










































































































































































































Command Schemata 

processes and have illustrated both the kind of claims which 

might be made and the type of support which might be adduced for 

them. Most of the claims are meta-theoretical, i.e., they are 

not claims about the details of a particular model bu t rather are 

about general feature s of information structures and processes . 

Space does not permit discussion of several interesting issues, 

e.g., process control, event structures, or the implications of 

the present approach for traditional psychologi~al theory. It is 

hoped that the present approach will assist the uneasy marriage 

of the "odd couple", the computational and the empirical 

traditions and thus encourage development of a genuine cognitive 

science. 
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RI:;CENT PROGRESS IN THE ESSEX FORTRAN CODING SHEETS PROJECT. 

R. Bernat, J.M. Brady and B.J. Wielinga, _ 

University of Essex. 

This paper describes recent progress made in building a program to i nterpret 
Fortran coding sheets using several sources of knowledge. Currently the 
program consists of three parts: a sheetfinding program, a segmentation and 
character reading program, and a program which reasons about Fortran from the 
"blob structure" of the coding sheet. To date, all these programs are more 
or less operational and some results are presented. The emphasis of the project 
lies currently on the interaction between various parts of the program, in 
particular the interaction between the Fortran reasoner and the character 
program. Some preliminary ideas on this interaction will be discussed . 

Introduction 

The FORTRAN coding-sheet project at the University of Essex is an attempt to 
show the effectiveness of the use of knowledge in a visual ?erception task, 
rather than the m~re possibility of employing knowledge. It is for this 
reason that we have chosen such a well-trodden topic - that of reading a 
casually hand-printed FORTRAN program like that ·in figure 1. The topic has 
already been studied from the AI point of view, notably by ~unson, Duda and 
Hart (Munson 1968) (Duda and Hart, 1968) and of course much work has been 
expended on upper-case hand-printed character recognition in the absence of 
knowledge of the text being read. Further justification of our approach may 
be found in Bernat and Brady (1976a) and work up to the beginning of this 
year is described in l:lornat (1976), Bernat and Brady (1976b), Brady and 
Wielinga (1976a) - this paper reports on progress _in our work since then . 

The effectiveness of knowledge in visual perception has to derive from 
redund~ncy in the visual scene. Perceiving one part of the scene and knowing 
something about what the scene contains enables us to predict something about 
another part or ·at least gives us constraints on its future interpretation. 
FORT~ ii; particular is e1;ormously redundant syntactically. Upper-case 
handprinting, on a sheet with ruled lines and 'blips' which form a sort of 
clock-track, is highly constrained. Writers try to distinguish similar 
characters but don't follow a template - there are variations in size, 
regularity of spacing and so on. 

The program was originally conceived as falling into two sections - one using 
~nowledge about FORTRAN, the other about characters and writing. It is 
in~ended to be a collection of intercommunicating processes with the output 
being plausible interpretation of the program on the sheet.' Due to our 
t~~o: when first faced with the sheer size of our input (one sheet is 
d7gitised to 12M bits or about 300K PDP-10 words) we added a preprocessor. 
Figure 2 shows the organisation of our program. All the separate parts exist 
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( some more developed than others, of course ) and work is just starting on the 
real meat of the project - developing a dialogue between the 'character experts' 
and the "FORTRAN reasoner' . 

Figure 2 

- 194 -

Recent progress in the Essex Fortran Coding Sheets project. 

Data Collection is via a 35mm negative, photographically enlarged into a 175*125mm 
positive, digitised to 256 light- levels on a photodensitometer. As part of 
the project we've had to build our own 'vision system' - an interpreter (Bornat 
and Wielinga 1976 ) picture I-0 routines an indexed database and a 'frame' 
system. 

The Coding-sheet finder 

One of the most obvious tasks in our project was to find where to look. We had 
t he idea of taking a 'long- distance view of the sheet , wit h sufficient resolution 
to see blobs of writ ing and perhaps the ruled lines but insufficient to see 
details of the individual character s. The program is reported in Bornat and 
Brady (1976b). It works on reduced-resolution data - a 4,,4 reduction gives 
us a manageable 20K of PDP-10 words . 

The original motivation for the proe;ram was to produce a 'blob map' which would 
be t he first input to t he FORTRAN reasoner. Now that we are more e xperi enced 
in low-level 'vision hacking', we find that we can get better information, 
collected in a more satisfactory fashion, from the Segmenter (see below), so 
t his part of t he program has been relegated to t he task of telling t he Segmenter 
where the lines are, what parts of each line seem to be completely blank, and 
give an estimate. of the inter-blip gap. We utilise the fact t hat t he l ines 
are long, straight, parallel and periodic to indicate where we may have mi ssed a 
line or interpreted some writing as part of t he line. 

Edge detection and segmentation 

Given the outline of the coding s heet as produced by the sheet finder, an area 
of the s heet corresponding to one line is selected and read into memory. The 
grey-level data are transformed to gradient s pace using a 3 x 3 gradient operator 
(Roberts, 1963) and thresholded. Feature points with a similar gradient 
direction ( quantised to B different values) are grouped together i nto edges. 
This process results in a representation of the writing on the line in terms 
of a set of edge elements, similar to a "Primal Sketch" as proposed by Marr (1976 ) . 

Figure 3 
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Figure 3 s hows an example of such a primal sketch. We decided to use the 
primal sk€tch rather than intensity or gradient data as the basic input for 
successive stages of the program for a number of reasons. Obviously, the 
edge data ( thresholded on length) are a lot cleaner than the raw data. 
Secondl y , identification of the coding sheet lines and blips is eas i er for 
an entire line than for a much smaller character area. A third reason for 
using t he pri mal s ketch is that the segmentation process can be based on stroke 
(edge) i nformation rather than on some sort of intensity histogram, as was 
the case in an earlier version of the program (Brady and Wielinga, 1976). 
Anot her advantage of the use of a primal sketch is that during the segmentation 
process the · program can have a "quick look" at the character area to determine 
rough size and s hape information and to do some statistics on the strokes 
present in the area. This information can be used to classify the character 
roughly as being "roundish", " straightish", a decender (possibly a bracket) 
or as an operator (in general smaller than alphanumeric characters). A 
last reason to introduce the primal sketch is detection of curves. Curves 
can easily be detected (and describ~d) as a set of small, partially overlapping 
edge elements, for example the 11 011 and "R" in figure 3. 

The information gathered in the segmentation stage (blob data and tentative 
character information) is sent to the Fortran reasoner and a dialogue between 
segmenter, character- reader and Fortran reasoner is initiated. It s hould be 
stressed that the output from the segmenter is not always reliable. It is 
possible that "noise strokes" (e.g. scratches or dirt on the original sheet, or 
strokes that are part ·of the coding-sheet lines or blips, but which are not 
identified as such) are interpreted as punctuation marks or as operators. 
Descender information, and in general, size information, is not reliable in 
cases where segmentation between characters is difficult. EquaJssigns are 
often not small enough to be identified as operators . These problems can often 
be overcome in a dialogue between the segmenter and the Fortran- reasoning 
program as described below. 

Reasoning about Fortran 

The task of a FORTRAN reasoner in our program is to exploit consistency between 
information about different parts of the sheet, based on knowledge about the 
FORTRAN programming language. There are two obvious ways to do this: 
1) Bottom-up: as if a human, reading the sheet, came upon the realisation 
that it was FORTRAN. 2) Top-down: knowing that it is FORTRAN, attempting to 
impos e a structure on it. 

The bottom-up solution is like trying to find the bes t-fit from a universe of 
interpretations, given some partial information about the data. The top-down 
solution is more immediately approachable, and is plausible as an explanation 
of the way we read difficult handwriting, searching for an explanation of the 
confused marks in front of us. Although humans don't often have to use this 
method when reading our data, it is a mode of behaviour worth investigating 
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which may cast light on the organisation of processes in other visior tasks. 

Most work on the reasoner up to date has assumed that the coding-sheet finder 
would provide 1blob 1 data like that shown in figure 4. Tte reasoner is told 
the length and position of blobs, whether they are 'operator ' blobs (including 
punctuation and equa~ signs ) or 'alphabetic' blobs . Its task is to guess 
statement identities given this information, and to indulge in a dialogue 
with the character and writing processes in the program, both inviting and 
providing information about the data. · 
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Figure 4 

The part of the reasoner which guesses statement identities is implemented. 
Working rather like a top-down parser, it a ttempts to assign roles to the 
blobs on each line, simply working through the possibilities in turn. It 
assumes at present that this is unreasonable for consecutive alphabetic blobs 
to run together into one blob, reasonable if two blobs are separated by a 
parenthesis or if an alphabetic blob is followed by a numer ic blob. It assumes 
initially that 'words' are never split into separate blobs (except for 'GO' 
'TO'). With these simple assumptions it produces the following first guesses 
for the lines shown above: 

1. 
2. 
3. 
4. 

comment I FODRMA T 
WRITE I REA 
FORMAT 
FORMAT I WRITE READ 
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5. FO RMAT 
6 . assi~ment 
7. assi~ment 
8 . assignment READ 
9 . bACKSi'ACE FORMAT I REW I ND I PAUSE 
10. lo!lical-IF 
11. DO I arithmetic-IF 
12. assignment 
13. assignment 
14. viRITE I READ 
15. FO RMAT 
16. CALL I GOTO I REAL I STOP 
17. END 

Figure 5 

In figure 5, the correct guess is underlined. I t is surprising t hat such 
a simple algoriti1m, using such simple knowledge, can arrive at such a performance, 
often guessing correctly and always including the correct guess among the 
few preferred. The performance is sustained wit h other data - though if you 
know about FORTRAN syntax it would be trivial to construct an example to confuse 
it. We'll be happy if our system works on non-pathological examples at first, 
though later it will of course be necessary to be able to 'take back' early 
gu7sses and then, we hope, it will be able to handle programs which aren't 
written as clearly as t his one. 

The program is at present being developed to produce a graph which shows 
eacn statement's role in the control flow. The most obvious use of this is 
to divi de declarations from statements, thus rejecting the 'REAL' guess on line 
16, for example. Most inter-statement knowledge relies on control-flow inform­
ation so the grapn is essential for us to move away from reasoning about single 
statements. It makes some apparently bizarre inferences more plausib le -
such as the one which runs ' line 17 is EHD, line 16 isn't a comment or a 
FORHAT, t herefore line 16 must be RETURN, STOP or GOTO'. In early versions 
of the proeram we were so i mpressed by the power of knowledge about the END 
line t hat it look<;d at the last line first of all, knowing it to be END, 
"':1d tnen at the line above, knowing it to be RETURN, STOP or GOTO. If it 
mignt be RETURN, th:n these last lines formed part of a subprogram, and therefore 
•• • ! Later we reJected this as too ridiculous and made the program look 
at t ne s neet from top to bottom. Now it will have to produce this inference 
as a natural result of reasoning from the control graph - the last node in 
a prosram unit can 't let cont rol ' drop through' to the END line. 

All of the knowledge used so far, however, and all of that envisaged in t he 
near future, is about the syntax of FORTRAtl . This reliance on syntactical 
knowledge is a strength of the project - although an understanding of the 
program's purpose would enable us to make much more powerful inferences and 
employ mucn more powerful constraints, such an understanding is beyond the 
state-of-the-art. The knowledge so far incorporated enables us to cut down 
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the search space of t he rest of the system enormously, and often enables 
us to propose single character •acid tests' to distinguish between different 
interpretations of a line. This avoids many simple errors which an 
unknowledgeable system might make - for example Duda and Hart (1968) after 
filtering the output of a character recogniser, 'had a line interpreted as 
D7 11 I=l, 100 - t he obvious interpretation in blob terms is that it is a 
DO statement, so the possibility of the second character as 1 7 1 would never 
arise in the first place. 

~ difficulty with. incremental simulation (Rovner, Nash- Webber and Woods, 1974) 
is_tnat t he associated modules may fail to meet t heir original specification . 
This has happened with the FORTRA.~ reasoner. The data shown in figure 4 
are ~nrealist~c. In some ways they're too accurate - the segmenter may 
provide unreliable information and in others they're too undifferent i ated -
tile segmenter can provide information on many individual characters within 
t he blobs. A true dialof.ue involves helping the character experts with t heir 
problems as well as spontaneously offering interpretations. 

Character reaaing using partial knowledge 

Once the Fortran reasoner has made a first guess at the identity of a statement ( or 
has decided that no reasonable guess can be maue just on the basis of t he blob 
information) a dialogue between t:,e Fortran reasoner, the segmenter and t he 
cnaracter prob,rams is initiated. This dialogue may take t he form of sir..ple 
requests to t ue character system like "verify an F", with a straip:htforward yes or 
no answer. In cases where difficulties arise, either in the Fortran reason i ng 
or iu tne cnaracter reading process, more elaborate dialogues may occur: Fortran: 
"I tnini<: tnis statement is RtAJJ, WRITE or FORMAT; can you discriminate?"; 
cnaractersystem: " ilo I can't read it, but the 5th character could be a bracket, 
aces tilat help?"; Fortran: "Yes, I'm now quite sure it is READ( ••• ), could you 
verify?"; charactersystem: "Yes, it could very well be READ( • • • )". 

Tne consequence of this rich interaction is that tne character s ystem has to be 
able to adapt its behaviour according to t he requested information and to the 
partial information it is provided with. Moreover it must also be able to "be 
aware" of its own reasons why it believes certain evidence. This is because 
questions of confidence may arise, e.g. when a hypothesis made by the Fortran 
Reasoner strongly conflicts with character evidence, the character reader has to be 
able to contemplate t ne structures it has built, and possibly reconsider its 
interpretation of the evidence. Even internally a conflict may arise during the 
reading of a character, e.g. in the case of difficult segmentation or ligatures: 
"it looks like O out I have an unexplained stroke". 

The requirements sketched above have strong implications on the structure of the 
cnaracter system and on the way in which knowledge about characters is 
represented: (1) t he control structure must be flexible: the program l',ust be 
able to change its strategy; (2) character knowledge should be packaged, in such 
a way that partial information can be represented and properly used; (3 ) t ne 
program must be able to assign roles to indivitiual pieces of evidence within the 
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character model s . 

To meet these r equirements we deci ded t o i mplement a system based on "frames" 
(Mi ns ky , 1975). In Brady and Wielinga ( 1976a) we elaborate further on the 
considerat i ons which l ead us t o choose a f rame-type represent a tion for character 
knowl edge , and gi ve l!X)re details about our current implementation , which was 
i nspired by an early version of KRL ( Bobr ow & Winograd, 1976 ). Frames as we have 
implement ed t hem are information structures containing knowledge both i n 
declarative and procedural form. Two i mport ant types of components i n a frame are 
SLOTS and ACTIONS. SLOTS name and describe pieces of information in a frame , while 
ACTIONS describe procedurally how to use (or to obtain ) information in t he frame , 
and what to do when certain conditions in a frame are fulfilled. Figure 6 shows a 
t ypical frame representing a model for •v•. 

[v isa LETTER with. s l ots 

LEFTSTROKE + [* isa STROKE with.slot s 
SLOPE + <jyof LEFTDIAGONAL VERTICAL> 
POS + LEFT 

RIGHTSTROKE + [* isa STROKE with .. s l ot s 
SLOPE + <anfof RIGHT DIAGONAL VERTI CAL> 
POS + RIGHTJ 

INTLR + [* isa I NTERSE CTION with. slots 
sTROKE1 + ! LEFTSTROKE 
STROKE2 + ! RI GHTS'iROKE 
RELAIIGLE <- ACUTE 
POS <- BOTTOM ] 

with . act ions 
when. filled <allof LE FTSTROKE RIGHTSTROKED] 

$ ( test verified (INTLR) t hen confirm ( V) 

$ )] 

_£!: t est converge.at .bottom( LEFTSTROKE , . RIGHTSTR0!<$. 
~ test check. touch( LEFTSTROKE, RIGHTSTROl<l:J 
~ confirm ( Y) <> possible (U) 
or deny ( V) <> suq:est (U) 

~ deny ( V) <> suggest ( [AHUJ ) 

[when. filled I NTLR} [confirm (V)} 
before.confirmed 

, test distance ( endpoint(RIGHTSTROKE), 
- - interse ct point (RIGHTSTROKE, LEn'STROKE) )>DELTA 

$)] 
] 

~ possible (V) <> transformto(Y) <> verify( Y) 
2::. ~ sma.llvertical .. stroke ( right) 

t hen deny ( V) <> t r ans formto(U )<> verify(U) 
or handle. troubles ome evidence ( ) <> 
- resul tis TRUE · 

Figure 6 

The frame contains descriptions for t he two strokes (SLOTS: LEFTSTROKE and 
RIGHTSTROKE ) and for t he intersection between t hem (SLOT: INTLR). The actions 
describe what to do when appropriate strokes have been found: certain checks have 
to be made to make sure that 1V1 is indeed t he right character and not 1 U1 or 1Y1 • 
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To illustrate the working of our curr ent charact er system, we will describe the way 
in which t he program -behaves when confronted wi th the character i n figure 7, having 

Y no partial information on the i dentity of the 
character. The program starts with a bottom-up 

· search for big strokes in the pri mal sketch. Two 
strokes will be .found. A database search for 
applicable frames (i.e. frames containing slots for 

Figure 7 two diagonal or vertical strokes , one at the left, 
one at the right) will return a number of character 

frames (e.g. A, H, u, V, Y •••• ) and some frames which describe stroke relations 
like INTERSECTION and VCOMBINE. 

The system currently uses 1 hard-compiled 1 knowledge to decide which type of frame 
is t he best candidate to try first - in bottom-up mode stroke relations. 

VCOMBINE - a stroke relation which checks whether t wo strokes are part of one bigger 
stroke - is tried, refuted and proposes to try INTERSECTION. This frame is 
hypothesised and confirmed, and its slots RELANGLE and POS are filled with ACUTE 
and BOTTOM respectively. When the INRERSECTION frame is confirmed, the list of 
candidate character models is checked for models which match this type of 
INTERSECTION. The model for Vis hypothesised and its slots are filled, invoking 
as a side effect the whenfilled action. Since the INTERSECTION is already verified , 
t he Y frame will be confirmed, and the before.confirmed action will check whether 
~he distance between the intersection point and the end point of the right stroke 
is larger than a certain threshold DELTA. Since this is the case, the information 
in the V frame will be mapped onto a Y frame. The character system concludes that 
t he character is likely to be 'Y ' , but that 'V' is still an alternative possibil ity. 

Future work - the Dialogue 

Now that we have got to grips with the parts of the problem, we will concentrate our 
efforts on the interaction between the various .sections. Space does not allow us to 
show examples, but we have some simulated dialogues about lines of the coding sheet 
in figure 1. Line 8 ( 1 READ(S,30)N 1 ) for instance is quickly. identified as 
'READ(an , nn)a1 (an= alphanumeric, n: numeric, a: alpha)~:iil~iscrimination test on 
the comma (the alternative possibility - an assignment statement - requires an 
equals sign). 

In the case of line 9 ('FORMAT(I2) 1 ) of the same sheet the blob information is 
less conclusive: there are four different types of statements possible, and 
moreover the segmenter has some difficulty in distinguishing the first bracket 
from ' I' . So, more evidence about the individual characters is needed to find 
reliable hypothesis about the identity of the statement. It is precisely this 
of problem that our research in the near future will focus on. 
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It has been shown by Kowalski and van Emden that predicate 

calculus can be treated as a programming language . The axiorr,at­

isation of a problem is interpreted by a resolution theorem­

prover as a program for the solution of the problem . Certain 

symbol manipulating algorithms can be very concisely stated as 

predicate calculus programs. An example is STRIPS, the robot 

planning algorithm of Fikes and Nilsson. STRIPS can be stated 

using eight axioms , so that an eight-line program is the result. 

A stronger version of STRIPS, Warren's WARPLAN, can be written 

as a twenty-line program. 

Predicate calculus as a programming language 

Recently van Emden [2,3] and Kowalski [6,7] have been 

considering the use of first-order predicate calculus as a 

programming language. The axiomatisation of a problem, when 

converted to the clausal form of resolution theory [9], can be 

considered to be a program for the solution of the problem. The 

resolution theorem-prover PROLOG [1], has been used as an inter­

preter for programs written in predicate calculus. 

The logical statement A<= B&C, has clausal form Av-Bv-c. 
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The As a pr~gramming procedure, this is written as +A-B-C . 

procedure call , -A, is responded to by the procedure whose name 

is +A . The body of this procedure contains the procedure calls 

-Band -c . The unification of resolution becomes the identific­

ation of the parameters of the calling statement with the dummy 

parameters of the procedure. 

Two examples 

It is easy to construct LISP-type lis ts using nestings of 

the function CONS , and the empty list NIL. The two-element list 

[A,B] is represented by CONS (A, CONS (B,NIL)). Thus x is a list 

if x = NIL or if there exist y and z such that x = CONS (y, z) • 

This is equivalent to the procedures 

+ISLIST(x) -IS (x,NIL) 

+ISLIST (x) -IS (x, CONS (y, z) ). 

These procedures form a program for testing whe the r or not x 

is a list. 

The following recursive procedures construct a new list by 

appending the second list onto the end of the first list . 

Capital letters are used for constant values, and small letters 

are used for variables. 

(a ) +APPEND(NIL , list2 , list2) 

(b ) +APPEND(CONS(headl,tail 1) , list2, CONS(headl,newtail)) 

-APPEND(tail 1, list2, newtail) 

Procedure (a) states that if the first list is the empty list , 

then the new list is the same as the second list. Procedure (b) 

states that the head of the new list is the head of the first 

list, and that the tail of the new list is constructed by 

appending the second list to the tail of the first list . 
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These procedures could be called by the following main 

program 

(c ) -APPEND(CONS (A,NIL), CONS (B,CONS (C,NIL)), newlist) 

-OUTPUT (newlist). 

When these three clauses are submitted to a resolution 

theorem-proving program, clause (c) is distinguished as the set 

of support (8, 11] . When (c ) and (b) resolve , the resolvent is 

(1) -APPEND (NIL , CONS (B,CONS(C,NIL)), newtail ) 

-OUTPUT(CONS(A , newtail)). 

The left-most literal of (1) can be unified with ( a ) to produce 

(2) OUTPUT(CONS (A,CONS(B,CONS(C,NIL)) )). 

This clause can be thought of as resolving with the clause (e ) 

+OUTPUT(x) which has the side effect of printing the value of x. 

A proof procedure for executing programs 

A predicate calculus program is usually written using Horn 

clauses. These clauses have at most one positive literal. Most 

Horn clauses are either procedures of the form +A-B 1 ••• Bn ' or 

assertions of the form +A . There is also the negated goal of the 

form -B1 ••• -Bn and the terminal clause which is empty. It is 

easy to see that the resolvent obtained from two Horn clauses 

is itself a Horn clause. 

An efficient inference rule for doing resolution with Horn 

clauses is Selective Negative Linear (SNL) resolution [8]. SNL 

is selective in that it chooses one literal of a clause to re­

solve on, and must not resolve on any other literal until that 

literal has been used • . It is negative because its support set 

is negative and every resolvent must be negative. A resolution 

is linear if one parent of each resolvent is an input clause. 

The search strategy selects the left-most literal of the 
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support clause or a resolvent. When attempting to resolve on 

such a clause, the input clauses are tried in the order in which 

they are written . When an input clause is found which does re­

solve, no lower clauses are tried unless that branch of the 

search fails . This is depth-first search. 

In general a depth-first search is not exhaustive, and so 

the proof procedure is not complete. However, there is some 

indication that program termination may be assured by carefully 

ordering the clauses within the program, and the literals within 

each clause. 

The need for an extended predicate calculus 

Literals with side effects such as OUTPUT(x) are provided 

chiefly for the convenience of the user. This corresponds to 

Green's answer predicate [SJ. 

Certain semi-logical tests seem to require a special 

mechanism. Sometimes the truth of an essention can be tested 

within predicate calculus, but the testing of its negation 

cannot. For example, the procedure which tests whether x is 

a list, would also succeed if x were a variable. To test 

whether x is an explicit. list, a +NONVAR(x) procedure must 

be written. 

The following use of the special-purpose literal NOBRANCH 

allows the testing of negation. 

(a) +NONVAR(x) -UNIFY(x,CONSTANT) -NOBRANCH -FAIL 

(b) +NONVAR(x) 

(c) +UNIFY(y,y) 

(d) +NOBRANCH {has search strategy side effect}. 

Assume that node n of a search tree has label -NONVAR(variable). 
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This could resolve with (a) or (b). The search strategy will 

first try (a). This succeeds, producing node n+l labelled 

-UNIFY(variable ,CONSTANT) - NOBRANCH -FAIL. This resolves with 

(c) producing node n+2 labelled -NOBRANCH -FAIL. The following 

resolution is with +NOBRANCH whi ch as a side effect directs the 

search strategy to allow no further branching from the node above 

the one where -NOBRANCH first appeared , namely the node n. 

There is no +FAIL among the input clauses , so this branch of the 

search fails. The search would normally backtrack to node n 

and resolve -NONVAR(variable) with (b). But this is forbidden, 

so the search must backtrack further. 

If node n had been labelled with -NONVAR(A) , then node 

n+l would have been labelled -UNIFY(A,CONSTANT) -NOBRANCH -FAIL. 

This would fail to unify, so the search would backtrack to node 

n and resolve successfully with (b). Thus (b), which always 

unifies, is accessible only if (a) fails at -UNIFY(x,CONSTANT) . 

The axiomatisation of STRIPS 

Certain symbol-manipulating algorithms can be stated very 

concisely as predicate calculus programs. Fikes and Nilsson [4] 

describe an algorithm STRIPS which a robot can use to make plans. 

The program for implementing STRIPS in predicate calculus, 

PC-STRIPS, can be written as eight clauses. This economical 

program was suggested when modifying Warren's WARPLAN [10] , which 

appears in the last section. 

In order to understand the PC-STRIPS program, it is con­

venient to look at an example of the sort of data upon which it 

will operate . This data, expressed as Horn clause assertions, 

describes the initial world and the actions with which the robot 

can change this world. 

Any action by the robot changes the state of its world. 
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The ADD p redicates list the new situations which hold in the 

world after the action. The DEL predicates list the old situat­

ions which must be deleted. The PRE predicate states the con­

junction of preconditions which must be present in the world 

before the action can be begun. 

(Dl) +GIVEN (ATROBOT (A)) 

(D 2) +GIVEN (AT( BOX,B) ) 

( D3 ) +ADD (ATROBOT(place2), MOVE (place1 ,place2 )) 

( D4) +PRE (ATROBOT(place1), MOVE(place1 ,place2 )) 

( DS ) +DEL (ATROBOT (place1), MOVE( place1,place2)) 

(D6) +ADD (AT(object,place2), PUSH (object,place1 ,place2 )) 

(D7) +ADD (ATROBOT(place2), PUSH(object,place1,place2)) 

(D8) +PRE(AT(object,place1 )&ATROBOT (place1 ), 

PUSH(object,place1,place2)) 

( D9 ) +DEL (AT(object , p l ace1), PUSH(object,place1,place2)) 

(DlO ) +DEL (ATROBOT(place1), PUSH (object , place1 , place2 )) 

A simple task, e x pressed as a negated goal , might b e 

(G) -SOLVE (AT(BOX,C), START, plan) -OUTPUT(plan). 

A conjunction of three goals wri tten as goal1&goal2&goal3 

represents the function CONJ(goal1,CONJ(goal2,goa13)). A 

sequence of acts written as act1&act2&act3 represents 

SEQ (SEQ (act1,act2 ), act3). Thus goals are accessible from the 

left and actions from the right. 

It is now possible to state the clauses which form the 

PC-STRIPS program. 

(S1) +SOLVE (goalatom&goalist, actsdon e , allacts ) 

-SOLVE (goalatom, actsdon e , newacts) 

-SOLVE (goalist , ne w acts, allacts ) 

This i solates the next goal. The sequence of "allacts " is 
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intended to h av e " acts done " as an initi al subsequence. 

(S2) +SOLVE (goalatom, START , START ) 

-GIVEN (goalatom) 

If the only act done is the START, then it is c hecked whether 

the goal atom is given. 

(S3) +SOLVE (goalatom, actlist&act, actlist&act) 

- ADDED (goalatom, actlist&act) 

If a sequence of acts has been done, it is check ed whether the 

current goal atom was added by one of them . 

(S 4) +ADDED (goalatom, actlist&act) 

-ADD (goalatom,act) 

This c hecks to see if the most recent act added this goal atom. 

(SS ) +ADDED (goalatom, actlist&act) 

-DEL (goldatom,act) 

-NOBRANCH 

-FAIL 

(S6 ) +ADDED (goalatom, actlist&act) 

-ADDED (goalatom, actlist) 

If the goal atom was deleted by the most recent act, the n (S6) 

is not accessible . If the goal atom was not deleted, then -DEL 

of (SS ) fails to unify, so (S6) is tried next. Eventually , the 

following clause may be tried 

(S7) +ADDED (goalatom, START) 

-GIVEN (goalatom) 

If the goal atom was no~ given and has not been added by the acts 

done , then it must be added by a new act. 
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(SB) +SOLVE (goalatom, actsdone , newactlist&newact) 

-ADD (goalatorn, newact) 

-PRE (newgoalist, newact) 

-SOLVE (newgoalist, actsdone, newactlist) 

The preconditions of this new act form a new goal list which 

must be solved before returning to the previous goal list. This 

completes the PC-STRIPS program. 

WARPLAN 

Warren [10] has devised a modification of STRIPS, called 

WARPLAN, which allows the insertion of a new action into a 

previously evolved action sequence. This insertion is evoked 

when the new action destroys a previously achieved and protected 

subgoal. Warren's . rather opaque, forty-six-line predicate 

calculus program, has been re-written to conform with PC-STRIPS, 

and has been simplified to the following twenty-line program. 

(KW1) +PLAN (goalatom&goalist, goalsdone, actsdone, allacts ) 

-PLAN (goalatom, goalsdone, actsdone, newacts) 

-PLAN (goalist, goalatom&goalsdone , newacts, allacts) 

(KW2) +PLAN (goalatom, goalsdone, START, START) 

-GIVEN (goalatom) 

(KW3) +PLAN (goalatom, goalsdone, actlist&act, actli s t&act) 

-ADDED (goalatom, actlist&act) 

(KW4) to (KW7) are the same as (S4) to (S7) 

(KWB) +PLAN (goalatom, goalsdone, actsdone, newactlist&newact) 

-ADD (goalatom, newact) 

-PRE (newgoalist, newact) 

-PLAN (newgoalist, goalsdone, actsdone, newactlist) 

-PRESERVES (newact, goalsdone) . 

(KW9) +PRESERVES (newact, lastgoal&goalsdone) 
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(KWlO) +PRESERVES (newact, lastgoal) 

-DEL (lastgoal, newact) 

-NOBRANCH -FAIL 

(KWll) +PRESERVES (newact, lastgoal) 

(KW12) ·+PLAN (goalatom, goalsdone, actsdone&lastact, 

newactlist&lastact) 

-ADD (goalatom, newact) 

-RETRACE (goalsdone, lastact, oldgoals) 

-ACHIEVE (goalatom, newact, oldgoals, actsdone, newact-

list) 

-PRESERVES (lastact, goalatom) 

(KW13) +RETRACE (goalsdone, lastact, oldgoals) 

-REBUILD (goalsdone, lastact, earlygoals) 

-PRE (goals, lastact) 

-APPEND (goals, earlygoals, oldgoals) 

(KW14) +REBUILD (lastgoaldone&othergoalsdone, lastact, earlygoal s ) 

-ADD (lastgoaldone, lastact) 

-REBUILD (othergoalsdone, lastact, earlygoals) 

(KWlS) +REBUILD (lastgoaldone&othergoalsdone, lastact, lastgoal 

lastgoaldone&oldgoals) 

-REBUILD (othergoalsdone, lastact, oldgoals) 

(KW16) +REBUILD (TRUE, lastact, TRUE) 

(KW17) +APPEND(goalatom&goalistl,goalist2, 

goalatom&goalistland2) 

-APPEND (goalist1,goalist2,goalistland2) 

(KW18) +APPEND (goalatom, goalist2, goalatom&goalist2) 

(KW19) +ACHIEVE (goalatom, newact, goalsdone, actsdone, 

newactlist&newact) 

-PRE (newgoals, new act) 

-PLAN (newgoals, goalsdone, actsdone, newactli s t) 
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-PRESERVES- (newact, goalsdone) 

(KW20) +ACHIEVE (goalatom, newact , goalsdone, actsdone&lastact , 

newactlist&lastact) 

-RETRACE ( goalsdone, las tact, ·oldgoals ) 
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ABSTRACT 

Generalizing the concept of a path in Clause Interconnectivity Graphs , 

we define the set of simple (i.e., cycle-free) paths that begin at a specified 

subset of nodes. Where the search of the CIG for a proof in the predicate 

calculus was previously defined in terms of the edges of the CIG, here the 

simple paths themselves become the atomic elements of the search, thereby 

increasing the "chunk" size of the operands. We can further define forms 

similar to regular expressions in which the terminal symbols represent those 

simple chunks . The forms become templates that model proofs, i.e., they can 

be mapped onto resolution proofs of the unsatisfiability of the clauses making 

up the CIG. In general a template represents an infinite number of paths but 

an algebraic computation on information derived from the templates yields valid 

proofs without an exhaustive search through intermediate stages of the search 

tree. Overall, the method leads to a reduction in both the computation time 

per step as well as in the combinatorics of the search itself. The representa­

tion also lends itself to an heuristic based on integer prograrrming by using a 

s imple difference function based on the chunks. 

Introduction 

A system for formal theorem proving is presented, using the Clause 

Interconnectivity Graph as its basic data structure. Proofs found here can be 

mapped onto proofs using resolution and factoring as rules of inference (as 

opposed to Modus Ponens, for example). The search method bears little resemblance 

to that of resolution methods, however. 

The Clause Interconnectivity Graph (CIG) [5] has been used as a representa­

ti-0n for proving first-order predicate calculus theorems. A CIG is a four-tup l e: 

< Nodes, Edges, Subst, Cl ause> where 
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Nodes is a set of graph nodes, one for each literal of each clause , 

Edges is a syrrmetric relation between nodes such that <a,b> E 

Edges iff the literals associated with nodes a and b have 

opposite signs and unifiable atoms. 

Subst is a mapping: Edges~ substitutions such that 

Subst(<a,b>) is a most general unifier of the atoms of the 

literals associated with nodes a and b, and 

Clause is a mapping: Nodes ~G>(Nodes) where Glmeans powerset; 

Clause partitions the nodes so that literals in the same 

clause have corresponding nodes in the same partition. 

For example, suppose that we are dealing with integers defined by Peano's 

axioms, and we define the predicate, Even: 

Even(O) 

Even(sn(O)) ~ Even(sn+l(O ))t 

Even(sn(O)) ~ Even(sn+l(O)) 

and theorem Even(s60 (o)J. Then the CIG is shown in Figure l. 

Figure L A Clause Interconnectivity Graph with labeled edges. The 
pred1cates and terms are left in the nodes for expository purposes only. -
They are neither included in the CIG definition nor are they used in the 
search for a proof. 

-----
t "s" means "successor"; s(O) = O; sn(O) = s(~n-l(OJ) for n > 0. 
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Edges is a syrrmetric relation. However, when we involve an edge in the 

search, the analogy i s made to moving from one element of an ordered pair in 

Edges to the other element i~ .that pair. Therefore when an edge is used, we 

think of it as being directed. Given an edge <a,b> and assuming direction a~ b, 

we can make the following definitions. 

Deleting_literal is a mapping: Edges~ Nodes where 

Deleting_literal(<a,b>) =band 

Residual_literals i s a mapping: Nodes~ 6'(Nodes) where ? means powerset. 

Residual_literals(b) = Clause(b) - {b}. 

A proof derived from a CIG corresponds to a particular kind of search on 

the CIG. The proof search resembles the following process: 

Choose a clause to be the starting clause (a clause that is likely 
to be used fo the proof, a member of the set of support, etc.). Place 
a marker on each of the nodes in the partition representing the starting 
clause. Each of those markers may be moved along any edge connected to 
its present position. Then the parent marker is removed (from the deleting 
node) and children markers are placed on each of the other nodes (the 
residual nodes) in the partition arrived at from the move. Then the 
process is repeated on~ of the existing markers; they in turn 
become parents, being replaced by children. The goal is to eliminate 
all markers.t This process corresponds to unrolling the graph into trees. 

From looking at the CIG in Figure 1, it is easy to see that some move 

sequences could be done an arbitrary number of times, e.g., moves D,F,D,F, ..• 

successively, or E,C,E,C, ... We call such sequences loops. 

Assuming starting clause Even(O), the first move is determined, namely G. 

That leaves a marker on the node corresponding to Even(sn+l(O)). From this node 

we could begin one of the loops mentioned above. Let us consider a sequence 

of moves involving one of the loops; G(DF)kDA, meaning move along G, then 

around D and F k times, then along D, then A. Intuitively G links up the integer 

t This process is over-simplified. There are restrictions concerning the 
substitutions, and there is another allowable move that admtts non- input steps. 
For a complete description, see [5]. 
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O with the start of an induction. The OF loop adds the val ue 2 to the ·current 

val ue. Move A jumps out of ·the induction to the value that we seek. In other 

words, the G(DF)k .part is successively proving that O is even, 2 is even, 4 is 

even, etc., until we arrive just short of the given value. The D and A·steps 

together add 2 to the value. In this case, k will have the value 29. 

Once we have discovered G(DF)kDA, proofs of the evenness of all even, 

positive integers should .be equally easy in all systems. But we know that 

they are not. Using t raditional deductive systems on this axiomatiza.tion, the 

length of the proof of Even(sn(O)) increases linearly with n, and required 

resources generally increase exponentially with the length of the proof. In 

this method, however, the discovery of the proof is of the same inherent 

difficulty regardless of the magnitude of n. The approach involves: 

1) mapping the CIG onto a context- free gralTITlar [l] 

2) mapping the context-free gra1T1T1ar onto a set of expressions similar 

to regular expressions. 

3) mapping each regular expression onto a composition of substitutions. 

4) checking to see if any of the expressions represent· a legal substitution . 

If so, that expression can be mapped onto a proof. 

Chunking 

The previously presented search schemes on CIG's dealt with looping by 

preferring non-loop moves, preventing run-away development of infinite loops. 

However, even in some simple cases, we may need to travel a loop many times. 

One example of this is the proof of evenness in which we should be able to prove 

Even(6000) easily once the general method is discovered. The proof itself may 

be long, but the search time should be identical to the search. time in proving 

Even(60) or Even(6). In fact, it is possible to use this method not only to 

prove indiv~dual theorems, but also to derive generalized algorithms to do 

computations within a theory. 

Once we know the basic steps needed for a proof, the repetition of one or 
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more of those steps a large number of times should not cause us any trouble. 

We need to discover these basic steps or chunks . One might imagine that the 

moves that correspond to edges might serve satisfactorily as chunks. However, 

there is some obvious clumping that takes place. The CIG in Figure 2 has three 

natural chunks, c1 :f, c2:deg, c3:abc, because the moves wi thin each chunk must 

be taken together . Note that c3 denotes a loop, and we can travel in either 
-1 di rection on a loop, so we can denote cba as c3 In th is case, the chunking 

partitioned the edges, but that will not necessarily be the case. 

Figure 2. A CIG divided into its three natural chunks. 

We can derive the chunks by finding all ways of moving and replacing the 

markers such that if a marker is on the same node as one of its ancestors, we 

freeze that marker, but continue to move other available markers. The starting 

configuration for each chunk is a single marker sitting on some node. The 

chunk is said to be related to that node. Intui t ively, the chunk represents 

the refutation of the literal that the related node represents. This process 

identifies all of the natural pieces of the graph. Since no repeated looping 

is allowed, this is a terminating process. 

We classify the chunks into two types, terminal and loop. A terminal 

chunk is one in which_ all markers have been eliminated. A loop chunk has one 

or more frozen markers. In Figure 2, c1 and c2 are terminal chunks; c
3 

is a 
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loop chunk. 

Chunks to Context-Free Gra111nar 

Chunks as described in the previous section are trees, since 1) a parent 

marker may be replaced by one or more children markers and 2) no marker can 

ever be its own descendant. We wi sh to write the chunks as linear sequences 

so that we c_an use them in constructing a gra111nar. We produce this flattening 

by doing an end-order traversal [4] of the "chunk tree" . The flattened fonn 

is a sequence of directed edges and nodes, s1, s2, •.. sn. We can make context-

free productions by putting s1, s2, sn on the right-hand-side and the 

associated node on the left-hand-s ide, 

N-,. s1s2 ... sn. 

The intuitive notion is that to eliminate N you must add s1,s2, ... sn (possibly 

including N). We can now construct a context-free gra111nar G: 

nonterminals: {S} U Nodes (where {S} n Nodes= ¢) 

terminals: 

productions: 

Edges 

{all N-,. s1s2 ... sn as described above} 

u· {S _,. N1 ... Nk I N
1

, .. ,Nk represent all literals in 
starting clause} 

start symbol: S 

In the ground case any string in the language of G,i.e. any string that 

is derivable from Sand consists entirely of terminals (in this case edges), 

represents a proof. Therefore, once the chunking is accomplished, determining 

theoremhood of the statement in question is equivalent to asking whether a 

given context-free gra111nar generates a non-empty language, which is a frivial 

problem. 

The general case is more difficult, however. Each edge has an associated 

substitution, and for a string of edges to be acceptable, all of their 

substitutions must be mutually consistent. Consistent(a1,a2, .•• an) iff 

a1 <:> (a2 ~ ( •.• 0 an))) is defined, where a e 8 = y such that y is a most 
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general substitution satisfying (La)y = (Ly)a =Ly= (LS)y = (Ly)S for an 

arbitrary literal L (5). Since all terminal strings must abide by consistency, 

this is in fact a context-free attribute granmar (3) and can have the power of 

a type O granmar. This fact eliminates the usefulness of the result that tells 

us there is an upper bound on the length of the shortest string in the language. 

However, the grammar form provides us with some valuable heuristics as we shall 

see later. 

Regular-like Expressions 

Given a context-free granmar, it would be convenient to represent the 

language generated in regular expression style. To do that, we need to extend 

the definition of regular expression. In addition to "I", meaning "or", 

concatenation meaning "and", and"*" meaning "repeat zero or more times", we 

add exponent "n " to mean repeat exactly n times.t For the granmar constructed 

in the previous section, if all productions that have node Non the left-hand­

side have one of t 1, .•. tn (terminal chunks), or r1N, ... rkN (loop chunks), then, 

* intuitively, the expression (r1 jr21 ..• rk) t 1 1 .•• ltn represents the refutation 

for N and we denote it 

* * * N = > ( r 1 I r 21 . , . I r k) ( t 1 I ... I tn) . 

I.e . we can go around loops as long and in whatever order we choose, but we 

must finally end with a terminal. 

In the example in Figure 2, 

(D !> (abci*deg, ®!> (cbai*f. 

It may be that by the above recursion method and by simple back-substitution 

for nonterminals of right-hand-sides having the corresponding nonterminals on 

* the left, we can derive S => p
1
p2 •.. pn where pi E Edges. For the example of 

Figure 2, the granmar is: 

t This notation appears frequently in the literature on formal langua·ges. 
* *A=> B means B can be derived from A by an application of zero or more 

productions. 
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. ·({S,(j),@. · •• §},{a,b,c-,d,e,f,g}, P, S) where P: 

s ~ CD® 
(D..: ab c CD 
G)~ d e ' f 

(V+cba@ 

@~ f 

* * * By back-substitution we get: S =>· (abc) def(cba) f. Now by replacing each 

terminal by its substitution and interpreting concatenation of substitu t ions 

to mean 0, we can easily determine whether there exist non-negative integers 

n and m such that substn(abc) G) subst(def) 0 substm(cba) 0 subst(f) is 

defined. Note that we have replaced whole chunks by their substitutions. The 

substitution of a chunk is the 0 composition of the substitutions of the edges 

making up the chunk. Each time a loop is repeated a new instance of the clause 

at the endpoints of the loop is added. For this reason, a loop repeated n 

times will haven distinct instances of the variables. Loop substitutions, 

then, must be abstract descriptions including an unknown number of instances 

of variables. For example the substitution [f(xn)/xn+l] specifies that each 

new instance of x is replaced by function "f" applied to the term substituted 

for the last instance of x. 

For example, the grammar built from the CIG in Figure l having Even(O) 

as the start clause would cause S t o generate (among others) the expression 

* G(DF) DA. The corresponding substitution e is 

* (0/n] 0 (n+l/m, m+l/n] 0 [n+l/m] e [59/m]. 

m. = 2i+l 
=> l 

ni = 2i 

(l ::i) 

§ The other nonterminal names and their productions are irrelevant to this 
discussion. 
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Differentiating between instances of variables, e becomes [0/n0J ® [2i/ni' 

2i-l/mi _1J 0 [nk+l/mk] 0 [59/mk] where ls is k. mk = 59 = nk+l = 2k+l, 

therefore k = 29, indicating that the refutation consists of G, twenty­

nine repetitions of (CF) and finally D and A. We will not go into how to 

generally describe loop substitutions, decide which instances of a variable 

are referred to by other substitutions, or compute the exponent of loops. 

However, for a given expression that is a regular expression extended by 

exponents and contains no node names (i.e., is completely terminal), it is 

straightforward to answer those questions. Due to lack of space the algo­

rithms will be presented in a subsequent paper. 

Integer Progra111J1ing Heuristic 

There will be gra111J1ars derivable from CIG's that do not easily admit the 

extended regular expressions. They include l) gra111J1ars in which the self­

referencing non-terminal appears in the middle of the right-hand-side (e.g., 

N + aNb) and 2) gra111J1ars in which a nonterminal can generate a string con-

* taining two copies of itself, e.g., N => ttNNB where a and Bare possibly 

* empty strings of symbols, i.e., a,B E (Edges U Nodes) • In the latter case, 

it is difficult to see the general recursion pattern since the length of the 

resulting string is exponential with the number of repetitions. In both 

cases keeping track of which instances of the variables to put in each sub­

stitution is a horrendous job in general. 

By weakening the gra111J1ar, allowed by its particular use in this application, 

and not by distinguishing between different instances of the same variable, we 

can always derive an extended regular expression reduced to terminals, the 

terminals possibly reordered from what the grammar would actually generate. 

Every chunk has a (possibly empty) effect on the total substitution in a 

solution. Terminal chunks have a fixed effect. Loop pieces may have a recur­

sive effect. E.g., [f(xkl/xk+l] has the effect of adding f to the accumulated 

effect and applying it to the new "x". 
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By corobintng th.e information from th.e reordered extended reguiar 

expression and the chunk effects, it is possible to write integer progral1llling 

problems[2] whose solutions are likely candidates for proofs. In this way, 

the effects serve as difference functions for the chunks (operators) in much 

the way as is done in an operator difference table. The integer program 

tells us how many applications of each operator there are in likely candi ­

dates. The structure of the original gra111J1ar can then be used to chec k the 

validity of that candidate. An example of this is the "Even" problem in which 

we need to change the term from "O" in the start state to "s60 (o)" in the goal 

state. Therefore the sum of the effects of the chunks used must sum to exactly 

sixty applications of "s". In some cases, the start and goal states are not 

so clearly known and we have to phrase the problem slightly differently such 

that the original terms used in the solution plus the effects of all applied 

chunks sum to zero. 

In cases where · the· regular expression forms are exactly known, the integer 

programnfng heuristic i:i substantially improved because the proper placement 

of variable instances is known. We may then break the problem into subproblems 

one for each variable. 

Work on the integer progra111J1ing heuristic and computation of effects of 

more complex loops is currently in progress. 
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Abstract 

An algorithm which solves t he first-order unification problem is 

presented and shown to have a practically linear time complexity, relat ive to 

the length of the input expressions. The algorithm is composed of a transfor­

mational stage followed by a sorting stage. During the former stage, sets of 

pairs of expressions are transformed into a partition of expressions, which is 

equivalent with respect to unifiability. The partition is represented as a 

forest of trees and by using the technique of path- compression on balanced trees , 

a practically- linear complexity is achieved. In the sorting stage, the output 

partition induces a directed graph, which is then topologically sorted. If 

successful, the sor t indicates the most general unifier. 

Introduction 

The unification problem arises from automatic theorem- proving. It 

is to determine, given two expressions and containing variables, 

whether there exists a substitution of these variables by expressions which, 

applied to e
1 

and e
2 

, makes them equal. 

The first unification algorithm, discovered by Robinson [4] and based 

on simple string data structures and the physical manipulation thereof, was of 

exponential complexity. A later algorithm, also by Robinson [5], represented 

expressions by trees and performed substitutions by manipulating pointers to 

these trees. Unfor tunately, this algorithm was of exponential complexity due 

to an inefficient method of determining if a variable occurs in an expression. 

This defect was easily remedied by Venturini-Zilli [7] who proved that this 

improved algorithm had a quadratic time complexity. 
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Whereas the above algorithms were based on the original " left-to­

right" processing of the input expressions, a new algorithm, composed of a 

transformational stage followed by a sorting stage, was discovered by Baxter [ l ] . 

The use of good data structures applied to this algorithm results in the practi­

cally linear algorithm presented here. ("Practically linear" means linear times 

a very slowly growing function.) 

Notation 

We will assume familiarity with the notation found in the literature 

[4, SJ. Briefly, an expression is either a variable o r a constant (function ) 

symbol of degree (number of arguments) n followed by n expressions. A term 

is defined here as an expression which is not a variable. The length o f an 

expression is the total number of occurrences of variables and constants. The 

substitution {v
1 

+ e
1 

, vn + en} refers to the simultaneous replace-

ment of the variables vi by the corresponding expressions e. 
1. 

of the substitution o to the expression e is written: o(e) 

0 unifies a set of expressions e } 
n 

The application 

The substitution 

• = o (e) 
n 

o unifies a partition of classes of expressions iff o unifies each class in 

the partition. We abbreviate most general unifier to mgu 

Description 

Our algorithm consists of two stages: a transformational stage 

followed by a sorting stage. The former inputs, in general, a set of pairs of 

expressions and outputs a partition .of expressions. This stage may fail due 

to the attempt at unifying two expressions beginning with different constant 

symbols. The sorting stage constructs from this output partition a directed 

graph (digraph) and determines if it contains a circuit by trying to topologi­

cally sort the digraph. If a circuit is found then unification fails because 

we cannot unify a variable with an expression in which it occurs. If no circuit 
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is found, the topological ordering indicates the mgu of the input set . 

We now describe these two stages in more detail . 

Transformational Stage 

The two main sets used in this stage are S, a set of unordered 

pairs of expressions, and F, a partition of expressions. Initially, S is 

the input set SI to be unified and FI, the initial value of F consists 

of all the subexpressions occurring in SI , each in a class of its own. 

Finally , S will be empty and F will be the output partition F
0 

present this stage in the form of an abstract algorithm: 

algorithm TRANSFORM: 
begin 

Initialize S to SI and F to FI 
repeat until S is empty : 
begin 

Delete a pair of expressions, {e
1

, e
2

}, from S 
if e

1 
~ e

2 then begin 

end· 
end-.- ' 

Find classes T
1

, T
2 

E F 
such that e

1 
E T

1 
and e2 E T

2 if T
1 

~ T
2 then begin 

if T1 contains a term f'(ei, ••• , ei't) 
and T contains a term f" le'

1
' , ... , e") 

then if f' ~ f " m 
~~ then UNIFICATION FAILS 

else Add to S the pairs: 
-- {ei, el}, . .. , {~, ~} 

Merge T1 and T
2

, that is, 
replace T

1 
and T

2 
by T

1 
V T2 ; 

end; 

We 

In order to obtain an efficient algorithm from this, we must now 

specify appropriate data structures. Expressions are represented by trees 

in which each vertex corresponds to some symbol occurring in the expression. 

If a vertex corresponds to a constant symbol of degree n, then it has n 

sons, each corresponding to an argument '. Also, different occurrences of the 

same variable are represented by different pointers to the same vertex of a 

tree . - 226 -
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The set S is represented by a stack of pairs of pointers to the 

corresponding tree representations of the expressions. For example, the set: 

{ {w, F(x, G(y}}} , {G(F(F(y, x), z)), G(w)}} 

is represented: 

The partition F is represented as a forest of trees. Each class 

in the partition is represented as a tree, each vertex of which points to an 

expression. Since we must quickly determine if a class contains a term, the 

root of a tree points to some term, known as the designated term of the class. 

For example, the partition: 

Hu, v, G(F(w, x)), G(z)], [x, H(w), H(t), s], [F(w, x), y, z, F(r , s )] , 

[w, r, t]} 

is represented- as follows. Note that each expression is, in fact, a pointer 

We now describe how to efficiently manipulate these data structures 

required by the algorithm, TRANSFORM. Rather than checking if and 

are equal expressions, we only check if their corresponding pointers are equal. 

Further, we can easily extract the arguments of an expression by examining its 

tree representation. The operations to be performed on S are simply: to 

delete a pair from S and to add pairs to S These are easily accomplished 

when S is represented by a push- down pop- up stack. 

The efficiency of the transformational stage depends on the method 

of performing two operations on the partition, F: to FIND which class in F 

an expression belongs; and to MERGE two classes of F. 
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To FIND which class an expression belongs, we traverse a path frOIII 

the vertex of the t"ree corresponding to the expression to the root; this root 

is effectively the name of the required class. The cost of a FIND is propor­

tional to the length of the traversed path. This will be reduced if we employ 

a collapsing heuristic: after finding the root, we collapse the path directly 

onto the root. Formally, if v 
1 

-+- v
2 

-+- • • • -+- vn is the unique path frOIII 

the vertex v1 to the root vn, then we replace the edge vi-+- vi+l by the 

edge V. ~ V 
l. n 

for i =l, ••• , n- 2 The following figures illustrate the 

representation of the class [e1, e2 , ••• , e 17J before and after FIHDing 

the class which contains the expression e15 • 

.~~~ 

To MERGE two classes, we make one tree representing one of the classes 

a subtree of the tree representing the other class. To decrease the average 

path length and hence the cost of subsequent FINDs, we employ a balancing 

heuristic: make the "light" tree a subtree of the "heavy" tree, where the 

comparatives refer to the number of vertices in the tree. In the case when ·the 

"heavy" tree contains only variables and the "light" tree contains SOllle tera, 

we have to ensure that the new root points to the des.ignated term. For example, 

after merging the first and third classes represented in Figure 2, ve obtains 

Sorting Stage. From F0 we will first construct an abstract 

intermediate digraph, which is naturally induced by F0 • It has as 
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vertices the classes in F0 • Its edges are constructed by examining each 

Given a class T in F
0

, let e be any term, say 

•• , en) , in T. (If no such term exists, then T contributes 

nothing to the set of directed edges.) Let ei belong to the class 

, n) , then T contributes the set of directed edges: 

T -+- T 1, • • • , T -+- Tn • For example, the partition of Figure 2 induces the 

following digraph, where underlined express ions denote the designated term of 

a class. [•, &r, GU=(w, x)), G-(:z:.)] 

[ F{w~xl, z, ~, ~ 1 
F-9~ .£. 

[)(, s, H{tl • H(wJ] 

[ w, r, t] 

In practice, we must construct a related digraph directly from the 

forest representation of F
0 

• The vertices and edges· of this digraph are 

obtained as follows, For each vertex, v , in the forest, which corresponds 

to a variable and which is not a root, let r be the root of the tree to which 

v belongs; add the directed edge·: v -+- r • Al.so, for each root, r let 

f (e1, , • , , en) be the des.ignated term of the tree having root r and let 

ri (i•l, ••• , n) be the root of the tree to which ei belongs; add the 

directed edges: r-+- ri 

induces the digr.aph: 

j;G{Flw,,>n 
( G-Cz>) 

For example, the forest representation of Figure 2 

We .now attempt to topologically sort this constructed digraph (embed 

its vertices in a linear order), using the well- known linear algorithm [3]. 

If the digraph cannot be sorted then unification fails, otherwise the topological 

ordering indicates the .msu. Let v1, ••• , vn be the subsequence of the 

linear order which corresponds to variables only. Then the mgu is 

{v1 + e1, ••• , vn + en} where ei is the designated term of the class to 
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which vi belongs; if no such term exists then e. 
]. 

is the variable which 

corresponds to the root of the tree to which v. 
]. 

belongs. 

Details of the proof of correctness are found in [2]. In the 

transformational stage, the mgu of s
1 

is the same as that of F
0 

• This 

is proved by showing that the assertion: 

vcr ( cr unifies s
1 

iff cr unifies S and cr unifies F) holds each 

time the loop of the algorithm is entered. The correctness of the sorting 

stage depends on the following special properties of F
0

: All the terms in 

each class of F
0 

begin with the same constant symbol; and the "hereditary" 

property: If f(ei, ••• 

class of F0 then for all i 

e~) and f (e1, •. , e~) belong to the same 

e~ and e~ belong to the same class of F0 

Complexity 

The complexity of the transformational stage is practically linear, 

that is, of order nG(n) where G is a very slowly growing function. The 

complexity of the sorting stage is linear. 

We now define G using the definitions of [6]. Define the function 

A on pairs of integers by: 

A(O, x) = 2x for x ~ 0; A(i, 0) = 0 for i ~ l A(i, 1) 

i ~ l and A(i, x) = A(i - 1, A(i, x - 1)) for i ~ 1 and x ~ 2 

Define G(n) 

a(m, n) 

a(n, n) where a is a functional inverse of A 

min{z ~ 1 I A(z, 4 m/n 1 ) > log
2 

n} m, n 2:: 1 

G is "practically" constant, since G(n) ,; 3 for n < ·2 * 2 * 

(65536 occurrences of 2 ), where"*" denotes exponentiation. 

2 for 

. * 2 

Ignoring the cost of FIND and MERGE instructions, the tranformational 

stage has linear complexity. The results of Tarjan [6] tells us that the 

additional time to process a sequence of FIND and MERGE instructions, using 

the technique of path- compression on balanced trees, requires practically 

linear time. Details are found in [2]. 
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CAN FRAftES SOL VE THE CHICKEN AND EGG PROliLEa? 

Abstrarct 

Willia• s. Havens 
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University of dritish Coluabia 

Vancouver, s.c., Canada 

The types of search strategies that have been proposed for 
fraae •rsteas are discussed. They are shown to ue essentially 
top-dovn, hJpothesis driven aechanisas. It is claiaed that 
these aechanisas are inadequate for a large class of recognition 
probleas. •The Chicken and Egg Problea• is prasented. A new 
aodel of recognition for fraae sJsteas is proposed and an 
ezaaple of its operation is given. 

1. Int1:;oductioa 
The concept of fraaes as a paradiga for the repres8.lltation 

of knowledge is an intuitively appealing idea vaich has 

g-s1t--: r:at.-=d a g:::ea.t d1=al of in t.erest. in :the A. I. COS·II Ulll. :t y • There 

has been ltowev.;r only limited progress in foraalizing and 

dcv,;,lopiny tht theory into a useable coapu:tational aodel. 

According to !linsky I s[ 4 J original paper, fra11es are data 

st.ructures for represent.ing st.ereotypical objects, concepts, and 

s~~aations. Each frame contains a set of ter11inal slots vhich 

may initially contain default assign11ents about the stereotype 

the fraae represent.s. When the fra11e is called upon to 

represent some particular instance of its stereotype, the 

defaults behave as expectations of what kind of i.nforsation to 

look for to fill t.he slots. 

This 11odel for fraaes has a nuaber oi. unfortunate 

consequ<!nces. First, it forces the use of top-down, goal 

directed search strategies. A candidate fraae is chosen to 

represent soae situation on the basis of soae initial 

expectations about that situation. This fraae than proceeds to 

atteapt to fill its slots by aaking observations and by calling 
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· on the efforts of other "sub-fra11es". The frame is guided in 

its search by the expectations it has coded wit.nin i~. In the 

case of an iaproper first choice of a candida~e ~rame, the 

aechanisa for choosing an alternate candidate is ~ompletely 

driven by the failure of the first frame to succeed. lnis is of 

course classical automatic backtracking with a~l i"s inherent. 

problems. !!insky, recognizing this fact, proposed a 

11odification to backtrack search that avoids the dupli.cation of 

effort for identical sub-goals. When a frame aiscovers from 

observation that it is not applicable to a given situation, it 

consults a similarity network whi ch recommends a replacement 

candidate. The frame then atteapt. s t.o map i.ts "correctl y" 

filled terminal slots into the slots of tne new c~ndidate frame 

and then passes control to it. This scheme assuaes oot.h that a 

sapping exists between each failing frame and each next 

candidate and that the similarity network is sutficiently 

• complete" that relatively few inexplicaola i•iluras occur. 

such " s urprises" force the syste 11 to rely entirely on 

backtracking to continue the search. 

secondly, the 11odel requires a frame to be t.ne currently 

active candidate before its expertise can be of ~nv assistance 

in the recognition process. This means that. the search process 

will spe nd a good deal of its time proposing specific c andidate 

frames one after another based only on the t.ypes o~ failures 

that can successfully be processed by the simil~ri~y networK. 

Only when the proper frame is finally chosen wilL t.ne knowledge 

specific to recognizing instances of that frame oe availaole. 

That specific knowledge must be available much earlier to 

intelligently guide the search process. 
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Per example, consider a frame-based scene recognition 

s ystem pr:sented the scene of Figure 2. From tne information 

present in the scene, the system must select the prism frame to 

repr~sent the image. The prism frame s upposedly contains expert 

knowledge on the best way to recognize prisms. But the s ystem 

is not told that it is "seeing" a prism; indeed that is the 

s yst em's task. The knowledge that prisms are polyhedrons 

composed of polygonal bases connected by paralleloqr~m faces is 

contained within the expectations of the stereotypical prism 

fraae. Yet , unless the s ystem already had tne prisa fraae 

active to provide it with these expectations , it could not use 

this knowledg~ to find the frame fro• the information in the 

scene. !lack.worth[ 3 J ha s called this "The Chiaen and Eqg 

Proble•"· 

2. A !1odgl, of ~£Qgnition 

To r-:medy the difficulty, a new model of recoqnition for 

frame systems has be-:n developed. Frames in this model follow 

in principle the form proposed by llinsky. Frames are orqanized 

aoout stereotypes and are encoded as descriptions of the frame's 

expectations about the real world. The model, however, inverts 

the ·concept of what a rrame loes. A frame recognizes instances 

of itself not only by comparing its interna~ expectations 

against external observations, but also by matching its evolving 

instance with the expectations of other fraaes. That is, the 

frame is responsiole for recognizing what higher structures it 

can be part of. Each frame exists as an individual recoqnizer 

in a system of such recognizers, the frame system. Instead of 

being an inherently top-down search process, now the recognition 

can proceed using simultaneously both top-down and bottoa-up 
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techniques. 

The recognition model consists of three phases. They are 

called ~I~~i2B, J!s~ag, and £2a1U&1.i.2D.• Initially the 

s ystem exists as a top-level frame containing a set of 

expectations about what it expects to find durinq its 

observations. As each input observation is made, it is matched 

against this set of expectations. Any successiul matches in 

turn ca use the expectations to compute a next qeueration of 

expectations. This process iterates until su~ h time as a 

particular sequence of expectations and the oDservations they 

match have satisfied a frame's internal criteria for the 

recognition of some concept , object, or event. Ihis oegins the 

coapletion phase. The completion phase creates aa instance of 

that frame. This instance then enters the matching process. At 

this point, the frame acts as an abstract interna l ooservation 

and itself participates in the aatching pro~ess with the 

expectations of other fraaes. If it succeeds in matchinq the 

expectations of some other frame, then it will oe composed into 

the evolving description of that frame. In our visi~n example 

suppose the system discovers a triangle. The triangle frame 

than creates an instance of this particular tziangle and 

atteapts to match the instance against the expectations of other 

frames. If the match is succ~ssful, a new set oi expectations 

are generated and new observations taken. 

The role of the frame in this model is an active process. 

Each frame is organized about a procedure called a §~~~~~i2• A 

scenario contains the knowledge to perform the itorative c ycle 

of atteapting to aatc h some relevant input ooservation or 

abstract internal observation against the frame's expectations. 
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that 

If th= matco ia ~ucc=ssful, tha 

C.Jhtif. U'-. 5. 

~~~ ma~cnin~ p=ocess i~ ch~r~ctariz~~ as a ~c~otiation. 

k~~n two i rames ~~~ot~ite 3 m~tch, ~n~ fr~ma ~ill be att3mptinq 

!IF::.~C;:_ 

fr~m~•s a~t~m~t tu p~rf~rm ~ completion. 

ira~2 is ~ttemt'tir.y to c~mpute the last st~p ia its scenario. 

·- is try~r.q to justi=f its ~xist2Lce by computinij it. place in 

Thi s process is recursive. Computing a 

ir=m~•s proqr"ss in its scenario causes the frame to neqotiate a 

m~tch wit h th~ 2xpectations of other fram~s wnicn in turn causes 

~ho sa f=a~e3 ~o r ~ corupu~~ their p=oqress in tndir ova scenarios. 

~ach frame is attemptinq to uiscover how it 

''fits•• icto som~ hiqh;,r sch;,m: of things. In tnis mod:l, no 

lon~ caains of about all thin~s possiola in the 

worll are =~qu ireJ. N~ith=r does the s ys te m ueeu a mechanism 

for trying on;, irame after ar.oth:r mappinq eacn time the 

t~rmir.als of the failin~ frame into the next caadidate frame. 

Ta: sc~nario then 

a~t~m~~s ~o m~tch tOos: frawes th~r9oy ac~iv~~inq them only when 

~~~.f~d. 

ma~ci:ing phaS'c is also tha vehicle by which 

non -d~~~rminism, i.e., local ambiguities in the real world, is 

hand L,d. The fram~ wtich is computing its completion aay match 
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with mor~ than ona otner frame, thereby spawninq a numbe r of 

diffe rent interpretations. Later, as observa~ion~ remove the 

ambiguity, the fallacious interpretations - c an oe d6let:d. 

qood analo~y is perhaps to a capital invest•ant aa r ket. 

A 

A 

bay~r, th~ compl~ting t=ame, ha s some caµitai to ~~v~3t, the 

description he has worked hard to complet=· dut na wants to 

inv -: st wisely. 

_sellers, i.e., 

H~ may consi1~r tee off3rs ot d ~~mb~r of 

h8 ~ay a~tampt to matcn ~n~ ~xµact~~io ~s of a 

numbar of frames •hat are attemptin~ to co~ µlct~ ~nair own. 

3C~nar ios. 

mo~~ h~avily iL thos~ fram~3 th~t ·m~tch his =~~Ji~cm~~~s o~st. 

Later a s events unfold, the contracts ha has .ritten can specify 

vnic h investments ar= to oe continued and •hicu cancelled 

dapending on the divi1ends they show. 

3. ! Detail ed ~xam£1e 

This example describes the operation of tn= modal as a 

recognizer for line drawings 

similar to an example given oy 

of polyhedral 

Kuipers(21. rh= 

"biects 

ll.Il-= 

and is 

drawinq 

presented as input to tba recoqnizer is shown in iiqure 2 and is 

in the form of a network of vertices and edqes. ~acu vert~x and 

each edge is represented as a primitive fra~~- .:. -1ch ver1:eJC 

k~ows i~s typ~, whic h is ~i~h~~ an L-v~rtex, a !-v;r~~x, an 

V~rtices alwo KD;J• tn~ ~riges 

they are formed from and the approximate size oz 1:ne anqles 

betwe~n their edqes. ~ach edqe knows o~ly tn~ 1:wo V;~~1ces it 

conn:c"t.s. In this example, poly.hedral obi;;cts «r= c.:,illposed of 

polygonal faces which are in tur~ composea of eag =s and 

vertic:s. Fiyure 1. shows this composition hiera~cuy. 
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1 SCENE I 
L-------,----~ 

I 
I composed-of 

' r--
1 POLYHEDRAL OBJECTS I 

----' 
I 
Jcomposed-of 

' r-- -, 
I POLYGONAL FACES I 
L---,.---

1 I 
lcvmposed-of I 

' ' .. ----, 
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Figure 1. 

1 

Fiqur .. 2. 

The top-level frame is the resident expert .at recognizing 

scenes. Its goal is to match the instances of edges and 

vertices in the data to the polygonal face fraaes• expectations 

of how edges and vertices can make up poly~on faces, then to 

match these faces to the polyhedral object fraaes• expectations 

of how faces can make up polyhedral objects, and finally to 

ma'tch these objects to its own expectations of 110w polyhedral 

objects can form scenes. The top-level fraae•s scenario must be 

generally applicable to the recognition of all scenes of 

polyhedral line drawings. It begins by looking at vertices on 

the periphery, as they are pregnant semantically and less 

ambiguous than internal vertices. If the enumeration of 

peripheral vertices fails to complete the recognition of a 

scene, then it selects interior nodes to exaaine. Else it 

fails. 
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This general top-level scenario is not the only scheae the 

system will use. The frames for polygon faces are experts in 

their ovn domains, the recognition of faces. Each face frame, 

depending on the type of face it. is looking for, uas a scenario 

especially tailored for effective recognition OL that. type. 

Likewise, the scenarios of the polyhedral object frames contain 

the knowledge to guide the search for polyhedral objects. 

The top-level frame first chooses to · examine peripheral 

vertex 2. vertex 2 is an instance of the L-vert.ex frame. The 

scenario associated with each vertex frame is only to attempt 

its completion phase because its existence was explicitly given 

in the data. Therefore, the L-vertex attempts to match its 

given description against the expectations of those face frames 

that it can plausibly be part of. It can be the -:orner of 

either a parallelogram face or a triangle face. It mus t find 

instances of these two frames to aatch. Froa its kilowledge of 

line drawings, it knows that if face recognizer frames already 

exist for the particular face that it must be part. of, they will 

be associated with its neighorboring vertices. That is, this 

vertex can use the original input data as a semantic network to 

access instances of face recognizer frames to aatcn. The 

neighbors of vertex 2 are vertices 1 and 3, neither of which 

have bound to them face recognizer fraa~s. So vertex 2 creates 

new instances of both the parallelograa and t~ ianqJ.e frame, 

succeeds in aatching them both, and binds them in the network at 

vertex 2. 

Note the occurrence of non-determinism at this first 

vertex. !insky and Kuipers would choose one hypothesis, perhaps 

that the face is triangular. Later, if that hypothesi s fails, 
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':hay would th~n hav~ to axacuta some mapping of teriDiuals from 

': h"" '::.:iani.;l~ £::am,:· i nr.o thco p.i. c<1llaloq::a m fr.i.iDe. :n ta1.s model, 

~ ~e L-v~=~~x cr9~~es two dascr~ptions of i~3 roid in the 

avolvinq face lab~llin~ and succassfully matches one a4ainst the 

exp~ctacions of th~ triangle fram~ and tne other aqainst the 

c!X!JEcctations tr.= parallelogram frame. i;ot.i also the 

comyo~ition proc~ss. I dascription of the L-vertex has been 

ma.11:inq an 

ons==vation, so it con~inu~s with its scn~m~ o~ ~numeratinq 

P=ri!Jh'=ral vartic'=s. This tiiDe it chooses vertex 1, and this 

v~ctex has tha CFSp'.lnsibility of findiaq a iac: frame that it 

can m3.-:ci. !': 11 1';.'.lk.s" at v'=rtex 5 by first consu.i..tin,J edge 1-5 

out no axpEctations ara lurking tnece, and li11:ewi.;e for vertex 6 

Vici : 'iqe 1-6. But when it looks at vertex 2, vertex finds 

both the parallalog::am and triangle frames. lt m~st negotiatE a 

match wit c. botn. •hen vertex 1 attempts to match tne triangle 

che match fails because the expectations of tne triangle 

are that the sum of the an~les of vertex 2 and vertex vill be 

1 '300. In this case, tney equal 1000. The 

tri~nql~ hypoth~si s ~s r6jected and its rrame ~ustance is 

del-,ted. attempts to matcn the parallelogram 

frame however, the match succeeds. ~he paralleloqram frame 

exp6cts a ceighbor of vertex 2 to ne either a PURK-vertex, 

AtlROw-vertex, or T-vertex. Since it represents a parallelogram, 

it expects that the sum of the angles of vertex 2 anu an angle 

of or.a of its neighbors to oe approximately rnoo. The 

parallelogram frame now propagates its scenario, resulting in 

the creation of a new set of expectations. 
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Lts scenario, by this time, feels sure that it is yoing to 

succe;;:d. The angle meas·u::ements are a goo.i cu.;: for the 

parallelogram because opposite angles must be e4uai. The frame 

consults edge 1-b again to access vertex 6, as~s tne vertex for 

an angle measurement, anJ discovers an angle aqu1l to the anqle 

OI: Vertex Lo The search process has now sw.tched from a 

bottom-up search driven by the vertices into a top-dv wn search 

directed by this parallelogram. 

:3y this time, 

near to finding the completed parallalogram and it cvusults the 

n~:..ghbors of vertex 6 looking for the particula- ue~ghbor that 

is also a neighbor of vertex 2. •hen vertex 3 ~s tound, :..t s 

angle is checked agaiust the proper angle of vert--x 1. rni::y are 

equal anJ the recognizer concludes that ~t oas found a 

parallelogram face. It then composes faca "A", ar. ~ustance of 

the parallelogram frame, from vertices 1,2,3 anu o. 

The =ecoJnition process uow ascends one leve~. face "A" is 

tryin~ to match tne expectations of polyhedral obi;Ct frames. 

Aqain the input data can he used as a semantic uetwo~k to look 

for ins~ances oi thcsa frames. From th& fact t~4L v~~tic~s 1,3, 

and b ha VE m.:>re than t110 ,;:iqes, 11e iu:ov that tn:Y a-; .ilso p.art 

of some other faces. If these other faces had n~en recognized 

b2for: tace "A", th~ra would U; exp;ctationd ~or OJe o: mora 

objec~ frames bound to these vertices. I ~ thl.5 C;.1S-; 1 no o'!:.Iler 

faces have been discove=ad, so polyhedral ooject irames which 

can hav-, parallelograas as f .aces a~e created ar.d. hound to 

vertic.as 1, 3, and 6. 

Th.a process continues vith th~ v-eirtic,as creatinQ, 

p=opaga~ing, and completinq tace recognizers. I ;, turn, trn, 
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f~ces continu~ ~h~ 

recogniz:rs. In 

process of creation and propagation of object 

this example, whe n an oo;ect fcame finally 

pecfocms a completion, it immediately matches tue scene 

cecognizec frame. rhe search has succeeded and the system 

cetucns a composed i nstance of the object to the usec. 

I would like to apologize foe the imprecision in this 

1110.iel. The ideas ace new and have not haQ t~me to fully 

coalesce. we are currently in the process of implemeuting the 

model as a high-level programaing language called aAYA[1]. At 

prese~t the implementation is approximately fiit y-percent 

complete. It is hoped that KAYA will provide a good 

e xperimental domain in which to further explore the theory of 

frames. 

1. UAViNS,~.s., A user's guide for MAYA, workinq paper, Dept. of 
Comp. Science, UHC, Vancouver, Canada, 1970. 

2. KUIPERS,d.J., A frame for fcaaes: Representi~g knowledge for 
cecoqnition, in D.G.Bobrow & A.M.Collins (Eds.), 
Re2cesentation and Understinding, Academic Pr ess , 
New York, 1975. 

3. ~A ~K~03TH,A.K., How to see a simple world, TR-75-4, Dept. of 
c·omp. Science , UBC, Vancouver, Canada, 1975. 

4. XI NSKY,M., A framework for representing knowleuqe, in 
P.H.winston(Ed.), !~~ f§:t~holQg~ Q1 ~Q&2Y!&t Iisi.2Ji, 
McGraw - Hill, Nev York, 1975. 
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Abstract 

This paper describes a formalism for the construction and use 

of a mcdel represetting knowledge of some domain. Some of the 

features of the formalism are the use of an ISA HIEP.ARCHY, a 

PART-OF HIERARCHY and procedural attachment for objects that are 

part of the model. 

1. Introduction 

~his is an extension of the formalism proposed by Abrial 

[ 1 ] for the construction and use of a model representing 

knowledge of some domain. Our main goal. ·has been to develop a 

representation that is sufficiently., powerful to describe its own 

operation at a level that is more "natural" than that, say, of 

LISP. The models built are explicit in that all semantics of 

ccncepts - in the model can be described using the formalism, and 

g!.fil!ipable in that the parts can always be inspected at various 

levels of detail. In this sense, our approach has been 

declarative. Moreover, models are ill£~.!g in that, at any 

given time, the s ystem using them has only a partial knowledge of 

the dcmain represented. It must, therefore, take this into 

account when answering questions and be prepared to receive nev 

information, determine its acceptability and modify the model 

accordingly. Similarly, it must distinguish between information 

that is definite and final from that which is tentative or valid 

only in certain situation s . 

The knowledge included in the model may be defined at 

different levels. There are simple "facts" like: 

Jchn is a Ferson. 

The sex of Joe is masculine. 

Kary is not the wife of Bill. 

simple rules like: 

All students are persons. 

Every- person has two parents of whom he is the child. 

and more elaborate rules like: 
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The sex of a person is not subject to change. 

A persor. • s ur.cle ~s the brother of one of his parents. 

A person can have only one location at any given time. 

The approach we will take in this paper is bottom up in that 

we will describe informally the basic operations of the model, 

only hinting at the more interesting higher level ·constructs that 

can be derived. Although no explicit syntax is given in the 

paper, we present a number of sample expressions and programs to 

illustrate various asFects of the formalism's descriptive power. 

All such examples are numbered for reference purposes. 

2. Constructing a Model 

the most primitive type provided by the formalism for the 

ccnstruction of a model is the object which is simply any single 

conceptual unit that can be referred to as a whole. An object 

enters the "perceFtion field" (becomes part) of the model with 

.!!.fil! and is removed by kill• Thus, 

john := .!!~!! (1) 

creates a new object with a unique internal name and "john" as 

external name. 

A fundamental notion to the organization of the model is the 

£1~ which simFlY represents a collection of objects sharing 

ccmmon properties. These objects are ins~ of the class and 

may themselves be classes. When specifying a class as being a 

§~!!£1~ of another, we are informing the model that, unless 

otherwise indicated, all instances of the subclass are in fact 

also instances of the superclass. 

may be part of the model is called 

therefore subclasses of "object". 

person:= l!.fil! 

person=> ocject 

The class of all objects that 

"object". All classes are 

For example, 

(2) 

(3) 

creates a new object called "person" and defines it as a subclass 

of "object". Syntactically, (2) and (3) can be combined into 

person:=> object (4) 

and asserted with 

male:=> person 

female:=> person 

student:=> person 

female-student:=> student 
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feaale-student => female (9) 

to set up an organization of classes generally referred to as the 

"ISA HIERARCHY". 

To specify that an object is an instance of an existing class 

we will use the notation"->" as in: 

john 

bill 

bill 

( 11) and 

-> male 

:= .!!.fil! 
-> person 

(12) can be combined into 

(1 0) 

( 1 1) 

(12) 

(13) 

fact that an object is not a subclass or 

instance of a class, we use the notation "," followed by the 

operator, as in: 

bill :-> person 

To denote the 

female-student,=> female 

j chn ,-> person 

(14) 

(15) 

When introducing a subclass 

necessary to provide definitional 

or an instance, it is often 

in·forma tion for it. For 

example, if we assume that a student is defined by a student 

number and a deFartment, to simply say that 

jia :-> student (16) 

does not give sufficient information about "jim". we can write 

jim :-> student with num<-702377167,dept<-dcs (17) 

tc provide the appropriate information. 

Relations 

A very important primitive class is that of binary relations 

er simply !~1~tion§ which are maps from one class (the do~) to 

another (the I~.!!~). Instances of binary relations will be 

called !i.!!!§ and they relate an instance of the domain and an 

instance of the range. 

Relations are created like any other class. the most generic 

one is called "relation". For example: 

children:=> relation wits domain<-person,range<-perscn, 

d-interval<- <O,aO>, r-interval<- <2,2> (18) 

The arguaents indi·cate that "children" is a relation from 

"person" to "person" such that for each . instance of the range 

there are exactly 2 domain instances.. Thus a person car. have 0 

to infinity children, which are persons, and furthermore is t -he 

child of exactly 2 persons. Further examples: 

wife :=> relation .!!.i!1l domain<-male, range<-f-eaal-e, 
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d-interval<- <0,1>, r-interval<- <0 , 1> (19 ) 

sex:=> relation ~ith domain<-person, range<-sex-value 

d-interval<- <1,1>, r-interval<- <O,"°> (20) 

Relations like ether classes may be organized into an ISA 

HIERARCHY. For example, in 

oldest-child:=> children .!i11! d-interval<- <0,1> (21) 

the domain, range, and r-interval are inherited from "children". 

We can define very general relations like 

inter-personal:=> relation .!i11! domain<-person, 

range<-person 

must-hold :=> relation with d-interval<- <1 , 1> 
and then create new subclasses as restrictions of these. 

(22) 

(23) 

We will henceforth use "R" to represent a relation, and "x" 

and "Y" to represent instances of the domain and range 

respectively. Therefore "R: x->y" instantiates the relation 

provided the cardinality constraints of the d-interval and r­

interval are not violated (in which case a failure occurs). For 

example: 

wife : john-> mary 

children: john-> bill 

Tc negate an instantiation , we write: 

wife : john,-> mary 

3. Examining a Model 

Logical Information 

( 24) 

(2 5 ) 

(26) 

To attain logical information from the model, we present it 

with a " conjecture" and receive as reply one of!~, false, or 

.J!Bkno!n• There are t wo primitive conjectures: the equality test 

and the test of a relation. 

The equality test is always of the form " x=y" and is a test 

fer identity of internal names. The value of such a conjecture 

is J!1!!.!l£!B when one of the two arguments has an unknown value. 

To find cut if a relation "R" hol ds between "x" and "Y" we 

write "R: x?y". For example, consider the "children" relation of 

( 18) and suppose 

children: john-> bill 

children: mary ,-> bill 

then we have that 

children: john? bill is!~~ 
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children : mary? bill is ~ (30) 

children : jill? bill is .!!~n (31) 

If we now assert that 

children : susan -> bill (32) 

then (31) conjectured now would be false. 

The conjecture 

isa: student? person (33 ) 

asks whether "student" is a subclass of "person". On the other 

hand, "x?y" tests whether "x" is an instance of c l ass "Y"• 

Arguments can be passed as in: 

jim? student .!!i!h dept<-math (34) 

The actual operation of testing is very dependent on the class 

being tested. 

Value Information 

There are essentially two ways of obtaining value information 

from the model. The first is fairly trivial and involves using 

the name of a previously defined object. The second meth cd is to 

~f~~ a relation, that is, to present it with an instance of the 

domain and receive as value(s) instance(s) of the range. 

When the maximum cardinality of a relation is 1, the notation 

" R (x) " denotes the range instance "y" (if it exists) such that 

"R" maps "x" into "Y"· For example: 

sex ( john) (35) 

wife(joe) (36) 

The value of such an expression is an instance of the ra nge, 

.!!B~!!, or !!.£!.!hipq. The value is .J!B!.ru2.!1! when the minimum 

cardinality specifies that there must be an instance of the range 

although no such instance is known. The value is !!_£!thi.llil when 

there need not be an instance of the range. For example, "sex" 

of (20) is of the first type, while "wife" of (19) is of the 

second type. To indicate that "joe" does indeed have a wife 

whose identity is unknown we write: 

w~fe: joe -> unknown (37) 

When the maximum cardinality of a relation exceeds 1. the 

concept of a generate~ is needed to produce values one at a time. 

To create a new generator, we use the notation 

g :-> generator with class<- c (38) 
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where "c" is a class. Now "g" is a generator which uses a 

snapshot of class "c" taken at the time cf instantiation, to 

produce iLstances cf "c" known at that point . 

For relaticns, a subclass cf "generator" called "accessor" is 

u sed to produce in s tantiation s . To create an accessor .e use 

"g: -> P.[x]". Fer example, 

w :-> children( john] 

makes "w" a generator of children cf "john". 

4. Abstract and Indefinite Objects 

(.3 9) 

The otjects we have considered so far are £2~£ret~ in the 

sense that they enter the perception field of the model at the 

time of their creation and leave at the time of their 

destruction. For some objects, however, it i s unreasonable to 

SFeak of them as entering or leaving the perception field since 

the mcdel is assumed to have a complete knowledge of them. Thus 

they are never defined explicitly but only referred to. We call 

these cbjects ab~. Typical abstract objects are numbers, 

identifiers and tuples. Of course, abstract objects may have 

other names as in: 

four := 4 

tuple-25 := <1,1,'Jack•,Jack> 

(4 0) 

(4 1) 

Ncte that although a tuple is abstract, its entries need not be. 

We can have sE§!~ ~~ as well, which are simply arbitrary 

ccllecticns of objects. For example, 

truth-value: = (!~g,fal§g,J!ll~l!} 

sex-value : = {masculine,feminine} 

(42) 

(43) 

In all cases, the distinguisLing property of absract objects and 

classes is that their meaning is self-contained it the sense that 

they need not be related to other objects (i.e. "placed" on the 

ISA HIERARCHY) to be ur.derstcod. 

1S 

An imFortant 

that, if at some 

consequence of the inccmFleteness of the model 

time it has the same knowledge cf two 

objects, this does not mean that they are the same object. Thus, 

when an object enters tbe perception field of the model, it must 

identify itself as new or known. However, it is often convenient 

to be able to postpone the decisicn until enough information has 

been gathered ccncerning the object. We call such objects 
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ill£efini!~- We will use the operator s or sll to create an 

indefinite object. For example, 

murderer-of-Eill : = s person 

evening-star :=~planet 

morning-star := s planet 

versus 

venu s :-> planet 

(4 4) 

(45) 

(46) 

(4 7 ) 

with the understanding that they are to be treated differently 

from "definite" objects. In fact, .J!nkl!.Q]ll is really just a 

synonym for "sll object". 

We can also attach restrictions to these indefinite objects 

as to what identities they can possibly have. For example, 

x : =~student .!i!h dept<• math (48) 

w : = s person suchthat age(self) < 25 (49) 

where .fil!fhthat specifies a condition that must be !.!J!g for the 

otject denoted by "w". This becomes important when an indefinite 

object is assigned an identity in some context with the cperator 

"<-". Objects defined in terms of indefinite objects are 

indefinite. For example: 

n := s number 

n-and-3 : = n + 3 

"n + 3" is a definite number cnly in a context where 

definite number. 

5. Extending the Operator Semantics 

(50) 

(5 1) 

11 n11 is a 

So far we have seen that given any class, there are 

essentially four operations defined on it (that do not create new 

classes). They are: 

- add instances 

- remove instances 

- test for instances 

- fetch instances 

We have also seen how these operators have standard prerequisites 

and side-effects . Consequently, the semantics of a class are 

determined by its behaviour under its defined operations. 

Extending the basic semantics of a class involves specifying 

special cases cf prerequisites, effects and values when applying 

these operations to the class. This is done by relati~g the 

class to programs (one for each operation) which are then 
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interpreted automatically when applying the corresponding 

op.erator. In this sense, our approach is procedural. lihen no 

program is specified for an operation, the program of the 

superclass of the class can be used. In this case, a class 

inherits semantics along the ISA HIERARCHY. 

Programs are definite objects that can be interpreted. We 

can divide programs into three subclasses: I!~£~§ which 

perform actions (for adding and removing instances), predicate§ 

which test conjectures (for testing instances) and f!U!£iions 

which have values (for fetching instances) • All prog.rams can 

have .E!~!!.9.§ which are conjectures tested before the 11 bcdy11 i s 

attempted. A ~ causes the program to !~1· In addition, 

programs can have ef~ which are actions performed after the 

s uccessful completion of the body. To relate a class to a 

program, we will use four primitive relations:~.~~, 

tc-test and to-fetch. For example, 

!Q~.§1: male-> 

.E!~!ll !ill 
test:= sex instanc!? ma sculine 

(52) 

reduces a test for an instance of "male" to a test for masculine 

sex. Thu s if we write "jim :-> person" and "sex jim -> 

masculine", then "jim? person" is tr~ and "jim? male" is true 

as well , since the above program will be interpreted with the 

built-in parameter in~ assigned "jim" (i.e., "instance <­

jim"). Similarly, if we have (using example (23) ) 

product: => object (53) 

cost : => must-hold .J!.ith domain<- product, range<- number 

(54) 

price:=> must-hold xith domain<- product, range<- number 

(55) 

profit:=> must-hold !.i!h domain<- product, range<- number 

(56) 

to express the semantics of "profit" we write: 

!£-fe!sh: profit-> 

.E!QS!ll !ill 
value: = price(gomain-inst) - cost(domain-ins!) 

(5 7) 
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'Ihus when evaluating "profit(w)" where 11 w11 is a product, the 

atcve program is used with "domain-in s t<- w". 

If we define "spouse" (using (22)) as 

spouse:=> inter-personal .J!.i!! d-interval <- <0,1>, 

r-interval <- <O, 1> (58) 

then to express the fact that the se mantics of "spouse" is s uch 

that it can only hold between persons of opposite s ex and it is 

symmetric we can write: 

!2=~2: spouse-> 

.erogry with 
prereq : = ~(sex(dom~~!) = se x(range-i~§!)) 

effect:= spouse:~~~§!-> domain-inst 

fill£ (5 9! 

Here, the "prereq" is specified but the body (i.e., action) is 

not. This means that the action is inherited from "inter­

personal" (see example (22)). Thus the action is the standard 

action of adding to an (inter-personal) relation. We can also 

refer to the standard action explicitly by .§!S. 

In addition to built-in parameters such as §!g, §~f, and 

ll§~~.!2~, parameters can be associated explicitly to a class 

operation. 

!~s: student-> 

E!2.9!ll with 
num : =~number 

dept:=~ department defaul! des 

effect := g51 
student-number: in§~-> num 

student-department: iB.§~£! -> dept 

(60) 

Fer this program, 11 num 11 and "dept" are explicit parameters which 

can be assigned values eYery time an instance of " student" is 

added (see example(17)). We now present a program with loops 

that will serve to generate "uncles" of a person (ass uming 

"parent" and "brother"). 

uncle:=> inter-personal 

!.!2~~: uncle-> 

l!•Q.9!ll with 
Yalue := £.!2! p <- parent[domaip-inst] 
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12£ l: <- brother[p) 

!!2.!J!!ll l: 

6. Structures 

(6 2) 

For various reasons, it is convenient tc be able to treat 

grcups of objects as units. Such units are called "structures" 

and the ol:jects that constitute them, their "parts". Structures 

have froperties not necessarily derivable from the properties of 

their parts (i.e., a gestalt). In fact, any object (as seen so 

far) can be considered as a structure with no parts. Thus a 

structure is a group of other structures. We call this 

organizaticn of parts the "PABT-OF HIERABCHY". The syntax we 

will use for the definiticn of structures is: 

§J;:i;uct_y~ some-object ll1l! so-me-parts end 

Fer example, 

vector-1 := Jlf! 

.§.!!!£1.!l~ vector- 1 wi.!!l 
pclar-coords : = ~ 

st];'..!!£:~ polar-coords ,!!ith 

angle : = 45 

radius: = 1.414 

end 

x-y-coords := ~! 

fllUctu1:~ x-y-coords wi:il! 
x: = 1 

y :=, 

(63) 

(64) 

(65) 

defines a structure "vector-1 11 having as parts two new objects 

which are in turn structures having two abstract objects as 

parts. To refer to the "pclar-coords" parts of "vector-1", we 

write "vector-1.pclar-coords". Note that the above structure 

provides two views of the same object and that these views can be 

organized in many different ways depending on the emphasis 

desired. 
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When a structure A is a subclass or instance of a structure 

B, unless otherwise specified; A inherits the parts of the B. 

Fer example: 

vector: => object (66) 

struc!]re vector with 

angle: = ~ number suchthat (self>= 0 & .§~lf < 360) 

radius: = a number suchthat self>= 0 

~.!!il (67) 

normalized : => vectcr !1.!!! radius<- 1 (68) 

New if we write, 

vector-2 :-> normalized ,!!it!! angle<- 30 (69) 

"vector-2.angle" is 30 and "vector-2.radius" is 1. Bote that 

there is a difference l:etween 

vector-a :-> vector !ill radius <- 2 (70) 

and 

vector-b : => vector !.ith radius <-2 (71) 

even though both have the same radius and angle (2 and ynk£.Q!1 

respectively), in that (70) asserts the existence of some 

(indefinite) vector whose radius happens to be unknown at the 

moment, while (71) defines a class cf vectors tnat may or may not 

have instances. 

One important feature of structures, is that they provide a 

way of declaratively Sfecifying often used programs. For 

example, we can think of testing whether a structure is an 

instance of another structure (to-tesj;) as a very general 

matching procedure that attempts to find matching correspondence s 

between parts in each structure. We can therefore place these 

programs very high in the ISA HIEBABCHY where they can be 

inherited by lever, more specific classes whose structure will 

determine their operation. Of course, if this type of processing 

is to be meaningful, the structures will have to be more general 

than those presented here. In particular, they will have to 

ccntain instances of relations, default mechanisms and various 

frereguisites and effects to be interpreted at appropriate times, 

to gutde the processing and handle troublescme situations. 

- 253 -



A Formalism for Modelling 

7. Conclusions 

The ideas presented in this paper are adaptations from a 

number of sources. The original motivation is due to Abrial who 

led us tc consider a coherent self-describing formalism for a 

representation. An obvious but important influencP was the 

semantic network literature which reinforced the idea of objects 

and links as basic building blocks cf the model. The idea of 

associating programs to objects as their definition is clearly 

related to the ACTOR noticn of a distributed interpreter. The 

Frereguisite and side-effect porticns of a program correspo~d to 

the consequent/ antecedent distinction of FLANNER, while the 

division of processing into four 

generalization of the three ~ds of 

tasic operations is a 

CONNIVER. The idea of 

higher level structures is a beginning in the direction of 

"frames" with more than a syntactic influence from Eobrow and 

Winograd's KRl. Finally, the influence of SIMULA is evident in 

our ccncept of classes. 

The formalism described here is inccmplete, especially for 

prcgrams and structures. Some unanswered questions are: 

Hew does one instantiate a structure or match two structures? 

What is a context? Hew do programs "execute" or "compile"? 

We hope that we have at least given an indication of how 

these may be handled. The answers will be formulated in terms of 

the constructs that have already been described and used. In 

this respect, the formalism, like llSP, is completely open-ended. 

( 1] Abrial, J. F.., "Data Semantics", Data llanagemen t .§ID~.!!!§, ed. 

by Klinhie and Koffeman, North Holland, 1974. 
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Abstract 

A DEMONSTRATION LANGUAGE COMPREHENSION SYSTEM (1) 

John W. Ball, Liam J. Bannon and Mike M. Mannor(2) 

Uni ve rs i ty of Western Ontario, London, Canada 

This paper describes a demonstration natural language understanding 

system, developed as a class project. In the course of a few months, an 

implementation was constructed which could handle reasonably complex inter­

rogative and imperative English sentences within a limited domain - a blocks 

micro-world. An ATN grammar was used in the parsing of input sentences, and 

the advanced facilities offered in the POPLER 1 .5 system were utilized in 

the construction and manipulation of the world model . Several innova t ive 

features of our comprehension system are discussed, including a novel solu­

tion to the problem of relative clause comprehension. 

Setion 1 Introduction 

This paper developed out of a class project on-. :1.anguage comprehension 

in a joint psycholo.gy/computer science half-course, under fhe .direction of Dr. 

Zenon Pylyshyn at the University of Western Ontario. A demonstration language 

comprehension system was developed wh ich performed adequately in a 1 imited 

task· domain . This paper outlines some of the major aspects of our system, 

its advantages and its limitations. It should also be noted that designing 

and implementing this system served as a most useful introduction to many of 

the fundamental problems of A.I. research on language comprehension, and we 

stress the beneficial pedagogic aspects of such a course design, i.e., a 

course which is project oriented. 

The fact that anything of substance could emerge from such a project in 

a short space of time, reveals the rapid advances which have occurred in the 

A. I. field in the last few years. Such components as the ATN formal ism, and 

the POPLER 1.5 system (3) (Davies, 1973), gave us a much needed basis for our 
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work, without which 1 ittle could have been accompl i shed. An outline of the 

system is given in Section 2 below. Fol lowin g this, some general remarks on 

the limitations of the system are discussed. A sample of output from the 

system is given in Appendix i. 

Section 2 Sys tern Components 

The run-time system occupies between 84K and 100K of core (including 45K 

for POPLER) on our PDP- 10, depending on the length of the input sentence. 

The system may be conven iently divided up into three sections corresponding 

to the parsing system, the semantic routines, and the world model. 

2. l The Parser 

The specific grammar used in our implementation is a modification of the 

ATN grammar constructed at U.B.C. (Jervi s, 1974). The grammar was 

written i n POPlO code (Blewett, 1974). Several modifications of the 

grammar were required, in order for it to run successfully in POPlO. 

A lexicon was developed, tailored for the "blocks" micro -world which we 

had dec ided upon as our task domain. An example of an entry in the lexicon 

i s given below: 

[a rm n s kywd hand] 

This states that the lexical item ' arm' is a s ingular noun whose key\\Ord is 

'hand '. The lexi con performs the mapping from a lexical item (e.g. arm) 

onto a keyword (e .g. hand). The key\\Ord is always something which is s igni ­

ficant to the blocks \\Orld, whereas the l exica l entry might not be s i gnificant. 

This allows vocabulary growth without a corresponding growth in keywords. 

As we build the parse fragments for noun and preposit iona l phrases, 

these semantic fragments are not interpreted. The interpreation phase is 

postponsed until the parse is finished and then the comp l ete sententia l 

form i s evaluated. This strategy was decided upon for practi ca l reasons 

- 2 56 -

A LANGUAGE COMPREHENSION SYSTEM 

whi ch we will amp] ify later. In retrospect, we found this procedure to be 

costly in terms of searching the data base, and we now hold that evaluat ion 

of the semantic fragments should occur during the parse i tself, in order to 

prune the search tree as soon as possible. 

An interrupt faci I ity was programmed which can be used for a variety 

of purposes during the parsing stage, e.g. recognition of idiomatic express ­

ions, punctuation, replacement of equ ivalent expressions, and various control 

functions. 

A final development of the pars ing system, which is not yet fully 

debugged, involved the design of a compiler- translator for ATN's which com­

piled an ATN grammar into POPIO source code. Each node - 1 i st was translated 

into a POP10 function definition, with the function name being the node name. 

Each arc list and sublist was translated into a call to a POP10 function 

conta ined in the parser's runtime system. The resu lt was a 60 percent 

reduction in the space occupied by the ATN, as well as a slight reduction in 

execution time. It is interesting to note that the idea of compil ing an ATN 

a l so occurred independently at another centre at this time (Burton and 

Woods, 1976). 

2.2 The Semantic Routines 

The semant i c routines interface the parser with the blocks world . They 

are cal led by the parser at the noun phrase, prepositional phrase, and 

sentence levels, and they have the opportunity to fail and parse which is 

passed to them at any of these levels. After a sentence is interpreted by 

the semantic routines, the resulting interlingual representation of the 

sentence is placed in the POP10 editing buffer which serves as a commun ication 

med lum between the parser- semantic routines and the world model. Code is 

added to run .the interlingua in a marker frame to which a direct failure 

will be sent in the event that the inter! ingual form i s uninterpretable in 
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the world mode l . Compilation of the buffer then initiates act ivation of the 

world model. If the blocks world is unable to understand the input, a 

failure is passed back up to the parser, and a new parse is attempted . 

Eventually, either the sentence makes sense in the world and is executed, or 

the parser cannot find any more acceptabl e parses and fails. 

There are three main parts to the semantics: 

(a) the rep l acement of terms by their keywords 

(b) the translation of noun phrases into a set of constraints 

(c) the construction of sentence level interpretat i ons which could evoke 

procedures in the data base. 

The inter] ingua generated by the semantic rout ines and input to the 

blocks world is very readable and often similar on the surface to the original 

English sentence, e.g.: 

(a) pickup the l arge red block behind the pyramid 

(b) (ACHIEVE[GRASP[(THE)(LARGE)(RED)(BLOCK)(BEHIND[(THE)(PYRAMID)])]]) 

Objects are characterized by stringing together constraint lists of actor 

forms . There is a special actor form for " the" which involves l!Ore compl i­

cated processing than the majority of actors because of its imp! ied 

anaphoric reference and will be discussed further in 2.3. 

By bu i 1 ding our semantic rep re sen tat ion (or in te rl i ngua) a round 

constraint 1 ists of actors, we achieve a s i mple first approximation rule of 

composition; viz the semant i c representation of a constituent is obtained by 

concatenating the representations of its subconstituents (e.g.: 

[(LARGE)(RED)(BLOCK)]). This rule rerrains approximately the case up to the 

level of the clause, although some special considerations had to be taken 

into account . For example, to make this principle hold in the case of pre­

positional phrase, we had to make the effect produced by actors associated 

with prepositions depend on the context in which it occurred. For instance, 
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the actor (BEHIND[ •. ]) functions differently in (1) and (2): 

(I) 

(2) 

(ACHIEVE[MOVE[(BLOCK)(BEHIND[(BOX)])]]) 

(ACHIEVE[MOVE[(BLOCK)] [(BEHIND[(BOX)])J]) 

In (I) MOVE ha·s only one argument so it interprets that argument as an 

object constraint 1 ist. Thus behind functions as a conventional restricting 

variable-assigning actor. In (2), however, the second argument to the MOVE 

function is interpreted as a constraint on locations and returns a location 

rather than an object in the blocks world. 

This convenient uniformity could not be extended to include relative 

clauses, however. The reson is that whereas qua] ifying prepositional phrases 

always act as one -a rgument functions constraining the referent of the head 

noun in the dominating noun phrase, relative clauses are more complex in 

their behaviour. In fact, relative clauses have sentential forms in their 

underlying structure and the noun phrase being constrained can be referred to 

in any nominal position in the embedded sentence. Consider the following 

cases: 

(3) the block which supports a cube 

(4) the block which is supported by a cube 

(5) the block which the pyramid is on. 

In (3) the embedded sentence (i. e . relative clause) constrains its subject. 

In (4) its object, and in (S) the object of the preposition. Thus we need to 

indicate that a constraint is being imposed on X where X in each case is 

as in 

(6) X supports a cube 

(7) a cube support X 

(8) the pyramid is on X. 
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Further, we want to restrict X to be filled by an object also meeting 

the constraint (THE) and (BLOCK). Since the parser properly interprets 

relative clauses such as (3) - (5) as embedded sentences such as (6) - (8) 

with X's filled in by "the block"), the simple rule of composit ion would 

not work. Instead, a device sim il ar to lambda binding was employed which 

picks out from the semantic structure of the relative clause that part 

which is to be further constrained by the actors outside the clause. The 

device consists of the pair of actors (SUCHTHAT[ .. J) and (THATTHING) 

serving as declaration and variable respectively. Thus (3) - (5) after 

being parsed in terms of embedded sentences such as (6) - (8) are translated 

to (9) - (11) respectively. 

(9) [(THE) (BLOCK) (SUCHTHAT[(THATTHING) (SUPPORTS[(CUBE)])])] 

(10) [(THE)(BLOCK)(SUCHTHAT[(CUBE)(SUPPORTS[(THATTHING)])])] 

(11 ) [ (THE) (BLOCK) ( SUCHTHAT[ (PYRAMID) (ON[ (THATTH I NG)])])] . 

as with the prepositional phrases, such structures are constructed recursively 

and can be indefinitely embedded. 

2.3 The World Model 

The micro-world is a simulated blocks world similar to that used 

by Winograd. The 3-D space of the blocks world i.s conceptually 

divided into distinct compartments, each compartment being a 10-unit cube. 

Objects occupy separate compartments in the world. 

The knowledge of the blocks world consists of entities and processes. 

Each entity is a uniform symbol structure, represented as a set of attribute­

value associations. A process is a procedure of the system which is 

elicited in the presence of a specific input stimulus - in this case a 

POPLER-compatible interlingual representation of an English sentence. The 

behaviour of the process may be a simple retrieval of a fact from the symbol 
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structure or a change of the content of the structure in response to an 

altered state of the world. There are more than 40 actors defined to allow 

for descriptions of objects in terms of their properties and relative 

locations. 

An attempt was made to handle the problem of anaphora. Since all 

references to objects in the blocks world are extensional (except for 'one', 

described later), all noun phrases must be instantiated to a particular 

object. An anaphoric reference list (a stack of previously mentioned 

objects) is created to aid in this instantiation. When the special actor 

'the' is encountered, it is assumed that the user is referring to a specific 

item in the world. If it is unique in the present world state, then no dis­

ambiguation is necessary, otherwise the anaphoric reference list is examined 

to attempt to individuate the reference. If the current context defined by 

tire discourse-specific knowledge (i.e.: the anaphoric reference list) cannot 

effect the disambiguation, then a failure is sent out of a marker frame 

(originally set up in the buffer) back to a decision node constructed by the 

semantic routfoe in the S/ node of the parser, where another possible inter­

pretation will be attempted. Two other actors, 'it' and 'one' are also 

allowed in the input string and their references are found by use of the 

anaphora mechanism. The actor ' one' is unique in our world as it is the 

only actor with intensional import in that it can refer to a class of objects 

rather than a specific object. 

It should be noted that the world model performs some important semantic 

and syntactic checking in addition to the more pragmatic interrogation and 

maintenance of the data base itself, (e.g., 'put the block.', or 'is the 

blue block?', though parsed as grammatical by our grannar rules, will fail). 
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Section 3 Conclusion and Discussion 

The decision- to postpone accessing the blocks world until the end of the 

parse phase, mentioned earlier, was an expedient. After the parse has pro­

duced a noun phrase, we have a semantic fragment available which could be 

evaluated in the micro-world. If it were meaningless, a backtrack in the 

parse could begin immediately, rather than having to wait until the end of 

the sentence parse. 

The semantic checks made in our semantic routines are rather el ementary 

and could be upgraded. The addition of case frames would probably increase 

the efficiency of the system. They are not used i n our system, as the world 

model itself acts as a partial case frame filter. However, it would be less 

time consuming if these checks were done before entering the blocks world. 

Despite the shortcomings mentioned above, we believe the system as it 

stands is a useful tool for the investigation of the problems of language 

comprehension by machine. It is hoped to continue work on the system next 

year. 
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Footnotes 

(1) We would like to acknowledge the assistance that we received in thi s 

project from Zenon Pylyshyn, our in structor who provided the impetus 

for the whole undertaking, from Julian Davies for assistance with some 

technical details concerning the POPLER 1. 5 system, and from Ri chard 

Rosenberg of U. B.C. who provided us with a LISP copy of both a parser 

and a grammar which served as a basis for the current project. We are 

grateful to Zenon Pylyshyn for his useful conments on a draft of this 

paper. 

(2) This paper describes a course projec·t involving work done by Gary Duggan, 

Dave C. Hogg and John McArdle in addition to the authors. 

(3) POPLER 1.5 is a high-level A.I. system designed by Julian Davies at 

The University of Edinburgh. POPLER is a language based on the main 

features of PLANNER and CONNIVER, and is embedded in the PDP-10 system 

(a PDP-10 implementation of POP2). 
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