
BLUTune: Continuous Knobs Tuning 

Spencer Bryson, Connor Henderson, Parke Godfrey, Jarek Szlichta

Mohammed Alhamid, Vincent Corvinelli, Piotr Mierzejewski, Calisto Zuzarte



What is Knob Tuning?

• DBMS have dozens of knobs (configuration parameters) that control them
– e.g. Sort heap size, buffer pool size, optimization levels, concurrency control, etc

• Knobs must be properly adjusted to achieve high performance and scalability
– high throughput and low latency

2ontariotechu.ca



Motivation

• Traditionally, databases rely on DBAs to tune the knobs
– Non-trivial problem
– Too many knobs
– Requires an expert to spend a lot of time and effort (possibly several days)

• As a workload evolves over time the configuration may no longer be optimal
– Could cause poor performance until the knobs are re-tuned

3ontariotechu.ca



Automatic Knob Tuning

• A fully automated approach to optimally tune knobs is desired
– Relieve the burden of tuning from experts
– Find better configurations than experts

• Businesses and their applications are not static
– Workloads can change overtime; so must the knobs
– Cannot “set it and forget it”

4ontariotechu.ca



Challenges and Use Cases

• Many knobs are 
continuous values

• Knobs can be 
interdependent

• One configuration 
does not fit all

5



Our Approach Architecture
• An intelligent ML solution driven 

by deep reinforcement learning
– We use actor-critic network 

with policy-based learning to 
compute most likely best 
next action

– embeddings to map 
high-dimensional queries 
into low-dimensional 
representation

6ontariotechu.ca



Reward-driven learning

• The agent’s behaviour is driven by the designed reward function
– Goal is to maximize the reward

• Our reward is based on change in query performance
– Performance metric can be execution time or optimizer cost
– We keep a cost history and apply exponential decay to steer the learning

• Our reward function also enforces limited resource constraints 
– i.e. the environment only has X amount of shared memory (sortheap, 

bpsize) e.g., cloud computing, must train the agent to stay within constraints

7



Execution time vs. Optimizer cost

• The overall goal of the agent is to minimize the execution time by 
finding a suitable configuration
– Training on execution time can get prohibitively expensive as the 

complexity of the queries and the size of the database grows
• The size of the database for prior works is mostly from 1GB to 10GB (we target 

100GB+ large & complex query workloads)

• We’ve demonstrated that optimizer cost can be used in lieu of 
execution time
– greatly speeds up training 
– 20 episodes in 7 hours vs. 5 episodes in 38 hours

8



Fine-tuning the model

• Optimizer cost can be an effective measure of performance for 
various knob changes

• However, execution time captures some information that the 
optimizer fails with (inaccurate estimates, knob not factored in, 
etc)

• Thus, it is desirable to use the concept of transfer learning 
– first train up a model on minimizing optimizer cost, and then fine-tune the 

model by training on minimizing execution time

9



Results 1: Cost-only model

• Trained ONLY on cost 
• Time taken: ~3.73 hours for 10 episodes (1000 iterations each)

10



Results 2: Fine-tuned on Execution time

• Continue training on the cost-only model with execution time
• Time taken: ~13.7 hours for 4 episodes (500 iterations each)

11



Result comparison

• Training only on cost produces a configuration that results in a 
total execution time of 107.91 seconds

• Fine-tuning the model above (transfer learning) leads to a 
execution time of 93 seconds

• This is an additional ~15% decrease which illustrates that 
fine-tuning the transfer learning component is beneficial

12



Thank-you

13


