














































































































































































































































































































Command Schemata

processes and have illustrated both the kind of claims which

might bé made and the type of support which might be adduced for

them, Most of the claims are meta-theoretical, i.e., they ars

not claims about the details of a particular model but rather are

about general features of information structures and processes.

Space does not permit discussion of several interesting issues,

e.g., process control, event structures, or the implications of

the present approach for traditional psychological theory. It is

hoped that the present approach will assist the uneasy marriage

of the "odd couple”, the computational and the empirical

traditions and thus encourage development of a genuine cognitive

science.,
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RECENT PROGRESS IN THE ESSEX FORTRAN CODING SHEETS PROJECT.
R. Bornat, J.M. Brady and B.J. Wielinga,

University of Essex.

This paper describes recent progress made in building a program to interpret
Fortran coding sheets using several sources of knowledge. Currently the
program consists of three parts: a sheetfinding program, a segmentation and
character reading program, and a program which reasons about Fortran from the
"blob structure"” of the coding sheet. To date, all these programs are more

or less operational and some results are presented. The emphasis of the project

lies currently on the interaction between various parts of the program, in
Particular the interaction between the Fortran reasoner and the character
program. Some preliminary ideas on this interaction will be discussed.

Introduction

The FORTRAN coding-sheet project at the University of Essex is an attempt to
show the effectiveness of the use of knowledge in a visual perception task,
rather than the mere possibility of employing knowledge. It is for this
reason that we have chosen such a well-trodden topic - that of reading a
casually hand~printed FORTRAN program like that in figure 1. The topic has
already been studied from the AI point of view, notably by Munson, Duda and
Hart (Munson 1968) (Duda and Hart, 1968) and of course much work has been
expended on upper-case hand-printed character recognition in the absence of
knowledge of the text being read. Further justification of our approach may
be found in Bornat and Brady (1976a) and work up to the beginning of this
year is described in Bornat (1976), Bornat and Brady (1976b), Brady and
Wielinga (1976a) - this paper reports on progress in our work since then.

The effectiveness of knowledge in visual perception has to derive from
redundéncy in the visual scene. Perceiving one part of the scene and knowing
something about what the scene contains enables us to predict something about
another part or at least gives us constraints on its future interpretation.
FORTRA@ in particular is enormously redundant syntactically. Upper-case
handprinting, on a sheet with ruled lines and 'blips' which form a sort of
clock-track, is highly constrained, Writers try to distinguish similar
characters but don't follow a template - there are variations in size
regularity of spacing and so on. ’

The program was originally conceived as falling into two sections - one using
gnowledge about FORTRAN, the other about characters and writing. It is
intended to be a collection of intercommunicating processes, with the output
being plausible interpretation of the program on the sheet. Due to our
t?r?o? when first faced with the sheer size of our input (one sheet is
d%gltlsed to 12M bits or about 300K PDP-10 words) we added a preprocessor.
Figure 2 shows the organisation of our program. All the separate parts exist
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(some more developed than others, of course) and work is just starting on the
real meat of the project -~ developing a dialogue between the !
and tne "FORTRAN reasoner'.
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Data Collection is via a 35mm negative, photographically enlarged into a 175%125mm
positive, digitised to 256 light-levels on a photodensitometer. As part of

the project we've had to build our own 'vision system' - an interpreter (Bornat
and Wielinga 1976) picture I-O routines an indexed database and a !frame'

system.

The Coding-sheet finder

Une of the most obvious tasks in our project was to find where to look. We had
the idea of taking a 'long-distance view of the sheet, with sufficient resolution
to see blobs of writing and perhaps the ruled lines but insufficient to see
details of the individual characters. The program is reported in Bornat and
Brady (1976b). It works on reduced-resolution data - a 4% reduction gives

us a manageable 20K of PDP-10 words.

The original motivation for the program was to produce a 'blob map' which would
be the first input to the FORTRAN reasoner. Now that we are more experienced
in low-level 'vision hacking', we find that we can get better information,
collected in a more satisfactory fashion, from the Segmenter (see below), so
this part of the program has been relegated to the task of telling the Segmenter
where the lines are, what parts of each line seem to be completely blank, and
give an estimate of the inter-blip gap. We utilise the fact that the lines

are long, straight, parallel and periodic to indicate where we may have missed a
line or interpreted some writing as part of the line.

Edge detection and segmentation

Given the outline of the coding sheet as produced by the sheet finder, an area

of the sheet corresponding to one line is selected and read into memory . The
grey-level data are transformed to gradient space using a 3 x 3 gradient operator
(Roberts, 1963) and thresholded. Feature points with a similar gradient
di?ection (quantised to 8 different values) are grouped together into edges.

This process results in a representation of the writing on the line in terms

of a set of edge elements, similar to a "Ppimal Sketch" as proposed by Marr (1976).

UUIHIHHIIHUIUI.HIIHHUHHIHHI\\HU
A '3;".' 4 J\T—/@s(g'm@f\f,f.@%\y SR
T T T T T T T T T T T T I T T 77

Figure 3
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Figure 3 shows an example of such a primal sketch. We decided to use the
primal sketch rather than intensity or gradient data as the basic imput for
successive stages of the program for a number of reasons. Obviously, the

edge data (thresholded on length) are a lot cleaner than the raw data.
Secondly, identification of the coding sheet lines and blips is easier for

an entire line than for a much smaller character area. A third reascn for
using the primal sketch is that the segmentation process can be based on stroke
(edge) information rather than on some sort of intensity histogram, as was

the case in an eariier version of the program (Brady and Wielinga, 1978).
Another advantage of the use of a primal sketch is that during the segmentation
process the program can have a '"quick look"™ at the character area to determine
rough size and shape information and to do some statistics on the strokes
present in the area. This information can be used to classify the character
roughly as being "roundish", "straightish", a decender (possibly a bracket)

or as an operator (in general smaller than alphanumeric characters). A

last reason to introduce the primal sketch is detection of curves. Curves

can easily be detected {and described) as a set of small, partially overlapping
edge elements, for example the "0" and "R" in figure 3.

The information gathered in the segmentation stage (blob data and tentative
character information) is sent to the Fortran reasoner and a dialogue between
segmenter, character-reader and Fortran reasoner is initiated. It should be
stressed that the output from the segmenter is not always reliable. It is
possible that "noise strokes" (e.g. scratches or dirt on the original sheet, or
strokes that are part of the coding-sheet lines or blips, but which are not
identified as such) are interpreted as punctuation marks or as operators,
Descender information, and in general, size information, is not reliable in
cases where segmentation between characters is difficult. Equalssigns are
often not small enough to be identified as operators. These problems can often

be overcome in a dialogue between the segmenter and the Fortran-reasoning
program as described below.

Reasoning about Fortran

The task of a FORTRAN reasoner in our program is to exploit consistency between
information about different parts of the sheet, based on knowledge about the
FORTRAN programming language. There are two obvious ways to do this:

1) Bottom-up: as if a human, reading the sheet, came upon the realisation

that it was FORTRAN. 2) Top-down: knowing that it is FORTRAN, attempting to
impose a structure on it.

The bottom-up solution is like trying to find the best-fit from a universe of

interpretations, given some partial information about the data. The top-down
solution is more immediately approachable, and is plausible as an explanation

of the way we read difficult handwriting, searching for an explanation of the

confused marks in front of us. Although humans don't often have to use this

method when reading our data, it is a mode of behaviour worth investigating
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which may cast light on the organisation of processes in other visior tasks.

Most work on the reasoner up to date has assumed that the coding~sheet finder
would provide 'blob' data like that shown in figure 4. The reasomer is told
the length and position of blobs, whether they are 'operatcr' blobs (including
punctuation and equak signs) or 'alphabetic! blobs. Its task is to guess
statement identities given this information, and to indulge in a dialogue

with the character and writing processes in the program, both inviting and
providing information about the data.

1 jramirnjca]esiwsws] sl | S | 4){
2 i 3]
3 C 1 i | e  sr— v o v
o @[T Izl N
sl @ 0'T] _/
6 Eleld _/
1 =1y ) — 44_£>
I .
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" AED ] /
1 EleSlaW3] /
B = T 5 1§l 5 | e[ & W3l A\
W ||C T WaWIN s ;
S| @7 I 7 Isezllewel JJ
b =
9 &=d A,
Figure 4

The part of the reasoner which guesses statement identities is implemented.
Working rather like a top-down parser, it attempts to assign roles to the
blobs on each line, simply working through the possibilities in turn. It
assumes at present that this is unreasonable for consecutive alphabetic blobs
to run together into ome blob, reasonable if two blobs are separated by a
parenthesis or if an alphabetic bleb is followed by a numeric blob.
initially that 'words' are
'TO').  With these simple
for the lines shown above:

It assumec
never split into separate blobs (except for 'GO!
assumptions it produces the following first guesses

1. comment | FORMAT

2. WRITE | READ

3. TORMAT

4. TORMAT | WRITE | READ
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5. FORMAT

6. assignment

7. assignment
8. assignment , READ

9. BACKSPACE FORMAT | REWIND | PAUSE

10. logical-IF

11. DO |arithmetic-IF

12. assignment

13. assignment

1y, WRITE READ

15. FORMAT

16. CALL | GOTO | REAL | STOP
17, END

Figure 5

In figure 5, the correct guess is underlined. It is surprising that such

a simple algoritim, using such simple knowledge, can arrive at such a performance,
often guessing correctly and always including the correct guess among the

few proferred. The performance is sustained with other data - though if you
know about FORTRAN syntax it would be trivial to construct an example to confuse
it. ¥We'll be happy if our system works on non-pathological examples at first,
though later it will of course be necessary to be able to 'take back' early

guesses and then, we nope, it will be able to handle programs which aren't
written as clearly as this one,

The program is at present being developed to produce a graph which shows

eacn statement's role in the control flow. The most obvious use of this is

to divide declarations from statements, thus rejecting the 'REAL' guess on line
16, for example. Most inter-statement knowledge relies on control-flow inform-
ation so the grapn is essential for us to move away from reasoning about single
statements, It makes some apparently bizarre inferences more plausible -

such as the one which runs 'line 17 is END, line 16 isn't a comment or a

FORMAT, tnerefore line 16 must be RETURN, STOP or GOTO'. In early versions

of the program we were so impressed by the power of knowledge about the END

line that it looked at the last line first of all, knowing it to be END,

and then at the line above, knowing it to be RETURN STQF or GQTO. If it

mignt be RETURN, then these last lines formed part of a subprogram, and therefore
cee Later we rejected this as too ridiculous and made the program look

at the sneet irom top to bottom. Now it will have to produce this inference

as a natural result of reasoning from the control graph - the last node in

a progran unit can't let control 'drop through' to the END line.

All of the knowledge used so far, however, and all of that envisaged in the
near future, is about the syntax of FORTRAN. This reliance on syntactical
knowled&e is a strength of the project - although an understanding of the
program's purpose would enable us to make much more powerful inferences and
employ much more powerful constraints, such an understanding is beyond the
state-of-the-art. The knowledge so far incorporated enables us to cut down
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the search space of the rest of the system enormously, and often enables

us to propose single character ‘acid tests' to distinguish between different
interpretations of a line. This avoids many simple errors which an
unknowledgeable system mignt make - for example, Duda and Hart (1968) after
filtering tne output of a character recogniser, had a line interpreted as

D7 11 I=1, 100 =~ the obvious interpretation in blob terms is that it is a
DO statement, so the possibility of the second character as '7' would never
arise in the first place.

A difficulty with incremental simulation (Rovner, Nash-Webber and Woods, 197u4)
is that the associated modules may fail to meet their original specification.
This has happened with the FORTRAN reasoner. The data shown in figure u

are unrealistic. In some ways they're too accurate - the segmenter may
provide unreliable information and in others they're too undifferentiated -
the segmenter can provide information on many individual characters within

the blobs. A true dialogue involves helping the character experts with their
problems as well as spontaneously offering interpretations.

Character reaaing using partial knowledge

Once the Fortran reasoner has made a first guess at the identity of a statement (or
has decided that no reasonable guess can be maue just on the basis of the blob
information) a dialogue between tae Fortran reasoner, the segmenter and the
character programs is initiated. This dialogue may take tne form of simple
requests to tue character system like "verify an F", with a straipghtforward yes or
no answer. In cases where difficulties arise, either in tne Fortran reasoning

or in tne cnaracter reading process, more elaborate dialogues may occur: Fortran:
"I taink tnis statement is REAL, WRITE or FORMAT; can you discriminate?";
cnaractersystemy "“Ho I can't read it, but the 5th character could be a bracket,
does tuat nelp?"; Fortran: "Yes, I'm now quite sure it is READ(...), could you
verify?"; charactersystem: "Yes, it could very well be READ(...)".

Tne consequence of this rich interaction is that tne character system has to be
able to adapt its behaviour according to the requested information and to the
partial information it is provided with. #oreover it must also be able to "be
aware' of its own reasons why it believes certain evidence. This is because
questions of confidence may arise, e.g. wnen a hypothesis made by the Fortran
Reasoner strongly conflicts with character evidence, the character reader has to be
able to contemplate tne structures it has built, and possibly reconsider its
interpretation of the evidence. Even internally a conflict may arise during the
reading of a character, e.g. in the case of difficult segmentation or ligatures:
"it looks like O put I have an unexplained stroke".

The requirements sketched above have strong implications on the structure of the
cnaracter system and on the way in which knowledge about characters is
represented: (1) the control structure must be flexible: the program must be
able to change its strategy; (2) character knowledge should be packaged, in such
a way that partial information can be represented and properly used; (3) tne
program must be able to assign roles to individual pieces of evidence within the
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character models.

To meet these requirements we decided to implement a system based on 'frames"
(Minsky, 1975). In Brady and Wielinga (1976a) we elaborate further on the
considerations which lead us to choose a frame-type representation for character
knowledge, and give more details about our current implementation, which was
inspired by an early version of KRL (Bobrow & Winograd, 1976). Frames as we have
implemented them are information structures containing knowledge both in
declarative and procedural form. Two important types of components in a frame are
SLOTS and ACTIONS. SLOTS name and describe pieces of information in a frame, while
ACTIONS describe procedurally how to use (or to obtain) information in the frame,
and what to do when certain conditions in a frame are fulfilled. Figure 6 shows a
typical frame representing a model for 'V'.

[v isa LETTER with.slots

LEFTSTROKE « [* isa STROKE with.slots
SLOPE + <anyof LEFTDIAGONAL VERTICAL>
POS « LEFT

RIGHTSTROKE + [* isa STROKE with,slots

SLOPE <+ <anyof RIGHT DIAGONAL VERTICAL>
POS <+ RIGHT

INTLR « [* isa INTERSECTION with.slots
STROKEL + ! LEFTSTROKE
STROKEZ < ! RIGHTSTROKE
RELANGLE + ACUTE
POS + BOTTOK ]

with.actions
when.filled <allof LEFTSTROKE RIGHTSTROKED]
3( test verified (INTLR) then confirm (V)
or test converge.at.bottom(LEFTSTROKE, RIGHTSTROK®
then test check.touch(LEFTSTROKE, RIGHTSTROKE)
then confirm (V) <> possible (U)
or deny (V) <> suggest (U)
or deny (V) <> suggest ([AHU )

$)]

[when.filled INTLR] [confirm (V)]

{before .confi_rmed]
| $( test distance (endpoint(RIGHTSTROKE),

intersect point (RIGHTSTROKE, LEFTSTROKE))>DELTA
then possible (V) <> transformto(Y) <> verify(Y)
or test smallvertical.stroke (right)
then deny (V) <> transformto(U)}<> verify(U)
or handle.troublesome evidence ()<>
resultis TRUE’

]

Figure 6

The frame contains descriptions for the two strokes (SLOTS: LEFTSTROKE and
RIGHTSTROKE) and for the intersection between them (SLOT : INTLR). The actions
describe what to do when appropriate strokes have been found: certain checks have
to be made to make sure that 'V' is indeed the right character and not 'U' or 'Y'.
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To illustrate the working of our current character system, we will describe the way
in which the program-behaves when confronted with the character in figure 7, having
no partial information on the identity of the
character. The program starts with a bottom-up
search for big strokes in the primal sketch. .Two
strokes will be found. A database search for
applicable frames (i.e. frames containing slots for
Figure 7 two diagonal or vertical strokes, one at the 2eft,
' one at the right) will return a number of character
frames (e.g. A, H, U, V, Y. ...) and some frames which describe stroke relations
like INTERSECTION and VCOMBINE,

The system currently uses 'hard-compiled' knowledge to decide which type of frame
is the best candidate to try first - in bottom-up mode stroke relations.

VCOMBINE - a stroke relation which checks whether twe strokes are part of one bigger
stroke - is tried, refuted and proposes to try INTERSECTION. This frame is
hypothesised and confirmed, and its slots RELANGLE and POS are filled with ACUTE
and BOTTOM respectively. When the INRERSECTION frame is confirmed, the list of
candidate character models is checked for models which match this type of
INTERSECT#ON. The model for V is hypothesised and its slots are filled, invoking

as a side effect the whenfilled action. Since the INTERSECTION is already verified,
the V frame will be confirmed, and the before.confirmed action will check whether
the distance between the intersection point and the end point of the right stroke

is larger than a certain threshold DELTA. Since this is the case, the information
in the V frame will be mapped onto a Y frame. The character system concludes that
the character is likely to be 'Y', but that 'V' is still an alternative possibility.

Future work - the Dialogue

Now that we have got to grips with the parts of the problem, we will concentrate our
efforts on the interaction between the various sections. Space does not allow us to
show examples, but we have some simulated dialogues about lines of the coding sheet
in figure 1. Line 8 ('READ(5,30)N') for instance is quickly, identified as
'READ(an,nn)a' (an = alphanumeric, n = numeric, a = alpha)®¥P&iscrimination test on
the comma (the alternative possibility - am assignment statement - requires an
equals sign).

In the case of line 9 ('FORMAT(I2)') of the same sheet the blob information is

less conclusive: there are four different types of statements possible, and
moreover the segmenter has some difficulty in distinguishing the first bracket
from 'I', So, more evidence about the individual characters is needed to find a
reliable hypothesis about the identity of the statement. It is precisely this kind
of problem that our research in the near future will focus on.
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THE AXIOMATISATION OF STRIPS

AS A PREDICATE CALCULUS PROGRAM

Donald Kuehner
Department of Computer Science
University of Western Ontario

London, Ontario

Abstract

It has been shown by Kowalski and van Emden that predicate
calculus can be treated as a programming language. The axiomat-
isation of a problem is interpreted by a resolution theorem-
prover as a program for the solution of the problem. Certain
symbol manipulating algorithms can be very concisely stated as
predicate calculus programs. An example is STRIPS, the robot
planning algorithm of Fikes and Nilsson. STRIPS can be stated
using eight axioms, so that an eight-line program is the result.
A stronger version of STRIPS, Warren's WARPLANf can be written

as a twenty-line program.

Predicate calculus as_a programming language

Recently van Emden [2,3] and Kowalski {[6,7] have been
considering the use of first-order predicate calculus as a
programming language. The axiomatisation of a problem, when
converted to the clausal form of resolution theory [9]1, can be
considered to be a program for the solution of the problem. The
resolution theorem-prover PROLOG [1l], has been used as an inter-

preter for programs written in predicate calculus.

The logical statement A < B&C, has clausal form Av~Bv~C.
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As a prqgramming procedure, this is written as +A-B-C. The
procedure call, -A, is responded to by the procedure whose name
is +A. The body of this procedure contains the procedure calls
-B and -C. The unification of resolution becomes the identific-
ation of the parameters of the calling statement with the dummy

parameters of the procedure.

Two examples

It is easy to construct LISP-type lists using nestings of
the function CONS, and the empty list NIL. The two-element list
{A,B] is represented by CONS(A,CONS(B,NIL)). Thus x is a list
if x = NIL or if there exist y and 2z such that x=CONS(y,z).
This is equivalent to the procedures
+ISLIST(x) -IS(x,NIL)
+ISLIST(x) -IS(x,CONS(y.,z)).

These procedures form a program for testing whether or not x

is a list.

The following recursive procedures construct a new list by
appending the second list onto the end of the first list.
Capital letters are used for constant values, and small letters
are used for variables.

(a) +APPEND(NIL,list2,list2)

(b) +APPEND (CONS (headl,tail 1), list2, CONS(headl,newtail))
-APPEND(tail 1, 1list2, newtail)

Procedure (a) states that if the first 1list is the empty list,

then the new list is the same as the second list. Procedure (b)

states that the head of the new list is the head of the first

list, and that the tail of the new list is constructed by

appending the second list to the tail of the first list.
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These érocedures could be called by the following main

program
(c) ~APPEND(CONS(A,NIL), CONS(B,CONS(C,NIL)), newlist)

-QUTPUT (newiist).

When these three clauses are submitted to a resolution
theorem-proving program, clause (c) is distinguished as the set
of support [8,11]. When (c) and (b) resolve, the resolvent is
(1) ~APPEND(NIL,CONS(B,CONS(C,NIL)), newtail)

-QUTPUT (CONS (A, newtail)).
The left-most literal of (1) can be unified with (a) to produce
(2) OUTPUT(CONS(A,CONS (B,CONS(C,NIL)))).
This clause can be thought of as resolving with the clause (e)

+0UTPUT(x) which has the side effect of printing the value of x.

A proof procedure for executing programs

A predicate calculus program is usually written using Horn
clauses. These clauses have at most one positive literal. Most
Horn clauses are eithar procedures of»the form +A—B1 cee Bn' or
assertions of the form +A. There is also the negated goal of the
form —B1 cee —Bn and the terminal clause whick is empty. It is
easy to see that the resolvent obtained from twc Horn clauses

is itself a Horn clause.

An efficient inference rule for doing resolution with Horn
clauses is Selective Negative Linear (SNL) resolution [8]. SNL
is selective in that it chooses one literal of a clause to re-
solve on, and must not resolve on any other literal until that
literal has been used. It is negative because its support set
is negative and every resolvent must be negative. A resolution
is linear if one parent of each resolvent is an input clause.

The search strategy selects the left-most literal of the
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support clause or a resolvent. When attempting to resolve on
such a clause, the input clauses are tried in the order in which
they are written. When an input clause is found which does re-
solve, no lower clauses are tried unless that branch of the

search fails. This is depth-first search.

In general a depth-~first search is not exhaustive, and so
the proof procedure is not complete. However, there is some
indication that program termination may be assured by carefully
ordering the clauses within the program, and the literals within

each clause.

The need for an extended predicate calculus

Literals with side effects such as QUTPUT(x) are provided
chiefly for the convenience of the user. This corresponds to

Green's answer predicate [5].

Certain semi-logical tests seem to require a special
mechanism. Sometimes the truth of an essention can be tested
within predicate calculus, but the testing of its negation
cannot. For example, the procedure which tests whether x is
a list, would also succeed if x were a variable. To test
whether x is an explicit list, a +NONVAR(x) procedure must

be written.

The following use of the special-purpose literal NOBRANCH
allows the testing of negation.
(a) +NONVAR(x) -UNIFY(x,CONSTANT) -NOBRANCH -FAIL
(b) +NONVAR(x)
(c) +UNIFY(y,y)
(d) +NOBRANCH {has search strategy side effectl.

Assume that node n of a search tree has label -NONVAR(variable}.
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This could resolve with (a) or (b). The search strategy will
first try (a). This succeeds, producing node n+l labelled
~UNIFY(variable,CONSTANT) - NOBRANCH -FAIL. This resolves with
(c) producing node n+2 labelled -NOBRANCH -FAIL. The following
resolution is with +NOBRANCH which as a side effect directs the
search strategy to allow no further branching from the node above
the one where -NOBRANCH first appeared, namely the node n.
There is no +FAIL among the input clauses, so this branch of the
search fails. The search would normally backtrack to node n
and resolve -NONVAR(variable) with (b). But this is forbidden,
so the search must backtrack further.

If node n had been labelled with -NONVAR(A), then node
n+l would have been labelled -UNIFY(A,CONSTANT) ~-NOBRANCH -FAIL.
This would fail to unify, so the search would backtrack to node
n and resolve successfully with (b). Thus (b), which always
unifies, is accessible only if (a) fails at -UNIFY (x,CONSTANT) .

The axiomatisation of STRIPS

Certain symbol-manipulating algorithms can be stated very
concisely as predicate calculus programs. Fikes and Nilsson [4]
describe an algorithm STRIPS which a robot can use to make plans.
The program for implementing STRIPS in predicate calculus,
PC-STRIPS, can be written as eight clauses. This economical
program was suggested when modifying Warren's WARPLAN {10], which
appears in the last section.

In order to understand the PC-STRIPS program, it is con-
venient to look at an example of the sort of data upon which it
will operate. This data, expressed as Horn clause assertions,
describes the initial world and the actions with which the robot
can change this world.

Any action by the robot changes the state of its world.
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The ADD predicates 1i§t the new situations which hcld in the
world after the action. The DEL predicates list the old situat-
ions which must be deleted. The PRE predicate states the con-
junction of preconditions which must be present in the werld
vbefore the action can be begun.
(D1) +GIVEN (ATROBOT(A))>
(D2) +GIVEN (AT(BOX,B))
(D3) +ADD (ATROBOT(place2), MOVE(placei,place2))
(D4) +PRE (ATROBOT(placel), MOVE(placeil,place2))
(D5) +DEL (ATROBOT(placel), MOVE(placel,place2))
(D6) +ADD (AT(object,place2), PUSH(object,placei,place2))
(D7) +ADD (ATROBOT(place2), PUSH(object,placeil,place2))
(D8) +PRE (AT (object,placel) &ATROBOT(placeil),
PUSH (object,placel,place2))
(D9) +DEL (AT(object,placel), PUSH(object,placei,place2))

(D10) +DEL (ATROBOT({placei), PUSH(object,placel,place2))

A simple task, expressed as a negated goal, might be

(G) -SOLVE (AT{(BOX,C), START, plan) -OUTPUT(plan).

A conjunction of three goals written as goali&goal2&goal3
represents the function CONJ(goall,CONJ{goal2,goal3)). A
sequence of acts written as acti&act2sact3 represents
SEQ(SEQ (acti,act2),act3). Thus goals are accessible from the

left and actions from the right.

It is now possible to state the clauses which form the
PC~-STRIPS program.
(S1) +SOLVE (goalatom&goalist, actsdone,allacts)
-SOLVE ({goalatom, actsdone, newacts)
-SOLVE (goalist, new acts, allacts)

This isolates the next goal. The sequence of "allacts" is
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intended to have "actsdone" as an initial subsequence.

(S2) +SOLVE (goalatom, START,START)

-GIVEN (goalatom)

If the only act done is the START, then it is checked whether
the goal atom is given.
(s3) +SOLVE (goalatom, actlist&act, actlisté&act)

~-ADDED (goalatom, actlisté&act)

If a sequence of acts has been done, it is checked whether the
current goal atom was added by one of them.
(S4) +ADDED (goalatom, actlisté&act)

-ADD (goalatom,act)
This checks to see if the most recent act added this goal atom.

(s5) +ADDED (goalatom, actlisté&act)
~-DEL (goldatom,act)
-NOBRANCH

-FATIL

(s6) +ADDED (goalatom, actlisté&act)

-ADDED (goalatom, actlist)

If the goal atom was deleted by the most recent act, then (S6)
is not accessible. If the goal atom was not deleted, then -DEL
of (85) fails to unify, so (S6) is tried next. Eventually, the

following clause may be tried

(S7) +ADDED (goalatom, START)
~GIVEN (goalatom)

If the goal atom was not given and has not been added by the acts

done, then it must be added by a new act.
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(S8) +SOLVE (gocalatom, actsdone, newactlist&newact) (KW10) +PRESERVES (newact, lastgoal)
-ADD (goalatom, newact) -DEL (lastgoal, newact)
-PRE (newgoalist, newact) ~NOBRANCH -FAIL
~SOLVE (newgoalist, actsdone, newactlist) (KWll) +PRESERVES (newact, lastgoal)

. . KW12) +PLAN oalatom oalsdone, actsdone&lastact
The preconditions of this new act form a new goal list which ( ) (g - ! !

. . . . newactlist&lastact
must be solved before returning to the previous goal list. This )

-ADD (goalatom, newact)
completes the PC-STRIPS program.
~RETRACE (goalsdone, lastact, oldgoals)
WARPLAN
R ~ACHIEVE (goalatom, newact, oldgoals, actsdone, newact-

Warren [10] has devised a modification of STRIPS, called list)

WARPLAN, which allows the insertion of a new action into a -PRESERVES (lastact, goalatom)

previously evolved action sequence. This insertion is evoked (KW13) +RETRACE (goalsdone, lastact, oldgoals)

when the new action destroys a previously achieved and protected -REBUILD (goalsdone, lastact, earlygoals)

subgoal. Warren's rather opaque, forty-six-~line predicate -PRE (goals, lastact)

calculus program, has been re-written to conform with PC-STRIPS, -APPEND (goals, earlygoals, oldgoals)

and has been simplified to the following twenty-line program. (KW1l4) +REBUILD (lastgoaldone&othergoalsdone, lastact, earlygoals)
(KW1) +PLAN (goalatom&goalist, goalsdone, actsdone, allacts) ~ —ADD (lastgoaldone, lastact)

-PLAN (goalatom, goalsdone, actsdone, newacts) -REBUILD (othergoalsdone, lastact, earlygoals)

-PLAN (goalist, goalatom&goalsdone, newacts, allacts) (KW1l5) +REBUILD (lastgoaldone&othergoalsdone, lastact, lastgoal
(KW2) +PLAN (goalatom, goalsdone, START, START) lastgoaldone&oldgoals)

-GIVEN (goalatom) ~REBUILD (othergoalsdone, lastact, oldgoals)
(KW3) +PLAN (goalatom, goalsdone, actlist&act, actlistsact) (KW16) +REBUILD (TRUE, lastact, TRUE)

-ADDED (goalatom, actlists&act) (KWl7) +APPEND(goalatom&goalisti,goalist2,
(KW4) to (KW7) are the same as (S4) to (S7) goalatom&agoalistiand2)
(KW8) +PLAN (goalatom, goalsdone, actsdone, newactlists&newact) -APPEND (goalisti,goalist2,goalistiand2)

-ADD (goalatom, newact) (KW18) +APPEND (goalatom, goalist2, goalatom&goalist2)

-PRE (newgoalist, newact) (KW19) +ACHIEVE (goalatom, newact, goalsdone, actsdone,

-PLAN (newgoalist, goalsdone, actsdone, newactlist) newactlist&newact)

-PRESERVES (newact, goalsdone) -PRE (newgoals, newact)
(KW9) +PRESERVES (newact, lastgoalsgoalsdone) -PLAN (newgoals, goalsdone, actsdone, newactlist)
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(KW20)

-PRESERVES (newact, goalsdone)
+ACHIEVE (goalatom, newact, goalsdone, actsdone&lastact,
newactlist&lastact)
-RETRACE (goalsdone, lastact, oldgoals)
-ACHIEVE (goalatom, newact, oldgoals, actsdone,
newactlist)

-PRESERVES (lastact, goalatom)
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ABSTRACT

Generalizing the concept of a path in Clause Interconnectivity Graphs,
we define the set of simple (i.e., cycle-free) paths that begin at a specified
subset of nodes. Where the search of the CIG for a proof in the predicate
calculus was previously defined in terms of the edges of the CIG, here the
simple paths themselves become the atomic elements of the search, thereby
increasing the "chunk" size of the operands. We can further define forms
similar to regular expressions in which the terminal symbols represent those
simple chunks. The forms become templates that model proofs, i.e., they can
be mapped onto resolution proofs of the unsatisfiability of the clauses making
up the CIG. In general a template represents an infinite number of paths but
an algebraic computation on information derived from the templates yields valid
proofs without an exhaustive search through intermediate stages of the search
tree. Overall, the method leads to a reduction in both the computation time
per step as well as in the combinatorics of the search itself. The representa-
tion also lends itself to an heuristic based on integer programming by using a
simple difference function based on the chunks.
Introduction

A system for formal theorem proving is presented, using the Clause
Interconnectivity Graph as its basic data structure. Proofs found here can be

mapped onto proofs using resolution and factoring as rules of inference (as

opposed to Modus Ponens, for example). The search method bears 1ittle resemblance

to that of résolution methods, however.
The Clause Interconnectivity Graph (CIG) [5] has been used as a representa-
tion for proving first-order predicate calculus theorems. A CIG is a four-tuple:
< Nodes, Edges, Subst, Clause > where
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Nodes is a set of graph nodes, one for each literal of each clause,
Edges is a symmetric relation between nodes such that <a,b> €
Edges iff the literals associated with nodes a and b have

opposite signs and unifiable atoms.
Subst is a mapping: Edges -+ substitutions such that
Subst(<a,b>) is a most general unifier of the atoms of the
literals associated with nodes a and b, and
Clause is a mapping: Nodes-+C;>(Nodes) where GDmeans powerset;
Clause partitions the nodes so that literals in the same
clause have corresponding nodes in the same partition.
For example, suppose that we are dealing with integers defined by Peano's
axjoms, and we define the predicate, Even:

Even(0)

Even(s"(0)) » Even(s"1(0))"
Even(s"(0)) ~ Even(s"*1(0))

and theorem Even(sso(o)). Then the CIG is shown in Figure 1.

Even(sso(o))
4:
0/m 59/m

Even(s™0)) Even(Sm+1(0))

C:[n/m)

(&vents"con

:J0/n]

Figure 1. A Clause Intercomnectivity Graph with labeled edges. The

predicates and terms are left in the nodes for expository purposes only.
They are neither included in the CIG definition nor are they used in the
search for a proof. i

Ben(s" (0))

+ "s" means "successor"; s(0) = 0; sMo) = s(s“'](o)) for n > 0.
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Edges is a symmetric relation. However, when we involve an edge in the
search, the analogy is made to moving from one element of an ordered pair in
Edges to the other element in that pair. Therefore when an edge is used, we
think of it as being directed. Given an edge <a,b> and assuming direction a + b,
we can make the following definitions.

Deleting_literal is a mappingz Edges -+ Nodes where

Deleting_literal(<a,b>) = b and
Residual literals is a mapping: Nodes - é?(Nodes) where E? means powerset.
Residual_literals(b) = Clause(b) - {b}.

A proof derived from a CIG corresponds to a particular kind of search on

the CIG. The proof search resembles the following process:

Choose a clause to be the starting clause (a clause that is Tikely

to be used in the proof, a member of the set of support, etc.). Place

a marker on each of the nodes in the partition representing the starting
clause. Each of those markers may be moved along any edge connected to

its present position. Then the parent marker is removed (from the deleting
node) and children markers are placed on each of the other nodes (the
residual nodes) in the partition arrived at from the move. Then the
process is repeated on all of the existing markers; they in turn

become parents, being replaced by children. The goal is to eliminate

all markers.” This process corresponds to unrolling the graph into trees.

From looking at the CIG in Figure 1, it is easy to see that some move
sequences could be done an arbitrary number of times, e.g., moves D,F,D,F,...
successively, or E,C,E,C,... We call such sequences loops.

Assuming starting clause Even(0), the first move is determined, namely G.
That leaves a marker on the node corresponding to EVEERS"+](O)). From this node
we could begin one of the loops mentioned above. Let us consider a sequence
of moves involving one of the Toops; G(DF)kDA, meaning move along G, then
around D and F k times, then along D, then A. Intuitively G links up the integer

t This process is over-simplified. There are restrictions concerning the
substitutions, and there is another allowable move that admits non-input steps.
For a complete description, see [5].
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0 with the start of an induction. The DF loop adds the value 2 to the current
value. Move A jumps out of the induction to the value that we seek. In other
words, the G(DF)k part is successively proving that 0 is even, 2 is even, 4 is
even, etc., until we arrive just short of the given value. The D and A steps
together add 2 to the value. In this case, k will have the value 29.

Once we have discovered G(DF)kDA, proofs of the evenness of all even,
positive integers should.be equally easy in all systems. But we know that
they are not. Using traditional deductive systems on this axiomatization, the
Tength of the proof of Even(s"(0)) increases linearly with n, and required
resources generally increase exponentially with the length of the proof. In
this method, however, the discovery of the proof is of the same inherent
difficulty regardless of the magnitude of n. The approach invoives:

1) mapping the CIG onto a context-free grammar [1]

2) mapping the context-free grammar onto a set of expressions similar

to regular expressions.

3) mapping each regular expression onto a composition of substitutions.

4) checking to see if any of the expressions represent a legal substitution.

If so, that expression can be mapped onto a proof.

Chunking

The previously presented search schemes on CIG's dealt with looping by
preferring non-loop moves, preventing run-away development of infinite loops.
However, even in some simple cases, we may need to travel a loop many times.
One example of this is the proof of evenness in which we should be able to prove
Even(6000) easily once the general method is discovered. The proof itself may
be Tong, but the search time should be identical to the search. time in proving
Even(60) or Even(6). In fact, it is possible to use this method not only to
prove individual theorems, but also to derive generalized algorithms to do
computations within a theory.

Once we know the basic steps needed for a proof, the repetition of one or
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more of those steps a large number of times should not cause us any trouble.

We need to discover these basic steps or chunks. One might imagine that the
moves that correspond to edges might serve satisfactorily as chunks. However,
there is some obvious clumping that takes place. The CIG in Figure 2 has three
natural chunks, C]:f, szdeg, C3:abc, because the moves within each chunk must
be taken together. Note that C3 denotes a loop, and we can travel in either
direction on a loop, so we can denote cha as C3']. In this case, the chunking
partitioned the edges, but that will not necessarily be the case.

b

Figure 2. A CIG divided into its three natural chunks.

We can derive the chunks by finding all ways of moving and replacing the
markers such that if a marker is on the same node as one of its ancestors, we
freeze that marker, but continue to move other available markers. The starting
configuration for each chunk is a single marker sitting on some node. The
chunk is said to be related to that node. Intuitively, the chunk represents
the refutation of the Titeral that the related node represents. This process
identifies all of the natural pieces of the graph. Since no repeated looping
is allowed, this is a terminating process.

We classify the chunks into two types, terminal and loop. A terminal
chunk is one in which all markers have been eliminated. A loop chunk has one

or more frozen markers. In Figure 2, C] and C2 are terminal chunks; c3 is a
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loop chunk.

Chunks to Context-Free Grammar

Chunks as described in the previous section are trees, since 1) a parent
marker may be replaced by one or more children markers and 2} no marker can
ever be its own descendant. We wish to write the chunks as linear sequences
so that we can use them in constructing a grammar. We produce this flattening
by doing an end-order traversal [4] of the “chunk tree". The flattened form
is a sequence of directed edges and nodes, S1» Sps e Sp- We can make context-
free productions by putting $1> Spo +e- sn on the right-hand-side and the
associated node on the left-hand-side,

N - 518y .S .

The intuitive notion is that to eliminate N you must add $13Sps- 025, {possibly
including N}). We can now construct a context-free grammar G:

nonterminals: {S} U Nodes (where {S} N Nodes = ¢)

terminals: Edges

productions: {all N » $Sp++-S, @S described above}

U {s~+ Np-ooN | Nis.-5N, represent all literals in

starting clausel}

start symbol: S

In the ground case any string in the language of G,i.e. any string that
is derivable from S and consists entirely of terminals (in this case edges),
represents a proof. Therefore, once the chunking is accomplished, determining
theoremhood of the statement in question is equivalent to asking whether a
given context-free grammar generates a non-empty language, which is a trivial
problem.

The general case is more difficult, however. Each edge has an associated
substitution, and for a string of edges to be acceptable, all of their
substitutions must be mutually consistent. Consistent(a],az,...an) iff

o © (u2 ef{(...® an))) is defined, where o ® 8 = vy such that y is a most
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general substitution satisfying (La)y = (Ly)e = Ly = (LB}y = (Ly)B for an
arbitraky Titeral L [5]. Since all terminal strings must abide by consistency,
this is in fact a context-free attribute grammar [3] and can have the power of

a type 0 grammar. This fact eliminates the usefulness of the result that tells

us there is an upper bound on the iength of the shortest string in the language.

However, the grammar form provides us with some valuable heuristics as we shall
see later.

Regular-1ike Expressions

Given a context-free grammar, it would be convenient to represent the
language generated in regular expression style. To do that, we need to extend
the definition of regular expression. In addition to "|", meaning “or",
concatenation meaning "and", and "*" meaning "repeat zero or more times", we
add exponent “n" to mean repeat exactly n times.+ For the grammar constructed
in the previous section, if all productions that have node N on the left-hand-
side have one of t]""tn (terminal chunks), or r]N,...rkN (Toop chunks), then,
intuitively, the expression (r]lrz!...rk)*t]l...‘tn represents the refutation
for N and we denote it

*x *
N => (r1|r2[...[rk) (t]l...ltn).
I.e. we can go around loops as long and in whatever order we choose, but we
must finally end with a terminal.
In the example in Figure 2,

6] > (abc)*deg, @=> (cba)’f.

It may be that by the above recursion method and by simple back-substitution

for nonterminals of right-hand-sides having the corresponding nonterminals on
the left, we can derive S = PiPo---Py, where P; € Edges. For the example of

Figure 2, the grammar is:

+ This notation appears frequently in the literature on formal languages.
*
t A => B means B can be derived from A by an application of zero or more
productions.
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({S,(:),(:>...§},{a,b,c;d,e,f,g}, P, S) where P:

s> O@

(i)+’a bc (j)

Q-def

(:>+ cba (2)

(2)+ f
By back-substitution we get: S = (abc)*def(cba)*f. Now by replacing each
terminal by its substitution and interpretiﬁg concatenation of substitutions
to mean @ , we can easily determine whether there exist non-negative integers
n and m such that subst™(abc) ® subst(def) @ subst™(cha) ® subst(f} is
defined. Note that we have replaced whole chunks by their substitutions. The
substitution of a chunk is the ® composition of the substitutions of the edges
making up the chunk. Each time a Toop is repeated a new instance of the clause
at the endpoints of the Toop is added. For this reason, a loop repeated n
times will have n distinct instances of the variables. Loop substitutions,
then, must be abstract descriptions including an unknown number of instances
of variables. For example the substitution [f(xn)/xn+]] specifies that each
new instance of x is replaced by function "f" applied to the term substituted
for the last instance of x.

For example, the grammar built from the CIG in Figure 1 having Even(0)

as the start clause would cause S to generate (among others) the expression
G(DF)*DA. The corresponding substitution @ is

[o/n] @ In+/m , mi/n]" @ [n+1/m] @ [59/m].

m. =n, +1 m, = 2i+1
i i ey 1

Moy = Myt ng =2
(1=i) (1=i)

§ The other nonterminal names and their productions are irrelevant to this

discussion.
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Differentiating between instances of variables, © becomes [O/no] ®© [Zi/ni,
2i—1/mi_]] [0) [nk+1/mk] 1) [59/mk] where 1 =i = k. m, = 59 = nk+1 = 2k+1,
therefore k = 29, indicating that the refutation consists of G, twenty-
nine repetitions of (ZF) and finally D and A. We will not go into how to
generally describe loop substitutions, decide which instances of a variable
are referred to by other substitutions, or compute the exponent of Toops.
However, for a given expression that is a regular expression extended by
exponents and contains no node names (i.e., is completely terminal), it is
straightforward to answer those questions. Due to lack of space the algo-

rithms will be presented in a subsequent paper.

Integer Programming Heuristic

There will be grammars derivable from CIG's that do not easily admit the
extended regular expressions. They include 1) grammars in which the self-
referencing non-terminal appears in the middle of the right-hand-side (e.g.,

N > aNb) and 2) grammars in which a nonterminal can generate a string con-
taining two copies of itself, e.g., N :> oNNB where o and B are possibly
empty strings of symbols, i.e., «,8 € {(Edges U Nodes)*. In the latter case,
it is difficult to see the general recursion pattern since the length of the
resulting string is exponential with the number of repetitions. In both
cases keeping track of which instances of the variables to put in each sub-
stitution is a horrendous job in general.

By weakening the grammar, allowed by its particular use in this application,
and not by distinguishing between different instances of the same variable, we
can always derive an extended regular expression reduced to terminals, the
terminals possibly reordered from what the grammar would actually generate.

Every chunk has a (possibly empty) effect on the total substitution in a
solution. Terminal chunks have a fixed effect. Loop pieces may have a recur-
sive effect. E.g., [f(x )/x ;] has the effect of adding f to the accumulated
effect and applying it to the new "x".
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By combining the information from the reordered extended regular
expression and the chunk effects, it is possible to write integer programming
problems[2] whose solutions are 1ikely candidates for proofs. In this way,
the effects serve as difference functions for the chunks (operators) in much
the way as is done in an operator difference table. The integer program
tells us how many applications of each operator there are in likely candi-
dates. The structure of the original grammar can then be used to check the
validity of that candidate. An example of this is the "Even" problem in which
we need to change the term from "0" in the start state to "560(0)" in the goal
state. Therefore the sum of the effects of the chunks used must sum to exactly
sixty applications of "s". In some cases, the start and goal states are not
so clearly known and we have to phrase the problem slightly differently such
that the original terms used in the solution plus the effects of all applied
chunks sum to zero.

In cases where the regular expression forms are exactly known, the integer
prograsming heuristic is substantially improved because the proper placement
of variable instances is known. We may then break the problem into subproblems -
one for each variable.

Work on the integer programming heuristic and computation of effects of
more complex loops is currently in progress.
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AN EFFICIENT UNIFICATION ALGORITHM

Lewis Denver Baxter

Department of Computer Science, York University, Ontario

Abstract

An algorithm which solves the first-order unification problem is
presented and shown to have a practically linear time complexity, relative to
the length of the input expressions. The algorithm is composed of a transfor-
mational stage followed by a sorting stage. During the former stage, sets of
pairs of expressions are transformed into a partition of expressions, which is
equivalent with respect to unifiability. The partition is represented as a
forest of trees and by using the techmique of path-compression on balanced trees,
a practically-linear complexity is achieved. 1In the sorting stage, the output
partition induces a directed graph, which is then topologically sorted. If

successful, the sort indicates the most general unifier.

Intreoduction
The unification problem arises from automatic theorem-proving. It
is to determine, given two expressions ey and e, containing variables,

whether there exists a substitution of these variables by expressions which,

applied to e and e

i , makes them equal.

2
The first unification algorithm, discovered by Robinson [4] and based
on simple string data structures and the physical manipulation thereof, was of
exponential complexity. A later algorithm, also by Robinson [5], represented
expressions by trees and performed substitutions by manipulating pointers to
these trees. Unfortunately, this algorithm was of exponential complexity due
to an inefficient method of determining if a variable occurs in an expression.

This defect was easily remedied by Venturini-Zilli [7] who proved that this

improved algorithm had a quadratic time complexity.
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Whereas the above algorithms were based on the original "left-to-
right" processing of the input expressions, a new algorithm, composed of a.
transformational stage followed by a sorting stage, was discovered by Baxter [13.
The use of good data structures applied to this algorithm results in the practi-
cally linear algorithm presented here. ("Practically linear" means linear times

a very slowly growing function.)

Notation

We will assume familiarity with the notation found in the literature
[4, 5]. Briefly, an expression is either a variable or a constant (function)
symbol of degree (number of arguments) n , followed by n expressions. A temrm
is defined here as an expression which is not a variable. The length of an
expression is the total number of occurrences of variables and constants. The
substitution {vl < € 5 - - 5 VY < en} refers to the simultaneous replace-
ment of the variables v by the corresponding expressions e; - The application
of the substitution 0 to the expression e is written: 0(e) . The substitution

¢ unifies a set of expressions f{e

it R en} iff c(al) =. . .= c(en)

¢ unifies a partition of classes of expressions iff ¢ unifies each class in

the partition. We abbreviate most general unifier to mgu .

Description
Our algorithm consists of two stages: a transformational stage

followed by a sorting stage. The former inputs, in general, a set of pairs of
expressions and outputs a partition of expressions. This stage may fail due
to the attempt at unifying two expressions beginning with different constant
symbols. The sorting stage constructs from this output partition a directed
graph (digraph) and determines if it contains a circuit by trying to topologi-
cally sort the digraph. If a circuit is found then unification fails because

we cannot unify a variable with an expression in which it occurs. If no circuit
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is found, the topological ordering indicates the mgu of the input set.

We now describe these two stages in more detail.

Transformational Stage

The two main sets used in this stage are S , a set of unordered

pairs of expressions, and F , a partition of expressions. Imitially, S is

the input set SI to be unified and FI , the initial value of F comsists
of all the subexpressions occurring in SI , each in a class of its own.

Finally, S will be empty and F will be the output partition F, . We

¢

present this stage in the form of an abstract algorithm:

algorithm TRANSFORM:
begin
Initialize S to S_ and F to F_ ;
repeat until § is empty :
begin
Delete a pair of expressions, {el , ez}, from S ;
if e, z e
then begin
Find classes T,, T, € F
such that e, ¢ T, and e, ¢ T, ;
ifT. 2T 1 2 2
= "1 .
then begin
if T, contains a term £'(el, ..., en)
and T, contains a term f"{e", ey €7)
then if £' = £ ! "
then UNIFICATION FAILS
else Add to S the pairs:
{e}, ei}, N CL Y
Merge T, and TZ’ that is,
replace T, and T, by T,V T
end;

¥

9 3

In order to obtain an efficient algorithm from this, we must now
specify appropriate data structures. Expressions are represented by trees
in which each vertex corresponds to some symbol occurring in the expression.
If a vertex corresponds to a constant symbol of degree =n , then it has n
sons, each corresponding to an argument. Also, different occurrences of the
same variable are represented by different pointers to the same vertex of a

tree. - 226 -
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The set S is represented by a stack of pairs of pointers to the
corresponding tree representations of the expressions. For example, the set:
{ {w, F(x, G(y))}, {G(F(F(y, %), 2)), GW)} }

is represented:

thu Te 1{_

The partition F is represented as a forest of trees. Each class
in the partition is represented as a tree, each vertex of which points to an
expression. Since we must quickly determine if a class contains a term, the
root of a tree points to some temrm, known as the designated term of the class.
For example, the partition:

{[v, v, G(F(w, x)), 6(2)1, [x, H(w), H(t), s1, [F(w, x), ¥, 2z, F(r, s)],
[w, , t1}
is represented as follows. Note that each expression is, in fact, a pointer
to its tree representation. The large arrows indicate the designated terms.

=N

Figure 2

We now describe how to efficiently manipulate these data structures

required by the algorithm, TRANSFORM. Rather than checking if e, and e

1 2

are equal expressiomns, we only check if their corresponding pointers are equal.
Further, we can easily extract the arguments of an expression by examining its
tree representation. The operations to be performed on S are simply: to
delete a ;air from S and to add pairs to S . These are easily accomplished
when S is represented by a push-down pop-up stack.

The efficiency of the transformatiomal stage depends on the method
of performing two operations on the partition, F: to FIND which class in F

an expression belongs; and to MERGE two classes of F .
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To FIND which class an expression belongs, we traverse a path from
the vertex of the tree corresponding to the expression to the root; this root
is effectively the name of the required class. The cost of a FINRD is propor-
tional to the length of the traversed path. This will be reduced if we employ

a collapsing heuristic: after finding the root, we collapse the path directly

onto the root. Formally, if v, + v, + ., . .+ v is the unique path from

1 2

the vertex v, to the root A then we replace the edge vy -*> Viel by the
edge v, vy for i=1, ..., n~2 . The following figures illustrate the

representation of the class [el, e e e”] before and after FINDing

2*

the class which contains the expression €5 *
0

Eipure 3

To MERGE two classes, we make one tree representing one of the classes
a subtree of the tree representing the other class. To decrease the average
path length and hence the cost of subsequent FINDs, we employ a balancing
heuristic: make the "light" tree a subtree of the "hesvy" tree, where the
comparatives refer to the number of vertices in the tree. In the case vhen the
“heavy" tree contains only variables and the “1light" tree contains some term,
we have to ensure that the new root points to the designated term. For example,

after merging the first and third classes represented in Figure 2, we obtains

(clreux)) (Fns)

Sorting Stage. From Fo we will first construct an abstract

intermediate digraph, which is naturally induced by Fo. It has as
- 228 -
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" vertices the classes in F. . Its edges are constructed by examining each

0
Given a class T in Fo ,
f(el, [ en) s, 3n T ., (If no such term exists, then T contributes

class in F

0 let e be any term, say

nothing to the set of directed edges.) Let e, belong to the class
Ti (=1, . . . , n) , then T contributes the set of directed edges:
T+ Tl’ e o o3 T Tn . For example, the partition of Figure 2 induces the

following digraph, where underlined expressions denote the designated term of

a class. ([u,r, G(Flw,x)), G‘(2)]>/'(£’<, s, H(t), H(W)})

*
(Crimenis %, Fosl, 5 T——(Twe re 1)

Frgure &

In practice, we must construct a related digraph directly from the
forest representation of Fo . The vertices and edges of this digraph are
obtalned as follows. For each vertex, v , in the forest, which corresponds
to a variable and which is not a root, let r be the root of the tree to which
v belongs; add the directed edge: v > r . Also, for each root, r , let
f(el, . e ey en) be the designated term of the tree having root r and let

T, (i=1, . . . , n) be the root of the tree to which e, belongs; add the

1

directed edges: r + r, . For example, the forest representation of Figure 2

i
induces the digraph: r
H{w) (Flwy <]
I g ®
<e3) Lpure €

We now attempt to topologlcally sort this constructed digraph (embed
its vertices in a linear order), using the well-known linear algorithm [3].
If the digraph cannot be sorted then umnification fails, otherwise the topological
ordering indicates the mgu. Let Vis o e e s YV be the subsequence of the
linear order which corresponds to variables only. Then the mgu is

{v

1 < €pp o - s 5 Vy bl en} where ey is the designated term of the class to
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which vy belongs; if no such term exists then e; is the variable which
corresponds to the root of the tree to which vy belongs.
Details of the proof of correctness are found in [2]. 1In the

transformational stage, the mgu of SI is the same as that of FO . This
is proved by showing that the assertion:

vg ( o unifies SI iff o wunifies S and o unifies F ) holds each
time the loop of the algorithm is entered. The correctness of the sorting
stage depends on the following special properties of FO ¢ All the terms in

each class of Fq begin with the same constant symbol; and the "hereditary"

property: If f(ei s e e s s e;) and f(eg, e ey e;) belong to the same

class of F, then for all i, e; and e; belong to the same class of F

0

Complexity

The complexity of the transformational stage is practically linpear,
that is, of order nG(n) where G 1is a very slowly growing function. The
complexity of the sorting stage is linear.

We now define G wusing the definitions of [6]. Define the function
A on pairs of integers by:

A0, x) = 2x for x20; A(i, 0)=0 for i=213; A(i, 1) =2 for
i21 and A, x) = A(A ~ 1, A(d, x - 1)) for i21 and x 22 .
Define G(n) = a(n, n) where o is a functional inverse of A :

a(m, n) = minf{z 21 | A(z, 4 o/n 1) > log, n} my,nzx=1l.
G is "practically'constant, since G(n) <3 for m <2 * 2 * - - . %2
(65536 occurrences of 2 ), where "#" denotes exponentiation.

Ignoring the cost of FIND and MERGE instructions, the tranformational
stage has linear complexity. The results of Tarjan [6] tells us that the
additional time to process a sequence of FIND and MERGE instructioms, using
the technique of path-compression on balanced trees, requires practically
linear time. Details are found in [2].
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CAN FRAMES SOLVE THE CHICKEN AKD EGG PROSLEN?
William S. Havenms
Department of Computer Sciencsa

Oniversity of British Columbia .
vancouver, B.C., Canada

Abstract

The types of search strategies that have besn proposed for
frame systems are discussed. They are shown to we essentially
top-down, hypothesis driven mechanisas. It is claimed that
these mechanisas are inadequate for a large class of recognition
probleas. #rhe Chicken and Egg Probles® is prasented. A new
model of recognition for frame systems is proposed and an
example of its operation is given.

1. lasroduction

The concept of frames as a paradiga for the representation
of knowladge is an intuitively appealing idea wanich has
gzu-=rat=d a grsat deal of interest in the A.I. community. There
has bzen howsver only 1limited progress in formaiizing ;nd
developing the +heory into a useable computational model.
According to Minsky's[4] original paper, frames are data
structures for representing stereotypical objects, concepts, and
sz+uations. Each frame contains a set of terminal siots which
may initially contain defaslt assignments about the stereotype
the <frame represents. When the frame is called upoa to
represent some particular instance of its stereotype, the
d=faults behave as expectations of what kind 9f information to
look for to fill the slots.

This model for frames has a number oL unfortunate
cons2gquences, First, it forces the use of top-down, goal
directed search strategies. A candidate frame is chosen to
represent some situation on the basis of some initial
expectations about that situation. This frame then proceeds to

attempt to fill its slots by making observations and by calling
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‘on the efforts of other "sub-frames®., The frame is quided 1in

its search by the expectations it has coded witain it. In the
case of an improper first choice of a candidate zrame, the
mechanism for choosing an alternate candidate is completely
driven by the failure of the first frame to succeed. Ianis is of
course «classical auromatic backtracking}uith arl its inherent
problems. Minsky, recognizing this facrt, proposed a
modification +o backtrack search that avoids the duplication of
effort for identical sub-goals. When a frame aiscovers from
observation that it is not applicable to a given situation, it
consults a similarity network which recommends a cfa2placement
candidate. The fram=2 then attempts t0 Rap 1ts ¥Ycorrecrly"
£ill=d terminal slots into the slots of tae new candidate frame
and then passes coOntrol to it. This scheme assuges poth that a
mapping =2xists betwesn =ach failing frams and =zach next
candidate and that the similarity mnetwork is sutficiently
"complete" that relatively few inexplicable <railures occur.
Such "syrprises® force the system to r=2ly entirzly on
backtracking to continue the search.

Secondly, the moda2l requires a frame to be tne currently
active candidate before its expertise camn be of a1y assistanca
in the recognition process. This means that the szacch process
will spend a good deal of its time proposing sp=ciric caadidate
frames one after anothar based only on the types or failures
that can successfully be processed by tae similarity n2twork.
Only when the proper frame is finally chosen wili tn2 knowledge
specific to r=cognizing instaances of that frase oz availabple.
That specific knowledge must b2 available much <earlier to
intelligently quide the search process.
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For example, counsider a frame-based scene recognition
sys-em prs=sented the scane of Fiqure 2. From tane ipformation
present in the scene, the system must select the prism frame to
represent the image. The prism frame supposedly contains expert
knowl=dge on the best way to recognize prisms. But the systen
is not told that it is ®"seeing“ a prism; indeed that 1is the
system's task. The knowledge that prisms are polyhedrons
composed of polygonal bases connected by paralielogram faces 1is
contained within the expectations of the sterzotypical prisa
frame. Yet, unless the system already had the prism fraame
active <o provide i+t with these sxpectations, it could not use
this krowledg? to find the frame froe the information in the
scene. Mackworth{3] has called this ®The <Chickan and Eqg
Problea",

2. A Model of Bacognition

To ramedy the difficulty, a new model of recognition for
frame systems has been developed. Frames in this model follow
in principle the form proposed by Minsky. FPrames ara organized
apout stereotypes ard are 2ncodad as descriptions of tae frame's
expectations about the real world. The model, however, inverts
th2 conc=apt of wnat a irame Jjoes., A fram2 Iecognizes instances
of itself not only by comparing its interna. axpectations
against =xternal observations, but also by matching 1ts evolving
instance with the expectations of other fraames, That 1is, the
frame is responsiole for recognizing what highber structures it
can be part of. Each frame exists as aan individual recognizer
ir a system of such recognizers, the frame system. Instead of
being an inherently top-down search process, now the recognition
can proceed using simultaneously both top-down and bottoa=-up
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technigues.

The recognition wmodel consists of three phases. They are
called egpectatjion, matching, and cogpletiop. Initially the
system exists as a top-level frame containing a set of
expectations about what it expects to find during its
obsarvations. As each icput observation is made, it 1s matched
against this set of expectations. Any successtul wmatches 1in
turn cause the expactations‘ to compute a next generation of
axpectations. This process iterates until such Time as a
particular sequence of expectations and the observations taey
match have satisfied a frame's internal criteria for the
racogaition of som: concept, object, or =2vant. Tais pegins the
completion phase. The coapletion phase creates au instance of
that frame, This instance then ernters the matchiag process. At
tkis point, the frame acts as an abstract intermnal observation
and itself participates in the matching process with the
expectations of other frames. If it succeeds in @matching the
2xpectations of some other frame, then it will pe composed into
the evolving description of that frame. In our vision example
suppose the2 systerm discovers a triangle, The triangle frame
then creates abo instance of this particular triaagle and
attempts to match the instanc2 against the expectations of other
frames. If the match is successiul, a new s2t oL eXxpactations
ar2 generated and nev observations taken.

The role of the frame in this model is an active process.
Each frame is organized about a procedurs callad a ggepario. A
scenario contains the knowledge to perform the iterxative cycle
of attempting to match some relevant input opservation or
abstract internal observation against the frame's expactations.
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or som< other rrame, the

n23otidatloi. wWiLth <hat

matcn i3 saccsssful, the

crzatszsS a 0a2d 38t of

[%

ZXNDLCcTaTidns  zoout  Lts ol2 ir tn2 world. aiad Tu: proc=ess

Ih. matcoing poocess is  charactarizad as a asgyotiation.
WLon twWo Irames nheogortiite a mitch, one fram=2 wiil be attampting
©5 ma%Ch th2 =<xpectitions of 1ts SC2LAT10 d4yalast a sacoad
framz's attzapt t> perform & completion. That 15 <tns s=acond
framz 1is attempting to compute the last step ia its scenario.
I+ 15 wrying to jusztizy its cxistence by computing 1t. place in

3om higher scenario. This process is recursive. <{omputing a

Proyr:ss -n its scenario causes the fram2 to a2qgotiate a
matCh with =h2 2xpectations of other frames wnicn 1n Turan causes
chosa frazoise3 =0 rs=compu=z their progress in taoelr owa scanarios.
At =2acn 1l:zv:l, =zacn £frame is atteampting to uiscover how it
wiji«s" irntc som= high=r schzmz2 of tnings. In tais @mod=zl, no
iongy «caains of =zxps=ctazions apout all things possipl2 in the
world are required. Nz2ith2r do2s the systzm mneea a mechanism
for =ryin op: rrams aftsr anothsl mappiny e€aca time tha
tsrminhais of ta=z failing frame into the next caudidate frame.
igs responsipla for knowiny Wwhich
be part of. Th= sc2nario thaan

therepy activating them only when

matciring phas= is also <the vahicle by which
non~d-terminism, i.e., local ambiguities in the real Jorld, is
handlzd. Th2 frame Wwhich is computing its compiztion may match
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with more than orns otner fram=, ther2by spawnlng a number of
different ipnterpretations, Latsr, as observatlons remove tis2
ambiguity, the fallacious int2rpr2tations can o»pe deictad. A
good analoygyy is pechaps %o a capi*tal iavestwant aarket. A
buy=r, *th2 completing frame, has some capitai o Laves3t, *the
dzscription ne hnas work2d nard to completz. HUT ne WiNts to
invest wisely. H2 may consider trne off2rs of a4 aumb=Ir of
szlla2rs, i.2., &2 @iy attzapt t2 matcn “as =2xpactations of a
nunbar of frames wmhat are attzmpting to coaplete tao2ir own
sc=narios. By matching, ne 2liminates som2 32ilzrs aad decidas
+*o spread his invastm=a%t amonj th2 othlRrs, PpPersips iavestiz
mos%  hzavily irn thos2 fraa2s that match his Czquilea=nts D2sSt.
Latzr as =2vents unfold, the contracts hz has writra2n can specify
wnich investments ar: to bpe coatinu=2d and w«hicu cancelled
dzpending on the dividends thay show,
3. A Detailed Example

This example dascribzs the operation of ta=z w@0a2l1l as a
re2cognizer for line drawings of polyhedral objects and is
similar to an example given by Kuipers[2]. Tn2 linz drawing
preseantad as input to the Cecoynizer is shown ia rigucte 2 and is
in the form of a network of vartices and edges. cacua vertex and
2ach edge 1is r=zpresspted as a primitive fram=. o4Ch vertex
knows its typ2, waich is z2ith2r an L-v2rt2x, a TI-v=It:x, an
ARRCA~-va2r+ex, or a FORK-vsrt=x. Vzertic2s also Kkaow taz2 =24gas
they are rformed from and th2 approximate sizz 2: tne anglas
bztwe2n their edges. ©Each 2dge knows only tn2 TWo VelziCes it
connzcts. In this examplz, polyhedral objzcts ar: cosposed of
polygonal ~faces which are ian <turn compos2a of <dges and
varticass, Figure 1. shows this composition niera:ccay.
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Figure 1. Figuze 2.

The top-level frame is the resident expert at <recognizing
scanes. Its goal 1is to match the instances of edges and
vertices in the data to the polygonal face frames' expectations
of how =2dgss and vertices can make up polyjon facas, then to
match these faces to the polyhedral object frames' expectations
of how faces can make up polyhedral objects, and finally to
match these objects to its own expectations of aow polyhedral
objects can form scenes. The top-level frame's scenario must be
g=nerally applicable to the recognition of all scenes of
polyhedral 1line drawings. It begins by looking at vartices on
the periphery, as they are pregnant semantically and less
ambiguous than internal vertices. If the enumeration of
peripheral vertices fails to complete the recognition of a
scene, then it selects interior nodes to examine. Else it

fails.

~- 238 -

The Chicken & Egg Problea

This general top-level scenario is not the only scheme the
syster will use, The frames for polygon faces are experts in
their own domains, the recognition of faces. Each face frame,
depending on.the type of face it is looking for, uas a scenario
espacially tailored for effective recognition o1 that type.
Likewise, tha scenarios of th2 polyhedral object rrames contain
the knowledge to guides the search for polyhedral objects.

The top-level frame first chooses to -=2xamine peripheral
vertex 2. Vertex 2 is an instance of ths L-vertex frama. The
scenario associated with each vertex frame is only to attempt
its completion phase b2cause its existence was 2xplicitly given
in the data. Therefore, the L-vertex attempts to @match its
given description against the expectations of those face fram=2s
that it carn plausibly be part of. It can pe the corner of
either a parallelogram face or a triangle fac2. It must find
instances of thassz two frames to match. Froa its kaowledge of
line drawings, it knows that if face rescognizer rrames already
exist for the particular face tha*t it must be part of, they will
be associated with its neighorboring vertices. Taat is, this
vertax can use the original input data as a semantic network to
access 1instances of face recognizer frames to aatca. The
neighbors of vertsx 2 are vertices 1 and 3, n=2ither of which
have bound to them face recognizer framas. So vertex 2 creates
nev instances of both the parallelogram and tiiangle frame,
succeeds in matching them both, and binds thea in the network at
vertex 2.

Hote the occurrence of non-determinism at this first
vertex. HKinsky and Kuipers would choose one hypothesis, perhaps
that the face is triangular. Later, if that hypotassis fails,
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~h2y would thtn havs tTO 2sx=2cut2 sSome mapping of teraluals froa
<h= =riangl= fraw< into <he parallezsloqram frame. IL tals modzl,
~ae L-vzrtix crsates two dascriptions of its roie in  the
avolving facz lab=liiny and succassfully ma*ckhes one ayainst the
Xp=zC*ations Of ta2 trianglz fraas and tae Other 4gainst the
z2xpectazions of th= parallelogram <rram=2. yote also the
composition procsss. A dzscription of the L-vertex has been

incorporzted into th= 2volving syntnases or both race frames.

",

Thz top-lov:l rams 1s again fac=d wita ma King an
osos:zrvation, so it «continu=s With its scozm2 OL =2numerating
periphsral varticss, This tim2 i* choosss vartex 1, and this
v=Itex has the <cresponsipility of findiag a facs frame that it
can mi-cia. I% "1lcoks"™ at vert2x 5 by first consuwsting edge 1-5
DUT no =2xpectations ars lurking tnere, and likewise for vertex 6
via 2igs 1-6. But when it looks at vertex 2, vartex 1 finds
both the parallzlogram and triangle frames. [t must negotiate a
maTCh Wi*tn botn. when vartzx 1 attempts o matchn tae triangle
frame, the match fails becausz the expectations of tane triangle
are that th= sum of the anglaes of vertax 2 and vartex 1 will be
som2wada* 1233 thar 1809, In this case, tney equal 1800, The
triangls hypoth2sis 135 rejectad and its zIramse i1ustaace is
del=tad, #h=n vart=x 1 attempts +to matcn the parallelogram
ram2 howszver, the match succeeds. Tha paralialogram frame
2xpects a ceighvor of vert2x 2 to Dpe either a FuRK-vertex,
AiROW~ver<cex, or T-vertex. Since it represents a parail=2logranm,
it expects that the sum of th> angles of vertex 2 ana an angle

its neighbors to pe approximately 1800, The

rh

of onz o
parallelogram frame now propagates its scenario, resulting in
th2 creation of a new s2t of expaectatioans.
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Its sc2nario, by this time, feels sure that it is ygoing to
succezd. The angle measuremsnts ar2 a 4good cuz for tha
parallelogram becaus= opposite angles must be equal. Th=2 frame
consults =dge 1-6 again to accass vartex 6, asks thes vertax for
an aagle peasurem=nt, ard discovers an angle =2qual 9 th: angle
OL vertex Z. The search procass has now swatched from a
bottom-up search driven by the vertices into a top-dowh sS=arch
directed by this parallelogram,

3y this —time, th2 parallelogyram fram2's sceNaz.0 1S very
n2ar to findirng the completad parallzlogram and it cou3ults <the
n:iqhbors‘ of vartex 6 looking for tha particula. neighbor that
is also a n=2ighbor of vertax 2. W#hen vartex 3 .s round, its
angle is chsck=d agaiust the proper anglz of vert=x 1. They ar2
2qual and the recognizer concludes taat it gas ziound a
parall=loqgram face. It then composa2s facs “A", an .ustance Of
thsz paralleloygram frame, from varticas 1,2,3 ana v.

The recojnition procass uoW asc2rnds onz lavei. Fac2 “AY is
tryingy to match +tne exp=actations of poiyhedral obj=2ct framzs.

Again the input data cap be us2d as a s2mantic uetwoik to look

i

or instancss or thess frames. From the fact trat vartices 1,3,
and 6 Lkave mOres than tWo =zages, we KLOW that ta2y a.: also part
of some other faces, If thes2 other faces had opecen recognizesd
bzfor= tacs "A", <th=r2 would b=z expsctations i0I O4e OI mOI2
objzct frames bound to th2se vertices. I thls cuss, RO O%asr
faces have Dbeen discovared, so polykedral ooj=2ct rfames which
can have parallelograms as faces are cr=2ated and bound <*o
vartices 1, 3, and 6.

The process continues with the vzLtices crzating,
propagating, and coampleting <face recognizers. Ian turn, <he
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facss continu= the process of creation and propagation of object
r2cognizzrs. In this example, when an object frame finally
partorms a completion, it immediately matcaes tae scene
racogrizarc fraame. The search has succe2ded and the system
rsturns a composed ins“ance of the object to the user.

I would like to apologize for the imprecision in this
mod=1. The ideas are navw and have not had time to fully
coalesce. We are currently in the process of dimplementing the
model as a aigh-level programming language called MAYA[1]. At
pra2sent the iamplementation 1is approximately fifty-percent
compleats. It is hop=d that MAYA will provides a gqood
2xparimantal domain ia which to further explore tane <theory of

frames.
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Lbstract

This paper describes a formalism for the construction and use
of a mcdel represernting knowledge of some domain. Some of the
features of the formalism are the use of an ISA HIERARCHY, a
PART-OF HIERARCHY and procedural attachment for objects that are
part of the model.

1. Intreoduction

This is an extension o¢f the formalism proposed by Abrial
[ 1] for the construction and use of a model representing
knovledge of some domain. Our main goal has been to develop a
representation that is sufficiently powerful to describe its own
operation at a 1level that is more '"natural" than that, say, of
LISP. The models built are egxplicit im that all semantics of
cecncepts- in the model can be described using the formalism, and
examipable in that the parts can always be inspected at various
levels of detail. In this sense, our approach has been
declarative. Moreover, models are incomplete in that, at any
given time, the system using them has only a partial knowledge of
the dcmain represented. It must, therefore, take +this into
account vwhen answering questions and be prepared to receive new
information, determine its acceptability and modify the model
accordingly. Similarly, it must distinguish between information
that is definite and final from that which is tentative or wvalid
only in certain sitvations.

The knowledge included in the model may be defined at
different levels. There are simple "facts" like:

Jchn is a rerson.

The sex of Joe is masculimne,

Mary is not the wife of Bill.
simple rules like:

All students are persons.

Every person has two parents of whor he is the child.
and mcre elaborate rules like:
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The sex of a person is rot subject to change.

R persorn's uncle Is the brother of one of his parerts.

2 person car have only one location at any given time.

The approach we will take ir this paper is bottom up in that
we will describe informally the basic operations of the model,
only hinting at the more interesting higher level constructs that
can be derived. Zlthough no explicit syntax is given in the
paper, we present a number of sample expressions and programs to
illustrate various aspects of the formalism's descriptive power.
All such examples are numbered for reference purposes,

2. Constructirg a Model

The most primitive type provided by the formalism for the
ccnstruction of a model is the object which is simply anv single
conceptual wunit that can be referred to as a whole. An object
enters the "percegtion field" (becomes part) of +the model with
new and is removed by kill. Thus, )

john := new M
creates a new object with a unigue internal name and "john" as
external name.

A fundamental notion to the organization of the model is the
class which simply represents a collection of objects sharing

ccmmon properties, These objects are instances of the class and

may themselves be classes. When specifying a class as being a
subclass of another, we are informing the model that, unless
otherwise indicated, all instances of the subclass are in fact
also instances of the superclass. The class of all objects that
may be part of the model is called "object™. All <classes are
therefcre subclasses of "object®. For example,

person := pew 2)
persor => okject (3)

creates a new object called "person™ and defines it as a subclass
of "object". Syntactically, (2) and (3) can be combined into

person :=> object )
and asserted with
male :=> person 5)
female :=> person (6)
student :=> person ()
female-student :=> studernt (8)
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female-student => female : )
tc set up an organization of classes generally referred to as the
"ISA HIERARCHY",

To specify that an object is an instance of an existing class
we will use the notation ™=>" as in:

jchn -> male (10)

bill := pew (11

bill <> person (12)
(11) and (12) can be combined into

bill :-> person (13)

To denote the fact +that an object is not a subclass or
irstance of a class, we use the notation "-" followed by the
operator, as in:

female~-student ~=> female (14)

jehn ~-> person 15)

When introducing a subclass or an instance, it is often
necessary to provide definitional information for it. For
example, if we assume that a student is defined by a student
nusber and a department, to simply say that

jim :=> student a6)
does not give sufficient information about "jim". We can write
jim :-> student with num<-702377167,dept<~dcs 7

tc provide the appropriate information.

Relaticns

A very important primitive class is that of binary relatioms
cr simply relations which are maps from one class (the domair) to
another (the range). Instances of binary relations will be
called lipnks and they relate an irstance of the domain and arn
instance of the range.

Relaticns are created like ary other class. The most gereric
one is called "relaticn®™. For example:

children :=> relation with domain<-person,range<-perscn,

d-interval<- <0,2>, r-interval<- <2,2> (18)

The arguments indicate that "children" is a relation from
"rerson" to "person" such that for each instance of the range

there are exactly 2 domain instances. Thus a person car have 0
to infinity children, which are persons, and furthermore is the
child cf exactly 2 perscns. Further examples:
wife :=> relation with domain<-male, range<-female,
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d-interval<- <0,1>, r-intervald-~ <0,1> (19)
sex :=> relation with domain<-person, range<-sex-value
d-interval<~ <1,1>, r-interval<- <0,=> (20)

Relations 1like «cther classes may be crganized into an ISa
HIERARCHY. For example, in

oldest-child :=> childrer with d-interval<- <0,1> 21
the domain, range, and r-interval are inherited from "“children".
We can define very general relations like

inter-personal :=> relation with domain<-person,

range<-person (22)

nust-hold :=> relation with d-interval<- <1,1> 23)
and then create new subclasses as restrictions of these.

We will hencefortk use "RY to represent a relation, and "x"
and "y" ¢to represent instances of the domain and range
respectively. Therefore "R:x->y" instantiates the relation
provided the cardinality constraints of the d-interval and -
interval are not violated (in which case a failure occurs). For

example:
wife : john -> mary (24)
children : john => bill (25)

Tc¢ negate an instantiation, we write:
wife : jchn --> mary (26)

3. Examining a Model
Lcgical Information

To oktain 1logical information from the model, we present it
with a "ccnjecture" and receive as reply cne of true, false, or
unknown. There are two primitive conjectures: the equaliity test
and the test of a relation.

The equality test is always of the form "x=y" and is a test
fer identity of internal names., The value of such a conjecture
is upkncwn when one of the two arguments has an unknown value.

To find cut if a relation "R" holds between "x" and “y® we
write "R:x?y", For example, consider the "children" relation of

(18) and suppose

childrer : john =-> bill (27)

children : mary -~-> bill (28)
then we have that )

children : john ? bill is true (29)
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children : mary ? bill is false (30)

children : jill ? bill is upkpown (31)
If we now assert that

children : susap =-> bill (32)

then (31) conjectured now would be false.

The conjecture

isa : student ? person 33)
asks whether "student® is a subclass of "person". On the other
hand, "x?y" tests whether "x"™ is an instance of class "y'%.
Arguments can be passed as in:

Jim ? student with dept<-math (34)
The actual operation of testing is very dependent on the class
being tested.

value Information

There are essentially two ways of obtaining value infcrmation
frem the mcdel. The first is fairly trivial and involves using
the name of a previously defined object. The second methcd is to
access a relaticn, that is, to present it with an instance of the
domain and receive as value(s) instance(s) of the range.

When the maximom cardinality of a relaticn is 1, the notation
"R(x) " denotes the range instance "y" (if it exists) such that
"R" paps "x" into "y". For example:

sex(Jjchn) (35)

vife(joe) (3€)
The value of such an expression is an instance of the range,
upknown, or nothing. The value is unknown when the nminimum
cardinality specifies that there must be an instance of the rarge
although no such instance is known. The value is pothing when
there need not be an instance of the range. For example, "sex"
of (20) is of the first type, while "“wife" of (19) is of the
second type. To indicate that "joe™ does indeed have a wife
whose identity is unknown we write:

wife : joe -> unkpowp (37

When the nmaximum cardipality of a relation exceeds 1, the
cencept of a generator is needed to produce values orne at a tinme.
To create a new generator, we use the motation

g :=> generator ¥ith class<~ ¢ (38)
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where "“c" is a class. Now "g" is a generator which uses a
snapshot of class "c" taken at the time of irstantiatiom, +to
produce instances cf "c" krown at that point.

For relaticrs, a subclass cof "generator" called "accessor" is
used to produce irstantiations. 1I0 create an accessor we use
"g:=->R{x]I". Fcr example,

w :=> childrenrf john] (39)

makes "w" a generator of children cf "john".
4. BAbstract ard Irdefinite Objects

The oktjects we have considered so far are corcrete ir the
sense that they enter the perception field of the model at the
time of tkeir creation and ieave at the time of their
destructior. For some objects, Lhowever, it is unreasonable to
steak of +ther as entering or leaving the perception field since
the mcdel is assumed to have a complete knowledge of them. Thus
they are never defined explicitly but only referred to. ¥We call
these cbjects abstract. Typical abstract objects are numbers,
identifiers and tuples. Of course, abstract objects may have
other names as in:

four := 4 o)

tuple-25 := <1,1,'Jack?,Jack> w1
Ncte that although a tuple is abstract, its entries need not be.
We can have abstract classes as well, which are simply arbitrary

ccilecticns of okiects, For example,

truth-vaive := {true,false,urkrnown} ) (42)
sex-value := {masculine,feminine} (43)

In all cases, the distinquishing property of absract objects arnd
classes is tkhat their mearning is self-contained in the sernse that
they need not be related to other objecis (i.e. "piaced™ on the
IS2 HIERARCHY) to ke urderstcod.

An igprortant corseguence of the inccepleteness of the model
is that, if at some time it has the sare knowledge cf two
objects, this does not pean that they are the same object. Thus,
when an object enters the perception field of the model, it must
identify itself as new or known. However, it is often convenient
to be able to postpone the decisicn until enough information has
been gathered ccncerning the obiject. We call such objects
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indefinite. We will use the operator a or am to create an

indefinite object. For example,

murderer-of-Eill := a person (44)

evening-star := a planet us)

morning-star := a planet ’ (46)
versus

venus :-> planet : 47)

with the wunderstanding that they are to be treated differently
from "definite" objects. In fact, upknown is really Jjust a
synonymn for "an object".

We can also attach restrictiors to these incefinite objects
as to what identities they can possibly have. For example,

x := a student with dept <~ path (48)
W := a person suchthat age(self) < 25 (49)

where suchthat specifies a condition that must be true for the
otject denoted by "w". This becomes important when an indefinite
okject 1is assigned an identity in some context with the cperator
figan, Objects defined in terms of indefinite objects are
indefinite. For example:

n := a number (50)

n-and=3 := 10 + 3 (CR)]
"!n ¢ 3" is a definite number cnly in a context where "n" is a
definite number.

5. Extending the Operator Senmantics

So far ve have seen that given any class, there are
essentially four operations defined on it (that do not create new
classes). They are:

- add instances

- remove instances

- test for instances

« fetch instances
We have also seen how these orerators have standard prerequisites
and side-effects., Consequently, the semantics of a class are
determined by its behaviour under its defined operatioms.

Extending the basic semantics of a class involves specifying
sgecial cases cf prerequisites, effects and values when applying
these cperations to the class. This is done by relating the
class to programs (one for each operation) which are then
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intergreted automatically when applying the corresponding
operator. In this sense, our approach is procedural. ®When no
progras is specified for an cperation, the program of the
superclass of the class can be used. In this case, a class
inherits semantics along the ISA HIERARRCHY.

Programs are definite objects that can be interpreted. We
can divide programs into three subclasses: procedures which
perfors actions (for adding and removing instances), predicates
which test conjectures (for testing instances) and functions

which have values (for fetching instances). All programs can
have preregs which are conjectures tested before the "bcdy" is
attengted. A false causes the program to fail. In addition,
programs can have effects which are actions performed after tte
successful completion of the body. To relate a class to a
program, we will use four primitive relations: to-add, to-remove,
tc-test and to-fetch. For example,

to=-test: male =>
program with

-

test := sex : instance ? masculine

end (52)
reduces a test for an instance of "“male" to a test for masculine

sex. Thus if we write "4im :~> person"™ and %sex : 3Jim -=>
masculine®, then "4im ? perscn® is true and "jinm ? male™ is true

as well, since the above program will be interpreted with the
built-in rarameter ipstance assigned "jim" (i.e., “instance <~

jia®)y. Similarly, if we have (using example (23))

product :=> object (53)
cost :=> must-hold with dcmain <- product, range <~ number
(54)
price :=> must-hold with domain <~ product, range <~ rnumber
55
profit :=> must-hold with domain <- product, range <~ number
(56)

tc express the semantics of "grofit" we write:
te-fetch : prefit ->
Program ¥ith
value := price(domair-inst) - cost(domain-ipst)

end (5N
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Thus when evaluating "profit(w)® where "w" is a product, the
atcve program is used with "domain-inst <- w",

If we define "spouse" (using(22)) as

spouse :=> inter~personal w¥ith d-interval <- <0,1>,

r-interval <= <0,1> (58)

then +to express the fact that the sesantics of "spouse" is such
that it can only hold betweer persons of opposite sex and it is
symmetric we can write:

to-add : spouse ~->

Prograp with

prereq := -~ (sex (domaip-inst) = sex(range-inst))
effect := spouse : rapge-ipst -> domaip-rinst
end (59)

Here, the "prereqg" is specified but the bcdy (i.e., action) is
not. This means +that the action is dinherited from "inter-
personal® (see example (22)). Thus the action is the standard
action of adding tc an (inter-personal) relatiocn. We can also
refer to the standard action explicitly by std.

In addition to built-in parameters such as std, self, and
instance, parameters can be associated explicitly to a class

oferation.
to-add : student =>
prograp uith
num := a pusber
dept := a department default dcs
effect := dc¢c
student-number : ingtance -> num
student-department : ipstance -> dept
end
£nd (60)
Fcr this program, "num® and "dept" are explicit parameters which
can be assigned values every time an instance of *"student" is
added (see example(17)). We pow present a program with locops
that will serve to generate "upcles® of a person (assuming
“parept® and "brcther").
uncle :=> inter-personal "N
tozfetch : uncle ->
prograp with
value := for p <- parent[domajip~-inst]
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for t <~ brother[p]

Ieturn t

Im
19
[

In
I
[

62)
6. Structures

For various reasons, it 1is convenient tc be able to treat
grcups of objects as units. Such units are called ‘"“structures”
and the okjects that constitute them, their "parts"™. Structures
have rroperties not necessarily derivable from the properties of
their parts (i.e., a gestalt). In fact, any object (as seen so
far) can be considered as a structure with no Fparts. Thus a
structure is a group of other structures. We call this
organizaticn of parts the "PART-OF HIERARCHI". The syntax we
will use for the defiriticn of structures is:

structure some-object with some-parts end (63)
Fcr example,

vector-1 := pew 64)

structure vector-1 with

rclar~coords := npew

siructure x-y-coords with
x:= 1
y = 1
erd
end (65)

defines a structure '"vector-1" having as parts two new objects
which are in turn structures having two abstract objects as
parts. To refer to the '"pclar-coords" parts of "vector-1", we
write "vector-1.pclar-coords". Note that the above structure
Frovides two views of the same object and that these views can be
organized in many different ways depending on the emphasis

desired.
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When a structure 2 is a subclass or instance of a structure
B, unless ctherwise specified, A inherits the parts of the B.
Fcr example:

vector :=> object (66)

angle := a number suchthat (self >= 0 & self < 360)

£
radius := a number suchthat self >= 0

nd (67
normalized :=> vectcr with radius <- 1 (68)

o

Ncw if we write,
vector=-2 :-> normalized w¥ith angle <- 30 (69)

“yecter-2.angle" is 30 and "vector-2.radius"™ is 1. Note that

there is a difference letween

vector-a :-> vector with radius <- 2 (70)
and
vector=-b :=> vector ¥ith radius <-2 1

even though Loth have the same radius and angle (2 and urknowr
respectively), in that (70) asserts the existence of some
(indefinite) vector whose radius happens to be unknown at the
moment, while (71) defines a class cf vectors that may or may not
have instances.

One important feature of structures, is that they provide a
way of declaratively specifying often used programs. For
example, we can think of testing whether a structure is arn
instance of ancther structure (to-test) as a very general
matching procedure that attempts to find matching correspordences
betveen parts in each structure. We can therefore place these
programs very high in the IS2 HIERARCHY where they can be
inherited ty lcwer, more specific classes whose structure will
determine their operation. Of course, if this type of processing
is to be meaningful, the structures will have to be more general
than those presented here. In particular, they will have to
ccntain instances of relations, default mechanisms and various
frerequisites and effects to be interpreted at appropriate tinmes,
to guide the processing and handle troublescme situations.
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7. Conclusions

The ideas presented in this paper are adaptations from a
number of sources., The origipal motivation is due to Abrial who
led us tc consider a coherent self-describing formalism for a
representation. 2n obviocus but important influence was the
semaLtic network literature which reinforced the idea of objects
and links as basic building blocks cf the nmodel. The idea of
associating yprograms to objects as their definition is clearly
related to the ACTOR noticn of a distributed interpreter. The
prerequisite and side-effect porticns of a program correspoud to
the consequent s antecedent distinction of FPLANNER, while the
division of processing into four basic operations is a
generalization of the three methods of CONNIVER. The idea of
higher 1level structures is a beginning in the direction of
“frames" with more than a syntactic influence from Eokrow and
Winograd®'s KEL. Finally, the influence of SIMULA is evident in
our ccncept of classes.

The formalism described here is inccmplete, especially for
pregrams and structures. Some unanswered questions are:

Hew does one instantiate a structure or match two structures?
What is a context? Hcw do programs "execute" or "compile®?

We hope +that we have at least given an indication of how
these may ke handled. The answers will be formulated in terms of
the constructs that bhave already been described and used. In
this respect, the formalism, like LISP, is completely open-ended.

{1} Abrial, J.E., "Data Semantics", Data Management Systems, ed.
by Klinhie and Koffeman, North Hollamnd, 1974,
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A DEMONSTRATION LANGUAGE COMPREHENSION SYSTEM (1)
John W. Ball, Liam J. Bannon and Mike M. Marmor (2)

University of Western Ontario, London, Canada

Abstract

This paper describes a demonstration natural language understanding
system, developed as a class project. In the course of a few months, an
implementation was constructed which could handle reasonably complex inter-
rogative and imperative English sentences within a limited domain - a blocks
micro-world. An ATN grammar was used in the parsing of input sentences, and
the advanced facilities offered in the POPLER 1.5 system were utilized in
the construction and manipulation of the world model. Several innovative
features of our comprehension system are discussed, including a novel solu-

tion to the problem of relative clause comprehension.

Setion 1 Introduction

This paper developed out of a class project on language comprehension
in a joint psycholagy/computer science half-course, under the direction of Dr.
Zenon Pylyshyn at the University of Western Ontario. A demonstration language
comprehension system was developed which performed adequately in a limited
task domain. This paper outlines some of the major aspects of our system,
its advantages and its limitations. It should also be noted that designing
and implementing this system served as a most useful introduction to many of
the fundamental problems of A.l. research on language comprehension, and we
stress the beneficial pedagogic aspects of such a course design, i.e., a
course which is project oriented.

The fact that anything of substance could emerge from such a project in
a short space of time, reveals the rapid advances which have occurred in the
A.1. field in the last few years. Such components as the ATN formalism, and
the POPLER 1.5 system (3) (Davies, 1973), gave us a much needed basis for our
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work, without which little could have been accomplished. An outline of the
system is given in Section 2 below. Following this, some general remarks on
the limitations of the system are discussed. A sample of output from the

system is given in Appendix i.

Section 2 System Components

The run-time system occupies between 84K and 100K of core (including 45K
for POPLER) on our PDP-10, depending on the length of the input sentence.
The system may be conveniently divided up into three sections corresponding

to the parsing system, the semantic routines, and the world model.

2.1 The Parser

The specific grammar used in our implementation is a modification of the
ATN grammar constructed at U.B.C. (Jervis, 1974). The grammar was
written in POP10 code (Blewett, 1974). Several modifications of the

grammar were required, in order for it to run successfully in POPIO.

A lexicon was developed, tailored for the ''blocks' micro-world which we
had decided upon as our task domain. An example of an entry in the lexicon
is given below:

[arm n s kywd hand]

This states that the lexical item ‘arm' is a singular noun whose keyword is
‘hand'. The lexicon performs the mapping from a lexical item (e.g. arm)

onto a keyword (e.g. hand). The keyword is always something which is signi-
ficant to the blocks world, whereas the lexical entry might not be significant.

This allows vocabulary growth without a corresponding growth in keywords.

As we build the parse fragments for noun and prepositional phrases,
these semantic fragments are not interpreted. The interpreation phase is
postponsed until the parse is finished and then the complete sentential
form is evaluated. This strategy was decided upon for practical reasons
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which we will amplify later. In retrospect, we found this procedure to be
costly in terms of searching the data base, and we now hold that evaluation
of the semantic fragments should occur during the parse itself, in order to

prune the search tree as soon as possible.

An interrupt facility was programmed which can be used for a variety
of purposes during the parsing stage, e.g. recognition of idiomatic express-
ions, punctuation, replacement of equivalent expressions, and various control

functions.

A final development of the parsing system, which is not yet fully
debugged, involved the design of a compiler-transiator for ATN's which com-
piled an ATN grammar into POPI0 source code. Each node-list was translated
into a POP10 function definition, with the function name being the node name.
Each arc list and sublist was translated into a call to a POPIO function
contained in the parser's runtime system. The result was a 60 percent
reduction in the space occupied by the ATN, as well as a slight reduction in
execution time. It is interesting to note that the idea of compiling an ATN
also occurred independently at another centre at this time (Burton and

Woods, 1976).

2.2 The Semantic Routines

The semantic routines interface the parser with the blocks world. They
are called by the parser at the noun phrase, prepositional phrase, and
sentence levels, and they have the opportunity to fail and parse which is
passed to them at any of these levels. After a sentence is interpreted by
the semantic routines, the resulting interlingual representation of the
sentence is placed in the POP10 editing buffer which serves as a communication
medium between the parser-semantic routines and the world model. Code is
added to run the interlingua in a marker frame to which a direct failure

will be sent in the event that the interlingual form is uninterpretable in
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the world model. Compilation of the buffer then initiates activation of the the actor (BEHINDL..]) functions differently in (1) and (2):
world model. If the blocks world is unable to understand the input, a (1) (ACHIEVE[MOVE] (BLOCK) (BEHIND[ (B0X) 1) 11)
failure is passed back up to the parser, and a new parse is attempted. (2) (ACHIEVE[MOVE[ (BLOCK)] [ (BEHIND[ (BOX)1) 1)

Eventually, either the sentence makes sense in the world and is executed, or

. . In (1) MOVE has only one argument so it interprets that argument as an
the parser cannot find any more acceptable parses and fails.

object constraint 1ist. Thus behind functions as a conventional restricting

There are three main parts to the semantics: i
variable-assigning actor. In (2), however, the second argument to the MOVE

(a) the replacement of terms by their keywords .
function is interpreted as a constraint on locations and returns a location

(b} the translation of noun phrases into a set of constraints A
rather than an object in the biocks world.

(c)} the construction of sentence level interpretations which could evoke

g . he d b This convenient uniformity could not be extended to include retative
procedures in the data base.

clauses, however. The reson is that whereas qualifying prepositional phrases

The interlingua generated by the semantic routines and input to the
always act as one-argument functions constraining the referent of the head

blocks world is very readable and often similar on the surface to the original
noun in the dominating noun phrase, relative clauses are more complex in

English sentence, e.g.:
their behaviour. In fact, relative clauses have sentential forms in their

(a) pickup the large red block behind the pyramid X
underlying structure and the noun phrase being constrained can be referred to

(b) (ACHIEVE[GRASPL (THE) (LARGE) (RED) (BLOCK) (BEHIND[ (THE) (PYRAMID)])1])
in any nominal position in the embedded sentence. Consider the following

Objects are characterized by stringing together constraint lists of actor cases:

forms. There is a special actor form for ''the'' which involves more compli- (3) the block which supports a cube

cated processing than the majority of actors because of its implied (4) the block which is supported by a cube
anaphoric reference and will be discussed further in 2.3. (5) the block which the pyramid is on.

By building our semantic representation (or interiingua) around In (3) the embedded sentence (i.e. relative clause) constrains its subject.

constraint lists of actors, we achieve a simple first approximation rule of In (&) its object, and in (5) the object of the preposition. Thus we need to

composition; viz the semantic representation of a constituent is obtained by indicate that a constraint is being imposed on X where X in each case is

%

concatenating the representations of its subconstituents (e.g.: as in

[ (LARGE) (RED) (BLOCK)]). This rule remains approximately the case up to the
(6) X supports a cube

level of the clause, although some special considerations had to be taken
(7) a cube support X

into account. For example, to make this principle hold in the case of pre-
(8) the pyramid is on X.

positional phrase, we had to make the effect produced by actors associated

with prepositions depend on the context in which it occurred. For instance,
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Further, we want to restrict X to be filled by an object also meeting
the constraint (THE) and (BLOCK). Since the parser properly interprets
relative clauses such as (3) - (5) as embedded sentences such as (6) - (8)
with X's filled in by "the block'), the simple ruie of composition would
not work. Instead, a device similar to lambda binding was employed which
picks out from the semantic structure of the retative clause that part
which is to be further constrained by the actors outside the clause. The
device consists of the pair of actors (SUCHTHAT[..]) and (THATTHING)
serving as declaration and variable respectively. Thus (3) - (5) after
being parsed in terms of embedded sentences such as (6) - (8) are translated

to (9) - (11) respectively.
(9) [ (THE) (BLOCK) (SUCHTHATL (THATTHING) (SUPPORTS[ (cuBe)1) 1) ]
(10) [(THE) (BLOCK) (SUCHTHAT[ (CUBE) (SUPPORTS[ (THATTHING) ])])]

(11) [(THE) (BLOCK) (SUCHTHATL (PYRAM1D) (ON[ (THATTHING)])])]

as with the prepositional phrases, such structures are constructed recursively

and can be indefinitely embedded.
2.3 The Horld Model

The micro-world is a simulated blocks world similar to that used
by Winograd. The 3-D space of the blocks world is concéeptually
divided into distinct compartments, each compartment being a 10-unit cube.

Objects occupy separate compartments in the world.

The knowledge of the blocks world consists of entities and processes.
Each entity is a uniform symbol structure, represented as a set of attribute-
value associations. A process is a procedure of the system which is
elicited in the presence of a specific input stimulus - in this case a
POPLER-compatible interlingual representation of an English sentence. The
behaviour of the process may be a simple retrieval of a fact from the symbol
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structure or a change of the content of the structure in response to an
altered state of the world. There are more than 40 actors defined to allow
for descriptions of objects in terms of their properties and relative

locations.

An attempt was made to handle the'problem of anaphora. Since all
references to objects in the blocks world are extensional (except for ‘one',
described later), all noun phrases must be instantiated to a particular
object. An anaphoric reference list {a stack of previously mentioned
objects) is created to aid in this instantiation. When the special actor
"the' is encountered, it is assumed that the user is referring to a specific
item in the world. If it is unique in the present world state, then no dis-
ambiguation is necessary, otherwise the anaphoric reference list is examined
to attempt to individuate the reference. If the current context defined by
the discourse-specific knowledge (i.e.: the anaphoric reference 1ist) cannot
effect the disambiguation, then a failure is sent out of a marker frame
(originally set up in the buffer) back to a decision node constructed by the
semantic routine in the S/ node of the parser, where another possible inter-
pretation will be attempted. Two other actors, 'it' and 'one' are also
allowed in the input string and their references are found by use of the
anaphora mechanism. The actor ‘one' is unique in our world as it is the
only actor with intensional import in that it can refer to a class of objects

rather than a specific object.

It should be noted that the world model performs some important semantic
and syntactic checking in addition to the more pragmatic interrogation and
maintenance of the data base itself, {(e.g.: 'put the block.', or 'is the

blue block?*, though parsed as grammatical by our grammar rules, will fail).
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Section 3 Conclusion and Discussion

The decision to postpone accessing the blocks world until the end of the

parse phase, mentioned earlier, was an expedient. After the parse has pro-
duced a noun phrase, we have a semantic fragment available which could be
evaluated in the micro-world. If it were meaningless, a backtrack in the
parse could begin immediately, rather than having to wait until the end of

the sentence parse.

The semantic checks made in our semantic routines are rather elementary
and could be upgraded. The addition of case frames would probably increase
the efficiency of the system. They are not used in our system, as the world
model itself acts as a partial case frame filter. However, it would be less

time consuming if these checks were done before entering the blocks world.

Despite the shortcomings mentioned above, we believe the system as it
stands is a useful tool for the investigation of the problems of language
comprehension by machine. It is hoped to continue work on the system next

year.
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Footnotes

(M

(2)

We would like to acknowledge the assistance that we received in this
project from Zenon Pylyshyn, our instructor who provided the impetus
for the whole undertaking, from Julian Davies for assistance with some
technical details concerning the POPLER 1.5 system, and from Richard
Rosenberg of U.B.C. who provided us with a LISP copy of both a parser
and a grammar which served as a basis for the current project. We are

grateful to Zenon Pylyshyn for his useful comments on a draft of this

paper.

This paper describes a course project involving work done by Gary Duggan,

Dave C. Hogg and John McArdle in addition to the authors.

(3) POPLER 1.5 is a high-level A.I. system designed by Julian Davies at

The University of Edinburgh. POPLER is a language based on the main
features of PLANNER and CONNIVER, and is embedded in the PDP-10 system
(a PDP-10 implementation of POP2).
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