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What is Knob Tuning?

 DBMS have dozens of knobs (configuration parameters) that control them
— e.g. Sort heap size, buffer pool size, optimization levels, concurrency control, etc

* Knobs must be properly adjusted to achieve high performance and scalability
— high throughput and low latency
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Motivation

* Traditionally, databases rely on DBAs to tune the knobs
— Non-trivial problem
— Too many knobs
— Requires an expert to spend a lot of time and effort (possibly several days)

« As a workload evolves over time the configuration may no longer be optimal
— Could cause poor performance until the knobs are re-tuned
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Automatic Knob Tuning

« A fully automated approach to optimally tune knobs is desired
— Relieve the burden of tuning from experts
— Find better configurations than experts

 Businesses and their applications are not static
— Workloads can change overtime; so must the knobs
— Cannot “set it and forget it”
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Challenges and Use Cases
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Our Approach Architecture

* An intelligent ML solution driven
by deep reinforcement learning
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Reward-driven learning

* The agent’s behaviour is driven by the designed reward function
— Goal is to maximize the reward

* Our reward is based on change in query performance
— Performance metric can be execution time or optimizer cost
— We keep a cost history and apply exponential decay to steer the learning

« Our reward function also enforces limited resource constraints
— i.e. the environment only has X amount of shared memory (sortheap,
bpsize) e.g., cloud computing, must train the agent to stay within constraints
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Execution time vs. Optimizer cost

* The overall goal of the agent is to minimize the execution time by
finding a suitable configuration

— Training on execution time can get prohibitively expensive as the

complexity of the queries and the size of the database grows

* The size of the database for prior works is mostly from 1GB to 10GB (we target
100GB+ large & complex query workloads)

* We've demonstrated that optimizer cost can be used in lieu of
execution time

— greatly speeds up training
— 20 episodes in 7 hours vs. 5 episodes in 38 hours
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Fine-tuning the model

* Optimizer cost can be an effective measure of performance for
various knob changes

* However, execution time captures some information that the
optimizer fails with (inaccurate estimates, knob not factored in,
etc)

* Thus, it is desirable to use the concept of transfer learning
— first train up a model on minimizing optimizer cost, and then fine-tune the
model by training on minimizing execution time
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Results 1: Cost-only model

* Trained ONLY on cost
* Time taken: ~3.73 hours for 10 episodes (1000 iterations each)

Episode vs. Optimizer Cost Episode vs. Execution time
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Results 2: Fine-tuned on Execution time

* Continue training on the cost-only model with execution time
* Time taken: ~13.7 hours for 4 episodes (500 iterations each)

Episode vs. Execution time Episode vs. Optimizer Cost
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Result comparison

 Training only on cost produces a configuration that results in a
total execution time of 107.91 seconds

* Fine-tuning the model above (transfer learning) leads to a
execution time of 93 seconds

* This is an additional ~15% decrease which illustrates that
fine-tuning the transfer learning component is beneficial
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Thank-you
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