BLUTune: Continuous Knobs Tuning

Canadian Al 🍁 2021

Spencer Bryson, Connor Henderson, Parke Godfrey, Jarek Szlichta

Mohammed Alhamid, Vincent Corvinelli, Piotr Mierzejewski, Calisto Zuzarte

What is Knob Tuning?

- DBMS have dozens of knobs (configuration parameters) that control them
 - e.g. Sort heap size, buffer pool size, optimization levels, concurrency control, etc
- Knobs must be properly adjusted to achieve high performance and scalability
 - high throughput and low latency

Motivation

- Traditionally, databases rely on DBAs to tune the knobs
 - Non-trivial problem
 - Too many knobs
 - Requires an expert to spend a lot of time and effort (possibly several days)
- As a workload evolves over time the configuration may no longer be optimal
 - Could cause poor performance until the knobs are re-tuned

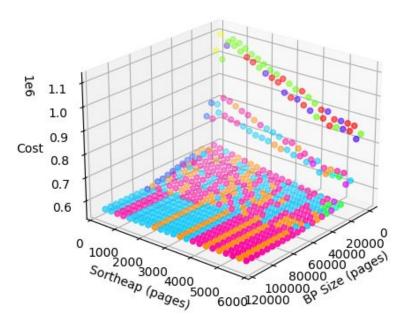
Automatic Knob Tuning

- A fully automated approach to optimally tune knobs is desired
 - Relieve the burden of tuning from experts
 - Find better configurations than experts
- Businesses and their applications are not static
 - Workloads can change overtime; so must the knobs
 - Cannot "set it and forget it"

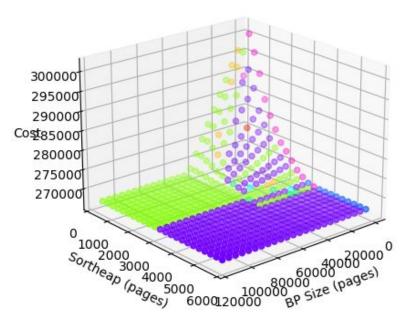
Challenges and Use Cases

query_00_50_31.sql.csv

- Many knobs are continuous values
- Knobs can be interdependent
- One configuration does not fit all

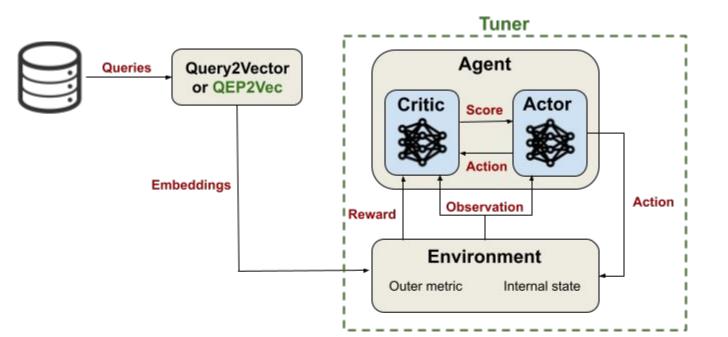


query_00_51_11.sql.csv



Our Approach Architecture

- An intelligent ML solution driven by deep reinforcement learning
 - We use actor-critic network with policy-based learning to compute most likely best next action
 - embeddings to map high-dimensional queries into low-dimensional representation



Reward-driven learning

- The agent's behaviour is driven by the designed reward function
 - Goal is to maximize the reward
- Our reward is based on change in query performance
 - Performance metric can be execution time or optimizer cost
 - We keep a cost history and apply exponential decay to steer the learning
- Our reward function also enforces limited resource constraints
 - i.e. the environment only has X amount of shared memory (sortheap, bpsize) e.g., cloud computing, must train the agent to stay within constraints

Execution time vs. Optimizer cost

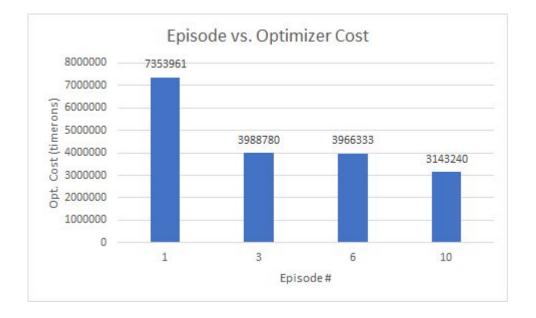
- The overall goal of the agent is to minimize the execution time by finding a suitable configuration
 - Training on execution time can get prohibitively expensive as the complexity of the queries and the size of the database grows
 - The size of the database for prior works is mostly from 1GB to 10GB (we target 100GB+ large & complex query workloads)
- We've demonstrated that optimizer cost can be used in lieu of execution time
 - greatly speeds up training
 - 20 episodes in 7 hours vs. 5 episodes in 38 hours

Fine-tuning the model

- Optimizer cost can be an effective measure of performance for various knob changes
- However, execution time captures some information that the optimizer fails with (inaccurate estimates, knob not factored in, etc)
- Thus, it is desirable to use the concept of transfer learning
 - first train up a model on minimizing optimizer cost, and then fine-tune the model by training on minimizing execution time

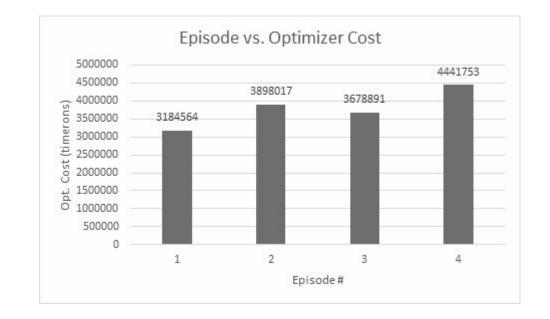
Results 1: Cost-only model

- Trained ONLY on cost
- Time taken: ~3.73 hours for 10 episodes (1000 iterations each)



Results 2: Fine-tuned on Execution time

- Continue training on the cost-only model with execution time
- Time taken: <u>~13.7 hours</u> for 4 episodes (500 iterations each)



Result comparison

- Training only on cost produces a configuration that results in a total execution time of 107.91 seconds
- Fine-tuning the model above (transfer learning) leads to a execution time of 93 seconds
- This is an additional ~15% decrease which illustrates that fine-tuning the transfer learning component is beneficial

Thank-you

