

Command Schemata

processes and have illustrated both the kind of claims which

might be made and the type of support which might be adduced for

them. Most of the claims are meta-theoretical, i.e., they are

not claims about the details of a particular model bu t rather are

about general feature s of information structures and processes .

Space does not permit discussion of several interesting issues,

e.g., process control, event structures, or the implications of

the present approach for traditional psychologi~al theory. It is

hoped that the present approach will assist the uneasy marriage

of the "odd couple", the computational and the empirical

traditions and thus encourage development of a genuine cognitive

science.

References

Asch, S.E. Forming impressions of personality. J.Abn.Soc.Psychol.

41, (1946) ,258- 290

Kelley, H.H. The warm-cold variable in first impressions of

persons. J,Pers. 18,(1950),431-439

Rosenberg, s. Mathematical models of social behavior. In E.

Lindzey & E, Aronson (Eds.) The Handbook of Social Psychology

(Vol.l) Addison-Wesley, Reading, 1968.

von Konigslow, R. A Bayesian inference model for evaluative

judgements in impression formation. Read at Can. Psychol .

Assoc., Toronto, 1976

von Konigslow, R. A cognitive process model of person evaluation

and impres s ion formation based on a computer simulation of

natural language processing. Natural Language Studies No.19,

u. of Michigan, Phonetic s Laboratory, 1974

- 192 -

RI:;CENT PROGRESS IN THE ESSEX FORTRAN CODING SHEETS PROJECT.

R. Bernat, J.M. Brady and B.J. Wielinga, _

University of Essex.

This paper describes recent progress made in building a program to i nterpret
Fortran coding sheets using several sources of knowledge. Currently the
program consists of three parts: a sheetfinding program, a segmentation and
character reading program, and a program which reasons about Fortran from the
"blob structure" of the coding sheet. To date, all these programs are more
or less operational and some results are presented. The emphasis of the project
lies currently on the interaction between various parts of the program, in
particular the interaction between the Fortran reasoner and the character
program. Some preliminary ideas on this interaction will be discussed .

Introduction

The FORTRAN coding-sheet project at the University of Essex is an attempt to
show the effectiveness of the use of knowledge in a visual ?erception task,
rather than the m~re possibility of employing knowledge. It is for this
reason that we have chosen such a well-trodden topic - that of reading a
casually hand-printed FORTRAN program like that ·in figure 1. The topic has
already been studied from the AI point of view, notably by ~unson, Duda and
Hart (Munson 1968) (Duda and Hart, 1968) and of course much work has been
expended on upper-case hand-printed character recognition in the absence of
knowledge of the text being read. Further justification of our approach may
be found in Bernat and Brady (1976a) and work up to the beginning of this
year is described in l:lornat (1976), Bernat and Brady (1976b), Brady and
Wielinga (1976a) - this paper reports on progress _in our work since then .

The effectiveness of knowledge in visual perception has to derive from
redund~ncy in the visual scene. Perceiving one part of the scene and knowing
something about what the scene contains enables us to predict something about
another part or ·at least gives us constraints on its future interpretation.
FORT~ ii; particular is e1;ormously redundant syntactically. Upper-case
handprinting, on a sheet with ruled lines and 'blips' which form a sort of
clock-track, is highly constrained. Writers try to distinguish similar
characters but don't follow a template - there are variations in size,
regularity of spacing and so on.

The program was originally conceived as falling into two sections - one using
~nowledge about FORTRAN, the other about characters and writing. It is
in~ended to be a collection of intercommunicating processes with the output
being plausible interpretation of the program on the sheet.' Due to our
t~~o: when first faced with the sheer size of our input (one sheet is
d7gitised to 12M bits or about 300K PDP-10 words) we added a preprocessor.
Figure 2 shows the organisation of our program. All the separate parts exist

- 193 -

Recent progress i n t he Essex Fortran coding sheets project.

._ .. ._
:;-~-~~-~--- FORTlllAN CODING SHEET

,..,OGUl1N(l M\."-it i;..~

!]iliI;b ~il•t~;~~li~~~~~~-
, L~ASE ~ILl,. vi' o -·- L•-'"' ,- .. -- oF C ,,.,,. ,..,.. t -

,_

_ l..f Fo t"Y,,-r ~ 4714,.,-.._ ,,. f'c.oc..,l,'M c§:"'"1 Lgd'.Lp,;.A\..le, ""') """•••!, SQuA•.._....,,

~ "'"'.,.."'- · - , c: .\

< . . ~ - A

- _<,.__,.. - ""

,6 ' - . -,
I---•~ fo Rto\,.,.,. ,,.~,

,._~ .I. ..i. • ·- _, - -

"" 1 •• J

• < _ ... ,, .
.... ' ' - . - . ~ .

..,_4 :-1".-r-

Figure l

(some more developed than others, of course) and work is just starting on the
real meat of the project - developing a dialogue between the 'character experts'
and the "FORTRAN reasoner' .

Figure 2

- 194 -

Recent progress in the Essex Fortran Coding Sheets project.

Data Collection is via a 35mm negative, photographically enlarged into a 175*125mm
positive, digitised to 256 light- levels on a photodensitometer. As part of
the project we've had to build our own 'vision system' - an interpreter (Bornat
and Wielinga 1976) picture I-0 routines an indexed database and a 'frame'
system.

The Coding-sheet finder

One of the most obvious tasks in our project was to find where to look. We had
t he idea of taking a 'long- distance view of the sheet , wit h sufficient resolution
to see blobs of writ ing and perhaps the ruled lines but insufficient to see
details of the individual character s. The program is reported in Bornat and
Brady (1976b). It works on reduced-resolution data - a 4,,4 reduction gives
us a manageable 20K of PDP-10 words .

The original motivation for the proe;ram was to produce a 'blob map' which would
be t he first input to t he FORTRAN reasoner. Now that we are more e xperi enced
in low-level 'vision hacking', we find that we can get better information,
collected in a more satisfactory fashion, from the Segmenter (see below), so
t his part of t he program has been relegated to t he task of telling t he Segmenter
where the lines are, what parts of each line seem to be completely blank, and
give an estimate. of the inter-blip gap. We utilise the fact t hat t he l ines
are long, straight, parallel and periodic to indicate where we may have mi ssed a
line or interpreted some writing as part of t he line.

Edge detection and segmentation

Given the outline of the coding s heet as produced by the sheet finder, an area
of the s heet corresponding to one line is selected and read into memory. The
grey-level data are transformed to gradient s pace using a 3 x 3 gradient operator
(Roberts, 1963) and thresholded. Feature points with a similar gradient
direction (quantised to B different values) are grouped together i nto edges.
This process results in a representation of the writing on the line in terms
of a set of edge elements, similar to a "Primal Sketch" as proposed by Marr (1976) .

Figure 3

- 195 -

Recent progress in t he Essex Fortran coding sheets project.

Figure 3 s hows an example of such a primal sketch. We decided to use the
primal sk€tch rather than intensity or gradient data as the basic input for
successive stages of the program for a number of reasons. Obviously, the
edge data (thresholded on length) are a lot cleaner than the raw data.
Secondl y , identification of the coding sheet lines and blips is eas i er for
an entire line than for a much smaller character area. A third reason for
using t he pri mal s ketch is that the segmentation process can be based on stroke
(edge) i nformation rather than on some sort of intensity histogram, as was
the case in an earlier version of the program (Brady and Wielinga, 1976).
Anot her advantage of the use of a primal sketch is that during the segmentation
process the · program can have a "quick look" at the character area to determine
rough size and s hape information and to do some statistics on the strokes
present in the area. This information can be used to classify the character
roughly as being "roundish", " straightish", a decender (possibly a bracket)
or as an operator (in general smaller than alphanumeric characters). A
last reason to introduce the primal sketch is detection of curves. Curves
can easily be detected (and describ~d) as a set of small, partially overlapping
edge elements, for example the 11 011 and "R" in figure 3.

The information gathered in the segmentation stage (blob data and tentative
character information) is sent to the Fortran reasoner and a dialogue between
segmenter, character- reader and Fortran reasoner is initiated. It s hould be
stressed that the output from the segmenter is not always reliable. It is
possible that "noise strokes" (e.g. scratches or dirt on the original sheet, or
strokes that are part ·of the coding-sheet lines or blips, but which are not
identified as such) are interpreted as punctuation marks or as operators.
Descender information, and in general, size information, is not reliable in
cases where segmentation between characters is difficult. EquaJssigns are
often not small enough to be identified as operators . These problems can often
be overcome in a dialogue between the segmenter and the Fortran- reasoning
program as described below.

Reasoning about Fortran

The task of a FORTRAN reasoner in our program is to exploit consistency between
information about different parts of the sheet, based on knowledge about the
FORTRAN programming language. There are two obvious ways to do this:
1) Bottom-up: as if a human, reading the sheet, came upon the realisation
that it was FORTRAN. 2) Top-down: knowing that it is FORTRAN, attempting to
impos e a structure on it.

The bottom-up solution is like trying to find the bes t-fit from a universe of
interpretations, given some partial information about the data. The top-down
solution is more immediately approachable, and is plausible as an explanation
of the way we read difficult handwriting, searching for an explanation of the
confused marks in front of us. Although humans don't often have to use this
method when reading our data, it is a mode of behaviour worth investigating

- 196 -

Recent progress in the Essex Fortran coding sheets project .

which may cast light on the organisation of processes in other visior tasks.

Most work on the reasoner up to date has assumed that the coding-sheet finder
would provide 1blob 1 data like that shown in figure 4. Tte reasoner is told
the length and position of blobs, whether they are 'operator ' blobs (including
punctuation and equa~ signs) or 'alphabetic' blobs . Its task is to guess
statement identities given this information, and to indulge in a dialogue
with the character and writing processes in the program, both inviting and
providing information about the data. ·

< m t:::::LJ. IT] ill m tI1 I I I CTJ ill I 10 ,.
r -, •• rn l

r2 o=I~~rr:JI ,, IOJCT=:IC:CJ I
rn I -, · 11CIJ. " [ii ~ CD 00 I

rn.m /
CCI1G I

-· '-.. ·- ~

12 l 10 I \
[!11!)~ [TI /

' f1.1 ill ill I 0i[j] I
[TI I OJ • ill,[:I} I

3 m t=D 111CLI1~ \
'f { -, ·1..1 a ., '.3 1,1 S' l \
s l"il o::::::J I <I iuf2l~ /

I 4 I ill (
I
,c,
I m \

Figure 4

The part of the reasoner which guesses statement identities is implemented.
Working rather like a top-down parser, it a ttempts to assign roles to the
blobs on each line, simply working through the possibilities in turn. It
assumes at present that this is unreasonable for consecutive alphabetic blobs
to run together into one blob, reasonable if two blobs are separated by a
parenthesis or if an alphabetic blob is followed by a numer ic blob. It assumes
initially that 'words' are never split into separate blobs (except for 'GO'
'TO'). With these simple assumptions it produces the following first guesses
for the lines shown above:

1.
2.
3.
4.

comment I FODRMA T
WRITE I REA
FORMAT
FORMAT I WRITE READ

- 197 -

Recent progress i n t he Essex Fortran coding sheets project.

5. FO RMAT
6 . assi~ment
7. assi~ment
8 . assignment READ
9 . bACKSi'ACE FORMAT I REW I ND I PAUSE
10. lo!lical-IF
11. DO I arithmetic-IF
12. assignment
13. assignment
14. viRITE I READ
15. FO RMAT
16. CALL I GOTO I REAL I STOP
17. END

Figure 5

In figure 5, the correct guess is underlined. I t is surprising t hat such
a simple algoriti1m, using such simple knowledge, can arrive at such a performance,
often guessing correctly and always including the correct guess among the
few preferred. The performance is sustained wit h other data - though if you
know about FORTRAN syntax it would be trivial to construct an example to confuse
it. We'll be happy if our system works on non-pathological examples at first,
though later it will of course be necessary to be able to 'take back' early
gu7sses and then, we hope, it will be able to handle programs which aren't
written as clearly as t his one.

The program is at present being developed to produce a graph which shows
eacn statement's role in the control flow. The most obvious use of this is
to divi de declarations from statements, thus rejecting the 'REAL' guess on line
16, for example. Most inter-statement knowledge relies on control-flow inform­
ation so the grapn is essential for us to move away from reasoning about single
statements. It makes some apparently bizarre inferences more plausib le -
such as the one which runs ' line 17 is EHD, line 16 isn't a comment or a
FORHAT, t herefore line 16 must be RETURN, STOP or GOTO'. In early versions
of the proeram we were so i mpressed by the power of knowledge about the END
line t hat it look<;d at the last line first of all, knowing it to be END,
"':1d tnen at the line above, knowing it to be RETURN, STOP or GOTO. If it
mignt be RETURN, th:n these last lines formed part of a subprogram, and therefore
•• • ! Later we reJected this as too ridiculous and made the program look
at t ne s neet from top to bottom. Now it will have to produce this inference
as a natural result of reasoning from the control graph - the last node in
a prosram unit can 't let cont rol ' drop through' to the END line.

All of the knowledge used so far, however, and all of that envisaged in t he
near future, is about the syntax of FORTRAtl . This reliance on syntactical
knowledge is a strength of the project - although an understanding of the
program's purpose would enable us to make much more powerful inferences and
employ mucn more powerful constraints, such an understanding is beyond the
state-of-the-art. The knowledge so far incorporated enables us to cut down

- 198 -

Recent progress in t he Essex Fortran coding sheets project.

the search space of t he rest of the system enormously, and often enables
us to propose single character •acid tests' to distinguish between different
interpretations of a line. This avoids many simple errors which an
unknowledgeable system might make - for example Duda and Hart (1968) after
filtering the output of a character recogniser, 'had a line interpreted as
D7 11 I=l, 100 - t he obvious interpretation in blob terms is that it is a
DO statement, so the possibility of the second character as 1 7 1 would never
arise in the first place.

~ difficulty with. incremental simulation (Rovner, Nash- Webber and Woods, 1974)
is_tnat t he associated modules may fail to meet t heir original specification .
This has happened with the FORTRA.~ reasoner. The data shown in figure 4
are ~nrealist~c. In some ways they're too accurate - the segmenter may
provide unreliable information and in others they're too undifferent i ated -
tile segmenter can provide information on many individual characters within
t he blobs. A true dialof.ue involves helping the character experts with t heir
problems as well as spontaneously offering interpretations.

Character reaaing using partial knowledge

Once the Fortran reasoner has made a first guess at the identity of a statement (or
has decided that no reasonable guess can be maue just on the basis of t he blob
information) a dialogue between t:,e Fortran reasoner, the segmenter and t he
cnaracter prob,rams is initiated. This dialogue may take t he form of sir..ple
requests to t ue character system like "verify an F", with a straip:htforward yes or
no answer. In cases where difficulties arise, either in the Fortran reason i ng
or iu tne cnaracter reading process, more elaborate dialogues may occur: Fortran:
"I tnini<: tnis statement is RtAJJ, WRITE or FORMAT; can you discriminate?";
cnaractersystem: " ilo I can't read it, but the 5th character could be a bracket,
aces tilat help?"; Fortran: "Yes, I'm now quite sure it is READ(•••), could you
verify?"; charactersystem: "Yes, it could very well be READ(• • •)".

Tne consequence of this rich interaction is that tne character s ystem has to be
able to adapt its behaviour according to t he requested information and to the
partial information it is provided with. Moreover it must also be able to "be
aware" of its own reasons why it believes certain evidence. This is because
questions of confidence may arise, e.g. when a hypothesis made by the Fortran
Reasoner strongly conflicts with character evidence, the character reader has to be
able to contemplate t ne structures it has built, and possibly reconsider its
interpretation of the evidence. Even internally a conflict may arise during the
reading of a character, e.g. in the case of difficult segmentation or ligatures:
"it looks like O out I have an unexplained stroke".

The requirements sketched above have strong implications on the structure of the
cnaracter system and on the way in which knowledge about characters is
represented: (1) t he control structure must be flexible: the program l',ust be
able to change its strategy; (2) character knowledge should be packaged, in such
a way that partial information can be represented and properly used; (3) t ne
program must be able to assign roles to indivitiual pieces of evidence within the

- 199 -

Recent progress in the Essex Fortran coding sheets project.

character model s .

To meet these r equirements we deci ded t o i mplement a system based on "frames"
(Mi ns ky , 1975). In Brady and Wielinga (1976a) we elaborate further on the
considerat i ons which l ead us t o choose a f rame-type represent a tion for character
knowl edge , and gi ve l!X)re details about our current implementation , which was
i nspired by an early version of KRL (Bobr ow & Winograd, 1976). Frames as we have
implement ed t hem are information structures containing knowledge both i n
declarative and procedural form. Two i mport ant types of components i n a frame are
SLOTS and ACTIONS. SLOTS name and describe pieces of information in a frame , while
ACTIONS describe procedurally how to use (or to obtain) information in t he frame ,
and what to do when certain conditions in a frame are fulfilled. Figure 6 shows a
t ypical frame representing a model for •v•.

[v isa LETTER with. s l ots

LEFTSTROKE + [* isa STROKE with.slot s
SLOPE + <jyof LEFTDIAGONAL VERTICAL>
POS + LEFT

RIGHTSTROKE + [* isa STROKE with .. s l ot s
SLOPE + <anfof RIGHT DIAGONAL VERTI CAL>
POS + RIGHTJ

INTLR + [* isa I NTERSE CTION with. slots
sTROKE1 + ! LEFTSTROKE
STROKE2 + ! RI GHTS'iROKE
RELAIIGLE <- ACUTE
POS <- BOTTOM]

with . act ions
when. filled <allof LE FTSTROKE RIGHTSTROKED]

$ (test verified (INTLR) t hen confirm (V)

$)]

_£!: t est converge.at .bottom(LEFTSTROKE , . RIGHTSTR0!<$.
~ test check. touch(LEFTSTROKE, RIGHTSTROl<l:J
~ confirm (Y) <> possible (U)
or deny (V) <> suq:est (U)

~ deny (V) <> suggest ([AHUJ)

[when. filled I NTLR} [confirm (V)}
before.confirmed

, test distance (endpoint(RIGHTSTROKE),
- - interse ct point (RIGHTSTROKE, LEn'STROKE))>DELTA

$)]
]

~ possible (V) <> transformto(Y) <> verify(Y)
2::. ~ sma.llvertical .. stroke (right)

t hen deny (V) <> t r ans formto(U)<> verify(U)
or handle. troubles ome evidence () <>
- resul tis TRUE ·

Figure 6

The frame contains descriptions for t he two strokes (SLOTS: LEFTSTROKE and
RIGHTSTROKE) and for t he intersection between t hem (SLOT: INTLR). The actions
describe what to do when appropriate strokes have been found: certain checks have
to be made to make sure that 1V1 is indeed t he right character and not 1 U1 or 1Y1 •

- 200 -

Recent progress i n the Essex Fortran coding sheets project.

To illustrate the working of our curr ent charact er system, we will describe the way
in which t he program -behaves when confronted wi th the character i n figure 7, having

Y no partial information on the i dentity of the
character. The program starts with a bottom-up

· search for big strokes in the pri mal sketch. Two
strokes will be .found. A database search for
applicable frames (i.e. frames containing slots for

Figure 7 two diagonal or vertical strokes , one at the left,
one at the right) will return a number of character

frames (e.g. A, H, u, V, Y ••••) and some frames which describe stroke relations
like INTERSECTION and VCOMBINE.

The system currently uses 1 hard-compiled 1 knowledge to decide which type of frame
is t he best candidate to try first - in bottom-up mode stroke relations.

VCOMBINE - a stroke relation which checks whether t wo strokes are part of one bigger
stroke - is tried, refuted and proposes to try INTERSECTION. This frame is
hypothesised and confirmed, and its slots RELANGLE and POS are filled with ACUTE
and BOTTOM respectively. When the INRERSECTION frame is confirmed, the list of
candidate character models is checked for models which match this type of
INTERSECTION. The model for Vis hypothesised and its slots are filled, invoking
as a side effect the whenfilled action. Since the INTERSECTION is already verified ,
t he Y frame will be confirmed, and the before.confirmed action will check whether
~he distance between the intersection point and the end point of the right stroke
is larger than a certain threshold DELTA. Since this is the case, the information
in the V frame will be mapped onto a Y frame. The character system concludes that
t he character is likely to be 'Y ' , but that 'V' is still an alternative possibil ity.

Future work - the Dialogue

Now that we have got to grips with the parts of the problem, we will concentrate our
efforts on the interaction between the various .sections. Space does not allow us to
show examples, but we have some simulated dialogues about lines of the coding sheet
in figure 1. Line 8 (1 READ(S,30)N 1) for instance is quickly. identified as
'READ(an , nn)a1 (an= alphanumeric, n: numeric, a: alpha)~:iil~iscrimination test on
the comma (the alternative possibility - an assignment statement - requires an
equals sign).

In the case of line 9 ('FORMAT(I2) 1) of the same sheet the blob information is
less conclusive: there are four different types of statements possible, and
moreover the segmenter has some difficulty in distinguishing the first bracket
from ' I' . So, more evidence about the individual characters is needed to find
reliable hypothesis about the identity of the statement. It is precisely this
of problem that our research in the near future will focus on.

References

a
kind

Bobrow D.G. & Winograd, T. (1976) ' ·An overview of KRL, a knowledge representation
language •, to appear in Journal of Cognitive Science, 1976.

201 -

Recent progress in the Essex Fortran coding sheets project.

oornat, R. 'Reasoning about hand printed Fortran programs\ Proc. of the AISB
Summer Conference, tdinburgh, 197& .

oornat, Rand Brady, J. M. (1~76) 'Using knowledge in the computer interpretation
of FORTRAil coding sneets' , Int. J. Man-Machine Studies, ~. 13.

oornat R anu Brady, J. M. (1~7b) 'Finding blobs of writing in FORTRAN coding
sneets ~rejects', Proc. of tne AI SB Summer Conference, Edinburgh, 1976.

bor nat, R. and \iielinga b.J. (1976) 'The EVIL programming system', Un iversity of
tssex Computint Centre memo (in preparation).

Brady , J. M. and l·l ielinga, B. J. (1976) 'Seeing a pattern as a character', Proc.
of the AI So Sumner Conference , t:dinburgh , 1976.

i)u<la, R. O. and Hart, P (1968) 'l:xperiments in the recognition of hand-printed
text-II', Proc. FJCC , 1139- 51.

,-larr, iJ . (197b) "Analysin,s natural images ', AI r:iemo 334, MIT AI Lab, 1976.

Munson, J.ii. (19b8) 'Experiments on t he recognition of hand- printed text-I',
Proc . FJCC, 112~-39.

:hnsky, M. (1975) 'A framework for representing knowledge', in P. Winston (Ed .),
The P:;ychology of Computer Vision , New Yor k , McGraw-Hill, 1975.

Roberts, L.G. (l9b3) 'Macnine perception of t hree-dimensional solids, opto and
electro optical information processing', Tippett, J .T. et al (Eds.), Cambridge ,
MIT Press, 159-197.

Rovner, P., ii ash-Webber, o. and Woods, H. (1974) 'Control concepts in a speech
understanding system', Proc. IEEE symposium on speech recognitioi:i, 1974.

- 202 -

Abstract

THE AXIOMATISATION OF STRIPS

AS A PREDICATE CALCULUS PROGRAM

Donald Kuehner

Department of Computer Science

University of Western Ontario

London, Ontario

It has been shown by Kowalski and van Emden that predicate

calculus can be treated as a programming language . The axiorr,at­

isation of a problem is interpreted by a resolution theorem­

prover as a program for the solution of the problem . Certain

symbol manipulating algorithms can be very concisely stated as

predicate calculus programs. An example is STRIPS, the robot

planning algorithm of Fikes and Nilsson. STRIPS can be stated

using eight axioms , so that an eight-line program is the result.

A stronger version of STRIPS, Warren's WARPLAN, can be written

as a twenty-line program.

Predicate calculus as a programming language

Recently van Emden [2,3] and Kowalski [6,7] have been

considering the use of first-order predicate calculus as a

programming language. The axiomatisation of a problem, when

converted to the clausal form of resolution theory [9], can be

considered to be a program for the solution of the problem. The

resolution theorem-prover PROLOG [1], has been used as an inter­

preter for programs written in predicate calculus.

The logical statement A<= B&C, has clausal form Av-Bv-c.

- 203 -

The Axiomatisation of STRIPS

The As a pr~gramming procedure, this is written as +A-B-C .

procedure call , -A, is responded to by the procedure whose name

is +A . The body of this procedure contains the procedure calls

-Band -c . The unification of resolution becomes the identific­

ation of the parameters of the calling statement with the dummy

parameters of the procedure.

Two examples

It is easy to construct LISP-type lis ts using nestings of

the function CONS , and the empty list NIL. The two-element list

[A,B] is represented by CONS (A, CONS (B,NIL)). Thus x is a list

if x = NIL or if there exist y and z such that x = CONS (y, z) •

This is equivalent to the procedures

+ISLIST(x) -IS (x,NIL)

+ISLIST (x) -IS (x, CONS (y, z)).

These procedures form a program for testing whe the r or not x

is a list.

The following recursive procedures construct a new list by

appending the second list onto the end of the first list .

Capital letters are used for constant values, and small letters

are used for variables.

(a) +APPEND(NIL , list2 , list2)

(b) +APPEND(CONS(headl,tail 1) , list2, CONS(headl,newtail))

-APPEND(tail 1, list2, newtail)

Procedure (a) states that if the first list is the empty list ,

then the new list is the same as the second list. Procedure (b)

states that the head of the new list is the head of the first

list, and that the tail of the new list is constructed by

appending the second list to the tail of the first list .

- 204 -

The Axiomatisation of STRIPS

These procedures could be called by the following main

program

(c) -APPEND(CONS (A,NIL), CONS (B,CONS (C,NIL)), newlist)

-OUTPUT (newlist).

When these three clauses are submitted to a resolution

theorem-proving program, clause (c) is distinguished as the set

of support (8, 11] . When (c) and (b) resolve , the resolvent is

(1) -APPEND (NIL , CONS (B,CONS(C,NIL)), newtail)

-OUTPUT(CONS(A , newtail)).

The left-most literal of (1) can be unified with (a) to produce

(2) OUTPUT(CONS (A,CONS(B,CONS(C,NIL)))).

This clause can be thought of as resolving with the clause (e)

+OUTPUT(x) which has the side effect of printing the value of x.

A proof procedure for executing programs

A predicate calculus program is usually written using Horn

clauses. These clauses have at most one positive literal. Most

Horn clauses are either procedures of the form +A-B 1 ••• Bn ' or

assertions of the form +A . There is also the negated goal of the

form -B1 ••• -Bn and the terminal clause which is empty. It is

easy to see that the resolvent obtained from two Horn clauses

is itself a Horn clause.

An efficient inference rule for doing resolution with Horn

clauses is Selective Negative Linear (SNL) resolution [8]. SNL

is selective in that it chooses one literal of a clause to re­

solve on, and must not resolve on any other literal until that

literal has been used • . It is negative because its support set

is negative and every resolvent must be negative. A resolution

is linear if one parent of each resolvent is an input clause.

The search strategy selects the left-most literal of the

- 205 -

The Axiomatisation of STRIPS

support clause or a resolvent. When attempting to resolve on

such a clause, the input clauses are tried in the order in which

they are written . When an input clause is found which does re­

solve, no lower clauses are tried unless that branch of the

search fails . This is depth-first search.

In general a depth-first search is not exhaustive, and so

the proof procedure is not complete. However, there is some

indication that program termination may be assured by carefully

ordering the clauses within the program, and the literals within

each clause.

The need for an extended predicate calculus

Literals with side effects such as OUTPUT(x) are provided

chiefly for the convenience of the user. This corresponds to

Green's answer predicate [SJ.

Certain semi-logical tests seem to require a special

mechanism. Sometimes the truth of an essention can be tested

within predicate calculus, but the testing of its negation

cannot. For example, the procedure which tests whether x is

a list, would also succeed if x were a variable. To test

whether x is an explicit. list, a +NONVAR(x) procedure must

be written.

The following use of the special-purpose literal NOBRANCH

allows the testing of negation.

(a) +NONVAR(x) -UNIFY(x,CONSTANT) -NOBRANCH -FAIL

(b) +NONVAR(x)

(c) +UNIFY(y,y)

(d) +NOBRANCH {has search strategy side effect}.

Assume that node n of a search tree has label -NONVAR(variable).

- 206 -

The Axiomatisation of STRIPS

This could resolve with (a) or (b). The search strategy will

first try (a). This succeeds, producing node n+l labelled

-UNIFY(variable ,CONSTANT) - NOBRANCH -FAIL. This resolves with

(c) producing node n+2 labelled -NOBRANCH -FAIL. The following

resolution is with +NOBRANCH whi ch as a side effect directs the

search strategy to allow no further branching from the node above

the one where -NOBRANCH first appeared , namely the node n.

There is no +FAIL among the input clauses , so this branch of the

search fails. The search would normally backtrack to node n

and resolve -NONVAR(variable) with (b). But this is forbidden,

so the search must backtrack further.

If node n had been labelled with -NONVAR(A) , then node

n+l would have been labelled -UNIFY(A,CONSTANT) -NOBRANCH -FAIL.

This would fail to unify, so the search would backtrack to node

n and resolve successfully with (b). Thus (b), which always

unifies, is accessible only if (a) fails at -UNIFY(x,CONSTANT) .

The axiomatisation of STRIPS

Certain symbol-manipulating algorithms can be stated very

concisely as predicate calculus programs. Fikes and Nilsson [4]

describe an algorithm STRIPS which a robot can use to make plans.

The program for implementing STRIPS in predicate calculus,

PC-STRIPS, can be written as eight clauses. This economical

program was suggested when modifying Warren's WARPLAN [10] , which

appears in the last section.

In order to understand the PC-STRIPS program, it is con­

venient to look at an example of the sort of data upon which it

will operate . This data, expressed as Horn clause assertions,

describes the initial world and the actions with which the robot

can change this world.

Any action by the robot changes the state of its world.

- 207 -

The Axiomatisation of STRIPS

The ADD p redicates list the new situations which hold in the

world after the action. The DEL predicates list the old situat­

ions which must be deleted. The PRE predicate states the con­

junction of preconditions which must be present in the world

before the action can be begun.

(Dl) +GIVEN (ATROBOT (A))

(D 2) +GIVEN (AT(BOX,B))

(D3) +ADD (ATROBOT(place2), MOVE (place1 ,place2))

(D4) +PRE (ATROBOT(place1), MOVE(place1 ,place2))

(DS) +DEL (ATROBOT (place1), MOVE(place1,place2))

(D6) +ADD (AT(object,place2), PUSH (object,place1 ,place2))

(D7) +ADD (ATROBOT(place2), PUSH(object,place1,place2))

(D8) +PRE(AT(object,place1)&ATROBOT (place1),

PUSH(object,place1,place2))

(D9) +DEL (AT(object , p l ace1), PUSH(object,place1,place2))

(DlO) +DEL (ATROBOT(place1), PUSH (object , place1 , place2))

A simple task, e x pressed as a negated goal , might b e

(G) -SOLVE (AT(BOX,C), START, plan) -OUTPUT(plan).

A conjunction of three goals wri tten as goal1&goal2&goal3

represents the function CONJ(goal1,CONJ(goal2,goa13)). A

sequence of acts written as act1&act2&act3 represents

SEQ (SEQ (act1,act2), act3). Thus goals are accessible from the

left and actions from the right.

It is now possible to state the clauses which form the

PC-STRIPS program.

(S1) +SOLVE (goalatom&goalist, actsdon e , allacts)

-SOLVE (goalatom, actsdon e , newacts)

-SOLVE (goalist , ne w acts, allacts)

This i solates the next goal. The sequence of "allacts " is

- 208 -

The Axiomatisation of STRIPS

intended to h av e " acts done " as an initi al subsequence.

(S2) +SOLVE (goalatom, START , START)

-GIVEN (goalatom)

If the only act done is the START, then it is c hecked whether

the goal atom is given.

(S3) +SOLVE (goalatom, actlist&act, actlist&act)

- ADDED (goalatom, actlist&act)

If a sequence of acts has been done, it is check ed whether the

current goal atom was added by one of them .

(S 4) +ADDED (goalatom, actlist&act)

-ADD (goalatom,act)

This c hecks to see if the most recent act added this goal atom.

(SS) +ADDED (goalatom, actlist&act)

-DEL (goldatom,act)

-NOBRANCH

-FAIL

(S6) +ADDED (goalatom, actlist&act)

-ADDED (goalatom, actlist)

If the goal atom was deleted by the most recent act, the n (S6)

is not accessible . If the goal atom was not deleted, then -DEL

of (SS) fails to unify, so (S6) is tried next. Eventually , the

following clause may be tried

(S7) +ADDED (goalatom, START)

-GIVEN (goalatom)

If the goal atom was no~ given and has not been added by the acts

done , then it must be added by a new act.

- 209 -

The Axiomatisation of STRIPS

(SB) +SOLVE (goalatom, actsdone , newactlist&newact)

-ADD (goalatorn, newact)

-PRE (newgoalist, newact)

-SOLVE (newgoalist, actsdone, newactlist)

The preconditions of this new act form a new goal list which

must be solved before returning to the previous goal list. This

completes the PC-STRIPS program.

WARPLAN

Warren [10] has devised a modification of STRIPS, called

WARPLAN, which allows the insertion of a new action into a

previously evolved action sequence. This insertion is evoked

when the new action destroys a previously achieved and protected

subgoal. Warren's . rather opaque, forty-six-line predicate

calculus program, has been re-written to conform with PC-STRIPS,

and has been simplified to the following twenty-line program.

(KW1) +PLAN (goalatom&goalist, goalsdone, actsdone, allacts)

-PLAN (goalatom, goalsdone, actsdone, newacts)

-PLAN (goalist, goalatom&goalsdone , newacts, allacts)

(KW2) +PLAN (goalatom, goalsdone, START, START)

-GIVEN (goalatom)

(KW3) +PLAN (goalatom, goalsdone, actlist&act, actli s t&act)

-ADDED (goalatom, actlist&act)

(KW4) to (KW7) are the same as (S4) to (S7)

(KWB) +PLAN (goalatom, goalsdone, actsdone, newactlist&newact)

-ADD (goalatom, newact)

-PRE (newgoalist, newact)

-PLAN (newgoalist, goalsdone, actsdone, newactlist)

-PRESERVES (newact, goalsdone) .

(KW9) +PRESERVES (newact, lastgoal&goalsdone)

- 210 -

The Axiomatisation of STRIPS

(KWlO) +PRESERVES (newact, lastgoal)

-DEL (lastgoal, newact)

-NOBRANCH -FAIL

(KWll) +PRESERVES (newact, lastgoal)

(KW12) ·+PLAN (goalatom, goalsdone, actsdone&lastact,

newactlist&lastact)

-ADD (goalatom, newact)

-RETRACE (goalsdone, lastact, oldgoals)

-ACHIEVE (goalatom, newact, oldgoals, actsdone, newact-

list)

-PRESERVES (lastact, goalatom)

(KW13) +RETRACE (goalsdone, lastact, oldgoals)

-REBUILD (goalsdone, lastact, earlygoals)

-PRE (goals, lastact)

-APPEND (goals, earlygoals, oldgoals)

(KW14) +REBUILD (lastgoaldone&othergoalsdone, lastact, earlygoal s)

-ADD (lastgoaldone, lastact)

-REBUILD (othergoalsdone, lastact, earlygoals)

(KWlS) +REBUILD (lastgoaldone&othergoalsdone, lastact, lastgoal

lastgoaldone&oldgoals)

-REBUILD (othergoalsdone, lastact, oldgoals)

(KW16) +REBUILD (TRUE, lastact, TRUE)

(KW17) +APPEND(goalatom&goalistl,goalist2,

goalatom&goalistland2)

-APPEND (goalist1,goalist2,goalistland2)

(KW18) +APPEND (goalatom, goalist2, goalatom&goalist2)

(KW19) +ACHIEVE (goalatom, newact, goalsdone, actsdone,

newactlist&newact)

-PRE (newgoals, new act)

-PLAN (newgoals, goalsdone, actsdone, newactli s t)

- 211 -

The Axiomatisation of STRIPS

-PRESERVES- (newact, goalsdone)

(KW20) +ACHIEVE (goalatom, newact , goalsdone, actsdone&lastact ,

newactlist&lastact)

-RETRACE (goalsdone, las tact, ·oldgoals)

References

-ACHIEVE (goalatom, newact, oldgoals, actsdone ,

newactlist)

-PRESERVES (lastact , goalatom)

(1) Battani, G., and Meloni, H. Interpreteur du langage de

programmation PROLOG. Group d ' Intelligence Artificielle,

U.E . R. de Luminy, Marseille, (1973).

(2) van Emden, M.H., and Kowalski, R.A. The semantics of pre­

dicate logic as a programming language. Report M.I.P.-R-103,

Dept. of Machine Intelligence, University of Edinburgh ,

(1974).

(3) van Emden, M.H. Programming with resolution logic, Machine

Representation of Knowledge, (Elcock, E.W., and Michie, D.

Eds), Reidel, Dordrecht, (1976).

(4) Fikes, R.E., and Nilsson, N.J. STRIPS: a new approach to

the application of theorem proving to problem solving.

Artificial Intelligence, 2 , (1971), 189-208.

(5) Green, C. The application of theorem-proving to question­

answering systems. Technical note 8, Artificial Intelli­

gence Group, Stanford Research Institute, (1969).

(6) Kowalski, R. A. Logic for problem-solving. DCL Memo 75,

Dept. of Artificial Intelligence, University of Edinburgh,

(1974).

(7) Kowalski, R.A. Predicate calculus as a programming language.

Proc. IFIP 74, North Holland, (1974).

- 212 -

The Axiomatisation of STRIPS

(8) Kuehner, . D.G . Some special purpose resolution systems.

Machine Intelligence 7, Edinburgh University Press, (1972).

(9) Nilsson, N.J. Problem-solving Methods of Artificial

Intelligence. McGraw-Hill, (1971).

(10) Warren, D. WARPLAN; a sys tem for generating plans.

DCL Memo 76, Dept. of Artificial Intelligence, University

of Edinburgh, (1974).

(11) Wos, L.T., Carson, D.F., and Robinson, G.A. Effic i ency

and completeness of the set of support strategy in theorem­

proving. Journ. ACM 12, -(1965).

- 213 -

A LINGUISTIC APPROACH TO AUTOMATIC THEOREM PROVING

Sharon Sickel
Information Sciences

University of California, Santa Cruz, Ca.
Research supported by the Office of Naval Research Grant# 76-C-0681

ABSTRACT

Generalizing the concept of a path in Clause Interconnectivity Graphs ,

we define the set of simple (i.e., cycle-free) paths that begin at a specified

subset of nodes. Where the search of the CIG for a proof in the predicate

calculus was previously defined in terms of the edges of the CIG, here the

simple paths themselves become the atomic elements of the search, thereby

increasing the "chunk" size of the operands. We can further define forms

similar to regular expressions in which the terminal symbols represent those

simple chunks . The forms become templates that model proofs, i.e., they can

be mapped onto resolution proofs of the unsatisfiability of the clauses making

up the CIG. In general a template represents an infinite number of paths but

an algebraic computation on information derived from the templates yields valid

proofs without an exhaustive search through intermediate stages of the search

tree. Overall, the method leads to a reduction in both the computation time

per step as well as in the combinatorics of the search itself. The representa­

tion also lends itself to an heuristic based on integer prograrrming by using a

s imple difference function based on the chunks.

Introduction

A system for formal theorem proving is presented, using the Clause

Interconnectivity Graph as its basic data structure. Proofs found here can be

mapped onto proofs using resolution and factoring as rules of inference (as

opposed to Modus Ponens, for example). The search method bears little resemblance

to that of resolution methods, however.

The Clause Interconnectivity Graph (CIG) [5] has been used as a representa­

ti-0n for proving first-order predicate calculus theorems. A CIG is a four-tup l e:

< Nodes, Edges, Subst, Cl ause> where

- 214 -

Linguistic Approach .••

Nodes is a set of graph nodes, one for each literal of each clause ,

Edges is a syrrmetric relation between nodes such that <a,b> E

Edges iff the literals associated with nodes a and b have

opposite signs and unifiable atoms.

Subst is a mapping: Edges~ substitutions such that

Subst(<a,b>) is a most general unifier of the atoms of the

literals associated with nodes a and b, and

Clause is a mapping: Nodes ~G>(Nodes) where Glmeans powerset;

Clause partitions the nodes so that literals in the same

clause have corresponding nodes in the same partition.

For example, suppose that we are dealing with integers defined by Peano's

axioms, and we define the predicate, Even:

Even(O)

Even(sn(O)) ~ Even(sn+l(O))t

Even(sn(O)) ~ Even(sn+l(O))

and theorem Even(s60 (o)J. Then the CIG is shown in Figure l.

Figure L A Clause Interconnectivity Graph with labeled edges. The
pred1cates and terms are left in the nodes for expository purposes only. -
They are neither included in the CIG definition nor are they used in the
search for a proof.

t "s" means "successor"; s(O) = O; sn(O) = s(~n-l(OJ) for n > 0.

- 215 -

Linguistic Approach ...

Edges is a syrrmetric relation. However, when we involve an edge in the

search, the analogy i s made to moving from one element of an ordered pair in

Edges to the other element i~ .that pair. Therefore when an edge is used, we

think of it as being directed. Given an edge <a,b> and assuming direction a~ b,

we can make the following definitions.

Deleting_literal is a mapping: Edges~ Nodes where

Deleting_literal(<a,b>) =band

Residual_literals i s a mapping: Nodes~ 6'(Nodes) where ? means powerset.

Residual_literals(b) = Clause(b) - {b}.

A proof derived from a CIG corresponds to a particular kind of search on

the CIG. The proof search resembles the following process:

Choose a clause to be the starting clause (a clause that is likely
to be used fo the proof, a member of the set of support, etc.). Place
a marker on each of the nodes in the partition representing the starting
clause. Each of those markers may be moved along any edge connected to
its present position. Then the parent marker is removed (from the deleting
node) and children markers are placed on each of the other nodes (the
residual nodes) in the partition arrived at from the move. Then the
process is repeated on~ of the existing markers; they in turn
become parents, being replaced by children. The goal is to eliminate
all markers.t This process corresponds to unrolling the graph into trees.

From looking at the CIG in Figure 1, it is easy to see that some move

sequences could be done an arbitrary number of times, e.g., moves D,F,D,F, ..•

successively, or E,C,E,C, ... We call such sequences loops.

Assuming starting clause Even(O), the first move is determined, namely G.

That leaves a marker on the node corresponding to Even(sn+l(O)). From this node

we could begin one of the loops mentioned above. Let us consider a sequence

of moves involving one of the loops; G(DF)kDA, meaning move along G, then

around D and F k times, then along D, then A. Intuitively G links up the integer

t This process is over-simplified. There are restrictions concerning the
substitutions, and there is another allowable move that admtts non- input steps.
For a complete description, see [5].

- 216 -

Linguistic Approach ...

O with the start of an induction. The OF loop adds the val ue 2 to the ·current

val ue. Move A jumps out of ·the induction to the value that we seek. In other

words, the G(DF)k .part is successively proving that O is even, 2 is even, 4 is

even, etc., until we arrive just short of the given value. The D and A·steps

together add 2 to the value. In this case, k will have the value 29.

Once we have discovered G(DF)kDA, proofs of the evenness of all even,

positive integers should .be equally easy in all systems. But we know that

they are not. Using t raditional deductive systems on this axiomatiza.tion, the

length of the proof of Even(sn(O)) increases linearly with n, and required

resources generally increase exponentially with the length of the proof. In

this method, however, the discovery of the proof is of the same inherent

difficulty regardless of the magnitude of n. The approach involves:

1) mapping the CIG onto a context- free gralTITlar [l]

2) mapping the context-free gra1T1T1ar onto a set of expressions similar

to regular expressions.

3) mapping each regular expression onto a composition of substitutions.

4) checking to see if any of the expressions represent· a legal substitution .

If so, that expression can be mapped onto a proof.

Chunking

The previously presented search schemes on CIG's dealt with looping by

preferring non-loop moves, preventing run-away development of infinite loops.

However, even in some simple cases, we may need to travel a loop many times.

One example of this is the proof of evenness in which we should be able to prove

Even(6000) easily once the general method is discovered. The proof itself may

be long, but the search time should be identical to the search. time in proving

Even(60) or Even(6). In fact, it is possible to use this method not only to

prove indiv~dual theorems, but also to derive generalized algorithms to do

computations within a theory.

Once we know the basic steps needed for a proof, the repetition of one or

- 217 -

Linguistic Approach ...

more of those steps a large number of times should not cause us any trouble.

We need to discover these basic steps or chunks . One might imagine that the

moves that correspond to edges might serve satisfactorily as chunks. However,

there is some obvious clumping that takes place. The CIG in Figure 2 has three

natural chunks, c1 :f, c2:deg, c3:abc, because the moves wi thin each chunk must

be taken together . Note that c3 denotes a loop, and we can travel in either
-1 di rection on a loop, so we can denote cba as c3 In th is case, the chunking

partitioned the edges, but that will not necessarily be the case.

Figure 2. A CIG divided into its three natural chunks.

We can derive the chunks by finding all ways of moving and replacing the

markers such that if a marker is on the same node as one of its ancestors, we

freeze that marker, but continue to move other available markers. The starting

configuration for each chunk is a single marker sitting on some node. The

chunk is said to be related to that node. Intui t ively, the chunk represents

the refutation of the literal that the related node represents. This process

identifies all of the natural pieces of the graph. Since no repeated looping

is allowed, this is a terminating process.

We classify the chunks into two types, terminal and loop. A terminal

chunk is one in which_ all markers have been eliminated. A loop chunk has one

or more frozen markers. In Figure 2, c1 and c2 are terminal chunks; c
3

is a

- 218 -

Linguistic Approach .•.

loop chunk.

Chunks to Context-Free Gra111nar

Chunks as described in the previous section are trees, since 1) a parent

marker may be replaced by one or more children markers and 2) no marker can

ever be its own descendant. We wi sh to write the chunks as linear sequences

so that we c_an use them in constructing a gra111nar. We produce this flattening

by doing an end-order traversal [4] of the "chunk tree" . The flattened fonn

is a sequence of directed edges and nodes, s1, s2, •.. sn. We can make context-

free productions by putting s1, s2, sn on the right-hand-side and the

associated node on the left-hand-s ide,

N-,. s1s2 ... sn.

The intuitive notion is that to eliminate N you must add s1,s2, ... sn (possibly

including N). We can now construct a context-free gra111nar G:

nonterminals: {S} U Nodes (where {S} n Nodes= ¢)

terminals:

productions:

Edges

{all N-,. s1s2 ... sn as described above}

u· {S _,. N1 ... Nk I N
1

, .. ,Nk represent all literals in
starting clause}

start symbol: S

In the ground case any string in the language of G,i.e. any string that

is derivable from Sand consists entirely of terminals (in this case edges),

represents a proof. Therefore, once the chunking is accomplished, determining

theoremhood of the statement in question is equivalent to asking whether a

given context-free gra111nar generates a non-empty language, which is a frivial

problem.

The general case is more difficult, however. Each edge has an associated

substitution, and for a string of edges to be acceptable, all of their

substitutions must be mutually consistent. Consistent(a1,a2, .•• an) iff

a1 <:> (a2 ~ (•.• 0 an))) is defined, where a e 8 = y such that y is a most

- 219 -

Linguistic Approach ...

general substitution satisfying (La)y = (Ly)a =Ly= (LS)y = (Ly)S for an

arbitrary literal L (5). Since all terminal strings must abide by consistency,

this is in fact a context-free attribute granmar (3) and can have the power of

a type O granmar. This fact eliminates the usefulness of the result that tells

us there is an upper bound on the length of the shortest string in the language.

However, the grammar form provides us with some valuable heuristics as we shall

see later.

Regular-like Expressions

Given a context-free granmar, it would be convenient to represent the

language generated in regular expression style. To do that, we need to extend

the definition of regular expression. In addition to "I", meaning "or",

concatenation meaning "and", and"*" meaning "repeat zero or more times", we

add exponent "n " to mean repeat exactly n times.t For the granmar constructed

in the previous section, if all productions that have node Non the left-hand­

side have one of t 1, .•. tn (terminal chunks), or r1N, ... rkN (loop chunks), then,

* intuitively, the expression (r1 jr21 ..• rk) t 1 1 .•• ltn represents the refutation

for N and we denote it

* * * N = > (r 1 I r 21 . , . I r k) (t 1 I ... I tn) .

I.e . we can go around loops as long and in whatever order we choose, but we

must finally end with a terminal.

In the example in Figure 2,

(D !> (abci*deg, ®!> (cbai*f.

It may be that by the above recursion method and by simple back-substitution

for nonterminals of right-hand-sides having the corresponding nonterminals on

* the left, we can derive S => p
1
p2 •.. pn where pi E Edges. For the example of

Figure 2, the granmar is:

t This notation appears frequently in the literature on formal langua·ges.
* *A=> B means B can be derived from A by an application of zero or more

productions.

- 220 -

Ling~istic Approach ...

. ·({S,(j),@. · •• §},{a,b,c-,d,e,f,g}, P, S) where P:

s ~ CD®
(D..: ab c CD
G)~ d e ' f

(V+cba@

@~ f

* * * By back-substitution we get: S =>· (abc) def(cba) f. Now by replacing each

terminal by its substitution and interpreting concatenation of substitu t ions

to mean 0, we can easily determine whether there exist non-negative integers

n and m such that substn(abc) G) subst(def) 0 substm(cba) 0 subst(f) is

defined. Note that we have replaced whole chunks by their substitutions. The

substitution of a chunk is the 0 composition of the substitutions of the edges

making up the chunk. Each time a loop is repeated a new instance of the clause

at the endpoints of the loop is added. For this reason, a loop repeated n

times will haven distinct instances of the variables. Loop substitutions,

then, must be abstract descriptions including an unknown number of instances

of variables. For example the substitution [f(xn)/xn+l] specifies that each

new instance of x is replaced by function "f" applied to the term substituted

for the last instance of x.

For example, the grammar built from the CIG in Figure l having Even(O)

as the start clause would cause S t o generate (among others) the expression

* G(DF) DA. The corresponding substitution e is

* (0/n] 0 (n+l/m, m+l/n] 0 [n+l/m] e [59/m].

m. = 2i+l
=> l

ni = 2i

(l ::i)

§ The other nonterminal names and their productions are irrelevant to this
discussion.

- 221 -

Linguistic Approach ...

Differentiating between instances of variables, e becomes [0/n0J ® [2i/ni'

2i-l/mi _1J 0 [nk+l/mk] 0 [59/mk] where ls is k. mk = 59 = nk+l = 2k+l,

therefore k = 29, indicating that the refutation consists of G, twenty­

nine repetitions of (CF) and finally D and A. We will not go into how to

generally describe loop substitutions, decide which instances of a variable

are referred to by other substitutions, or compute the exponent of loops.

However, for a given expression that is a regular expression extended by

exponents and contains no node names (i.e., is completely terminal), it is

straightforward to answer those questions. Due to lack of space the algo­

rithms will be presented in a subsequent paper.

Integer Progra111J1ing Heuristic

There will be gra111J1ars derivable from CIG's that do not easily admit the

extended regular expressions. They include l) gra111J1ars in which the self­

referencing non-terminal appears in the middle of the right-hand-side (e.g.,

N + aNb) and 2) gra111J1ars in which a nonterminal can generate a string con-

* taining two copies of itself, e.g., N => ttNNB where a and Bare possibly

* empty strings of symbols, i.e., a,B E (Edges U Nodes) • In the latter case,

it is difficult to see the general recursion pattern since the length of the

resulting string is exponential with the number of repetitions. In both

cases keeping track of which instances of the variables to put in each sub­

stitution is a horrendous job in general.

By weakening the gra111J1ar, allowed by its particular use in this application,

and not by distinguishing between different instances of the same variable, we

can always derive an extended regular expression reduced to terminals, the

terminals possibly reordered from what the grammar would actually generate.

Every chunk has a (possibly empty) effect on the total substitution in a

solution. Terminal chunks have a fixed effect. Loop pieces may have a recur­

sive effect. E.g., [f(xkl/xk+l] has the effect of adding f to the accumulated

effect and applying it to the new "x".

- 222 -

Linguistic Approach •..

By corobintng th.e information from th.e reordered extended reguiar

expression and the chunk effects, it is possible to write integer progral1llling

problems[2] whose solutions are likely candidates for proofs. In this way,

the effects serve as difference functions for the chunks (operators) in much

the way as is done in an operator difference table. The integer program

tells us how many applications of each operator there are in likely candi ­

dates. The structure of the original gra111J1ar can then be used to chec k the

validity of that candidate. An example of this is the "Even" problem in which

we need to change the term from "O" in the start state to "s60 (o)" in the goal

state. Therefore the sum of the effects of the chunks used must sum to exactly

sixty applications of "s". In some cases, the start and goal states are not

so clearly known and we have to phrase the problem slightly differently such

that the original terms used in the solution plus the effects of all applied

chunks sum to zero.

In cases where · the· regular expression forms are exactly known, the integer

programnfng heuristic i:i substantially improved because the proper placement

of variable instances is known. We may then break the problem into subproblems

one for each variable.

Work on the integer progra111J1ing heuristic and computation of effects of

more complex loops is currently in progress.

References

1. AHouptcormaoftat'. John, and Jeffrey Ullman. Formal Languages and Their Relation to
Addison Wesley, Menlo Park:---ac-(1969)

2. Hu, T.C., Integer ProgralTIDing and Network Flows. Addison Wesley, Menlo Park,
CA. (1969). -----

3. Knuth, D. E., Semantics of Context-free Languages, Mathematical Systems
Theory, 2 (Feb. 1968).

4. Knuth, D. E., The Art of Computer Progra111Ding, Vol 1. Addison-Wesley
Menlo Park, CAt1969T.- - -

5. Sickel, Sharon, A Search Technique for Clause Interconnectivity Graphs,
IEEE Transactions on Computers, Special Issue on Automatic Theorem Proving,
(Aug. 1976).

- 223 -

AN EFFICIENT UNIFICATION ALGORITHM

Lewis Denver Baxter

Departmen t of Computer Science, York University, Ontario

Abstract

An algorithm which solves t he first-order unification problem is

presented and shown to have a practically linear time complexity, relat ive to

the length of the input expressions. The algorithm is composed of a transfor­

mational stage followed by a sorting stage. During the former stage, sets of

pairs of expressions are transformed into a partition of expressions, which is

equivalent with respect to unifiability. The partition is represented as a

forest of trees and by using the technique of path- compression on balanced trees ,

a practically- linear complexity is achieved. In the sorting stage, the output

partition induces a directed graph, which is then topologically sorted. If

successful, the sor t indicates the most general unifier.

Introduction

The unification problem arises from automatic theorem- proving. It

is to determine, given two expressions and containing variables,

whether there exists a substitution of these variables by expressions which,

applied to e
1

and e
2

, makes them equal.

The first unification algorithm, discovered by Robinson [4] and based

on simple string data structures and the physical manipulation thereof, was of

exponential complexity. A later algorithm, also by Robinson [5], represented

expressions by trees and performed substitutions by manipulating pointers to

these trees. Unfor tunately, this algorithm was of exponential complexity due

to an inefficient method of determining if a variable occurs in an expression.

This defect was easily remedied by Venturini-Zilli [7] who proved that this

improved algorithm had a quadratic time complexity.

- 224 -

An Efficient Unification Algorithm

Whereas the above algorithms were based on the original " left-to­

right" processing of the input expressions, a new algorithm, composed of a

transformational stage followed by a sorting stage, was discovered by Baxter [l] .

The use of good data structures applied to this algorithm results in the practi­

cally linear algorithm presented here. ("Practically linear" means linear times

a very slowly growing function.)

Notation

We will assume familiarity with the notation found in the literature

[4, SJ. Briefly, an expression is either a variable o r a constant (function)

symbol of degree (number of arguments) n followed by n expressions. A term

is defined here as an expression which is not a variable. The length o f an

expression is the total number of occurrences of variables and constants. The

substitution {v
1

+ e
1

, vn + en} refers to the simultaneous replace-

ment of the variables vi by the corresponding expressions e.
1.

of the substitution o to the expression e is written: o(e)

0 unifies a set of expressions e }
n

The application

The substitution

• = o (e)
n

o unifies a partition of classes of expressions iff o unifies each class in

the partition. We abbreviate most general unifier to mgu

Description

Our algorithm consists of two stages: a transformational stage

followed by a sorting stage. The former inputs, in general, a set of pairs of

expressions and outputs a partition .of expressions. This stage may fail due

to the attempt at unifying two expressions beginning with different constant

symbols. The sorting stage constructs from this output partition a directed

graph (digraph) and determines if it contains a circuit by trying to topologi­

cally sort the digraph. If a circuit is found then unification fails because

we cannot unify a variable with an expression in which it occurs. If no circuit

- 225 -

An Efficient Unification Algorithm

is found, the topological ordering indicates the mgu of the input set .

We now describe these two stages in more detail .

Transformational Stage

The two main sets used in this stage are S, a set of unordered

pairs of expressions, and F, a partition of expressions. Initially, S is

the input set SI to be unified and FI, the initial value of F consists

of all the subexpressions occurring in SI , each in a class of its own.

Finally , S will be empty and F will be the output partition F
0

present this stage in the form of an abstract algorithm:

algorithm TRANSFORM:
begin

Initialize S to SI and F to FI
repeat until S is empty :
begin

Delete a pair of expressions, {e
1

, e
2

}, from S
if e

1
~ e

2 then begin

end·
end-.- '

Find classes T
1

, T
2

E F
such that e

1
E T

1
and e2 E T

2 if T
1

~ T
2 then begin

if T1 contains a term f'(ei, ••• , ei't)
and T contains a term f" le'

1
' , ... , e")

then if f' ~ f " m
~~ then UNIFICATION FAILS

else Add to S the pairs:
-- {ei, el}, . .. , {~, ~}

Merge T1 and T
2

, that is,
replace T

1
and T

2
by T

1
V T2 ;

end;

We

In order to obtain an efficient algorithm from this, we must now

specify appropriate data structures. Expressions are represented by trees

in which each vertex corresponds to some symbol occurring in the expression.

If a vertex corresponds to a constant symbol of degree n, then it has n

sons, each corresponding to an argument '. Also, different occurrences of the

same variable are represented by different pointers to the same vertex of a

tree . - 226 -

An Efficient Unification Algorithm

The set S is represented by a stack of pairs of pointers to the

corresponding tree representations of the expressions. For example, the set:

{ {w, F(x, G(y}}} , {G(F(F(y, x), z)), G(w)}}

is represented:

The partition F is represented as a forest of trees. Each class

in the partition is represented as a tree, each vertex of which points to an

expression. Since we must quickly determine if a class contains a term, the

root of a tree points to some term, known as the designated term of the class.

For example, the partition:

Hu, v, G(F(w, x)), G(z)], [x, H(w), H(t), s], [F(w, x), y, z, F(r , s)] ,

[w, r, t]}

is represented- as follows. Note that each expression is, in fact, a pointer

We now describe how to efficiently manipulate these data structures

required by the algorithm, TRANSFORM. Rather than checking if and

are equal expressions, we only check if their corresponding pointers are equal.

Further, we can easily extract the arguments of an expression by examining its

tree representation. The operations to be performed on S are simply: to

delete a pair from S and to add pairs to S These are easily accomplished

when S is represented by a push- down pop- up stack.

The efficiency of the transformational stage depends on the method

of performing two operations on the partition, F: to FIND which class in F

an expression belongs; and to MERGE two classes of F.

- 227 -

An Efficient Unification Algorithm

To FIND which class an expression belongs, we traverse a path frOIII

the vertex of the t"ree corresponding to the expression to the root; this root

is effectively the name of the required class. The cost of a FIND is propor­

tional to the length of the traversed path. This will be reduced if we employ

a collapsing heuristic: after finding the root, we collapse the path directly

onto the root. Formally, if v
1

-+- v
2

-+- • • • -+- vn is the unique path frOIII

the vertex v1 to the root vn, then we replace the edge vi-+- vi+l by the

edge V. ~ V
l. n

for i =l, ••• , n- 2 The following figures illustrate the

representation of the class [e1, e2 , ••• , e 17J before and after FIHDing

the class which contains the expression e15 •

.~~~

To MERGE two classes, we make one tree representing one of the classes

a subtree of the tree representing the other class. To decrease the average

path length and hence the cost of subsequent FINDs, we employ a balancing

heuristic: make the "light" tree a subtree of the "heavy" tree, where the

comparatives refer to the number of vertices in the tree. In the case when ·the

"heavy" tree contains only variables and the "light" tree contains SOllle tera,

we have to ensure that the new root points to the des.ignated term. For example,

after merging the first and third classes represented in Figure 2, ve obtains

Sorting Stage. From F0 we will first construct an abstract

intermediate digraph, which is naturally induced by F0 • It has as

- 228 -

An Efficient Unification Algorithm

vertices the classes in F0 • Its edges are constructed by examining each

Given a class T in F
0

, let e be any term, say

•• , en) , in T. (If no such term exists, then T contributes

nothing to the set of directed edges.) Let ei belong to the class

, n) , then T contributes the set of directed edges:

T -+- T 1, • • • , T -+- Tn • For example, the partition of Figure 2 induces the

following digraph, where underlined express ions denote the designated term of

a class. [•, &r, GU=(w, x)), G-(:z:.)]

[F{w~xl, z, ~, ~ 1
F-9~ .£.

[)(, s, H{tl • H(wJ]

[w, r, t]

In practice, we must construct a related digraph directly from the

forest representation of F
0

• The vertices and edges· of this digraph are

obtained as follows, For each vertex, v , in the forest, which corresponds

to a variable and which is not a root, let r be the root of the tree to which

v belongs; add the directed edge·: v -+- r • Al.so, for each root, r let

f (e1, , • , , en) be the des.ignated term of the tree having root r and let

ri (i•l, ••• , n) be the root of the tree to which ei belongs; add the

directed edges: r-+- ri

induces the digr.aph:

j;G{Flw,,>n
(G-Cz>)

For example, the forest representation of Figure 2

We .now attempt to topologically sort this constructed digraph (embed

its vertices in a linear order), using the well- known linear algorithm [3].

If the digraph cannot be sorted then unification fails, otherwise the topological

ordering indicates the .msu. Let v1, ••• , vn be the subsequence of the

linear order which corresponds to variables only. Then the mgu is

{v1 + e1, ••• , vn + en} where ei is the designated term of the class to

- 229 -

An Efficient Unification Algorithm

which vi belongs; if no such term exists then e.
].

is the variable which

corresponds to the root of the tree to which v.
].

belongs.

Details of the proof of correctness are found in [2]. In the

transformational stage, the mgu of s
1

is the same as that of F
0

• This

is proved by showing that the assertion:

vcr (cr unifies s
1

iff cr unifies S and cr unifies F) holds each

time the loop of the algorithm is entered. The correctness of the sorting

stage depends on the following special properties of F
0

: All the terms in

each class of F
0

begin with the same constant symbol; and the "hereditary"

property: If f(ei, •••

class of F0 then for all i

e~) and f (e1, •. , e~) belong to the same

e~ and e~ belong to the same class of F0

Complexity

The complexity of the transformational stage is practically linear,

that is, of order nG(n) where G is a very slowly growing function. The

complexity of the sorting stage is linear.

We now define G using the definitions of [6]. Define the function

A on pairs of integers by:

A(O, x) = 2x for x ~ 0; A(i, 0) = 0 for i ~ l A(i, 1)

i ~ l and A(i, x) = A(i - 1, A(i, x - 1)) for i ~ 1 and x ~ 2

Define G(n)

a(m, n)

a(n, n) where a is a functional inverse of A

min{z ~ 1 I A(z, 4 m/n 1) > log
2

n} m, n 2:: 1

G is "practically" constant, since G(n) ,; 3 for n < ·2 * 2 *

(65536 occurrences of 2), where"*" denotes exponentiation.

2 for

. * 2

Ignoring the cost of FIND and MERGE instructions, the tranformational

stage has linear complexity. The results of Tarjan [6] tells us that the

additional time to process a sequence of FIND and MERGE instructions, using

the technique of path- compression on balanced trees, requires practically

linear time. Details are found in [2].

- 230 -

An Efficient Unification Algorithm

References

[1)

[2)

[3)

[4]

BAXTER L.D. (1973), "An efficient unification algorithm", Research

Report CS- 73-23, Department of Computer Science, University of Waterloo.

BAXTER L.D. (1976), "The complexity of unification", Ph.D. Thesis, in

preparation, Department of Computer Science, University of Waterloo.

KNUTH D.E. (1968), The Art of Computer Programming, Volume I:

Fundamental Algorithms, Addison- Wesley.

ROBINSON J .A. (1965), "A machine- oriented logic based on the resolution

principle", JACM Q, 1, 23-41.

[5) ROBINSON J .A. (1970), "Computational logic: the unification

[6)

computation", in Machine Intelligence 6, American Elsevier, 63- 72.

TARJAN R.E. (19 75), "Efficiency of a good but not linear set union

algorithm", JACM 22, 2, 215- 225.

[7) VENTURINI- ZILL! M. (1975), "Complexity of the unification algorithm

for first- order expressions", Res earch Report, Consiglio Nazionale

Delle Ricerche Institute per le applicazioni del calcolo.

- 231 -

CAN FRAftES SOL VE THE CHICKEN AND EGG PROliLEa?

Abstrarct

Willia• s. Havens

Department of Computer Science
University of dritish Coluabia

Vancouver, s.c., Canada

The types of search strategies that have been proposed for
fraae •rsteas are discussed. They are shown to ue essentially
top-dovn, hJpothesis driven aechanisas. It is claiaed that
these aechanisas are inadequate for a large class of recognition
probleas. •The Chicken and Egg Problea• is prasented. A new
aodel of recognition for fraae sJsteas is proposed and an
ezaaple of its operation is given.

1. Int1:;oductioa
The concept of fraaes as a paradiga for the repres8.lltation

of knowledge is an intuitively appealing idea vaich has

g-s1t--: r:at.-=d a g:::ea.t d1=al of in t.erest. in :the A. I. COS·II Ulll. :t y • There

has been ltowev.;r only limited progress in foraalizing and

dcv,;,lopiny tht theory into a useable coapu:tational aodel.

According to !linsky I s[4 J original paper, fra11es are data

st.ructures for represent.ing st.ereotypical objects, concepts, and

s~~aations. Each frame contains a set of ter11inal slots vhich

may initially contain default assign11ents about the stereotype

the fraae represent.s. When the fra11e is called upon to

represent some particular instance of its stereotype, the

defaults behave as expectations of what kind of i.nforsation to

look for to fill t.he slots.

This 11odel for fraaes has a nuaber oi. unfortunate

consequ<!nces. First, it forces the use of top-down, goal

directed search strategies. A candidate fraae is chosen to

represent soae situation on the basis of soae initial

expectations about that situation. This fraae than proceeds to

atteapt to fill its slots by aaking observations and by calling

- 232 -

The chicken & Egg Problem

· on the efforts of other "sub-fra11es". The frame is guided in

its search by the expectations it has coded wit.nin i~. In the

case of an iaproper first choice of a candida~e ~rame, the

aechanisa for choosing an alternate candidate is ~ompletely

driven by the failure of the first frame to succeed. lnis is of

course classical automatic backtracking with a~l i"s inherent.

problems. !!insky, recognizing this fact, proposed a

11odification to backtrack search that avoids the dupli.cation of

effort for identical sub-goals. When a frame aiscovers from

observation that it is not applicable to a given situation, it

consults a similarity network whi ch recommends a replacement

candidate. The frame then atteapt. s t.o map i.ts "correctl y"

filled terminal slots into the slots of tne new c~ndidate frame

and then passes control to it. This scheme assuaes oot.h that a

sapping exists between each failing frame and each next

candidate and that the similarity network is sutficiently

• complete" that relatively few inexplicaola i•iluras occur.

such " s urprises" force the syste 11 to rely entirely on

backtracking to continue the search.

secondly, the 11odel requires a frame to be t.ne currently

active candidate before its expertise can be of ~nv assistance

in the recognition process. This means that. the search process

will spe nd a good deal of its time proposing specific c andidate

frames one after another based only on the t.ypes o~ failures

that can successfully be processed by the simil~ri~y networK.

Only when the proper frame is finally chosen wilL t.ne knowledge

specific to recognizing instances of that frame oe availaole.

That specific knowledge must be available much earlier to

intelligently guide the search process.

- 233 -

The Chicken & Egg Problem

Per example, consider a frame-based scene recognition

s ystem pr:sented the scene of Figure 2. From tne information

present in the scene, the system must select the prism frame to

repr~sent the image. The prism frame s upposedly contains expert

knowledge on the best way to recognize prisms. But the s ystem

is not told that it is "seeing" a prism; indeed that is the

s yst em's task. The knowledge that prisms are polyhedrons

composed of polygonal bases connected by paralleloqr~m faces is

contained within the expectations of the stereotypical prism

fraae. Yet , unless the s ystem already had tne prisa fraae

active to provide it with these expectations , it could not use

this knowledg~ to find the frame fro• the information in the

scene. !lack.worth[3 J ha s called this "The Chiaen and Eqg

Proble•"·

2. A !1odgl, of ~£Qgnition

To r-:medy the difficulty, a new model of recoqnition for

frame systems has be-:n developed. Frames in this model follow

in principle the form proposed by llinsky. Frames are orqanized

aoout stereotypes and are encoded as descriptions of the frame's

expectations about the real world. The model, however, inverts

the ·concept of what a rrame loes. A frame recognizes instances

of itself not only by comparing its interna~ expectations

against external observations, but also by matching its evolving

instance with the expectations of other fraaes. That is, the

frame is responsiole for recognizing what higher structures it

can be part of. Each frame exists as an individual recoqnizer

in a system of such recognizers, the frame system. Instead of

being an inherently top-down search process, now the recognition

can proceed using simultaneously both top-down and bottoa-up

- 234 -

The Chicken & Egg Proble•

techniques.

The recognition model consists of three phases. They are

called ~I~~i2B, J!s~ag, and £2a1U&1.i.2D.• Initially the

s ystem exists as a top-level frame containing a set of

expectations about what it expects to find durinq its

observations. As each input observation is made, it is matched

against this set of expectations. Any successiul matches in

turn ca use the expectations to compute a next qeueration of

expectations. This process iterates until su~ h time as a

particular sequence of expectations and the oDservations they

match have satisfied a frame's internal criteria for the

recognition of some concept , object, or event. Ihis oegins the

coapletion phase. The completion phase creates aa instance of

that frame. This instance then enters the matching process. At

this point, the frame acts as an abstract interna l ooservation

and itself participates in the aatching pro~ess with the

expectations of other fraaes. If it succeeds in matchinq the

expectations of some other frame, then it will oe composed into

the evolving description of that frame. In our visi~n example

suppose the system discovers a triangle. The triangle frame

than creates an instance of this particular tziangle and

atteapts to match the instance against the expectations of other

frames. If the match is succ~ssful, a new set oi expectations

are generated and new observations taken.

The role of the frame in this model is an active process.

Each frame is organized about a procedure called a §~~~~~i2• A

scenario contains the knowledge to perform the itorative c ycle

of atteapting to aatc h some relevant input ooservation or

abstract internal observation against the frame's expectations.

- 235 -

that

If th= matco ia ~ucc=ssful, tha

C.Jhtif. U'-. 5.

~~~ ma~cnin~ p=ocess i~ ch~r~ctariz~~ as a ~c~otiation. 

k~~n two i rames ~~~ot~ite 3 m~tch, ~n~ fr~ma ~ill be att3mptinq 

!IF::.~C;:_ 

fr~m~•s a~t~m~t tu p~rf~rm ~ completion. 

ira~2 is ~ttemt'tir.y to c~mpute the last st~p ia its scenario. 

·- is try~r.q to justi=f its ~xist2Lce by computinij it. place in 

Thi s process is recursive. Computing a 

ir=m~•s proqr"ss in its scenario causes the frame to neqotiate a 

m~tch wit h th~ 2xpectations of other fram~s wnicn in turn causes 

~ho sa f=a~e3 ~o r ~ corupu~~ their p=oqress in tndir ova scenarios. 

~ach frame is attemptinq to uiscover how it 

''fits•• icto som~ hiqh;,r sch;,m: of things. In tnis mod:l, no 

lon~ caains of about all thin~s possiola in the 

worll are =~qu ireJ. N~ith=r does the s ys te m ueeu a mechanism 

for trying on;, irame after ar.oth:r mappinq eacn time the 

t~rmir.als of the failin~ frame into the next caadidate frame. 

Ta: sc~nario then 

a~t~m~~s ~o m~tch tOos: frawes th~r9oy ac~iv~~inq them only when 

~~~.f~d. 

ma~ci:ing phaS'c is also tha vehicle by which

non -d~~~rminism, i.e., local ambiguities in the real world, is

hand L,d. The fram~ wtich is computing its completion aay match

- 236 -

The Chicken & Egg Problem

with mor~ than ona otner frame, thereby spawninq a numbe r of

diffe rent interpretations. Later, as observa~ion~ remove the

ambiguity, the fallacious interpretations - c an oe d6let:d.

qood analo~y is perhaps to a capital invest•ant aa r ket.

A

A

bay~r, th~ compl~ting t=ame, ha s some caµitai to ~~v~3t, the

description he has worked hard to complet=· dut na wants to

inv -: st wisely.

_sellers, i.e.,

H~ may consi1~r tee off3rs ot d ~~mb~r of

h8 ~ay a~tampt to matcn ~n~ ~xµact~~io ~s of a

numbar of frames •hat are attemptin~ to co~ µlct~ ~nair own.

3C~nar ios.

mo~~ h~avily iL thos~ fram~3 th~t ·m~tch his =~~Ji~cm~~~s o~st.

Later a s events unfold, the contracts ha has .ritten can specify

vnic h investments ar= to oe continued and •hicu cancelled

dapending on the divi1ends they show.

3. ! Detail ed ~xam£1e

This example describes the operation of tn= modal as a

recognizer for line drawings

similar to an example given oy

of polyhedral

Kuipers(21. rh=

"biects

ll.Il-=

and is

drawinq

presented as input to tba recoqnizer is shown in iiqure 2 and is

in the form of a network of vertices and edqes. ~acu vert~x and

each edge is represented as a primitive fra~~- .:. -1ch ver1:eJC

k~ows i~s typ~, whic h is ~i~h~~ an L-v~rtex, a !-v;r~~x, an

V~rtices alwo KD;J• tn~ ~riges

they are formed from and the approximate size oz 1:ne anqles

betwe~n their edqes. ~ach edqe knows o~ly tn~ 1:wo V;~~1ces it

conn:c"t.s. In this example, poly.hedral obi;;cts «r= c.:,illposed of

polygonal faces which are in tur~ composea of eag =s and

vertic:s. Fiyure 1. shows this composition hiera~cuy.

- 237 -

r------- --.
1 SCENE I
L-------,----~

I
I composed-of

' r--
1 POLYHEDRAL OBJECTS I

----'
I
Jcomposed-of

' r-- -,
I POLYGONAL FACES I
L---,.---

1 I
lcvmposed-of I

' ' .. ----,
I EDGES VERTICES

Figure 1.

1

Fiqur .. 2.

The top-level frame is the resident expert .at recognizing

scenes. Its goal is to match the instances of edges and

vertices in the data to the polygonal face fraaes• expectations

of how edges and vertices can make up poly~on faces, then to

match these faces to the polyhedral object fraaes• expectations

of how faces can make up polyhedral objects, and finally to

ma'tch these objects to its own expectations of 110w polyhedral

objects can form scenes. The top-level fraae•s scenario must be

generally applicable to the recognition of all scenes of

polyhedral line drawings. It begins by looking at vertices on

the periphery, as they are pregnant semantically and less

ambiguous than internal vertices. If the enumeration of

peripheral vertices fails to complete the recognition of a

scene, then it selects interior nodes to exaaine. Else it

fails.

- 238 -

The Chicken & Egg Problea

This general top-level scenario is not the only scheae the

system will use. The frames for polygon faces are experts in

their ovn domains, the recognition of faces. Each face frame,

depending on the type of face it. is looking for, uas a scenario

especially tailored for effective recognition OL that. type.

Likewise, the scenarios of the polyhedral object frames contain

the knowledge to guide the search for polyhedral objects.

The top-level frame first chooses to · examine peripheral

vertex 2. vertex 2 is an instance of the L-vert.ex frame. The

scenario associated with each vertex frame is only to attempt

its completion phase because its existence was explicitly given

in the data. Therefore, the L-vertex attempts to match its

given description against the expectations of those face frames

that it can plausibly be part of. It can be the -:orner of

either a parallelogram face or a triangle face. It mus t find

instances of these two frames to aatch. Froa its kilowledge of

line drawings, it knows that if face recognizer frames already

exist for the particular face that it must be part. of, they will

be associated with its neighorboring vertices. That is, this

vertex can use the original input data as a semantic network to

access instances of face recognizer frames to aatcn. The

neighbors of vertex 2 are vertices 1 and 3, neither of which

have bound to them face recognizer fraa~s. So vertex 2 creates

new instances of both the parallelograa and t~ ianqJ.e frame,

succeeds in aatching them both, and binds them in the network at

vertex 2.

Note the occurrence of non-determinism at this first

vertex. !insky and Kuipers would choose one hypothesis, perhaps

that the face is triangular. Later, if that hypothesi s fails,

- 239 -

':hay would th~n hav~ to axacuta some mapping of teriDiuals from

': h"" '::.:iani.;l~ £::am,:· i nr.o thco p.i. c<1llaloq::a m fr.i.iDe. :n ta1.s model,

~ ~e L-v~=~~x cr9~~es two dascr~ptions of i~3 roid in the

avolvinq face lab~llin~ and succassfully matches one a4ainst the

exp~ctacions of th~ triangle fram~ and tne other aqainst the

c!X!JEcctations tr.= parallelogram frame. i;ot.i also the

comyo~ition proc~ss. I dascription of the L-vertex has been

ma.11:inq an

ons==vation, so it con~inu~s with its scn~m~ o~ ~numeratinq

P=ri!Jh'=ral vartic'=s. This tiiDe it chooses vertex 1, and this

v~ctex has tha CFSp'.lnsibility of findiaq a iac: frame that it

can m3.-:ci. !': 11 1';.'.lk.s" at v'=rtex 5 by first consu.i..tin,J edge 1-5

out no axpEctations ara lurking tnece, and li11:ewi.;e for vertex 6

Vici : 'iqe 1-6. But when it looks at vertex 2, vertex finds

both the parallalog::am and triangle frames. lt m~st negotiatE a

match wit c. botn. •hen vertex 1 attempts to match tne triangle

che match fails because the expectations of tne triangle

are that the sum of the an~les of vertex 2 and vertex vill be

1 '300. In this case, tney equal 1000. The

tri~nql~ hypoth~si s ~s r6jected and its rrame ~ustance is

del-,ted. attempts to matcn the parallelogram

frame however, the match succeeds. ~he paralleloqram frame

exp6cts a ceighbor of vertex 2 to ne either a PURK-vertex,

AtlROw-vertex, or T-vertex. Since it represents a parallelogram,

it expects that the sum of the angles of vertex 2 anu an angle

of or.a of its neighbors to oe approximately rnoo. The

parallelogram frame now propagates its scenario, resulting in

the creation of a new set of expectations.

- 240 -

r::i.e Ci,icken & Egg Problem

Lts scenario, by this time, feels sure that it is yoing to

succe;;:d. The angle meas·u::ements are a goo.i cu.;: for the

parallelogram because opposite angles must be e4uai. The frame

consults edge 1-b again to access vertex 6, as~s tne vertex for

an angle measurement, anJ discovers an angle aqu1l to the anqle

OI: Vertex Lo The search process has now sw.tched from a

bottom-up search driven by the vertices into a top-dv wn search

directed by this parallelogram.

:3y this time,

near to finding the completed parallalogram and it cvusults the

n~:..ghbors of vertex 6 looking for the particula- ue~ghbor that

is also a neighbor of vertex 2. •hen vertex 3 ~s tound, :..t s

angle is checked agaiust the proper angle of vert--x 1. rni::y are

equal anJ the recognizer concludes that ~t oas found a

parallelogram face. It then composes faca "A", ar. ~ustance of

the parallelogram frame, from vertices 1,2,3 anu o.

The =ecoJnition process uow ascends one leve~. face "A" is

tryin~ to match tne expectations of polyhedral obi;Ct frames.

Aqain the input data can he used as a semantic uetwo~k to look

for ins~ances oi thcsa frames. From th& fact t~4L v~~tic~s 1,3,

and b ha VE m.:>re than t110 ,;:iqes, 11e iu:ov that tn:Y a-; .ilso p.art

of some other faces. If these other faces had n~en recognized

b2for: tace "A", th~ra would U; exp;ctationd ~or OJe o: mora

objec~ frames bound to these vertices. I ~ thl.5 C;.1S-; 1 no o'!:.Iler

faces have been discove=ad, so polyhedral ooject irames which

can hav-, parallelograas as f .aces a~e created ar.d. hound to

vertic.as 1, 3, and 6.

Th.a process continues vith th~ v-eirtic,as creatinQ,

p=opaga~ing, and completinq tace recognizers. I ;, turn, trn,

- 241 -

The Cbick~n & Eqq Problem

f~ces continu~ ~h~

recogniz:rs. In

process of creation and propagation of object

this example, whe n an oo;ect fcame finally

pecfocms a completion, it immediately matches tue scene

cecognizec frame. rhe search has succeeded and the system

cetucns a composed i nstance of the object to the usec.

I would like to apologize foe the imprecision in this

1110.iel. The ideas ace new and have not haQ t~me to fully

coalesce. we are currently in the process of implemeuting the

model as a high-level programaing language called aAYA[1]. At

prese~t the implementation is approximately fiit y-percent

complete. It is hoped that KAYA will provide a good

e xperimental domain in which to further explore the theory of

frames.

1. UAViNS,~.s., A user's guide for MAYA, workinq paper, Dept. of
Comp. Science, UHC, Vancouver, Canada, 1970.

2. KUIPERS,d.J., A frame for fcaaes: Representi~g knowledge for
cecoqnition, in D.G.Bobrow & A.M.Collins (Eds.),
Re2cesentation and Understinding, Academic Pr ess ,
New York, 1975.

3. ~A ~K~03TH,A.K., How to see a simple world, TR-75-4, Dept. of
c·omp. Science , UBC, Vancouver, Canada, 1975.

4. XI NSKY,M., A framework for representing knowleuqe, in
P.H.winston(Ed.), !~~ f§:t~holQg~ Q1 ~Q&2Y!&t Iisi.2Ji,
McGraw - Hill, Nev York, 1975.

- 242 -

A Formalism for . Kodelling

Hector Levesque, John Kylopoulos, Gordon KcCalla,

Lucio Kelli, and John Tsotsos

Department of Computer Science

University o.f Toronto

Abstract

This paper describes a formalism for the construction and use

of a mcdel represetting knowledge of some domain. Some of the

features of the formalism are the use of an ISA HIEP.ARCHY, a

PART-OF HIERARCHY and procedural attachment for objects that are

part of the model.

1. Introduction

~his is an extension of the formalism proposed by Abrial

[1] for the construction and use of a model representing

knowledge of some domain. Our main goal. ·has been to develop a

representation that is sufficiently., powerful to describe its own

operation at a level that is more "natural" than that, say, of

LISP. The models built are explicit in that all semantics of

ccncepts - in the model can be described using the formalism, and

g!.fil!ipable in that the parts can always be inspected at various

levels of detail. In this sense, our approach has been

declarative. Moreover, models are ill£~.!g in that, at any

given time, the s ystem using them has only a partial knowledge of

the dcmain represented. It must, therefore, take this into

account when answering questions and be prepared to receive nev

information, determine its acceptability and modify the model

accordingly. Similarly, it must distinguish between information

that is definite and final from that which is tentative or valid

only in certain situation s .

The knowledge included in the model may be defined at

different levels. There are simple "facts" like:

Jchn is a Ferson.

The sex of Joe is masculine.

Kary is not the wife of Bill.

simple rules like:

All students are persons.

Every- person has two parents of whom he is the child.

and more elaborate rules like:

- 243 -

A Formalism for Modelling

The sex of a person is not subject to change.

A persor. • s ur.cle ~s the brother of one of his parents.

A person can have only one location at any given time.

The approach we will take in this paper is bottom up in that

we will describe informally the basic operations of the model,

only hinting at the more interesting higher level ·constructs that

can be derived. Although no explicit syntax is given in the

paper, we present a number of sample expressions and programs to

illustrate various asFects of the formalism's descriptive power.

All such examples are numbered for reference purposes.

2. Constructing a Model

the most primitive type provided by the formalism for the

ccnstruction of a model is the object which is simply any single

conceptual unit that can be referred to as a whole. An object

enters the "perceFtion field" (becomes part) of the model with

.!!.fil! and is removed by kill• Thus,

john := .!!~!! (1)

creates a new object with a unique internal name and "john" as

external name.

A fundamental notion to the organization of the model is the

£1~ which simFlY represents a collection of objects sharing

ccmmon properties. These objects are ins~ of the class and

may themselves be classes. When specifying a class as being a

§~!!£1~ of another, we are informing the model that, unless

otherwise indicated, all instances of the subclass are in fact

also instances of the superclass.

may be part of the model is called

therefore subclasses of "object".

person:= l!.fil!

person=> ocject

The class of all objects that

"object". All classes are

For example,

(2)

(3)

creates a new object called "person" and defines it as a subclass

of "object". Syntactically, (2) and (3) can be combined into

person:=> object (4)

and asserted with

male:=> person

female:=> person

student:=> person

female-student:=> student

- 244 -

(5)

(6)

(7)

(8)

A Formalism for Modelling

feaale-student => female (9)

to set up an organization of classes generally referred to as the

"ISA HIERARCHY".

To specify that an object is an instance of an existing class

we will use the notation"->" as in:

john

bill

bill

(11) and

-> male

:= .!!.fil!
-> person

(12) can be combined into

(1 0)

(1 1)

(12)

(13)

fact that an object is not a subclass or

instance of a class, we use the notation "," followed by the

operator, as in:

bill :-> person

To denote the

female-student,=> female

j chn ,-> person

(14)

(15)

When introducing a subclass

necessary to provide definitional

or an instance, it is often

in·forma tion for it. For

example, if we assume that a student is defined by a student

number and a deFartment, to simply say that

jia :-> student (16)

does not give sufficient information about "jim". we can write

jim :-> student with num<-702377167,dept<-dcs (17)

tc provide the appropriate information.

Relations

A very important primitive class is that of binary relations

er simply !~1~tion§ which are maps from one class (the do~) to

another (the I~.!!~). Instances of binary relations will be

called !i.!!!§ and they relate an instance of the domain and an

instance of the range.

Relations are created like any other class. the most generic

one is called "relation". For example:

children:=> relation wits domain<-person,range<-perscn,

d-interval<- <O,aO>, r-interval<- <2,2> (18)

The arguaents indi·cate that "children" is a relation from

"person" to "person" such that for each . instance of the range

there are exactly 2 domain instances.. Thus a person car. have 0

to infinity children, which are persons, and furthermore is t -he

child of exactly 2 persons. Further examples:

wife :=> relation .!!.i!1l domain<-male, range<-f-eaal-e,

- 245 -

A Formalism for Modelling

d-interval<- <0,1>, r-interval<- <0 , 1> (19)

sex:=> relation ~ith domain<-person, range<-sex-value

d-interval<- <1,1>, r-interval<- <O,"°> (20)

Relations like ether classes may be organized into an ISA

HIERARCHY. For example, in

oldest-child:=> children .!i11! d-interval<- <0,1> (21)

the domain, range, and r-interval are inherited from "children".

We can define very general relations like

inter-personal:=> relation .!i11! domain<-person,

range<-person

must-hold :=> relation with d-interval<- <1 , 1>
and then create new subclasses as restrictions of these.

(22)

(23)

We will henceforth use "R" to represent a relation, and "x"

and "Y" to represent instances of the domain and range

respectively. Therefore "R: x->y" instantiates the relation

provided the cardinality constraints of the d-interval and r­

interval are not violated (in which case a failure occurs). For

example:

wife : john-> mary

children: john-> bill

Tc negate an instantiation , we write:

wife : john,-> mary

3. Examining a Model

Logical Information

(24)

(2 5)

(26)

To attain logical information from the model, we present it

with a " conjecture" and receive as reply one of!~, false, or

.J!Bkno!n• There are t wo primitive conjectures: the equality test

and the test of a relation.

The equality test is always of the form " x=y" and is a test

fer identity of internal names. The value of such a conjecture

is J!1!!.!l£!B when one of the two arguments has an unknown value.

To find cut if a relation "R" hol ds between "x" and "Y" we

write "R: x?y". For example, consider the "children" relation of

(18) and suppose

children: john-> bill

children: mary ,-> bill

then we have that

children: john? bill is!~~

- 246 -

(27)

(28)

(29)

A Formalism · for Modelling

children : mary? bill is ~ (30)

children : jill? bill is .!!~n (31)

If we now assert that

children : susan -> bill (32)

then (31) conjectured now would be false.

The conjecture

isa: student? person (33)

asks whether "student" is a subclass of "person". On the other

hand, "x?y" tests whether "x" is an instance of c l ass "Y"•

Arguments can be passed as in:

jim? student .!!i!h dept<-math (34)

The actual operation of testing is very dependent on the class

being tested.

Value Information

There are essentially two ways of obtaining value information

from the model. The first is fairly trivial and involves using

the name of a previously defined object. The second meth cd is to

~f~~ a relation, that is, to present it with an instance of the

domain and receive as value(s) instance(s) of the range.

When the maximum cardinality of a relation is 1, the notation

" R (x) " denotes the range instance "y" (if it exists) such that

"R" maps "x" into "Y"· For example:

sex (john) (35)

wife(joe) (36)

The value of such an expression is an instance of the ra nge,

.!!B~!!, or !!.£!.!hipq. The value is .J!B!.ru2.!1! when the minimum

cardinality specifies that there must be an instance of the range

although no such instance is known. The value is !!_£!thi.llil when

there need not be an instance of the range. For example, "sex"

of (20) is of the first type, while "wife" of (19) is of the

second type. To indicate that "joe" does indeed have a wife

whose identity is unknown we write:

w~fe: joe -> unknown (37)

When the maximum cardinality of a relation exceeds 1. the

concept of a generate~ is needed to produce values one at a time.

To create a new generator, we use the notation

g :-> generator with class<- c (38)

- 247 -

A Formalism for Mcdellitg

where "c" is a class. Now "g" is a generator which uses a

snapshot of class "c" taken at the time cf instantiation, to

produce iLstances cf "c" known at that point .

For relaticns, a subclass cf "generator" called "accessor" is

u sed to produce in s tantiation s . To create an accessor .e use

"g: -> P.[x]". Fer example,

w :-> children(john]

makes "w" a generator of children cf "john".

4. Abstract and Indefinite Objects

(.3 9)

The otjects we have considered so far are £2~£ret~ in the

sense that they enter the perception field of the model at the

time of their creation and leave at the time of their

destruction. For some objects, however, it i s unreasonable to

SFeak of them as entering or leaving the perception field since

the mcdel is assumed to have a complete knowledge of them. Thus

they are never defined explicitly but only referred to. We call

these cbjects ab~. Typical abstract objects are numbers,

identifiers and tuples. Of course, abstract objects may have

other names as in:

four := 4

tuple-25 := <1,1,'Jack•,Jack>

(4 0)

(4 1)

Ncte that although a tuple is abstract, its entries need not be.

We can have sE§!~ ~~ as well, which are simply arbitrary

ccllecticns of objects. For example,

truth-value: = (!~g,fal§g,J!ll~l!}

sex-value : = {masculine,feminine}

(42)

(43)

In all cases, the distinguisLing property of absract objects and

classes is that their meaning is self-contained it the sense that

they need not be related to other objects (i.e. "placed" on the

ISA HIERARCHY) to be ur.derstcod.

1S

An imFortant

that, if at some

consequence of the inccmFleteness of the model

time it has the same knowledge cf two

objects, this does not mean that they are the same object. Thus,

when an object enters tbe perception field of the model, it must

identify itself as new or known. However, it is often convenient

to be able to postpone the decisicn until enough information has

been gathered ccncerning the object. We call such objects

- 248 -

A Formalism for Modelling

ill£efini!~- We will use the operator s or sll to create an

indefinite object. For example,

murderer-of-Eill : = s person

evening-star :=~planet

morning-star := s planet

versus

venu s :-> planet

(4 4)

(45)

(46)

(4 7)

with the understanding that they are to be treated differently

from "definite" objects. In fact, .J!nkl!.Q]ll is really just a

synonym for "sll object".

We can also attach restrictions to these indefinite objects

as to what identities they can possibly have. For example,

x : =~student .!i!h dept<• math (48)

w : = s person suchthat age(self) < 25 (49)

where .fil!fhthat specifies a condition that must be !.!J!g for the

otject denoted by "w". This becomes important when an indefinite

object is assigned an identity in some context with the cperator

"<-". Objects defined in terms of indefinite objects are

indefinite. For example:

n := s number

n-and-3 : = n + 3

"n + 3" is a definite number cnly in a context where

definite number.

5. Extending the Operator Semantics

(50)

(5 1)

11 n11 is a

So far we have seen that given any class, there are

essentially four operations defined on it (that do not create new

classes). They are:

- add instances

- remove instances

- test for instances

- fetch instances

We have also seen how these operators have standard prerequisites

and side-effects . Consequently, the semantics of a class are

determined by its behaviour under its defined operations.

Extending the basic semantics of a class involves specifying

special cases cf prerequisites, effects and values when applying

these operations to the class. This is done by relati~g the

class to programs (one for each operation) which are then

- 249 -

A Formalism for Modelling

interpreted automatically when applying the corresponding

op.erator. In this sense, our approach is procedural. lihen no

program is specified for an operation, the program of the

superclass of the class can be used. In this case, a class

inherits semantics along the ISA HIERARCHY.

Programs are definite objects that can be interpreted. We

can divide programs into three subclasses: I!~£~§ which

perform actions (for adding and removing instances), predicate§

which test conjectures (for testing instances) and f!U!£iions

which have values (for fetching instances) • All prog.rams can

have .E!~!!.9.§ which are conjectures tested before the 11 bcdy11 i s

attempted. A ~ causes the program to !~1· In addition,

programs can have ef~ which are actions performed after the

s uccessful completion of the body. To relate a class to a

program, we will use four primitive relations:~.~~,

tc-test and to-fetch. For example,

!Q~.§1: male->

.E!~!ll !ill
test:= sex instanc!? ma sculine

(52)

reduces a test for an instance of "male" to a test for masculine

sex. Thu s if we write "jim :-> person" and "sex jim ->

masculine", then "jim? person" is tr~ and "jim? male" is true

as well , since the above program will be interpreted with the

built-in parameter in~ assigned "jim" (i.e., "instance <­

jim"). Similarly, if we have (using example (23))

product: => object (53)

cost : => must-hold .J!.ith domain<- product, range<- number

(54)

price:=> must-hold xith domain<- product, range<- number

(55)

profit:=> must-hold !.i!h domain<- product, range<- number

(56)

to express the semantics of "profit" we write:

!£-fe!sh: profit->

.E!QS!ll !ill
value: = price(gomain-inst) - cost(domain-ins!)

(5 7)

- 250 -

A Formalism for !odelling

'Ihus when evaluating "profit(w)" where 11 w11 is a product, the

atcve program is used with "domain-in s t<- w".

If we define "spouse" (using (22)) as

spouse:=> inter-personal .J!.i!! d-interval <- <0,1>,

r-interval <- <O, 1> (58)

then to express the fact that the se mantics of "spouse" is s uch

that it can only hold between persons of opposite s ex and it is

symmetric we can write:

!2=~2: spouse->

.erogry with
prereq : = ~(sex(dom~~!) = se x(range-i~§!))

effect:= spouse:~~~§!-> domain-inst

fill£ (5 9!

Here, the "prereq" is specified but the body (i.e., action) is

not. This means that the action is inherited from "inter­

personal" (see example (22)). Thus the action is the standard

action of adding to an (inter-personal) relation. We can also

refer to the standard action explicitly by .§!S.

In addition to built-in parameters such as §!g, §~f, and

ll§~~.!2~, parameters can be associated explicitly to a class

operation.

!~s: student->

E!2.9!ll with
num : =~number

dept:=~ department defaul! des

effect := g51
student-number: in§~-> num

student-department: iB.§~£! -> dept

(60)

Fer this program, 11 num 11 and "dept" are explicit parameters which

can be assigned values eYery time an instance of " student" is

added (see example(17)). We now present a program with loops

that will serve to generate "uncles" of a person (ass uming

"parent" and "brother").

uncle:=> inter-personal

!.!2~~: uncle->

l!•Q.9!ll with
Yalue := £.!2! p <- parent[domaip-inst]

- 251 -

(61)

A Formalism for Mcdelling

12£ l: <- brother[p)

!!2.!J!!ll l:

6. Structures

(6 2)

For various reasons, it is convenient tc be able to treat

grcups of objects as units. Such units are called "structures"

and the ol:jects that constitute them, their "parts". Structures

have froperties not necessarily derivable from the properties of

their parts (i.e., a gestalt). In fact, any object (as seen so

far) can be considered as a structure with no parts. Thus a

structure is a group of other structures. We call this

organizaticn of parts the "PABT-OF HIERABCHY". The syntax we

will use for the definiticn of structures is:

§J;:i;uct_y~ some-object ll1l! so-me-parts end

Fer example,

vector-1 := Jlf!

.§.!!!£1.!l~ vector- 1 wi.!!l
pclar-coords : = ~

st];'..!!£:~ polar-coords ,!!ith

angle : = 45

radius: = 1.414

end

x-y-coords := ~!

fllUctu1:~ x-y-coords wi:il!
x: = 1

y :=,

(63)

(64)

(65)

defines a structure "vector-1 11 having as parts two new objects

which are in turn structures having two abstract objects as

parts. To refer to the "pclar-coords" parts of "vector-1", we

write "vector-1.pclar-coords". Note that the above structure

provides two views of the same object and that these views can be

organized in many different ways depending on the emphasis

desired.
- 252 -

A Formalism for Modelling

When a structure A is a subclass or instance of a structure

B, unless otherwise specified; A inherits the parts of the B.

Fer example:

vector: => object (66)

struc!]re vector with

angle: = ~ number suchthat (self>= 0 & .§~lf < 360)

radius: = a number suchthat self>= 0

~.!!il (67)

normalized : => vectcr !1.!!! radius<- 1 (68)

New if we write,

vector-2 :-> normalized ,!!it!! angle<- 30 (69)

"vector-2.angle" is 30 and "vector-2.radius" is 1. Bote that

there is a difference l:etween

vector-a :-> vector !ill radius <- 2 (70)

and

vector-b : => vector !.ith radius <-2 (71)

even though both have the same radius and angle (2 and ynk£.Q!1

respectively), in that (70) asserts the existence of some

(indefinite) vector whose radius happens to be unknown at the

moment, while (71) defines a class cf vectors tnat may or may not

have instances.

One important feature of structures, is that they provide a

way of declaratively Sfecifying often used programs. For

example, we can think of testing whether a structure is an

instance of another structure (to-tesj;) as a very general

matching procedure that attempts to find matching correspondence s

between parts in each structure. We can therefore place these

programs very high in the ISA HIEBABCHY where they can be

inherited by lever, more specific classes whose structure will

determine their operation. Of course, if this type of processing

is to be meaningful, the structures will have to be more general

than those presented here. In particular, they will have to

ccntain instances of relations, default mechanisms and various

frereguisites and effects to be interpreted at appropriate times,

to gutde the processing and handle troublescme situations.

- 253 -

A Formalism for Modelling

7. Conclusions

The ideas presented in this paper are adaptations from a

number of sources. The original motivation is due to Abrial who

led us tc consider a coherent self-describing formalism for a

representation. An obvious but important influencP was the

semantic network literature which reinforced the idea of objects

and links as basic building blocks cf the model. The idea of

associating programs to objects as their definition is clearly

related to the ACTOR noticn of a distributed interpreter. The

Frereguisite and side-effect porticns of a program correspo~d to

the consequent/ antecedent distinction of FLANNER, while the

division of processing into four

generalization of the three ~ds of

tasic operations is a

CONNIVER. The idea of

higher level structures is a beginning in the direction of

"frames" with more than a syntactic influence from Eobrow and

Winograd's KRl. Finally, the influence of SIMULA is evident in

our ccncept of classes.

The formalism described here is inccmplete, especially for

prcgrams and structures. Some unanswered questions are:

Hew does one instantiate a structure or match two structures?

What is a context? Hew do programs "execute" or "compile"?

We hope that we have at least given an indication of how

these may be handled. The answers will be formulated in terms of

the constructs that have already been described and used. In

this respect, the formalism, like llSP, is completely open-ended.

(1] Abrial, J. F.., "Data Semantics", Data llanagemen t .§ID~.!!!§, ed.

by Klinhie and Koffeman, North Holland, 1974.

- 254 -

Abstract

A DEMONSTRATION LANGUAGE COMPREHENSION SYSTEM (1)

John W. Ball, Liam J. Bannon and Mike M. Mannor(2)

Uni ve rs i ty of Western Ontario, London, Canada

This paper describes a demonstration natural language understanding

system, developed as a class project. In the course of a few months, an

implementation was constructed which could handle reasonably complex inter­

rogative and imperative English sentences within a limited domain - a blocks

micro-world. An ATN grammar was used in the parsing of input sentences, and

the advanced facilities offered in the POPLER 1 .5 system were utilized in

the construction and manipulation of the world model . Several innova t ive

features of our comprehension system are discussed, including a novel solu­

tion to the problem of relative clause comprehension.

Setion 1 Introduction

This paper developed out of a class project on-. :1.anguage comprehension

in a joint psycholo.gy/computer science half-course, under fhe .direction of Dr.

Zenon Pylyshyn at the University of Western Ontario. A demonstration language

comprehension system was developed wh ich performed adequately in a 1 imited

task· domain . This paper outlines some of the major aspects of our system,

its advantages and its limitations. It should also be noted that designing

and implementing this system served as a most useful introduction to many of

the fundamental problems of A.I. research on language comprehension, and we

stress the beneficial pedagogic aspects of such a course design, i.e., a

course which is project oriented.

The fact that anything of substance could emerge from such a project in

a short space of time, reveals the rapid advances which have occurred in the

A. I. field in the last few years. Such components as the ATN formal ism, and

the POPLER 1.5 system (3) (Davies, 1973), gave us a much needed basis for our

- 255 -

A LANGUAGE COMPREHENSION SYSTEM

work, without which 1 ittle could have been accompl i shed. An outline of the

system is given in Section 2 below. Fol lowin g this, some general remarks on

the limitations of the system are discussed. A sample of output from the

system is given in Appendix i.

Section 2 Sys tern Components

The run-time system occupies between 84K and 100K of core (including 45K

for POPLER) on our PDP- 10, depending on the length of the input sentence.

The system may be conven iently divided up into three sections corresponding

to the parsing system, the semantic routines, and the world model.

2. l The Parser

The specific grammar used in our implementation is a modification of the

ATN grammar constructed at U.B.C. (Jervi s, 1974). The grammar was

written i n POPlO code (Blewett, 1974). Several modifications of the

grammar were required, in order for it to run successfully in POPlO.

A lexicon was developed, tailored for the "blocks" micro -world which we

had dec ided upon as our task domain. An example of an entry in the lexicon

i s given below:

[a rm n s kywd hand]

This states that the lexical item ' arm' is a s ingular noun whose key\\Ord is

'hand '. The lexi con performs the mapping from a lexical item (e.g. arm)

onto a keyword (e .g. hand). The key\\Ord is always something which is s igni ­

ficant to the blocks \\Orld, whereas the l exica l entry might not be s i gnificant.

This allows vocabulary growth without a corresponding growth in keywords.

As we build the parse fragments for noun and preposit iona l phrases,

these semantic fragments are not interpreted. The interpreation phase is

postponsed until the parse is finished and then the comp l ete sententia l

form i s evaluated. This strategy was decided upon for practi ca l reasons

- 2 56 -

A LANGUAGE COMPREHENSION SYSTEM

whi ch we will amp] ify later. In retrospect, we found this procedure to be

costly in terms of searching the data base, and we now hold that evaluat ion

of the semantic fragments should occur during the parse i tself, in order to

prune the search tree as soon as possible.

An interrupt faci I ity was programmed which can be used for a variety

of purposes during the parsing stage, e.g. recognition of idiomatic express ­

ions, punctuation, replacement of equ ivalent expressions, and various control

functions.

A final development of the pars ing system, which is not yet fully

debugged, involved the design of a compiler- translator for ATN's which com­

piled an ATN grammar into POPIO source code. Each node - 1 i st was translated

into a POP10 function definition, with the function name being the node name.

Each arc list and sublist was translated into a call to a POP10 function

conta ined in the parser's runtime system. The resu lt was a 60 percent

reduction in the space occupied by the ATN, as well as a slight reduction in

execution time. It is interesting to note that the idea of compil ing an ATN

a l so occurred independently at another centre at this time (Burton and

Woods, 1976).

2.2 The Semantic Routines

The semant i c routines interface the parser with the blocks world . They

are cal led by the parser at the noun phrase, prepositional phrase, and

sentence levels, and they have the opportunity to fail and parse which is

passed to them at any of these levels. After a sentence is interpreted by

the semantic routines, the resulting interlingual representation of the

sentence is placed in the POP10 editing buffer which serves as a commun ication

med lum between the parser- semantic routines and the world model. Code is

added to run .the interlingua in a marker frame to which a direct failure

will be sent in the event that the inter! ingual form i s uninterpretable in

- 257 -

A LANGUAGE COMPREHENSION SYSTEM

the world mode l . Compilation of the buffer then initiates act ivation of the

world model. If the blocks world is unable to understand the input, a

failure is passed back up to the parser, and a new parse is attempted .

Eventually, either the sentence makes sense in the world and is executed, or

the parser cannot find any more acceptabl e parses and fails.

There are three main parts to the semantics:

(a) the rep l acement of terms by their keywords

(b) the translation of noun phrases into a set of constraints

(c) the construction of sentence level interpretat i ons which could evoke

procedures in the data base.

The inter] ingua generated by the semantic rout ines and input to the

blocks world is very readable and often similar on the surface to the original

English sentence, e.g.:

(a) pickup the l arge red block behind the pyramid

(b) (ACHIEVE[GRASP[(THE)(LARGE)(RED)(BLOCK)(BEHIND[(THE)(PYRAMID)])]])

Objects are characterized by stringing together constraint lists of actor

forms . There is a special actor form for " the" which involves l!Ore compl i­

cated processing than the majority of actors because of its imp! ied

anaphoric reference and will be discussed further in 2.3.

By bu i 1 ding our semantic rep re sen tat ion (or in te rl i ngua) a round

constraint 1 ists of actors, we achieve a s i mple first approximation rule of

composition; viz the semant i c representation of a constituent is obtained by

concatenating the representations of its subconstituents (e.g.:

[(LARGE)(RED)(BLOCK)]). This rule rerrains approximately the case up to the

level of the clause, although some special considerations had to be taken

into account . For example, to make this principle hold in the case of pre­

positional phrase, we had to make the effect produced by actors associated

with prepositions depend on the context in which it occurred. For instance,

- 258 -

A LANGUAGE COMPREHENSION SYSTEM

the actor (BEHIND[•.]) functions differently in (1) and (2):

(I)

(2)

(ACHIEVE[MOVE[(BLOCK)(BEHIND[(BOX)])]])

(ACHIEVE[MOVE[(BLOCK)] [(BEHIND[(BOX)])J])

In (I) MOVE ha·s only one argument so it interprets that argument as an

object constraint 1 ist. Thus behind functions as a conventional restricting

variable-assigning actor. In (2), however, the second argument to the MOVE

function is interpreted as a constraint on locations and returns a location

rather than an object in the blocks world.

This convenient uniformity could not be extended to include relative

clauses, however. The reson is that whereas qua] ifying prepositional phrases

always act as one -a rgument functions constraining the referent of the head

noun in the dominating noun phrase, relative clauses are more complex in

their behaviour. In fact, relative clauses have sentential forms in their

underlying structure and the noun phrase being constrained can be referred to

in any nominal position in the embedded sentence. Consider the following

cases:

(3) the block which supports a cube

(4) the block which is supported by a cube

(5) the block which the pyramid is on.

In (3) the embedded sentence (i. e . relative clause) constrains its subject.

In (4) its object, and in (S) the object of the preposition. Thus we need to

indicate that a constraint is being imposed on X where X in each case is

as in

(6) X supports a cube

(7) a cube support X

(8) the pyramid is on X.

- 259 -

A LANGUAGE COMPREHENSION SYSTEM

Further, we want to restrict X to be filled by an object also meeting

the constraint (THE) and (BLOCK). Since the parser properly interprets

relative clauses such as (3) - (5) as embedded sentences such as (6) - (8)

with X's filled in by "the block"), the simple rule of composit ion would

not work. Instead, a device sim il ar to lambda binding was employed which

picks out from the semantic structure of the relative clause that part

which is to be further constrained by the actors outside the clause. The

device consists of the pair of actors (SUCHTHAT[.. J) and (THATTHING)

serving as declaration and variable respectively. Thus (3) - (5) after

being parsed in terms of embedded sentences such as (6) - (8) are translated

to (9) - (11) respectively.

(9) [(THE) (BLOCK) (SUCHTHAT[(THATTHING) (SUPPORTS[(CUBE)])])]

(10) [(THE)(BLOCK)(SUCHTHAT[(CUBE)(SUPPORTS[(THATTHING)])])]

(11) [(THE) (BLOCK) (SUCHTHAT[(PYRAMID) (ON[(THATTH I NG)])])] .

as with the prepositional phrases, such structures are constructed recursively

and can be indefinitely embedded.

2.3 The World Model

The micro-world is a simulated blocks world similar to that used

by Winograd. The 3-D space of the blocks world i.s conceptually

divided into distinct compartments, each compartment being a 10-unit cube.

Objects occupy separate compartments in the world.

The knowledge of the blocks world consists of entities and processes.

Each entity is a uniform symbol structure, represented as a set of attribute­

value associations. A process is a procedure of the system which is

elicited in the presence of a specific input stimulus - in this case a

POPLER-compatible interlingual representation of an English sentence. The

behaviour of the process may be a simple retrieval of a fact from the symbol

- 260 -

A LANGUAGE COMPRENSION SYSTEM

structure or a change of the content of the structure in response to an

altered state of the world. There are more than 40 actors defined to allow

for descriptions of objects in terms of their properties and relative

locations.

An attempt was made to handle the problem of anaphora. Since all

references to objects in the blocks world are extensional (except for 'one',

described later), all noun phrases must be instantiated to a particular

object. An anaphoric reference list (a stack of previously mentioned

objects) is created to aid in this instantiation. When the special actor

'the' is encountered, it is assumed that the user is referring to a specific

item in the world. If it is unique in the present world state, then no dis­

ambiguation is necessary, otherwise the anaphoric reference list is examined

to attempt to individuate the reference. If the current context defined by

tire discourse-specific knowledge (i.e.: the anaphoric reference list) cannot

effect the disambiguation, then a failure is sent out of a marker frame

(originally set up in the buffer) back to a decision node constructed by the

semantic routfoe in the S/ node of the parser, where another possible inter­

pretation will be attempted. Two other actors, 'it' and 'one' are also

allowed in the input string and their references are found by use of the

anaphora mechanism. The actor ' one' is unique in our world as it is the

only actor with intensional import in that it can refer to a class of objects

rather than a specific object.

It should be noted that the world model performs some important semantic

and syntactic checking in addition to the more pragmatic interrogation and

maintenance of the data base itself, (e.g., 'put the block.', or 'is the

blue block?', though parsed as grammatical by our grannar rules, will fail).

- 261 -

A LANGUAGE COMPREHENSION SYSTEM

Section 3 Conclusion and Discussion

The decision- to postpone accessing the blocks world until the end of the

parse phase, mentioned earlier, was an expedient. After the parse has pro­

duced a noun phrase, we have a semantic fragment available which could be

evaluated in the micro-world. If it were meaningless, a backtrack in the

parse could begin immediately, rather than having to wait until the end of

the sentence parse.

The semantic checks made in our semantic routines are rather el ementary

and could be upgraded. The addition of case frames would probably increase

the efficiency of the system. They are not used i n our system, as the world

model itself acts as a partial case frame filter. However, it would be less

time consuming if these checks were done before entering the blocks world.

Despite the shortcomings mentioned above, we believe the system as it

stands is a useful tool for the investigation of the problems of language

comprehension by machine. It is hoped to continue work on the system next

year.

- 262 -

A LANGUAGE COMPl{t:HHISION SYSTEM

Footnotes

(1) We would like to acknowledge the assistance that we received in thi s

project from Zenon Pylyshyn, our in structor who provided the impetus

for the whole undertaking, from Julian Davies for assistance with some

technical details concerning the POPLER 1. 5 system, and from Ri chard

Rosenberg of U. B.C. who provided us with a LISP copy of both a parser

and a grammar which served as a basis for the current project. We are

grateful to Zenon Pylyshyn for his useful conments on a draft of this

paper.

(2) This paper describes a course projec·t involving work done by Gary Duggan,

Dave C. Hogg and John McArdle in addition to the authors.

(3) POPLER 1.5 is a high-level A.I. system designed by Julian Davies at

The University of Edinburgh. POPLER is a language based on the main

features of PLANNER and CONNIVER, and is embedded in the PDP-10 system

(a PDP-10 implementation of POP2).

References

1. Blewett, W.J ., Semantics of English sentences for simple arithmetic using
a recursive augmented transition network granunar. M.Sc. Thesis, University
of Western Ontario, May, 1974.

2. Burton, R.R. and Woods, W.A., A Compiling System for augmented transition
networks. In 6th International Conference on Computational Linguistics
(Preprints). Ottawa, Canada, June 1976.

3. Davies. D.J.M., POPLER 1.5 Reference Manual. T.P.U. Report #1,

Theoretical Psychology Unit, School of Artificial Intelligence,
University of Edinburgh, May, 1973.

4. Jervis, J.E., An Augmented transition network for English. M.Sc. Thesis,
University of British Columbia, May 1974.

5. Winograd, T., Understanding Natural Language, New York, Academic Press,

1972. - 263 -

z
0

V>
z
~-
w

"' o._
,:

8

TT:"[HJJ CIH f'LMlf.'fR "0('1[) Tl) /llrw.

t hi I

GO;'~~;;;.:~·;_~;·;;~· ;;;;;j~ ·; · · · · · · · · · ·
[VALUATIHr. :

CUIHR [LOCATE t'CT14(1 'IR([l) 'CPYRAHID)))I

f'l IS AT [:;::o :'O C'l

RUHTJnE 011LLJ!:I : 4539 .. , ,, ,,, , ,., ,, , ,. ,,, , , ,. , ,,, , ,. , ,,,, ,,. ,
GOI "hl'to i• the r~d tilock ?

EV,,LUATit.O :
CINF[R ctor: ATE C'CTH() 'CREDI 'HILOCII:))])

J DO NOT KNOY WIHCII CC~[[ll CPLC'ICIOJ YOU N[AH ,

SORRY,

RUHTU1E CMJlll"I 1 J445 , ,,,, ,,,.,,,, ,,,,, ,.,,,, ,, ,,,,.,,,, ,,., ,
GO: wh.:Jt. 11, r11d T

f:Vht.UATJN'J :
;1t1ro;:FOl'IALL ('CREDl)I

lCACH OF Cfl4 Pl ,-1) :illl1JSF1£S CCR[[ll]l

RUHTJN[1111LLJS1 : 4080 ,,, ,,,, , , ,,,. , ,,,,,, ,,, ,, , ,,,,,,, , ,, , , , ,
Go: is lhl• p- ... ,.,..,ld • horl f

(VALIJ,lTJN:j :
CYrS:t.:> CC'ITIIEI 'CPYRAl'tll'lll ('CSHOr.T))])

JIT {<1H(.) (F"l'RIINJ~>)

1 A~!'.UriC YOU ri[r.tl '-'HAT YOO Hf"(Rl:ED TO :is CC":'HE) CREDI CPYRANID)l (PU.

l"I JS rcSHOF.1)]

Y[S,

RUNTJH[fl'l1LLJSI I s:i1o1,,,, , ,, ,, , •• , • ,, , , , , , , ,,, , ,, , ,,, •••••, ,,
001 l s " ""r~"'id wh1c-h i• blue or, the blue blnc~. T

[VflLU/\T!NG :

CY[:;t;:) C['(f 'YRANlfll 'CS:.JC MlHAT ['CTll,HTHJllO) '(8Ll.iE)]ll
["CON ('CTltF"l 'CJ:L UEI '(foLOCK)Jllll

'" J!: ((Otl ['(TIICl '((•LUC, 'C PLOCIOJI]

TCS,

RUJITJl'IC '"Ill.ISi : :>!-192,,, •• , , , , , , , , , •••• , , , •••, ,, , •• , ,, , , ,. , ,.
GO: i:•t s th1,,• which is •JMar ~ ~..,,~•id,

[VAl.UflTHl!'.i :
(ACltJF:\. E r,;~t,!;t • ['ff.f.fl[JIIJN(j) "CSUCHTHAT ['CTHATTMJNO)

'fU'/11(1. [• If YfU.NJ!ll))Jlll)

NOT r.~r.r.r111c; AHTHIINO NOW.

rs c.r..:.:;ru,.

·on.Jr.er F'!. 5ET 4 T c 110 40 01

kl1HTll1f.: CN llll !.) :
1:.ri:.o1 ••••••••••••• :·········· ·· ···· · ··· ······

l V,\l . lt.HtltG:
(Tf.$NO [('(THU 'Ol.U[) 'CIILOCKI 'CUN c•cncE> 'lTA11LC)]l]l)

£VAt.U,\TING :
cn:SNO C('CTME) 'CflLUEI 'CflLOCIO] ['CON ['(THC:, •nA,L[)))]))

J2 JS f<ON ['CTH[) '(T/\PLE>ll]

TES,

RUNTJN[INJLLIS) I :ilt<IJ,.,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,
GO! l"ut. thr. •r•l:'l'l or,a or, V,e t•bl• ir, th• white bolC on th• \1bll",

[V/\LlJIITlNG I
Cf\CHJCVE C/"UT C'CTME) '(GI.HNI 'ION[) 'CON C'CTH[) 'CTAIIL[I

'CJN ['(TIIEI '(WHIT!) 'l[IOXI ·cou ['(TH[) 'CTA8L[Jll])])J]J

SORRY,

EVALUATtHG :
(tlCIH(VE [f'UT C'CTMEJ "CGRCEH) 'CONE> ' CON C"CTHE) '(Hl8l£)

'(IH ["CTl!E) "(WHITE) 'UOXI))))) ('(ON ['(THE> '(TOLEIJ>]ll

J ASSUl'1C YOU N£AH 8LOCt<.

SORRY.

[\IALUATlUG I
(ACHJEVC [PUT [' (TM[) 'CGRE[NI '(CHE> "CON C'CTllEI "<TAJt.Ellll

C'CJN C'ITHE> 'CWHITEI ' (90XI 'CON ["CTHE> 'CTflM..[lllJ})))

I ASSUHE YOU "EflN llLOCK

NOT GR/'ISl"HlG ANYllllNG NOW.

83 GMASF'EIJ,

J,J HOVH TO C JOO 100 10]

RUNTJN[CHILL JS> : 36579,,.,,,,,,,",,,,",,,,,, , , ,,, , , ,., , , ""
Go: is II block which is • t-Jock which Is arr,..,.. t1r•,,.. 1

EVALUATI/1/1 !
CYE5NO [{'C !<LOCK) 'CSUCHTHAT C'(TMATTHJHGI 0 C8LOCIO 0 U UCIITHAT

('ITHATTHIUtil 'CCREENJ)IJ)] C'IG1.F.:£Nllll

eJ 1s ccr.r.r.cun

Yi:S,

RUNTJ11::: <11J Ll. 1SI : 1 .. 289, ,,, ,, , , , ,., , , , , , , , ••••, •• • •,, •• , , , ,, , ••
GO: Is It. thr s rN••, or,• 1

EVALUflT IN'i :
IT[SNO CC'C>T>l ["CTHEI 'CGRCEHI 'CONE>Jll

BT "1T' J IIS5lll1[YOU Hl;.A/1
WHnT TOU •:(I r1u.-n1 !O AS ([(THATTMINGI (8LOCkl (SUCHTHAT

[°CTHA1Tlllt/GJ 'ICJ.:E ENIJI]) (&JI

I ASS~HC TOU 11[11N DLOCK

tl rs C<TIIE) CGRC[/0 CON[)]

YES,

RUNT I HE UHLL.1SI : <191:S .. ,",,",",,,,,,,,,,,,,,.,,,,, ,, , ,. , , ,

