineated, In fact most of the work
on story understanding has reaily ha~ little to
do with stories per se. Rather, the objects
that have been studied are coherent texts.

The difference between the two is that
there are many texts that cohere but which are
not recognizable as stories. As a result, the
problems that hove been considered so far are
prlmarily concerned with how to find the
connection between sentences of a text, While
these are certainly important issues, the
question of what exactly it is theta story is
about has been left unasked,

As I will argue below, developing a theory
of stories is not merely an academic exercise in
providing a mea ns for categorizing texts into
stories and non-stories, There would be littl e
point in developing the theory if that were its
purpose, Rather, the theory of stories that I
propose is intimately connec ted with some basic
issues of language understanding, language
generation, cognition and memory. Such a theory
of stories is not only be related to these
issues , but is as necessary for the construction
of intelligent story understanding programs as
are theories of inference and knowledge
representation.

Before I attempt an exposition of this
theory, it is important to point out how its
thrust is different from another approach that
ostensibly seems to have the same goal, This is
the f0rmalism known as a story grammar, Using a
sramm11r· to try to capture th e notion -of
storyness" seems to have been introduced to the

~T/coenitive psychology literature by Rumelhnrt
(1q7<;J, f>i nre then, the not.ion of story
grammars has been nxpAnrted theoretically by R

number of researchers, and even used 9s the
basis for a number of empirical studies \e, g.,
~andl~r and Johnson (1977) Stein and Gl enn
(1977/, and Thorndyke (1977 ,

*This work was supported in part by the Advanced
Research Projects Agenry of the Department of
Defense and monitored under the Office of Naval
Research under contract N00014-75-C-llll.

256

Unfortunately, the story grammar concept is
lacking in a number of ways that make it
inadequate for its intended purpose , The chief
problem is that story grammars purport to
capture the idea of what a story is by trying to
express the structure of a story text, My claim
is that a theory of stories must be much more
concerned with the content of a text than with
its form, Moreover, when story grammars are
examined closely, most of the story s tructure
they ai m to capture dissolves away, and they end
up saying little more than that story is R
coherent set of sentences,

A detailed critique of story grammars is
found in Black and Wilensky (1q79J, and will no t
be repeated hC're, This paper i11 concerned with
11 theory of storles T have been rlev eloping b11sed
on tnxt content. The theory is by no means
complete. NC'vertheless, some parts of it. flre
wel1-formed enough to be presented, perhapR even
r,;,futed, In any case, the piece of t he theory
described below should provide A picture of whnt
I believe a theory of stori es needs to look
like,

2 .0 BACKGROUND

Most of the work that goes under the label
of story understanding is really eoncerned w'i t.h
eoherent text comprehension, Unde rstandin~ a
text involves finding the implicit connections
between story sentences, and thus much of t he
work in this area addresses the problem of
inference generation, In particular, the
problem of representing knowled~e needed for
this task has played a large part. in t his work,

Most of this work is very basic, It has
application not only to understanding
narratives, bu~ to other formR of cognit ive
processinp, even non-linguistic ones. This is
precisely its failure as a theory of stories.
For example, consider the following "story"
which is used by Schank (1977) to demonstral e
his script idea:

(1) John went to
seated J ohn.
John ordE'red
quickly, He
r es taurant.

fl restaurant.
Th e hostess gave
11 lobster. He

left a large tip.

The hostess
John a menu.

was served
Hn left th t"

The point of this example is to demonstrate that
knowledge about what typically ~oes on at a
restaurant is needed to infer impli cit events,
such as John's eat.inp the lobnter. Thn notion
of n jcript. is introduced as R wny to orpnnizr
suc h knowlP.dge.

The 11hil i ty t.o undf•rstnncl ut;tr•rMn r,"" J ikr·
(1) seems to underlie mu r. h of l11ngut,11;0
processing, However, the existence of such
knowl edge structures and the ir utility in making
a text coherent h11s littlE' to do with the noti on

of a story. It is unlikely that anythinp,
conforming to the content of a mundane knowled~e
structure will constitute a story. Problem 1s
t.hat they just t90 du]l. No one will be heard
telling story \1) to anyone else because there
is l i ttJe reason to believe anyone would have
any reason to express it, nor is anyone likely
to bP Amused upon hearinp, it.

Moreover, as wns well understood at the
time of their inception, rigid knowledge
structures such as scripts are inndequate for
much of the inference processing necessary to
establish the coherence of a non-conforming
text. Script-like knowledge structures reflect
the repeated experience of mundane situations,
and are directly useful for comprehending these
sl tuntions. However, they are less clearly
useful for processing situations that do not
conform entirely t.o stereotypes.

2. 1 PAM

PAM (Plan AppJier Mechanism) is a program
that can understand a number of short texts
about situations it may never have encountered
previously. PAM has knowledge about the kinds
of plans and goals people have, and uses this
knowledge to find explanations for the events
described in a text. PAM can then pAraphrase
the text from the points of view of the
different characters in the text, as well as
answer questions about the text.

The fo]lowing are some examples of stories
PAM can currently process:

Input text:

WILLA WAS HUNGRY. SHE PICKED UP THE MICHELIN
GUIDE AND GOT INTO HER CAR.

Input: WHY DID WILLA PICK UP THE MICHELIN GUIDE?
Output: BECAUSE WILLA WANTED TO KNOW WHERE A

Input:
Output:

Input:

Output:

Output:

RESTAURANT WAS.

WHY DID WILLA GET INTO HER CAR?
BECAUSE WILLA WANTED TO GET TO A

RESTAURANT.
WHAT WERE THE CONSEQUENCES OF WILLA

PICKING UP THE MICHELIN GUIDE?
THIS ENABLED WILLA TO READ THE MICHELIN

GUIDE.

THE STORY FROM WILLA'S POINT OF VIEW:

I WANTED TO GET SOMETHING TO EAT BUT I DIDN'T
KNOW WHERF. A RESTAURANT WAS. SO t PICKED UP THE
MICHELIN GUIDE, AND I GOT INTO MY CAR.

**
**

Input text:

JOHN WANTED BILL'S BICYCLE. HE WENT OVER TO
BILL AND ASKED HIM JF HF. WOULD GIVE IT TO HIM.
BILL REFUSED. JOHN TOLD BILL HE WOULD GIVE HIM
FIVE DOLLARS FOR IT BUT BILL WOULD NOT AGREE.
THEN ,JOHN TOLD BILL HE WOULD BREAK HIS ARM IF HE
DIDN'T LF.T HIM HAVE IT. BILL LET JOHN HAVE THE
BICYCLE.

Input: WHY DID JOHN WALK OVEll TO BILL?
Output: BECAUSE HE WANTED TO GET HIS BICYCLE.

Input: WHY DID BILL GIVF: HIS BICYCLE TO JOHN?
Output: BECAUSE HE DIDN'T WANT TO GET HURT.

257

Input: WHAT HAPPENED WHEN JOHN ASKED BILL TO
GIVE HIM BILL'S BICYCLE?

Output: BILL TOLD HIM THAT HE WOULDN'T GIVE IT
TO HIM.

Input: WHAT HAPPENED WHEN JOHN THREA~ENED BILL9

Output: BILL GAVE HIM THE BICYCLE.

Output:

THE STORY FROM JOHN'S POINT OF VIEW:

I WANTED TO GET RILL'S BICYCLE. SO I WALKED
OVER TO HIM AND I ASKED HIM TO HAND TT OVER. !IP.
TOLD ME THAT HE WOULDN'T GIVE IT TO ME. SO I
ASKED HIM TO SELL IT TO ME FOR FIVE DOLLARS.
THEN HE TOLD ME THAT HE WOULDN'T. I TOLD HIM
THAT IF HE DIDN'T HAND IT OVER THEN I WOULD
BREAK HIS ARM. HE HANDED OVER HIS BICYCLE.
THE STORY FROM BILL'S POINT OF VIEW:

JOHN CAME OVER. HE ASKED ME TO GIVE HIM MY
BICYCLE. WELL, WANTED HIM TO KNOW I WON'T GIVE
IT TO HIML SO I TOLD HIM THAT I WOULDN 'T GIVE IT
TO HIM. "HEN HE OFFERED TO BUY IT FOR FIVE
BUCKS. I WANTED HIM TO KNOW I WOULND'T GIVE HIM
MY BICYCLE. SO I TOLD HIM THAT I WOULDN'T GIVE
IT TO HIM. HE TOLD ME THAT IF I DIDN'T GIVE IT
TO HTM '!'HEM HE WOULD BREAK MY ARM. I DTDN'T
WANT TO GET HURT. SO I GAVE HIM MY BICYCLE.

**
PAM can understand a number of texts that

are considerably more complicated than this one.
These capabilities of the program will be
examined later on. For the present, references
to PAM will essentially be references to the
part of PAM that can find explanations for
events like those in the stories above. I will
refer tQ this program (and the algorithm it
embodi es) as "nAive PAM".

3.0 POINTS

PAM is a somewhat more flexible text
understander than previous systems since it does
not require that a text conform to a rigid
structure. However, many of the same criticisms
applicable to previous systems insofar as
stories are concerned are just as applicable to
naive PAM. PAM's "stories" may be less
stereotyped than the texts other systems can
process but th<"y are h11rdly eny more
re11sonable. A relatively large number of
inferences have to be generated to understand
the Michelin guide example, but it is no more of
a story than texts t hat conform to scripts.
Once a~ain, it is hard to imagine someone not in
the field of natural language processing
bothering to tell this story to someone else.

While goals and plnns are import1rnt
elements of real stories, th<" pursuit of a ~oal
does not in and of itself make for good reading.
For example, contrast the following two
paragraphs:

(2) John loved Mary. He asked her to marry him.
She agreed, and soon after they were wed.
They were very happy.

(3) John loved Mary. He asked her to marry him.
She agreed, and soon after they were wed.
Then one day John met Sue, a new employee in
his office, and fell in love with her.

Paragraph (2) is typical of the simple
go~l-based stories that can be u9derstood by
naive PAM: A character has a goal \wanting to
m~rry M~ry) generated by a toeme (being jn love
with her; and pursues a plan (asking her; toat
results in the goal being fulfilled. While (2)
is cogent enough, it is not a good story. Most
readers would be surprised, for example, if they

I

I

yere promised a story and were given para6raph
\2). In spite of its coherent intentional
structure, paragraph (2) seems much more like
the setting of a story than a story itself.

In contrast, paragraph (3) se~m~ much more
promising. Although paragraph \3) does not
appear to be a complete story either, (it seems
to get further along than paragraph 2) before
it terminates. Here the reader probably expects
the story to be continued with an elebor~tton ~f
John's situation. In the case of story \?./i it
is much harder lo pues1c1 what the ntory w1 1 be
about.

What makes p~r~graph (3) more of a · story
than paragraph \2) is that paragraph (3) has a
point. to it. By a point I mean some element
~ invokes the interest of a reader. The
point of a story is what the st9ry seems to be
about. For examp~e, paragraph \2) does n9t)se~m
to be about anything, while paragraph \3 is
about a married person who falls in love with
someone else. ·

Points play a significant role in story
understanding because the main goal of the story
reader is to determine the points of a story
intended by the story teller. In a sense,
points are intended.to play a similar role for
stories as meanings play for individual
sentences. A reader often for6ets the precise
words and form that occurred in a sentence, and
yet still retains the meaning of that utterance.
In a story, a reader will often forget whole
concepts and episodes, and yet remember what
that story is about. A theory of points should
be able to aid understanding and structure
memory so thet it behaves in this manner.

The role points play in understanding and
memory is illustrated by examining a text that
contains an entire story. The following story
will be used for this purpose:

The Xenon Story

When John graduated college, he went job
hunting and found a job with the Xenon
corporation. John was well liked, and was soon
promoted to en important position.

One day at work, John got into an argument
with his boss. John's boss fired John and gave
his job to John's assistant.

John had difficulty finding another job.
Eventually, he could no longer keep up the
payments on his car, and was forced to give it
up. He also had to sell his house, and move
into a small apartment.

Then one day John saw a man lying in the
street. Apparently, the man had been hit by a
car and abandoned. John called a doctor and the
man's life was saved. When he was well, the man
called John and told him he was in fact an
extremely wealthy man, and wanted to reward John
by giving him a million dollars.

John was overjoyed. He bought himself a
huge mansion and an expensive car, and lived out
the rest of his life in the lap of luxury.

The interesting feature of the Xenon story
is which parts of it are forgetable. For
example, consider the following attempts at.
summarizl.ng the story:

(1) John graduated college and went looking for
a job. He found one at the Xenon
corporation, and did well there.

258

(2) John graduated college. One day, he founrl a
man who had been hit by a car, and called
the police.

(3) A man had been hit by a car and left
abandoned. Someone who used to work for the
Xenon corporation called the police.

(4) A man whose life John saved gave him a lot
of money. John bought himself a house end a
car.

(5) John lost his job and came upon hard times.
Then one day John helped a rich person in
need, and was rewarded with enough money to
last him a lifetime.

All these summaries describe events that
occur in tbe original story. However, only
paragraph (5) can be considered a rea~onable
summary. The other four all seem to miss tt_1~
point of the story, while summAry / ·,)
encapsulates the gist of the story to the
exclusion of all else.

This summary conforms to a description of
the story's point. We will attempt to define
the exact content and structure of this point
more rigorously below. First, let us consider
how the poignancy of these events affect story
processing.

3.1 Points Structure Memory

The conceptual representation of a story in
memory is structured according to its point
content. That is, memory is hierarchical, and
consists of at least the following levels:

1. At the highest level, a story is represented
as a point or set of points that comprise the
important parts of the text.

2. Beneath this level is a description of the
actual events that comprise these points.

3. Beneath this is a level of events that
connect up with the major events of the story
but do not in themselves constitute points.

4. Finally, there is a level consisting of the
actual words of the sentences used to express
these ideas.

For example, in the Xenon story, the
highest level describes that fact that John had
a particular kind of problem. The level beneath
this would describe the particular nature of the
problem, e. g., that John couldn't keep up the
payments on his car. The next level would
include events like John spotting the hit and
run victim. Then of course is the actual text.

3.2 Points Affect Processing

Since readers are presumably looking for a
point as a text is being read, points often give
rise to expectations, or predictions, about what
will happen next tn the text. For example, a
reader of paragraph \2) does not find any point;
if the story ends here the reader's expectations
are not met and the reader is surprised by the
stories pointlessness.

A reader of story (3), on the other hand,
interprets the text as the beginning of a
poignant episode. The reader of this story will
also be surprised if the story terminates here.
However this time, the surprise is due to a
~oint being introduced but not completed. That
is, the reader would be equally confused if the

story were to continue and jntroduce other
points without continuin~ to expand on the point
already introduced. Without some predefined
notion of point, a reader could not judge that
one of these stories is better formed than the
bther.

Thus a reader must possess some notion of
what constitutes a point in order to recognize
one's occurence in a story. This knowledge
about story points also plays a predictive role
as well 1 since once a point has been referred to
by a text, R reader must determine how the
subsequent episodes in the story relate to that
point.

While text comprehension is normally
influenced by pointsi it is possible that points
play a greater roe in special kinds of
processing. For example, skimming is a text
comprehension technique in which the desire to
process poignant information dominates the
reader's concerns. We shall not be concerned
with this sort of processing here, but with the
role points play in ordinary comprehension. For
a monPl of skimming as a goal-direr.ten
understanding process, see DeJong (1979).

3.3 Kinds Of Points

By definition, some points ore liable to bP
idiosyncratic. However, enough points seem to
be sufficiently pervasive to allow peo~le to
agree that the same point structure exists in
the same texts. My goal here is to isolate
these common points.

Many of these points have to do with human
dramatic situations. A human dramatic situaTioi'i
is a sequence ot goal-related events that
contains some problem for a character. For
example, in the Xenon story, the problem
involves John losing his job and not being able
to afford the lifestyle to which he had become
ar.customed.

Dramatic situations usually also involve
solution components that describe how a problem
is reserved. In the Xenon story, the solution
in a fortuitous circumstance in which John saves
the life of a rich person who subsequently
rewards him .

Th e notion that problems form the basis of
many stories was noted by a nu~ber of people, in
particular, by RumPlhart (1976). Rumelhart uses
the notion of a problem in his theory to refer
to any situation involving a goal. The coneept
of a problem introduced here differs from
Rumelhart's in that it requires a character to
heve trouble fu] fi l] ing hie goal. For example,
Rumelhart's theofy does n9t make the distinction
between story 2) and \3) above, although one
story clearly appears to be better formed than
the other.

In particular, the problematic dramatic
situations that initiate story points usually
involve some complex interactions between goals
that can create difficulties for a character.
For example, in the Xenon story, John's problem
involves a relationship between his recurring
goa ls of living in a certain style, and the
state of having a job. In addition to
situations involving recurring goals, frequently
occurring dramatic situations include those in
which there are a number of characters with
opposing goals, and in which an individual has
goals that are in conflict with one another.

The following is a short description of the
goal relationships that play a significant role
in creating poignant sit~ations. As I have
point~d out previously \Wilensky, 1978a and
1978h), these relationships are themselves quite

259

complex , and a great deal of knowledge about
them is needed by story understanders in order
to understand the situations in which they
appear. The following section is meant only to
illustrate these relationships.

1. Goal Conflict

A goal conflict is a situation in which one
character has several goals such that the
fulfillment of one goal will preclude the
fulfillment of the others. For example,
consider the following story:

(4) John wanted to watch the football game but
he had a paper due the next day. John
decided to watch the football game. John
failed Civics.

Story (4) is an ins tance of a goal
because John's goal of watching the
game may interfere with his other
writing his paper.

2. Goal Competition

conflict
football
goal of

Gonl compe tition refPrs to thosP sttuntions
in which several characters' goals may interfere
with one another. For example, the following
story contains an instance of goal competiti on:

(5) John told Bill he would break his arm if
Bill didn't give John his bicycle. Bill got
on the bicycle and rode away.

John's goal of possessing Bill's bicrcl e cannot
be fulfilled along with Bills goal of
preserving possession of the bicycle. If Bill
succeeded in preserving possession of the
bicyclei then John would have failed to fulfill
his goa •

3. Goal Subsumption

Goal subsumption refers to A situation in
which n charnr.ter's plan is to Achieve a stAte
that will make it easier for a charncter to
fulfill a recurring goal. For example, the
following story contains an instance of goal
subsumption:

(6) John was tired of frequenting the local
singles' bars. He decided to get married,

In this story, John decides to ge t
order to make it easier to achieve
had been achieving previously by
singles' bar.

marri ed j n
the goals he
going to a

. These particular goal relationships Are
i mportant here because the situations to which
they give rise account for a lar~e class of
story problems. That is, dramatic situations
involve a difficulty in fulfilling a goa l, ann
these difficulties often arisP due to goal
interrelations. In particular, goal
relationships can give rise to these problems
and associated solutions:

1. Goal Conflict - If a character is unabl e to
resolve a goal conflict, then one of thnt
character 's goals may fail. Thus goal failure
due to goal conflict, and attempts to resolve
goal conflict both provide interesting story
situati9ns. In aadi~ion to attempts at
resolution, a goal conflict may resolve itself
s~ontaneously under a set of fortuitous
circumstances.

2. Goal Competition - As with goal conflic t ,
the existence of competitive goals implies that
some character mar have trouble fulfilling his
~oal. Interesting stories therefore exist
involving goal failure due to goal competition
.~truggles against the plans of other character~
\which we call anti-~lanning), attempts at
easing the competi ion, and spontaneous
resolution of the problem.

. I
• 1

3, Goal Subaumption - Goal subsumption gives
rise to dramatic situations when a subsumption
state is terminated, For example, if John is
happily married to Mary, and then Mary leaves
him, all the goals subsumed by their
relationship may now be problematic - John may
become lonely, and miss his social interactions
with Mary, for instance. Closely related to
problems based on ~oal subsumption are those
caused by the elimination of normal physical
states, For example, becoming very depressed or
losing a bodily function can give rise to the
inability to fulfill recurring goals, and can
therefore generate some interesting problems,

The resolution of goal subsumption
termination involves establishing a new
subsumption state to re-subsume the recurring
goals,

4,0 GOAL RELATIONSHIP POINTS

Goal subsumption termination is a problem
point component because previously subsumed
goals become problematic. Goal conflict and
goal competition endanger the fulfillment of
some of a character's goals, and therefore
generate dramatic impact. On the solution side,
we have goal conflict resolution, goal
abandonment, antipla.nning, re-subsuming
subsumption states, and spontaneous conflict and
competition removal.

However the dramatic nature of
relationships is not independent of how
relationships are presented in n text.
example, consider the following misuse
potentially poignant goal relationship:

goal
these

Fo,·
of a

(7) John lost his job. Then he found another
one.

This is not a particularly dramatic situation.
It contains an instance of goal subsumption
termination (John losing his job) and a solution
~o)the problem this 9r~ates (John getting a new
~ob. Nevertheless, ,7J hardly qualifies as an
interesting story.

The problem with (7) is that it contains
the cause of the problem, the termination of a
subsumption state, but no d~syription of the
problem itself. Contrast t7J with the Xenon
story given at the beginning of this paper.
John ~lso los~ his job in that story, but the
situation contains considerably more dramatic
impact. In the Xenon story we are given a
description of John's problem state. He could
no longer afford all the things he had become
used to. Since the problem is spelled out in
this story, its dramatic effect is more fully
realized .

Thus the mere appearance of a problematic
goal relationship does not guarantee its
poignancy. The problem must appear in a form
that spells out its implications. I call these
forms p~ig{ ¥f7iotypes. A point prototype is a
kind o s ~of the dramatic elemen t of
which the goal relationship is a part. The
Xenon story above will serve to illustrate such
a prototype.

The problem for John in the Xenon story is
caused by a goal subsumption state terminating.
To make this poignant, the story uses the
problem point prototype in Figure 2 to fill out
the rjrrumatanrea of the prohl~m.

260

Figure 2
Goal Subsumption Termination Prototype

1. Subsumption state

2. Cause of termination event

3, Problem state description

1 . Unfilled precondition

2. Problematic goals

3, New goal (optional)

4, Emotional reactions (optional)

That is i to use subsumption state termination as
a prob em point 1 first state the s ubsumpti on
state, followed oy the cause of termination
event. Then describe the problem state itself
by listing the goals that are no longer
s ubsumed • the goal of re-establishing a
subsumption state may be stated also, along with
any emotional reactions to the termination.

In the Xenon story, this prototype
instantiated as is shown in Figure 3.

Figure 3
Instantiated GST Prototype

1. Subsumption state - John hns job,

is

2, Cause of termination event
John,

Boss fire s

3, Problem state description

1. Unfilled precondition John
doesn't have enough money.

2, Problematic goals·- Maintaining car
and house.

3, New goal - John wants to resubsume
these goals.

4, Emotional reactions not
explicitly stated,

This problem is resolved in the story
through a very common solution point called
Fortuitous Circumstances, Spontaneous goal
conflict resolution and external goal
competition removal are also instances of this
solution point component, which is shown in
Figure 4,

Figure 4
Fortuitous Circumstance Solution Prototype

1. Undesired state

2, Fortuitous event

1. Incidental action

2. Fortuitous outcome

··; . Nrw ot.ntr

3. State consequence descripti on

This solution prototype is instantiated
the Xenon story as Figure 5 shows.

in

Figure 5
Instantiated FC Solution Prototype

1 , Undeaired state
enough money.

2. Fortuitous event

John doesn't have

1 . Incidental action - John saves rich
man,

2, Fortuitous outcome - Rich man gives
John money .

3, New state - John is rich,

3, State consequence description - John is
happy and gets lots of possessions,

4,0,1 Some More Solution Point Components

Solution point components and their
associated prototypes have not yet been analyzed
in as much detail as the problem components have
been, However, in addition to the fortuitous
circumstances solution given above, several
other solution point components seem to be
common.

One such solution is called "More Desperate
Measures", In this point, a problem is attacked
by some plan that is normally not considered
because of its high riak, Because of this risk,
More Desperate Measures solutions tend to
generate goal conflicts their user thus
creating another problem point component for the
story. For example, in the Xenon story, after
John loses his job, he might decide to rob a
bank to get some money. Robbery entails a
number of risks, so the use of this plan would
create a goal conflict for John between his
desire to have money and to preserve his
well-being, This point would then be developed
further in the story.

Overcoming a Limitation is another solution
point seen with some frequency. This case can
occur when a problem is based ln part on a
character's inability or lack of courage, Here
t~e.cha'.aoter attempts to overcome his personal
limitation or see the error of his Wafs in order
to resolve a problematic situation, For
~xample, a typical fairy tale type plot might
1nvolve a character who is a subject of ridicule
by his piers because he is a coward, and then
overcomes his cowardess in some heroic deed,

5,0 CURRENT STATE OF PAM

As was me~tioned previously, the naive
explanation algorithm fails to find proper
explanations for events in stories involving
goal relationships, However, a more
sophisticated version of PAM has been
implemented that possesses knowledge about the
goal relationships described above. PAM can use
this knowledge to infer explanations for events
in many complex goa l relationship situations,

The following simple eYamples illustrate
some of the situations involving goal
relationships that PAM can understand:

261

**
Goal Subsumption:

Input text:

JOHN AND MARY WERE MARRIED, THEN ONE DAY~ JOHN
WAS KILLED IN A CAR ACCIDENT, MARY HAD ,0 GET
A JOB,

Input:
Output:

WHY DID MARY NEED EMPLOYMENT?
JOHN DIED AND SO SHE NEEDED A SOURCE OF
MONEY,

**

Pam infera that John's death terminates a
subsumption state for Mary, and that she may
seek to replace it, PAM uses this inference to
infer that the explana tion behind Mary's goal of
getting a job,

**
Goal Conflict:

Input texts:

WILMA WANTED TO HAVE AN ABORTION. WILMA WAS
CATHOLIC, WILMA CONVERTED FROM CATHOLICISM TO
EPISCOPALIANISM,

WILMA WANTED TO HAVE AN ABORTION, WILMA WAS
CATHOLIC. WILMA WENT TO A ADOPTION AGENCY,

FRED WANTED TO TAKE HIS GUN HUNTING. FRED
WANTED WILMA TO HAVE A GUN AT HOME, FRED ONLY
HAD ONE GUN, FRED BOUGHT ANOTHER GUN.

**

In the first two stories, PAM detects a
conflict between Wilma's goal of having an
abortion and her inferred goal of not having an
abortion because she is Catholic, In the first
story 1 PAM infers that Wilma resolved the
conflict by changing the circumstance that gives
rise t9 one of her ~oals, and fulfilled the
other (i , e, 1 she decided to have the abortion),
In the nex, case, PAM infers t hat Wilma
abandoned her goal of having an abortion because
it menat less to her than violating her
religious beliefs.

The third story is a goal conflict based on
a resource shortage, Here PAM infers that Fred
bought another gun so he could take one with him
and leave one at home,

**
Goal Competition:

Input text:

JOHN WANTED TO WIN THE STOCKCAR RACE. BILL ALSO
WANTED TO WIN THE STOCKCAR RACE, BEFORE THE
RACE, JOHN CUT BILL'S IGNITION WIRE.

Input:
Output:

WHY DID JOHN BREAK AN IGNITION WIRE?
BECAUSE HE WAS TRYING TO PREVENT BILL
FROM RACING,

**

This story contains an instance of a goa l
competition situation involving anti-planning .
PAM explains John's action as part of a plan to
undermine Bill's efforts by undoing a
precondition for Bill's plan,

PAM also have been given some knowledge
about poignancy. In particular, PAM knows about
goal subsumption termination problem components,
and fortuitous circumstance solution points.
With this knowledge~ pam can now understand the
following version 01 the Xenon story:

**
JOHN GRADUATED COLLEGE. JOHN LOOKED FOR A JOB.

THE XENON CORPORATION GAVE JOHN A JOB. JOHN WAS
WELL LIKED BY THE XENON CORPORATION. JOHN WAS
PROMOTED TO AN IMPORTANT POSITION BY THE XENON
CORPORATION.

JOHN GOT INTO AN ARGUMENT WITH JOHN'S BOSS.
JOHN'S BOSS GAVE JOHN'S JOB TO JOHN'S ASSISTANT.
JOHN COULDN'T FIND A JOB. JOHN COULDN'T MAKE A
PAYMENT ON HIS CAR AND HAD TO GIVE UP HIS CAR.
JOHN ALSO COULDN'T MAKE A PAYMENT ON HIS HOUSE,
AND HAD TO SELL HIS HOUSE, AND MOVE TO A SMALL
APARTMENT.

JOHN SAW A HIT AND RUN ACCIDENT. THE MAN WAS
HURT. JOHN DIALED 911 THE MAN'S LIFE WAS SAVED.
THE MAN WAS EXTREMELY WEALTHY, AND REWARDED JOHN
WITH A MILLION DOLLARS. JOHN WAS OVERJOYED.
JOHN BOUGHT A HUGE MANSION AND AN EXPENSIVE CAR,
AND LIVED HAPPLY EVER AFTER.

**
In addition to the many inference that are made
to understand this story, PAM also recognizes
that John's losing his job is an instance of a
Goal Subsumption Termination vroblem, and that
the hit and run victim rewarding John is an
instance of a Fortuitous Circumstance solution
to this problem. This representation could then
be used by a summarization program to produce a
summary that included only the events of John
losing his job, the problems this caused, John's
saving the rich man 1 and the rich man rewarding
him (A summarization component that actually
performs this take in presently under
construction. Although it has not yet been
completed, it does not appear to be problematic,
since all the information it needs is present in
the structures PAM already produces).

6.0 SUMMARY

Stories constitute a subset of coherent
natural language texts. For texts to be
stories, they must be poignant in addition to
being coherent. This point structure of a story
serves to organize the representation of a story
in memory so that more important episodes are
more likely to be remembered than trivial
events. Points also serve to generate
PxpPd.nt.ions 11bout wh1,t will hnpp<"n next. in 11

story, since a story r!'ader is looking for thP
point of a story as the text is being read.

An important class of story points deals
with human dramatic situations, and these most
often contain R set of interacting goals that
create difficulties for a character. A taxonomy
of these goal relationships and the situations
they give rise to is useful for detectin~ a
voint of a story, as well as for establishing
its coherence as a text. When a goal
relationship situation occurs as a problem point
component, it will occur as part of a point
prototype. These prototypes specify those
aspects of the situations that should be
mentioned in order to produce a dramatic effect.

The notion of a story point competes with
the idea of story grammars as a way to
characterize story texts. The story grammar
approach attempts to define a story as a text
having a certain form, while the story point
idea defines a story as a text having a certain
content. The form of a story is viewed here as
being a function of the content of the story,
not a reasonably independent object.
Understanding stories 1 then, is not so much a
question of understanding the structure of a
text, but of understanding the point of what the
text is about.

262

1 J

2]

3]

4]

6]

7J

8]

9]

10]

11]

12]

13]

14}

15]

16]

References

Black, J. B. and Wilensky, R. (1979). An
evaluation of story grammars. Cognitive
Science, vol. 3, no. 3.

Charniak, E. (1972). Towards a model of
children's story comprehension. AI
TR-26 6 , MIT.

Cullingford, R. E. (1978). Script
Application: Computer Understanding of
newspaper storie~. Yale University
Research Report H116.

DeJongi G. F. (1979). Skimming stories in
rea time: An experiment in integrated
understanding. Yale University Research
Report #158.

Kintach, W., and Van Dijk, T. A. Recalling
and summarizing stories. Language, 40,
98-116.

Mandler, J. M. and Johnson, N. S.
Remembrance of things parsed: Story
structure and recall. Cognitive
Psychology, 9, 111-151.

Minsky, M. (1974). A framework for
representing knowledge. MIT. AI Memo No.
306.

Rumelhart, D. E. (1975). Notes on a schema
for stortes. ln D.G. Bobrow and A,
Collins (eds.) Re8resentation and
Underatandin~: St dies in CognTtTve
Science. Aca emic Preas-;-New fork.

Rumelhart, D. E. (1976). Understanding and
Summarizing brief stories. Center for
Human Information Processing Technical
Report No. 58. University of California,
San Diego.

Schank, R. C. and Abelson, R. P. (1977).
Scripts, Plans, Goals, and
Understan~awfei'ice~baum Press,
Hillsdale, N.J.

Schank, R. C, and Wilensky. R. (1978). A
Goal Directed Production System for
Story Understanding. In D. A. Waterm~n
and F. Hares-Roth (Eds.),
Pattern-directed Inference Systems.
Academic Press, New fork.

i,cl)ank.,.)R. C. and Yale A. [. Project
(197? • SAM -- A story understander.
Yale University Research Report #4).

Steini N. L. and Glenn, C. G. (1977). An
ana ysis of story comprehension in
elementary svholl children. In R.
Freedle (Ed.; Multidisciplina'.}'_
~era~ectivelh in discourse omp enens1o . -towrettce 1':tlbaum
Associates, Hilldale, New Jersey.

Thorndyke, P. (1977). Cognitive Structures
in Comprehension and Memory of Narrative
Discourse. Cognitive Psychology,
9:88-11 o.

Wilensky 'R. (1978a). Why John married
Mary: Onderstandind Stories Involving
Recurring Goals. Cognitive Science, vol,
2 no. 3.

Wilensky, R. (1978b). Understanding
goal-based stori~s. Yale University
Research Report ~140.

Speech Acts and the Recognition of Shared Plans

Philip R, Cohen
Center for the Study of Reading
University of Illinois &

Introduction

Bolt Beranek and Newman, Inc,
Cambridge, MA

The purpose of this paper is to simplify
Perrault, Allen, and Cohen's [1,2,9,10,19,20)
plan-based theory of speech acts by revealing an
important redundancy -- illocutionary acts, We
show that illocutionary act definitions can be
·derived from more basic statements describing the
recognition of~ plans -- plans based on the
shared beliefs of the planner and some intended
;recognizer, Eliminating the redundancy is
iimportant for competence models of speech acts
[10,19), but maintaining and exploiting it may be
useful for computational and linguistic models
[1,11,32) especially for those dealing with the

'"short-circuiting" of certain implicatures
[4,18,32), Our primary interest here is in
competence models,

A plan-based theory of speech acts specifies
that plan recognition is the basis for inferring
the illocutionary force(s) of an utterance, 'nle
goal of such a theory is to construct a plan
generation and recognition formalism that treats
~ommunicative and non-communicative acts
uniformly, Such a theory should therefore state
'the communicative nature of an illocutionary act
~s part of that act's definition, A reasoning
system would then not have to employ special
knowledge about co11111Unicative acts; it would
simply attempt to achieve its goals,

Communication and the recognition of shared plans

Co1DD1Jnication is intimately tied to
plan-recognition, Grice [14) showed that
"simple" recognition of intention(l) as might be
performed by an unseen observer (cf, [24,311) is
insufficient as a basis for defining
communicative acts, Instead he argued that
speakers must plan for hearers to recognize their
plans, and hearers must recognize the plans they
were intended to recognize, Unifying Grice's
analysis with Austin's [3), Searle [27,28)
proposed that a speaker who is performing a
speech act, such as a request, must intend to
produce the effect of that action (to get the
hearer to want to perform the requested act) by
means of getting the heare·r to recognize the
speaker's intention to produce it, It was on
this basis that Perrault and Allen [l) developed
a scheme for recognizing indirect speech acts,

This research was supported primarily by the
Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of
Naval Research under Contract N00014-77-C-0378,
and also, in part, by the National Research
Council of Canada,
(1) For this paper, "intention" and "plan" should
be considered synonymous

263

Hector J, Levesque
Dept, of Computer Science
University of Toronto
Toronto, Ontario

However, Schiffer [26) has argued that, to
avoid counterexamples based on deception, the
Gricean program (and its amendments [30,271)
produce an infinite regress of intending that one
recognize an intention, To avoid this
difficulty, he claims that the recognition of
intention must be mutually believed, In other
words, in order to communicate, speakers must
make their plans shared or public knowledge,

In view of this problem, Perrault and Allen
have suggested that their model be reformulated
in terms of mutual beliefs, Since we are
proposing such revisions, we shall discuss the
essentials of their scheme,

Allen and Perrault's ~

Building on prior attempts to link speech
acts to plans [5,6,7,9,10,24), Allen and Perrault
proposed two levels of speech act operators:
surface and illocutionary, Illocutionary
operators, e,g,, REQUEST, are defined by stating
propositions as preconditions, bodies, and
effects with the understanding that:

a) preconditions are necessary for the
successful "execution" of the act (or
procedure) described by the operator;

b) effects are conditions that become true
after the execution, and

c) the body is "a set of partially ordered
goal states that must be achieved in the
course of executing the procedure," [19,
p,23],

Searle's recognition of intention" condition on
speech acts is incorporated by defining an
illocutionary operator's body to be "hearer
believes speaker wants E" (abbreviated HBSW(.E)),
where Eis the operator's effect, So, given the
above understanding of operators, the
illocutionary acts' operator's body needs to be
achieved in the course of executing the operator,
The standard ways of achieving them are by
surface operators,

The classification of an utterance as a
surface operator depends on the utterance's mood

declaratives become S-INFORMs, imperatives
become S-REQUESTs, and questions become
S-REQUESTs to INFORM, Surface operators are
considered to be primitive -- they represent what
agents actually perform -- and consequently have
no bodies, Their effects are defined to match
the corresponding illocutionary operators' bodies

i,e,, HBSW(E), 'nlus, the standard way of
achieving the body of a REQUEST is via an
S-REQUEST, However, different combinations of
surface act and propositional content can
ultimately yield the same effect,

I

Mediating between the effects of surface
_operators and the bodies of the illocutionary
ones is a set of plan-recognition inferences.
;Generally speaking, the inferences take the form:
"the agent wanted P to be true because that would
enable him to do A (precondition/action
·inference), which would result in E
(Action/effect), which is a means of achieving B
(body/action). the agent is then regarded as
baving wanted [to do] A, E, and [to do] B.

The inference process begins by observing an
act and then assuming it was intentional the
agent wanted to do it. The application of the
action/effect inference speech act operator thus
results in a proposition of the form:
HBSW(HBSW(E)). Perrault and Allen supply rules
for inferring new propositions E' such that
HBSW(HBSW(E')). Each such E', inferred by these
1intended plan recognition rules, is regarded as
;having been communicated, in the Gricean sense.

Illocutionary act identification occurs when
the body/action inference applies to the embedded
·HBSW(E) proposition, yielding, for instance,
HBSW(REQUEST(S,H,B)). If the body/action
inference occurs immediately after the expansion

;of a surface act, then a literal interpretation
has been found. If there are intervening
inferences, an indirect interpretation has been
inferred.

Their uncovering of the inferences needed to
arrive at indirect interpretations is the key
accomplishment. But once those inferences are
known, formal (and perhaps computational) models '
need not recognize illocutionary operators in
order to communicatively infer their effects.
Since, for their model, illocutionary force is
being discovered by a hearer motivated to
recognize the speaker's plan in order to
facilitate it, the effects are all that is
needed. We suggest, then, that the body/action
inference collapses two distinct kinds of
inference processing -- means/end reasoning and
summarizing. The latter has not been shown to be
essential to helpful plan recognition.

To demonstrate this point, Perrault and
Allen's model will be elaborated upon in two
ways:

1) To relate an illocutionary operator's
body and effect, a plan will be stated
that produces the effect once the body is
achieved.

2) To capture the
illocutionary
steps of those
believed.

communicative nature of
acts more accurately, the
plans should be mutually

Surface speech act operators will be redefined to
produce mutual beliefs about the speaker's goals,
much as Perrault and Allen suggested (cf. Clark
and Marshall's [8] analysis discussion of
situations producing mutual beliefs). Once these
s teps are taken, the body/action inference will
be unnecessary and illocutionary operators will
reduce to redundant theorems .

264

The Formalism

This section formalizes actions and plans ,
in conjunction with a planner's beliefs and
desires.. the style of formalization owes much to
the literature on axiomatic specification of
programming languages, and to Moore[17J. We do
not intend to give the impression that a complete
language with proof and model theories is lurking
somewhere offstage. Although we will describe
the formalism in terms of axioms, rules of
inference and possible world states, it should be
understood that these are intended to be more
suggestive than definitive and that the formalism
itself remains a topic of on-going research.

The formalism is a language with expressions
of various types formed from primitive elements
through rules of composition. Among the types of
expressions we will discuss here are logical
expressions (or wffs), action terms and terms
denoting agents. For the remainder of this
section, we will use "p", "q" and "r" as
meta-variables ranging over wffs, "a" and "b"
ranging over action terms and "x" and ''y" ranging
over agent terms. In addition, we will use "I-"
as a predicate over wffs holding when the wff is
a theorem.

By an action, we mean something an agent can
do to change the state of the world. For
example, the action term

(GIVE x o)

denotes the giving of the object denoted by "o"
to the person denoted by "x". Notice that the
action term does not mention the agent involved,
This allows actions to be combined into more
complex ones without having to fuss over the
resulting agent. Examples of complex acts are

(IF pa b) a conditional action
(SEQ al••• ak) a sequence of

actions
(WHILE pa) an iterated action

Among the actions required for communication, we
assume

(S-INFORM x p) saying to x that p
is true

(S-REQUEST x p) asking x to make p
be true

Among the wffs,
connectives

we assume the

(IMPLY p q) (NOT p)
(AND pl , •• pk) p • q
(FORALL v p)

In addition, there are wffs
communication

(ATTEND x y) true iff xis
attending toy

pertaining

(BEL x p) true iff p follows from
what x believes [15,161

(WANT x p) true iff p follows from

usual .

to

what x wants

Note that just because a BEL or WANT is true does
not mean that the agent involved actively
believes or wants the proposition in question.
All that can be said is that in every world state
that is consistent with what the agent believes.
the second argument to BEL will be true. One
particular kind of wff peculiar to actions is

(RESULT x a p)

which is true iff "p" is true in the world state
resulting from the execution of "a" by "x" (or
"a" does not terminate).

The behaviour of the expressions is governed
by the axioms and rules of inference of the
formalism. For example. action terms are
specified using RESULT as in

I- (IMPLY (OWN x o) (RESULT x
(GIVE y o)

(OWN y o)))

The composite actions can be treated 1111ch like
the axiomatic specification of programming
language constructs. The IF rule. for example is

I- (IMPLY (AND (KNOWIF x p)

where

(IMPLY p (RESULT x a q))
(IMPLY (NOT p)
(RESULT x b q)))

(RESULT x (IF pa b) q))

I- (KNOWIF x p) • (OR (KNOW x p)
(KNOW x

(NOT p)))

and

I- (KNOW X p) • (AND p (BEL X p))

Similarly, the rule of consequence becomes

u 1- P then I- (RESULT x a p)

Note that this must be a rule of inference in
that the corresponding axiom (as an implication)
cannot be a theorem. A related notion to this
rule is the wff

(CAUSE x p q)

governed by the axiom

I- (CAUSE x p q) • (FORALL a / ACTION
(IMPLY (RESULT x a p)

(RESULT x a q)))

so that a CAUSE is true iff anything that "x"
does to bring about "p" also results in "q" being
true. In other words. making "p" true makes "q"
true.

Of crucial importance to the definition of
speech acts, is the concept of mutual belief (or
MB) governed by

265

If I- p then I- (MB x y p)

and

I- (MB X y p). (BEL X (AND p
(MB y X p)))

The axiom states that mutual belief is equivalent
to an infinite conjunction of beliefs in that.
allowing that

I- (BEL X (AND p q)). (AND (BEL X p)
(BEL x q))

then the following are implied by a mutual
belief:

(BEL x p)
(BEL x (BEL y p))
(BEL x (BEL y (BEL x p))) ••• (1)

Given the notion of mutual belief, we can now
state the two rules governing two primitive
comD11nication acts, S-INFORM and S-REQUEST:

I- (IMPLY (MB x y (ATTEND y x))
(RESULT x (S-INFORM y p)

(MB y x (WANT x (BEL y
(BEL x p]

I- (IMPLY (MB x y (ATTEND y x))
(RESULT x (S-REQUEST y p)

(MB y x (WANT x (BEL y
(WANT x p)

When discussing
goal-directed agents. a
an agent being able to
affairs that he wants:

the behaviour of
useful concept is that of
bring about some state of

I- (CAN x p) • (EXISTS a/ACTION
(KNOW x

(RESULT x a p)))

Note that this is an example of "quantifying in"
in that it is not sufficient for "x" ·simply to
know the existence of an action that results in
"p", he must also know what action it is. On the
other hand,

(BEL y (CAN x p))

could be true without "y" knowing how "x" will
achieve "p" since. in this case, the quantifier
is within the belief context• Given this
characterization, we now turn our attention to
plans, which, loosely speaking, are simply proofs
that. given some set of beliefs, an agent is able
to achieve some goal. More formally. the
definition is

(1) Schiffer's (26] definition of D11tual belief
also includes an infinite conjunction starting
from (BEL y p). Since we shall only be concerned
about one person's point of view, we only deal
with bel'iefs about mutual beliefs. which reduce
to the above.

A plan for agent "x" to achieve some goal
"q" is an action terrn "a" and two sequences of
wffs "pO", "pl", ••• "pk" and "qO", "ql",
"qk" where "qk" is "q" and satisfying

1. I- (BEL x (IMPLY pO
(RESULT x a qO)))

2. I- (BEL x (IMPLY pi
(CAUSE x qi-1 qi)))

i•l,2, ••• k

In other words, given a state where "x" believes
the "pi", he will believe that if he does "a"
then "qO" will hold and moreover, that anything
he does to make "qi-1" true will also make "qi"
true. Consequently, a plan is a special kind of
proof that

I- (BEL X (IMPLY (AND pO ••• pk)
RESULT x a q)))

and therefore, assuming that

I- (IMPLY (BEL X p) (BEL X
(BEL x P)))

and

I- (IMPLY (BEL x (IMPLY p q))
(IMPLY (BEL x p)

(BEL x q)))

a plan is a proof that

I- (IMPLY (BEL x (AND pO ••• pk))
(BEL x (CAN x q)))

Notice that the assumptions "pi" may be
simplified in a plan in that if we have that

I- (BEL X (IMPLY p (RESULT X b
(AND pO pl ••• pk))))

then we have a reduced plan for "x" to achieve
"q" since

I- (BEL x (IMPLY p (RESULT x
(SEQ b a) q)))

This process can, of course, be iterated on the
new assumptions. (Since action "b" achieves all
the prerequisites, the "non-linearity" problem
[21] remains.)

Among the corollaries to a plan are

I- (BEL x (IMPLY (AND pO ••• pi)
(RESULT x a qi))) i•l, ••• k

and

I- (BEL X (IMPLY (AND pi ••• pj)
(CAUSE x qi-1 qj)))

i•l, ••• k j•i, ••• k

There are two main points to be made
corollaries. First of all, since
theorems, the implications can be
believed by the agent "x" in every

about these
they are

taken to be
state. In

266

this sense, these wffs express general methods
believed to achieve certain effects provided the
assumptions are satisfied. The second point is
that these corollaries are in precisely the form
that is required in a plan and therefore can be
used as justification for a step in a future plan
in much the same way a lemma becomes a single
step in the proof of a theorem.

We therefore propose a notation for
describing many steps of a plan as a single
summarizing operator (akin to MACROPs in STRIPS
[11]). An operator consists of a name, a list of
free variables, a distinguished free variable
called the agent of the operator, an effect which
is a wff, a optional body which is either an
action or a wff and finally, an optional
prerequisite which is a wff. The understanding
here is that operators are associated with agents
and for an agent "x" to have an operator "u",
then there are three cases depending on the body
of "u":

1. If the body of "u" is a wff, then

I- (BEL x (IMPLY prerequisite
(CAUSE agent body effect)))

2, If the body of "u" is an action
term, then

I- (BEL x (IMPLY prerequisite
(RESULT agent body effect)))

3. If "u" has no body, then it is
simply an action and

,_ (BEL X (IMPLY prerequisite
(RESULT agent u effect)))

An example of this last kind of operator is the
action GIVE, described above, which becomes the
operator

[GIVE y o) agent: x
effect: (HAVE yo)
prereq: (HAVE x o)

One thing worth noting about operators is that
normally the wffs used above

!-(BEL x (IMPLY prerequisite • ••))

will follow from the more general wff

!-(IMPLY prerequisite •••)

as in the case of the GIVE example. However,
this need not be the case and different agents
could have different operators (even with the
same name). Saying that an agent has an operator
is no more than a convenient way of saying that
the agent always believes an implication of a
certain kind.

Before considering some
operators and their use in plans,
the notation for describing plans.

examples of
we introduce

qk • goal
I
I

uk - - 0 -- pk
I
I
qk-1
I

I
uO -- 0 -- pO

where the "pi" and the "qi" are as before and the
"ui" are the operators justifying the transition
given "pi" from "qi- 1" to "qi". In the simplest
case, "pi" will be the prerequisite of "ui", with
"qi- 1" and "qi" the body and effect respectively.
More generally, we need only require that

I- (BEL x (IMPLY pi prerequisite))
I- (BEL x (IMPLY qi-1 body))
I- (BEL x (IMPLY effect qi))

to satisfy the definition of a plan.

Operator Definitions

Given the
definitions, we
needed for our
argument in the
be the agent.

above understanding of operator
present those operator schemas
derivation of REQUEST. The first
parameter list for a schema will

[CAUSE-TO-WANT x y p]

effect:
body:
prereq:

(WANT y p)
(BEL y (WANT x p))
(AND -(WANT y -p)

(HELPFUL y x))

Provided y doesn't want NOT(p), and y thinks she
is feeling helpfully disposed towards x, then
getting y to believe that x wants p will get y to
want P• Though this may be one way to influence
someone's goals, more generally, one would like
to state "y is given a reason for wanting p".

The SHARED-RECOG operator describes Shared
recognition of the agent's goals:

[SHARED- RECOG x y pg]

effect: (MB y X (WANT X q))
body: (MB y x (WANT x p))
prereq: (MB y x (CAUSE x p q))

Of course, not every action produces mutual
beliefs about someone's goals. Usually, the two
parties must be mutually aware of the other's
presence. However, once it is shared knowledge
that x wants p, if its mut~ .l ly believed that
anything x does to make p t r ue makes q true, then
it will be mutually believed that x wants q.
Clearly, we are exploiting the "follows from what
the agent wants" interpretation of WANT here
an agent wants all the inevitable results of his
wants. Since this interpretation is currently
forced on us by our formal tools, and since we

267

want to formalize shared plans, we WANT this
interpretation.

The next operator provides for private
recognition of the agent's goals. It is similar
to Perrault and Allen's [19) Plan-Deduce
operator.

[PRIVATE-RECOG x y pg]

effect: (BEL y (WANT x q))
body: (BEL y (WANT x p))
prereq: (BEL y (BEL x (CAUSE x p q)))

PRIVATE-RECOG should appear in plans when
SHARED-RECOG is inappropriate, for instance when
the conditions implying CAUSE statements are not
mutually believed. Lack of shared knowledge can
arise because of third parties (e.g., someone
tells you what I want), because of the modality
of communication (e.g . , telephone conversations),
or because one of the parties is an unseen
observer.

The operator ACHIEVE models getting someone
else to make p true.

[ACHIEVE x y p]

effect: p
body: (WANT y p)
prereq: (CAN y p)

All that is required is that y know of some
action resulting in p (x does not have to know
which action that is). Then, simply by getting y
to WANT p will CAUSE p to hold. Of course this
idealization ignores the possibility of y's being
unable or unwilling to actually perform the
action. Future versions of CAN, using Moore's
(17) RES modal operator, may ensure that y can
also perform the action.

To allow for another way of influencing
someone's goals, we define:

[FORCE-TO-WANT x y p]

effect: (WANT y p)
body: (BEL y (WANT x p))
prereq: (BEL y (HAS-AUTHORITY-OVER X y))

The semantics of HAS- AUTHORITY-OVER
(interpreted as x has authority over y) could be
stated by filling out an organizational chart, or
determining the status relationships between the
parties.

Finally, the last operator we shall need is
S-REQUEST, as defined earlier, to produce mutual
beliefs about the speaker's goals. The
prerequisite is that it be mutually believed
between x and y that y is attending to x. (Note
the order of x and y -- x must actually believe y
is attending.) A crucial but as yet unanaly zed
condition on classifying an utterance as an
S- REQUEST to some particular hearer His that it
be mutually believed between the speaker, S, and
H, that H is the intended addressee. This
condition is not always satisfied, since some
computer systems are conceptualized as
"overhearing" (e.g., Genesereth's (13) ADVISOR).

The following is x's plan to achieve E:

E

I
[ACHIEVE y El ---0--(CAN y E)

I
(WANT y E)

I
[CAUSE-TO-WANT ---0--(AND

y E I I - (WANT y '"E)
I (HELPFUL y x))

(BEL x (WANT y E)) ..
II
II

(MB y x (WANT x E))

[SHARED-RECOG
x y (WANT y E)

El
(MB y x

I
---0--(MB y x (CAN y E))

I
I

(WANT x (WANT y E)))
I
I

----0--(MB y X

I (AND
[SHARED-RECOG
x y (BEL y

(WANT x
(WANT y E) l

E)) I -cwANT y -E>
I (HELPFUL y x)))

I
(MB y x (WANT x (BEL y

I (WANT XE))))
[S-REQUEST y El ----0--(MB x y

(ATTEND y x))

Given the individual operators and the
interpretation of operators as theorems, the plan
itself should be relatively self-explanatory,
The prerequisites of the SHARED-RECOG operators
shown imply those necessary for each individual
step, For instance, since all theorems are
mutually believed:

1-(BEL x (MB x y [IMPLY (CAN y E)
(CAUSE x (WANT y E)

El,

therefore
I- (BEL X (IMPLY [MB y X (CAN y E)l

[MB y x (CAUSE x
(WANT y E) E)l))

the precondition of

(MB y x (CAN y E)) is shown, We have made one
such implication explicit in the diagram -- the
one marking the transition from shared to private
beliefs,

Summarizing the plan

Various portions of the plan can now be
summarized, First of all, consider the summary
operator REQUEST:

[REQUEST x y El

268

effect: (MB y X (WANT XE))
body: (MB y x (WANT x (BEL y

prereq: (AND (MB y x
(MB y x
(MB y X

(WANT x E))))
(CAN y E)
- (WANT y -E))
(HELPFUL y x))

If the prerequisite holds, any action making the
body true achieves the effect, The propositions
in the plan not summarized by this operator are
achieved by virtue of y's private beliefs, The
decision to include illocutionary or
perlocutionary effects as part of some operator
cannot be made solely on formal grounds, Also,
notice that the third argument in the RF.QUEST
schema is a proposition and not an action, While
it would be desirable to derive a REQUEST to use
an action, the formalism forbids its use since
WANT takes a proposition as its argument,

We can also define other operators from this
same plan, For instance,

[COMPLY y x El

effect:
body:
prereq:

E
(MB y x (WANT x E))
(AND - (WANT y '"E)

(HELPFUL y x))
(CAN y E))

Clearly, we could have made the effect (WANT y
E), COMPLY subsumes the remainder of the above
plan, and progresses from shared beliefs to
private ones (which cause y to ach:teve E),
However, it is unclear which proposition should
be chosen as the body, Should the body be a
mutual belief (therefore involving a previous
co111111Jnication act) or need it only be a private
belief? Finally, if Eis a KNOWIF or KNOWREF
proposition [1,2,10,191, then a more specific
operator, ANSWER, can be defined,

Multiple summaries can occur because of some
indirect uses of surface speech acts as in
with an S-INFORM of x's WANT that leads to the
same effect as an S-REQUEST [1,2,10,191, Not
only could the early part of the plan be
summarized as an INFORM, and the later stages as
a REQUEST, but a perhaps co~utationally useful
operator would be one subsuming both the INFORM
and REQUEST; call it a WANT-REQUEST, This
formalizes the technique used in Woods et al's
[321 system to "short-circuit" various chains of
reasoning involving indirect speech acts,

Substituting FORCE-TO-WANT for CAUSE-TO-WANT
into the above plan allows us to create a summary
termed COMMAND as follows:

[COMMAND x y E]

effect: (MB y x (WANT x E))
body: (MB y x (WANT x (BEL y (WANT x E)l
prereq: (MB y x (BEL y

(HAS-AUTHORITY-OVER x yl
COMMAND differs from REQUEST in its
insensitive to the hearer's helpful
non-helpful) disposition and to her
desires,

being
(or

prior

Finally, we can create a plan in which the
effect takes hold in a .!12.!!.-communicative manner:

E

I
[ACliIEVE y El -0--(CAN y E)

I
(WANT y E)

I
I

[CAUSE-TO-WANT 0---(AND
I -(WANT y -E)

x y (BEL y I (HELPFUL y x))
(WANT x E))

(WANT y E)l
I
I

(BEL y (WANT x E))
I

[PRIV-RECOC ----0--(BEL y (BEL x (CAN y E)))
X y (WANT y E) I

El I
I

(BEL y (WANT x (WANT y E)))

(BEL x (AND
I

[PRIV-RECOC --0--(BEL y
X y (BEL y I

(WANT x E)
-(WANT y -E)))

(HELPFUL y x))))
(WANT y E)l

I
(BEL y (~ANT x (BEL y (WANT x E))))

II
II

(MB y x (WANT x (BEL y
I (WANT X E))))

[S-REQUEST --0--(MB x y (ATTEND y x))
y El

Again, the implication marks the shift from
mutual beliefs to private ones. By Schiffer's
[261 definition, any effect obtained on the basis
of private beliefs was not communicated. Thus,
on philosophical grounds, one would not classify
a summary of this plan as describing an
illocutionary act.

Possible Uses of Illocutionary Operators

The formalism indicates that certain
illocutionary operators are redundant--they can
be derived from other in~ependently motivated
operators. However, the redundancy is only
relevant to achieving the illocutionary
operator's effects. For the reasons stated
below, the redundancy may be useful.

Illocutionary operators might be used to
represent the meaning of illocutionary verbs.
Consider verbs that report on social interaction,
Corresponding operators can be defined to span
multiple agents' achievemen~ ~ (e.g., COMPLY and
ANSWER). Summary operators can perhaps be used
for verbs requiring "uptake" [31. Thus, a plan
summarizable as a bet could contain portions
summarizable as offerings and acceptances. The
major questions for this approach would be when
and to what end would those summaries expanded in
the course of processing an utterance. Obviously

269

the linguistic questions related to performatives
are also relevant but as yet remain unanswered.

From a computational perspective, summary
operators are useful in l i miting a planner's
search, as demonstrated by the use of MACROPs in
STRIPS [121. Summary operators allow for
"short-circuiting" the interpretation of certain
indirect speech acts ([18,2,4,31,321), Further
reduction in search could follow ABSTRIPS [221 in
assigning priorities to the summary operator's
prerequisites. Speech act plans could first be
sought using high priority preconditions and
later pruned by lower ones. Given suitable
priority and threshold schemes, indirect
achievement of a communicative goal may be as
efficient as direct achievement.

Finally, the issues of dynamically acquiring
summary operators, as in STRIPS, become relevant.
Though a system may summarize a shared plan,
there may be no corresponding illocutionary verb
in its lexicon to describe that plan, This
problem then presents an interesting challenge to
a model of language use -- how could a system
plan communicative acts to establish a jointly
agreed upon vocabulary?

In summary, our model proposes a foundation
for defining a class of illocutionary verbs,
However, as the next section shows, there are
formal and descriptive limitations to be
overcome. Furthermore, other teats need to be
applied to support the model,

Limitations

Our scheme has only been applied to a narrow
range of phenomena. First of all, we have only
shown the redundancy for two illocutionary verbs
("requests" and "command") though a similar
analysis has been done on "inform." Since these
verbs are prototypical of Searle's [29]
"directive" and "representative" classes, our
hope is that this style of formalism can be
extended to other members of those classes. Such
an analysis is currently limited by our
understanding of concepts such as benefit (for
suggestions) and danger (for warnings).

We have not yet attempted to handle the
class of indirect speech acts addressed by
Perrault and Allen. Our effor ts a r e currently
hampered by the KNOWIF(P) - -> P(or - p)
recognition inference stating that if you believe
an agent wants to know whether or not Pis true,
then it is plausible to believe that agent wants
P (or, wants -p). The inference arises because a
planner must determine whether or not an action's
preconditions hold, In order to formalize the
inference, an axiomatization of the behavior of a
planner or a plan- recognizer is needed. Such a
formalism would also have to capture stopping
conditions for shared and private
plan- recognition [1,2,13,25,32], and perhkps
rating schemes for choosing the best plan
[l, 2, 32].

Regarding the
is the lack of an
semantics for BEL
distinction between
"putting up with"

formalism, a major difficulty
adequate axiomatization and

and WANT. For instance, the
actively desiring, and

(as the lesser of two evils)

. ·1

. '

·needs to
Hintikka's

be drawn
[15,16]

formally,
treatment

BEL,
is the

given
better

understood concept,
A bothersome quirk of the formalism is that

actions cannot appear as objects of want, and
,henc~ do not appear in the REQUEST summary
·operator, We are therefore searching for a
.propositional way to state that an action was
done,

' Conclusions

The primary reason for pursuing this
formalism is that is allows one to express

·naturally the communicative nature of
illocutionary operators in terms of shared plans,
It leads us to conclude that summarizing an
utterance as the performance of an illocutionary

1act is not necessary to helpfully motivated plan

1recognition, The illocutionary operators that we
'. have studied are redundant for achieving their
'. effects, since the shared plans provide all the
:power, and their components are independently
motivated, However, though we have suggested
·such operators are unnecessary, we cannot
'formally prove the point without further
research, especially on the logic of WANT, The
formalism has led to a foundation for
"abort-circuiting" certain implicatures, as

irecommended by Morgan[l8], Perrault and
.Allen[l9], and as attempted in Woods et al's
' [32] natural language system, Finally, it
reveals the arbitrary nature of operator
definition, Some choices can be decided using
the adequacy test of third-party speech acts
'proposed by Cohen and Perrault [10), Other
decisions must await empirical evidence,

References

1, Allen, J, A plan-based approach to speech act
recognition (Doctoral dissertation, University
of Toronto, 1979), Technical Report No,
131/79, Dept, of Computer Science, University
of Toronto, January, 1979,

2, Allen, J,F,, & Perrault, C,R, Analyzing
intention in dialogue, forthcoming,

3, Austin, J,L, How to do things with words,
J,O, Urmaon (Ed,), Oxford University Press,
1962,

4, Brown, G,P, Indirect Speech Acts in
Task-Oriented Dialogue: A Computational
Approach, unpublished ms, MIT, 1979,

5, Bruce, B, Belief systems and language
understanding (BBN Report No, 2973), January,
1975(a),

6, Bruce, B,, Generation as a Social Action,
Proceedings of the Conference on Theoretical
Issues in Natural Language Processing,
Cambridge, MA, 1975(b)

7, Bruce, B,, & Schmidt, C,F, Episode
understanding and belief guided parsing,
Presented at the Association for Computational
Linguistics Meeting at Amherst, Massachusetts
(July 26-27, 1974),

8, Clark, H,H,, & Marshall, C, Definite reference
and 1111tual Knowledge, In A,K, Joshi, I,A,
Sag, & B,L, Webber (Eds.), Proceedings of the

270

Workshop on Computational Aspects of
Linguistic Structure and Discourse Setting,
New York: Cambridge University Press, in
press,

9, Cohen, P,R, On knowing what to say: Planning
speech acts (Doctoral dissertation, University
of Toronto, 1978), Technical Report No, 118,
Department of Coq,uter Science, University of
Toronto, January 1978,

10, Cohen, P,R, and Perrault, C,R., Elements of a
plan ·based theory of speech acts, Cognitive
Science, 1979, 1, 177-212,

11, Fikes, R,, & Nilsson, N,J, STRIPS: A new
approach to the application of theorem
proving to problem solving, Artificial
Intelligence, 1971, 1, 189-208,

12, Fikes, R,, Hart, P,, & Nilsson, N,J,
Learning and executing generalized robot
plans, Artificial Intelligence, 1972, 1,
251-288,

13, Genesereth, M,R,, Automated consultation for
complex computer systems, (Doctoral
dissertation), Dept, of Computer Science,
Division of Applied Sciences, Harvard
University, September, 1978,

14, Hintikka, J, Knowledge and belief, Ithaca:
Cornell University Press, 1962,

15, Hintikks, J, Semantics for propositional
attitudes, In J,W, Davis et al, (Eds,),
Philosophical Logic, Dordrecht-Holland: D,
Reidel Publishing Co,, 1969,

16, Grice, H,P, Meaning, The Philosophical
Review, 1957, M,. 377-388,

17, Moore, R,C, Reasoning about knowledge and
action (Doctoral dissertation, Massachusetts
Institute of Technology, 1979), Artificial
Intelligence Laboratory, Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology,
February, 1979,

18, Morgan, J,L, Two types of convention in
indirect speech acts, In P, Cole (ed,),
Syntax and Semantics, Volume 9: Pragmatics,
New York: Academic Presa, 1978,

19, Perrault, C,R,, & Allen, J,F, A plan-baaed
analysis of indirect speech acts,

20, Perrault, C, R., Allen, J, F,, & Cohen, P,
R,, Speech acts as a basis for understanding
dialogue coherence, in Proceedings of the
second conference on theoretical issues in
natural language processing,
Champaign-Urbana, Illinois, 1978,

21, Perrault, C,R,, & Cohen, P,R, Inaccurate
Reference, In A,K, Joshi, I,A, Sag, & B,L,
Webber (Eds), Proceedings of the Workshop on
Computational Aspects of Linguistic Structure
and Discourse Setting, New York: Cambridge
University Press, in press,

21, Sacerdoti, E,D, A structure for plans and
behavior (Doctoral dissertation, 1975).
Technical Note 109, Artificial Intelligence
Center, Stanford Research Institute, Menlo
Park, California, August 1975,

22, Sacerdoti, E,D, Planning in a Hierarchy of
Abstraction Spaces, Proceedings of the 'Third
International Joint Conference on Artificial
Intelligence, Stanford, Calif,, 1973,

23, Schank, R., & Abelson, R, Scripts, . plans,
goals, and understanding. Hillsdale, N,J,:
Lawrence Erlbaum Associates, 1977,

24, Schmidt, C,F,, Understanding human action,
Proceedings of the conference on theoretical
issues in natural language processing,
Cambridge, MA, 1975,

25, Schmidt, C,F,, Sridharan, N,S,, & Goodson,
J,L,, nie plan recognition problem: An
intersection of artificial intelligence and
psychology, Artificial Intelligence 10, 1979,

26, Schiffer, S, Meaning, Oxford: Oxford
University Press, 1972,

27, Searle; J,R, Speech acts: An Essay in the
philosophy of language, Cambridge: Cambridge
University Preas, 1969,

28, Searle, J.R, Indirect speech acts, In P, Cole
& J,L, Morgan (Eds,), Syntax and semantics,
(Vol, 3), Speech acts, New York: Academic
Press, 1975,

29, Searle, J, R, A Taxonomy of Illocutionary
Acts, in K, Gunderson (ed,), Language,~.
l!!!.!!_ Knowledge, University of Minnesota Press,
1976,

30, Strawson, P,F, Intention and convention in
speech acts, In 'nle Philosophical Review,
1964, 1, 73,

31, Wilensky, R,, Understanding goal-based
stories, (Doctoral dissertation), Research
report # 140, Dept, of Computer Science, Yale
University, September, 1978,

32, Woods, W,A., Bobrow, R,, Brachman, R., Cohen,
P,, Klovstad, J., Sidner, c., & Webber, B,,
Natural language understanding, Annual
Report, Bolt Beranek and Newman, Inc,, 1980

271

.·,

UNDERSTANDING ARGUMENTS

Robin Cohen

Department of Computer Science

University of Toronto
Toronto, Ontario MSS 1A7

This paper outlines a preliminary design
for a system to understand one-sided
arguments. These are a particular kind of
conversation, where the speaker has one

main objective: to convince the hearer of

a particular point of view. Arguments are

thus characterized by having an overall
point, defended by some logical chain of

reasoning. We develop methods to analyze

arguments, considering them as intentional

behaviour. For this first design, we

concentrate on developing methods to

recognize the logical form of the

argument, by examining the relations

between sentences.

1. The eroblem ~

We are studying a particular kind of

conversation the one-sided argument.
This is a speech with a main objective of

convincing the

point of view.

other texts in

hearer of

Arguments

that: (i)

a particular

differ from

there is an

overall point (untrue of stories) (ii) the

point is an oeinion which is to be

defended (untrue of news reports) (iii)
the individual sentences serve to support
the point (untrue of informing rather than

convincing arguments) (iv) there is an

overall logical form: a method of

reasoning, holding the argument together

(untrue of non task oriented

conversations).

Our main objective

arguments, producing

which reveals (il the

is to analyze
a representation

point and overall

opinion (ii) the chain of reasoning

supporting the point. The restricted form

of arguments is used to develop a

classification for each sentence as either
claim, evidence for some claim, or a
statement of control (i.e. a sentence

about the structure of the argument - e.g.

"We now present our conclusion"). To

classify sentences and record the

relationships between them, frames are
defined for each of the basic logical

rules of inference. The main operation of

our analysis is thus a matching onto

frames, which hold our representation and

facilitate further processing.

272

The underlying philosophy of this system

is that arguments may be considered as

intentional behaviour. One motivation for

this pragmatic approach is that there are
some clear distinctions between shared and
private knowledge in arguments. Speaker
(S) and hearer (H) share some knowledge:

both know that the main purpose is to

convince: both are aware of standard

techniques to convince (e.g. using
analogies, contrast, examples, etc.). On

the other hand, both the statements of s
and the connections between
unknown to H. So H's

them may be

task is both to
recognize the logical forms being used and
to believe that they are appropriate.

Another important reason for considering

intentions is to facilitate the
understanding process. H's comprehension

process often involves deciphering and
interpreting unstated assumptions. H may

be able to determine unstated opinions of
S or overall argument structure by

examining, for example, the choice of

words (e.g. "however", "only"). But H

also knows that s must facilitate His

understanding, in order to succeed in

convincing H of his main point. H can

thus postulate rules of coherence to

interpret S's intentions and aid in

analyzing the argument.

There seem to be two main levels to H's

processing: determining what S believes,

and deciding whether or not he, himself,

believes it. The second task involves

judging the credibility of arguments, and

will not be addressed in this paper (See

Section 3: Future Work).

This problem area,

different from

understanding projects.

as defined, is

other language

DeJong's FRUMP <DeJong 79> analyzes

newspaper stories. This kind of text . is

similar to arguments in that (i) there may

be statements of evidence and sources

quoted (ii) it is important to believe the

story. However, FRUMP does not concern

itself with the underlying opinion on the

overall topic, or with credibility. In

contrast to FRUMP, we must distinguish the

evidence in the argument and determine how

the evidence supports the main opinion.

Further, there is a basic representational

difference between arguments and stories.

DeJong himse 'f addresses the issue in

<DeJong 79>, indicating that his program

can't handle editorials because these

present arguments in a novel form, and

scripts can't be written ahead to include
these new ramifications.

Carbonell's POLITICS <Carbonell 78>

analyzes opinionated text. But his system

is given the underlying opinion (in the

form of an ideology, represented as a set

of goals). In our case, H assumes that

273

the argument will conform to one ideology,

but he must determine that ideology by

examining the form of the argument.

Furthermore, the main purpose of our

analysis is distinct from Carbonell's: we

are concerned with the overall form - why

sentences are put together in a particular

order. Carbonell concentrates more on

analyzing individual events.

Allen <Allen 79> analyzes conversation as

intentional behaviour. But again the goal

of his system is distinct from ours. He

is interested in recognizing speech acts;

we know that the main purpose is to

convince, but must determine how the form

of the argument succeeds in convincing.

Some of Allen's methods of plan deduction

to uncover intentions may be useful to us.

In sui, our problem area presents us with

a new language understanding task. We are

concerned with determining form and

uncovering intentions to perform analysis.

2. The Analysis Process

2.1 Overview

This section describes the basic
procedure the hearer (H) follows to

determine the logical form of an argument,

leaving aside the issue of credibility.

Th~ basic step in the analysis process is

for H to take a sentence of the argument
and to determine whether it is a new claim

or e~idence for some previously stated

claim. In this way, H can uncover the

intended function of each sentence. The

basic unit of analysis is actually a

proposition the propositional content

extracted from a sentence. (A simplifying

assumption for our system right now is

that the propositional content is made

available).

. 1

To help Hin classifying
there is a standard

a proposition,
set of frames,

representing rules of inference. In
addition to frames representing correct
rules like modus ponens and modus tollens,

there are some representing bad logic,

~hich is often used in arguments (either

intentionally or in an attempt to justify
bad evidence). Consider the following set

of frames:
SET OF FRAMES:

(Abbrevia~ions: M~JOR - major premis~,
MINOR - minor premise, CONC - conclusion)

·(correct) MAJOR MINOR CONC

MODUS PONENS A-->B A B

MODUS TOLLENS A-->B -s -A

MODUS TOLLENDO PONENS Aor-s B A

MODUS PONENDO TOLLENS Aor B B

(incorrect)
ASSERTING CONSEQUENT A-->B B A
DENYING ANTECEDENT A-->B -A -a

This selection of frames is motivated by

<Sadock 77>, which indicates those correct

and incorrect logical rules that occur
most often in conversation. Our analysis

of examples so far seems to function well

with this restricted ~et.

For each of these frames representing

rules of inference, it is often the case

that they are not completely spelled out

in the argument. Any one of the major

premise, minor premise or conclusion may

be omitted, and H must still be able to
recognize the logical form intended, by

filling in the missing detail. (This kind
of argument is referred to as "modus
brevis" in <Sadock 77>). His aware of

these variations in frames.

CLASSIFICATION OF FRAMES(e.g:Modus Ponens)

normal A-->B,A /B

normal MAJOR A-->B /B

normal MINOR A /8

MAJOR A-->B (assume rest)

MINOR A (assume rest)

CONC (hard) B (assume rest)

How can H make use of these frames to
represent the logical form of an argument?

Consider MAJOR premise, MINOR premise, and
CONCLUSION to be slots of a frame, with

the constraint that the premise slots must
lead to the conclusion. His motivated in

filling frames in order to classify

propositions: we say that A is evidence

for B iff they both fill slots in a frame

such that A is a premise for B. H tries

to instantiate a frame by filling its

slots with propositions of the argument,

possibly inferring premises that are not
"spelled out", and thus choosing one of
the "missing" versions of frames. The

result is an indication of the logical

relations between propositions

argument.

2.2 Details

in an

The overview illustrates the basic frame

matching technique used

propositions. This section
to classify

examines the

analysis

particular,

classified
develop a

process in detail.

a proposition may

in many different ways.

In

be

We

scheme which formulates
hypotheses for each proposition as to how
it can fit with the rest of the argument,

and then rates these hypotheses to

determine the most likely interpretation.
The rating scheme is based partly on

fitting into our logic frames, and partly

on other heuristics - e.g. based on the
actual choice of words. In addition, this

section describes the processing of the

entire argument in more detail: how the

classification of one proposition affects

274

another, how to isolate sub-arguments, and
what kind of representation to build for

the overall argument.

Rating Hypotheses

Consider the following classification

scheme for a single proposition:

HYPOTHESES FOR CLASSIFICATION OF PROP(i)

f
i) new claim
iil evidence for some future claim
iii) evidence for PROP(i-1)

evidence for PROP{i-2)
evidence

0

for PROP(l)

To illustrate that more than one

hypothesis is probable for a given
proposition, and that rating is thus

necessary, consider the following exa~ple:

EXl: l)There is too much crime in th~ city
2)We need more police

This example gives insight into the

possible functions of a proposition, 'and

the need to rate hypotheses. Consider 1)
in isolation: it can be either a claim
(and we'd expect evidence about the amount
of crime) or evidence for some claim.

Upon seeing 2), a connection is found

between 1) and 2) (e.g. "more police -->

less crime"), so 1) is interpreted as

functioning as evidence for 2).

Determining whether a proposition is

evidence for another is done by trying to

fill slots in a frame, as described in

Section 2.1. Since there are many frames

in our system, each of the hypotheses in
(iii) really represents a variety of
options - e.g. evidence for PROP(i-1) by
modus ponens, evidence for PROP(i-1) by
modus tollen~, etc. Since propositions
are processed one at a time from the
start, the only options that can be
directly measured are those using
propositions that have already been

processed - hence the distinction between

(ii) and (iii) above.

275

TRYING FRAMES

The first step is to determine the
hypotheses in (iii) by
to fit frames. To ensure

ratings for
actually trying
that correct logic frames are given

preference over bad logic frames, consider

a frame system where the bad logic frames

are connected to their correct logic

counterparts using SIMILARITY links (as

described by <Minsky 75>). In the spirit

of <Tsotsos 80>, similarity links trigger

alternatives when an exception is raised
in trying to fill a slot in a frame. For
example:

EX2: l)Whenever the stock market crashes
Carter refuses to appear on TV

2)Carter has refusea to appear on TV
3)So the stock market must have crashed

With 1) and 2), modus ponens fails we

have A-->B, then B. So we try •asserting

consequent•, and with A asserted in 3),
find that the bad logic frame succeeds.
So bad logic frames are only tried when
correct logic ones fail.

Each hypothesis in (iii) thus

expanded into a list of options:

each of the correct logic frames.
each option is tried. If

gets

one for

Then,

frame
constraints can't be satisfied, the option

is given a very low rating. As H tries to

instantiate frames, he must be aware that

he is often interpreting beliefs of the

speaker. So, for instance, modus ponens

is usually recognized as: (S believes
(A-->B)), (S believes A) thus (S believes
B). (And not as "(A-->B) is believed to
be true by H" ••• etc.). This introduces an
interesting sub-topic of how H

distinguishes beliefs, wants, and goals of
S to aid analysis (see Section 3: Future
Work).

Even when H succeeds in instantiating a

frame, the rating for that frame may be

lowered if it was •difficult" to fill in

·,

the necessary "chains of reasoning".
Consider the following:

EX3a: 1) There is a national railroad
system in the US today

2) Railroads serve more than local needs

,EX3b: 1) Railroads deliver goods across
state lines

2) Railroads operate on a national scale
To determine 2) as evidence for 1) in 3a
requires a rather long chain of reasoning
(something like "exists national system

--> operates on national scale--> carries
goods between localities--> serves more

than local needs"). In 3b, the chain is

brief ("across state lines--> national").

H may wish to lower the ratings for

longer, less certain chains.

In addition to actually measuring the
options in (iii), we also consider some

heuristics to affect ratings, which

include an assessment for (i) and (ii).

LINGUISTIC CLUES

Sometimes H

classification

is

of

aided in

propositions by

the

the
actual choice of words. For example, H

can recognize (and S knows that he will
recognize) the organizational function of

certain words and phrases, and can thus

detect structure. For example,

classification

reasonable:

like <Hobbs 78>

a

is

CATEGORY
SUMMARY
PARALLEL
EXAMPLE
DETAIL
CONTRAST
CAUSAL

EXAMPLE

in conclusion
in the first place
for example
in particular
on the other hand
therefore

The different functions can be interpreted
in terms of claims and evidence for H to
expect.

In addition, the choice of connective

between propositions should provide H with

an insight into S's intentions.
Certainly, com~ound sentences suggest a

276

common topic for their clauses - but the
presuppositions attached to the words can
indicate the function of each clause in

the overall form. We are working on .a

precise description of connectives, and of

particular constructions like analogy,

with a view to developing
for overall logical form

a description
that further

specifies the evidence I claim
distinction. It is also interesting to
examine the motives of S in choosing a

particular construction - an issue which

relates more to "credibility".

SYSTEM RULES

Furthermore, there are neuristics called
SYSTEM RULES to
classifications.

indicate
These are

preferred

rules
motivated by the intentional nature of
arguments. H expects S to conform to

certain coherence rules, because he knows

S must be clear in order to convince H of

his point of view. H thus has some

defaults about how propositions relate.
Consider the following:

1) a proposition which is a statistic is

likely to be evidence

2) a proposition which quotes a particular

authority is likely to be evidence

(based on the idea that claims

considered to be disputable, while

statistics and quoting authorities are
less disputable material)

3)a change in topic often signals a new
claim

4) repetition of topic suggests some

connection (propositions may support one
or another, or both support a common
third)

(judging continuity of topic)

5) rules of distance: prefer connections

between propositions located closer

together in the argument

* when a proposition rates high as a new

claim, strenghten the ratings of previous

propositions which let them relate to each

other (since it should be hard to find

evidence located after this new train of

thought)

something like the rule of

applies for frame fitting:

* if the "chain of inference"

distance

needed to

instantiate a frame is long, decrease the

rating for that hypothesis.

(other sub-rules based on distance may

develop)

EX4: 1) Peter is a good musician
2) He has produced 50 songs this year

2ln~!nc~:i:ither:
*evidence for future claim
*evidence for previous claim

Not only does 2) --> 1) fit into a frame

(with chain "prolific --> good") but

because of the ~istic in 2), all

evidence options are strengthened.

Updating ratings

So far we have described how H can do a
thorough analysis of a single proposition.
We now consider how the ratings for one

proposition can affect others. Recall

that our control structure is such that
propositions are processed one at a time.
Now, once a proposition is processed, the

ratings of previous propositions are

re-evaluated. Consider the following

interactions:

(i) when PROP(i) is processed, go back and

evaluate the "evidence for future claim"

option for previous propositions, using

PROP (i)

EXS: llMotorcycle gangs caused 50% of the
deaths 1n our small town

2)These gangs are dangerous
None of the hypotheses for 1) can be
directly measured since it is the first

277

When 2)
"2) as

is processd, the
evidence for l)" is

sentence.

hypothesis
measured and rates low (hard to
establish). Then l) is re- processed, and

"1) as evidence for 2)" is measured. This

works with modus ponens and missing

premise "caused lots of deaths -->
dangerous".

(ii) when PROP(i) rates high as evidence

for PROP(j), increase the claim rating for
PROP(j)

(iii) if a new proposition is created
i.e. filled in as missing detail in a

frame - then this proposition is added to

our system. Then, if a future proposition
rates high as being related to one of

these derived propositions, we increase

the rating for the hypothesis which
"created" it

Overall form

We now begin to have a feel for how

rating propositions can propagate through

an argument. We must as well try to
develop a representation for the overall
argument. What our classification of
propositions has done so far is to
indicate logical connections between sets

of propositions. This, in fact, isolates

sub-arguments, each with its own claim and

set of supporting evidence. To complete
the analysis, H must first of all
determine the boundaries,

sub-argument ends and another
where one

begins.
Consider a methodology in the spirit of
<Tsotsos 80>, strengthening hypotheses

that indicate good "continuation" into a

separate unit. Since a proposition can

participate i~ more than one frame, the

most likely option must be chosen. Some

ideas on how to measure boundaries include
using (i) change of topic (ii) ratings for

"new claim" option (iii) combined ratings

·I

for hypotheses indicating a unit:

plus some evidence.

claim

E~6: llRogers is a talented songwriter
2JH~ has won 6 Junos
3)His son Peter has been active on

Broadway for the past 15 years
4)Peter has won 4 Tony awaras
S)Both Rogers and son are very talented

Here 2) rates high as evidence for 1), and

1) as a claim. Then 3) rates high as a

new claim (new topic), so we strengthen

ratings for 2) and 1) to consider them a

·separate unit.

Once sub-arguments have been isolated,

using the hypotheses for propositions with

the highest ratings, the overall argument

structure can be analyzed. For now, this

process is done~ the end of processing.

We try to relate all the individual claims

from the sub-arguments into some overall

form. Our final output is thus an

indication of the most likely structure

for the argument, in the form of relations

between sub-arguments and forms of

sub-arguments, represented as instantiated

rules of inference.

Continuing with EX6:

4) and 3) share a common topic. 4) as

evidence for 3)

weak inference.

evidence for a

is possible, but with a

3) and 4) both as

common claim rates high.

Then, with 5) we reach the end and have to

wrap up. 5) splits into Sa)Rogers is

talented and Sb)Son is talented. We find

3) and 4) are evidence for Sb), and 1) is

evidence for Sa). The most likely overall

form is thus: two sub-args, one with Sa)

as claim, with 1) as evidence (and 2) as

evidence for it) and one with Sb) as claim

and 3) and 4) as evidence.

Our next step will be to develop a more

sophisticated control structure. Ideally,

we will be analyzing overall form in

parallel with our det~cti.on of

sub-arguments.

278

3. Fl.lture Work

Section 2 presented a preliminary design

for the analysis of arguments. In fact,

most of the ideas for the design developed

from an examination of many examples of

arguments including a good selection

from <Holmes and Gallagher 17>). The set

of rules developed so far seem to function

well, but are certainly not presented as

an optimal solution.

We have already alluded to several areas

that need more development, including:

(1) more precise formulation of linguistic

clues (2) more precise measure of frame

fitting (3) more sophisticated overall

control structure and (4) thorough

description of the rating mechanism,

including some actual figures to show

comparative worth of different rules.

The major area for future work, however,

is to develop mechanisms for H to

determine and interpret the intentions of

S. Issues of concern include: (i)

recognizing and making use of control
sentences

of the

discussion

- sentences about the structure
argument

of this

(We

kind
have skipped
of sentence in

this paper) (ii) distinguishing the wants,

beliefs, and goals of S to aid in analysis

(as alluded to before, H often recognizes

relations between propositions not as

logical truths but as beliefs of s. In

addition, H may recognize wants, in
particular with claims suggesting a

"course of events". For example, when S

says "There should be less war", H must

recognize this as •s ~ (less war)",

and when S then says "Less war would mean

more prosperity", H must recognize this as

a belief of S, and through some logical

reasoning conclude

prosperity)".) (iii)
"S ~

determining

(more

the

motive behind S's choice of argument form

and content - examining issues like order
of presentation, choice of evidence, and

deliberate deception. Furthermore, this
investigation of intentionality should
lead to some comments on credibility - the

factors that H has available to influence
his bt lief in the argument.

4. Conclusion

Th is paper

design of

arguments.

presents some ideas for the

a system to understand

We give insights into how
analysis can proceed: the rules available
and the form of representation we want to

build, We have only begun to look at the
intentional aspect of

can guide his analysis

about S. But we begin

arguments: how . H

by his expectations

to see how this
particular natural language task has

restrictive characteristics which enable
us to
analysis:

form, but

formulate specific methods of

not only is there an overall

the speaker is forced to limit
his choice of overall form so that the

hearer can recognize all the points, and
be convinced.

Acknowleisements

I am grateful to Ray Perrault for his

supervision of this research, and to Alex
Borgida for his comments on this paper,

Bibliography

<Allen 79> Allen, J,: "A Plan Based
Approach to Speech Act Recognition": u.
of Toronto Dept. Comp. Sc. Tech. Rept .
No. 131

<Carbonell 78> Carbonell, J.: "POLITICS:
Automated Ideological Reasoning•:
Cognitive Science 2,1

279

<DeJong 79> DeJong, G.1 •prediction and
Substantiation: Two

Comprise Understanding•1

<Hobbs 78> Hobbs, J,1

Processes that

IJCAI 79

•why is Discourse
Coherent?•; SRI International Tech. Note
No. 176

<Holmes and Gallagher 17> Holmes, H.W.
and Gallagher, o.: Composition and
Rhetoric

<Minsky 75> Minsky, M.: "A Framework for
Representing Knowledge•: in The
Ps:i::cholog:i:: of Com12uter Vision, P.
Winston, ed.

<Sadock 77> Sadock, J,: "Modus Brevis:

The Truncated Argument": in Pa12ers fro!!!

the 13th Regional Meeting, Chicago
Linguistic Societ:i::

<Tsotsos 80> Tsotsos, J,: "A Framework
for Visual Motion Understanding": PhD
Thesis, Dept. Comp. Sc., u. of Toronto

I

I
'I

Example Generation

Edwina L. Rissland

Department of Computer and Information Science
University of Massachusetts

Amherst, HA 0100 3

Abstract

This paper addresses the problem of
generating examples that meet specified
properties which are used to direct and
constrain the generation process, which
we call CONSTRAINED EXAMPLE GENERATION.
We begin by presenting a few examples of
CEG taken from protocols. Based upon
such examples, we present a model of the
CEG process. We describe the
architecture of a system that generates
examples from specifications and present
examples of problems that it has solved.

1, INTRODUCTION

The ability to generate examples that
have specified properties is important in
many intellectual areas, such as
mathematics, linguistics and computer
science [Collins 1979]. It is important
from the standpoints of learning and
teaching as well as performing research.
For instance, examples are needed for
inductive reasoning, sharpening of
conjectures, and concept formation and
refinement [Polya 1968, 1973: Lakatos
1963: Winston 1975: Lenat 1976;
Soloway 1978]. Having a rich stock of
examples is intimately related to
understanding [Rissland 1978a, b], Th us,
examples lie at the heart of efforts to
learn and reason in a subject.

When an example is called for, one can
search through one's storehouse of known
examples for an example that matches the
properties of the desired example. If a
satisfactory match is found, then the
problem has been solved through
retrieval.

However, when a match is not found, how
does one proceed? In many cases, one
modifies an existing example that is
judged to be close to the desired
example, or to have the potential for
being modified to meet the constraints.

In some cases, generation through
modification fails. Experienced
researchers, teachers and learners do not

280

give up however. Rather they switch to
another mode of example generation which
involves building up an example from very
elementary consituents through careful
attention to the desiderata and
"unpacking" of the concepts involved.
This phase of CEG is usually more
difficult than either retrieval or
modification.

This paper presents a model of CEG that
incorporat~s three phases: RETRIEVAL,
MODIFICATION, and CONSTRUCTION . This
model is based upon analyses of protocols
of example generation tasks taken from
mathematics and computer science
[Rissland 1979, Woolf and Soloway 1980).

2.PROTOCOLS OF CEG

In this section, we describe some
protocols for CEG tasks taken from the
domain of elementary function theory in
mathematics (which deals with concepts
such as continuity) and from elementary
LISP programming (especially with regard
to cdncepts concerning list structure).

2.1 Examples of Retrieval

The type of questions that most people
answered through retrieval is:

Give an example of a function that is
continuous

but not differentiable (at a point).

Give an example of a list
with three elements.

Host people handled these problems by
offering their favorite standard
"reference" examples [Rissland 1978a, b):
for the first problem, the absolute value
function (at the origin) and for the
second, a list like " (ABC)". Responses
were usually immediate indicating that
the retrieval was very readily made,

2.2 Examples of Modification

An example of a problem solved through
modification of a known example is:

Give an example of a list
with three elements

where the depth of the first atom is 3.

Subjects frequently modified an example,
such as " (A B C) " by adding two more
parentheses around the first element, to
produce the list

((A)) B C)

Other subjects truncated a longer list
such as the list of digits or added to a
shorter list such as (0 1) , as well as
adding parentheses. The example chosen
for modification depends on the context
of the problem (e.g . , the sequence of
recently solved problems) and the
subject's data base of examples and its
epistemology (e.g., his favorite
references).

An example of a mathematics problem which
every subject solved by modification is
the following:

Give an example of a non-negative,
continuous function

defined on the entire real line
with the value 1000 at 1, and

with area under its curve less than 1/1000 .

Most protocols for this question began
with the subject selecting a function
(usually, a familiar reference example
function) and then modifying it to bring
in into agreement with the specifications
of the problem.

FIG 1A

There were s everal clusters of
according to the initial
selected and the stream
modifications pursued . A
protocol went as follows:

"Start with the function for a
distribution" . Move it to the
that it is centered over x : 1.
it "skinny" by squeezing in the
stretching the top so that it
point (1, 1000)."

responses
function

of the
typical

"normal
right so

Now make
sides and
hits the

"I can make the area as small as I please
by squeezing in the sides and feathering
off the sides. But to demonstrate that
the area is indeed less than 1/1000, I'll
have to do an integration, which is going
to be a bother . "

"Hmmm . My candidate function is smoother
than it need be: the problem asked only
for continuity and not differentiability.
So let me relax my example to be a "hat"
function because I know how to find the
areas of triangles. That i s , make my
function be a function with apex at (1,
1000) and with steeply sloping sides down
to the x-axis a little bit on either side
of of x: 1 , and O out s ide to the right and
left. (This is OK, because you only
asked for non-negative.) Again by
squeezing, I can make the area under the
function (i.e . , the triangle's area) be
as small as I please, and I'm done."

Comments

Notice the important use of such
operations as "squeezing", "stretching"
and "feathering" , which are usually not
included in the mathematical kit - bag
since they lack formality, and
descriptors such as "hat" and "apex".
All subjects made heavy use of curve
sketches and diagrams, and some used
their hands to "kinesthetically" describe
their functions. Thus the
representations and techniques used are
very rich .

(1, 1000) (1, 100'.l)

FIG 1B FIG le

281

. i

Another thing observed in all the
protocols (of which there were about two
dozen for this problem) is that subjects
make implicit assumptions about the
symmetry of the function (i.e., about the
line x:1) and its maximum (i.e., occuring
at x:1 and being equal to 1000), There
are no specifications about either of
these properties in the problem
statement; however, they are
mathematically simplifying and
cognitively natural.

These are the sort of tacit assumptions
that Lakatos talks about [Lakatos 1963);
teasing them out is important to study
both mathematics and cognition.

Example functions for protocols are shown
in Figures 1a and 1b; another
mathematically permissible example is
shown in 1c,

2,3 An example of Construction

In this subsection, we present a protocol
of example generation in which the
example is built largely "from scratch"
by working with the concepts involved in
the specifications of the desiderata,
instantiating them, and combining
exemplars to produce a new example. The
problem is:

Give an example of a list of lists
each of which has two elements

the first of which is a literal atom.

A typical protocol began with the subject
sketching out the overall structure of
the desired list as:

(A 1 L 1)
(A2 L2)
(A3 L3)

where in each sublist, Ai stands for a
literal atom, and Xi the second element.

The subject next focus~ed his
on instantiating the Xi's.
wanted to emphasize the fact
elements of the sublists could
be lists "there's a
embeddedness possible here"
each of the Xi's a list of
"LAT") .

attention
Since he
that the

themselves
lot of

-- he made
atoms (a

The subject began to write each Xi as
(Ail Ai2 ..• Ain) and then remarked that
this level of generality was more than
the problem called for, In particular,

282

nothing was said about keeping the Xi's
different: "So, why not make them all
the same, like (00 01)".

The candidate example now looks like:

(Al (00 01))
(A2 (00 01))
(A3

The subject next decided to pin down the
length of the "big" list by making it be
"not too short, like 2, and not too long
either; why not 7". He tended to the
Ai's by noting that Al, A2, A3, A7
are perfectly fine literal atoms.

The list thus offered is:

(Al (00 01))
(A2 (00 01))
(A3

(A7 (00 01)))

Even though the subject was satisfied
with this answer, he noted that it really
didn't have to be so complex or long;
the following list would do:

((Al 1) (A2 2) (A3 3)

He said he made his list have a length
longer than 2 because he didn't want it
to be confused with the length of the
sublists (i.e., 2). However, he said
that a list of length two would be
acceptable, but a list of length one
would not since "after all the problem
called for a list of lists".

"The list:
((AB) (AB))

would also do just fine. In fact, the
possibilities are endless."

Comments

There are several observations to be made
on this protocol. First, the subject had
a general model of a list and procedures
to instantiate it (e.g., generate literal
atoms and lists) and he had procedures to
modify lists and properties of lists.
Second, the subject made several implicit
assumptions on the example to be
generated, such as (1) its length, (2)
the non-repeatedness of some elements,
(3) its complexity (e.g., depth), and (4)
uniformity (e.g., of list -s tructure).

3. A CEG MODEL

From analyses of protocols such as
presented in Section 2, we developed the
following general model of the CEG
process. Presented with a task of
generating an example that meets
specified constraints, one:

(1) SEARCHES for and (possibly)
RETRIEVES examples satisfying the
constraints. This is done by
searching through the knowledge base
and judging examples for their match
(or partial match) to the desiderata;

(2) MODIFIES an existing example
judged to
potential
desiderata;

be close or having the
for fulfilling the

(3) CONSTRUCTS an example from
elementary knowledge, such as
definitions, principles and more
elementary examples from the
knowledge base.

Thus, there is a spectrum of responses to
a CEG task ranging from having a ready
answer as in (1) to having no especially
close fitting candidate as in (3), In
general, Task N depends on and follows
Task N- 1.

This information processing model of CEG
is useful not only in describing human
protocols, but also precisely specifying
a computational model.

RETRIEVER M::lDIFIER CoNS 1ER

FIG 2

283

4. ARCHITECTURE OF A CEG SYSTEM -- - -- - --
From the model of the last section, we
have developed a system that solves CEG
problems in the LISP domain. It has also
been used to hand-simulate CEG problems
in the mathematics of linear and
piece - wise linear functions.

We have implemented this CEG model in
LISP domain. Written in LISP,
currently runs interpretively on a
11/780 running under VHS. Examples
problems and solutions are given
Section 6.

the
it

VAX
of
in

The knowledge in our CEG system resides
in two major sources: the knowledge base
upon which the system runs, and the
knowledge embedded in the processes
operating on that base. The knowledge
consists of general epistemological
knowledge (e.g., the structure and types
of examples) and domain-specific
knowledge (e.g., particular example
modification techniques).

The system consists of several components
roughly one for each of the three

phases of the model which handle
different aspects of CEG. The flow of
control between the components is
directed by an EXECUTIVE procedure.
Figure 2 shows the general architecture
of our system.

The components use a common knowledge
base which consists of two parts: (1) a
"permanent" knowledge base of
"Representation-spaces" [Rissland 1978];
and (2) "temporary" knowledge generated
during the solution of a CEG problem.

There are four representation spaces,
each of which is a set of items,
represented as frame-like data
structures, and organized according to
predecessor-successor relationships.
Examples-space, which is by far the most
heavily used in our current system,
consists of known examples organized
according to the relation of
constructional derivation reflecting
which examples are~structed from which
others. The other spaces and their
relations are: Concepts - space:
definitional dependency; Results-space:
logical dependency; and
Procedures - space: procedural dependency.

Before the system is given any CEG
problems to work on, we create an initial
set of representation spaces. The
initial state of the Examples - space for
the set of problems described in this
paper is shown in Figure 3. The spaces
are modified mostly through the

i
I

addition of ex~mples to Examples-space -
as the system works through CEG problems.

The temporary knowledge held by the
system during a CEG problem run includes
a list of the constraints of the problem,
an agenda of candidate examples, and
various bookkeeping parameters such as
"boxscores", "constraint satisfaction
counts" and "recency counts".

5, CEG SYSTEM COMPONENTS -- ----
(1) The EXECUTIVE is responsible for
initializing the system for a CEG
problem, directing the flow of control
among the components, and cleaning up
afterwards. It accepts a CEG problem in
prescribed format from the user and sets
up the problem specifications in the
temporary knowledge base,

The problem desiderata are kept on the
CONSTRAINT-LIST, which has as many
entries as there are constraints. Each
constraint is recorded as a pair of
properties DESIRED -P ROPERTY and
DESIRED-VALUE. For instance, the
specification of the three constraint
problem of "a list, of length 3, where
the depth of the first atom is 1" is
recorded by the following properties
(PLIST's) for the constraints:

CONSTRAINT-1

CONSTRAINT-2

CONSTRAINT-3

DESIRED-PROP: (TYPE~)
DESIRED-VALUE: LIST

DESIRED-PROP : (LENGTH X)
DESIRED-VALUE: 3

DESIRED-PROP: (DEPTH
(FIRST-ATOM X) X)

DESIRED-VALUE: 1

Problem 1

The EXECUTIVE dictates the behavior of
the system as a whole by specifying the
orderings used by the other processes,
such as the order of retrieval of
candidate examples used by the RETRIEVER
and the order of application for
modification techniques used by the
MODIFIER.

(2) The RETRIEVER searches the knowledge
base for examples on request from the
EXECUTIVE. It searches through
Examples - space by examining examples in
an order specified in terms of attributes
such as "epistemological class" [Rissland
1978], position in the Examples-graph,
and recency of creation,

284

[n the problems described in Section 6,
the "retrieval order" used was:

reference examples before
counter-examples before
start-up examples before
examples without epistemological

class attribute

and in the case of ties

predecessors before
successors.

This retrieval order biases the system to
examine ubiquitous and earlier-contructed
examples before others. The order of
CANDIDATES retrieved from the initial
Examples-space of Figure 3 is thus:

(A B C)

(0 1 2 3 4 5 6 7 8 9)

(0 1)

(A)

(ABC DE)

With each new example selected, the
RETRIEVER calls the JUDGE to evaluate the
example to ascertain how well it
satisfies the desiderata.

(DATA>

/~
(A) (012 3 4 5 6 7 8 9)

I'\ i
<ABC) () (0 1)

i
<ABCDE)

FIG 3

(3) The JUDGE ~valuates a CANDIDATE
example by cyclin~ through all of the
DESIRED-PROPERTY/DESIRED-VALUE pairs on
the CONSTRAINT-LIST, comparing them with
the actual properties of the CANDIDATE,
and recording the results of the
comparison. Thus, the JUDGE's . basic
cycle is evaluation, comparison and
record.

The JUDGE records the results of the
comparison by FILLING-IN the BOX-SCORE
and the CONSTRAINT-SATISFACTION-COUNT
("CSC") slots in the representation frame
of the CANDIDATE. The CSC is simply the
number of desiderata met by the
CANDIDATE.

The BOX - SCORE is a list of 2-tuples, one
for each constraint, of the form
(ACTUAL-VALUE, T or NIL). The
ACTUAL - VALUE is the CANDIDATE's value for
the DESIRED - PROPERTY; T is entered if
the ACTUAL - VALUE equals the
DESIRED - VALUE, and NIL if not.

The BOX -SC ORE for the example "(A B C)"
in Problem 1 would be:

(LAT T) (3 T) (1 T)

The CSC for this example would be 3, that
is, all the constraints are met; the
success of this example would be recorded
as a T in its "SF" (SUCCESS/FAILURE)
slot. With the above retrieval order on
the Examples-space of Figure 3, Problem 1
would be solved with the first example
retrieved.

If the example "(A)" were judged, its
BOX -SC ORE would be:

(LAT T) (1 NIL) (1 T))

The CSC for this example would be 2.

(4) The MODIFIER is invoked by the
EXECUTIVE when the RETRIEVER has been
unable to find an example meeting the
constraints from its search through
Examples-space.

The MODIFIER calls the AGENDA-KEEPER to
set up an agenda of examples to be
modified. The MODIFIER then works down
the AGENDA trying to modify each entry in
turn until success is achieved or the
agenda exhausted.

To modify an example, the MODIFIER
examines its BOX-S CORE for the
constraints that were unsatisfied. It
calculates the DIFFERENCE between the
DESIRED - VALUE and the ACTUAL-VALUE for
each DESIRED - PROPERTY not satisfied.
Using the DESIRED-P ROPERTY and the

285

DIFFERENCE as an index 1n a
difference-reducing table, the MODIFIER's
DIFFERENCE-REDUCER finds and then Applies
modification techniques to the example.

For instance, for the example "(A) " with
a CSC of 2 for Problem 1, the property
not met is that of having a length equal
to 3. The DIFFERENCE between the
DESIRED- and ACTUAL-VALUE is +2. The
difference-reducing technique MAKE - LONGER
is found by looking for modification
techniques affecting the LENGTH attribute
of a list and reducing the DIFFERENCE,
i.e., by making it longer by 2. (If the
difference were -2 , as would be the case
for the example "(A B C D E)", the
appropriate technique would be
MAKE-SHORTER).

When there is more than one unsatisfied
constraint, the MODIFIER orders its
modification attempts according to the
order specified by the EXECUTIVE. For
the sample problems of this paper, the
modification order is to apply techniques
that affect:

TYPE before
LENGTH before
DEPTH before
GROUPING

The modified example is then re-judged
and a new BOX - SCORE and CSC calculated.
If the CSC is improved, the MODIFIER
prints a message to the user of "success"
or "failed" and asks whether it should
continue modifying this example by going
through another difference analysis,
difference reduction, judgement cycle .
If the CSC goes down, the MODIFIER
abandons its attempt to bring the example
into line, goes on to the next example on
the AGENDA, and does not re-queue the
example. Thus the MODIFIER engages in a
form of hill - climbing.

The modified example must be re-judged
for two reasons : (1) some techniques are
heuristic and do not guarantee successful
modification; and (2) there can be
interaction between the constraints, that
is, a successful modification for one
constraint may undo satisfaction of
another.

For instance, the system can make a
NESTED-LIST from the LAT "(ABC)" by
GROUPing "A" and "B", i .e., "((AB) C)".
However, before the modifi ca t io n
technique was applied the LENGTH was 3,
but now, after modification, it is 2.
Satisfaction of the NESTED-LIST
constraint has undone the LENGTH 3
constraint.

:I

I

I

j

I

1

In the next version
shall re-judge an
modification, and

_contraints.

of our system, we
example after each

also protect some

(5) The AGENDA-KEEPER is called by the
MODIFIER and CONS'ER to set up the AGENDA
of examples to be modified or
instantiated.

When called by the MODIFIER, the
AGENDA-KEEPER compiles an agenda of items
to be modified based upon the CSC's
calculated and recorded during the
retrieval phase: the examples are ranked
in order of their CSC's. Thus, the CSC
is used as a measurement of the closeness
of the example to meet ing the
constraints. In the case of a tie, the
retrieval ordering is used.

(6) The CONS'ER is called by the
EXECUTIVE when the MODIFIER is
unsuccessful in its attempts to produce a
solution or a model needs to be
instantiated. The CONS'ER uses the
procedural formulations of concepts
stored in Concepts-space.

6. SAMPLE PROBLEMS

[NOTE: Text in this section is actual
computer output generated by our CEG
system; however explanatory text has
been added (indicated by a"$") and some
output modified to improve readability.]

Problem 2

$Problem 2 asks for a list of length 3
whose first atom has a depth of 3:

(x1 (desir ed-value list desired - prop
(typep candidate)))

(x2 (desired-value 3 desired-prop (length
candidate)))

(x3 (desired-value 3 desired-prop (depth
(first-atom candidate) candidate)))

$The retrieval phase is entered with the
Examples-space of Figure 2. The
retrieval order of candidates is:

<abc>
<**digits>
<**bits>
<empty>
<a>
<abcde>

,

$The RETRIEVER reports on each candidate
tried, by printing out its BOXSCORE, CSC
and SF: ·

286

candidate name = <abc)
candidate - value= (ab c)

csc = 2 sf= nil
(entry -x1 (lat t))
(entry-x2 (3 t))
(entry-x3 (1 nil))
"failed"

candidate name = <**digits>
candidate-value= (0 1 2 3 4 5 6 7 8 9)

C SC : 1 Sf : n i 1
(entry-x1 (lat t))
(entry-x2 (10 nil))
(entry-x3 (1 nil))
"failed"

candidate name = <**bits>
candidate-value= (0 1)

C SC : 1 Sf : n i 1
(entry-x1 (lat t))
(entry-x2 (2 nil))
(entry-x3 (1 nil))
"failed"

candidate name= <empty>
candidate-value= nil

csc = O sf= nil
(entry -x1 (atom nil))
(entry-x2 (0 nil))
(entry-x3 (0 nil))
"failed''

candidate name =
candidate-value =

<a>
(a)

C SC : 1 Sf :

(entry-x1 (lat t))
(entry-x2 (1 nil))
(entry-x3 (1 nil))
"failed"

nil

candidate name = <abcde>
candidate-value = (ab c de)

csc = 1 sf= nil
(entry -x 1 (lat t))
(entry -x2 (5 nil))
(e ntry -x3 (1 nil))
"failed"

$The problem desiderata are not met by
any example in the data base, and thus
the modification phase is entered.

$The AGENDA of candidates for
modification is (the CSC is given after
the candidate's name):

(<abc> 2)
(< **bits> 1)
(<a> 1)
(<**digits> 1)
(<abcde> 1)
(<empty> 0)

$The MODIFIER goes to work on the first
candidate, (ABC) :

constraint = ((typep candidate) list)
actual score= (entry -x l (lat t))

modify-candidate ok

constraint = ((length candidate) 3)
actual score = (entry -x2 (3 t))

modify-candidate ok

constraint = ((depth (fir st-atom
candidate) candidate) 2)

actual score= (entry -x3 (1 nil))

"find-diff"
"apply-di ff"

reducer =
new-candidate =

(increase -dept h-by 2)

make-deeper-x
(((a)) b c)

modify-candidate modified

$The candidate's depth attribute has been
modified by the modification routine
MAKE-DEEPER-X to produce a new example,
which is then judged and added to the
Examples-space:

candidate value = (((a)) b c)
c·sc = 3 sf = t

(entry-xl (nlist t))
(entry-x2 (3 t))
(e ntry -x3 (3 t))
("creat ed new frame for example II

marl 1- 009 (((a)) b C))
"success! I"

Problem 3

$The CONSTRAINT-LIST for the next problem
is:

(x l (d esired-value list
desired-prop (typep candidate)))

(x 2 (desired-value 5
desired-prop (l ength candidate)))

(x 3 (desired-value 2
desired-prop (depth

(first -atom candidate)
candidate)))

(x 4 (desired-value 3
desired-prop (depth

(first-atom (cdr candidate))
candidate)))

287

$The order of candidates retrieved and
judged is:

<abc >
<••digits>
<••bits>
<empty>
<a>
<abode>
marll-009

$Since no example meets the constraints,
the modification phase is entered with
the following AGENDA:

(<abode> 2)
(marl 1-009 2)
(< .. bits> 1)
(<a> 1)
(< ••digits> 1)
(< abc> 1)
(<empty> 0)

$The MODIFIER sets to work on the first
candidate (ABC DE):

--
constraint = ((typep candidate) list)
actual score = (entry-xl (lat t))

modify-candidate ok

--
constraint = ((length candidate) 5)
actual score = (entry -x2 (5 t))

modify-candidate ok

--
constraint = ((depth (first -atom
candidate) candidate) 2)

actual score = (entry -x3 (1 nil))

"find-diff" (increas e-depth-by 1)
"apply-di ff"

reducer = make-deeper-x
new -candidate = ((a) b c de)

modify-candidate modified

--
constraint = ((d epth (first -atom (cdr
candidate)) candidate) 3)

actual score = (entry -x 4 (1 nil))

"find-diff"
"apply-di ff"

reducer =
new-candidate=

(increase -depth-by 2)

make-deeper-x
((a) ((b)) c d e)

modify -candidate modified

--
candidate value =

C SC : 4 Sf :
(entry-xl (nlist t))
(entry - x2 (5 t))
(entry-x3 (2 t))
(entry -x4 (3 t))

((a) ((b)) c de)
t

I

$The modification is successful
new example is added

and the
to the

Examples-space.

("created new frame for
mar11-011 ((a) ((b)) c de))

example
"success 11"

It

The Examples-space after the successful
solution of Problems 2 and 3 is shown in
Figure 4,

(DATA)

/~
W 0012345678ID

I \ r
<A B C) <) CO 1)

ffiL~
~((PJJBCJ

C (A) «B)) C D E)

FIG 4

7. CONCLUSIONS

In this paper we have described a
computer system that models Constrained
Example Generation ("CEG") in domains
from computer science and mathematics.
We described how the CEG system generates
examples of data in LISP.

We are currently using the system to
explore issues such as

1 . the effect of the
contents of Example-space
sequence of solved problems
evolution of Examples-space;

initia l
and the

on the

2. the effect of alternative
orderings on the retrieval and
modification processes;

3, the
constraints,
constraints.

effect of
e.g.•

interacting
impossible

We also plan to use our system to study
machine learning by the incorporation of
adaptive techniques, e.g., by keeping
track of the performance of various
orderings and techniques and choosing the
ones that perform best. Such extensions
of our system will enable it to "learn"
from its own experience.

:.!88

References

Collins, A. and A. Stevens (1979) Goals
!~ Strategies of Effective Teaciieri
Bolt Beranek and~~ewmiin. Inc.,
Cambridge, Mass.

Friedman, D. (1974) The Little LISPer,
Science Research~Associates, Menlo
Park, Calif.

L,1katos, I. (1963) Proofs and
Refutations, British JoUrrialror the
Philosophy of Science, Vol. 19, May
1963. Also published by Cambridge
University Press, London, 1.976.

Lenat, D.B. (1976) An Artificial
Intelligence Approach to Discovery
in Mathematics as Heuristic Search,
Stanford Univ. Artificial
Intelligence Memo 286.

Polya, G. (1968) Mathematics and
Plausible Reasoning, Volumes I and
Yy-;---second Edition-;-Princeton Univ.
Press, N,J.

Rissland (Michener),
Understanding
Mathematics, Cognitive
2 ,: No. 4.

E. (1978a)
Understanding
Scien£!:., Vol.

Rissland (Michener), E. (1978b) The
Structure of Mathematical Knowledge,
Technical Report No. 472, M.I.T
Artificial Intelligence Lab,
Cambridge,

Rissland, E. (1979) Protocols of Example
Generation, internal report, M.I.T.,
Cambridge.

Soloway, E. (1978) "Learning =
Interpretation+ Generalization"; A
Case Study in Knowledge-Directed
Learning. Univ. of Massachusetts,
COINS Technical Report 78-13,
Amherst.

Winston, P. (1975) Learni~g Structural
Descriptions from Examples, in The
Psychology~! Compu~~ Vision, -i':""
Winston (Ed.), McGraw-Hill, New
York.

Woolf, B., and Soloway, E. (1980)
Analysis of Student Protocals:
Misconceptions in Understanding
Programming in LISP, in preparation.

Acknowledgments

Special thanks to my colleagues Elliot M.
Soloway, for his invaluable assistance in
bringing up the CEG system, and Oliver G.
Selfridge, for many useful discussions
and critiques.

A.D.l21111i1n.-Indeoendent ~.!.w::. Developing Knowledge~

James A, Reggia
Depts. of Computer Science and N~urology
University of Maryland
College Park, Maryland 20742 USA

Abstract: This paper introduces a
domain-indeindent system called KMS (a .Knowledge
.Hanagement stem) that supports the development
of knowle ge-based consultant programs, At
present KMS is based on a family of compatible
subsystems, Each of these subsystems accepts
knowledge stated in a non-procedural natural
language-like format that is understandable to a
domain expert while still being processable by
machine, The first generation of subsystems is
discussed and some simple examples of encoding
medical problem-solving knowledge are presented,

Introduction
A growing concern of research in artificial

. intelligence {AI) during recent years has been the
~roblem of representing and using (i,e.,

managing") real-world knowledge in the
development of applications-oriented computer
programs. Examples can be found of
knowledge-based consultants in a wide variety of
domains including medicine, geology, signal
processing, and biochemistry, The goal of these
systems is to make expert-level decisions about
problems that are faced by individuals working in
these domains,

In this paper a system for creating and using
such knowledge-based consultants is described,
This system is based on a family of knowledge
management languages and therefore is referred to
as KMS (a i'1owledge .Hanagement .S.vstem), The term
"management is empl9yed here to-indicate that the

J.1S.8. of knowledge {e,g, the selection of an
appropriate inference method, the specific
inferences to make) as well as its representation
is of concern.

The KMS languages are applicable to a wide
variety of domains but they are presented here in
the context of medical problem-solving because of
the author's specific interest in that field, For
that reason a brief introduction to
computer-assisted medical decision making is
provided below for those who are unfamiliar with
recent work in this area. The philosophy behind
KMS is then explained and the common features
underlyil}g its component languages are described,
This is followed by some specific examples of
clinical problem-solving knowledge encoded in the
KMS languages that have already been implemented.

Background
One research area where knowledge

representation and use is a central issue is that
of _g_omputer-asaisted .medical .l1.ecision-making
(~), Al though several different approaches have
been taken in the attempt to find appropriate ways
to develop CMD systems LReggia, 1979J, each can be
viewed within the fram~work of the simple
conceptual model shown in Fi gure 1, In this model
the nucleus of any CMD system is portra~d as
having two basic components: a knowledge of
domain specific problem-solving information e ,g, ,
a set of production rules), and a
domain-independent ~~fe~encr .lllflthQ.d th~t makes
decisions based on t snow e~se le.g,, a
consequent-driven rule interpreter), In general,

289

such CMD systems are given a description of a
patient's symptoms, signs and laboratory test
results and then draw upon their knowledge base to
produce useful information about the patient's
diagnosis, prognosis or treatment,

Three of the approaches to developing CMD
systems are germane to the material that follows,
First 1 statistical pattern classification baaed on
Bayes Theorem is one of the most common methods
used to develop CMD systems. In this method the
knowledge base is composed of the relevant prior
and conditional probabilities, and Bayes' Theorem
is used to infer a probability distribution for
the possible outcomes (e.g., diagnoses) . CMD
systems based on Bayes' Theorem have several
well-known inherent limitations, but for
appropriately chosen medical problems they have
been shown to work reasonably well and
occasionally have performed more accurately than
senior physicians (e,g,, [deDombal, 1975)),

A second method for developing CMD systems
involves the use of production systems, In these
systems medical knowledge is captured as a
collection of conditional rules that a rule
interpreter uses to make decisions, Example
medical domains where this AI approach has been
adopted include the diagnosis and treat~~nt of
infectiou~ disease~ LShortliffe, 197bJ and
glaucoma LWeisa, 197~]. While rule-based systems
offer the advantages of declarative knowledge
representation, modularity and a limited
explanation capability, it fa o~en difficult for
domain experts to formulate their knowledge as a
set of rules and some forms of knowledge seem
esQ~cially refractive to this approach [Goldberg,
197 ~; R eggia , 197 8],

Finally, a third technique for developing CMD
systems involves the construction of programs that
are best described as cognitive models, The term
'cognitive model' is used here in the sense that
these systems represent an explicit attempt to
model the knowledge structures and diagnostic
reasoning of the physician as it has been revealed
in empirical research studies, Baaed on the
results of these studies and intuition, medical
knowled~e is typically modeled as a network of
"frames and a hypothesize-and-teat approach to
decision making is used, Example medical domains
that have been appro~ched in this fashion include
internal medicine L Popl e, 1975] , nephrQl ogy
[Pauker, 1976), and choleatasis [Mittal, 1979J,

Symptoms
Slgns
Tests

, -------- --- i

I

'

Knowledge
Base

I

· ---- --- ---- ·

Diagnosis
Prognosis
Treatment

Figure 1: Conceptual model of a CMD system,

I

I
.1
I
I

In spite of twenty years of research into the
development of CMD models, such systems have had
relatively little impact on the practice of
medicine, even when they have been shown to be
more accurate in their predictions than
physicians. This is somewhat surprising in view
of the potential benefits that CHD systems could
bring to medicine and the comparatively successful
use of decision support systems in a variety of
other domains (e,g., bu;iness, eng1neer1ng,
industry, government; see LKean, 1978), The
reasons for this relative lack of success are
complex; we will return to them in a later
section,

Iha. Architecture~ KMiS.
The basic goal in creating KMS is to provide

a domain-independent system that will serve as a
"workbench" for the development of knowledge-based
consultant programs, By doing this it is hoped
that KMS will overcome some of the problems that
have inhibited the development and use of such
knowledge-based consultant programs in the past.

An overview of KMS is shown in Figure 2,
Basically, KMS consists of a collection of n
§~~fyste%13, each of which is organized around a

eren inference method. These
domain-independent subsystems are overseen by the
KMS executive.

Each of the subsystems supports a formal
~eprfs~ntaSion lay~uafe• To create a now e ge- ased consu an program a domain expert
begins by selectipg an appropriate subsystem (i.e.
inference method), She or he then uses the
University of Maryland text editor to write a
domain-specific knowledge base in the
corresponding representation language, Finally,
that knowledge base is given to the appropriate
subsystem of KMS which screens it for errors. If
errors are found then diagnostic messages are
generated and the knowledge base is rejected, The
errors are then corrected using the text editor,
Once a knowledge base is free of errors that are
detectable by KMS it is accepted and converted
into an internal form. Subsequent testing of the
knowledge base leads to revision of the knowledge
base and its resubmission to KMS, Eventually it
may become part of one of the knowledge 12.a.wi
liQraries shown in Figure 2.

Each of the subsystems also supports a formal
command language for using completed knowledge
bases, A user signs onto KMS and requests a
specific subsystem and knowledge base (perhaps
being guided by the KMS executive in this task),
He or she can then direct the system to perform
various ta~ks: make specified inferences, justify
a decision {where possible), display a subset of a
knowledge base, etc, In performing these actions
KMS carries on a dialog with the user, re~uestinf
problem-srecific information where appropr ate,
subsystems representation and command languages
taken together are considered to form a knowlegge
maoagemen~ laPKlla&e.

In summary, each of the KMS subsystems is a
collection of programs that implement the
following components.

Inference system: When called into
action this component will apply a
stored knowledge base selected by the
user to a specific problem, It makes
inferences about that particular case
that are of interest to the user.

Knowledge base parser and interpreter:
This component parses a knowledge base
written in the appropriate KMS
representation language and transforms
it into an internal interpretable form.
It is responsible for detecting
syntactic and a limited number of
semantic errors in a knowledge base. It

--

I Exe~f 1ve I
I

I I I I
Inference Inference Inference
Method1 Method;i, Methodn

--------- - - ---·--- - ---- - . - -
Rerresentation Rerresentation Reeresentation

anguage1 anguage,_ ... anguage,,
-· - - - - - - . - - ..

Command Command Command
Language1 Language2 Languagen

I I l
KB (1 ,1) KB(2 11) KB (n ,1) -. -KB (1 ,2 >

.. -
KB(2 ,2) KB(n,2)

- - - - . - - - ·- to- - ·- - - . - -.
KB (1 ,1) KB (2 ,j) KB(n ,kl

Figure 2: KMS architecture.
--

290

is analogous to a parser in a standard
programming language
interpreter/compiler and performs the
same useful services,

Knowledge base compiler.: This component
stores a transformed knowledge base in
its internal form, Later retrievals of
that knowledge base do not require
re-parsing or re-transformation to
internal form and therefore are more
efficient, The compiler is intended for
use with completed, error-free knowledge
bases,

User interface: This component provides
for interaction with a user. It
includes the command language which is
used to direct the control of the
system display part or all of a
knowledge base, etc, In addition, by
using information in a knowledge base,
this coml)onent can request
problem-specific information from a user
in ·a simple, natural language-like
format.

Not only is there the usual attention to
modularity of elements in a knowledge base
(intra-knowledge base modularity) in KMS but there
is also inter-knowledge base, intra-subsystem, and
inter-subsystem modularity,

~-Subsystem compatibility
The partition of KMS into a family of

subsystems, each based on a different inference
method and supporting a corresponding management
language, raises the possibility of introducing a
great deal of complexity into the system, To
counter this the subsystems are designed to be
compatible in two ways.

First, regardless of which subsystem is used,
the underlying conceptual structure of a problem
to be . solved is built around a problem-oriented
;~~tg~~~ ne~work, This network specifies the

shat are of interest in a particular
pro em and the different Ya.1.u.e__.s that they can
have, In addition, the meclianfsm for describing
such a network is similar in each of the

representation languages, and this leads to a
uniform structure for all KMS knowledge bases. We
will examine the idea of a problem-oriented
inference network and its relationship to a
knowledge base in the next section,

The second way in which the KMS subsystems
are compatible is that the user interfaces are
similar. The commands that give the user the
ability to utilize a knowledge base are
essentially the same for each subsystem, For
example, regardless of the subsystem with which a
knowledge base is associated a user can direct
KMS to OBTAIN <attribute>, This command tells KMS
to use the currently active knowledge base to
determine the value of the specified attribute,
Another command found in all the languages is
DISPLAY <option>, This command allows the user to
view part or all of the knowledge base or the
internal representation of a problem that is being
solved. A third example is NEXT <option>. This
command tells KMS that the user wants to discuss a
new problem (NEXT CASE) or that the system should
switch to a new knowledge base (NEXT KB) ,

In addition to sharing similar commands, the
user interfaces of KMS subsystems all ask the user
for information about a specific problem in
approximately the same way, The name of an input
attribute whose value is desired by KMS is printed
out and the user simply selects from among its
possible values in responding, This
multiple-choice format is useful for constraining
the inferences made by the a1atem [Rieger, 1978],
presupposes no special typ ng skill of the user,
and avoids the need for a sophisticated natural
language interface,

.El::.l2lll Attribute Hierarchy .t.si. Knowledge Il..iul.e.
In the previous section it was stated that,

regardless of which subsystem is used, the
underlying conceptual structure of a problem to be
solved is built around a ~rogle~~t~~~a~2 ij~i~~£gg~ net~~~k Off U~~re a§~~ Y, a¥he term

pro em-oriented' in~icates that each such
network is centered around a specific domain
problem, The network specifies both the structure
of that problem as well as the "direction" in
which inferences are to propagate, Its nodes are
the ftttrbutes of the problem being solved.
Concep ua y associated with each of these
attributes is a set o~ possible Jlal.u.as. which that
attribute can have, The links --rn-The network

--(a) NEUROLOGICAL

RESPIRATORY
STATUS

(b)

MAXIMUM
DIAMETER
OF PRIMARY

OUTCOME

RESPONSE PUPILLARY OCULOCEPHALIC
TO STIMULI LIGHT REFLEX

COMPLICATIONS
OF PRIMARY

TUMOR

REFLEX

BRONCHIAL
TREE

INVOLVE
MENT

DIRECT
INVASION
OF EXTRA

PARENCHYMAL
STRUCTURES

represent the rel at iQn "depends on" (or
conversely, "determines") indicating that the
value of one attribute (drawn in a superior
position) is determined by the values of others
{drawn in inferior positions), Thus, the lowest
level of an attribute hierarchy consists of .i.DJ2.ut.
attribu~s whose values are determined by a user;
other n es in the network represent inserrgd
attlibutes whose values are determined y e
sys em,

Figure 3 gives two simple examples of
attribute hierarchies dealing with medical
problems. The one-level tree in Figure 3a
indicates that the NEUROLOGICAL OUTCOME of a
patient with coma following cardiac arrest is
determined by the four input attributes shown
LSnyder, 1977], Similarly, the three-level
attribute hierarchy in Figure 3b represents the
organization for a knowledge base that will stage
a patient's lung cancer Jnd generate a two-year
prognosis for that patient LRoaenow, 1979], Since
there may be more than one "most superior" node
and as a node may have more than one parent, an
attribute hierarchy is not necessarily a tree
structure as illustrated in these examples,

The development of any knowledge base is
organized around an attribute hierarchy similar to
those illustrated in Figure 3, For our purposes
we will view knowledge bases as consisting of two
parts: a knowledge ~ and an issoci~tions
section. The schema coiis!sfs of a 1 at o the
names of the attributes in an attribute hierarchy
along with the names of their possible values.
For example the input attribute REGIONAL NODE
INVOLVEMENT fn Figure 3b and its possible values
might be declared as

REGIONAL NODE INVOLVEMENT:
NONE .

/ PERIBRONCHIAL NODES
/ HILAR NODES
/ MEDIASTINAL NODES;

in the schema of the corresponding knowledge base,

The associations section of a knowledge base,
which may overlap in part with the schema,
provides information that associates the possible
values of different attributes to one another,
Such associative links are formed through the use
of implicit or explicit KMS statements. An
explicit KMS statement has the form

<attribute> <relation> <value>

such as

REGIONAL NODE INVOLVEMENT: HILAR NODES,

Statements are combined to define the partial
(non-circular) ordering of the inference network
that determines the direction in which information
is to propagate (see below),

CHANCES FOR
TWO YEAR
SURVIVAL

Figure 3: Some simple
~ttribute hierarchies.
{a) Predicting neuro
logical outcome
following cardiac
arrest, l b) Staging ~
lung tumor and
generating a prognosis,

REGIONAL
NODE

INVOLVE
MENT

PRESENCE
OF DISTANT
METASTASES

CELL
TYPE

291

. -I

. :1

1
. 1

The effect of expressing knowledge in terms
ot a problem-oriented inference network or
attribute hierarchy is to provide a non-procedural
framework for knowledge that is understandable to
computer-inexperienced individuals. It therefore
leads to the formulation of knowledge bases that
are easily read and understood by domain experts
and users while still being processable by
computer.

IhA.l.11:Al Generation SJ.I. Subsystems
The initial version of KMS consists of three

subsystems (n = 3 in Figure 2), The first
versions of two of these subsystems have been
implemented and are described below. The third
subsystem is currently being designed, All
programming is in LISP and the syste~ is accessed
via terminals connected to the University of
Maryland Instruction and Research Network,
Although domain-independent, KMS is currently
being studied in the context of developing CMD
systems, especially in neurology,

The first subsystem KMS,BAYES requires
appropriate information for statistical pattern
classification based on Bayes' Theorem (see
'Background' above or [Duda and Hart, 1973]), The
prior probabilities of outcomes (e,g, , diagnoses .1
prognoses) and the conditional probabilities or
manifestations of each outcome (e,g,, signs,
symptoms) must be specified in a knowledge base,
Bayes' Theorem was selected as an inference method
because of its widespread use in CMD systems, In
addition it is suitable for making use of
probabilities that are frequently found in journal
articles reporting clinical studies or th~t are
produced by medical databases, ·

Figure 4 illustrates a very small example of
a KMS,BAYES knowledge base, This particular
example deals with predicting a patient's outcomH
following cardiac arrest and corresponds to the
attribute hierarchy illustrated in Figure 3a,
Lines beginning with an asterisk are comments.

••• CPR PROGNOSIS KNOWLEDGE BASE CPR2 •••
• PREDICTION OF NEUROLOGICAL OUTCOME FOLLOWING
• CPR BASED ON NEUROLOGICAL EXAMINATION DONE
• WITHIN ONE HOUR AFTER CPR, ASSUMES NO PRE-
• EXISTING BRAIN DAMAGE AND NO TOXIC/METABOLIC
• ENCEPHALOPATHY, ASSUMES 24 HOUR SURVIVAL,
• PREDICTED OUTCOMES ARE: FUNCTIONAL (NORMAL OR
• SELF-CARE WITH SUPERVISION) IMPAIRED
1 (SEVERE DEMENTIA OR PERSISTENT VEGETATIVE
• STATE), REFERENCE: SNYDER ET AL, NEUROLOGY,
I 27 1 1977 I 807-811,
1 INPUT ATTRIBUTES

RESPIRATORY STATUS:
SPONTANEOUS ACTIVITY/
ON RESPIRATOR AND NOT TRIGGERING,

RESPONSE TO STIMULI:
PURPOSEFUL RESPONSE TO PAIN/
NON-PURPOSEFUL OR NO RESPONSE TO PAIN ,

PUPILLARY LIGHT REFLEX: PRESENT/ ABSENT,
OCULOCEPHALIC REFLEX: PRESENT/ ABSENT,

• INFERRED ATTRIBUTE
NEUROLOGICAL OUTCOME (RESPIRATORY STATUS;

RESPONSE TO STIMULif• PUPILLARY LIGHT
REFLEXl OCULOCEPHAL C REFLEX):

FuNCTIONAL(0,62):
0,67 0,33;
0.57 0,43;
o.89 0.11;

IM~A~2E8td~3~):
0.15 o.85;
0.15 o.85;
0,42 0,58;
0,33 o,67 I

Figure 4: A simple KMS,BAYES knowledge base ,

292

KMS,BAYES can use this knowledge base to compute a
probability distribution for the values of the
attribute NEUROLOGICAL OUTCOME when it is given a
value for the four input attributes (e.g,,
RESPIRATORY STATUS)• Only implicit KMS statements
are illustrated here. For example, the prior
probability of NEUROLOGICAL OUTCOME = FUNCTIONAL
ls 0,62 (indicated in parentheses). The input
attributes that NEUROLOGICAL OUTCOME depends on
are indicated in parentheses following its name,
In general these determining attributes may be a
subset of the declared input attributes because
there can be more than one inferred attribute,
The appropriate conditional probabilities for the
values of the determining input attributes are
listed in · an order corresponding to that of the
attribute names in parentheses a~er the name
NEUROLOGICAL OUTCOME, For example I of patients in
Snyder's series that ended up in the the
FUNCTIONAL category, 891 had' PUPILLARY LIGHT
REFLEX = PRESENT immediately a~er cardiac arrest
while only 111 had PUPILLARY LIGHT REFLEX =
ABSENT, Although not shown here, the number of
values of an attribute can be greater than two,

Figure 5 demonstrates part of an interaction
mediated by KMS between the knowledge base shown
in Figure 4 and a user. It demonstrates how
questions are generated from a knowledge base,
User responses have been underlined for clarity,

The second subsystem, KMS,PS I involves
representing knowledge about a problem as a
collection of production rules, A rule-based
subsystem was selected for inclusion in the first
version of KMS because of the demonstrated
usefulness and popularity of production systems in
knowledge engineering, Production rules have
proven especially suitable for capturing some
types of "judgemental" knowledge,

...
>>> ENTER COMMAND:

~ neurological outcome,
>>> ENTER INITIAL INFORMATION:

.QOJlll,

>>> RESPIRATORY STATUS:
(1) SPONTANEOUS ACTIVITY
(2) ON RESPIRATOR AND NOT TRIGGERING

= ? .1
>>> RESPONSE TO STIMULI:

(1) PURPOSEFUL RESPONSE TO PAIN
(2) NON-PURPOSEFUL OR NO RESPONSE TO PAIN

= ? '
>>> PUPILLARY LIGHT REFLEX:

(1) PRESENT
(2) ABSENT

= ? .1
>>> OCULOCEPHALIC REFLEX:

(1) PRESENT
(2) ABSENT

= ? .1
>>> NEUROLOGICAL OUTCOME =

FUNCTIONAL: 0,94
IMPAIRED: 0, 06

>>> ENTER COMMAND:

.nwu.. ~.
>>> READY FOR NEXT CASE
>>> ENTER INITIAL INFORMATION:

Figure 5: Part of a KMS.BAYES session using
the knowledge base in Figure 4,

The rules in a KMS, PS knowledge base undergo·
procedural interpretation using a top-down ,
depth-first strategy (note the similarities to
PROLOG Futo et al, 1978]), The model of inexact
reasoning originally introduced in MYCIN
[Shortliffe 1 1976) is used to propagate "certainty
factors" r·rom a rule's antecedents to its
consequents, Some examples of rules written in
KMS,PS are shown in Figure 6, Space restrictions
prohibit showing the complete collection of over
130 rules for diagnosing thyroid dysfunction that
are in this particular knowledge base. Each rule
consists of a name, one or more antecedents, and
one or more consequents. Each antecedent and
consequent is an explicit KMS statement,
Certainty factors are specified in parentheses
following consequent statements with a default
value of 1,0 if none is given,

Figure 7 shows two additional rules from
another knowledge base for staging a patient's
lung cancer and generating a prognosis, These
rules demonstrate how disjunctions can be
incorporated into antecedents and illustrate the
' II' rel at ion (for 'not equal to') • Other possible
r(elations exist for attributes with numeric valu~s
e,g,, 'GE' for 'greater than or equal to' I,

These rules also show how the attribute hierarchy
in Figure 3b is implicitly incorporated into a
knowledge base,

An interactive session involving a KMS,PS
knowledge base appears very similar to one
involving a KMS 1BAYES knowledge base (Figure 5)
from the users point of view, Thus this is not
illustrated here. One command that is available
from KMS,PS but not from KMS,BAYES is JUSTIFY
<attribute>= <value>, KMS,PS keeps track of
which rules it uses to assign a value to an
inferred attribute and this command tells KMS to
state the names of those rules for a particular
value, This forms the basis for a limited
explanation capability,

A third subsyste\11., KMS,HT, is currently being
designed, Although ~MS,HT is most similar to
cognitive models as described above (see
'Background') the exact resemblance to human
reasoning and knowledge organization· is not the
major concern, The main emphasis in developing
KMS,HT is to provide a convienient means for
representing and using (medical) problem-solving
knowledge as it appears in review ·articles and
textbooks, Kno.wl edge bases associated with KMS, HT
will be organized around frame-like structures
that will be incorporated by the system into a
problem-oriented inference network, A
.ll,ypothesize-and-.t.est control strategy will be
aclopted,

TEST RULE10
IF FREE THYROXINE INDEX= HIGH
& T4-RIA VALUE = NORMAL
& RT3U VALUE : HIGH

THEN SCREENING TEST RESULTS= HYPERTHYROID (0,9) ;

SCAN RULE6
IF SCAN INTERPRETATION= HOT NODULES
& TSH SUPPRESSION SCAN= NEGATIVE

THEN SCAN RESULTS = AUTONOMOUS NODULAR GLAND;

CLINICAL RULE24
IF PRELIMINARY CLINICAL EVALUATION= HYPERTHYROID

& INFERRED THYROID ARCHITECTURE= DIFFUSE GOITER
& SCAN RESULTS : AUTONOMOUS DIFFUSE GLAND

THEN FINAL CLINICAL EVALUATION= GRAVES DISEASE
& STATUS OF FINAL CLINICAL EVALUATION

= RECOGl'TZED PATTERN;

DIAGNOSIS RULE13
IF FINAL LAB TEST RESULTS= HYPERTHYROID
& FINAL CLINICAL EVALUATION= GRAVES DISEASE

THEN DIFFERENTIAL DIAGNOSIS : GRAVES DISEASE (0,9)
& STATUS OF DIFFERENTIAL DIAGNOSIS

: RECOGNIZED PATTERN;

Figure 6: Example KMS,PS rules for diagnosing
thyroid dysfunction.

293

STAGING RULE6
IF STATUS OF PRIMARY= LEAST SEVERITY
& REGIONAL NODE INVOLVEMENT= PERIBRONCHIAL NODES

/ REGIONAL NODE INVOLVEMENT: HILAR NODES
& REGIONAL NODE INVOLVEMENT f-MEDIASTINAL NODES
& PRESENCE OF DISTANT METASTASIS: NONE KNOWN

THEN CLINICAL STAGE= STAGE ONE;

PROGNOSIS RULE2
IF CLINICAL STAGE: STAGE ONE
& CELL TYPE: LARGE

THEN
CHANCES FOR TWO YEAR SURVIVAL= ONE IN THREE;

Figure 7: Example KMS,PS rules on lung cancer,
--
Related .Hw:k

KMS bears a resemblance to some other AI
research efforts currently in progress, Its
purpose and goals are in some ways similar to
those of ~everal gen!ral knowledge representatiQn
languages (e,g,, KRL Bobrow and 1¥inogradl 1977J,
KLORE LBrachman, 1979 , SBDS [Ohsuga ,1979) , Even
more closely relate are those systems hat have
evolved from research into developing expert
consultation programs, For example, the
rule-oriented software originally developed for
MYCIN (call ed EMYCIN for "Essential MYCIN") has
been used to build consultation systems in several
different areas of medicine as well as an
engineering domain [van Melle, 1979], A second
domain-independent rule-based system is EXPERTJ a
generalized descendent of the CASNET formalism
LWeiss and Kulikowski, 1979), It is currently
being used to develop consultation models in
rheumatology, ophthalmology 1 and endocrinology,
Finally, another rule-basea system for building
consyltation programs is AGE LNii and Aiello,
1979J, AGE has been used to implement a
consultation system dealing with pulmonary
function test interpretation.

KMS differs from all of these other
domain-independent software laboratories in at
least two very important ways, First, KMS is
decomposed into a collection of subsystems, each
of which is based on a different inference method
and representation format, This approach to the
architecture of KMS reflects the belief that there
is no single "best" method for representing and
using knowledge, On the contrary, there is a
variety of methods that are available, each with
certain .advantages and disadvantages, The
selection of which method to use for a given
problem depends on several factors such as the
structure of the problem involved and the
availability of appropriate problem-solving
knowledge, Almost all of the domain-independent
systems described above are oriented around a
single formalism for managing knowledge, and in
this sense approximate a single subsystem in KMS,

A second significant difference between KMS
and the systems described above is one of
emphasis, KMS is based on the belief that the
best way to develop knowledge-based consultants is
by permitting a human domain expert to transfer
~1lectiy his or her knowledge to the computer,

h ss why KMS emphasizes subsystem-supported
languages whose primitive elements are the
attributes, values, and associations of a
particular domain problem, Many of the other
systems described above require a fair knowledge
of LISP or other aspects of AI because of the
additional expressive power this provides,
Individual KMS subsystems sacrifice some of this
power in exchange for being directly usabl o by
domain experts a~er minimal instruction,

Of course, this direct usability by domain
experts raises the question about what tbe role of
the knowledge engineer should be in the context of
a system like KMS, The more traditional viewpoint
has been that the knowledge engineer should serve
as an intermediary betwoen domain experts and the
computer, helping the human expert t9 express her
or his problem-solving knowledge LAmarel ,1977;
Feigenbaum, 1977), This is depicted in Figure Ba,

Knowledge
Based
System

Knowledge
Engineer

Domain
Expert

(a) The traditional approach

(b) The KMS approach

Figure 8: Alternate views of
the knowledge engineer,

The KMS viewpoint is that the knowledge engineer
should occupy a different position dealing
predominantly with epistemological issues (Figure
8b). Specifically, such an individual would
create and modify the KMS subsystems, educate
domain experts and users about the srstem, and be
available for consultation as spec fie knowledge
bases are developed.

min& .t.ll erobl ems 12!. .CHIL
It was noted in the 'Background' section

above that CMD systems have had relatively little
effect on the day-to-day practice of medicine,
There are several reasons for this and they have
been discussed extensively in the literature
(e,g,, [Croft, 1972i Friedman.I 1977; Mitchell,
1970; Startsman 1972J), Some or these problems
that have inhibited the development and use of CMD
systems are not addressed by KMS: the lack of
adequate databases with relevant clinical
information 1 the lack of standardization in
medical derinitions, etc, However KMS does
attempt to alleviate four of the probfems that are
frequently mentioned,

1) The physician-computer interaction has not been
successfully accomplished,

A distinguishing feature of KMS is that it is
designed for direct use by physicians, both as
users and as domain experts, The growing
availability of computer facilities in clinical
settings makes this a realistic possibility.

2) The translation of clinical knowledge into a ·
form suitable for computer processing and the
implementation of the programs to process it are
difficult and time consuming tasks,
Each KMS subsyst.em includes all the software
needed to implement a complete CMD system
(inference method, user interface, etc,) once it
is given an appropriate knowledge base to work
with, Thus no additional programming is
necessary, Knowledge acquisition remains a
significant problem, but it is at least improved
by the direct use of formal representation
languages by physicians, In addition KMS
expedites knowledge acquistion by providing a
collection of languages suitable for different
types of knowledge and by detecting certain
classes of errors in knowledge bases,

3) There has been a lack of acceptance of CMD
systems by the medical community,

This in part reflects the fact that physicians
have not been convinced that CMD systems can be
generally useful, Often the emphasis by research
workers has been on producing systems that do what
the physician does, and not surprisingly this has
met with only limited acceptance by physicians,

294

It is hoped to alleviate this problem within the
framework of KMS by s tressing support for
decision-making rather than by producing
computer-generated decisions, Also, since KMS is
directly usable by phrsicians, it gives a
physician the freedom to mplement a knowledge
base that is of specific interest to him or her.
In the long run this may prove to be one or KMS's
most important features, Finally, by providing a
library of knowledge bases KMS has the potential
for accumulating the "critical mass" of
information that would be necessary to justify the
time required to learn its use, This is not true
with conventional CMD systems that address Qnly
one problem with a single knowledge base (see
'Background'),

4) Even when successful most CMD
convieniently be transferred
installations.

systems cannot
to different

While KMS is theoretically portable to any
facility that supports the LISP language, the
numerous dialects of LISP make this a less than
ideal prospect, However, the real issue is not
the portability of KMS itself, but whether or not
knowledge bases (llS2t programs) can be made easily
transferable from one installation to the next,
Since KMS supports machine- independent
representation and command languages, any computer
facility with an implemented version of KMS would
be able to use KMS knowledge bases developed at
other sites. While a great deal of work remains
to be done, the ideas behind KMS at least have the
potential to provide a qualitative improvement in
the portability of CMD systems,

conclusion
This paper has introduced KMS, a new approach

to managing the real world knowledge needed in
knowledge-based consultant programs, The major
features of the architecture of KMS center on a
family of compatible subsystems that are based on
different inference methods. These subsystems all
addross kn owl edge representation in a similar
fashion, requiring the description of a problem to
be in terms of its attributes, their values, and
the associations between them, They also share a
common set of control commands and have similar
user interfaces, Associated with each subsystem
is a collection of knowledge bases written in the
appropriate fashion. A domain expert can use
these KMS subsystems to build a library of
knowledge bases that deal with one or more
domain-specific problems,

At present KMS is best characterized as an
experiment-in-progress with many questions
remaining to be answered about its ultimate
utility. For example will the use of simple
inference methods significantly limit the power of
the subsystems? If one accepts the belief that
"the problem solving power exhibited in an
intelligent agent's performance is primarily a
consequence of the specialist's knowledge employed
by the agent and only very secondarily related to
the gener,lity and power of the inference method
employed" LFeigenbaum 1977) then the ability of
KMS to manage libraries of knowledge bases gives
reason for optimism, Is the direct domain
expert-computer interaction really feasible? The
growing diffusion of computer technol~gy
througnout society and the incrAasing
computer-sophistication of individuals in various
non-computing disciplines at least makes this a
possibility,

These and other questions will be examined
through KMS in the future, The present plan is to
complete KMS.HT and then avaluate the first
ganeration of subsystems by developing a small
prototype library of knowledge bases, The use of
KMS by computer-inexperienced individuals (medical
students physicians, etc,) will also be
evaluated, Hopefully, KMS or similar systems will
ultimately help to make the computer a useful tool
for a number of individuals for whom it has
previously been relatively inaccessible,

Acknorle~gem,nt~: The research described in this
repor s un i,ct by an NIH Teacher-Investigator
Development Award (5 K07 NS 00348) from the
NINCDS, Computer time is provided in part by the
Computer Science Center of the University of
Maryland, The example rules on thyroid diagnosis
are from a rule collection written by Barry
Perricone, This is the second report of the
NEUREX project.

References
Amaral S et al: Applications of Artificial

Intelligence (Panel), .f.to.c... illt.b. .lliil,
1977, 994-1006.

Bobrow D and Winograd T: An Overview of KRL, a
Knowledge Representation Language, Cognitiye
scienffe , 1 , 1977 , 3-47,

Brachman: On the Epistemological Status of
Semantic Networks~ in AssoI1at~ye Netw~6¥~, N, Findler (editor,, Aca em c ress, ,
3-50.

Cro~ D: Is Computerized Diagnosis Possible?,
eo.mn..._ ~1ome~. ~. 5, 1912, 351-367,

deDom~:ompliter-Assisted Dia!¥osis of
Abdominal Pain, in A~~agcyf ~€410,1 8gmoyM~! , Rose and c e ed ors ,

urc -Livingston, 1975 10-19,
Duda R and Hart P: P~ttef~ d1a8s~ficatte9 .aw1 s.c..ene. ~na,6s1f, Jon ey an ons 3.
Feigen6aiiiil:ert of Artificial Inteiligence -

Themes and Case Studies of Knowledge
Engineering, .f.to.c... illt.b. .lliil, 1977, 1014,

Friedman Rand Gustafson D: Computers in Clinical
Medicine - A Critical Review, .G.P.lim..a. B1omed.
~. 10, 1977 1 199-204.

Futo r:;-D"arvas F ana Szeredi P: The Application of
PttOLOG to the Development of QA and DBM
Systems , in 1.QJtk aru1 D.at.ll B..a.:s.a.s. , Ga 11 a ire
and Minker (ec11tors)--;-l>lerium----p-fess, 1978,
347,

Goldberg Rand Kastner J: An Explicit Description
of Anatomical Knowledge as an Aid to
DiagnosisJ CBM-TR-78, Dept, of Computer
Science, ttutgers University, Oct , 1978,

Kean p and Morton M: B:§;g;ge Syppoi~ yvstews - An ~~,~~1zat1onal ________ iye, d son- esley,

Mitchell J: The Automation of Clinical Diagnosis,
Bio-Med,~. 1, 1910, 157-166.

Mittal S, Chandrasekaran B, and Smith J: Overview
or MDX - A System for Medical Diagnosis,
~ Ilu.cs1 .. sxr90,~¥~ ~ ~ wilA. J.n.

Nii~ ~oIN~ iGEc lttemp~ ~~-Ge~eralize} -
A Knowledge-Based Program for Buildir:ig
Knowledge-Based Programs , .f.to.c... .8.1.lt.b. lliAl.,
1979, 6115-655.

Ohsuga S: Theoretical Basis for a KnorJc1fe
Represl}ntation System, ~ .8.1.lt.b. ,
1979, 676-683,

Pauker Set al: Towards the Simulation or CliniQal
Cognition, Am.ar..a. J.... Med.a.., f>O, 1976, 981-996,

Pople R, Myers-----;r-arid--irr"Iier R: A Model of
Diagnostic Logic for Internal Medicine , .f.to.c...
f.o.l.lr.th IJCil , 1 9 75 ,

Reggi~ -X-- Production Rule System for
Neurological Localization , ~ ,.~~ .. ~

ffim8~1~, IEfi, No~
Reggia J: Computer- Assisted Medical Decision

Making - Knowledge Bases,~ Ilu.cs1 ~
~~sr~,E~Og~~0¥B,6 .A~6~1~.io. M

Riege~: The Importance of Multiple Choice,
TINLAP-II University of Illinois, July 1978,

Rosenow F. and Carr D: Bronchoeenic Carcinoma' ~ -
~-~ !~~~:! ~ 1~~~c~~~s , Amer an

Short~E:
0

~ ~ ~i!"e~
9
Medili, Consyltations

- .MI.C..IN., mer can sevier, 6,
Startsm~ and Robinson R: The Attitudes of

Medical and Paramedical Personnel Toward
Com

8
puters, .G.P.lim..a. Biomed. ma., 5, 1972 ,

21 -227,
Snyder B, Ramirez-Lassepas M, and Lippert D:

Neurologic Status and Prognosis After
Cardiopulmonary Arrest, Neurology, 27, 1977,
807-811.

van Melle W: A Domain-Independent Production Rule
S t for Consul tat ion Programs, .fr.o.s:... .8llth

1 79, 923- 25,
Weiss , ul1kowski ~~ and Sapir A: Glaucoma

Consul tat ion by 1,;omputer , .l<.PIIIP.L B.1P.L. .t1e.d.A. ,
8 1978 25-40. .

Weiss~ and Kulikowski C: EXPERT - A System for
Developing Coru,ultation Models, ~ .8llth
.lliil, 1979, 9112-947.

295

I

Knowled~e Acquisition and Representation Using
Logic, Set Theory and Natural Language Structures

Stewart Bainbridge and Douglas
Departments of Mathematics and Computer

University of Ottawa
Ottawa, Ontario, Canada K1N

Skuce * +
Science (resp.)

6N5

Abstract

We present an ap proach to acquirinR
qualitative generic knowledge from experts
using a language LESK, and show how the
semantics of LESK, for both human and
machine understanding, can be expressed in
a "deep structure" language, ARC. LESK
gives a "natural language" surface syntax
to ARC, which com pactly represents a
set-theoretic interpretation of common
predicate calculus expressions. ~ theorem
prover for ARC has been implemented in
PROLOG.

The design of LESK and ARC have been
driven by real examples of such knowledge
which describe the conceptual structure of
the Canadian census database.

1. Introduction

The acq uisition of generic knowledge
(gk) from experts (not nec~ssarily
computer speci:cillsts) nnd Hs
representation in forms well-suiterl for
either analysis by these experts or by
deductive knowlect~ bas~ systems (kbs) is
an increasingly important aspect of modern
information systems. We describe an
approach to expediting thes~ two tasks
using two closely related languages, LESK
(Languag e for Exactly Stating Knowledge;
Skuce 75-79) an d ARC (Algebra of
Relational Composition), intended
respectively for the two uses referred to
above. LESK, a kind of predicate
calculus, provides a linguistically
natural medium for humans, while ARC
provides an efficient formalism for
implementing a kbs which can interactively
acquire new knowledge and 1eductively
answer questions. Each LESK statement
translates readily into ARC, and/or an
associated "declaration" language, DARC.

* alphabetical order
296

(DARC serves a purpose analogous to
declaration statements in a programming
language.) To the trained reader, ARC and
DARC are superior to predicate calc ulus
(PC) and conventional math ematical
notation for semantic verifi catio n of
LESK.

The eventual goal of this r9search is
an interactive kbs which assi~ts in the
acquistion of linguistically and logi cal ly
consistent generic knowledge from persons
requiring computer processing of
information dependent on this knowledge.
After acquiring the gk, the system wouli
serve as an "oracle" in helping humans
understand it, or in interfacin~ to other
systems which could use it, such as a
conventional database system. By the term
"LESK system" we shall mean such a sy~tem
based on LESK and ARC.

We report here on:
1. t he basic id ens of LESK ;:ind I\R C;
,. the use of LRSK in a typi~al ~k
acquisition task: capturinR the
terminology and logical structure of the
concepts to be represented in a database
system (dbs);
3. implementation of a LESK system.

2. Basic Concepts o_f ARC

LESK is a linguistically natural
surface language whose semantics are baserl
on set theory and predicate calculus (PC),
which ARC represents more directly without
LESK's natural langu11ge (NL) sugar. We
therefore begi n by describing ARC. (A
detailed specification of ARC and its
deductive structure will appear e lsewh ere;
here we shall sketch the gsneral feRtures
of the language anrl illustrate the
inference rules with a simple example .)

ARC has terms of two types: terms
which denote sets, and terms which denote
binary relations (viewed as sets of
ordered pairs). For expository purposes,
the semantics of ARC will be specified in
PC. For example, the ARC set term
"person" would be represented in PC by a
unary predicate "person(x)", and the ARC
relation term "uncle" would be represented
in PC by a binary predicate "uncle(y,x)".
(Our convention for reading PC expressions
"R(y,x)" is "Y is a R of x", so in the
preceding, y is the uncl e, x the
nephew/niece.) The examples below will
clarify how ARC manages without individual
variables . The type of primitive terms is
declared by DARC statements such as
"set(person)", "rel (uncle)".

Terms of like type may be combined by
Boolean operations, and terms of different
or like types may be combined by means of
operations including those defined below .
We give the definitions in PC with the
understanding that the ARC relation term
"R" denotes the set of pairs (y,x) which
make the corresponding PC term "R(y,x)"
true, and similar ly for ARC set terms.

Compositi<rn: for · relation.s R, S,
define the relation (R of S) by

(R of S)(y,x) iff 3z R(y,z) and
S(z,x)

Image: for a relation Rand a set A,
definethii set (R of A) by

(R of A)(y) iff _lx R(y,x) and A(x)

Product: for sets A, 13, define thP.
relation (B-x A) by

(Bx A)(y,x) iff B(y) and A(x)

Inversion: for a relation R, define
the relati~fnv(R) by

The inference rules for ARC include
Boolean inference rules and other rules
and axioms for the additional operations,
including the following, where Xis either
a set or relation term:

from X C y i.n fer (R of X) C (R of Y)

from RC S in fer (R of X) C: (S of X)

associativity of "of": R of (S of X) = (R
of S) of X

The operations and inference rules
given above are sufficient for the
examples which follow, but do not
constitute a complete description of ARC.

Example:

The following example illustrates the
non-Boolean inference rules of ARC . No
attempt is made to indicate how the proof
would be discovered by the theorem prover,
we simply exhibit it. Please note that
the "of" operator conceals existentiql
quantification and that despite the
algebraic appearance of the proof, it is
not simply propositional logic. We urge
the reader not to dismiss this example as
trivial without first examining in detail
what is involved in the proof in PC.

Axioms:

LESK: the paternalgrandfathcr of X = the
father of the father of X
ARC: pg : f of f
PC: 'v'y,x pg(y,x) iff .]z f(y,z) c1nct
f(z' l()

LESK: the age of the father of X > the
age of X
ARC: a of f C. gt of a
PC: vly,x if Jz a(y, z) and f(z,x)
then 3w y > w and a(w,x)

LESK: if Y > Zand Z > X then Y > X
inv(R)(x,y) iff R(y,x) ARC: gt of gt c gt

In addition there are certain set and
relation terms with fixed meanings such as
the set "universe" of which all sets are
assumed to be subsets, the empty set
"null" the identity relation "id" (id(y,
x) iffy= x), greater than "gt" (gt(y,x)
iffy> xl, and so on. ARC has built - in
axioms and/or inference rules for these
special terms.

Statements in ARC are equ~tions or
set inclusion~ between ARC terms of like
type.

297

PC: Vy ,x if 3z y > z and z > x then y > x

(note : the PC given is the liter~l
of the ARC, rather th~n the translation

(logically
LESK.)

equi valent) form st~ted in

Proposition:

LESK: the
of X > the
ARC: a of
PC: v'y,x
then 3w y

age of the pater·nalgrandfath~r
age of X
pg c. gt of a
if Jz a (y,z) and pg(z,x)
>wand a(w,x)

· '

Proof:

a of pg= a of (f off)
(substitution using first axiom)

(a off) off c (gt of a) off
((s~cond axiom) off)

gt of (a of f) c gt of (gt of a)

(gt of (second axiom)

(gt of gt) of a c gt of a
((third axiom) of a)

The result now follows by associativity of
"of" and Boolean inferences.

It appears that a large number of the
questions one would ask of a LESK system
involve deductions not much more
complicated than this, using (except for
Boolean inferences) only the inference
rules given above. lt is for this type of
deduction that we suggest ARr. is
especially well suited.

We have the following design goals
for LESK as a language:

1. It emphasizes the linguistic aspect of
knowledge acquistion. Since the knowledge
we are concerned with is virtually all
qualitative, it is normally expressed
mainly in NL, using terminology which is
often not well controlled. LESK enforces
a standardized use of terminology upon the
user, as a first step in removing semantic
errors.

2. It provides statement forms which are
unambiguous, and which assist the user in
formulating gk in desirable ways, in
particular, in conceptual hierarchies.
The semantics of these forms should be
readily explainable in ARC, or if
necessary, PC.

4. Knowledge expressed in LESK should be
understandable to anyone capable of
learning a programming language such as
PASCAL, and someone with a modest
mathematical training and ability should
be able to write LESK statements.

LESK requires the user to make
declarations of the essential terminology
(principally nouns, adjectives and various
verb forms) in a restricted subject in a
ling~istically natural yet logically
precise manner. By "declaring"
terminology we mean a formal process of
introducing words in restricted contexts,
so that their syntactic and semantic

298

properties are unambiguous. A LE SK system
would aid the user in making consistent
use of th.is terminology, much .1s a
compiler for a programming language does.
With such a system, the process of
developing a kbs in this manner would
involve a three party communication
between user (originating the concepts),
other persons trying to understand the
concepts in order to implement the kbs for
the user (e.g. a database designer), and
the LESK system as an "intelligent"
assistant.

4 . An Example: The Use of LESK to
Capture Database ~oncepts

The design of database systems (dbs)
usually presumes a previous step in whi c h
terminology and logical relations have
been clarified. It is felt that thi~
vital first step is often not given
sufficient attention, resulting in a dbs
which contains errors due to semantic
confusion between user and designer. LF.SK
can serve an important role in dbs desi~n
hy reducing the possibi.li.ty ,,f such
errors.

Having noted this potenti~l,
Statistics Canada invited us to attempt to
apply LESK to clarifying the c oncept,ial
structure of their census database.
Although this structure has evolved over
many years, ::ind is not about to be
drastically redesigned, this application
provided a real anrl challenRinR example nf
gk requiring formal explication.
Previously, the gk associated with the
census was to be found in a variety of
forms: narrative in various internal
documents, some containing glossaries; in
(very limited) formalized rule systems
used to drive certain software packaRes;
in "data definition" statements; in code
alone, or even only in people's heads.
Our goal was to aggregate, ~ondense and
make precise in a uniform manner a
representative sample of this gk; the
appendix displays a fragment of thi~
sample.

The gk of which the appendix is
representative was obtained during ten to
fifteen hours of dialogue betwe en Skuce
and senior personnel of Statistics
Canada's System Development Divisi0n.
During this time each was t e achinR t~e
other a set of new concepts, using LES~ to
aid the transfer of census concepts to
Skuce. A frequent difficulty was thnt the
logical and lexical precision demanded by
LESK caused indecision as to which of
several alternatives to choose. Since

sometimes there was no clear authoritative
source to resolve these questions,
opinions were sought, or a solution was
improvised. Thus the process was both one
of knowledge acquisition and formulation.
It is highly likely that virtually any
organization would exhibit similar
problems.

We will now discuss the major aspects
of LESK illustrated in the appendix.
Terminology is introduced either in series
of statements termed declarations (ending
with a period) or in assertions~ich are
single statements. The termfnology here
involves either nouns, adjectives, or
simple stative sentences denoting binary
relations by phrases such as "is related
to" or "is an ancestor of". Such terms
are declare<i tobe in "is a" hierarchies
whenever possible. The primitive "kinds",
denoting class partition, statements of
the form "x is a y", or the prefixing of
an a<ijective to a NP y all result in
subclasses of y. Unless preceded by "iff"
or "consists of" (used in a noun
declaration to be considered as a record),
statements in declarations are necessary
conditions. The abbreviation"-" denotes
the definiendum. Syntactic details like
singular and plural forms are declared
elsewhere.

Thus we first intro<iuce (i.e.
declare) the noun person; we see that
persons are partitioned three ways, first,
into the subclasses livingpersons and
deadpersons. The resulting ARC statements
are:

1 iv ingpersons u dead persons = per sons
livingpersons r. deadpersons = null

The second partition specifies a
partitioning function, age, hence we have:

adults = inv(age) of ge of 17
ri persons

children = inv(age) of lt of 17
/"\ persons

adults n children = null
age of (inv(age) n (persons x numbers))

C id
id n (persons • persons) c inv(age) of
age

Note that:
a .) a relation Risa fu r] tion iff (R of
inv(R)) c. id and id c (inv(R) of R); the
last two axioms thus state th~t age
restricted to persons is a function;
b.) the disjointness of adults and
children is made explicit even though lt
is already implied by properties of age
and 1 t, ge.

299

The partition of person~ by sex is
similar.

We next decide to add some
constraints to the functions age and sex.

age of persons c lt of 11 S
sex of persons = male u female
male n female = null

Here male and female denote atomic
sex values;-i,ot the sets of all males and
of all females. This is indicated in DARC
by atom(male) and atom(female).

The functions
are introduced
statements are
functionality as
uniqueness, i.e.
(possibly partial)

dwelling and parents
n~--the on~RC

those expressing
before. The denotes
it ls used with

function names .

In the next condition statement, the
change of quantifier signals that siblin~s
and children are relations. The fact that
children is also a set name causes no
difficufty. The persons declaration ends
with a period.

One may make other statements about
persons; however, only the declaration
itself is to be output in response to the
question: "what is a person?" Of course a
declaration may be changed and recompiled.

The couple declaration illustrates
the inclusion of "records" in LESK,
signaled by "consists of". An ARC
statement results which says that a couple
is uniquely specified by its two
"components", malepartner and
femalepartner. We ha~-----

inv(malepartner) of malepartner
n inv(femalepartner) of femalepartner
c id n (couples .x couples)

sex of malepartner of couples . = male
sex of femalepartner of couples = female

Sometimes a term can be declared witb
a single statement, termed an "assertion".
Thus the function father is given by:

father = malepartner of parents

Similarly, the relation sibling~ is
given by:

siblings = children of father
n children of mother n not id

We finally exhibit several relation
declarations, each denoted by a simple
English phrase: is related to, is an
ancestor of, and i~married to:~

relatedto = ancestors u inv(ancestors)

U inv(ancestors) of ancestors
ancestors = father v mother

v ancestors of ancestors
marriedto = inv(marriedto)
marriedto = legalspouse
(maleperson x femaleperson) f'I marriedto

c malepartner of inv(femalepartner)

The phrase the legal spouse of
signals that legalspo~is a partial
function on the set of adults. We recall
t hat R is a pa rtial function iff (R of
inv (R)) c id, hence the ARC statement is:

legalspouse of (inv(legalspouse)
"(adults .. adults)) c.;. id

5. Implementation of~ LF.SK System

A compiler is partially written which
will translate the LESK statement types in
the appendix into ARC and/or DARC. We
have also developed a theorem prover for
ARC which operates subject to specified
time and depth limits. These programs are
written in DECsystem - 10 PROLOG (Pereira,
Pereira and Warren, 78), a particularly
suitable and enjoyable language. Each
program runs in 20K. At present, the
theorem prover reads the output of the
compiler into its associative database and
then can accept questions interactively.
An important step will be to couple the
compiler with the theorem prover so that
semantic errors can be deleted. (These
are typically set expressions which turn
out to be null, or relation arguments not
contained in the sets previously declared
to be the source or target of the
relation .)

Some additional extensions are:

1. Augmenting the theorem prover so that
it uses a "modal" strategy: for all
questions q, it first would attempt to
prove "q is true" in less than n seconds
(e.g . ., = 10), failing which, "q is
false" in n seconds, failing which it
would r eply "don't know". We have not yet
developed the details of this technique,
but believe it to be essential.

2. Adding the special-purpose procedures
needed to answer the many question types
which are not ARC theorems, e.g. "what is

300

the declaration
the relation
couples?".

of person?" or "what is
between persons and

3. Adding an ARC-to-LESK translator for
English-like output. This would also
allow the variety of synonymous LESK input
forms to be reduced to a "canonical" form.

4. Coupling the system to an existing
relational database system. (The reasons
for wanting to do this are discussed in
the articles by Minker (78), Chang (7q)
and Kellog, Klahr and Travis (78).)

Ii. Related Research

The resear ch described here can be
considered as a practical application of a
number of developments in AI r esearch;
for example, it has drc1wn ide;-is from
hierarchical knowledge representation
systems (e.g. KRL, Bobrow and Winogra<l,
77); FRL, Roberts and Goldstein, 77);
from non-resolution-based de<luction
systems (Bledsoe, 77) and certainly from
PROLOG itself (Kowalski 74; Deliyanni and
Kowalski, 79). ARC may be viewed as a
synthesis of predicate c;:ilculus and
semantic network representations; such ;:i
synthesis has been proposed by Schubert
(7h) and Hendrix (75), among others. It
is also related to a number of more
general attempts to express NL in
predicate c;:ilculus (e.g. Evens and Smith,
78).

This work may also be considered as a
confluence of artificial intelligence and
database research (Wong and Mylopoulos,
77) although we see it in a much broader
perspective. A majority of the directly
relevant research in this area is reported
in a single volume: Gallaire and Minker,
1978. There, for example, Reiter
discusses the logicc1l problems of coupling
a generic knowledge base to an
(instantial) database. Several existing
systems couple a theorem prover to a
relational database: Minker; Chang;
Kellog, Klahr and Travis (all ibid).
These systems typically emphasize the
design of a query lanRuage more
human-engineered than PC, without
considering the same problem in the
initial step of a database system: the
linguistic and logical specification of
the conceptual structure of the database.
LF.SK and ARC are addressed to this more
fundamental problem, and yield as a
byproduct, a useful query language as
well.

If one consults the database
literature per se (typified by the ACM
Transactions on Database Systems; the
International Conferences on Very Large
Data Bases; the Proceedings of the SIGMOD
Conferences, or Nijssen (76, 77)) little
concern is expressed as yet for
1. user -engineered conceptual
specification languages (like LESK);
2. coupling extensional databases (e.g.
a typical relational database) to
(intensional) gkbs;
3, providing practical yet precise
semantic specifications.
The common assumption is that to design a
database, the problem reduces to
specifying a "3-level schema", as in the
ANSI/SPARC approach (ANSI/X1/SPARC, 75);
we believe there exists a prior step of
"conceptual acquisition". Some
researchers who share this view are:
Bubenko (79), Kent(78), Nijssen (7h, 77),
Sundgren (79) .

A related project which should be
compared to LESK is TAXIS (Mylopoulos,
Bernstein and Wong, 79). TAXIS is an
"At-inspired" language intended for
database systems implementors, and as such
is not suitable for use by non-computer
professionals. The combination of LESK
and TAXI~ however is potentially a
double-edged tool for implementing systems
correctly. Given a conceptual design
specified in LESK, a systems designer
using TAXIS (possibly with some automatic
translation) would have an easier task.

The AI literature, as
IJCAJ79, has just begun
attention to some of the
consider. (Dahl, Furukawa,
Lasserre, J anas, all ibid.)

7. Conclusions

evidenced by
to reflect

problems we
Gallaire and

1. A language such as LESK which combines
ease of use with logical precision is a
neces sit y in generic knowledge
acquisition, hence the design of such a
language is a subject of much current
research. There are several dimensions
along whi ch to rank the design:
formality; if it is too mathematical, too
1'ewr,eople will be able to use it, whereas
if it is too much like NL, its semantics
will become unclear to the user ; level:
too high a level means not enough cfetafl
is specifiable; on the other hand most
current system design languages are mainly
concerned with specifying conceptually
irrelevant detail; generality: is it
better to be applicable to many tasks but
to be replaced in some of these by more

301

particularized languages, or to be very
good at doing just one job? The design of
LESK attempts to fill what is seen as a
considerable hole in this "langua ge
space". It has been used in a variety of
other applicattons (Skuce, 75-7Q) and yet
has served a purpose in a typical database
application. We envision dialects of LESK
for various applications, and intend to
experiment with some such as basic gk
acquisition in scientific subjects for
computer -a ided learning, and (overdue)
clarification of the concepts involved in
a university's academic regulations.

2. As a formalism for knowledge
representation in a deductive system, ARC
has many potential applications in AI
apart from its use as an "deep structure"
for LESK. We will investigate the
connection between ARC and other knowledge
representation systems in a forthcoming
paper .

3, The database literature has not
reported sufficent attention to the
concept acquisition phase (which precedes
all others) of database design. Though
there has been much work on
user-engineered query lanaguages, and
system design languages which assume the
concepts have already been made clear to
the implementors, this latter aspect has
not seen a user-engineered tool adequate
developed. LESK serves, amongst other
uses, to bridge the communication gap
between user and implementor which until
now has relied excessively upon natural
language, with its inherent uncertainties.

References

Abrial, J. (74) o~ta semantics. in:
Klimbie, K. :1nd Koffeman, l(. (eds) D'.lt:1
Base Management , ijorth-Holland, Amsterdam.
AH3I/X3/SPARC : (75) Interim report, Study
Group on Data Base Management Systems, FDT
Bulletin of ACM, v. 7, no . 2, 197'i.
Bledsoe, W. (77) Non-resolution theorem
proving. AI Journal, v. 9, pp. 1-~5.
Bobrow, D. and Wino~rad, T. (77). fin
overview of KRL-(), a knowlerl~e
representation language. Cognitive
Science, v. 1, no. 1.
Bubenko .ir., ,J. (79) On the role of
•understanding models' in conceptual
schema design. (to appear)
Chang, C. (7fl) DEDlJCE2: Further
investigations on deduction in relational
database systems. in: Gallaire and
Mink er (78).
Dahl, V. (79) Quantification in a

three-valued logic for natural language
question answering. in: tJCAI79.
Deliyanni, A. and Kowalski, R. (79)
Logic and Semantic Networks. CACM, v.
22, no . 3, pp. 184 - 192.
Evens, M. and Smith, R. (78) A lexicon
for a computer question-answerin~ system.
Amer. J. Comp. Ling., microfiche q3.
Furukawa, K. (79) Relational strategies
for processing universally quantified
queries to large data bases. in:
IJCAI79.
Gallaire, H. and Lasserre, C. (79)
Controlling knowledge deduction in a
declarative approach. in: IJCAT79.
Gallaire, H. and Minker, J. (eds) (7 q)
Logic and Databases. Plenum Press, New
York.
Hammer, M. and McLeod,
semantic data model:
mechanism for database
Proc. 1978 StGMOD Con f.

D. (7/l) The
a modelling
appl icatlons.

IJCAI79 (79) Proc. of the Six th
International Joint Conference on
Artificial Intelligence, Tokyo.
Hendrix, G. (75) Extending the utility of
semantic networks through partitioning.
Proc. TJCAI75.
Janas, J. (79) How to not say "nil"
improving answers to failing queries in
data base systems. in: T,JCAT79.
Kellogg, C., Klahr, P. and Travis, L.
(7/l) Deductive planning and pathfinding
for relational data bases. in: Gallaire
and Minker (n).
Kent, W. (78) Data
North-Holland, Amsterdam.

::ind Reality.

Kowalski, R. (74) Predicate calculus as a
programming language. IFTP Proceedings,
pp. pp, 569-574.
Minker, J. (78) Search strategies and
selection functions for an inferentia l
relational system. ACM Trans. on
Database Systems, v. 3, no. <.
Mylopoulos, J., Bernstein, P. and ~ong,
H. (79) A language facility for desi~ning
interactive database-intensive
applications. Technical Report CS RG -105,
Computer Systems Research Group,
University of Toronto.
Nijssen, G. (ed) (76) Model.ling in dat<1
base management systems. Proc. of the
IFTP TC-< Working Conference. North
Holland, Amsterdam.
Nijssen, G. (ed) (77) Architecture and
models in data base management systems.
North Holland , Amsterdam.
Pereira, L., Pereira, F. and Warren, D.
(78) User's guide to DECsystem-in PROL0G,
University of Edinburgh, Oept. of
Artificial Intelligence.
Reiter, R. (78) On closed world
databases. in: Gallaire and Minker (7~) .
Reiter, R. (78) Deductive question
answeri ng on relational databases. ibid.
Roberts, R. and Goldstein, I. (77) ThP.

302

FRL Primer. MIT AI Lab report 408.
Schubert, L. (76) On the expressive
adequacy of semantic networks. Artificial
Intelligence 7, pp. 163-19~.
Skuce, D. (75) An English-like language
for qualitative scientific knowledge.
Proc. of the Fourth T.nternational
Conference on Artificial Intelligence,
Tbilisi, pp. 593-600.
Skuce, D. (77) Toward communicating
qualitative scientific knowledge between
scientists and machines . Ph.D.
dissertation, Dept. of Electrical
Engineering, McGill Univ ersity.
Skuce, D. (7 8) Describing programmin~
language concepts in LESK. Proc. of the
Second National Conference of the CS~SI,
Toronto, pp. :?88-295. Skuce, D. (79a) I\
language for exactly stating qualitative
generic knowledge. submitted to: Journ;:il
of Computers in Biology and Medioine.
Skuce, D. (79b) An approach to definin~
and communicating the conceptual structure
of data. Tech. Report No . 79-05, Dept.
of Computer Science, Univ. of Ottawa.
Smith, J. and Smith, D. C. P. (79)
Database Abstractions: Aggregation and
Generization. Tech. Report CCA-79-12,
Computer Corporation of America.
Sundgren, B. (71-!) Data base design in
theory and practice. Proc . of the Fourth
International Confere nce on Very LarRe
Databases.
Wong, H. and Mylopoulos, .J. (77) Two
views of data semantics: a survey of data
models in Artificial Intelligence and
database management. INFOR, v. 15, no .
3.

Appendix

A fragment of the generic knowledge underlying an example database.

a person:
kinds : living-, dead-;
kinds (by age): adults (age> 17), children (age<= 17);
kinds (by sex): male - (sex = male), female - (sex = female);
the age of - < 115;
the sex of - is 1 of: male, female;
- has 1 dwelling;
- has 1 couple P called parents of -;

has O or more persons called siblings of-,
- has O or more persons called children of-.

a couple:
consists of: adult X called the malepartner of -,

adult Y called the femalepartner of
the sex of X = male;
the sex of Y = female.

the father of a person X = the malepartner of the parents of X.

a sibling of a person X = a child of the father of X and
a child of the mother of X, but not X.

a sister of a person X = a sibling of X who is a female person.

a person Xis related to a person Y iff:
Xis an ancestor of Y or
Y is an ancestor of X or
there exists a person Z such that

Z is an ancestor of X and
Z is an ancestor of Y.

a per son Xis an ancestor of a person Y iff:
Xis the father of Y or
Xis the mother of Y or
th~re exists a person Z such that

Xis an ancestor of Z, and
Z is an ancestor of Y.

an adult Xis married to an adult Y iff:
Y is married to X iff
X = the legal spouse of Y iff
Y = the legnl spous~ of X;
the sex of X; the sex of Y;
if Xis a mal e person and

Y is a female person
then

th Lr e exists a couple C such that
Xis the malepartner of C and
Y is the femalepartner of C.

303

·,
I

THE REPRESENTATION OF AN EVOLVING SYSTEM
OF LEGAL CONCEPTS:

I. Logical Templates

L.T. McCarty
Faculty of Law, SUNY at Buffalo

N .s. Sridharan
Computer Science, Rutgers University

Although our earlier work on the TAXMAN
Project (McCarty, 1977) has demonstrated the basic
feasibility of applying artificial intelligence
techniques to the field of corporate tax law, the
6riginal TAXMAN system was seriously deficient as
, model of "legal reasoning". More recently
(McCarty, Sridharan and Sangster, 1979), we have
proposed an alternative model of conceptual
itructure, and an approach to the process of
conceptual change, in an attempt to remedy these
deficiencies. In the TAXMAN II system, which is
currently under development, we distinguish
between two different kinds of legal concepts.
Precise statutory rules are represented as logical
;emplates, a term intended to suggest the way in
which a "logical" pattern is "matched" to a lower
ievel factual network during the analysis of a
corporate tax case. But the more amorphous
concepts of corporate tax law, the concepts
typically constructed and reconstructed in the
process of a judicial decision, are represented by
a prototype and a sequence of deformations of the
prototype, The prototype is a relatively concrete
desorpti on selected from the lower-level factual
network itself, and the deformations are selected
from among the possible mappings of one concrete
description into another. We have suggested that
these prototype-plus-deformation structures play a
crucial role in the process of legal argll!lent, and
that they contribute a degree of stability and
flexibility to a system of legal concepts that
would not exist with the template structures alone
(see McCarty, 1980).

In this paper, we present our curent
implementation of the logical template structures
of TAXMAN II, but with an eye towards the
subsequent implementation of the prototypes and
the deformations. In order to construct a
deformation of a conceptual prototype, it seems,
we must first have availale a clear and coherent
representation of the prototype to be · deformed.
The space of possible concepts must be
syntacticaly simple but the corporate tax domain
itself is semantically rich, These are the
constraints, then, on our initial representation.
In Section I of this paper, we will describe the
ground-level representation of TAXMAN II, and in
Section II we will describe the representation of
a hierarchy of higher-level concepts. Section III
then describes the pattern-matching procedures
which operate in this conceptual hierarchy, For a

more detailed version of this paper, see McCarty
and Sridharan (1980),

I. The Basic AIMDS Representation.

We have chosen the AIMDS language (Sridharan,
1978) as the basic vehicle for the implementation
of TAXMAN II. Based on the Meta-Description
System of Srinivasan (1973, 1976), AIMDS provides
extended facilities for the representation of
states, events, actions and expectation
structures. It was developed primarily for
application to the Plan Recognition problem
(Schmidt, Sridharan and Goodson, 1978; Sridharan
and Schmidt, 1978), but we have discovered that
its features are quite general and quite easily
adaptable to the need s of the TAXMAN Project as
well. AIMDS permits the user to construct a
system of templates to describe certain named
classes of objects, and a system of rel ations to
express the allowable relationships between these
objects. The user can then generate instances of
these templates and their associated relations in
a particular context, and yet constrain this
process of instantiation by a set of consistency
conditions written out in a version of many-sorted
first-order logic. AIMDS provides a uniform
procedure for the instantiation process, called
MAKE, and a uniform procedure, called FIND, to
retrieve a set of instances from a given context
using a partial specification of the network of
adjacent relations. Thus, in the spirit of
several contemporary frame-based languages, AI~DS
resembles at its lowest level a language for
processing semantic networks, but it imposes o n
these neti«>rks a higher-level "structure", an
organization of knowledge into manageable
conceptual "chunks", by means of its interlocking
system of template definitions.

For a simple example, consider the OWNership
relation in the TAXMAN II system, We construct
the template OWN by using the template definition
function TON:

(TON: ((OWN REL)
((OWNER FN) ACTOR)
((OWNED FN) PROPERTY)))

1l1ls means that an lnstance of OWN, whlch ls :ci

template of type REL, must have an "owner" wtiich
is an instance of ACTOR, and an "owned" which is
an instance of PROPERTY. The flag FN on the
relations "owner" and "owned" indicates that a
particular instance of OWN can have at most one
ACTOR and one PROPERTY standing in these
relationships, i.e., the relations are
"functional". Suppose we also define a template
for STOCK (which is a subset of SECURITY) and a
template for SHARE (which is a subset of
PROPERTY):

(TON: ((STOCK OBJ)

304

((ISSUEDBY FN) CORPORATION
(INVERSE ISSUEROF L))

((NSHARES FN) NUMBER)
((PARVALUE FN) NUMBER)
((VOTING FN) YESNO)
((COMMON FN) YESNO

(COHPLEMENT PREFERRED FN))))

(TDN: ((SHARE OBJ)
((SHAREOF FN) SECURITY

(INVERSE SHARES L))
((FRACTION FN) NUMBER)
((QUANTITY FN) NUMBER)
((VALUE FN) NUMBER)))

Then we can
.interest"
:., Ne wJer sey"

(MAKE

write out a fragment of the "security
space for a corporation named
by means of the following code:
(STOCK (ISSUEDBY NEWJERSEY)

(NSHARES &(NUM 294271.0))
(PARVALUE &(NUM 29427100.0))
(VOTING YES)
(COMMON YES)))

(MAKE (STOCK (ISSUEDBY NEWJERSEY)
(NSHARES &(NUM 160686.0))
(PARVALUE &(NUM 16068600.0))
(NOT VOTING YES)
(PREFERRED YES)))

(MAKE (OWN (OWNER &(MAKE (PERSON PH ELLIS)))
(OWNED
&(MAKE

(SHARE
(SHAREOF
&(FIND (THE STOCK

(COMMON YES)
(ISSUEDBY
NEWJERSEY))))

(QUANTITY &(NUM 250.0)))))))

This code would first create an instance of
"NewJersey common stock" (call it STOCK- 1, say),
an instance of "NewJersey preferred stock" (call
it STOCK- 2), and an instance of PERSON named
Phellis. It i«>uld then retrieve the common stock,
STOCK-1, and create an instance of SHARE (call it
;5HARE-1) i.tiich w:>uld be asserted to be a "shareof''
STOCK- 1: (SHARE-1 SHARE- SHAREOF-SECURITY STOCK-1) .
Finally, it would create an instance of OWN (call
it OWN-1), and add to the neti«>rk the relations
(OWN- 1 OWN-OWNER-ACTOR PHELLIS) and (OWN-1 OWN
OWNED-PROPERTY SHARE- 1). It should be noted here
that this neti«>rk of relations is explicitly
created and stored only as a default mechanism in
AIMDS. If preferred, the user can write his or
her own functions to ADD a relation, to REMOVE a
relation, to CHECK the truth value of a relation,
and to FETCH all instances i.tiich satisfy a
relation in a given context.

As described so far, the AIMDS s ystem bears a
strong. resemblance to several other high- l evel
languages in the AI literature. For example, the
"templates" of AIMDS are quite similar to the
"units" of KRL (Bobrow and Winograd, 1977; see
also Martin, Friedland, King and Stefik, 1977),
and the "relations" of AIMDS correspond to the
"slots" of these other frame- based systems. Qie
important feature of AIMDS, however, which does
not appear prominently in the s~ other systems, is
the facility for the partial evaluation of a
logical expression. AIMDS provides a general
subsystem, called CHECKER, which accepts an
expression in a slightly restricted version of
first-order logic, evaluates the expression with
respect to a given network, and then returns as
its result the sub- expression and the set of

variable bindings ltlich produced the value of
true, false, or unknown, respectively. The
expression returned by CHECKER is cal led a
residue, and it plays a major role in the
operation of AIMDS. In basic AIMDS, the CHECKER
subsystem is used primarily for the evaluation of
the consistency conditions, the set of logical
expressions which are attached, or "anchored", to
the relations of a template. Consistency
conditions provide a mechanism for continually
monitoring the data base, in some cases simply
reporting back an inconsistent instantiation, and
in some cases actually updating the netw:,rk
automatically. In TAXMAN II, the consistency
conditions are used for several purpose s, but the
major use of the CHECKER subsystem there i s in the
pattern-matching procedures, which will discussed
in Section III below.

There are other ways, too, in which the
ground-level TAXMAN II system has extended basic
AD1DS, although the new features we have added are
generally well - known in the AI literature. (1.)
In addition to the separation of neti«>rks into
distinct CONTEXTS, which is a feature of AIMDS,
the TAXMAN II system provides an additional
separation of neti«>rks into distinct STATES within
each CONTEXT. The states are arranged in a
binary- branching tree, so that each assertion in
the network in a particular state is visible in
each successor state unless it has been explicitly
modified in an intervening state. We use this
facility primarily to model an historical sequence
of states and events, such as the facts of a case,
and we use the binary-branching capability to
model certain hypothetical variations of the facts
of a case. (2 .) As our earlier illustration
suggests, the AIMDS templates have been organized
lnto several hierarchies of · classes and subclasses
in the TAXMAN II system. For example: an ACTOR
can be a PERSON or a CORPORATION; a PROPERTY can
be a PHYSOBJ or a CASH or a SHARE; a SECURITY can
be a STOCK or a BOND. We call these hierarchies
view hierarchies, because at the level of the
instantiated neti«>rks they express the various
ways of "viewing" a given instance (see Bobrow and
Winograd, 1977) . Whenever a relatively
"specialized view" of an instance is created, the
TAXMAN II system automatically creates its more
"generalized views", and then propagates upwards a
designated set of relations, the so-called
"inheritable properties", using the modular
ne ti«>rk access functions. (3.) Another feature of
the TAXMAN II system is its facility for
representing meta-templates . The basic idea is to
permit each named template (which represents a
class of objects) to be itself an instance of a .
higher-order template (which represents the meta
class). We use this facility in our procedures
for matching conceptual hierarcies, as discussed
in Section III below, but we also use it in our
initial description of the corporate tax domain,
wtlere STOCK- 1 can be treated as a class of SHARE
instances, as well as an instance itself of the
higher- order meta-class SECURITY. For a similar
discussion of meta- classes, see Levesque and
t.fylopoulos (1979).

305

.I

... I

1

II. The Conceptual Hierarchies.

The major extension of AIMDS in the TAXMAN II
system is the construction of an explicit
conceptual hierarchy. Although we have seen
already how the AIMDS templates can be arranged in
a "view hierarchy", we will see in this section
how a template can be defined in terms of a
conceptual expansion in a space of descriptions,
thus adding another level of organization to the
representation. Section II-A describes the syntax
and semantics of these new descriptions, and
Section II-B shows how they can be arranged in a
full abstraction/expansion hierarchy.

A, Descriptions: DDNs and PDNs

Let us first examine the TAXMAN II
descriptions, or, as they will frequently be
called, the DDNs. A description has the form:
([CONTEXT cxtvar] [STATE stvar] <template-list>
<constraint-list> <bindings-list>), where

<template-list>
, .- ((tname tvar (rname svar) ..) ..)

and tvar <variable-name>
svar •• - <variable-name>

or (tname <variable-name>)

<constraint-list>
.• - (,, <any-logical-expression>

,, <any-arithmetical-constraint> ••)

<bindings-list> ::= <any-AIMDS-bindings-list>

ln this expression, cxtvar and stvar are "context
variables" and "statevariables," respectively,
and they are optional, as indicated by the square
brackets. Similarly, tvar is a "template
variable" and svar is a-;;lation variable" or
"slot variable~Notice that each item in the
<template-list> resembles the input to a MAKE or a
FIND, as described in Section I, except that the
names of specific instances have been replaced by
the names of variables, Also, the unlimited
embedding of descriptions i.tlich is permitted in
the · MAKE/FIND syntax is disallowed in the DON,
The "slot variables" here can be constrained, at
most, by an expression of the form (tname
<variable-name>), where "tname" would generally be
a template somewhat further down in the VIEW
hierarchy, As an alternative, however, the
variables in a DON can be constrained by the
overall structure of the <template-list> itself,
and, most significantly, by the <constraint-list>.
It turns out that this "flat" description syntax
has certain advantages for the specification of a
hierarchical matching procedure, as we will
indicate later.

Here are some examples, Consider first the
"securityholding" description, which we might
write out in F.nglish as "the C1"1Nership by an ACTOR
of a SHARE of a SECURITY which is issued by a
CORPORATION":

(DON: (((OWN 01 (OWNER Al) (OWNED (SHARE Pl)))
(SECURITY Sl (SHARES P1) (ISSUEDBY Cl)))

NIL
NIL))

In this example, the relation "shares" is the
inverse of the rel at ion "shareof", and we know
that Al must be an ACTOR and C1 a CORPORATION
because of the original definitions of the
templates C1"1N and SECURITY, respectively. Note
also that we have used the embedded template
(SHARE Pl) here to indicate that the PROPERTY ls
restricted to the template SHARE. The
<constraint-list> and the <bindings-list> are both
NIL in this first example, but consider now how we
can specialize the "securityholding" description
to represent what might be called "NewJersy
voting- common-stockholding":

(DON: (((OWN 01 (OWNER Al) (OWNED (SHARE Pl)))
(STOCK S1 (SHARES Pl) (ISSUEDBY Cl)))

((Sl STOCK-COMMON-YESNO YES)
(Sl STOCK- VOTING-YESNO YES))

((Cl (NEWJERSEY)))))

In this example, the SECURITY template has been
specialized to the STOCK template, the STOCK
template has been further constrained by the
"voting" and "common" relations, and the
CORPORATION, Cl, has been bound to the instance
NEW JERSEY.

In addition to the use of descriptions, or
DDNs, in the TAXMAN II system, we will make
frequent use of productions, or PDNs. The PDN has
a structure very similar to that of the DDN,
except that it contains two <template-lists>
instead of one, each of which can be localized to
a particular STATE:

<template-list-1>
·: := ([STATE stvar]

(tname tvar (rname svar) , , ,) , , .)

<template-list-2>
::= ([STATE stvar]

(tname tvar (rname svar) ...) ...)
As the syntax suggests, these PDNs would typically
be used to represent a transformation from one
state description to another. For example, the
transfer of CYwNership from one ACTOR to another
ACTOR could be represented as follows:

(PDN: ((STATE Tl (OWN 01 (OWNER All (OWNED P1l))
(STATE T2 (OWN 01 (OWNER A2) (OWNED Pl)))
NIL
NIL))

For another example, consider the splitting of a
SHARE of STOCK into two equivalent SHAREs (and see
McCarty, 1977, for a discussion of the need for a
device of this sort):

306

(PON: ((STATE Tl
(OWN 01 (OWNER All (OWNED P1))
(SHARE P 1 (SHAREOF S 1)

(QUANTITY NTOTAL)))
(STATE T2

(OWN O 1 (OWNER A 1) (OWNED P 1))

(SHARE Pl (SHAREOF S1)
(QUANTITY N1))

(OWN 02 (OWNER Al) (OWNED P2))
(SHARE P2 (SHAREOF S1)

(QUANTITY N2)))
((EQUAL NTOTAL (1PLUS N1 N2)))
NIL))

The <constraint-list> in this PDN provides our
first example of an "arithmetical constraint": it
says that the total quantity of SHARES owned by Al
must be the same both before and after the split .
In our current implementation, the arithmetical
constraints are limited to expressions of equality
between one variable and an arithmetical LISP
·function of other variables, as in this example,
but we are planning to generalize this syntax in
the near future.

B. Abstraction/Expansion Hierarchies

Now that we have defined the DDNs and the
PDNs of the TAXMAN II system, we are ready to link
these expressions up to the TDNs of the basic
AIMDS representation, in order to construct a full
abstraction/ expansion hierarchy . For example,
consider the DDN which represented the
"securityholding" pattern in our original
illustration. Suppose we now wanted to define a
template of type REL named SECURITYHOLDING, which
would represent the relationship between the
"security-holder" and the "security- issuer" for
any possible SECURITY. We would write:

(TDN:
((SECURITYIIOLDING REL.)

((HOLDER L) ACTOR (REF: Al))
((ISSUER FN) CORPORATION (REF: Cl))
((STRUCTURE FN)

&(MAKE
(DESCRIPTION

(DLIST
&(DON : (((OWN 01 (OWNER Al)

(OWNED (SHARE Pl)))
(SECURITY S1 (SHARES P1)

(ISSUEDBY Cl)))
NIL
NIL))))))))

Ignoring for the moment the details of this code,
let us simply observe that the slots of the TDN
have been assigned variable names which correspond
to the variable names of the DON. We refer to the
DDN here as the expansion of the SECURITYHOLDING
template, and conversely we refer to the
SECURITYHOLDING template as the abstraction of the
DDN expressing the OWNership of a SECURITY issued
by a CORPORATION , Notice that the
"securityholding" DDN cont .., ins se veral · free
variables, 01, Al, Pl, S1 and Cl, but .the
SECURITYHOLDING template contains only the
variables Al and Cl in the slots for the "holder"
and the "issuer", respectively. This is generally
the way abstractions 1«>rk: an abstraction d eletes
information which is explicitly repr e sented in the
e xpansion, but it also partially encodes the

missing information in the name of the abstraction
template itself.

A good example of the power of this kind of
structural expansion is the concept of a "B
Reorganization", which was discussed extensively
in McCarty (1977). By statute, a B- Reorganization
is defined as "the acquisition by one corporation,
in exchange solely for all or part of its voting
stock of stock of another corporation if,
immediately after the acquisition, the acquiring
corporation has control of such other corporation

11 United States Internal Revenue Code,
368(a)(1)(B) . In the TAXMAN II system, we
represent the basic structure of this concept as
follows:

(TDN:
((BREORGANIZATION ACT)

((ACQUIRINGCORP FN) CORPORATION (REF: Cl))
((ACQUIREDCORP FN) CORPORATION (REF: C2))
((TIME1 FN) TIME (REF: Tl))
((TIME2 FN) TIME (REF: T2))
((STRUCTURE FN)
&(HAKE

(DESCRIPTION
(DLIST
&(DON: (((ACQUISITION ACQ

(ACQUIRER Cl)
(ACQUIREDPROP AP)
(TRANSPROP TP)
(TIME1 Tl)
(TIME2 T2))

(CONTROL CON
(CONTROLLER C1)
(CONTROLLED C 2)
(TIME T2)))

((AP SHARE-SHAREOF-SECUR IT'l S 1)
(S1 SECURITY-STOCKV- STOCK S1)
(S1 SECURITY- ISSUEDBY-CORPORATION

C2)
(TP SHARE-SHAREOF-SECURITY S2)
(S2 (SECURITY-STOCKY-STOCK

STOCK-VOTING-YESNO)
YES)

(S2 SECURITY-ISSUEDBY- CORPORATION
C1))

NIL))))))))

The DON in this example describes an ACQUISITION
by a CORPORATION of CONTROL of another
CORPORATION, where the "acquired- property" is
related to the "acquired-corporation" in a certain
way, and the "transferred- property" is related to
the "acquiring- corporation" in a certain way.
However, neither ACQUISITION nor CONTROL is a
primitive template. Each has a further structural
expansion: ACQUISITION expands into a sequence of
EXCHANGEs, with constraints, and EXCHANGE expands
into a sequence of pairs of TRANSs, with
constraints; CONTROL expands into the OWNership o f
a certain percentage of the STOCK of the
controlled CORPORATION.

Given this example, the purpose of
classifying the DON variables into thr ee groups
should be apparent . The "templ a te vari ables"
correspond to those templates in the <template-

307

.. .

. I

list> which are potentially subject to further
expansion: they act in some ways as if they were
existentially quantified, although they often
receive multiple instantiations in the net1«>rk, in
which case each instance is analyzed separately in
the remainder of the DON, as if the variable had
~een universally quantified, 'nle "slot ·variables"
are the variables which can be passed down (or up)
with the template variables to (or from) a lower
level of the expansion: they are treated as if
they were universally quantified. 'nle remaining
variables in the <constraint-list> are local to
the DON and purely existential, and they are .
inaccessible from the lower levels. 'nle basic
idea, then, is to restrict severely the channels
of communication between the TDNs and the DDNs at
different levels of expansion, forcing all
information to be carried by the bindings of t he
slot variables. We conjecture that this is a
natural constraint to impose upon a system of
conceptual structures, and it has the added virtue
of encoding some important control information
into the basic semantic representation.

Let us now see how the PON expressions can be
incorporated into an abstraction/expansion
hierarchy in much the same way as the DDN
expressions. First, the PDN representing the
transfer of OwNership (see Section II-A above)
could be used for the expansion of a template
called DELTAOWN, as follows:

(TDN:
((DELTAOWN STCH)

((OBJECT FN) PROPERTY (REF: P1))
((OLDOWNER FN) ACTOR (REF: A1))
((NEWOWNER FN) ACTOR (REF: A2))
((TIME1 FN) TIME (REF: T1))
((TIME2 FN) TIME (REF: T2))
((PROCEDURE FN)

&(MAKE (DESCRIPTION
(PLIST &(PON: ((STATE T1

(OWN 01
(OWNER A 1)
(OWNED P1)))

(STATE T2
(OWN 01

(OWNER A2)
(OWNED P 1)))

NIL
NIL))))))))

The expansion here is called a procedural
expansion, since the PDN can actually be used as a
"procedure" for transforming a net1«>rk from state
Tl to state T2. A template with a procedural
expansion can then be conjoined with other
templates inside a DDN expression to produce a
more complex "procedure", For example, DELTAO,,/N
could be conjoined with SPLITPROP and JOINPROP to
produce the procedural expansion of TRANS, at
least for those cases in which the PROPERTY
transferred is "divisible":

(TDN:
((TRANS ACT)

((AGENT FN) ACTOR (REF: AO))
((OBJECT FN) PROPERTY (REF: P1))
((OLDOWNER FN) ACTOR (REF: A1))

((NEWC1tlNER FN) ACTOR (REF: A2))
((TIME1 FN) TIME (REF: T1))
((TIME2 FN) TIME (REF: T2))
((PROCEDURE FN)

&(MAKE
(DESCRIPTION

(DLIST
&(DON: (((SPLITPROP SP1

(OLDOWNER A1)
(OLDPROPERTY OP1)
(NEWPROPERTY P1)
(TIME T1))

(DELTAOWN DEL1
(OBJECT P1)
(OLDOWNER A1)
(NEWC1tlNER A2)
(TIME1 T 1)
(TIME2 T2))

(JOINPROP JP1
(NEWOwNER A2)
(OLDPROPERTY OP2)
(NEWPROPERTY P1)
(TIME T2)))

((Pl PROPERTY-DIVISIBLE-YESNO YES)
(T1 TIME-PRECEDES-TIME T2))

NIL))))))))

The basic rule here is that any DDN expression
appearing in a procedural expansion must
eventually expand down to one or more PON
expressions, so that the procedural expansion can
actually be carried out. But the exact ordering
of the procedures would normally be specified only
by the <constraint-list>, as in this example: (Tl
TIME-PRECEDES-TIME T2). Thus many of the planning
techniques of Sacerdoti (1977), which involve the
progressive tightening of the partial-order
constraints, could be accommodated within the
TAXMAN II formalism.

III. The Pattern-Matching Procedures,

Although the preceding discussion has
suggested some of the semantic properties of the
abstraction/expansion hierarchies, the full
"meaning" of these expressions depends on the way
they behave with respect to our pattern matching
procedures, Basically, the DDNs and PDNs are
abstract patterns which can be matched to any
number of concrete net1«>rks, but when they have
been arranged into abstraction/expansion
hierarchies the pattern matching procedures must
operate across multiple levels.

Let us first consider the matching of a
single DON expression, without any possibility of
a further expansion of the <template-list>. The
function to call in the TAXMAN II system is
(RMATCH <Dname> <Bindings>), which takes as its
arguments the name of a DON expression and an
initial AIMDS bindings list. A single-level
RMATCH is basically a call to the CHECKER
subsystem of AIMDS: the templates i n the
<template-list> are converted into a conjunction
of network relations and combined with the
expressions in the <constraint-list> to form the

308

,logical expression which we wish to have
evaluated. The result, as described in Section I,
is a residue expression telling us whether the
match is true, ·false, or unknown, and why. If the
result is unknown, for example, the residue sub
:expression and the unknown bindings list will tell
µs which part of the DDN expression was
responsible for the unknown match, 11n important
piece of information to have available. Sometimes
the unknown residue can simply be asserted true,
as it is in the GMAKE functions of TAXMAN II.
GMAKE also takes the name of a DDN expression and
an initial bindings list as argunents, and it also
calls CHECKER for an initial match result, but it
then asserts into the netw:>rk all the relations
which were unknown but uniquely bound in the
initial match. RMATCH and GMAKE are thus
complementary operations: RMATCH, somewhat like
the FIND procedure of the basic AIMDS system,
takes a network as given and attempts to construct
a set of variable bindings W'lich produce a
successful match of the DDN expression; GMAKE,
like MAKE, takes the variable bindings as given
and attempts to construct a set of assertions
within the existing net1«>rk which satisfy the DDN
expression. But it is interesting to note that
both functions do their work by manipulating
residues, and their control structures are
;Jimilar.

For the PDN expressions of TAXMAN II, the
expressions with two <template-lists>, we use an
RMAP function which combines the features of both
RMATCH and GMAKE. Suppose we are using the PDNs
to express a change of state, such as the
"transfer of OWNership" or the "split ting of
SHAREs" illustrated in Section II-A above. To
carry out this change of state, we would basically
do an RMATCH of <template-list-1> and then a GMAKE
of <template-list-2>, thus transforming the
network from a successful match with the fir st
state description to a successful match with the
second state description. Again, the necessary
operations can be performed by the manipulation of
residues, and this adds considerably to the
clarity and uniformity of the implementation.

Let us now investigate how the RMATCH
procedure would operate if given a full
abstraction/expansion hierarchy, such as the
definition of a BREORGANIZATION in Section II - B
above. The first step is to try a single-level
match of the DDN expression, using RMATCHDDN. If
this match succeeds, i.e., if it returns a true
residue for every template in the <template-list>
subject to the constraints of the <constraint
list>, then the RMATCH procedure terminates with a
successful result. If the initial match is false
or unknown, however, RMATCHDDN cycles through each
template in the <template-list> in an attempt to
match the lower-level expansi0ns. Specifically,
RMATCHDDN passes down the top- level bindings for
each "slot variable" in each template in the
<template-list> to a function called RMATCHTDN,
which is then responsible for establishing a
successful match of the template expansion, if
this is at all possible. After an initial
analysis of the form of the expansion (is it

"structural" or "procedural"?), m1ATCHTDN passes
· the variable bindings down one level further with
a second call to RMATCHDDN, and this process
continues recursively until the match either
oucceeds completely, or else terminates from a
lack of further expansions. The residue
expressions returned from the bottom of the
expansion would then be analyzed and combined
until the result of the top level by level match
could finally be assembled. Al though the rules
for combining lower-level residues into upper
level match results are complex, the idea is
simple: each template in the <template-list> could
either be explicitly matched to the network, or
implicitly matched by virtue of its lower-level
expansions, and the explicit and implicit
instances must all be combined according to their
truth values, with true residues preferred to
unknown residues, and unknown residues preferred
to false residues.

In an earlier version of the TAXMAN II
system, we attempted to collect all of the
combined residue expressions at the top level of
the RMATCH, but this approach would be unworkable
for a large hierarchy. Our current version stores
the residue expressions locally at each TDN and at
each DDN of the expansion, and returns to the top
level a meta-residue which traces out the path of
the RMATCH functions as they proceed recursively
down and back through the hierarchy. This
approach turns out to be useful, also, for the
coordination of several more diverse styles of
hierarchical pattern matching. To understand 'it,
we need to understand the notion of a meta-domain
for an abstraction/expansion hierarchy. l.ook
again at our code for the SECURITYHOLDING template
in Section II-B above. Although it appears here
that the DDN has simply been attached to the
STRUCTURE slot of the TDN, we actually represent
this abstraction/expansion pair by a set of meta
templates and meta-relations: 3ECURITYHOLDING is
an instance of a meta-template called TEMPLATE,
which is connected by 11 "structure" relation to an
instance of a meta-template called DESCRIPTION,
which is in turn connected by a "dlist" relation
to an instance of a meta-template called DDN.
Suppose now that this particular instance of a
DDN, say DDN017, has been matched to the network
to produce a residue expression: we w:,uld then
create an instance of DDN017,say DDN017-1, to
stand for the result of the match. We 1«:>uld store
the residue expression attached to this newly
created . instance. If these match results later
justified the creation of a new instance of
SECURITYHOLDING (call it SECURITYHOLDING-1), we
would connect SECURITYHOLDING-1 to DDN017-1 by
instantiating t.he "structure" and the "dlist"
relations in the appropriate context. In this
way, we w:,uld preserve a record of the
dependenciP.s between the DDN instantiations :1 nd
the TDN instantiations, while distributing the
actual residue expressions throughout the netw:,rk.

Using the meta- residue expressions, it now
becomes possible to integrate · several other
pattern matching strategies into the TAXMAN II
system. The RMATCH procedure performs a top-down

309

·I

goal-directed match of a given abstraction to an
existing lower-level network: in short, a
"recognition match". The GMAKE procedure (a
"generative make") can also be extended to the
full abstraction/expansion hierarchy: given a top-
level abstraction GMAKE instantiates all the

1
1ower-level expansions, if this can be done
'consistently in the existing network. We can
;implement this quite easily, it turns out, by
•first running RMATCH to test for the consistency
and the uniqueness of the proposed expansion, and
'.then tracing back down along the meta-residue to
generate all of the unknown templates and
relations. Perhaps even more significant is the
possibility of defining a GMATCH procedure (a
"generative match") using meta-residues. In its
most general form, GMATCH would do a bottom-up
data-driven generation of all the abstract
.descriptions which could be inferred from an
existing lower-level network, a process which
seems impractical if the hierarchy is complex and
'if the inference rules can tolerate partial
·matches and partial mismatches, as in the TAXMAN
II system. However, GMATCH can be defined more
reasonably within the framework of an ex is ting set
of RMATCH results: GMATCH would then monitor the
data base and generate only the updates for the
top-level instantiations. Note that the meta
residue expressions record all the dependencies
between the DON instantiations and the TON
instantiations which have resulted from an
'application of RMATCH. We can implement this
version of GMATCH by tracing along the path of the
meta-residues. (In this connection, the meta
residue expressions are similar to the
"footprints" proposed by Woods, 1978, and the
"detlists" of MOS and AIMDS.) In some situations,
:1t may also be useful to have available an RMAKE
procedure: this is a goal-directed search for a
:specific component of a lower-level expansion, and
'it is related to GMATCH in the same way that GMAKE
is related to RMATCH. We should note here,
however, that only the RMATCH and the GMAKE
procedures have so far been implemented in the
TAXMAN II system. GMATCH and RMAKE are in their
design stages.

IV. Future Work.

One of the main goals of the TAXMAN project
is to represent a legal concept as a prototype
plus-deformation structure and to analyze the role
that this kind of structure plays in the process
of legal argument. In this paper, we have
examined only the logical template structures of
the TAXMAN II system, but we have established the
foundation for a subsequent examination of
prototypes and deformations. To construct a
deformation, we need a clear and coherent
representation of the prototype. But we now have
a highly structured conceptual space to work with:
the DON space. The DON expressions can be
arranged in a generalization/specialization
hierarchy, as we have seen in some earlier
examples; they can be stored as AIMDS networks,
using variable names in the place of instance

names; and they can be transformed by a system of
PON expressions, like any other AIMDS neti«>rk. We
thus have available the basic mechanisms we need
to represent the mappings of a conceptual space,
as proposed in McCarty (1980) and McCarty,
Sridharan and Sangster (1979). We w111 develop
these ideas further in subsequent papers.

Acnowledgement: The National Science
Foundation has generously funded our research
through Grant SOC-78-11408 from the Law and Social
Sciences Program (1978-79) and Grant MCS-79-04091
from the Intelligent System Program (1979-81).

References

Bobrow, D.G. and Winograd, T., "An Overview of
KRL-0, a Knowledge Representa ion Language," 1
Cognitive Science 3-45 (1977).

Levesque, H., and Mylopoulos, J., "A Procedural
Semantics for Semantic Networks," in N. V.
Findler, ed., Associative Networks 93-120
(Academic Press, 1979) .

Martin, N., Friedland, P., King, J,, and Stefik,
M., "Knowledge Base Management for
Experimental Planning in Molecular Genetics,"
Proceedings, Fifth International Joint
Conference on Artificial Intelligence 882-87
C 1977).

310

McCarty, L. T., "Reflections on TAXMAN: An
Experiment in Artificial Intelligence and
Legal Reasoning," 90 Harvard Law Review 837-93
(1977).

McCarty, L. T., Sr idharan, N. S., and Sangster,
B.C., "The Implementation of TAXMAN II: An
Experiment in Artificial Intelligence and
Legal Reasoning," Report LRP-TR-2, Laboratory
for Computer Science Research, Rutgers
University (1979) .

McCarty, L. T., "The TAXMAN Project: Towards a
Cognitive Theory of Legal Argument," in B.
Niblett, ed., Computer Logic and Legal
Language (Cambridge University Press,
forthcoming 1980).

McCarty, L. T., and Sridharan, N.S., "The
Representation of Conceptual Structures in
TAXMAN, Part One: Logical Templates," Report
LRP-TR-6, Department of Computer Science,
Rutgers University (1980).

Sacerdoti, E.D., A Structure for Plans and
Behavior · (Elsevier North-Hollan<f;° 1977)-:-

Schmidt, C.F., Sridharan, N.S.,
J.L., "The Plan Recognition

and Goodson,,
Problem: An

and Artificial
Intelligence 45-

Intersection of Psychology
Intelligence," 11 Artificial
83 (1978).

Sridharan, N. S. and Schmidt, c. F., "Knowledge-

Directed Inference in Believer," in D,A,
Waterman and F, Hayes-Roth, eds., Pattern
Directed Inference Systems 361 - 79 (Academic
Press, 1978).

Sridharan, N.S., ed . , "AIMDS User Manual, Version
2, 11 Report CBM- TR-89, Department of Computer
Science, Rutgers University (1978).

Srinivasan, C, V,, "The Architecture of Coherent
Information Systems: A General Problem- Solving
System," Proceedings, Third International
Joint Conference ~ Artificial Intelligence
618-28 (1973); also published in vol. C-25
IEEE Transactions Q.!!. Computers 390-402 (1976),

Woods, W. A., "Taxonomic Lattice Structures for
Situation Recognition," Proceedings, Second
Workshop on Theoretical . Issues in Natural
Language Processing 33- 41 (1978). ~

311

· 1

' ·1

PIOVIDING AI1101ATIC GRAPHIC DISPLAYS 'lllRXQi DEFAUL'IS *

Sakunthala Gnanam:Jari
N.I.Badler, H.L.Morgan, BoMie L. Webber

Department of CCJnputer and Information Sciences

Moore school of Electrical Erllineering
University of Pennsylvania, Philadelphia, Pa. 19104, USA

Abstract

This paper addresses the problems in

providing graphic displays autanatically to serve

a user naive with respect to oanputer graphic

devices. It identifies the properties of data

that affect graphic representation and presents a
formalism in which to view them. It also
discusses and illustrates the selection of various

graphic formats based on the data to be

represented, its properties, and graphic device
characteristics.

h Problem Statement

Broadly speaking, there are three phases of
using oanputers: acquiring, processing and

presenting information. As to the first two, many
years of research and develOJ;lllent have led to the

availability of efficient ways of collecting and

processing data. However, methods of presenting

informaticn are by and large limited to variations
of taoolar form. Reading a sequence of lines and
understanding their import _is a tedious job
trough, reminding people of the old proverb, ~A

picture is worth a thousand words.~ As a result,

efforts are n::,w being directed towards presenting
such data graphically. Unfortunately, using

graphic devices can be a <X111?lex process,
requiring days or even weeks of training. Up to

* This research is partially supported by DARPA
grant #MDA903-80-C- 0093.

312

now, it has been alm:lst impossible for a naive
user to create a graphic display to view

information.

Our long range goal is to have an intelligent

system helping users in the graphical display of

data, performing the task of a graphic artist.

Our objective, at present, is to facilitate

autanatic display of information by providing
reasonable defaults for graphical representations

and easy user m:Jdification of the resulting

displays.

The major problem in developing such a system

is that there is a gap between the way a user

conceives of a graphic display and the way the

machine does. For the user, it is a meaningful

picture made up of certain particular pieces; for

the machine, it is the sequence of operations
needed to create such a display. A seex>nd problem

is that a user will not think to make explicit
what s/he does not care about or what s/he

believes the system already knows or is able to

infer. What is needed is a graphic expert system
that, on the one hand, is at an appropriate
conceptual level for user to state things that

s/he cares about, but, on the other, provides

appropriate defaults to take care of everything
else.

Research has proven that graphic presentation

of information is better than tabular form.

Tabular form merely presents raw data without

interpretation [Gene Zelazny, 1972] , whereas

pictorial form conveys the relationship between
· the data items.

To illustrate this CXll'ltrast between tabular

and graphic presentation, oonsider the following

exanq:>le. Usil'Y:1 the Harvest system [Harvest,

1979], a database query system, a naive user can

type in

WHERE YFAR • 1980 DISPLAY BUDGET

and get a formatted output as shown below:

BUDGET FOR 1980

ITEMS JIMJ{JNT*

1. SAIJ\RIF.S 35

2. TRAVEL 10

3. EC(JIPMENT 25

4. MAINTEtWCE 18

5. MISCELLANICXJS 12

'IOI'AL 100

* Thousands of dollars

For tabular form output, systems such as HARVEST

can provide default formats. This relieves a

naive user of the need to provide detailed format

specifications, a burdensane task especially when

the user may not care irore about the format than

it be easy to read.

However, it is 1'¥)t currently possible to

request a graphic display in the same easy terms -

i.e., to type

WHERE YFAR = 1980 DISPLAY BUDGET GRAPHICALLY

and get a graphic display as sllc:Mn here:

313

BUDGET E.JL.R l...9....8.Jl

f'l1s~ ---~

,
/

f'IA I NTENAN E

\SALARIES

\
)

/

No existing system provides the default graphical

formats needed to provide such a service.

There are sane "high level" software packages

ocrrmercially available, such as Pu:Yl'-10 and DISPIA

[ISsa:>] , that allow an applications programner to

use a graphic device at a programnil'Y:1 language

level. Interactive systems like Tell-a-Graf

[ISsa:>J requires users to enter data and specify

their preferences canpletely. But none of these

systems can provide default displays for either

canpletely or incanpletely specified choices.

What is needed is, highly autanated graphics
systems to meet the needs of naive users who

either do not want to specify any preferences

about the graphic display or give incanplete

specifications.

This paper discusses appropriate defaults for

those aspects of a display the user has failed to

specify and how tho.c;e defaults depend on three

factors: the data to be displayed, the device on

which it is to be displayed and the ~ it is

displayed for. Two different types of defaults

are CXll'lSidered: defaults affecting the choice of

graph through which to display the data and

defaults affecting the choice of "attributes" for

that graph, such as color, size, orientation,
order and other factors. These defaults are used

to provide a naive user with the ability to see

his or her numeric data (which would otherwise be

presented as a table of numbers) in the form of a

pie chart, bar graph or trends graph.

.• 1

.!!..:. Definitions

Before introduci03 the system and basic

assumptions for the system, we shall define the

caicepts we will be usi03:

1. <XNl'INUI'lY: a boolean value that

represents whether or not the members of

an ordered set represent an interval of a

continuum with respect to the given

ordering. Example: A set of days,

{Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday} oould be

defined to represent a WEEJC, an interval

of time, and have the prq,erty

continuity, while {Sunday, Tuesday,

Saturday} may not, and {Sunday, Tuesday,

5, UNITS: is the set of labels specifying

the unit of measurement associated with

each m.nnerical value. Example:

Thousands of dollars, Hundreds of tons,

etc.

One of the factors upon which effective

autanatic data display depends ocmprises

particular characteristics of the data itself. By

abstracti03 out these characteristics, one can

form a well defined bijection mapping that can

help one to understand the ocmplex phencmenon of

data and its manipulations.

Let this abstract form of data be represented

by the word title, a mapping fran the danain set

of labels into the range set of quantities. That

Friday, Wednesday, 1'4or¥lay, Saturday, is,

Thursday} may not.

2, 'IUI'ALI'lY: is a boolean value that

represents whether or not the members of

a set represent ALL the ocmponent parts
of an object or an abstract ooncept.

Example: the set of items {Salaries,
Travel, F.quipnent, Maintenance,

Miscellaneous} oould be defined to

represent the parts of which BUIXEl' is

ocmposed,and have the prq,erty

totality. The subset {Salaries, Travel,

Maintenance} would not have totality.

3, CARDINALITY: is the number of elements

in a set. Example: the cardinality of

range the set of days is 7.

4. MULTIPLICITY': is the number of values

assigned to each element in a danain set
by a mapping. Example: the mapping

"square root" fran real numbers into

oaiplex numbers has the l'lllltiplicity of

2.

314

T .. , U:: 111,12, • • • ,lm}-•>{ (qll ,ql2' •" ,qln) '

<q21,q22• •" ,q2n> '" •' (C\,,1 ,qm7.' "• ,qmnl I

.....tiere, for t!Very i=l tom, 11 is the ith element
in the domain set and for t!Very i=l tom anri i=l
ton, qij is the jth component of the ith tuole in
the ranqe set. F.ach colunn also !vis an entity

called units anri another m!'ITY call~

col unoa labe 1 •

In other words, the data in the range set is a

matrix of size m rows and n oolumns. - -
The cardinality of row-labels and

multiplicity of the mapping can be derived fran

input data. However, two additional prq,erties of

this mapping, that are necessary to select a

display format are not directly derivable fran the

input data itself. These are:

(i) whether elements of either row-labels or

oolumn-labels form OCITf?Ollent parts of sane whole
with respect to the quantities represented by each

member of the oolumn-labels and row-labels

respectively: that is, whether either set has

totality,

(ii) whether elements of either row-labels or

column-labels denote to a continuum with respect

to the quantities represented by each member of

the column-labels and row-labels respectively:

that is, whether either set has oontinui ty. For

exarrple,

NET INCn1E PER SHARE

<XMPANY-1 <XMPANY-2

1972 0.86 0.60

1973 1.01 0.90

1974 1.22 1.15

1975 1.35 1.45

1976 1.60 1.80

1977 1.93 2.24

1978 2.44 1.90

1979 2.70 2.01

In this example, the row-labels are 1972, 1973,

1974, 1975, 1976, 1977, 1978 and 1979 and the

column-labels are <XMPANY-1 and <XMPANY-2. The

continuity of row-labels oould be true or false

with respect to each column-label. If the

oanaparison of inoanes for two canpanies over the

period of time is prefered, then the continuity of

row-labels would be {true, true} with respect to

each of the column-labels. If an absolute

CCJlllarison of incanes is prefered then the

continuity of row-labels would be {false,false} .

The totality of row-labels oould be true or false.

If a relative ocrnparison of each year#s incane

with respect to the total incane of each ocrnpany

is prefered, then the totality of row-labels would

be {true, true}; otherwise, it would be

{false,false}. Similarly, the continuity and

totality oould be defined for column-labels. The

cardinality of row-labels is 8. '111e multiplicity
of the mapping is 2. The units are dollars for

each column-label.

315

III. Examples

Having defined the concepts that we will be

using, to denonstrate how the above mentioned

ideas can be used to provide a graphic display,

consider the BUOOET FOR 1980 exarrple given

ear lier. Here the mappii!iJ is BUOOET FOR 1980, the

set of row-labels is {Salaries, Travel, Equipnent,

Maintenance, Miscellaneous} , the ~ set of

quantities is { (35), (10), (25), (18), (12)}, the

set of column-labels is {Am::>unt} and the set of

units is {Thousands of dollars}. Let the totality

and continuity of row-labels be {True} and {False}

respectively. Given this information , and no

preferences on the user#s part, the systern#s task

is to observe the data and its characteristics,

decide what type of graphic format is both

suitable and feasible with respect to the graphic

device that is available, decide its attributes

and then display the picture. (Although it should
also allow the user to nndify the resulting

display, this aspect of the user interface will

not be discussed.) For this example, the system

selects a pie chart representation to express the

totality of the row-labels. This pie chart

representation is an appropriate choice as

confirmed in the literature:

"Because a circle gives such a clear impression of

being a total, a pie chart is ideally suited for

the one purpose it serves - showing the relative

sizes of the oanponents of sane whole." -

(Zelazny, 1972]

" ••• the separation of a whole anount in teans of

its canponent quantities . In the graphic figure,

a circular form can be used to represent a whole

arrount, and can be divided into segments which

represent prqiortional quantities, or percentages,

of the whole." - (~, 1968] •

As we noted above, the user has not stated

any preferences regarding the display. This being

the case, the choice of whether or not to color

I

·I

the different segments of the pie (and if so, what

colors) is left as another set of defaults. These

choices/defaults depend partially on device

capabilities but also on whether oolors would be

an effective way of ocmrunicating information to

the user. For a device such as the printed , page,

the choice of oolors is black and white.

In this exarrple, suppose the totality is

{False}, the system whould have opted for a bar

~o

2.5

2,0

chart. The reasons for this option are: (i) 1.5

continuity being false, a line graph is not

selected, (ii) totality being false, a pie

representation is not selected, and (iii) "In a

graphic figure, quantity can be shown in

canparative relation to other quantities, through

the extension of abstract parallel bar forms." -

Bowman (1968). The resulting figure is shown

below:

' 0.5

11...f...l l H c o ti E _LU s H A B E

PANY-1

1
.__-~-~----~-~-~--~

1972 '73 '74 '75 '76 '77 '78 '79

35

30

25

20

15

10

BUDGET E.Jl....R LI....a...Jl

-

~ i
--

SALARIES TRAVEL EQUIP, IIAINTEN, MISC,

Case 2.

{false,

look

~.o

2, 5

2 .0

As another example consider the mapping 1. 5

no:ME PER SHARE. We will look at five cases.

case 1. If the continuity of row-labels is {true,

true}, the totality of row-labels is {false,

false} and the units is {dollars, dollars} the

graphic format selected would be a LINE graph.

That is,

1.0

0.5

1912

316

If the continuity of row-labels is

false}, the selected graphic format would

ILE...l INCOME

LEGEND:

0 COMPANY- I

• COMPANY- I I

n

JJ
'73 '74 '75

P..LR

r;

l \

'76

s.Ji...A...R.l.

r I,

n
I

;

I I i ; _._J __L--~
'77 '78 '79

Case 3. If the continuity of row-labels is {true,

false}, the graphic format selected would be

3. 0 -
tLLI IN COME ti...R s.JLA.ll

2. 5

0
n1

I I

5
,, .. fl/

I -:;

i I ,,.,..- -- /
I , I I - I ,/

0-
--- -- I

2.

1.

1.
/ .-

-
0. 5

1972 '73 •7q '75 ' 76 ' 77

Case 4. If the continuity and

row-labels are {false,false} and

I

, /cOHPAN Y- 1

I

-
~

I

I

I

' 78 ' 79

totality of

{true, true}

respectively, t hen the data would be presented in

the form on the top right.

Case ~- If the continuity and totality of
row-labels are {false, false } and {false, false } i

and the totality of column- labels is {true, true,

true, true, true, true, t r Je, true}, then the
graphic format on the bottan right represents the

ini;:ut data.

317

ti.L1 I NC o ME ti...R s.JLA.ll

COMPAN Y• I

1979

t
/ 1977 __

COMPANY- I!

979

1973

ig,7 1976 :

'-.. ///
........... ----.:..-~ ..

ll..l I N C o M E e...Lil s....JLU...£

LEGEND :

D CoMPMJY· l ·

• COMPANY- I I

./
1978

\

)
I

I

. \

IV. System Overview

The overview of the proposed system currently

under developnent is given in the following

figure.

CONTROL

We are making the following three assumptions

with respect to this system design:

(i) DATA is expected fran an existing database.

The system expects a table of information which

has both row-labels and column-labels. Either of

these sets may be tagged with the properties of

continuity and/or totality. These two properties

of the mapping are expected as input to the system

along with the data mapping and information on

units of measurement for the quantities in the

range set.
(ii) DEVICE is expected to have a set of routines

for drawing and erasing points, lines and

characters, and for setting colors or grey values.

(iii) USER is expected to be able to type in the

request for a graphic display.

The information fran a database enters the

system at the node rmur DATA. The data is passed

to the next rode FOR-1AT SELFX:TIOO.

318

Depending on the characteristics of input

data such as 11U.1ltiplicity, cardinality, units,

continuity and totality1 and of graphic device

such as device ~. spatial and intensity or

color resolution1 a default graphic format (such

as a pie chart) will be selected to display

information. These rules of selecting a

particular display format are defined after

consulting Bertin (1973], Boi.man (1968] and Gene

Zelazny (1972 and 1980] and studying various

graphic representations.

Once the appropriate graphic format has been

selected, the format and the information to be

displayed are passed to the next node, the

ATl'RIBUTE SELEx::TIOO. This state consults the

device knowledge and danain specific knowledge to

determine the attributes of the display such as

color and icons. The output of this state

consists of data and device parameters.

Depending upon these parameters, the next

node, GRAPHIC PRCX:EDURES, generate the graphlc

· cam1ands to a particular device that realizes the

display.

DISPLAY is the actual display of information,

the final output of the system, in the graphic

format.

The graphic display is obtained by simply

requesting the system to present tabular

information graphically. If the display is not

satisfactory to the user, it may be rrodified. The

rrodifications are prOll'ided at three levels: (i)

input data oould be rrodified by selecting or

grouping the row-labels to be displayed, (ii) the

properties such as totality or continuity could be

changed thereby changing the format of the display

and (iii) attributes of display oould be changed.

V. Sl.Dll'llary

In sl.Dll'llary, this paper has discussed the
system [Gnanangari, 1980] which we have designed

to provide appropriate defaults for those aspects
of the presentation of a user .. s data thats/he

either cx,es n:>t care about or assumes the system

\IK)\lld "obviously" infer. The underlying

structures of input data have been studied and
abstracted arrl relavant properties of data have
been recognized. -A reasonably large set of
graphic formats have been defined for presenting

data. Currently we are working on, knowledge
representation issues of the system.

BIBLIOORARIY

1. Bertin, J.: "La Graphique et Le

Traitement Graphique de
L .. Information",Flamnarion, Paris, 1977.

2. Bowman, W.J.: "Graphic Cormunication",
John Wiley, 1968.

3. DISPIA: a software product of Integrated

software Systems Corporation, San Diego,

Ca . 92121.

4 • Gnanam;1ari , S. : "Autanatic Generation
and Presentation of Graphic Information
Displays", Ph.D.

canputer and
University of
(forthcaning).

thesis, Department of

Information Sciences,

Pennsylvania, 1980

5. HARVEST Reference Mannual, International

Data Base Systems, Philadelphia,
Pennsylvania, 1979.

319

6. TELLAGRAF: a software product of

Integrated Software Systems Corporation,

San Diego, Ca. 92121.

7. Zelazny, G.: "Choosing and Using

8.

Charts", copyright 1972, Gene Zelazny,

McKinsey and ~y Inc., New York.

Zelazny, G.: Director, Visual

Camunications, McKinsey and CCJnpany
Inc., New York, Personal Carmunication,
1980.

1

' l

USING COMPUTER PERCEPTION FOR GRAPHICAL TYPE CHECKING*

Nadia Magnenat-Thalmann
D~partement des M~thodes
Quantitatives
Ecole des Hautes Etudes
Commerciales
Montr~al, Canada

ABSTRACT

The concept of graphical type is a basis of
structured and reliable graphical processing.
However, it requires the way of checking the
compatibility and legality of operations. This
paper presents methods of graphical type checking
using computer perception. Algorithms have been
implemented for MIRA-2D, a graphical PASCAL exten

s ion based on graphical types.

l. INTRODUCTION

A data type, as it is defined by Wirth [l] ,
determines the set of values to which a constant
belongs, or which may be assumed by a variable
or an expression, or which may be generated by an

operator or a function. The concept of data type
is very fundamental, but it requires the way of

checking the compatibility and legality of opera
tions. For example, the assignment of a real va
lue to a logical variable has no meaning. Such
an error may be detected without executing the
program. However in some cases, the compiler
cannot detect errors. For example, in a language
such as PASCAL which admits subrange types, the
result of a calculation may be out of range and •
it may be only found during the execution. In
this case , the problem may be solved in incorpo
rating tests in the object code produced by the
compiler or in the runtime library.

Because the concept of data type is very im
portant and because we are concerned with structur
ed computer graphics, we have designed and imple
mented abstract graphical data types as an exten
sion of the PASCAL language. This extension gives

* Thi s work was supported by Natural Sciences and
Engineering Research Council Canada.

Daniel Thalmann
D~partement d'Informatique et
de Recherche Op~rationnelle
Universit~ de Montr~al
Canada

the user a way of defining and u~ing specific gra
phical types, which can be used as other PASCAL
types. For example, the programmer may define and
use variables of type triangle, square, circle and
so on. Type checking may be perform in most cases
at the compile time. For example, we know that a
rotation does not alter the type of a variable .
But, the language gives the user the possibility

of defining image transformations which may cl1anqe

the type of a variable (e.g. a shear does not
preserve a circle!). A user may also enter inter
actively a figure and there is a union operation
which allows the user to build a new figure from
two existing figures. In these different ca ses ,
type checking is very difficult to perform.

320

It is necessary to recognize the s tructure of
the figure, but at the runtime all figures are
implemented as linked lists and it is not possible
to have access to the original structure. The
only way of checking if the figure has the good
type is based on pattern recognition. The process
of pattern recognition is dependent on the complex
ity of the graphical type. In a fir st step, we
create a figure which is a model for the data type
that has to be checked. This figure i s then trans
lated in such a way that its center is the same as
the center of the figure to recognize. Afterwards,
the size is adjusted, and two typical vectors of
both figures are computed, then the model is rota
ted until the typical vectors match. At this time,
a characteristic function is c0111nuted for both
figures and it is decided if the figure i s analog to

the model. Different types of characteristic
functions may be choosen and the choices will be
discussed. In the case of more complex figure s ,

it may be necessary to decompose each figure into
simpler figures and apply topological analysis.
In ,ome cases, type checking is not possible be
cause the type is too general.

2. THE CONCEPT OF GRAPHICAL TYPE CHECKING

2.1 The concept of type ch_~~ki~

A data must possess a type; this concept is
one basis of structured progranming as stated by
Hoare [2 J. Let us have an example: we would
like to write a function which calculates the
factorial of a number. Although it is not the
most efficient definition, the factorial may be
written in PASCAL as:

function fact (n:integer): integer;
begin
if n=O then fact·=

else fact := n*fact (n-1)

It i s clear that such a function will have
some trouble when it is invoked as:

y := fact(-10) or y := fact(lOOOO)

A better version of th is function will be:

const max = 10;
~ subrange = O .. max; positive=O .. maxint;

function fact(n:subrange):positive;

~~
if n~o then fact := l

else fact := n* fact(n-1)

A statement as y := fact(-10) will produce
a diagnosis at compile time, because it is very
easy to find that -10 is not included in the
subrange 0 •• 10 . But the two following statements
may be only checked at the runtime:

read (val);
y := fact (val);

In fact, if the read value is -10, a runtime
error has to be detected.

2.2 The concept of graphical type

We are concerned with structured computer
graphics [3]. That is the reason why we have

designed and implemented MIRA 20 l 41, a graphical

321

PASCAL extension. This extension is based on
abstract graphical data types (5 J. Such graphi
cal types allow the programmer to define and use
graphical variables which have a specific type.

e.g. ~ s: square; t: triangle;

User may define their own graphical types as
it is shown in the following example:

~ losange = figure (c: vector; a,b: real);
var x,y: vector;
begin
X := << a,Q >> ; y := << 0,b>> ;

connect (c+x, c+y, c- x, c-y, c+x)
end;

Standard types have been defined : square, cir
cle, triangle, ellipse, line, segment and fig,
which is a universal but unstructured type Graphi
cal variables may be manipulated by procedures ,
assignments and image transformations as they are

defined in [5 l.

2.3 The concept of _graphical type checking

Assume that a programmer defines two variables
of circle type;

var cl, c2: circle;

then, he performs the following operations:
create cl (<< 2,3 >>, 10); c2 :=c l;
rotation (cl, origin, pi/3, cl);

translation (cl, << 2,3 » , cl);
draw cl;

These operations have the following meaning :
creation of a circle cl (with center < 2,3 > and
radius 10), copy of this circle, rotation around
< 0,0 > with an angle n/3, translation of < 2,3 >
and drawing.

All these operations may be checked at the
compile time, because it is well-known that a
rotation and a translation preserve a circle.

However, it is possible to define image
transformations which alter some graphical types.
As an example, we define a shear along the x-axis.

· •. ·I

transform xshear (si ze: real);
var y: real;
begin y:= projy(oldfig);
newfig := << projx(oldfig) + size*y, y >>
end;

A transformation is similar to a procedure;
the statements define the transformation to obtain
a vector (called "newfig") of the new figure from
a vector (called "oldfig") of the old figure.
The transformation is implicitly done on each
vector of the figure.

If we declare the following variables:
var t: triangle, c: circle; f: fig;

The following sequence of statements will
produce the figure which is shown in appendix.

window (« -1 0, -rn », « 10, 10 »);
create t (<< 1,2 », << 3,4 >>, << 2,6 >>);
create c (<< -3,-2 >>, 2);
draw t,c;
xshear (t , o:5, f); draw f;
xs hear (c , 0.5, f); draw f;

If we replace Xshear (t, 0.5, f) by xshear
(t, 0.5, t), there is no problem, because a
shear transforms a triangle in another triangle.
However, a shear does not preserve a circle and
xshear (c , 0.5, c) has to cause a runtime error.

Other operations require a runtime graphical
type checking:

a) the standard procedure readgraph
(fl , f2, ••. fn) which allows the user to
enter interactively figures.

b) the standard procedure union (fl , f2, f3)
which allows the user to build the figure
f3 from the existing figures fl and f2.
If the type of f3 is not the fig type,
it has to be checked .

c) the assignment; for example , if we
declare:
var t: triangle; f: fig;

the assignment f: =t is always correct but
the assignment t: =f is only legal if f is
a triangle.

322

3. HOW TO CHECK GRAPHICAL TYPES

3, l Philosophy of implementation

At the runtime, all figures are implemented
as linked lists and it is not possible to have
access to the original structure. The only way
of checking if the figure has the good type is
based on pattern recognition.

Our extension has been implemented by a
preprocessor which produces a "standard" PASCAL
program. Runtime type checking has to be perform
ed by adding tests in the object code.

For example, if we declare

~ t: triangle; f: fig;

f:=t will be translated into:

copy (t , f)

t:=f will be translated into:

if istriangle (f) then copy (f, t)

else runtimeerror(4)

In the same way, the translation of the
"xshear" statements that we have discu ssed in
paragraph 2.3 i s the following:

source code (MIRA 2D)

xshear(t, 0.5, f);
xshear(c, 0.5, f);
xshear(t, 0.5, t);
xshear(c, 0.5, C);

object code (PASCAL)
xshear(t, 0.5, f);

xshear(c, 0.5, f);
xshear(t, O.S, t);

if not istriangle (t) then runtimeerror (4);

xshear(c, 0.5, c);

if not iscircle (c) then runtimeerror (4);

He show that the fig type is not checked in
the first two statements.

3.2 Pattern recognition of very_ _sim.p le ob_iects

Objects like triangle or segment may be easily
identified, as it is proved by the following func
tion definitions:

· 1,1t .. 1 ., """"' ·i

function istriangle (f:fig): boolean ;

var cons, closed: boolean; n: integer;

begin features (f, cons, closed, n);

istriangle:= cons ~nd closed and (n=3)
end;

function issegment (f: fig): boolean ;

var cons, closed: boolean ; n: integer;

begin features (f, cons, closed, n);

issegment:= cons and (not closed) and (n=2)
end;

Both functions use the procedure features
(f, cons, closed, n) which checks if the figure
f has consecutive visible segments, if it is
closed and how many vectors compose the figure.

3.3 Problems of structure

The function istriangle which has been shown
in last paragraph will cause problem if a triangle
is built by the union of two half triangles as
shown:

[_·'·' >

< 1,2 > < 2,2 >

< 2,3.5 >

< 2~< 3,2 >

The new figure will have 6 vectors; that is
the reason why we have implemented a procedure
"restructure" which builds a new version of a
figure by deleting all redundancy and unuseful
vectors.

3.4 Comparison _of _~cts

In case of figures like a circle, we create
a figure which is a model for the graphical type
that has to be checked. The figure is then
translated in such a way that its center is the
same as the center of the figure to recognize.
Afterwards, the size is adjusted, and two typical
vectors of both figures are computed; then, the
model is rotated until the typical vectors match.
At this time, a characteristic function is com
puted for both figures and it is decided if the
figure is analog to the model.

323

This algorithm is only possible when the type
defines a class of similarity; the corresponding
function is the following:

function sameshape (fl, f2: fig): boolean;

~ ctl, ct2, ptl, pt2 : vector ;
alphal, alpha2, dmax2, dmaxl: real;

begin ctl:= center(fl); ct2:= center(f2);

translation (fl, ct2-ctl, f2);

distmax (ct2, fl, ptl, dmaxl);

distmax (ct2, f2, pt2, dmax2);

homothety (fl, ct2, dmax2/dmaxl, fl);

alphal:= arctan ((projy(ptl)- projy(ct2))/
(projx(ptl)-projx(ct2)));

alpha2:= arctan ((projy(pt2)-projy(ct2))/
(projx(pt2) -projx(ct2));

rotation (fl, ct2, alpha2-alphal, fl);

sameshape:= eqfig (fl, f2)

end;

The boolean function eqfig de~ermines if both
figures are "equal" . In fact, eqfig calculates
a few characteristics of both figures and compares
them.

Many choices are possible for these characte
ristics but they may be classified into two
classes:

i) statistical analysis
e.g. comparison of averages, variances,

correlations
ii) topological analysis as:

a) correspondence of point types as defined
by Nagao [6 I

b) comparison of relative positions as it
has been used in recognition of _hand
printed [7 J and handwritten (8 J text.

c) comparison of line drawing analysis;
this kind of analysis may be based on
structural units as it was developed
by Morofski and Wong [9 J in PPS .

In the case of standard and simple graphical
types, we have chosen a statistical analysis.

I

We compare averages and variances of vectors of
both figures. However, we add, in the statistics,
the middle vectors of a 11 visible segments.

4. USER GRAPHICAL TYPE CHECKING

4.1 Problems with user graphical type checkin_g

As users may define their own graphical types,
type checking method is dependent on the kind of
type. For example, the two following types can
not be checked in the same way:

regularpolygon = figure(center: vector;
length: real; nside: integer);

regularhexagon = figure(center: vector;
length: real);

The first type is very difficult to check,
because a square or a regular hexagon are regular
polygons and it is not possible to use the algo
rithm described in paragraph 3.4. For the second
type, there is no problem.

4. 2 Di_recti ves to the prep_roc~ssor_

The only way of providing type checking is to
give the user the possibility of specifying his
type checking method. As ·we consider that type
checking is not a characteristic of the language
but an implementation feature, we prefer that
type checking specifications are introduced as
directives to the preprocessor. These directives
have to be given in a PASCAL comment (as directives
to the PASCAL compiler). Such a comment has to
begin with a character '!' • Each directive
consists of a letter followed by a character '+'
if the method has to be used, or a character 1

-
1

if the method ' is not used. Ten directives are
available:

C: check if the figure has consecutive visible
segments

D: decompose the figure into simpler parts and
checks if the different parts are compatible
with the type definition.

I: (see paragraph 4.3)

K: check if the figure is closed.

324

L: check if all sides have the same length

N: check if the figure has the same number of
vectors than it is defined in the type

R: in case of type error, the figure is restruc-
tured and checked again

S: type checking by a statistical comparison

T: type checking by a topological comparison

Z: suppress all type checking.

Different directives may be used si multa
neously.

e.g.

~
(*!N+, K+, L+*)
equilateral = figure (a,b,c: vector);

begin connect (a,b,c,a)
end;

(*!L-*)
quadrilateral = figure (a,b,c,d: vector);

begin connect (a,b,c,d,a)
end;

A variable of type equilateral must be
closed, must have all sides with the same length
and the number of vectors will be checked. For a
variable of type quadrilateral, there is no
restriction on the side length.

4.3 Q_i_~.£(!?Si_on ..2.f_ some di rect_i ve_~

Topological comparisons are obtained by a
technique which is similar to the method of
Morofsky and Wong [10 J, It means that the ana
lysis of patterns is based on the recognition of
junctions:

T- junction r
x- junction +
K- junction

~ Y- junction

Comparisons are also based on angle measures.
The directives 'O' should be used when a graphical
type is defined by inclusion of simpler figures,
which is possible with the _i_!l~u-~ _ statement.

. .. '· "·"

P.(). typ~ (*!T+ ,O+*)
doublecircle=figure(c:vector; r :rea l);

var cl, c2: circle;
begin
create cl(c-<< r,O >>,r);
create c2(c+<< r,O >>,r);
include cl, c2
end;

In the case of an operation like union
(fl, f2, f3), if the type of f3 is "doublecircle",
the type checking algorithm searches for two
circles.

The directive 'I' has to be followed by a
real positive number less or equal to 1. This
value is a tolerance factor ; the higher is this
value, the more exact pattern is required . Such
a technique was already introduced in ESP3 by
Shapiro [11 I . The default tolerance factor has
been fixed to 1- lo-10 •

5. CONCLUSION

Graphical type checking is a new concept, be
cause graphical types have been introduced only
recently . Methods have to be developed using
techniques in pattern recognition. Our approach
is sometimes empirical and types like polygons
with n sides (where n i s a parameter) can not be
checked. Further investigations in this domain
have to be done .

6. REFERENCES

1. Wirth, N. "Algorithms+ Data Structures=
Programs", Prentice-Hall, 1976 .

2. Hoare, C.A. R. "Notes on Data Structuring", in
Structured Programming , Academic Press, N. Y.,
1972 .

3. Magnenat-Thalmann, N. and Thalmann , D. "A
Structured Approach to Computer Graphi cs ",
Proc. 6th Man-Computer Comm . Conf., NRC , Ottawa ,
1979, pp . 139-150.

4. Magnenat-Thalmann, N. and Thalmann, D. "A
Graphical PASCAL Extension Ba sed on Graphical
Types", Software-Practice and Experience, 10 ,
1980.

325

5. Thalmann, D. and Magnenat-Thalmann, N. "Design
and Implementation of Abstract Graphical Oatd
Types" , Proc . COMPSAC'79 , Chicago, IEEE Press,
1979 , pp . 519-524.

6. Nagao, M. "Picture Recognition and Data Struc
ture", Proc. IFIP Working Conference on Graphic
Languages, North-Holland , 1972 , pp. 48-68.

7. Groner , G.F. "Real - time Recognition of Hand
printed Text", Proc . Fall Joint Computer Con
ference, 1966; pp. 591-601.

8. Wolff , H.J .G. "Recognition of Handwritten Ca
pitals Based on the Use of a Line Follower,
Proc . Seminar on Pattern Recognition , Liege,
1977 .

9. Morofsky, E.L. and Wong , A.K. C. "Computer Per
ception of Complex Pattern", Proc. 2nd Intern.
Joint Conf . on Artificial Intelligence , Briti sh
Computer Society, 1971, pp . 248-257.

10. Morofsky , E.L. and Wong, A. K.C. "Isolating and
Identifying Objects in Line Drawings" , Proc .
4th Intern . Joint Conf. on Artificial Intelli
gence , 1975, pp. 656-663.

11. Shapiro, L. G. "Inexact Pattern Matching in ESP 311 ,
Proc. 3rd Intern. Joint Conference on Pattern
Recognition, Coronado, 1976, pp. 759- 763 .

APPENDIX

. .. ·I
I

326

. l

ON THE DESIGN OF AN INTELLIGENT TERMINAL

FOR VOICE OUTPUT IN PROGRAMMING

T. Radhakrishnan and C. Labrador

Computer Science Department
Concordia University

Montreal, Canada
H3G 1M8

ABSTRACT

This paper discusses the application
of voice-output in programming as well as
important techniques and problems
intrinsic to voice-input. A prototype
voice response system for PASCAL
programming is presented, and applications
to alternate programming lang uages are
considered. The introduciion of
microprocessors to implement the voice
response unit as well as the software
modules involved are covered and the
applications and advantages of such
"speaking terminals" with respect to the
programmer who is visually handicapped are
discussed.

I. INTRODUCTION

In the general area of man-machine
communications by voice, there are three
major areas of interest for researchers
fl) : (a) voice response systems, (bl
speaker verification and speaker
identification, and (c) recognition of
spoken utterances. These major areas may
be subdivided into a large number of
sub-areas, depending on such factors as
the vocabulary size, static or dynamic
vocabulary, speaker population, speaking
conditions, requirements of the end-user
etc. Central to a voice response system
are, a vocabulary store and a set of iules
for message formation. Figure 1 shows a
block diagram of such a system. When a
message request is received from an
external source, the message composition
program composes the required message by
referring to the vocabulary store and the
message formation rules. The composed
message is in an acceptable form to the
voice synthesizer which produces the voice
response. An adaptive system may allow
dynam1c changes in the vocabulary, in
message formation rules, or in both.

Several applications of voice
response systems have been considered in
the literature. For example, directory
assistance systems, stock price quotation
systems, flight information systems, and
voice response systems for wiring
communication equipment are discussed

327

in [2) . Consider an interactive process,
such as computer programming, carried out
by a visually handicapped person. There
are two directions of information flow:
(a) Man->machine, such as program input,
data input, or input for the correction of
a program statement in error;
(b) Machine->man, such as the errors in
input, diagnostic messages from
compilation or execution of the programs
submitted, or the results generated by the
program. A visually handicapped person
who has experience in typing, faces no
serious problems in man->machine
communications, however for machine->man
communications, he needs assistance, since
he cannot read by himself.
Conventionally, such assistance came from
Braille terminals [3) or from the readings
of a sighted person. Tho ugh braille
terminals are helpful, they are not always
satisfactory. For instance, they require
"feeling by fingers", produce vol uminous
hard-copy output, and they are expensive.
Furthermore, working with these special
kinds of terminals, distinguishes a
visually handicapped programmer from his
fellow programmers and this might be
undesirable in some cases. It is in this
context a voice response system for
programming by a visually handicapped
computer programmer, is discussed in this
paper.

II. VOICE INPUT AND VOICE OUTPUT IN
PROGRAMMING

The following stages may be noted in
the development of a program:

(1) Program Design
(2) Coding
(3) Program Input
(4) Compilation
(5) Correction of Syntax Errors
(6) Execution
(7) Verification

Some of these stages may be repeated more
than once in the program development
cycle. Both man->machine and machine->man
communications are involved in the stages
cited above.

-1

. --1

Message
Request

Vocabulary
Store

Message Composition
Program

Messaqe Formation
Rules

Voice
Synthesizer

Voice
Res onse

Fiq. 1 Block diagram of a
Voice Response System

Use of a programming language for
communication has certain notable
differences when compared to the use of a
natural language. The syntax and grammer
of a programming language are much more
rigidly defined than those of a natural
language. A program consists of several
"words" or names and operation symbols ·
such as +, - , *, /, =, 11, etc. Some of
the words used in a program are reserved
words and others are defined by the
programmer. For a given programming
language, say PASCAL, the set of reserved
words are known -a priori and they
constitute a fixed vocabulary for a voice
response system. The set of
programmer-defined names is not invariant
and it changes from program to program.
However, while programming in a language
like PASCAL, the . set of such
programmer-defined names are defined in
the declaration part, before they are used
in the program. Thus, for voice-input in
programming, it might be possible to train
the speech recognizer unit on the
programmer-defined names. The knowledge
obtained through such training may then be
applicable for the duration of that
program with that particular programmer or
speaker.

It is well known that recognition of
isolated words or discrete speech is a
simpfer problem than the recognition of
connected or continuous speech.
Occurences of isolated words are more
intrinsic in the statements of a
programming language than in the sentences
of a natural language. Consider speaking
the statement COUNTER= COUNTER+ 1. As
an extreme cas e of this situation, some
names in programs may not be readable as a
word. For example, the name "SQZT" can
not be read as a word and hence has to be
read letter by letter. These factors lead
to less stringent conditions for speech
recognition in the case of voice-input for

328

programming. An experimental man->machine
voice communication for programminq in the
BASIC language has been reported in [4,51.
The results reported have been
encouraging, though not totally
satisfactory. Initial tests have shown
that utterances can be recognized in
approximately one quarter of the real time
with an error rate and rejection rate of
9.6 and 6.0 percents respectively.

Applications of syntax directed
techniques for pattern recognition are
well known (61. Similar approaches may be
useful in speech recognition, especially
in voice-input programming. Advanced
programming techniques such as interactive
graphics, involve higher dimensional data
structures than simple linear strings.
Syntax directed techniques will be
appropriate for voice-input of such higher
dimensional data types.

Since voice response systems produce
synthesized speech utterances that arc
used for communications with humans,
intelligibility is of paramount
importance. Also, subjective factors such
as quality and naturalness have been found
to have a great effect on the acceptance
of a voice response system [1). However,
while designing a voice response system
for the visually handicapped programmers,
one could trade the subjective factors for
the desirable system parameters like low
cost and compatibility with other
programmers for example.

Browsing is one of the activities
that a human eye (with the mind) can do
more efficiently than others. One form of
browsing occurs in program debugging.
Suppose the compiler of a program reports
an error in the J-th line of the program.
It is possible, in some cases, that the
error is actually in the (J-1) -th line:
but the compiler has detected the error

while processing the J-th line. A human
eye looking at the J-th line is capable of
"browsing" through the neighbouring lines
and often it locates such errors. A voice
response system designed for visually
handicapped programmers should have
facilities to cater to such needs. In
essence a good text editor with
voice-ouput will be of help in this
direction. A blind person, using a
terminal equipped with such an editor, may
wish to hear a line repeatedly for
intelligibility. Thus, for example,
"REPEAT CURRENT LINE" would be a desirablP
feature in the speaking text-editor.

III. A VOICE RESPONSE SYSTEM FOR PASCAL
PROGRAMMING

For the experiment discussed in this
paper, the popular programming language
PASCAL has been chosen [7). The
experimental voice response system can
speak-out the error messages detected by
the PASCAL compiler when compiling a
PASCAL source program, as well as the
lines or statements selected by the
programmer from the program. The
commercially available voice synthesizer
Votrax [8] has been used in the present
experiment. It is a phoneme based
synthesizer that employs analog methods
for voice synthesis. Votrax accepts input
in its own code which will henceforth be
referred to as votrax-code. Besides the
Votrax, the experimental system consists
of the following software modules which
will eventually be transferred to a
micro -computer (Section IV):

com~iler Interface Module: From the
compiler output file, this module
selects the error messages or the
error codes and the statements in
error.

Editor Interface Module: This
provides an interface between the
conventional text editor and the
visually handicapped programmer.

Voice Interface Module: This module
is an interface betwe e n the voice
synthesize~ and the other parts
of the system. Its functions are
the same as that of the voice
response system shown in Fig. 1.
It makes use of a set of
vocabulary, VSET, and a set of
rules, MS E~ , for message
composition. Also it produces an
output that is acceptable to the
voice synthesizer.

There are 128 error messag es
corresponding to associated error numbers
in the PASCAL compiler used in our

329

experiment. The number of words in a
message varies from 2 to 10. There are
182 distinct words, each of which occurs
with different frequency in the set of
error messages. The word that occurs most
frequently is TYPE (32 times). It may be
remarked that the distribution of the
frequencies of the phonemes, which compose
these words, follows the well known Zipf's
Law [9] closely enough to warrant
interest. Given the law as being
RANK* FREQUENCY= CONSTANT, C, the
average value for C derived from the raw
data is 0.202. Assuming that 7.ipf's Law
is adhered to, the predicted value for C
is 0.193. Although this is an empirical
law, it forms a useful formula for
prediction of approximate phoneme
frequencies and is a useful tool in the
design of appropriate storage and
retrieval schemes for a large phoneme/word
database.

The VSET in our experiment consists
of two parts; VSET-1, the set of distinct
words in the error messages and VSET-2 ,
the set of single characte rs such as A, B,
•.• , Z, O, 1, ••• , 9, etc. Each member of
VSET is stored in a table along with the
votrax-code for speaking that member.

Generation of votrax-codes for the
words in VSET-1 can be made automatic
through a program. The approach used in
the automatic translation of English text
to phonetics in [10] has been used in our
experiment as the starting point. But the
initial results obtained from [10), for
the set of words in VSET-1, did not give
good quality sound output. The output
obtained from [10) for each word of VSET-1
has been manually tuned to improve the
sound quality by changing the phonemes,
the inflections, or both.

For each error message in the
compiler, there is a corresponding member
in MSET which gives the concatenation
rules for message composition. The rules
in MSET refer to the words in VSET. The
message is composed by the voice interface
module and then passed to the voice
synthesizer. The software modules have
been designed so that th0y may be easily
adapted to support different programming
languages. However, VSET and MSET have to
be generated a priori for each of the
programming languages to be supported.

IV. AN INTELLIGENT TERMINAL FOR VOICE
OUTPUT

With the advent of microproce ssors
a nd LSI technology, it has become possible
to distribute some processing power to the
otherwise dumb terminals. Also digital
representation and processing of speech

. . I

. I
I

. I

. I

· I
. l

signals have become a reality [l].
Commercial products such as the Texa s
Instrumants SPEECH MODULE, TM 990/306
[11], are now widely available. For
instance, this speech module has a fixed
vocabulary of 179 words whose digital
representations are stored in electrically
Programmable Read-Only Memories (PROM).
Combining the advances in microprocessors
and digital speech processing, it is
possible to design an intelligent terminal
that will have a voice response system.
Yet, another approach would be to augment
a conventional termin~l with a
voice-output unit as shown in Fig. 2.
This system is well suited for use by
visually handicapped . programmers, since
the voice-output unit can be "easily"
plugged into a conventional terminal.

Conventional
Terminal

To the computer

Voice Output
Unit

Fig. 2 Block diagram of a Voice
Response Terminal

The voice-output unit of Fig. 2 will
consist of a microprocessor, some local
memory (ROM) for program storage, some
local memory for data storage (RAM), and a
speech synthesizer. With the availability
of single board microcomputers, and the
single board speech modul es like the TM
990/306, it is possible to design a
compact portable voice-output unit. Us e
of the components and subsystems available
"off the shelf", would render such a
system to be inexpensive and henc e
affordable to individual users . However
this scheme is not without its
limitations.

The microprocessor in the
voice-output unit of Fig. 2 will
implement the functions of the software
modules discussed in section III. The
information or the data flow between the
conventional terminal and the computer is
monitored by the voice-output unit; and if
desired the monitored information is also
spoken out. The voice- output un it has it~
own limits on the output rate which are
determined by such factors as the
processing rate of the voice synthesizer,

330

and the acceptable input rate of the
receiver, the human ear. If there are no
buffers and inter -locking mechanisms, th e
voice-output unit should function at least
as fast as the flow rate between the
terminal and the computer. The
experimental system discussed in section
III, for example, functions at a rate of
300 baud.

It is possible to extend the storage
and processing capabilites of the
microcomputer. Then, programs and the
results of their processing may be stored
in the local memory of the voice-output
unit for ready access. Even if the
rotating memories such as floppy disks are
not preferred from the portability point
of view, new memory technologies like
magnetic bubble memories [1 2] or charge
coupled devices may be used to extend the
storage system. A single board r0port0d
in [121 provides up to 64K (K = 1024)
bytes of non-volatile memory with a 4
millisecond access time and a 50 kilo-bit
per second data transfer rate. Higher
storage volumes, up to 768K bytes, are
expected to be available in the first
quarter of 1980.

Translation of computer produced
results to voice-output is not always a
trivial task. Presentation of results in
the form of tables, graphs, or charts is
well suited for sighted oersons; but
reading of such data to communicate to a
visually handicapped programmer is non
trivial. Besides voice synthesis, ther e
are other problems to be solved in this
context. Algorithms for solving such
problems may be implemented on the
"microprocessor" and the data stored in
local memories may be refered to us often
as needed.

V. CONCLUSION

A prototype voice response system for
programming in PASCAL has been
constructed. It has been used by a
visually handicapped programmer and hus
been found to work satisfactorily. In
this paper, two approaches to the design
of an intelligent terminal for
voice-output have been discussed. Th e
prototype system is being implemented on a
Motorola 6809 microprocessor. Research is
continued in the areas of reading compl ex
data types like graphs, tables, and
charts; and in the area of syntax dir0rt0d
recognition of "spoken programs".

Acknowledgements:

The financial support provided by the
Natural Sciences and Engineering Research
Council of Canada is gratefully
~cknowledged. The authors are also
grateful to Professors c. Y. Suen and
A. K. Menon of the Computer Science
pepartment of Concordia University for
their helpful discussions.

1.

REFERENCES

Rabiner, L.R. and Schafer,
"Digital Processing of
Signals", Prentice Hall
(Chapter 9).

R.W.,
Speech

1978

2. Rabiner, L.R. and Schafer, R.W.,
"Digital Techniques for Computer
Voice Response : Implementation
and Applications", Proc. IEEE
1976, Vol. 64, No. 4,
pp. 416-432 (special issue on
Man-Machine Communication by
Voice).

3. A Low Cost, Interactive Braille
Computer Terminal for the Blind,
ISG-1. Information Systems Inc.,
3132 S.E. Jay Street, Florida
33494.

4. Niimi, Y. and Kobayashi, Y., "A
voice-input programming system
using Basic-like language", IEEE
Int. National Conference on
Acoustics, Speech, & Signal
Processing, 1978, pp. 425-428.

5. Niimi, Y.: Kobayashi, Y.: Asami, T.:
and Miki, Y., "The speech
recognition system of
"Spoken-BASIC", second US-Japan
Computer Conference, 1975,
pp. 375-379,

6. Fu, K.S., "Syntactic
Pattern Recognition",
Press 1974.

Methods in
Academic

7. Jensen, K. and Wirth,N.,"PASCAL:
User Manual and Report",
Springer-Verlag, 1975.

8. ___ Votrax Audio Response System - VS
6.0 Vocal Interface Division,

9.

Federal Screw Works, 500
Stephenson Highway, Troy,
Michigan 48084.

Zipf, G.K., "Human behaviour
principle of least
Reading, Mass., ,Addison
1949.

and the
effort",

Wesley,

10. Elovitz, J. et al, "Automatic

331

Translation of English Text to
Phonetics by means of letter to
sound rules", Naval Research
Report, NRL 7948.

11. TM 990/306 Speach Module Data
---Manual

Texas Instruments Inc.

12. TM 990/210 Magnetic Bubble Memory
---Systems

Texas Instruments Inc.

.· .I

An Adaptive Sorting Program

Oliver G. Selfridge
Valerie I. Congdon
Stephanie R. Davis

Computer and Information Science
University of Massachusetts
Amherst, Massachusetts

ABSTRACT

This paper discusses the design, construc
tion, and use of an adaptive sorting pro
gram, which selects and tunes the sorting
algorithm according to its recent experi
ence with the algorithms available to it.
That is, the program adapts its behavior
to try and minimize a cost function speci
fied by the users.

The point of this exercise is to explore
ways in which the computer program can
carry some of the responsibility of opti
mizing its performance, instead of relying
on a user to set rigid specifications.
The purpose of choosing a good sorting
algorithm is to minimize some kind of
cost; the cost function used here is "vir
tual CPU time," computed by the program;
we use that instead of measuring real CPU
time because of the difficulties and un
reliabilities of measuring it in a time
sharing environment.

Some of the adaptive programs discussed
here perform better on some populations of
lists than the standard workhorses found
in many computer centers.

1.0 Introduction and overview

There are a number of different algorithms
that can be used to sort lists. Each has
advantages and disadvantages that depend
on the nature of the lists. This paper
discusses an adaptive sorter, which se
lects the particular algorithm it uses ac
cording to the efficiency it has previous
ly found. The sorter restricts itself to
three algorithms: Straight Insertion,
MergeSort, and QuickSort. It should be
noted that each has operating parameters
that have to be set before it can be con
sidered well specified.

332

The task domain is the selection of algo
rithms to sort lists. For this paper, the
lists were generated by a program. For
some of the exercises, the characteristics
of the lists changed slowly in time -
that is, there is not merely a single op
timum sorting algorithm that is to be
searched for, and, once found, maintained.
Rather, the program must be capable of
changing its selections as its environment
changes.

In Artificial Intelligence (AI), there is
another approach to this problem, namely
the use of experts: find out from them the
rules they follow, the diagnostics they
use, and so on, and design those rules
into a program. Such a technique has been
very successful in some cases. (1) But
sometimes the domains are too large to
have rules of the necessary precision; or
the rules seem to involve human judgment
in a profound way, as if in artistic se
lection; or the best experts are just not
very good; and so on. Sometimes the cri- ·
teria for an "optimum" change - - in our
example, the evaluation or cost function
might be changed to include some measure
of the cost of storage. That is, our
underlying interest here is the use of
adaptive techniques where there may be no
experts, or where the problems may be too
hard to understand or even to state. We
use sorting as a domain, where there are
experts, so that we can compare the effi
ciency of the adaptive techniques with
that of the experts.

Our purpose here is to see to what extent
we can give the program the responsibility
of choosing the "optimum" algorithm, by
providing it the experience of trying
several alaorithms and rP.mP.mhP.rina how

(1) For example, see Feigenbaum ana-~~
Lederberg (1974) , with Dendral and
Metadendral.

they performed (with respect to the cost
function that defines the optimum).

Any program that can track a moving op
timum must spend some extra effort decid
:ing what the current optimum is, just as
the experts spend effort on their diag
nostic analyses. Our program is constant
ly checking the current best algorithm
against its competitors1 it does so less
often when, whenever it does, the compari
son is very one-sided, and more often when
it isn~t.

In general it is not possible to compare
two algorithms with just two trials, be
cause each has parameters that must be set
for it to do best, so that the ideal set
tings have to be tracked. In the first
set of experiments, however, we set the
parameters by hand. A second set tries to
optimize the parameter settings as well.
A third set tries to find a good combina
tion of useful diagnostics to help the
program determine a good threshold func
tion to help make a good selection of
algorithm.

The general adaptive approach that the
program exemplifies is discussed at
length, considering especially its in
herent limitations and the underlying as
sumptions about its application. For many
domains of AI, we suggest that AI cannot
afford the time spent to tap experts, and
ought to try giving the program some res
ponsibility in improving its behavior1
that would be even truer if the experts
were scarce or not very good. This pro
gram is, we hope, a beginning exploration
of ways to do that.

At least one of the programs shown here
seems to do better on the average than
some of the workhorses used at computer
installations1 whiJe we cannot be certain
that it would be profitable to substitute
them, it would certainly be worthwhile to
check them with a broader range of sorting
problems and algorithms, perhaps referring
to human interaction, and to the expert
work of, for example, Knuth (1974).

An example of the kind of problem that
might be susceptible to t he approach is
the scheduler on a time-sharing system,
where it is hard to a~cide what is the
best way to satisfy user requirements, es
pecially as they and the system change in
unknown and unpredictable ways7 another
example is the control of a communication
net with large swings in the volume and
nature of the traffic, subject to c hanging
priorities and channel capacities.

333

We use three sorting algorithms, Straight
Insertion, Mergesort, and QuickSort, each
of which is good for some applications,
and which are described in section z. The
adaptive techniques are not particularly
subtle, and are described in section 3.
The structure and functions of the program
as a whole are described in section 4, and
section 5 presents the results of the
several experiments. The final section
discusses the results and draws con
clusions from them.

2.0 Background: Sorting

Sorting is the task of arranging items in
some desired order, like alphabetical. It
was one of the first tasks assigned to
automatic data processing machines, and
was one of the first such problems to be
thoroughly analyzed.

We chose sorting as a task domain for
several reasons:

1. It is a well - known problem with several
commonly used algorithms, whose rela
tive costs vary widely with the sorting
problems presented to them.

2. Sorting algorithms have been thoroughly
analyzed, so that experts can be
reasonably sure about the rules they
follow1 in that way the performance of
the program can be properly evaluated.

3. We felt that it was likely that if the
program worked as well as we hoped, it
could lead to profitable improvements
over some of the standard work horses.
now being used in computer installa
tions.

The program deals with 3 sorting algo
rithms: Straight Insertion (I), MergeSort
(M), and QuickSort (Q). These are des
cribed in the following subsections.

2.1 STRAIGHT INSERTION (I)

Insertion adds items one at a time to a
previously ordered list. Since each i nser
tion leaves the list ordered, a list n
long takes merely (n-1) insertions. In the
worst case, I makes i-1 comparisons to in
sert the ith item, so that the number of
comparisons is O(n*n). Note that if the
list is highly ordered to start with, then
each insertion may be done with very few

. I
I

comparisons. It is also usually a fast
method for lists with few items, say,
fewer than 15.(1) The program itself is
short and easy to understand. Some other
sorting methods may use it with short
lists or sublists.

2.2 MERGESORT (M)

Merging is the technique of combining
lists (in this case, two) by seque ntially
comparing the first elements of sublists,
and moving them in the correct order into
the merged list. M combines pairs of
single elements into sublists, then the
pairs themselves, and so on, each time
dealing with sublists twice as large, un
til the process terminates.

Mis an efficient sort, and is currently
the system choice at the computer center
at UMASS. It does, however, require a lot
of storage. In running time, it takes
O(n*log n). Its worst case is never much
worse than that average.

2.3 QUICKSORT (Q)

Q is on the average the best sorting algo
rithm according to the experts. (2) Q is
based on the notion that exchanges of
items should be made over large distances
in order to minimize the number of ex
changes -- it is the diametric opposite of
bubble sort, for e~ample, which exchanges
items out of order only with their neigh
bors. Q makes an arbitrary partition of
the list into two parts, comparing items
from both parts, and interchanging them
when needed.

The running time for Q is on the average
O(n*log n), but its disadvantage is that
its worst case performance can be O(n*n),
which is not true of M.

3.0 Background: Adaptation and Computer
Learning

There is a long and rich history of at
tempts to make the computer (program)
learn in the sense that children learn and
grow. Nearly twenty years ago, there was a
great deal of interest in ~self
organization,~ by which the computer was

(l) See Knuth (1974).
(2) Ibid, and Wirth (1976).

334

to organize its data and restructure
itself so as to perform better. Some of us
remember the perceptron of the late Frank
Rosenblatt(l) and its numerous companions.
Recently s uch activity has waned, perhaps
because of a more or less conscious de
cision by the AI researchers that it was
not very productive. One of the questions
that we raise here is whether the simple
control mechanisms that we discuss can be
applied to hard problems so as to make a
beginning of an attack on the larger area
of learning by computers.

The advantages of adaptation and learning,
if any, are not had for nothing: it will
always cost extra resources to make checks
on the efficiency of the particular algo
rithms being used.

One method of improving a strategy is to
try small changes in it, observing the
changes in performance. If they are posi
tive, continue to make such changes; if
negative, undo them, and try other ones.
This is generally known as hill-climbing,
and it has a venerable history. Much of
the power and difficulty of hill-climbing
depends on the particular representation
of the strategy, so that the changes are
in some way related to the c hanges in per
formance. Indeed, AI researchers have
long considered that the problem of
finding good representation is one of the
truly central ones in AI. (1)

4.0 The Adaptive Sorter

We deal with three different kinds of
adaptive mechanisms. In the first, the
program is given the cost of the algorithm
when it tries iti its goal is to mi n imize
the total cost of a long series of sorting
problems. In order to make sure that the
algorithm it is using is the best (that
is, the cheapest), it must occasionally
try the other algorithms, which costs it
more resources. The underlying assumption
behind this strategy is that the sorting
problems in the series vary their charac
teristics only slowly, so that the best
algorithm stays best for some long time.

(l) For example, see Rosenblatt (1960) .
For the best discussion of perceptrons,
see Minsky and Papert (1969).

(1) See Winston (1976) for a good general
discussion.

The characteristics of the lists to be
sorted that are relevant here are two: the
length L, and the degree of randomness R.
The latter is interesting -- Q, for ex
ample, takes nearly as long to sort a list
that is already sorted as to sort one that
is in random order. Straight insertion, on
the other hand, takes but L - 1 compari
sons to establish that a list is well
ordered.

500***. * * ,
*;, ... :. * ••••• *•.......
\

~ ·• .. :··;,··;,;,;,*·································
*·***···****·········*························ :· .. ::-:: ... ····;,·······························

~ ·***·*·*·***: •• :.:::::::::::::::::::::::::::::
****·*··***··*··***··*······················· O*~** ··** ••••••••••• • •••••••••••••••••• • •••••••

~

******* •••• **. ** ••••••• * .•••••••••••••••••••••
*******·*··****.**······*········*············
*********·*·**·**··**··*·················*···
··***·*·***··**·**·***···*··················· I * ••.••••••• *· •• ** •••• *.*·.* ••• ** ••••••••

I ****·***··****·*··*··*··*··*··*··········*· ··

*** **** ***** * * **** ** •• *** I ***********·*·*·**··***·***····*·········*· ··
************·*·***···****·*··*·**···*···*····
***************•••:.•.•*•.:••:•:::::• ... :::::

~~.} •••••• :*************.:**·*****.•:•••:•::;.: I ***************** *** ********

\ *****·************** .. ****. *. *. **. ***

:·::.····························;········· .. " 11.:::
I

*· ••.••• * •• *· ••••• *· ••••••••••••••••••••••••

****·***···*·*·····*·***··*···*············
******·******····*·*········*····*··*····*

'

**********·*·**··**·········*·*······*·*···
** ****·********·*****·*······*··*····***··

* \~~·***·****·*****····:::•:•:•:••::.:::::;. I ** ******* *** ** **** * * *
********* ***** ** ***** * **** * I ~*************************** ········· ***
******************* * ···;, *** ••• ·.;,·;,;,

~ ·*****···*····***··***······*···········*
• *.**··**··· ·****··*····*·**··········

0 * !*****·**·******·*·**····*·*···*······ *************** ******* ** ** * *

I
************·*****·***:*********
*******·**************·****·*****···

~ lllil~[~1~
-----+------- ------+

Ordered Randan

Figure 4.1
x-axis:
Y-axis:

\ : I

Optimum Metood for Sorting
Rarmnness R
Length L

• : M * : Q

Figure 4.1 is a length-randomness plot,
with the length shown vertical ly, and ran
domness horizontally. rhe figure shows the
regions where the three algorithms are
superior to the others. The figure was
constructed by generating 2500 lists using
a random number generator. In general,
small lengths or low randomness suggest I;

335

Mand Qare in fact fairly close over the
remaining region, and the superiority of
one over the other is usually but slight.
It is possible to observe the extra time
taken by Mas the length rises above each
power of 2. Clearly, if the program could
detect the best method cheaply enough,
perhaps it could make significant savings
in resources.

In the second kind of adaptation, the pro
gram takes advantage of knowing, either by
experiment or by our having told it, the
contents of figure 4.1. The program~s task
is then to make good estimates of length
and randomness. In our sorting, the length
is provided as a given with the submission
of the list; the question is then how to
estimate the randomness cheaply enough to
make it profitable.

A third experiment in adaptation selects a
good simple combining function of Land R.

There is a kind of zeroth order adapta
tion, in which the best overall method is
used consistently; given the population of
lists that we presented to the machine,
and presuming a uniform distribution of
lists over the variables Land R, that
method was in fact M. the first job of any
adaptive scheme, obviously, must be to do
better than M.

5.0 Experiments and Results

We ran a number of experiments with some
interesting results. The first task was
to generate the lists; how we did that is
described in section 5.1 below . Each list
was in fact evaluated separately with each
of the three methods, and what was pre
sented to the program was merely the char
acteristics of each list and the resources
it would take according to the three
methods. In that way, it was possible to
compare different adaptive strategies
without actually running the algorithms
over and over again, which would have con
sumed considerable computer time.

5.1 Generation of Lists

The lists had two controllable attributes
-- length Land randomness R. The value R
set the fraction of the list that was con
structed at random, the other elements
being generated in order. For example, for
a list 100 long, the ith element defaults

. I

. I

" I

to just i itself, for R = O, the perfectly
ordered case. If R is 0.5, then in exactly
half the elements, the value chosen is
just 100 times a random number uniformly
distributed between O and 1.

Note that lists can be generated with
negative ordering, that is, backwards, but
we did not use such lists in our experi
ments.

For each experiment we generated lists
that form the basis of the data used in
the adaptation. Each list was then sorted
by all the three methods. The data is con
tained in an array whose columns were:

1. The length of the list
2. The randomness of the list
3. How long it took to sort with T
4. How long it took to sort with Q
5 . How long it took to sort with M

For each test of the adaptive strategy, we
computed the costs by merely referring to
the array, instead of generating lists and
sorting them. In this way the individual
adaptive run could be tried with very
little CPU time.

Inspection of figure 4.1, generated in
this way, will reveal a certain noisiness
in the data. That arises from the use of
the random number generator in making the
lists.

5.2 First Adaptive Scheme

In the first scheme, the program initially
tries the three algorithms, and then con
tinues by using only the best one. Best is
defined by an estimate of the CPU time
used by the algorithms. The program checks
the validity of its choice by trying the
other ones occasionally: if one of the
other algorithms proves to be shorter, the
program switches. The underlying assump
tion for this scheme i~ that the attrib
utes of the lists do not change very fast.

In fact, the lists were selected from a
population whose characteristics followed
the trajectory shown in figure 5.1, which
covered 1000 lists. Note, by comparing
that figure with figure 4.1, that the
trajectory runs through all three regions
where the different algorithms were op
timum.

The program worked by computing the cost
of the preferred sorting algorithm. Some
fraction of the time, it also tested by

336

trying the other algorithms: that meant
adding their costs to the costs already
incurred. The cost of the tests on the
non-preferred algorithms was minimized by
ceasing the test whenever its cost ex
ceeded that of the preferred one.

500

250

o+---------+---------+
Sorted Random

Fig. 5.1 Trajectory for
a Population of Lists

The behavior of the program is about equal
to the best single algorithm, M. In this
case, then, adaptation does not provide
any real profit. The extra expense of
making checks causes the program not to
outperform the best single algorithm in a
significant way.

This kind of scheme is efficient only when
the population characteristics change
slowly, of course. In that sense, it is
unrealistic to expect that it can provide
a vast improvement in sorting efficiency
in an operational environment. By analogy,
however, we might hope that such a scheme
applied to tasks harder to analyze, like
certain kinds of scheduling in time
sharing systems, could lead to really
worthwhile savings.

5.3 Second Adaptive Scheme

The second scheme used the data shown in
figure 4.1. The program has but to know
where on the figure the new list is, and
it can choose the best sorting method. The
length Lis given: since the program is
not given R, it has to estimate it. The
adaptation here is how much resources to
put into estimating R, If the whole list
is examined, that represents a fairly mas
sive expense: and if, say, but ten items
are examined, then there is a fairly large

chance of making a bad estimate. The
parameters of the procedure for estimating
Rare tuned so as to minimize the cost.
The difficulty with such a scheme is the
length of time needed to be sure of the
results of tuning. It is clearly cheaper
to use short samples, except that then the
probability of picking the wrong selection
by chance increases: that may lead to the
selection of a much more expensive algo
rithm.

We decided that the parameter of esti
mation that ought to be optimized was the
fractional size X of the sample that gave
the estimate of R. That is, if X were 0 .1 0
then a list of length 500 would be tested
for R with a sample of length 500*0.10=50.
The estimation does not pretend to be an
accurate measure of randomness, which is
in any case undefined except insofar as it
is defined by the generation process
itself.

If Y is the fraction of successive differ
ences between successive elements in the
list that are negative, then the program
makes the randomness estimate R~ = 2*Y.
The process is illustrated

LIST
0 1 2 3 4 5
0 6 2 3 4 5
6 10 1 5 4 9 2 3 8 7

y
o.o
0.2
0.5

R
o. o
0.4
1.0

and these agree obviously with the gener
ation process in a gross way. The cost of
the estimate is s ome approximately linear
function of the number Ll=L*X of the items
in the sample, There is no a priori
reason why the optimal value of X should
not be a function of L, and in truth it
may bei furthermore, the optimum is not
even well defined in any absolute sense,
and must depend on the distribution of the
population. This point is considered fur
ther in section 6.

Once the (R,L) was established for the
given list, the method to be selected was
found by examining the region around the
point (R,L) in figure 4.1. Since that
figure is drawn from noisy data, as dis
cussed in section 5.1, we averaged the
region around (R,L), using a SXS window,
and the program chose the most frequent
best algorithm in that window.

We selected a populat 1 , n of lists so as to
exaggerate the effects and success of the
scheme, by picking lists where the differ
ences in performance are marked. The re
sults for various values of x, that is,
the fractional sample size for estimating
s, are shown in the table:

337

COSTS of
Sorting Estimating Total

X
.05 2930 16 2946
.10 2817 33 2850
.15 2856 50 2906
.20 2833 68 2900
.30 2808 102 2910
.so 2823 171 2994

1.00 2812 344 3156

The COSTS are in arbitrary units. This
shows a shallow but definite minimum at
X=0.10.

Using this value of X, then, let us com
pare this program with the single algo
rithms separately, and with the best pos
sible selection (BP):

Program M Q I BP
2821 3457 3476 17991 2744

So it is clear that the program is not
quite the best possible, but is still some
20% better than Mor Q, even allowing for
the extra resources used in making the es
timate.

5.4 Third Adaptive Scheme

The third scheme illustrates the selection
of a usable adaptive method from a set of
possibilities . Each method is not pre
cisely prespecified, but must be adap
tively improved before it can be reason
ably evaluated. This does not demonstrate
the full construction of a possible com
plex processing scheme from a tabula rasa,
but it does show how easy it is to test
possible combinations of simple sub
processes to generate useful processes.

The supposition is that the program knows,
from previous experiences that we do not
specify, that the values Rand Lare sig
nificant parameters in the choice of the
best sorting algorithm. What the program
does not know is how best to combine those
two parameters to get a reasonable func
tion that will help to make the decision
about the algorithm to be selected.

Again, we used the data that produced
figure 4,1, The figure was divided in
regions bounded by smooth curves, so as to
smooth over the irregularities caused by
the random number generation that made the
figure. The boundary of the region where I
is the best policy is like a hyperbola,
for example, separating it from where Q is

. 1

. I

I
I

- I

best. The boundary between Q and Mis
somewhat more complicated, and shows
clearly that M (if we didn~t know) is a
binary merge, losing a little efficiency
relative to Q every time the length L
rises above another power of 2. For the
sake of simplicity, this scheme selects
only between Q and I, ignoring M: that is
because the boundary between Q and Mis
not easily describable.

The point of this scheme is not to have to
store the relatively large amount of data
in figure 4.1, but to approximate its con
tents with a simple formula. We suppose
that the program does not initially have
the concept or idea of hyperbolas, and
cannot make algebraic inferences from pic
tures like the figure. What it can do is
to try schemes and pick the best perfor
ming one. This conceptually simple plan
is complicated by the fact that each
scheme will be seen to have parameters of
operation, just like the one in section
5.3 above. Since we need to compare the
best examples of each scheme, that means
that we .must optimize each one before we
compare them all and choose the best.

We decided to do that in parallel. The
schemes we tried were all to use a func
tion of Land R in combination with a
threshold; if the function was greater
than the threshold, select Q, and other
wise I. The functions were simple arith
metic combinations of Land R:

(L) (R) (L*R) (R/L)

There are obviously others; and those can
be generalized in obvious ways. But per
haps they can be considered a fair sample.
Remembering the observation two paragraphs
above that the boundary between Q and I
was approximately hyperbolic, the reader
will suspect that the best function ought
to be (L*R), since L*R=constant is a
family of hyperbolae.

The program ran all of those schemes,
represented by the different function
forms, in parallel, keeping track of the
costs; after adapting the thresholds to
somewhere near optimum, the costs were
compared and the best one chosen. The ex
periment used 2500 lists, the ones that
were used to make figure 4.1. Using Las
the function, the best threshold turned
out to be 40; using R, the best threshold
was .08 - .10. This is shown in the fol
lowing table, using arbitrary units for
the costs:

338

LENGTH
THRESHOLD TOTAL COST

10 6185
20 6182
30 6181
40 6179
50 6180
60 6187
70 6194

RANDOMNESS
THRESHOLD TOTAL COST

.03 5995

.04 5944

.OS 5944

.06 5916

.07 5916

.08 5912

.09 5912

.10 5912

.11 5933

.12 5990

using L*R, the best threshold was 30, and
the cost was better than for either L or R
by themselves.

L*R
THRESHOLD TOTAL COST

10 5957
20 5881
30 5877
40 5942
50 6066
60 6268

Using the other functions produced no
usable threshold at all. The differences
in performance are not enormous, it must
be remarked, but they are all in the right
direction.

6.0 Discussion

What we have tried to show here is that
some conceptually very simple methods of
adapting certain parameters that govern
the selection of an algorithm in a com
puter program can produce profit for the
system. Learning what is the best thing to
do, and when to do it, always entails more
work than merely doing what is the stan
dard1 sometimes, however, it more than
pays for itself. If one is in a situation
that is hard to model -- like a fickle and
changing set of computer users -- the de
fault procedure has to be to see experi
mentally what works best, and then to take
advantage of what one finds out.

In our paradigm, sorting lists in an adap
tive way, testing to see which is the best
algorithm is expensive; usually more ex
pensive than doing the task. It is as
though we are slogging through mud of
varying depth on submerged wooden tracks,
but we do not know which is the track that
is nearest the surface . To test the other
tracks may require complete submersion,
but it may result in finding a track that
is only a couple of inches deep, So how
often should one take the plunge?

Adaptation at another level is shown by
the second scheme. Here we are provided
with a good map of the terrain, showing
the depth of the tracks. It>s just that we
do not know where we are unless we swim
around in the mud getting bearings - - the
more we swim the better the estimate.

The third scheme handles two adaptations
at once. One of them is a simple tuning of
a threshold, the other a simple discrete
choice. The important aspect is that the
second choice depends on having done the
first adaptation well. It is an easy ex
ample of a hierarchy of adaptations. We
use it not so much as to produce a useful
program by itself, but to illustrate the
kind of adaptations that must be used in
the development of systems that may be
hard to model or even understand.

It will be clear that a crucial role in
this attack is played by the representa
tion of the possibilities, the different
functions in our case. As we have men
tioned already, Winston (1976) lays much
stress on that point. Behind it lie some
other ideas. Before the representation can
help, there must be the possibility of
searching for help in the first case. L
and Rare merely two attributes of a situ
ation where a program has a task to do. In
some way the program seeks to use the in
formation in Rand S; and furthermore, it
seeks to optimize the diagnostic functions
of the observables Rand S, by improving
them. Typically in current system design,
the possible realm of modifications is
sharply restricted and tightly delineated,
so as to make it less likely that bugs
will arise. Systems, it is claimed, should
always work in known ways with tried and
true algorithms. What we are talking
about here is a system that ought to be
able to notice, for example, that small
values of L should mean to use I; and from
noticing, to make infe e nces about good
rules of behavior. Good rules of behavior

339

in our case, that L can be used as an
indicator or diagnostic, and that so can R
-- can be combined or modified to make
better ones. That process of course does
not stop in a single application, but con
tinues, guided by the enlarging set of
tasks that the system is faced with. In
deed, the rules of combination and modifi
cation themselves ought to be considered
as modifiable in the same way, but perhaps
that is more ambitious than we are dealing
with here.

The efficient functioning of the adap
tations described here does not depend on
having an accurate model of what sorting
is or how the individual algorithms work.
Rather, we claim, the program tries to
learn from various kinds of experience.
This is far from saying that good models ,
mathematica l or otherwise, should be
avoided. If we can get good models, we
should use them. But there are many in
stances when it is difficult to produce
and deal with accurate models of the tasks
ahead; in such cases, some of the adaptive
techniques shown here, or ones like them,
may be useful.

That may be true, for example, in the con
trol of a complex communications net, or
in setting or tuning the scheduling algo
rithm of a time-sharing system. Typically
such models have to assume certain kinds
of random distributions in order to be
mathematically tractable; and all too
often those assumptions are grossly incor
rect.

7.0 BIBLIOGRAPHY

Feigenbaum, E., and Lederberg, J . , "Heur
istic Programming Proj e ct," in Earn
est, L., "Recent Research in Artifi
cial Intelligence, Heuristic Program
ming, and Network Protocols,"
Stanford AI Lab Memo AIM-252, July
1974.

Knuth, D., The Art of Computer Program
ming; Volume 3: Sorting and Search
ing, Addison- Wesley, Reading, Mass.,
1973.

Minsky, M,, and Papert, s., Perceptrons;
an Introduction to Computational Geo
metry, M.I.T. Press, Cambridge, Mass,
1969.

. l

Rosenblatt, F., "The Perceptron - a Theory
of Statistical Separability in Cog
nitive Systems," Cornell Aero. Lab.,
Report VG 1196, Gl & G2, 1958.

Winston, P.H., Artificial Intelligence,
Addison-Wesley, Reading, Mass., 1977.

Wirth, N., Algorithms+ Data Structures=
Programs, Prentice-Hall, Englewood
Cliffs, N.J., 1976.

340

Some Observations on Problem Solving t

Hans Berliner
Computer Sc[ence Department

Carnegie-Mellon University
Pittsburgh, Pa. 15213

Abstract

In this paper, we make the case that problem solving
based cin immutable goals, selection of operators to bring
these goals closer, and discrete logic lo both select
operators and evaluate outcomes is effective only in very
small domains. Instead, methods using r,earch and
continuous evaluation functions do well in any si1.ed
domain as long as the evaluation functions have a certain
structure. Oi!,crele reasoning systems manipulate
discrete valued entities. However, serious errors can
occur when the value of a continuous variable is
discretized, especially if this is done before lhe value is
needed for final output. Because of the need to
prevent this source of large errors during the evolution
of problem solvers that must survive while they
master their domain, we infer that the
generality-specificity dimension of problem solving
runs from ends-or iented to means-oriented, and from
continuous to discrete. Finally, we conjecture about the
structure of computing machinery for problem solvers that
must evolve from general to specific.

I. Introduction

Means-oriented problem solving requires a method of
selectinp. a sequence of operators lh;il may leJd lo a r,oal.
This involves knowing 1l1e potential of availJhlc opr.ralors,
and possibly the closeness of non-goal sta les to goal
states. It is widely held that this ·type of activity is a
major part of human problem solving, and that the
select ion of suitable operators is achieved using
rule-based or pattern-based knowledge.

It is also possible to have r,imply an ends-oriented
problem solving approach. This involves generating a
set of alternat ives (by generate and test procedures
such as searches) and then evaluating the leaves of the
test set to find the best path to pursue. Usually one
attempts to generate the laqiesl sci of alternatives that
can be processed with the resources available. This
gives a brute - force aspect to the method; it attempts
to discover the best path by investigating the maximum
number of alternative paths, rather than by attempting to
apply knowledge to guide the investigation into those
areas that appear most promisinp .

trhis re search was sponr,ored by the Defense Advanced
(DOD), ARPA Order No. 3597, monitored by the Air
Under Contract F33615-78-C-1551.

The two methods can best be distinguished In that the
means-oriented method must have knowledge. of the
potential of operators so that it can choose wisely among
the avai lable ones. Thi!, has lead (in GPS [Newe ll, et. al.,
1960)) to the "table of differences" that gives a clue as to
which operato·r is most likely to produce maximum
progress. To dale, the generation of dala lo guide lhe
se lection of operators has been done almor,t exc lusively
by humans (programmers). Thus, it ;ippears unlike ly that
data of this type can be generated mechanically for
domains of (say) 1012 states, yet humans Me able to make
good decisions in such large domains.
Means -oriented methods and ends-oriented methods
both will require knowledrie of how flOOd a current
stale is; in the first instance to decide which branch to
pursue (as being closest to the goal) and in both inst ances
in order lo identify the goodness of leaf nodes that are
reached.

Ev11tuation can be thought of as being done by a
function that assigns a scalar value to a state, thus making
it possible lo compare· its goodness to that of another
state. In small domains this process may be little more
than the identification of goal -s tates, or the identification
of states that have some salient feature that must
elevate it above any state not hav ing such a fe ature. This
dominance type of reasoning is w.ually q11itc adequate in
sm.i ll domainr., thur. giving evaluation a di•,crcle ch,1rarler;
yes/no or a sort ing into a small number of equivalence
cla!.ses, However, in IM£'.N domains the full power of a
polynomial function, with it s ability to trade-olf the value
of one term of the polynomial again~! the value of another,
may be required. At its full potency, the polynomial can
take on a (more or less) continuous se t of values, and
should (if totally effective) be able to correctly order all
states in the domain with respect to nearness to
goal-states. In pr;iclice, such effectivenc!,S is not
achievable in interesting domains, so it is desirable that
the ordering, if not total ly effect ive, at leas t not produce
large decision errors (such as sending the solver off in
the opposite direction, or leaving it stranded on a
hill-top). We shall show that the structure of the
eva luation polynomial has a great deal to do with its
effectiveness.

Research Projects Agency
Force Avionics Laboratory

341

. i

The selecting of effective operators al a noae, apart
from being governed by decision rules, could also be
done by evaluating the state that each avai lable operator
produces and selecting the best. II should be noted
that, while there is a sequential flavor to a reasoning
process that moves from one premise to the next to
achieve its aims, the evaluation polynomial is
essentially a parallel construction, with each term
independent of all others. Thus reasoning, c;tiscrele,
and sequential appear to go together, while judgement
(evaluation), continuous, and parallel go together also.

II. Two Examples

Consider the problem of mating with a King and a Rook
versus King (KRK) at chess which is a medium size problem
with a slate-space of about 105. All instruction books for
humans will indicate that the correct procedure (lhus
means-oriented) is to use the rook to build a fence around
the black king (see lower left of Figure I), and gradually
constrict the fence unlil the male is there. II is ralher
interesting that this advice suffices for hum~ns. Clc.1rly,
they have enough structure to interpret these
instructions and produce the correct effect. I have
never heard any beginner complain about the adequacy of
these instructions, although I remember being temporarily
al a loss the first lime I tried the exercise because
fence constriction, taken to lhe ultimate, results in
stalemate. Thus, a !:isl-minute change of strategy is
required.

Figure l

However, when one attempts to implement the same
instructions for a computer program, some very vexing
problems occur. They deal with exactly how to go about
cpnstricting the fence, since at times no constricting move
is possible without lelti11g lhe oppor,ing king out (lower
right of Figure 1). Also, there is !he problem of not
intersecting the fence by placing one's own king on lhe
fence line and thus allowing the opposing king to cross
(for instance if K-83 in lower left, then K-R6 and black's
king has escaped). These problems are so prolific that

342

one author [Zuidema,1975) has complained !hat if such
a simple problem he that difficult to pror,ram, then
chess itself mU!;t be impossible. If one wishes to
program chess using only the means-oriented (rule
based) approach, then Zuidema is probably riehl in !hat
no set of humans will be able to write all the required
rules.

Actually, the ends-oriented approach for doi11e KRK
had already succeeded several years earl ier, although
with a great deal of structured knowledge tocether
with very small searches [Huberman, 1968). But the
real power of evaluation functions whe-n combined with
search was demonstrated with great simplicity and
elegance as follows [Aikin, et. al., 1971): Consider the
upper right of Figure 1. Here a eradient exists from the
center to the corner. Let the major lerm in the evaluation
function be "how decentralized the black king is". Since
the same evaluation function is used by both sides, 81.,ck
will resist beine, decentralized. Thu~, it is wfficient for
White to choose lhe sequence of moves !hat
decentralizes Bl.1ck th!! most unlil the t;i~k is completed.
This measure would be sufficient for termin;il noder, of a
9-ply search. For shallower $earches, a subsid~ry term
which values keeping White's kine near the 81ack one, and
a stil l less sienificant term !hat values keeping While 's
rook near the White kine, allow the male to be
performed by a 3-ply search. This search need only U$e
the evaluat ion function, know the value of material (so as
not to lose the rook) and the rules of chess, $0 as lo
mate and not stalemate. The resultine program could be
written and debugged by a second year undergraduate in
about 5 or 6 hours.

Finally, the same problem is capable of ultimate solution.
A data base can be created for all po!,sible positions of
KRK. Then workine backwards from those positions !hat
are males, one can assien a number lo all other
positions. That number represents the minimum number
of moves that are required to produce a mate. Positions
that are draws (stalemate or lost rook), will be ;issir,ned
a value of infinity. U~ine this data base it will alw;iys be
possible to produce the shortest mate in any situ~tion, by
merely eencr aling all lcr,al moves and se lect mg !he one
that move5 to the position of lowesl v;ilue. Thi'., ta'-:.k
has actually been performed by ;i number of
researchers, first by M. R. B. Clarke [Clarke, 1977), ~nd
has produced the first (though trivial) computer-produced
chess knowledee. Clarke showed that ii is possible to
mate in at most 16 moves from the most difficult po~ition,
whereas ii always had been thoueht to require 17.

That there is a trade-off between the amount of
knowledee and the amount of r,carch is very clear ly
shown above. A dala base of 105 ~uffices to produce
optimal play as does a search to 31 ply (intr;,clahle
unless a dynamic proeramming appro;ich ii, used to
identify identical nodes and turn the free into a r,raph) .
The most desirable r,o lution thouah, for problems of !his
level of complexity is a heuristic one, in which only a
sati sfic ing, rather than an optimal solution is obt;,incd. A
shallow, ends-oriented search r,erves well here. A simple
construction (the gradient) puts a key measure onto the
evaluation process. At certain depths of search this
suffices for successful performance of the task. At

shallower depths of search some small amounts of
additional knowledge are required. To select an adequate
move, without search or a complete data base, requires
large amounts of carefully structured knowledge. The
optimum trade off between search and knowledge in the
above e,cample appears lo be in the area of a 5-ply
search (1 second duration) with a 2-lerm polynomial. II
is inlere5ling lo note that one can characleri1e this
problem (as is possible of all males of a lone kinp,) as
simply a decentralization problem. This characterization is
simple, precise and very useful. Yet humans characterize
it differently, posr.ibly because of the effect of culture
on the primitives available for perceiving the problem.

The above is a typical medium sized problem as judged by
the size of its state space. Let us now examine a small
problem: i.e . the Monkeys & Bananas (M&B) problem
[McCarthy, 1964) with at most a couple of hundred states.
As usually staled, the M&·B problem has a few operators:
move monkey (X), move box (X), climb box, and reacl1 (x),
each of which may h.we some applicable pro-condition
and effect some lranformalion on · the state. Then
dependine on what your favorite paradigm is, you can
solve the problem using GPS, predicate calculus, etc.
However, these formulations all require a number of
restrictions on the real problem (to make ii lraclab!e),
together with machinery specifically designed lo make the
solution proceed in the necessary direction. Even then,
solving the problem produces a formidable challenge to
the solving system.

Let us now pose M&·B as a search problem. We can
complicate the problem lo the point where many
techniques would find it next lo impossible lo solve by
increas ing the number and scope of the operators.
The operator for moving the box produces movements of
exactly one fool in one of the 8 compass directions. The
same is true for moving the monkey. Also, allow the
monkey lo climb down from the box as well as climbing
up. In addition, allow the monkey lo throw the box
against the cage (making ii unclimbable), lo tear a lath off
it (making ii unclimbable), and lo reach in each of the
eight compass directions. A goal sla te is one in which
the monkey touches the bananas. In this problem
statement, quite a few operators may be applicable at any
one time. The st ate description specifics the
3-dimensional Ice a lion of mon~,ey, box, and bananas, and
the condition of the box.

Now, as a searrh problem, we would be willing lo allow
(say) a 4-ply search and evaluation of terminal nodes.
Our evaluation function will value primarily lhe
closeness of the monkey to the box, secondarily the
closeness of the box to the floor and lo the bananas, and
thirdly the closeness of the monkey's hands to the
bananas. It is rather clear that such a paradigm will
succeed with extreme efficiency and ease in discovering a
very good solution. The monkey will approach the box to
satisfy the primary term, push ii under the bananas to
satii;ly the secondary term, .. nd climb the box and reach
for the bananas lo satisfy the- terti ary term. I realize, of
course, that M&B is only used as a pedai::ogical tool lo
demonstrate problem solving paradigms. In fact, that is
exact ly what I am using ii for.

343

Ill. Problem Solving Performance in Large Domains

Let U$ now examine the exper ience of various problem
solving methods in large domains. There are a few
effort$ to apply means-oriented methods to checkers
[Samuel, 1959 & l 969]i and chess [Baylor & Simon, l 966i
Berliner, 1974; Pilrat, 1977; and Wilkins, 1979).
Samuel's program wa5 a marvel for its time, but has more
recently been soundly trounced by a full-width searching
(ends-oriented) pro&ram with much less knowledi:e
[Samuel, 1977]. The Baylor-Simon MATER program worked
only in very restricted situations. Thus this was more a
case of exposing the power of a useful move selection
heuri$lic (the move that allows the fewest replies) than
an attempt lo cover the domain of mating combinations,
not lo $peak of the realm of combinations in chess. The
Berliner program did reasonably well at doinP. r.hl'!~s
combinations, but was inept when no combinations were to
be found or when its knowledge was not quite up lo
finding them. Pitral introduced the notion of plans lo
select moves that, deeper in the search, were compatible
with an initial goal. He also introduced methods for
patching a plan when it ran ir1lo difficulties, but his
approach relied heavily on brute force searching and
very simple plans. The Wilkins program considerably
improved on the last 1wo efforts above with knowlcd(le
comparable to the Berliner program and plans of great
sophistication that effectively controlled the plaw.ible
action$ deeper in the search. This pro&ram was able to
attain very hiuh solution rates 011 chess combin.ition
positions, once its knowledge base had been built up to an
appropriate level.

In all these efforts one paramount fact has intruded it se lf
upon us: a very small change in the problem
environment can make a large difference in what is
the correct action, and what, therefore, the problem
solver may or may not be able to do. Thus, the way
means -oriented programs are improved is by the writing
of ever more exception rules. In the end, the search is
supposed to catch those exceptions that were not
explicitly programmed in.

However, there is a great deal more to chess than
executing combinations. This has been shown dramatically
by the Norlhwe '., lern University chess group, whor,c
program CHESS 3.0 (and up) has been lhe perennial winner
of almost all important computer chess event~.. While
meami-oriented programs wallow in trying to ~olve
relatively small sub-domains of cl1es~ .• CHESS 4.6 (and up)
[Slate & Aikin, (1977)] has in the la~.t 3 years moved up to
challenge good human players, some of whom it has
defeated. This program relies heavily on a full-width
search with iterative deepening·!· which is made more

1' A full-width search al each node looks al all alternatives
in the tree that have not been logically eliminated by
alpha-beta. pruning. Iterative deepening involves doing
first an N ply search, then an N+ 1 ply, etc., until the
allocated lime resources have been expended.

efficient by the install at ion of a h.1sh table Jhal :

1) Guides the search into the promisins sub-trees
discovered by the previous iteration, and

2) Terminates the search at posit ions that are identical
to those already searched in the current iteration.

Ken · Thompson of Bell Telephone Laboratories has shown
that organizing the above method for parallel
computation and ur,ins special purpose hardware
produces further sieni fi cant speed-ups. Thus, in chess
and checkers the han'd-writinc is clear ly on the .wall.
Brute force searching w ith re latively litllc know ledce will
soon be able to beat almost all the players in the wor ld.
Whether knowledee oriented proi::r ams wi ll be required
for the ·World Champion level in chess is a moot point;
however, in this writer's opinion l he proerams will play
with so much srealer consistency, that with just small
amounts of additional knowledge, they will rerservere to
the World title.

The situation is quite different in GO, however, where the
magnitude of the task would appear to mahe the u•,e of
ends-oriented methods quite difficult because of the
larse number of alternatives. In fact, no one has tried
such methods, and the best pror:ram to date [Reitman and
Wilcox, 1979) makes heavy use of speciall y designed GO
constructs to euide its play. However, its play in this
most difficult cf games is far from beins able to (live
even intermediate players a decent eame.

At backsammon, a program that uses no search hut
relies solely on evaluat ion of all possible moves
emanating from the current pos ition [Berliner, 1980), has
recently defeated the reisnins Wor ld Champion by the
lop-sided score of 7-1; a result that must be somewhat
discounted due to the stochar,tic nature of the eame.
Again, this was the result of an ends-oriented approach,
that we describe lo some desree in the next section.

Apart from games, experience with speech understandins
systems has shown that discrete rcasonine sydems do not
do as well as a brute force searching system u~.ine a
fraction of the knowledee [Lowerre ~- Reddy, 1979).

It should be clear from the above that, if at all
possible, ends-oriented methods should be employed.
They arc easier to implement, i,ucteccl be tter, and may
be the only realistic way in certa in domains. Further,
the methods h,wa been shown to be app licable to
many domains that were thour:ht to be too complex to
ever be subjugated by brute-force searchine.

We hope the above has made clear our f irst
thesis: that means -oriented problem solving has proven
robust only in small domains. Some shal low searching plus
some simple termin.il ev.ilu.ition has in an overwhe lminp,
number of ca!,eS been shown to be superior to the
business of solvin(! problems· by operator se lection and
reasonins. This is definitely true for machine or iented
problem solvins, and the evidence is so strong thal one
wonders how living organisms set along without using this
if,· in fact, they do. '

344

IV. The Structure of Evaluation Functions

The principal usefulness of evaluation functions is for
guiding a problem solving process that is unlikely to
reach a domajn defined goal (i.e. a complete solution)
during its present probe, and must thus settle for a
step in what is considered lo be the rip,ht direction
toward a solut ion. A number of rca.,ons now appear lo
favor usins evaluat ion functions where po%iblr. over the
reasoning methods that have been considered fundamental
in the past:

1) It is posr,ible to r.imult ancous ly pursue sever al goals
· with this method. Each term (or a small r.et of terms)
in the polynomial could be conr.idered a po•,•,ible
sub-soal to be pursued. Thus the dcr:ree to which
each has been achieved may be ascertained. This is
extremely difficult to do under rca~.onine paraclip,ms,
as one eoal wil l be par amount in such proc cclures.
Such a goal, in turn, determines the val,cl sub -eoals,
and all others .ire ienored. Such methods will
prefer success at ·a primary goal lo success at a
number of secondary goals that may, in fact, be
superior. Interactions between sub-eoals may be
taken care of in the evaluation function by the use
of non-linear terms.

2) Two major problems with evalualion functions have
been that they were thouehl to be lackint: in
context senr,ilivity, .ind it w~s po 0.,. ihle for a
hill -climbine proce~.s usinr, !,uch cvalualion funcl,ons to
get stuck on a sub-optim,11 hi ll .incl not be able lo get
off. However, in the pursuit of goals .ind ~uh-r,oal c. ,
proper conr,truclion of the ev;ilu.ition fu1,clion will
produce smootl1 trans itions from one st,,tc to another,
even if the first st ate rcprescnls a major eoal lb.it
has just bcPn achiC'ved, and the focus mu~t now shift
to a new coal. Below, we dr.rnonslrale how to
construct evaluation functions properly.

The essential DO's of constructine evaluation function~ are
embodied in my SNAC method that was used in the
backgammon proeram that beat the World Champion last
year [Ber liner, 1980). SNAC stands for Smoothnc ~.s.
Non-l inearity, and Application Coefficient• ..

Non-linearity is extreme ly import,ml for exrerl
performance. A condant coeffic ient can at bc•, t portray
the a11eraRC usefulness of the term associated with ii.
There will be times when this avr.racr. vah1e will br. at
considerable variance with what expert judgement will
consider correct, and th is is where i.yslcms usinr, linear
funct ions wi ll fail. Non-linear functions can produce the
necessary conle><t by combinine the action of several
variables into one term. However, the key to ur. ins
non-linear functions is smoothnef.S. This is where Samuel
made a serious methodological error when he found that
his non-l inear functions did not perform better than his
earlier linear ones [Samuel, 1969). Smoothness relalcs
to the rate of ch~nec of a function for adj~ceril pilrl ~. of
the domain. Samud, for sever al of h,s v~riablcr,,
subdivided their n.1turill ranr.e into a comprcs•.cd r ,,nr,e,
so that the variable could only lake on a few value~
and thus the $if.nature Table would be smaller. Howcvr.r ,
this was a fund.imenta l error as can be seen in Fi !.',urc ?.

• I •.
j:

Computational Effect

Natural Scale

0 30

Computation al Effect

I
Forced Scale I

I

0

A

I

I
I

I
I
I
I
I
I
I

B

5

Figure 2

If a variable h;ir. a value neM vertical line A, then in
both the lower (lar(le grain) and lipper (~mooth) situations,
a small change in the value of the abscissa wil _l produce
only a small change in the value of the ordinate.
However, near vertical line B the situation is quite
different. Here, for the IOwLr situation, a small change
in the value of the abscissa can produce a very large
change in the value of the ordinate. Such a construction
wilt provide opportunities for a program to manipulate
the value of the ordinate to an extent unwarranted by
Its actual utility, arid this may cause the program to
make serious. errors.

345

This type of .behavior can occur whenever there are
sharp boundaries in the evaluation space. A~.sume a
chess proerarn has a different method for evalu,1tinp;
middle - game situations than it does I.or evalu,1ti11e
cnd - eame situations. Experts agree that such di i, pMate
types of positions should be evaluated differcnlly.
Further, as5ume such a prO(lram has a middle-came
position that ii likes, but this position would receive a
poor evaluation if seen as an end -game. If swapping
material would cause the position to be cvaluilled af. an
end - game, then the program would go to great lengths to
avoid swaps. This could well cause ii to encounter severe

and unnecess11ry problems in the play. The conver•.e of
this problem also occur s: the proeram hurries into the
end- game because the cenler co11trol situation is
unfavorable in the midd;e g.1me.

Smoothness in functions is the answer to this problem.
There is a slow metamorphosis of middle-game to
end-eame, and durin{l this phase the values of both
phases must be rccoenized, althoueh the middle-eamc
is wanine and the end -g ame wincing. Any attempt to draw
a sharp line between these is doomed to failure because it
will result in occasional unwarranted attempts to stay
on one side of the boundary or cross it too quickly.

The key to accomplishing smooth transitions is
Application Coefficients. An application coefficient is a
variable that measures something elobal, yet varies very
slowly in the current context. It multiplies a term in a
polynomial, thus providing context about the importance of
the term under current conditions. We have invcstieated
a number of domai~s and found good applic a lion
coefficients in all of them. Their characler is that they
measure some trend or change of phase. Because
they vary slowly and smoothly, the program will not be
trying to manipulate them over a significant range (as by
deliberately staying in the middle-eame because it has
good control of the center, and this i!. not va luable in the
end-eame). For chess, material on the board is a
good application coefficient, and this will produce a smooth
metamorphosir. between pha~e<. ;ind there will be no
boundar ies near which catastrophes can occur.

a. ___ 2' _____ ~-

d-----~--

e. _..,.....-:::::=:::s;;. _________ ::::::-::::--,, __ aaa,_

T

Figure 3

Application coefficients can also prevent the previously
mentioned problem of a hill-climbin{l program getting
stuck on a sub-optimal hilt. Figure 3 shows the problem.
With linear polynomial evaluation functions, the hills in
the evalualio·n surface will have pointed peaks and this
will make ii quite likely lo gel stuck on such a hill (3a).
With non-linear functions, the peak is less pronounced so
that ii may be easier to descend a once-climbed hill, if

346

some other high ground is in view of the searching
process (3b). However, with applicat ion coefficient:. ii is
possible to change the contour of the hill even as it is
being climbed. This is shown in 3c through 3c; the arrow
showing the proximity of the current state to the hill. At ~
distance, the hill looks as in 3c. This allows the heir.hi of
the hilt to be compared to that of other l;ind•.c;ipe
features that may be ;ichievable. However, as the hill is
climbed, ii bP{lins lo flatten (3d), m;iking the achievement
of the summit less desirable (since we arc almost there
anyway), and resultine in the program lookin~ for the
next set of goals before even fully achieving the current
set . As ii sets out for the next coal, the hill flattens
stilt further (3e). This flattcnine is controlled hy
application coefficients that detect the degree of procress
in achieving · the go;il, and reduce its importance ae. ii
comes closer to being achieved. This par,,di r,m recalls
the situation in which a footb,111 playl'r be~in., lo run with
the ball before he has caught ii. The point is: if the
controlling human processes solved problems sequen tially
rather than in parallel, such behavior would be unli~.ely to
occur.

Thus application coefficients can chanee the program's
view of what ii should be doine, even as it is doing it.
For instance, in my backgammon procr am one of the major
eoats is to blockade some of the opponent's men.
However, ii such a maneuver succeeds, the blockade must
eventually be lifted in order to brine one's own men into
the homeboard lo proc.eed with the win. In order lo
have the procram understand the clC'~1rahihty of the
blockadinr, go;il, there arc arplic at ion rocff il icnl ~- I hat
eauge the overall situ11tion and ra1•.c or lower the
de,:;irabilily of bloc~.ading b;iscd upon r, lob"I
considerations. Such constructions can be tuned to
eive truly amazing performance: percC'iv ing (as ii
appears) when blockading is appropriate and when ii i-:;
not.

Thal is not lo say that a domain '.,hould never be
partitioned into sub-domains for evaluation purpo ~- cs.
Sometimes, that is the only se n'.,ible thing to do, but it
must be done judiciously. For in'.,f,rncr, in b.,rkg;immon
there will come a time in the came where the two sides
are no longer in contact and both arc racinc tor home with
no further impedinc of each other . In !,uch a pha•.c ,t
is senseless to consider such fe atures as blorkading
potential, board control, etc. Since the coefficient'.. of
such terms would be zero during the running r,ame,
evaluations generated for such runninc came situations
wilt differ con•,ideraply in mag11itudc from tho-.c
generated for competing non-runnin~ eame po '..ilions.
Yet ii may be necessary lo chOO'.,C between '.- uch
positions. What is needed in such a silualion i'., a
common measure along which both types of po:.ilion~. may
be evaluated. This is attained by computine the win
probability for eac.h type of posi tion. The bed of each
position type can first be cho~.cn using the evaluation
function appropriate lo each sub -domain. Then the best
po,:;ilion in each r.ub-domain can he compared to •,elect
the best over-.lll course of action. New sub-ciom.1ins
should only be created when there is a clear b,>•.is for
doing this, as the number of polcntial compari'..ons grow,·.
with the square of the number of ',uh-domain•., and c ,1ch
comparison is a potential source of dcci<.ion error.

The use of SNAC functions in
program turned it from a mediocre
expert level prosram, with only a
additional backgammon information, as
[Berliner, 1980).

my backr,amn,on
competitor to an

smiltl influx in
is documented in

V .. Why Discrete Systems Fail in Laree Domains

To here, I have tried to make two points:

1) Thal the combin;ition of searc h and sood evaluation
functions produces a very fine problem solver for
many domains, ;ind

2) That the evaluation lune lions must be carefully
com;tructcd and arc more powerful when non-linear.

Now it i!, time to tilke cor,niz;rncc of the rather appi!rcnt
degradation that takes place when problem ',Olvcrs
relying on boole.in dr.cision makinp, ;ire applied to l,irp,e
domains. The dcr,radation takes place in the proce~.s of
goal se lection, the proce!,S of operator selection, ;md the
process of cvalualinr, closeness to goals in non-terminal
nodes of the domain. From the variety of evidence
presenter!, we consider ii appilrent that thi ~. is not the
fault of researchers or lack of effort, but rather of the
nature of the problem and the method. II ;ippears that
the idea of applying boolean decision rules to a laq~e
domain just will not work unless the domain ir, quite
regular (as i5 mechani.cs, where a few principles have
ultimately beP.n shown lo account for all macro behavior).
Thus, as the exponential explo ~. ion prevents any attempt
to produce salisf aclory decision functions b.ised on
predicates (too many predicates required), any attempt to
subdivide the domain without true basis ir1 fact succumbs
to the problems we have described in Section IV.

Lei us try lo rlcfcrminC' the rca•,on~. why it i~. i.o difficult to
improve a discrete problem solver. The effectiveness of a
problem solver is measured by the nearness of the
system propo~ed solution to the best or an adequate
solution. If an algor ithm for a particular domain is not
known, then it is likely that effectiveness will be
achieved gradua ll y throuch increa'.,es in i,eni.it ivity to what
a correct so lution is. By sensit ivi ty, we mean the number
~f st ate s in the domain that Me now ordered correctly,
ignoring how far off misorderc>d stales arc.

Given that the r.ffcclivcnc55 of a problem ~.olvcr is to be
improved, 5enr,iti vity can be increa~.ed by havinc two
states, that former ly had the same value, no lonccr h;ive
the same va lue. If two such states have similar state
descriptions, ii is po~,5ible lo think of them ;is bcinc
somewhat arljacent in some mappinp, of the domain
onto a multi - dimen•,ional surf,,ce. To prod11cc the new
sensitivity, ii ir. po~siblc to pl;icc a p;irtit ion belw<'cn the
two states so that slates 011 each side of the partition
will now be treated differently. However, this will result
in many other adjacent states ro 'J w bcinp, on one side or
the other of the new partiti~ci. thus pos5ibly altering
the.ir treatment too. ·

As earlier sections of this paper have shown, there is a
d~finite risk aswciated with increasinr, the sens it ivity of a
discrete problem solver. The r isk slems from the fact that

347

introducing a partition, while it may improve the sen5 itivity
of the problem solver, may also result in radica lly
misordering certa in states. Partit ioninp, will or1ly work
proper ly if:

1) There really is a discrete difference between
identifiable sets of sla tes in thir, part of the domair1,
and

2) The partition is drawn absolutely correctly •,o as to
not have any state on the wronp, !,idc of the partition.

Apart from partilioninr, domains, incrcasr.s in scw.itivity
can alr,o be achievr.d by crc-i tinc a •.,mooth cradient
between the two stales that arc now lo be lrc.,ted
differently. This wilt affect the valuc 5 of other adj;iccnt
states, but not in such a severe manner as to cause
misclassifications.

A critical obt,ervation here is th-it drawinc a partition,
irrevocably fixes the value of !,omc vari;ible at some
discrete interval (as in Fir.ure 2, lower scale). If such a
variable is quar.i-contir1uow,, and if ii i; value is to be ll !,ed
later for other computat ion!., then it is certain ly
preferable to _po~.tpone .the di-,cretizinr, proce !,S a<, lone as
possib le and retain its value in quasiscontinuous form.

Among large systems, MYCIN- like syt.tems are considered
lo exerc ise their expert ise very well. These syi.tcms
apparently avoid the partitioninp, problem in laq;e
domains by the use of probabili5lic indicators [Shortliffe
& Buchanan, 1975). B~causc of thi5, they can hardly be
considered to rea!,on in the boolean maimer, but r,,the•
one gel!; the ilavor of eva luation with !,L:mmation of
likelihoods.

VI. Models and Sensitivity

The cffcctivenc",S of a problcn1 !.olvcr cl c pPnck, on how
well its domain is beinp, modelled. Mor.I domains can be
·modelled at many levels of dct ail. Con~.iclcr lhal the
morning weather forecast predict!, a 1101 chance of
showers, when it could c.onccivably produce a cumul,,ti ve
precipitation curve over lime for that day for p,1ch
acre in the metropolitan area. If the domain is cJi,,crct e
and the model ;ilso, then a correc tl y formulated discrete
mode l can be very effective. This is the case in mo e, t
small domain5 and in domain!, that are "regularized", c.p, .
the game of NIM for which a simrlc rule can find the
winning move even though the si7c of the dom;iin is
infinite. If the nature of tho domain is not completely
understood, optin8 for a quasi-continuous model appc,,rs
preferi!ble. This applies both to operator selection ir1 a
problem solver that app lies knowledge to this prorcss
(because misorcforinr, operators can al:,o have a
very dcleteriou~. ef fect), and to cvalu;ilion.

Based on the acl ior1 requirements ,ind the ,,ccur;iry ,111d
avai labi lity of input data, a model i~ cho~.cn. II is d!''.,irccf
to have that model lune tior1 11c;ir lhc top 0 1 it s
effectiveness. When a given model docs not perform
near that level, then eit her the input cl,1ta ;1re
insufficient, or the model i'., ii1:.c11•.itivc to cert;iin thine,~ ..
The selection ilnd improvement of a model appears to
governed by the following principles:

. I

I
· I

1) For each model of e;ich dom.1in I here is an optimum
sensitivity. If the model utilizes a greater degree of
sensitivity, it wastes computational resourses; if it

. uses lesser sensitivity, ii will fail to "understand" or
react to certain things. However,

2) Each increase in sensitivity in the problem solver is
accompanied by an increase in ri$k of incorrect
interpretation or action.

Consider the chess middle-game, end-game situation
mentioned in Section IV. In a particular implemf!nt~lion, a
program may coni.ider that trying to control the center in
the end-game is important, even though ii is really not.
This would produce occasional ordering errors bec;iur,e
the program would value center control in the end-eame
more than is warranted by reality. Thue,, it would
occasionally fail to achieve a more worthwhile goal.

Now, assume the space is partitioned !,O !hill
middle-r,ilmc and cnd ··g,,mc arc no lonecr on the r.;ime
side of the p...rlition, ;incl control of lhc center is v~lucd
only in the midcllc-r,am<'. Thi!, will rcr.ull in helter
ordering of mod cnd-c,1me r.ituation!., bul will
occc1sionally ca use r,cr iour, problem!, akin to myopia
when transitions from middlc-gM11C' lo end-e,ame Me
involved. This is the risk involved, and as we have shown
earlier, it can produce scr iouc. problems that would
render the value of the increa!,cd sens itivity questionable.

Another way of looking al the problem is the following:
Assume a syi. tem i<.; cnpable of only two rer.ponsC's and a
partition in the domain determines which response is
given. The naivt' probability of re•,ponsc error is 0.5.
However, as!,umc an ordcrine of the states of the domain
exists such that all slates above a cerl;i in state in the
ordering arc on one side of the partition and all lhc
remaining slates are on the other side. Under such
condit ion<:;, error~ ;ire much mOrC' likely to be mildC in
the vicinity of the partition thm1 elsewhere.

If a vilriable is to be used to produce ii firial boolean
decision, then there ir, no difference betwl'cn U',in[l a
partition and usinr, some di',tan(e function of the place
in the ordcrinr, lo produce the ,Hl'.wcr. However, if thi !, is
an intcrm.,diatl' rPr.ult that m,1y l;itcr be combined with
other d;ita, then therc i<:; a 1:re;it cie.11 to he r.,1i11rd hy
retaining some f117 zy repre!,e11L1lio11 of the re :.ult; i.e. the
distance from the partition. Thus, it is frequently more
useful to know that .in event occurred ;ii sun:,cl, than that
it occurred durinr, daytimC'. Coni.idcr thC' imrorlancc of
distance from hir,h noon when ev;,luatin~. the ability of an
observer to !,cc an t'Vent accurately. When it may be
important to carry forward !,Orne of the prorcrties of the
original measurement, a quasi-continuous measure serves
better. In such cases, where ii i:radicnl mca~urc-!, lhc
properly in question, the likelihood of error would be
equally distributed throuehout the domain. Since under
such conditions, general remedie~ exist for reducinr, the
error in any slate, such a paradigm would seem
preferable, when the value may be interim or when
partitioning cannot be justified by the intrinsic
proper iles of the domain.

348

VII. The Evolution of Problem Solving Systems

There is no doubt that a highly discretized problem solving
structure is the most effective one possible when such a
model is applicable and the data ii requires are
available. After all, that is what science is all about.
However, if a· model produces r,ome crrorful respon!,es
then care must be taken in achieving discreliz;,tion. In a
sequential problem solver, a number of sm,1 11 errors is
preferable to one laree error. Rr•,earch in r,;ime playinr,
pro3rams has shown ar,ain and ;,g,,in th;it stl{h ;i sr,lcm
is no better than its wea~.c~I link. Further, lhC' very
ability lo discriminiltc the condition of sm;i ll error ar.
against no error at all, is the h,1llmark of the expert.
Each presently surviving org;inir.m con i, iders it •.C' lf to
have adapted adequately. However, an expert oreani~m of
a particular species m;iy be able to distine,uir.h errorful
acts in a somewh;il inferior (but c urrcntly survivinr. ;ind
self-confident) spec imen of its spec ie s. Thi s, a~,,in,
supports the view !hill r,mall erron arc tolerable, and are
done away with gradually over time.

Thur,, for larr,c domilrns . (and in re;il life . ;ilmO!,t cvcryl hinr,
is taq~e) problen1 r.o lvcrs mll',I fir',! and forcmo,.t he ;1ble
to produce rc;isonilblc decisions (ones that arc not too far
off the mark). To do this, fuzzy methods are much more
satisfactory than those that. re;ison. Because hir,hly
discretized problem solving is so difficult to achieve, it
is almost certainly preceded by other less exact cleci~.ion
methods in the ontogeny of any evolvinr, problem !,Olver.

Thus, it would seem that slarlini: with r.mooth, cont inuous
functions and r,radually discrctizing them would bt' a
good slrater,y for achieving increased '.,cn,.it1 vily. /Is
increar,cd scnr,ilivity i~ achieved over tir,,C', mo~t of the
previously effective problem r.olver must dill be in pl;,ce.
Thus, there will be a mixed bag of problem ~o lving
techniques, rangine from the ui,e of continuous function!, lo
distrele logic. In such an environment, ii appcMs
extremely likely that many intermcdi,,te variable 5 will
retain their original fuzzy char;icter br.caw.c higher level
constructs are presently made from thC'm. Thcr.e notions
would apply equally well to anim.ite .ind inanom;ite rroblem
solving systems.

Assuming the ilbOvc ideas are valid, there mur. l be a
way for the problem solvinr, sy<.lrmr, of liv ing
organisms to evolve in this direction, both clurinr. the
life of the oreanism ;ind the life of the ~pec ic$. One
possible solution to this problem is the v;iriablc
coefficient. Suth coefficients, as they vary between 0.0
and 1.0, have several known uses:

1) Ar:. a characteristic function in fuz zy set theory,
indicating to wh;il extent the clement to which ii
applies is a member of the set.

2) As an application coefficient in SNAC that controls
applicability of a coc;icepl.

3) For controllinc truth value in crrtain belief r,r, IC'w,.

When such a value ha•. grnvililtcd i1!, clo~.r. to ,in exlrcmal
value as can be deleclccl by the ~ystcrn, fhr.n we no
longer have smooth vari;it ion between the limit s. , but a

boolean entity. We conjecture that this paradigm
accounts for the behavior of Piacct's pre -cOn$crvation
children, wht;?re the phyr,ical extent of a r,et of objects is
taken lo be · the hes! criterion of the amount of the set,
until ii is learned Iha! conservation (when applicable)
dominates "extent".

Thus, an essential element of any evolving problem
solver would appear lo be comput ing elements capable of
graded response:t Beyond that, we do not want to
propose here that human problem solvers use full-width
shallow searches and evalu;ition procedurce. as lhose
that have bc"n so !,ucccs~ful in computer pror,ram:..
However, we do consider ii likely that processes based
on constraint satisfaction (as first implemented in Waltz's
vision system [Macie.worth, 1977]) or tightly controlled
knowledge directed sc;irches (ar, in the B* tree r.earch
algorithm, [Berliner, 19791) arc deve loped to play the role
that brute-force SP.i1rching docs in the previoue,ly
reference!, pro(\ramr,. Both mdhods could he w,cd lo
screen out obvious mir.fits in the solution process, in the
fir!.I ca•,e throueh i1 low level combin;1torial ;1nalyr,ii. and
in the second ca'.,e throueh C'.,limation of the limits of
usefulness of each ;ilternative. Ev,1luat ion would be done
using SNJ\C-like methods al each level of the solution
process.

Finally, let me brief ly address an issue that may be
brought up by r,ome. The theory of compt1lation
decrees th;it any continuous syr,lem can be r,imulnlc-d to
any desired dc(\rec of fidclity by a Von Neumann machine.
Thal is not the i!.sue here. The issue is one of complexity.
Certain computing clements perform certain tasks more
efficiently than others, and in th is case the required
elements are such that they c,1n provide graded
acceptance of signals, and graded re•,ponse. To use
boolean _circuits lo provide the rn•.ponr.e required by the
complex domains that arc encountered every day would
appear to be so difficult that (we hold) even evolution
would not have been ;iblc to build a r.ati sfactory
system out of such component~. The real question is
how did a syr.tcm that ha~ gr,,dcd rcr,pon•,c come to
evolve into a ~-y~.tem that can manipulate ~.yrnbolic
entities. It m;iy be that, in our de:,ire to •,imul.1te the
highest level s of human b;havior, we have been
overlooking the fundamcnt al 111formation proces'.,ing that
is required to produce the vari;ibles that support such
performante.

twe are well aw..re of previo1,:, work in the field of
perceptrons ;ind the dcmow.tr;ifion of the limitations of
linear perceptrons in [Minsky and Paper!, 1969].
However, we arc here propor.ing a special cl ;v.s of
non-linear perceptron.

349

BIBLIOGRAPHY

Aikin, L. R., Gorlcn, K., and Slate, D. (1971), "Cher,s 3.0
An Experiment in Heuristic Programming",

(Northwestern University), Unpublished, 1971.

Baylor, G. W., and Simon, H. A. (1966), "A Chess Mating
Combinations Program," Proceedings of AFIPS J066,
SJCC, Vol. 28, 1966, pp. 431-4117.

Berliner, H. J. (1974), Chess as Prob/rm Soluing: The
Dr.11cLopn1tmt of a T nctics lllln lyur, Ph. D.
Disserl.iltion, Computer Science Dcp,1rlmcnt,
Carncgie-M£>11on University, March, 19711.

Berliner, H. (1 .979), "The a* Tree Search i\ lcorithm: A
Oest-First Proof Procedure", /lrtif,cial lntcllifirnce,
Vol. 12, No. 1, 1979, pp. 23-40.

Berliner, H. J. (1980), "Bac.kgammon Computer Program
beats World Champion", Artificial lntclltf.(cncc, Vol.
14, No. 1, 1980.

Clarke, M. R. 8. (1977), "Appendix. Kine and Rook
againr.t King" in lldvanccs in Compllter Clicss I,
M. R. 8. Clarke (Eel)., pp. 116-118, Edinburch
University Press, 1977.

Huberman, 8. J. (1968), "A Program to Play Ch, ... ~
Endgames", Technical Report No. CS I 06,
Computer Science Dept., Stanford University,
1968.

Lowerre, 8 ., & Reddy, R. (1979), "The Harpy Speech
Understanding System", in Trends in Speech
Reeognitio11, W. A. Lea (Ed.), Prcntice-H,111, 1980.

Mack worth, A. K. (1977), "Consistency in Networks
of Relations", Artificial lrttclligcncc, Vol. ~. No. l,
pp. 99-118, 1977.

McCarthy, J. (19611), "A Tough Nut
Procedurt-s", Stanford University,
Memo, No. 16, 1964.

for Proof
AI Project

Minsky, M., & Paper!, S. (1969), Perecptron.,, The MIT Prcr.s,
1969.

Newell, A., Shaw, J. C., ;md Simon, H. A. (1960), Report on a
General Problem Solving Program for a
Computer, lnformatio11 Proccssinfi: Proacdings of
/n.terrtalio11al Conference on Information Proccs.1i11g,
pp. 256-264, UNESCO, Paris, 1960.

Pit rat, J. (1977), "A Chess Combinations Procr;,m Which
U!.es Plans .. , Artificial lntclligcrtcc, Vol. 8, No. 3,
1977.

Reitman, W., .and Wilcux, 8. (I <J79), "The Structure and
Performance of the · INTERIM.?. Go Proeram",
Procr.ei:lings of the Si:t:th lrttcrrtational Joint
Conference on Artificial lrttclligMce, Tokyo, 1979,
pp. 711 - 71 9.

. I

.\
I
-I

. \

' \

.• 1

I

Samuel, A. L. (1959), "Some Studies in Machine Le.1rning
Uting the Gaml? of Checkers", IBM Journal of
Research and Development, Vol. 3, No. 3, 1959, pp.
210-229.

Samuel, A. L. (1969), "Some Studies in Machine Learning
Using the Game of Checkers, II - Recent Proeress",
IBM Journal of Research and Development , Nov.
1967, pp. 601-617.

Samuel, A. (1977), "The Duke vs. Stanford Compulrr lo
Computer Checker Maleh", S/GART Nrwslctt~,·, No.
63, June, 1977, pp. 86-87, /\CM Publications.

Shorlliffe, E. H., {I.., Ourhanan, n. G. (1975), " /\ Model of
lncxac.t Rca',Oninc in Mecli<inc", Mnr/r,•111011<:al
Diosctcnccs, Vol. 23, pp. 351 -379, 1975,

Slate, D. J., R· Aikin, L. R. (1977), "CHESS 11.5 - - The
Northwestern Univen ity Ches~ Proeram", in Chess
Skill .:n Ma,1 and Machi11c, r. Frey (Ed.), Sprinecr
Verlag, 1977.

Wilkins, D. (1979), "U~ing Plans in Chess", F'rocccrli11us
of the Sir.th l,1tcr11atio1111l Jotnt Confcrr11r.c on
Artificial lntcll1gcncc, To~.yo, 1979, pp. 960-967.

Zuidema, C. (1975), "Chess, How lo Program the
Exceptions", Afdeling Informatica, Amsterdam, 1975 .

350

AUTHOR INDEX

Ak 1, Selim G. 224 Levine, M.D. 196

Sadler, N. I. 312 Little, James J. 188

Bainbridge, Stewart 296 Lockman, Abe 129

Barnard, David T. 224 Mackworth, Alan K. 172, 179

Bauer, Michael A. 55 Magnenat - Thalmann, Nadia 320

Bechtel, Robert 26 Mays, Eric 123

Berliner, Hans 341 McCalla, Gordon I . 248

Bobrow, Robert J. 131 McCarty, L. T. 304

Bradshaw, Gary L. 19 McDonald, David D. 143

Bramer, M. A. 217 Morgan, H.L. 312

Breu, Heinz 179 Morris, Paul 26

Browse, Roger 166 Radhakrishnan, T. 327

Cohen, Phi 1 i p R. 263 Reggi a, James A. 289

Cohen, Robin 272 Riss land, Edwina L. 280

Congdon, Valerie I. 332 Robinson, Ann E. 115

Covington, Alan R. 87 Rosenberg, R.S. 204

Davis, Stephanie R. 332 Rosenberg, s. 34

Doran, Ralph J. 224 Rowat, p. F. 204

Funt, Brian V. 15B Schneider, Peter F. 71, 248

Gaschnig, John 240 Schubert, Lenhart K. 87

Gnanamgar i , Sakunthala 312 Se 1 fridge, 01 iver G. 332

Havens, \Iii 11 i am s. 172 Short 1 i ffe, Edward H.

Hobbs, Jerry R. 101 Sirron, Herbert A. 19

Ho! lander, Clifford R. 95 Skuce, Douglas 296

Kibler, Dennis 26 Smith, Reid G. 232

Kittredge, Richard 151 Sridharan, N.S. 304

Kramer, Bryan M. 79 Stansfield, James L. 41

Kuehner, Donald 49 Thalmann, Daniel 32 0

Labrador, C. 327 Webber, Bonnie L. 131, 312

Langley, Pat 12, 19 \Iii lensky, Robert 256

Lesperance, Yves 63 \Iii lkins, David E. 212

Levesque, Hector J. 263 Youssef, Y.M. 196

