
Compressed Predictive State

Representation:
An Efficient Moment-Method for Sequence Prediction and

Sequential Decision-Making

William L Hamilton

Computer Science
McGill University, Montreal

August 13, 2014

A thesis submitted to McGill University in partial fulfilment of the requirements of

the degree of Master of Science. c©William L Hamilton; August 13, 2014.

i

Dedication

This thesis is dedicated to my sister Julianna.

i

Acknowledgements

I would like to thank everyone who helped and encouraged me, who con-

structively challenged my ideas or even just took the time to listen to them.

I am deeply grateful to my supervisor Joelle Pineau for her continual, con-

structive guidance, to Doina Precup for providing invaluable advice throughout

my BSc and MSc, to Mahdi Milani Fard for helping me to get the theory of

CPSRs off the ground, and to Borja Balle for showing me a whole new perspec-

tive on my own work. Special thanks to lab members Clement Gehring, Ouais

Alsharif, and Yuri Grinberg for engaging with me in countless stimulating

discussions.

ii

Abstract

The construction of accurate predictive models over sequence data is of

fundamental importance in the pursuit of developing artificial agents that

are capable of (near)-optimal sequential decision-making in disparate envi-

ronments. If such predictive models are available, they can be exploited by

decision-making agents, allowing them to reason about the future dynamics

of a system. Constructing models with sufficient predictive capacity, however,

is a difficult task. Under the standard maximum likelihood criterion, these

models tend to have non-convex learning objectives, and heuristics such as

expectation-maximization suffer from high computational overhead. In con-

trast, an alternative statistical objective, the so-called method of moments,

leads to convex optimizations that are often efficiently solvable via spectral

decompositions.

This work further improves upon the scalability, efficiency, and accuracy

of this moment-based framework by employing techniques from the field of

compressed sensing. Specifically, random projections of high-dimensional data

are used during learning to (1) provide computational efficiency and (2) reg-

ularize the learned predictive models. Both theoretical analyses, outlining an

explicit bias-variance trade-off, and experiments, demonstrating the superior

empirical performance of the novel algorithm (e.g., compared to uncompressed

moment-methods), are provided. Going further, this work introduces a sequen-

tial decision-making framework which exploits these compressed learned mod-

els. Experiments demonstrate that the combination of the compressed model

learning algorithm and this decision-making framework allows for agents to

successfully plan in massive, complex environments without prior knowledge.

iii

Abrégé

Pour pouvoir agir optimalement, il est important de pouvoir prédire les

séquences d’observations à venir. Ceci est une tâche difficile puisque le prob-

lème d’estimation du maximum de vraisemblance est non-convexe. Les méth-

odes standard, tel que l’algorithme d’espérance-maximisation, sont très coû-

teuses et inefficaces. Une application récente de la méthode des moments offre

une interprétation différente du problème qui est convexe et efficace.

La méthode présentée améliore l’efficacité et la précision de la méthode des

moments dans le contexte de prédiction de séquences d’observations. Ceci est

fait grâce à des projections aléatoires qui augmentent l’efficacité de l’algorithme.

Une analyse théorique de notre méthode démontre que notre algorithme réduit

la variance au dépend d’un peu plus de biais. Nos résultats empiriques démon-

tret une meilleure performance comparativement aux méthodes précédentes.

De plus, nous offrons un moyen d’exploiter les prédictions de notre algorithme

de façon à agir optimalement. Ceci nous permet de produire des agents capable

de raisonner dans des environnements complexes et partiellement observables.

Contents

Contents iv

List of Figures vii

1 Introduction 1

1.1 Problem Statement . 2

1.1.1 Learning a Predictive Model using Moments 2

1.1.2 Sequential Decision-Making using a Predictive Model 4

1.2 Thesis Statement . 6

1.3 Statement of Contributions . 7

2 Technical Foundations 9

2.1 Notation . 9

2.1.1 Matrix Algebra Notation . 9

2.1.2 Sequence Notation . 10

2.1.3 Probability Notation . 10

2.2 Moment-Methods for Sequence Prediction 11

2.2.1 A Concrete Framework: Latent Variable Models and Weighted

Automata . 11

2.2.2 Learning Latent Variable Models with EM 14

2.2.3 A Simple Moment-Based Algorithm: Factorizing a Hankel Ma-

trix . 15

iv

CONTENTS v

2.2.4 Overview of Existing Methods 16

2.2.5 Symmetric Tensor Decomposition Method 19

3 Sequential Decision-Making 23

3.1 Sequential Decision-Making Framework 23

3.1.1 Partial State Observability . 24

3.1.2 The POMDP Model . 25

3.2 Predictive State Representation . 27

3.2.1 The PSR Model: Independent Derivation 28

3.2.2 The PSR Model: Method of Moments Interpretation 32

3.2.3 Learning PSRs . 33

3.2.4 Transformed Representations 35

3.2.5 Two Views: Factorization versus Least-Squares 37

3.3 Discussion . 37

4 Compressed Predictive State Representation 40

4.1 Intuition and Motivation . 40

4.2 A Compressed Learning Algorithm PSRs 42

4.2.1 Batch Learning of CPSRs . 42

4.2.2 Incremental Updates to the Model 46

4.3 Discussion . 47

5 Theoretical Analysis 49

5.1 Consistency of the Learning Approach 49

5.1.1 Consistency in the Non-Compressed Setting 49

5.1.2 Extension to the Compressed Case 50

5.2 Effects of Compressing Tests . 51

5.2.1 Preliminaries . 51

5.2.2 Error of One Step Regression 53

5.2.3 Error Propagation . 58

5.3 Effects of Compressing Histories . 60

5.4 Discussion . 62

CONTENTS vi

6 Planning with CPSRs 64

6.1 Fitted-Q with CPSRs . 65

6.2 Combined Learning and Planning . 67

6.3 Discussion . 67

7 Empirical Evaluation 69

7.1 Projection Matrices . 69

7.2 Domains . 70

7.2.1 ColoredGridWorld . 70

7.2.2 Partially Observable PacMan 71

7.3 CPSR Model Learning Results . 72

7.4 CPSR Planning Results . 74

7.5 Discussion . 77

7.5.1 Practical Concerns . 78

8 Conclusion 82

8.1 Related Work . 82

8.2 Future Directions . 84

Bibliography 86

List of Figures

2.1 Venn diagram summarizing the relative expressiveness of different sub-

classes of weighted automata with respect to representing stochastic lan-

guages. 14

5.1 Difference in log-likelihood between model where histories are not com-

pressed and where histories are compressed. 63

7.1 Graphical depiction of ColoredGridWorld. 70

7.2 Graphical depiction of S-PocMan. 72

7.3 Predictive model learning results on the ColoredGridWorld domain. . . . 73

7.4 Model build times for different model types on the ColoredGridWorld

domain. 74

7.5 Planning results using CPSR based planners and baseline planners on the

ColoredGridWorld domain. 75

7.6 Planning results using CPSR based planners and baseline planners on the

PocMan and S-PocMan domains. 78

vii

1
Introduction

Prediction, the general task of estimating future values based on past experiences,

lies at the heart of machine learning. From basic statistical modelling, where models

are judged primarily via their predictive capacities, to the construction of complex ar-

tificially intelligent agents, where such agents invariably require the ability to predict

future outcomes in their environments, the task of prediction remains paramount.

This work is concerned with a particular kind of prediction: sequence prediction,

where predictions concern dynamic sequential entities (e.g., time-series) as opposed

to simple static objects. This type of prediction problem is especially important in

the pursuit of creating artificially intelligent agents that are capable of adapting and

learning, as interacting with an environment is inherently a dynamic, sequential task.

Given an accurate predictive model of a dynamic system, the task of constructing

an agent capable of (near)-optimal sequential decision-making is greatly simplified.

The complexity inherent in such dynamic entities greatly complicates the predictive

modelling process, however, and as such, there are many aspects of the sequence

prediction problem that remain as of yet unsolved or where substantial improvements

are possible.

One particularly powerful and flexible model class employed in the area of se-

quence prediction is the class of probabilistic models with latent variables. The key

insight in this class of models is that observed sequence data is often the manifesta-

tion of some underlying, or hidden, dynamics. This natural assumption is formalized

by positing the existence of latent (i.e., hidden) variables, which control the dynam-

ics of the system and emit the observed sequence data. By modelling the transition

1

CHAPTER 1. INTRODUCTION 2

structure between different hidden states and the probabilities governing the emission

of observations from these hidden states, a succinct and powerful predictive model

can be obtained.

Unfortunately, the power of latent variable models comes at a price. Unlike with

other simpler models, learning and predicting with latent variable models is typically

a computationally expensive task, to the point where obtaining exact solutions can

become intractable. Designing efficient, scalable, and accurate approximation algo-

rithms for these tasks is an important challenge that needs to be solved if we want

to use these models for solving large-scale real world problems.

1.1 Problem Statement

This work addresses two main problems: (1) how to efficiently learn a latent variable

model over sequence data; and (2) how to construct a sequential decision-making

framework that exploits a learned predictive latent variable model.

1.1.1 Learning a Predictive Model using Moments

Learning a latent variable model from observed sequence data is a difficult task. It

requires that one simultaneously (1) associate individual observations with partic-

ular hidden states (with the ground truth being unknown), (2) model the emission

distributions of observations from the hidden states (given inferred associations),

and (3) determine the optimal transition structure among the hidden states (i.e., the

underlying dynamics of the system). The primary source of difficulty in this task

is its simultaneous nature: the optimal association of observations to hidden states

requires knowing the true probabilistic model of emissions and transitions which in

turn requires knowing the optimal associations. In essence, the problem has the

classic “chicken-and-egg” structure.

A standard solution to this learning problem under the maximum likelihood cri-

terion is the expectation–maximization (EM) algorithm [20], which approximates

a solution by alternating between steps of associating hidden states with observa-

CHAPTER 1. INTRODUCTION 3

tions and optimizing the probabilistic model given these associations. However, this

algorithm suffers from two fundamental limitations: there is a high computational

cost on large state spaces, and no statistical guarantees about the accuracy of the

solutions obtained are available.

A recent alternative line of work consists of designing learning algorithms for

latent variable models exploiting an entirely different statistical principle: the so-

called method of moments [55]. Intuitively, this approach ameliorates the “chicken-

and-egg” problem by simultaneously solving the association and optimization tasks

using the method of matching statistical moments. The key idea underlying this

principle is that, since the low order moments of a distribution are typically easy to

estimate, by writing a set of equations that relate the moments with the parameters of

the distribution and solving these equations using estimated moments, one can obtain

approximations to the parameters of the target distribution. In some cases, solving

these equations only involves spectral decompositions of matrices or tensors and

basic linear algebra operations [3, 2]. In addition, statistical analyses show that these

algorithms are robust to noise and can learn models satisfying some basic assumptions

from samples of size polynomial in the relevant parameters [see 34, 3, 9, 33, and

references therein].

A witness of the generality of the method of moments is the wide and ever-growing

class of sequence prediction models that can be learned with this approach. These

include classic latent variable models such as hidden Markov models (HMMs) [34]

but also more general models such as weighted automata (WA) [10] and predictive

state representations (PSRs) [16] (which are the focus of this work). Moreover, there

are a number of works exploring direct applications of these sequences prediction

models, e.g. algorithms for learning context-free formalisms used in natural language

processing [6, 4, 18, 19, 45, 23].

Despite these favourable attributes and promising initial results, moment-based

algorithms still remain computationally expensive when applied to environments that

have high-dimensional observation spaces and require long-trajectories during learn-

ing (e.g., robotics environments), as the basic moment algorithms have complexity

super-linear in these quantities (see chapter 4). In this work, we address the problem

CHAPTER 1. INTRODUCTION 4

of efficiently learning latent variable models using the method of moments, with a

particular emphasis on designing a learning algorithm that scales well (i.e., linearly)

with respect to both the observation dimension and the length of trajectories used

in learning.

1.1.2 Sequential Decision-Making using a Predictive Model

The second half of this thesis deals with how to use latent variable models for planning

and sequential decision-making. In the general task of sequential decision-making,

an agent is viewed as acting in some environment with the goal of maximizing some

measure of goodness (e.g., utility or rewards). More informally, sequential decision-

making is the task of an intelligent agent deciding on a best course-of-action given

its current situation [43].

The formalization of this procedure takes many forms depending on the assump-

tions made about both the agent and the environment. In this work, we use the

standard approach of assuming discrete time states and view an agent as having

three fundamental abilities, which are employed at each discrete point in time: (1)

the ability to receive observations, which confer some (but not complete) informa-

tion about the current state of the system; (2) the ability to infer a measure of

goodness (i.e., reward or utility); and (3) the ability to influence the system by tak-

ing some action. Importantly, we do not assume that the agent has complete access

to the system state, meaning that the agent is tasked with the problem of sequential

decision-making under uncertainty. Connecting this discussion back to predictive

modelling, we assume that the agent has access to sequence data that is generated

by processes within an environment, but we do not assume that the agent has knowl-

edge of the governing processes. Environments of this type are often termed partially

observable [40]. Thus in the framework used here, an agent must act in a partially

observable system and simultaneously deal with uncertainty while also attempting

to maximize its utility or reward.

A classic solution to the problem of sequential decision making under uncertainty

is to use the partially observable Markov decision process (POMDP) formalism,

CHAPTER 1. INTRODUCTION 5

a generalization of a latent variable model to the actuated (i.e., decision-making)

paradigm [40]. More formally, the latent variable model is augmented such that

hidden states (1) take an input (i.e., action) that affects the transition structure and

(2) emit rewards (which may or may not depend on the action taken).

It should be noted, however, that in the vast majority of work on sequential

decision-making using POMDPs, the model is assumed to be known, and the pri-

mary task is simply to do sequential decision-making using this known probabilistic

model (which incorporates uncertainty) [40]. These models are usually specified by

domain experts and often lead to state-of-the-art results on difficult problems, such

as navigating robotic helicopters or playing complex games (e.g., chess or PacMan)

[50, 66].

In this work we examine the more difficult problem of both learning the prob-

abilistic model (using the method of moments) and performing sequential decision-

making given this learned model. An important insight facilitating our approach is

that since POMDPs are the generalization of latent variable models over sequence

data, the moment-based framework can also be applied to learn their parameters

(and similarly for related models), making the learning problem more tractable. In

these cases where the moment-method is used to learn a model that incorporates

actions, the learned models are often termed predictive state representations (PSRs)

[44].

In the following chapters, we show how to efficiently learn a PSR model, the

moment-based generalization of a POMDP, and we develop a sequential decision-

making framework that exploits the information contained within the PSR model

state. Moreover, we treat the combined learning and planning problem in an ag-

nostic fashion, where we assume that the agent has no prior knowledge about the

domain in which it is acting. In this agnostic learning framework an agent must

build a predictive model and learn to make (near)-optimal sequential decisions using

only execution traces, i.e. action, observation, and reward sequences sampled via

interactions with the environment.

This agnostic learning problem is both important and lags behind in terms of

research results. At an application level, there are many situations in which expert

CHAPTER 1. INTRODUCTION 6

knowledge is sparse, and it is possible that even application domains with domain-

knowledge could benefit from the use of algorithms that are more agnostic and thus

free from unintended biases. At a more theoretical level, the development of agnos-

tic and general learners is fundamental in the pursuit of creating truly intelligent

artificial agents that can learn and succeed independent of prior domain knowledge.

Here, we explore applications of agnostic moment-based sequential decision-making

to simulated robot path planning and obstacle avoidance domains. However, this

type of method could be applied in countless domains where both learning and se-

quential decision-making are necessary. For example, there are potential applications

to ecological management (learning and determining optimal intervention strategies)

[51], health care [63], and adaptive dialogue management [76].

1.2 Thesis Statement

This work introduces a novel method of moments learning algorithm, termed com-

pressed predictive state representation (CPSR), for modelling sequence data, along

with a sequential decision-making framework built upon this algorithm. By combin-

ing techniques from the field of compressed sensing [24] with the moment-method

framework, this algorithm provides state-of-the-art performance in terms of computa-

tional efficiency without sacrificing predictive accuracy. Specifically, we use random

projections [11], where high-dimensional vectors are projected onto randomly gener-

ated low-dimensional manifolds, during learning in order to increase the efficiency

and scalability of the moment-based framework. And we show how this approach

regularizes the learning the process.

The sequential decision-making framework we propose exploits these low-dimensional

models in a principled manner. Moreover, the combination of this efficient learning

algorithm with this principled decision-making framework allows agents to learn to

make (near)-optimal decisions in complex systems with no prior knowledge of the

system’s dynamics.

CHAPTER 1. INTRODUCTION 7

1.3 Statement of Contributions

The main contributions of the thesis are as follows:

• The unified presentation of the different moment-based learning algorithms for

sequence prediction (chapter 2).

• The generalization of the tensor decomposition based moment-method to work

with variable length sequence prefixes/suffixes during learning (chapter 2).

• The explicit characterization of the relationship between PSRs and the more

general method of moments (chapter 3).

• The derivation of an efficient and scalable moment-based learning algorithm,

CPSR, that uses random projections to increase efficiency and provide regu-

larization (chapter 4).

• The explicit characterization of how the CPSR learning algorithm can be used

in both batch and incremental/online learning settings (chapter 4).

• A bias-variance analysis of the learning algorithm that bounds the excess risk

of learning in a compressed space (chapter 5).

• The extension of the compressed regression framework [46, 47, 28] to deal with

compression on both (noisy) input features and a (noisy) regression target

(chapter 5).

• The derivation of a sequential decision-making (i.e., planning) framework that

exploits the concise CPSR states in a principled manner (chapter 6).

• The specification of how CPSR learning and planning can be interleaved to

incrementally explore hard to reach regions of an environment (chapter 6).

• Experiments demonstrating the use of the CPSR based sequential decision-

making framework on simulated robot navigation domains (chapter 7).

CHAPTER 1. INTRODUCTION 8

• Empirical results comparing the performance of different random projection

matrices (chapter 7).

• Empirical results demonstrating that CPSR maintains predictive performance

competitive with uncompressed moment-based models (chapter 7).

• Empirical results demonstrating that a CPSR based learning and decision-

making framework is capable of outperforming both a uncompressed moment-

based framework and a baseline memoryless planner (chapter 7).

• Empirical results demonstrating that a CPSR based learning and decision-

making framework is capable of scaling to domains that are infeasible for an

uncompressed moment-based framework (chapter 7).

• A description of how a cache-based implementation of the random projections

can increase empirical runtime efficiency (chapter 7).

Certain aspects of thesis are taken from works that are in preparation for publi-

cation or have been published. In particular, the introduction and chapter 2, include

modified parts of [8]. Substantial portions of the rest of this thesis are taken from

[32] and [31], with [31] being an extended version of [32]. The author of this the-

sis is the primary author of all these works1, and the collaborators acknowledge

the use of these works in this thesis. Moreover, this thesis represents a substantial

contribution beyond these independent works. In particular, this thesis synthesizes

results from the generic method of moments setting and the more specific predictive

state representation approach and, in chapter 3, explicitly derives predictive state

representation as a special case of the more general method of moments.

1The author of this thesis shares first authorship with Borja Balle in [8].

2
Technical Foundations

2.1 Notation

2.1.1 Matrix Algebra Notation

Bold letters denote vectors v ∈ R
d, matrices M ∈ R

d1×d2 , and third-order tensors

T ∈ R
d1×d2×d3 . Given a matrix M, ‖M‖ denotes its Frobenius norm and ‖M‖∗ its

trace/nuclear norm. M+ is used to denote the Moore–Penrose pseudo-inverse of M.

Sometimes names are given to the columns and rows of a matrix using ordered index

sets I and J . In this case, M ∈ R
I×J denotes a matrix of size |I| × |J | with rows

indexed by I and columns indexed by J . We then specify entries in a matrix (or

tensor) using these indices and the bracket notation; e.g., [M]i,j corresponds to the

entry in the row indexed by i ∈ I and the column indexed j ∈ J . Rows or columns

of a matrix are specified using this index notation and the ∗ symbol; e.g., [M]i,∗,

denotes the ith row of M. Finally, given I ′ ⊂ I and J ′ ⊂ J we define [M]I′,J ′ as

the submatrix of M with rows and columns specified by the indices in I ′ and J ′,

respectively.

A matrix M ∈ R
d×d is symmetric if M = M>. Similarly, a tensor T ∈ R

d×d×d

is symmetric if for any permutation ρ of the set {1, 2, 3} we have T = Tρ, where

[Tρ]i1,i2,i3 = [T]iρ(1),iρ(2),iρ(3)
for every i1, i2, i3 ∈ [d]. Given vectors vi ∈ R

di for

1 ≤ i ≤ 3, we can take tensor products to obtain matrices v1 ⊗ v2 = v1v
>
2 ∈ R

d1×d2

and tensors v1⊗v2⊗v3 ∈ R
d1×d2×d3 . For convenience we also write v⊗v⊗v = v⊗3,

which is a third-order symmetric tensor.

9

CHAPTER 2. TECHNICAL FOUNDATIONS 10

Given a tensor T ∈ R
d1×d2×d3 and matrices Mi ∈ R

di×d′
i we consider the con-

traction operation that produces a tensor T′ = T(M1, M2, M3) ∈ R
d′

1×d′
2×d′

3 with

entries given by [T′]j1j2j3 = [M1]i1j1 [M2]i2j2 [M3]i3j3 [T]i1i2i3 , where Einstein’s summa-

tion convention is used.

2.1.2 Sequence Notation

In the context of general sequence prediction, we equate sequences with strings com-

posed of symbols from some finite alphabet.1 Let Σ be a finite alphabet. Σ? denotes

the set of all finite strings over Σ, and λ, the empty string. Given two strings

u, v ∈ Σ?, w = uv denotes their concatenation, in which case we say that u is a pre-

fix of w, and v is a suffix of w. Given two sets of strings P ,S ⊆ Σ?, PS denotes the

set obtained by taking every string of the form uv with u ∈ P and v ∈ S. When sin-

gletons are involved, we write uS instead of {u}S for convenience. If f : Σ? → R is a

function, we use f(P) to denote
∑

u∈P f(u). Given strings u, v ∈ Σ?, we denote by |v|u
the number of occurrences of u as a substring of v; that is, |v|u = |{(w, z)|v = wuz}|.

2.1.3 Probability Notation

We denote the probability of an event by P(·) and use | to denote the usual proba-

bilistic conditioning. To avoid excessive notation, when the P(·) operator is applied

to a vector of events, it is understood as returning a vector of probabilities unless

otherwise indicated (i.e., a single operator is used for single events and vectors of

events).

For simplicity, | also denotes conditioning upon an agents policy (i.e., plan). That

is, when the | symbol is followed by an ordered list of actions, it denotes that we

are conditioning upon the knowledge that the agent will “intervene” in a system by

executing the specified actions.

1The sharp-eyed reader will notice that we have restricted the sequence prediction problem to
the case of discrete observations. The majority of this work assumes discrete observations; however,
continuous alphabets can be handled in this framework by working with features of continuous
observations [60] or by using kernel embeddings [13].

CHAPTER 2. TECHNICAL FOUNDATIONS 11

2.2 Moment-Methods for Sequence

Prediction

In the general setting of sequence prediction, the goal is to use the method of mo-

ments to efficiently learn a distribution over sequences coming from some unknown

distribution. There are countless applications and concrete instantiations of this

framework (e.g., natural language processing or reinforcement learning)[16, 75, 6, 4,

18, 19, 45, 23]; however the discussion in this section will remain quite general, mak-

ing minimal assumptions. Section 2.2.1 provides the general theoretical framework,

which we will build upon throughout this work, and section 2.2.3 describes the pro-

totypical method of moments algorithm in this setting. This prototypical algorithm

serves as a foundation both for a brief review of existing moment-methods in section

2.2.4 and for the presentation of the novel compressed predictive state representation

algorithm in chapter 4.

2.2.1 A Concrete Framework: Latent Variable Models and

Weighted Automata

.

A stochastic language is a probability distribution over Σ?. More formally, it is a

function

f : Σ? → R (2.1)

such that f(x) ≥ 0 for every x ∈ Σ? and
∑

x∈Σ? f(x) = 1 [57]. The main learning

problem is thus to infer a stochastic language f̂ from a sample S = (x1, . . . , xm) of

i.i.d. strings generated from some stochastic language f . In order to give a succinct

representation for f̂ we use hypothesis classes based on finite automata. In the

following we present several types of automata that are used throughout this work.

A weighted automaton (WA) over Σ is a tuple A = 〈α0, α∞, {Aσ}σ∈Σ〉, with

α0, α∞ ∈ R
n and Aσ ∈ R

n×n. The vectors α0 and α∞ are called the initial and final

weights, respectively. Matrices Aσ are transition operators containing transition

CHAPTER 2. TECHNICAL FOUNDATIONS 12

weights. The size n of these objects is the number of states of A. A weighted

automaton A computes a function fA : Σ? → R as follows:

fA(x1 · · ·xt) = α>
0 Ax1 · · ·Axt

α∞ = α>
0 Axα∞ . (2.2)

We say that a function f : Σ? → R is realized by A if fA = f . If fA is a stochastic

language, then we say that A is a stochastic automaton.

A learning task one might consider in this setting is the following: assuming

the target stochastic language can be realized by some WA, try to find a stochastic

WA realizing approximately the same distribution (w.r.t. some metric). The methods

given in [34, 5] – which we review in section 2.2.4 – can be used to solve this problem,

provided one is content with a WA A such that f̂ = fA approximates f but is not

necessarily stochastic. It turns out that this is an essential limitation of using WA

as a hypothesis class: in general, checking whether a WA A is stochastic is an

undecidable problem [21]. Thus, if one imperatively needs the hypothesis to be

a probability distribution, it is necessary to consider methods that produce a WA

which is stochastic by construction. These include probabilistic automata and hidden

Markov models.

A probabilistic automaton (PA) is a WA A = 〈α0, α∞, {Aσ}〉 where the weights

satisfy the following conditions:

1. α0 ≥ 0 with α>
0 1 = 1; and,

2. α∞ ≥ 0, Aσ ≥ 0, with
∑

σ Aσ1 + α∞ = 1.

These conditions say that α0 can be interpreted as probabilities of starting in each

state and that Aσ and α∞ define a collection of emission/transition and stopping

probabilities that describe all the possible events that can occur from a given state.

It is easy to check that PA are stochastic by construction; that is, when A is a PA

the function fA is a stochastic language.

A factorized weighted automaton (FWA) is a tuple A = 〈α0, α∞, T, {Oσ}σ∈Σ〉
with initial and final weights α0, α∞ ∈ R

n, transition weights T ∈ R
n×n, and emis-

sion weights Oσ ∈ R
n×n, where the matrices Oσ are diagonal. One can readily trans-

form a FWA into a WA by taking B = 〈β0, β∞, {Bσ}〉 with β0 = α0, β∞ = α∞,

CHAPTER 2. TECHNICAL FOUNDATIONS 13

and Bσ = OσT. A hidden Markov model (HMM) is a FWA where the weights satisfy

the following conditions:

1. α0 ≥ 0 with α>
0 1 = 1;

2. T ≥ 0 with T1 = 1; and,

3. α∞ ≥ 0, Oσ ≥ 0, with
∑

σ Oσ1 + α∞ = 1.

It can be easily checked that these conditions imply that the WA obtained from a

HMM is a PA. For convenience, given a HMM we also define the observation matrix

O ∈ R
Σ×n with entries O(σ, i) = Oσ(i, i).

Note that unlike with WA, both PA and HMM readily define probability distri-

butions. But this comes at a price: there are stochastic WA realizing probability

distributions that cannot be realized by any PA or HMM with a finite number of

states [21]. In terms of representational power, both PA and HMM are equivalent

when the number of states is unrestricted. However, in general PA provide more

compact representations: given a PA with n states one can always obtain an HMM

with min{n2, n|Σ|} states realizing the same distribution. On the other hand, there

are PA with n states such that every HMM realizing the same distribution needs

more than n states [26]. These facts imply that different hypothesis classes for learn-

ing stochastic languages impose different limitations to the class of distributions we

might be able to learn and to the extent to which we can compress these represen-

tations. Of particular importance to this work is the relative conciseness of PA (or

more generally WA) compared to HMMs.

Given a stochastic language f that assigns probabilities to strings, there are two

functions computing aggregate statistics that one can consider: fp for probabilities

of prefixes, and f s for expected number of occurrences of substrings. In particular,

we have fp(x) = f(xΣ?) =
∑

y∈Σ? f(xy), and f s(x) = Ey∼f [|y|x] =
∑

y,z∈Σ? f(yxz).

Note that given a sample S of size m generated from f , it is equally easy to estimate

the empirical probabilities f̂S(x) = (1/m)
∑m

i=1 I[x
i = x], as well as empirical prefix

probabilities f̂p
S(x) = (1/m)

∑m
i=1 I[x

i ∈ xΣ?] and empirical substring occurrence

expectations f̂ s
S(x) = (1/m)

∑m
i=1 |xi|x. It is shown in [7] that when f is realized by a

CHAPTER 2. TECHNICAL FOUNDATIONS 15

of the model are updated by maximizing the joint likelihood of the observed data and

the expected hidden variables’ distributions. These two-steps are iterated until the

algorithm converges and the parameters stop changing (empirically, a ε convergence

tolerance is used).

For HMMs, the time complexity of each of iteration is O(n2L|S|), where n is the

number of hidden states, |S| is the number of training sequences (i.e., the cardinality

of the sample set S), and is L the max-length of a training sequence in S [58]. No

closed form expression for the number of iterations necessary to achieve convergence

is known, but the empirical runtime for EM is generally quite high for complex

models such as HMMs, since each iteration incurs significant computational cost.

Moreover, to avoid getting stuck in local-minima, restarts and other heuristics

are usually necessary to achieve good statistical performance [35]. In practice, given

enough time to explore the space of parameters, these heuristics yield very compet-

itive models on problems with relatively small state spaces (i.e., state spaces of size

O(102)) [e.g., 71]. In this work, however, we are concerned with much larger do-

mains (e.g., domains with ≈ 1056 states), where explicit state-space representations

are intractable, and as such, EM will not be of practical use for the problems we

consider.

2.2.3 A Simple Moment-Based Algorithm: Factorizing a

Hankel Matrix

A key step underlying the method of moments algorithms for learning stochastic

languages is the arrangement of a finite set of values of f into a Hankel matrix

or tensor in a way such that spectral factorizations of these linear objects reveal

information about the operators of a WA, PA, or HMM realizing f . As a simple

example, consider f = fA for some WA A = 〈α0, α∞, {Aσ}〉 with n states. Given

two sets of strings P ,S ⊂ Σ? which we call prefixes and suffixes, consider the matrix

H ∈ R
P×S with entries given by [H]u,v = f(uv). This is the Hankel matrix2 of f on

2In real analysis a matrix M is Hankel if [M]i,j = [M]k,l whenever i + j = k + l, which in
particular implies that M is symmetric because of the commutativity i + j = j + i [54]. In our case

CHAPTER 2. TECHNICAL FOUNDATIONS 16

prefixes P and suffixes S. Writing f(u, v) = (α>
0 Au)(Avα∞) we see that this Hankel

matrix can be written as

H = PS, (2.3)

where P ∈ R
P×n with the uth row equal to α>

0 Au, and S ∈ R
n×S with vth column

equal to Avα∞. Then it is easy to see that the Hankel matrix Hσ ∈ R
P×S with

entries [Hσ]u,v = f(uσv) for some σ ∈ Σ can be written as

Hσ = PAσS. (2.4)

Thus, a way to recover the operators Aσ of A is to obtain a factorization H = PS

and use it to solve for Aσ in the expression of Hσ.

2.2.4 Overview of Existing Methods

In this section, we describe three algorithms for using the methods of moments to

learn a weighted automaton from data. This selection is representative of the possi-

ble approaches to the method of moments, all of which involve either singular value

decompositions, convex optimization, or symmetric tensor decompositions. More-

over, all these methods build upon the idea that by arranging particular values (i.e.,

estimates of low-order moments) in matrices or tensors, the equations relating the

target parameters of the automaton to these observed statistics are solvable via fac-

torizations of these algebraic objects. For ease of presentation, we assume that we

have access to the target stochastic language f , which can be used to compute the

probability f(x) of any string x ∈ Σ?. Very few modifications are needed when the

algorithms are applied to empirical estimates f̂S computed from a sample S. We

give detailed descriptions of these modifications wherever they are needed.

2.2.4.1 The Spectral Method

The first of the three methods of moments presented here is simply a concrete in-

stantiation of the Hankel factorization approach, elucidated in section 2.2.3, using

we have [H]u,v = [H]w,z whenever uv = wz, but H is not symmetric because string concatenation
is not commutative.

CHAPTER 2. TECHNICAL FOUNDATIONS 17

singular value decomposition (SVD) as the factorization method. We now proceed to

give the details of the algorithm, which is based on [34, 5]. The algorithm computes a

minimal WA that approximates f but which, in general, is not stochastic. As input,

the method requires sets of prefixes and suffixes P ,S ⊂ Σ?, and the number of states

n of the target automaton.

The algorithm starts by computing the Hankel matrices H, Hσ ∈ R
P×S for each

σ ∈ Σ. It also computes vectors hλ,S ∈ R
S with hλ,S(v) = f(v) and hP,λ ∈ R

P with

hP,λ(u) = f(u). Next, it computes the reduced SVD3 decomposition H = UDV>

with U ∈ R
P×n, V ∈ R

S×n and diagonal D ∈ R
n×n. The algorithm then returns a

WA A = 〈α0, α∞, {Aσ}〉 given by

α>
0 = h>

λ,SV , (2.5)

α∞ = D−1U>hP,λ , (2.6)

Aσ = D−1U>HσV . (2.7)

We note that this algorithm is implicitly using the factorization H = PS =

(UD)(V>), i.e. where P = (UD) and S = V>. The alternative factorization

H = (U)(DV>) produces a modified but equivalent algorithm. We choose this

factorization in order to maintain consistency with later sections.

This algorithm is remarkably simple, requiring only a single SVD, and has been

shown to be statistically consistent [34]. It is important to reiterate that this method

is guaranteed to return a stochastic automaton only in the case where infinite data

is used in estimating H and thus in practice only a general WA is returned which

gives scores not probabilities to strings. In practice, these scores tend to closely

approximate probabilities [16, 13, 34]. The method is reasonably efficient, especially

when compared to EM and more complex moment-methods, with a time complexity

of O(n|Σ||P||S|), assuming that H is given as an input.

Given its simplicity and efficiency, the spectral method is used in numerous appli-

cations where WA are learned from data, e.g. reinforcement learning [16, 13, 52, 32]

and natural language processing [6, 45, 18]. In addition, its generality has lead to its

3When using an approximation Ĥ, the algorithm computes the n-truncated SVD instead.

CHAPTER 2. TECHNICAL FOUNDATIONS 18

use in problems not directly related to sequence prediction. For example it has been

used robotics to perform range-only simultaneous localization and mapping (SLAM)

[14].

2.2.4.2 Convex Optimization Method

This method recovers the operators of a WA by solving an optimization problem with

the sum of a loss function involving the Frobenius norm and a trace norm regularizer.

To motivate the algorithm, recall that if f is computed by a WA with n states, then

a Hankel matrix of f admits a factorization of the form H = PS, P ∈ R
P×n,

S ∈ R
n×S . Now suppose that P has rank n. Then, taking Bσ = PAσP+ ∈ R

P×P

we have BσH = Hσ and rank(Bσ) ≤ n. Since the WA given by B = 〈β0, β∞, {Bσ}〉
with β>

0 = α>
0 P+ and β∞ = Pα∞ satisfies fA = fB, this motivates an algorithm

that looks for a low-rank solution of MH = Hσ; the learned M t corresponding to

a low-rank approximation of Bσ .

An algorithm based on this principle is described in [10]. As input, the method

requires sets of prefixes P and suffixes S with λ ∈ P ∩ S, and a non-negative

regularization parameter τ ∈ R. The number of states of the WA produced by

this algorithm is equal to the number of prefixes |P|. We start by describing this

method as it was originally presented in [10]. Then we show how a tiny variation of

it can be used to obtain a PA as output.

The algorithm starts by computing two Hankel matrices H ∈ R
P×S and HΣ ∈

R
PΣ×S , where H is defined like before, and [HΣ]uσ,v = f(uσv). Note that because

we have λ ∈ P ∩ S, now the vectors hP,λ and hλ,S are contained inside of H. The

operators of the hypothesis are obtained by solving the optimization problem

AΣ ∈ argmin
M∈RPΣ×P

‖MH−HΣ‖2
F + τ‖M‖∗ , (2.8)

and then taking the submatrices Aσ ∈ R
P×P given by [Aσ]u,u′ = [AΣ]uσ,u′ . The

output automaton is obtained by taking A = 〈α0, α∞, {Aσ}〉, with the operators

recovered from AΣ, α0 = eλ the indicator vector corresponding to the empty prefix,

and α∞ = hP,λ.

CHAPTER 2. TECHNICAL FOUNDATIONS 19

In order to obtain a PA as output, one can add a set of convex constraints to the

search space of (2.8). In particular, this can be achieved by looking for M inside the

set of matrices P(PΣ,P , hP,λ) ⊆ R
PΣ×P satisfying

1. M ≥ 0,

2.
∑

u′,σ M(uσ, u′) + hP,λ(u) = 1 for every u ∈ P.

Compared to the spectral method, the convex optimization approach offers more

flexibility in terms selecting the model complexity, as it allows for a continuous

penalty on the nuclear norm of the learned model instead of a discrete specified

model size. Experiments on natural language process problems have demonstrated

that this extra flexibility with respect to model complexity can lead to more accurate

predictive models [10]. The method also offers more flexibility in that additional

constraints upon the convex optimization can be used to enforce particular structure

in the learned automaton. The enforcement that the output is a PA described above

is an example of such a constraint.

The efficiency of this method largely depends upon the convex optimization rou-

tine being used. However, it is worth noting that the proximal gradient operator,

used by the majority of efficient solvers, for the nuclear norm regularization condition

requires the singular value decomposition of the Hankel matrix. Thus, in a majority

of cases this method will at least require an SVD to be computed at each iteration

during optimization, implying that it may be substantially more expensive than the

spectral method.

2.2.5 Symmetric Tensor Decomposition Method

The tensor decomposition method can be applied when the target distribution is

generated by a HMM [3]. The idea behind this approach is to observe that when f

can be realized by a FWA, then the factorization of the Hankel matrix associated

with a symbol σ ∈ Σ becomes

Hσ = POσTS. (2.9)

CHAPTER 2. TECHNICAL FOUNDATIONS 20

Since P, S, and T appear in the decomposition for all σ, and Oσ is diagonal, this

implies that under some assumptions on the ranks of these matrices, all the Hσ

admit a joint diagonalization. Stacking these matrices together yields a Hankel

tensor HP,Σ,S ∈ R
P×Σ×S with a particular structure that can be exploited to recover

first the Oσ matrices, and then the transition matrix T and the weight vectors α0

and α∞. The algorithm described in this section implements this idea by following

the symmetrization and whitening approach of [2]. This presentation is a variant of

their method, which extends the method to work with arbitrary sets of prefixes P
and suffixes S, and also is able to recover the set of stopping probabilities.

Again, the method needs as input sets of prefixes P and suffixes S with λ ∈ P∩S,

and the number of states n of the target HMM, which must satisfy n ≤ |Σ|. The

algorithm proceeds in four stages. In its first stage, the algorithm computes a set of

Hankel matrices and tensors. In particular, a third order tensor HP,Σ,S ∈ R
P×Σ×S

with entries [HP,Σ,S]u,σ,v = f(uσv), a Hankel matrix HP,S ∈ R
P×S with entries

[HP,S]u,v = f(uv), and a Hankel matrix H
p
P,Σ ∈ R

P×Σ with entries [Hp
P,Σ]u,σ =

f(uσΣ?). Integrating over the different dimensions of the tensor HP,Σ,S , the algo-

rithm obtains three more matrices: H̄Σ,S ∈ R
Σ×S with entries [H̄Σ,S]σ,v =

∑

u f(uσv),

H̄P,S ∈ R
P×S with entries [H̄P,S]u,v =

∑

σ f(uσv), and H̄P,Σ ∈ R
P×Σ with entries

[H̄P,Σ]u,σ =
∑

v f(uσv).

The goal of the second stage is to obtain an orthogonal decomposition of a tensor

derived from HP,Σ,S as follows. Assuming H̄P,S has rank at least n, the algorithm

first finds matrices QP ∈ R
n×P and QS ∈ R

n×S such that

H̃P,S = QPH̄P,SQ>
S (2.10)

is invertible and then computes

N = Q>
S H̃−1

P,SQP . (2.11)

Combining these, a matrix XΣ ∈ R
Σ×Σ and a tensor YΣ ∈ R

Σ×Σ×Σ are obtained as

follows:

XΣ = H̄Σ,SNH̄P,Σ (2.12)

YΣ = HP,Σ,S(N>H̄>
Σ,S , I, NH̄P,Σ). (2.13)

CHAPTER 2. TECHNICAL FOUNDATIONS 21

One can show that both XΣ and YΣ are symmetric.4 Then, assuming XΣ is positive

definite of rank at least n, we can find W ∈ R
Σ×n such that W>XΣW = I. This is

used to whiten the tensor YΣ by taking

ZΣ = YΣ(W, W, W). (2.14)

Next we compute the robust orthogonal eigendecomposition

ZΣ =
∑

i∈[n]

γiz
⊗3
i (2.15)

using a power method for tensors similar to that used to compute eigendecompo-

sitions of matrices [2]. Using these robust eigenpairs (γi, zi) we build a matrix

Õ ∈ R
Σ×n whose ith column is γi(W

>)+zi. After a normalization operation, this

will be the observation matrix of the output model.

The third stage recovers the rest of parameters (up to normalization) via a series

of matrix manipulations. Let ÕP = H̄P,Σ(Õ>)+ ∈ R
P×n and Õ>

S = Õ+H̄Σ,S ∈ R
n×S .

We start by taking α̃>
0 = e>

λ ÕP and α̃∞ = Õ>
S eλ: respectively, the rows of ÕP and

ÕS corresponding to λ. Similarly, the algorithm computes

T̃ = Õ+
PH̄P,SH+

P,SÕP . (2.16)

In the last stage the model parameters are normalized as follows. Let D̃γ =

diag(γ2
1 , . . . , γ2

n) ∈ R
n×n and D̃S = Õ>H

p
P,Σ

+
ÕP ∈ R

n×n. Now, to obtain α∞ we

first compute

β = D̃ST̃+D̃γα̃∞ (2.17)

and then let

α∞(i) = β(i)/(1 + β(i)). (2.18)

The initial weights are obtained as

α>
0 = α̃>

0 D̃+
ΣD̃+

S , (2.19)

4When working with approximate Hankel matrices and tensors this is not necessarily true. Thus
one needs to consider the symmetrized versions (XΣ +X>

Σ
)/2 and

∑

ρ Y
ρ
Σ

/6, where the sum is taken
over all the permutations ρ of {1, 2, 3}.

CHAPTER 2. TECHNICAL FOUNDATIONS 22

where D̃Σ = I− diag(α∞). And finally, we let

O = ÕD̃Σ (2.20)

and

T = D̃ST̃D̃+
S D̃+

Σ. (2.21)

When working with empirical approximations these matrices are not guaranteed to

satisfy the requirements in the definition of a HMM. In this case, a last step is

necessary to enforce the constraints by projecting the parameters into the simplex

[25].

As with the spectral and convex optimization methods, the symmetric tensor

decomposition approach is statistically consistent (when the target automaton is

an HMM) [8]. Unlike these other methods, it is guaranteed to return a stochastic

automaton as HMMs are probabilistic by construction. This guarantee, however,

does come at a cost: the tensor decomposition involves significantly more algebra

operations compared to the spectral approach and suffers from more constraints,

namely that the learned model has dimension at most |Σ| [2]. The constraint that

the model dimension is at most |Σ| is particularly problematic in domains such as

bioinformatics, where hidden states may correspond to genes (i.e., underlying encod-

ing states in a DNA sequence) and observations to the set of nucleobases {A,C,T,G};

clearly, there are many possible (i.e. > 4) genes while in this case |Σ| = 4 [41]. The

time-complexity of this method is O((|Σ| + n)|P||S| + Rn2), where R is number

of tensor-power iterations used in the decomposition and again assuming that the

Hankel estimates are provided as input.

3
Moment-Methods in Sequential

Decision-Making

In this chapter, we move away from the general problem of sequence prediction

using the method of moments to focus on a particular instantiation of the moment-

method framework within the context of sequential decision-making. Here we con-

sider an agent reasoning about the dynamics of a system, where learning distributions

over possible action-observation sequences is of fundamental importance, as it allows

agents to predict outcomes of actions and plan accordingly. Moment-methods are

an attractive candidate for use in this context given their desirable theoretical and

algorithmic properties, in particular, their efficiency and generality.

Section 3.1 will introduce the sequential decision-making framework that we em-

ploy. Section 3.2 introduces the basic moment-method model for sequential decision-

making: the predictive state representation (PSR) model, which builds on ideas

introduced in the previous chapter. A novel contribution of this work is the pre-

sentation of PSRs within the general framework of learning WA via the method of

moments.

3.1 Sequential Decision-Making

Framework

The sequential decision-making framework used in this work makes minimal assump-

tions about both the agent and the environment. Specifically, the framework assumes

23

CHAPTER 3. SEQUENTIAL DECISION-MAKING 24

only (1) that the environment is partially observable and Markovian with respect to

some underlying state, (2) that each hidden state emits a numerical reward signal,

and (3) that the agent is interested in maximizing a cumulative function of these

rewards, where immediate rewards are given more weight (i.e., importance) than po-

tential rewards far in the future. The following sections (3.1.1 and 3.1.2) elaborate

on these assumptions and formalize this framework.

3.1.1 Partial State Observability

Much of sequential decision-making is concerned with settings in which agents have

complete knowledge of the system state [68, 30]. In this work, however, we are

interested in the more difficult task of sequential decision-making under partial state

observability, i.e., where single observations do not fully characterize the state of

the system. In other words, we assume that at each time-point the system is fully

described by some underlying hidden, or latent, state that controls the system’s

dynamics and emits an observation.

Assuming partial state observability is a necessity in many interesting application

domains. For example, in the field of robotics it is most often the case that agents

only have access to noisy sensors, which confer some information about their environ-

ment but do not fully disambiguate their state (e.g., their global position). Moreover,

assuming partial observability is non-restrictive in that the vast majority of sequen-

tial decision-making domains may be modelled as such [40]. The only environments

which are not captured in this partially observable framework are those that are not

Markovian with respect to any finite-dimensional state-space. However, without ap-

proximations (e.g., approximate Markovian assumptions) sequential decision-making

is generally not feasible in such domains, as they could require unbounded amounts

of memory [64].

Since partial observability implies that single observations are far from sufficient

statistics for the state of the system, it is necessary for an agent in this setting

to incorporate knowledge of its history within a particular execution trace. One

solution to this problem is for the agent to simply incorporate a fixed window of

CHAPTER 3. SEQUENTIAL DECISION-MAKING 25

history into its plans. However, this approach lacks in generality, as it requires

knowing (or discovering) the necessary window size. Even more troubling are the

facts that the state-space increases combinatorially with larger window sizes and that

no (non-trivial) a priori upper bound on the necessary window size can be efficiently

obtained [22]. Extensions of this approach which combine different window sizes

into one single model are possible [12, 22], but these extensions still lack expressive

capability compared to models that explicitly account for the existence of a hidden

state [12].

A more general approach, and the one that is taken in this work, is to have the

agent learn a probabilistic model of the system that explicitly models the existence

of a hidden state and that facilitates tracking and the prediction of future events.

The model state then serves as the sufficient statistic for the system’s history, and

plans can be made by reasoning using the model.

3.1.2 The POMDP Model

The classic method for formalizing sequential decision-making under uncertainty,

while explicitly taking into account the underlying hidden state, is to use the partially

observable Markov decision process (POMDP) model. Intuitively, POMDPs are

simply the generalization of HMMs that include action inputs in the system transition

dynamics. Formally, a POMDP is defined by a tuple 〈S,A,O, T, Ω, R〉, where [40]

• S is a set of hidden states,

• A is a set of actions,

• O is a set of observations,

• T is a set of (conditional) transition probabilities, specifying how the system

transitions from a hidden state after taking some action,

• Ω specifies the emission distributions of observations from hidden states, and

• R : A× S → R is a reward function.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 26

Thus in this framework, an agent takes an action from the set A, which induces a

transition to a new hidden state (determined by T). And from this new hidden state,

the agent receives an observation (determined by Ω) and a reward (determined by

R). The assumption that numerical rewards are emitted from each hidden state is

made in order to simplify analysis and is well-motivated in that it simply corresponds

to an agent having a quantified measure of goodness at each point in time.

In addition to this formal model, in most applications using POMDPs it is nec-

essary to maintain a vector belief-state b ∈ ∆|S|−1 that encodes the probability of

the agent being in each hidden state (at each point in time) [40]. This belief-state

serves as a sufficient statistic for the system’s history and can be maintained by an

agent as it tracks through a system. It is also necessary to define a Q-function

Q : A×∆|S|−1 → R, (3.1)

which defines the quality of a belief-state and action pair [49].1 In this work, we

formally define this Q via the recursive relation

Q(a, bt) =
|S|
∑

i=0

[bt]iR(a, i) + γ max
a

E
bt+1∼a

[Q(a, bt+1)], (3.2)

where Ebt+1∼a is used to denote the expectation of the next belief-state given that

action a is taken and γ is a discount factor in [0, 1]. A policy, or mapping π :

∆|S|−1 → A from belief states to actions, can be easily defined using the Q-function

by taking the argmax over actions when in a belief-state [40].

Intuitively, the Q-function combines (via summation) the immediate reward ob-

tainable by taking a particular action when in a belief-state and a discounted measure

of the quality of the new belief-state that will be induced by taking the action [49].

Thus an action may be desirable in cases where it leads to high immediate rewards or

where it causes a transition to a desirable belief-state. The discounting of potential

1For completeness, we note that the Q-function is most-often defined over the underlying system
states (and not belief-states) [43]. As was mentioned in section 3.1.1, these system states are often
assumed to fully observable, and this is the natural definition in that setting. The Q-function is then
extended to POMDP belief-states. However, since we are only concerned with partially observable
domains, we omit the observable definition and define the Q-function directly over belief-states.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 27

future rewards is motivated by the intuition that agents should give primacy to their

immediate situation (and not, for example, incur irreparable physical damage for

the promise of future rewards). Moreover, it is a mathematical necessity in domains

that have potentially infinite planning horizons (i.e., where there is no well-defined

notion of a start or stop state), since the use of discounts prevents the Q-function

from diverging to infinity [43].

Given a POMDP, it is possible to use various techniques to determine an optimal

sequence of decisions (i.e., a plan or policy) [49]. At a high level, these techniques

usually involve learning some approximation of the Q-function. We forgo a detailed

discussion of such techniques since the majority are not of direct relevance to this

work and refer the reader to [49] for an extensive overview. In particular, here we are

interested in both learning a POMDP-type model of a system and planning given this

learned model, while POMDP planning algorithms assume that a complete model

is given a priori.2 Combining learning and planning leads us to a generalization

of POMDPs for which the classic POMDP planning algorithms are not directly

applicable.

3.2 Predictive State Representation

Predictive state representations (PSRs) are both an extension of the basic Han-

kel factorization method of moments for sequence prediction and a generalization

of POMDPs. The primary difference between PSR learning and the basic Hankel

factorization method being that PSRs model sequences of action-observations pairs

instead of sequences of only observations. The relationship between PSR models

and POMDPs is analogous to the relationship between WA and HMMs elucidated in

chapter 2: PSRs are a super-set of POMDPs where the transition function, T , and

observation emission functions, Ω, are combined into a (potentially) more concise

2In general, the learning problem for POMDPs has received relatively little attention, primarily
due to the intractabilities associated with maximum likelihood learning with such complex models,
as the addition of actions significantly complicates EM-style learning to the point of intractabil-
ity [40]. There are some circumscribed examples of learning in this setting, e.g. using Bayesian
adaptation [62]; however, these learning frameworks assume considerable a priori knowledge.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 28

set of linear operators.3 This relationship trivially holds by noting that POMDPs

are simply HMMs with the addition of actions and decision-making. Moreover, the

relative generality of WAs compared to HMMs transfers over to this decision-making

setting in that any POMDP can be represented by a PSR model while the reverse

does not hold [44].

As with the generic moment-method, a PSR model is constructed directly from

observable quantities, in this case execution traces, without utilizing any prior in-

formation about the domain [44, 67]. PSRs thus offer an expressive and powerful

framework for modelling dynamical systems without prior knowledge and provide a

suitable foundation for an agnostic sequential decision-making.

It is worth noting that PSRs correspond to the simplest of the generic moment-

methods described in previous sections; that is, a PSR model is learned via a rank-

revealing decomposition of the Hankel matrix. Thus, the spectral method will be

employed in learning PSRs (under the name of transformed PSRs or TPSRs), but

neither convex optimization nor tensor decomposition will be used in the sequen-

tial decision-making setting. The tensor and convex optimization moment-methods

could, in principle, be applied to sequential decision-making. However, in the se-

quential decision-making setting it is necessary to have fast (possibly even incremen-

tal/online) model learning, and high-dimensional observation and state spaces are

the norm, rendering the tensor and convex optimization methods computationally

intractable in the majority of cases. Even the spectral method which is consider-

ably more efficient than both the tensor and convex optimization approaches nears

intractability in many sequential decision-making domains, as we will demonstrate

in the coming chapters.

3.2.1 The PSR Model: Independent Derivation

A PSR model is a WA that incorporates both actions and observations. However,

given the additional meaning implicated by such a WA, in this section, we provide

3A necessary point of clarification is that the term PSR refers simultaneously to the model class
and the (moment-based) learning algorithm. In situations where the meaning may be ambiguous
we will refer separately to the PSR model and the PSR learning algorithm.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 29

additional intuition and derivations independent of the general theory of the method

of moments. We will elucidate the close relationship between PSRs and generic

moment-methods for sequence prediction in the next section.

Formally, a PSR maintains a probability distribution over different sequences of

possible future action-observation pairs. Such sequences of possible future action-

observations are termed tests and denoted τ . For example, we could construct a

test τi = [ok1
t+1, ok2

t+2, ..., okn
t+n|al1

t+1, al2
t+2, ..., aln

t+n], where notationally subscripts refer to

time, superscripts identify particular actions or observations, and the | symbol in this

case denotes that the agent “intervened” by performing the specified actions at the

specified times. We can then say that such a test is executed if the agent intervenes

and takes the specified actions, and we say the test succeeded if the observations

received by the agent match those specified by the test. Going further, we can define

the probability of success for test τi as

P(τi) = P(ok1
t+1, ok2

t+2, ..., okn

t+n|al1
t+1, al2

t+2, ..., aln
t+n). (3.3)

Of course, we want to know more than just the unconditioned probabilities of

success for each test. A complete model of a dynamical system also requires knowing

the success probabilities for each test conditioned on the agent’s previous experi-

ence, or history. We denote such a history hj = [al0
0 ok0

0 , al1
1 ok1

1 ...alt
t okt

t], where again

subscripts denote time and superscripts identify particular actions or observations.

Importantly, the actions are not separated from the observations with the | symbol in

the definition of a history, as the sequence of actions specified in a particular history

are assumed to have already been executed.

Finally, given that an agent has performed some actions and received some ob-

servations, defining some history hj, we compute

P(τO
i |hj, τA

i), (3.4)

the probability of τi succeeding conditioned upon the agent’s current history in the

system, where τA
i and τO

i denote the vectors of actions and observations, respectively,

specified in τi.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 30

It is not difficult to see that a dynamical system is completely described by the

conditional success probabilities of all tests given all histories. That is, if we have

P(τO
i |hj, τA

i), ∀i ∀j then we trivially have all necessary information to characterize

the dynamics of a system. Of course, maintaining all such probabilities directly is

infeasible, as there is a potentially infinite number of tests and histories (and at the

very least an exorbitant number for any system of even moderate complexity) [44].

Fortunately, it has been shown that it suffices to remember only the conditional

probabilities for a small (not necessarily unique) core set of tests, and the condi-

tional probabilities for all other tests may be defined as functions of the conditional

probabilities for the tests in this core set [44]. Perhaps more importantly, [44] has

shown that it suffices to consider only linear functions of tests in a core set. That is,

given a core set of tests Q, we can compute the conditional probability of some test

τi /∈ Q as

P(τO
i |hj, τA

i) = P(QO|hj,QA)>rτi
, (3.5)

where rτi
is a vector of weights and P(QO|hj,QA) an ordered vector of conditional

probabilities for each test qi ∈ Q. Integral to this approach is the fact that restricting

the model to linear functions of tests in a core set does not preclude the modelling

of non-linear dynamical systems, as the dynamics implicit in the probabilities may

specify non-linear behaviours [44].

Thus, given the functions mapping tests in a core set to all other tests, it suffices

to maintain, at time t, only the vector mt = P(QO|ht,QA), where ht is the history

of the system at time t. That is, it suffices to maintain only the vector of conditional

probabilities for the tests in a core set.

Formally, a PSR model of a system is defined by {O,A,Q,F , m0}, where O
and A define the possible observations and actions respectively, Q is a core set of

tests (usually assumed to be minimal in terms of cardinality), F defines a set of

linear functions mapping success probabilities of tests in the minimal core set to

the probabilities for all tests, and m0 defines the initial state of the system (i.e.,

m0 = P(QO|QA)). As mentioned above, we restrict F to contain linear functions,

so its elements can be specified as vectors of weights. These vectors, in turn, are

CHAPTER 3. SEQUENTIAL DECISION-MAKING 31

specified using a finite set of linear operators (i.e., matrices). Specifically, we define

a linear operator Malok for each action-observation pair such that

P(ok
t+1|ht, al

t+1) = P(QO|ht, QA)>Malokm∞ (3.6)

= m>
t Malokm∞, (3.7)

where m∞ is a constant normalizer such that m>
∞mt = 1, ∀t.

These operators map probabilities for test in the (minimal) core set to the

probabilities for single action-observation pairs and may be recursively combined

to generate the full set of linear functions in F . For instance, for the test τi =

[ok1
t+1, ok2

t+2, ..., okn
t+n|al1

t+1, al2
t+2, ..., aln

t+n], we compute

P(τO
i |ht, τA

i) = P(QO|ht, QA)>rτi
(3.8)

= m>
t Mal1 ok1 Mal2 ok2 · · ·Maln okn m∞. (3.9)

These operators can also be used to produce n-step predictions (i.e., the probability

P(ok
t+n|ht, sal

t+n) of seeing an observation, ok, after taking action, al, n-steps in the

future) by:

P(oj
t+T |ht) = m>

t (M?)
n−1Malokm∞, (3.10)

where M? =
∑

alok∈A×O Malok is a matrix that can be computed once and stored as

a parameter for quick computation [73].4

Lastly, the operators provide a convenient method for updating the predictive

state, defined by the prediction vector mt, as an agent tracks through a system and

receives observations. The prediction vector mt is updated to mt+1 after an agent

takes an action al and receives observation ok using:

m>
t+1 = P(QO|ht+1,QA)> (3.11)

= P(QO|hta
lok,QA)> (3.12)

=
m>

t Malok

m>
t Malokm∞

. (3.13)

4The computation of M? assumes an random open-loop (i.e., blind) action policy. If a non-blind
policy were used then the summands would need to be weighted according to the action policy.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 32

Together, the elements of {O,A,Q,F , m0} (where F is understood to contain

the linear operators described above and the normalizer) thus provide a succinct

model of a system that allows for the efficient computation of event probabilities and

also facilitates conditioning upon observed histories.

3.2.2 The PSR Model: Method of Moments Interpretation

The mapping from PSRs to generic moment-methods for sequence prediction is

straightforward. First, we note that the parsing of sequences of action-observation

pairs into test and histories maps readily to the parsing of a string into suffixes and

prefixes, respectively. The set F then corresponds directly to a WA computing a

stochastic language fp : Σ? → R with Σ := A × O: the linear operators, i.e.

Mao ∀ao ∈ A × O, corresponding to the transition operators in the WA; the m0

vector to the initial weights; and the m∞ normalization vector to the final weights.5

We emphasise that a PSR, as defined here, realizes a function computing prefix

probabilities and not string probabilities. This makes intuitive sense in a decision-

making setting, as an agent is interested in computing the probabilities of different

possible future action-observation pairs given some past as opposed to computing

the probability of entire trajectories.

The statement that only a finite number of operators, corresponding to the tests

in a minimal core set, are necessary to characterize a system is equivalent to the

statement that the Hankel matrix defined over tests and histories has rank |Q|. The

tests in the minimal core set then correspond to a column-basis of H.

We reiterate that, given this interpretation, the conciseness of PSRs compared to

POMDP models is immediately apparent. Recalling from section 2.2.1 that there are

PA (and thus WA) with n states such that every HMM realizing the same distribution

needs more than n states [26], we immediately have that an analogous relation holds

for PSRs versus POMDPS as they are extensions of WA and HMMs, respectively,

to the decision-making setting. This is a more powerful result than that provided by

5The reader is advised that the PSR operators defined in this work are the transposition of the
usual operators used in the PSR setting. This change is trivial and is made to maintain consistency
with the WA framework.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 33

[44]. In that work they give a mapping from any POMDP to a PSR, demonstrating

a constructive proof that PSRs are at least as concise. The relation outlined above

shows that there cases where PSRs are more concise.

We also note that the PSR derivation elucidates a novel interpretation of the

Hankel matrix factorization. First, we define R ∈ R
|Q|×|T | to be the matrix with rτi

as columns, recalling that rτi
defines the linear map from probabilities of tests in a

minimal core set to the probability of test τi. Next, we define Q ∈ R
|H|×|Q| to be

the matrix with rows given by the vectors mhj
= P(QO|hj,QA), the expected PSR

state given a history hj. And, we define a matrix N = diag{hH,λ} = diag{P(H)}
containing the marginal history probabilities along the diagonal. Now we have that

[R]∗,τi
= Mτi

m∞ (3.14)

by definition, and

[Q]hj ,∗ =
m>

0 Mhj

m0Mhj
m∞

. (3.15)

Thus,

[NQ]hj ,∗ = m>
0 Mhj

, (3.16)

since [N]hj ,hj
= P(hj) = m>

0 Mhj
m∞. Combining these results, we see that

H = PS = NQR. (3.17)

So a rank-revealing factorization of H is given by P = NQ and S = R, recalling the

results of section 2.2.3 and that histories and tests are playing the roles of prefixes and

suffixes, respectively, in this setting. We will refer to this as the PSR factorization

of the Hankel matrix. Importantly, this perspective on the factorization reveals the

relationship between the core test set view of PSRs and the more generic Hankel

matrix factorization view.

3.2.3 Learning PSRs

There is a considerable amount of literature describing different approaches to learn-

ing PSRs. We provide an overview of the standard approaches, as chapter 4 describes,

CHAPTER 3. SEQUENTIAL DECISION-MAKING 34

in detail, the efficient compressed learning approach we propose.6 The description of

these learning approaches will, in some cases, amount to alternative descriptions and

motivations of the Hankel matrix factorization approach. We include this alternative

perspective in order to highlight the independent development of PSRs with respect

to the more generic moment-methods. The alternative perspective also provides fur-

ther insight and intuition into the Hankel factorization approach. We will provide

illustrative commentary on the relationship between the generic moment-method and

PSR perspectives as necessary.

In general, PSR learning approaches may be divided into two distinct classes:

discovery-based and subspace-based. In the discovery-based approach, a form of

combinatorial search is used to discover a core set of tests (which may turn out to

be non-minimal), and the PSR model is then computed in a straightforward manner

given the explicit knowledge of Q [38, 39]. This method generates an exact PSR

model. However, the combinatorial search required to find Q precludes the use of

this approach in domains of even moderate cardinality.

Unlike the discovery-based approaches, subspace-based approaches obviate the

need for determining Q exactly [34, 16, 61]. Instead, subspace-identification tech-

niques (e.g., spectral methods) are used in order to find a subspace that is a linear

transformation of the subspace defined byQ [61]. The linear nature of the PSR model

allows the use of this transformed PSR model in place of the exact PSR model with-

out detriment. Specifically, it can be shown that the probabilities obtained via such

a transformed model are consistent with those obtained via the true model [16].

More formally, we let H and Hao ∀ao ∈ A×O be Hankel matrices defined over

some set of histories H and tests T , and we assume that the core test set Q is known.

The discovery-based approach builds a PSR model by

m>
0 = h>

λ,Q, (3.18)

m∞ = ([H]∗,Q)+hH,λ, (3.19)

Mao = ([H]∗,Q)+[Hao]∗,Q, (3.20)

6For a slightly more detailed discussion of existing PSR learning approaches see [73].

CHAPTER 3. SEQUENTIAL DECISION-MAKING 35

while the subspace-based approach builds a model by

β>
0 = h>

λ,T Z, (3.21)

β∞ = (HZ)+hH,λ, (3.22)

Bao = (HZ)+HaoZ, (3.23)

where Z is a matrix such that J = SZ is invertible (recalling that S is the right-side

term of the Hankel factorization).

In general, the complexity of the discovery-based learning approach is dominated

by the combinatorial search for the core set of tests. In the worst case this search

has time-complexity O((|A||O|)L), where L is the max-length of a trajectory (i.e.,

execution trace) used to learn the model. If the core-test set is provided as input, the

discovery-based method has complexity O(|H||Q|2); however, the assumption that

the core-test set is known is not realistic in practice. In contrast, the subspace-based

approach has time-complexity O(|H|||T |dZ), where dZ is the column-dimension of

Z. If the size of the core-test set is known (an unrealistic assumption) then dZ = |Q|
in order to satisfy that SZ is invertible. In practice, dZ and Z itself are chosen via

spectral methods in order to guarantee that SZ is invertible (section 3.2.4 elaborates

on this point).

3.2.4 Transformed Representations

PSR models learned via the subspace method are often referred to as transformed

PSRs (TPSRs), since they learn a model that is an invertible transform of a standard

PSR model. More formally, given the set of linear parameters defining a PSR model

and an invertible matrix J, we can construct a TPSR by applying J as a linear

operator to each parameter. That is, we set β0 = J>m0, β∞ = J−1m∞, and

Bao = J−1MaoJ, ∀ao ∈ A × O, and these new transformed matrices constitute

the TPSR model [13]. It is easy to see that the J’s cancel out in the prediction

equation (3.8) and update equation (3.11). Intuitively, TPSRs can be thought of as

maintaining a predictive state upon an invertible linear transform of the state defined

by the tests in a minimal core set. The final piece of a TPSR is the specification

CHAPTER 3. SEQUENTIAL DECISION-MAKING 36

of Z, the projection matrix defining the subspace used during learning (recall that

J = SZ). The standard method for choosing Z is via spectral techniques; that is,

Z is set to be V, the transpose of the matrix of right singular vectors (from the

thin-SVD of H).

Examining the equations for the different learning methods (i.e., (3.18) and

(3.21)) and recalling the PSR specific Hankel factorisation H = NQR, we see first

that for the discovery-based method, which learns a true untransformed PSR, we

have that

[H]∗,Q = NQI, (3.24)

where I is the identity. In this case only core tests are in [H]∗,Q, and thus the core

test set mapping operator R is replaced by the identity. Similarly for the symbol

Hankels we have

[Hao]∗,Q = NQMaoI. (3.25)

Thus for the discovery method

([H]∗,Q)+[Hao]∗,Q = (NQ)+NQMao (3.26)

= Mao, (3.27)

where we used the fact that NQ is full column-rank by definition. By contrast, for

the subspace learning algorithm, we have

Bao = (HZ)+HaoZ (3.28)

= (NQRZ)+NQMaoRZ (3.29)

= (RZ)+(NQ)+NQMaoRZ (3.30)

= (RZ)−1Mao(RZ), (3.31)

where we used the fact that NQ has full column-rank and that RZ is invertible (both

by definition). This confirms that Bao is a transformed representation of Mao with

J := RZ. Similar results hold for β∞ and β0, showing that the subspace learning

method does, in fact, return TPSRs.

CHAPTER 3. SEQUENTIAL DECISION-MAKING 37

3.2.5 Two Views: Factorization versus Least-Squares

We conclude the discussion of learning PSRs by relating the PSR learning ap-

proaches back to the generic method of moments learning algorithms. First, we

note that there is a fundamental difference in the motivations behind PSR learning

and the generic moment-methods: the PSR learning approaches phrase the problem

as a least-squares regression (i.e., pseudoinverse) problem, while the prototypical

moment-method approach is phrased in terms of factorizing the Hankel matrix.

More formally, if we take the subspace-learning approach with Z = V, where as

usual V contains the right singular vectors from H = UDV> , we have that

Bao = (HV)+(HaoV). (3.32)

And we note that

(D−1U>)(HV) (3.33)

= (D−1U>)(UDV>V) (3.34)

= I, (3.35)

so

(D−1U>) = (HV)+. (3.36)

Thus we see that the Hankel factorisation approach with H = (UD)(V>) is in

fact the solution to the least-squares regression subspace-based PSR approach when

Z = V. A TPSR with Z = V is thus equivalent to learning a WA via the spectral

method described in section 2.2.4.1.

To our knowledge, this is the first work making this subtle relationship explicit,

and we hope that this will further facilitate the viewing of these two different ap-

proaches as simply alternative instantiations of a common underlying framework.

3.3 Discussion

In this chapter, we motivated and introduced the PSR framework, a moment-based

learning method for sequential decision-making and a generalization of the POMDP

CHAPTER 3. SEQUENTIAL DECISION-MAKING 38

formalism. By leveraging the method of moments, PSRs facilitate agnostic model

learning in the partially observable setting, where it would otherwise be intractable.

The following chapters outline how we improve upon the PSR learning framework,

vastly increasing its efficiency via compression, and describe a principled algorithm

for planning using these learned compressed PSR models, since, as we will discuss,

standard POMDP planning techniques do not directly generalize to the PSR setting.

Moreover, unlike previous work on PSRs, here we explicitly outline the rela-

tionship between PSR learning and the more general method of moments approach,

providing new insights into the Hankel factorization approach and further elucidating

the asymmetric relationship between PSRs and POMDPs.

In addition to existing work on PSRs [e.g. 44, 16, 61, 67, 73], the work in this

chapter is closely related to work on observable operator models (OOMs), a con-

ceptual predecessor to both PSRs and the moment-methods discussed in chapter 2

[37]. The primary distinction between OOMs and PSRs being that the former did

not explicitly incorporate actions and assumed a priori knowledge of the a core set

of tests (called characteristic events in that literature) during learning.

It is also worth noting that there a number of extensions of the PSR framework,

such as extensions to deal with temporal abstraction [75] and mixed-observability

[53]. And an interesting direction for future work is the characterization of these

extensions within the more general context of learning WA via the method of mo-

ments, as such a characterization could potentially reveal novel insights in applica-

tions domains that do not require the modelling of actions (e.g., natural language

processing).

Lastly, we note that the Q-function based sequential decision-making framework

we present is closely related to a number of techniques within the field of rein-

forcement learning [68], a widely-used framework for formalising sequential decision-

making [40, 43, 49, 56]. Indeed, the technique we present can be viewed as an instan-

tiation of the reinforcement learning framework, as the key assumptions underlying

reinforcement learning are identical to those used in this work (elucidated in section

3.1) [68]. Moreover, POMDPs are traditionally presented within the context of rein-

forcement learning [40]. Our work differs from classic reinforcement learning in that

CHAPTER 3. SEQUENTIAL DECISION-MAKING 39

we do not emphasize the dynamic programming view of sequential decision-making,

where Q-function (or a variant thereof) is specified via Bellman’s equation [68], and

thus, we opted to present our algorithms within the more general context of sequen-

tial decision-making. Nonetheless, many of the ideas in this chapter and chapter 6 are

influenced by reinforcement learning literature and many of the works cited are pre-

sented within the reinforcement learning framework [e.g. 13, 27, 36, 39, 40, 43]. We

do not attempt to enumerate all relevant works within that field, as it a vast research

area; however, we refer the interested reader to [68] for a thorough presentation of

standard reinforcement learning methods.

4
Compressed Predictive State Representation

In this chapter, we present our novel compressed predictive state representation

(CPSR) learning algorithm. The CPSR approach, at its core, combines the state-of-

the-art in subspace PSR learning with recent advancements in compressed sensing.

This marriage provides an extremely efficient and principled approach for learning

accurate transformed approximations of PSRs in complex systems, where learning

a full PSR is simply intractable. In section 4.1, we provide motivation and the

foundations for our compressed learning algorithm. Section 4.2 describes the learning

algorithm in detail, specifying how a model can be learnt from a batch of data and

also incrementally updated in an online manner.

4.1 Intuition and Motivation

Despite the fact that non-compressed subspace-based algorithms, such as TPSR,

can specify a small dimension for a transformed space, there are still a number of

computational limitations. To begin, TPSRs require that the |T | × |H| matrix, H,

be estimated in its entirety, and that the Hao matrices be partially estimated as well.

Moreover, since the naive TPSR approach must compute a spectral decomposition

of H it has computational complexity O(|H||T ||Q|), in the batch (and incremental

mini-batch) setting, assuming H is given as input. Thus in domains that require

many (possibly long) trajectories for learning or that have large observation spaces,

such as those described in chapter 7, the naive TPSR approach becomes intractable,

since |H| and |T | both scale as O(L|Z|), where L is the max length of a trajectory in a

40

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 41

training set Z of size |Z|.1,2 In order to circumvent these computational constraints

(and provide a form of regularization), the CPSR learning algorithm we propose

performs compressed estimation.

This method is borrowed from the field of compressed sensing and works by pro-

jecting matrices down to low-dimensional spaces determined via randomly generated

bases. More formally, a m× n matrix Y is compressed to a d× n matrix X (where

d << m) by:

X = ΦY, (4.1)

where Φ is a d × m Johnson-Lindenstrauss matrix (i.e., a matrix satisfying the

Johnson-Lindenstrauss lemma) [11]. Intuitively, a Johnson-Lindenstrauss matrix is a

random matrix defining a low-dimensional embedding which approximately preserves

Euclidean distances between projected points (i.e., the projection preserves the dot-

product between vectors). Different choices for Φ are discussed in chapter 7. It is

worth noting that in our case, the matrix multiplication in (4.1) is in fact performed

“online”, and the matrices corresponding to X and Φ are never explicitly held in

memory (details in section 4.2).

The fidelity of this technique depends only on what is called the sparsity of the

matrix Y. Sparsity in this context refers to the maximum number of non-zero entries

which occur in any column of Y. Formally, if we denote a column vector of Y by yi,

we say that a matrix is k-sparse if:

k ≥ ||yi||0∀yi ∈ Y, (4.2)

where || · ||0 denotes Donoho’s zero “norm” (which simply counts number of non-zero

entries in the vector). In the case of PSRs (and moment-methods in general), we

have that Y := H; that is, we are compressing the Hankel matrix and thus require

that H is sparse.
1Note that |H| and |T | scale linearly with the number of observed test/histories. The O(L|Z|)

bound is thus pessimistic in that it assumes each training instance is unique.
2It is worth noting that no explicit bounds on the sample complexity of PSR learning have

been elucidated. However, the sample complexity bounds of [34] provide results for a special case
of TPSR learning (i.e., no actions and only single length tests and histories). In general, PSR
approaches are consistent estimators but cannot be assumed to be data efficient (thus emphasizing
the need to accommodate large sample sizes).

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 42

The technique is very well suited for application to PSRs. Informally, the sparsity

condition is the requirement that for every history hj, only a subset of all tests have

non-zero probabilities (a more formal definition appears in the theory section below).

This seems realistic in many domains. For example, in the PocMan domain described

in section 7.2, we empirically found the average column sparsity of the matrices to

be roughly 0.018% (i.e., approximately 0.018% of entries in a column were non-zero).

Moreover, as we will demonstrate empirically in chapter 7, certain noisy observation

models induce sparsity that can be exploited by this approach.

Of course, there are other methods for reducing the size and computational load

of learning TPSRs through the use of domain specific feature construction (e.g.,

kernel methods) [16, 13]. A major contribution of the algorithm presented here is

to relieve the requirement for “specialized” feature selection and push towards an

out-of-the-box agnostic learning algorithm.

4.2 A Compressed Learning Algorithm

PSRs

We now formally present the CPSR algorithm. Section 4.2.2 describes how to incre-

mentally update a learned model with new data efficiently for deployment in online

settings.

4.2.1 Batch Learning of CPSRs

To begin, we define two functions: φT : T → R
dT and φH : H → R

dH . These

functions can be viewed as extracting features of tests and histories, respectively.

To connect these feature mappings with the compressed sensing motivation, we can

view the features as mapping to columns of independent random full-rank Johnson-

Lindenstrauss (JL) projection matrices ΦT ∈ R
dT ×|T | and ΦH ∈ R

dH×|H|, respectively.

The matrices are defined via these functions since the full sets T and H may not be

known a priori, and we can get away with this “lazy” specification since the columns

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 43

of JL projection matrices are determined by independent random variables. It is also

worth noting that we require φT (τi) = φT (τj) for τi = τj (and similarly for φH) for

this specification to be well-defined.

Next, given a training trajectory z of action-observation pairs of any length, let

Ihj
(z) be an indicator function taking a value of 1 if the action-observation pairs in z

correspond exactly to hj, with Iτj
(z) defined analogously. We then define | · | as the

length of a sequence (e.g., of action-observation pairs) and let Ihj ,τi
(z) be an indicator

function taking a value of 1 if z can be partitioned such that, starting from some

index k within the sequence, there are |hj| action-observation pairs corresponding to

those in hj ∈ H and the next |τi| pairs correspond to those in τi ∈ T .3

Given a batch of training trajectories Z we compute:4

θ̂H,λ := ΦHĥH,λ (4.3)

=
∑

z∈Z

∑

hj∈H

Ihj
(z)φH(hj), (4.4)

θ̂λ,T := ΦT ĥλ,T (4.5)

=
∑

z∈Z

∑

τi∈T

Iτi
(z)φT (τi), (4.6)

Θ̂ := ΦHĤΦ>
T (4.7)

=
∑

z∈Z

∑

τi,hj∈T ×H

Ihj ,τi
(z) [φH(hj)⊕ φT (τi)] . (4.8)

Next, we compute the ÛD̂V̂> rank-d′ truncated SVD of Θ̂:

(Û, D̂, V̂) = SVD(Θ̂). (4.9)

Given these matrices we can construct c0 and c∞, the compressed and transformed

estimates of m0 and m∞, respectively:

c>
0 = θ̂

>

λ,T V̂, (4.10)

3In this work we use k = 0. That is we do not use the suffix history estimation algorithm [74],
where k is varied in the range [0, |z|). Using k = 0 minimizes dependencies between estimation
errors as the same samples are not used to get estimates for multiple histories.

4We do not normalize our probability estimates in the estimation equations since the normal-
ization constants cancel out during learning.

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 44

c∞ = D̂−1Û>θ̂H,λ. (4.11)

We note, however, that in some cases this estimation method for c0 will not suffice.

In particular, many sequential decision-making domains do not have a well-defined

start-state, and thus the start-states of training trajectories are in fact arbitrary,

making the initial prediction (i.e., weight) vector c0 biased according to how the start-

states are arbitrarily specified. For instance, training trajectories could come from

random-restarts in a domain or could be constructed by parsing one long exploration

sequence into smaller training trajectories. In these cases, there is in fact no well-

defined start-state but (4.10) will provide an initial prediction vector that is biased

in that it will assume the arbitrarily specified start-states have meaning.

In these settings, it is advantageous to learn an arbitrary feasible state as the

starting state [16]. In other words, it is advantageous to learn an initial prediction

vector using information from all histories and not just λ, the empty history. To do

this, we slightly modify the above approach and specify that λ ∈ H; i.e., we make λ

a member of our history set. Then we learn an arbitrary feasible state c∗ via

c∗ = ÛD̂1, (4.12)

where 1 = (1, 1, ..., 1)> ∈ R
d.

Of course this introduces an extra degree of uncertainty in our model, as c∗

does not correspond to any particular model state; it, in fact, corresponds to a linear

mixtures of all feasible states. The uncertainty in our state estimate should decrease,

however, as we update and track through our system and the process mixes [16]. And

indeed, the majority of domains without well-defined start-states are those for which

there is significant mixing over time, so this technique should introduce only a small

amount of error in practice [16].

Using the SVD of Θ̂, we can also estimate the Cao matrices, the compressed

and transformed versions of the Mao matrices, directly via a second pass over the

data. First, however, we must define a third class of indicator functions on z ∈ Z:

Ihj ,ao,τi
(z) takes value 1 if and only if the training sequence z can be partitioned

such that, starting from some index k within the sequence, there are |hj|+ 1 action-

observation pairs corresponding to hj appended with a particular ao ∈ A × O and

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 45

the next |τi| correspond to those in τi. In other words, Ihj ,ao,τi
(z) is equivalent to

Ih′
j
,τi

(z), where a particular ao ∈ A × O is appended to the history h′
j. Using these

indicators and the SVD matrices of Θ̂, we compute, for each ao ∈ A×O:

Cao =
∑

z∈Z

∑

τi,hj∈T ×H

Ihj ,ao,τi
(z)

[(

D̂−1Û>φH(hj)
)

⊕
(

φT (τi)V̂
)]

. (4.13)

Thus, in two passes over the data, we are able to efficiently construct our CPSR

model parameters. The primary computational savings engendered by this approach

is in the SVD. Since we are performing SVD on a compressed matrix, the computa-

tional complexity is uncoupled from the number of tests and histories in the set of

observed trajectories Z. Recalling that L is the max length of a trajectory in Z and

that |Z| denotes the number of trajectories in the training set Z, this approach has

a computational complexity of

O
(

L|Z|dT dH + dHd2
T

)

= O (L|Z|) (4.14)

since dT and dH are user-specified constants5 (assuming the standard cubic compu-

tational cost for the SVD). Without compression (i.e., with naive TPSR), a compu-

tational cost of

O (L|Z|+ |H||T |dT P SR) = O
(

L2|Z|2
)

(4.15)

is incurred, where dT P SR is the chosen truncated SVD dimension for the TPSR model.

Note that these bounds differ from previous bound in that they do not assume that

H is given as an input. In addition, we have that the memory footprint of CPSR is

O(dHdT + |A||O|d2
T) = O(|A||O|), (4.16)

while for naive TPSR the memory footprint is

O(|H||T |+ |A||O|d2
T P SR) = O(L2|Z|2). (4.17)

5In general, the the user has a great deal of flexibility in setting these constants but not absolute
freedom, as they should be at least logarithmic in the true (unknown) dimension of the system and
linear in the sparsity of the system in order to guarantee good performance. Chapter 5 describes
these issues in more detail.

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 46

In addition to these computational savings, the above approach has the added

benefit of not requiring that T and H be known in entirety prior to learning. This

is especially important in the case where we want to alternate model learning and

planning/exploration phases using incremental updates (described below), as it is

very unlikely that all possible tests and histories are observed in the first round of

exploration. Performing SVD on the compressed matrices also induces a form of

regularization (similar to L2 regularization) on the learned model, where variance is

reduced at the cost of a controlled bias (details in chapter 5).

4.2.2 Incremental Updates to the Model

In addition to straightforward batch learning, it is also possible to incrementally

update a learned model, given new training data, Z ′ [13]. This is especially useful

in that it facilitates alternating model learning and non-blind (i.e., non-random)

exploration phases. Of course, if such a non-blind alternating approach is used then

the distribution of the training data changes (i.e., it becomes non-stationary), and the

sampled trajectories can no longer be assumed to be i.i.d.. Despite this theoretical

drawback, [52] show that non-blind sampling approaches can lead to better planning

results in a small sample setting.6

Briefly, we obtain a new Θ̂ estimate and update our θ̂H,λ and θ̂λ,T estimates

using using (4.3) and (4.5) with Z ′. Next, we update our SVD matrices, given our

additive update to Θ̂, using the methods of [17]. The c0 and c∞ vectors are then

re-computed exactly as in equations (4.10) and (4.11).

To obtain our Cnew
ao matrices, we compute:

Cnew
ao =

∑

z∈Z′

∑

τi,hj∈T ×H

Ihj ,ao,τi
(z)

[(

D̂−1
newÛ>

newφH(hi)
)

⊕
(

φT (τi)V̂new

)]

+ D̂−1
newÛ>

newÛoldD̂oldCold
ao V̂>

oldV̂new (4.18)

6In this work, where larger sample sizes were used, we did not find a significant benefit to goal-
directed sampling and in fact saw detrimental effects in terms of planning ability and numerical
stability during learning. See chapter 7 for details.

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 47

The first term in (4.18) corresponds to estimating the contribution to the new Cao

matrix from the new data and the second term is the projection of the old Cao matrix

onto the new basis.

4.3 Discussion

In this chapter, we introduced the CPSR learning algorithm, a moment-based learn-

ing algorithm for sequential decision-making which integrates methods from com-

pressed sensing in order to drastically increase efficiency. We described how this

algorithm could be employed to learn in both batch and incremental/online regimes

and provided complexity analysis making the computational benefits of this approach

explicit. Chapter 5 analyses how the use of compression impacts the predictive ac-

curacy of the learned model.

The CPSR algorithm is closely related to work on using features or kernel embed-

dings with PSRs [16, 13, 15], where features of tests, histories, and/or observations

are employed. Indeed, one view of the CPSR learning approach is that it is an in-

stantiation of the feature-based learning approach where principled random features

are employed. However, this view is limited in the sense that the random features

used here facilitate an analysis in terms of compression, whereas with other feature-

based PSR methods it is simply assumed that the specified features are sufficient

to capture the structure of H; that is, the standard feature-based methods assume

features that are not compressive [16, 13, 15].

This distinction of whether or not features are assumed as compressive also high-

lights the differing motivations between existing feature-based PSR learning and the

CPSR approach: in the CPSR approach, compressive random features are employed

to increase the efficiency and scalability of learning, whereas in other works [e.g.

16, 13, 15] the features are used to facilitate learning in domains with continuous or

structured observation spaces.

Since the general PSR learning framework assumes discrete observations, decom-

posing a continuous domain via feature extraction is necessary for learning in that

CHAPTER 4. COMPRESSED PREDICTIVE STATE REPRESENTATION 48

setting. Moreover, [15] shows how the well-known “kernel trick” can be employed to

learn in feature-spaces of infinite dimension. The penalty associated with this kernel

embedded approach is that learning scales cubically with the number of training

examples, leading to high computational overhead [15].

An interesting open question is how random projections, or related techniques,

can be combined with these feature-based methods, allowing for efficient learning

in continuous domains. The CPSR learning approach could certainly be combined

(in a straightforward manner) with standard feature-based learning. However, it is

unclear how sparse these feature spaces are, so such a combination would require

novel theoretical analysis.

5
Theoretical Analysis of CPSR Learning

In the following section, we describe theoretical properties of the CPSR learning

approach presented in chapter 4. Our analysis of proceeds in two stages. First, we

show that the learned model is consistent in the case where dT ≥ |Q| and dH ≥ |Q|
(i.e., when no real compression occurs). Following this, we outline results bounding

the induced approximation error (bias) and decrease in estimation error (variance)

due to learning a compressed model.

5.1 Consistency of the Learning

Approach

The following adapts the results of [16] and shows the consistency of our learning

approach when the random projection dimension is greater than or equal to the true

underling dimension of the system (i.e., the size of the core test set |Q|). We then

describe the implications of this result for the case where we are in fact projecting

down to a dimension smaller than |Q|.

5.1.1 Consistency in the Non-Compressed Setting

We begin by noting a fundamental result from the TPSR literature. Recall the

matrix R = (rτ1 , rτ2 , ..., rτ|T |) ∈ R
|Q|×|T | where each column, ri, specifies the linear

49

CHAPTER 5. THEORETICAL ANALYSIS 50

map:

P(QO|ht, QA)>ri = P(τO
i |ht, τA

i). (5.1)

Supposing that dT ≥ |Q| and dH ≥ |Q| (recalling that these are the dimensions of

the feature/compression matrices), we have

c>
0 = m>

0 (RΦ>
T V)−1, (5.2)

c∞ = (RΦ>
T V)m∞, (5.3)

Cao = (RΦ>
T V)Mao(RΦ>

T V)−1. (5.4)

(5.5)

That is, we simply recover a TPSR where J = (RΦ>
T V), and it has been shown

that the above implies a consistent learning algorithm [16, 13]. We note that ΦT

appears in these consistency equations, while ΦH does not, emphasizing the different

roles these two matrices occupy. This difference will play an important role in the

theoretical analysis below.

5.1.2 Extension to the Compressed Case

In the case where dT < |Q| and/or dH < |Q| things are not as straightforward.

Specifically, equations (5.2)-(5.4) no longer hold as (RΦ>
T V) is no longer invertible

(it is in fact, no longer square). The primary focus of our theoretical analysis is the

effect of this fact, i.e. (RΦ>
T V) not being invertible. We show how we can view ΦT

as inducing a form of compressed linear regression, and we provide bounds on the

excess risk of learning within a compressed space.

There is, however, the additional complication of ΦH when dH < |Q|, as in that

setting it is no longer possible to remove ΦH from the consistency equations (5.2)-

(5.4). From the perspective of regression, ΦH can be viewed as compressing the

number of samples, while ΦT can be viewed as compressing the features. For clarity,

we discuss the effects of these different compressions independently. In particular, we

provide detailed analysis of how compressing tests (i.e., features) affects the implicit

linear regression performed, and following this, we briefly discuss how compressing

the histories (i.e., samples) during regression impacts performance.

CHAPTER 5. THEORETICAL ANALYSIS 51

5.2 Effects of Compressing Tests

In what follows, we analyse the effects of compression by viewing ΦT as inducing

a form of compressed linear regression, where both the input data and targets are

compressed.

5.2.1 Preliminaries

This approach is justified by recalling that in equations (4.11) and (4.13) of our

learning algorithm we are in fact performing implicit compressed linear regression.

That is, for (Û, D̂, V̂) = SVD(Θ̂):

D̂−1Û> = (Θ̂V̂)+ (5.6)

= (ΦHĤV̂Φ>
T)+. (5.7)

Following the discussion in the previous section and to avoid unnecessary com-

plication, we assume ΦH has orthonormal columns (i.e., is not compressive) while

analysing the effects of compressing the tests (section 5.3 will discuss the Φ>
HΦH 6= I

case). In the case where ΦH has orthonormal columns, we see that

Cao = (ΦHĤV̂Φ>
T)+(ΦHĤaoV̂Φ>

T)

= (ĤV̂Φ>
T)+(ΦH)+ΦH(ĤaoV̂Φ>

T)

= (ĤV̂Φ>
T)+(ĤaoV̂Φ>

T)

Moreover, we ignore the V̂ term in what follows, which is justified in the case

where d′ = dT (i.e., when the truncated SVD dimension is equal to the test com-

pression dimension). This d′ = dT condition is very mild in the sense that the use

of SVD during learning is primarily motivated by the need to efficiently compute

pseudoinverses, which facilitates the efficient batch and incremental model learning

algorithms. That is, the SVD is not used as a dimensionality reduction technique, as

random projections are used in that role. Thus, under the assumption that d′ = dT ,

we have that

Ax = b⇒ AV̂x = V̂b (5.8)

CHAPTER 5. THEORETICAL ANALYSIS 52

holds, since V̂ is full rank and square for d′ = dT . Thus, the appearance of V̂ in the

pseudoinverse is inconsequential in an analysis of the effect of compressing prior to

regression.

To simplify the analysis one step further, assume that our test set is a core test

set Q. Therefore, random projections are applied on [Ĥ]∗,Q and [Ĥao]∗,Q matrices.

By the results of Section 5.1, this first projection leads to a consistent model, i.e.

a model that is a linear transform of the model learned directly from [Ĥ]∗,Q and

[Ĥao]∗,Q matrices, since Û>ΦT R is invertible with probability 1 when the projected

dimension is equal to |Q| [16]. The assumption that we work with the [Ĥ]∗,Q and

[Ĥao]∗,Q matrices directly (as apposed to invertible transforms of them) simplifies

the analysis below in that we can elucidate our sparsity assumptions etc. directly in

terms of the minimal core set of tests instead of random linear functions of tests in the

minimal core set. This assumption is mild in that we could work with these random

invertible linear transforms and discuss the discrepancy between a “random” TPSR

(i.e., a TPSR defined via a random linear transform) and a compressed version of this

“random" TPSR, and this discussion would be analogous to that which is provided

below, albeit with more cumbersome and unnecessarily complex derivations.

Recall:

Mao = ([H]∗,Q)+[Hao]∗,Q, m∞ = ([H]∗,Q)+hH,λ. (5.9)

Since Q is a core test set, the above is a PSR. Assume we have enough histories in

H such that matrices are full rank. Defining [H]>h,Q and [H]>hao,Q to be the vectors

containing the joint probabilities of all test in the core set and fixed history h, we

have (by the linearity of PSRs):

∀h : [H]hao,Q = [H]h,QMao, [H]h,λ = [H]h,Qm∞. (5.10)

Thus reiterating the foundations of PSR learning (with slightly altered notation), one

can think of finding the Mao and m∞ parameters as regression problems, having the

estimates [Ĥ]h,Q of [H]h,Q as noisy input features. We also have noisy observations

[Ĥ]hao,Q and [Ĥ]h,λ of the outputs [H]hao,Q and [H]h,λ, respectively. Since the sample

set is noisy both on the input and output values, direct regression in the original

CHAPTER 5. THEORETICAL ANALYSIS 53

space might result in large estimation error. Therefore, we apply random projections,

reducing the estimation error (variance) at the cost of a controlled approximation

error (bias). And we get the added benefits that working in the compressed space

also helps with the computation complexity of the algorithm. The following sections

provide an analysis of the error induced by this compression and how the error

propagates through the application of several compressed operators.

5.2.2 Error of One Step Regression

When the size of the projections is smaller than the size of the core test set, we

have the implicit regression performed on a compressed representation. The update

operators are thus the result of compressed ordinary least-squares regression (COLS).

There are several bounds on the excess risk of regression in compressed spaces [46,

47, 28]. In this section, we assume the existence of a generic upper bound for the

error of COLS.

Assume we have a target function f(x) = x>w + b(x) where x is in a k-sparse

D-dimensional space, and b(·) is the bias of the linear fit. We observe an i.i.d. sample

set {(xi, f(xi) + ηi)}n
i=1, where ηi’s are independent zero-mean noise terms for which

the maximum variance is bounded by σ2
η, and xi’s are sampled from a distribution

ρ. Let f̂d(x) be the compressed least-squares solution on this sample with a random

projection of size d. Define ‖g(x)‖ρ(x) =
√

Ex∼ρ(g(x))2 to be the weighted L2 norm

under the sampling distribution. We assume the existence of a generic upper bound

function ε, such that with probability no less than 1− δ:

‖f(x)− f̂d(x)‖ρ(x) ≤ ε(n, D, d, ‖w‖2, ‖x‖2
ρ(x), ‖b(x)‖2

ρ(x), σ2
η, δ). (5.11)

The effectiveness of the compressed regression is largely dependent on how the

‖w‖‖x‖ρ(x) term behaves compared to the norm of the target values. We refer

the reader to the discussions in [46] and [47] on the ‖w‖‖x‖ρ(x) term. In the case

of working with PSRs, we have that the probability of the tests are often highly

correlated. Using this property, we show that ‖w‖2 can be bounded well below its

dimension.

CHAPTER 5. THEORETICAL ANALYSIS 54

In order to use these bounds, we need to consider the sparsity assumptions in

our compressed PSR framework. We formalize the inherent sparsity, discussed in

previous sections, as follows: For all h, [H]h,Q and [H]hao,Q are k-sparse. Given that

the empirical estimates of zero elements in these vectors are not noisy and thus zero,

for ∆x = [Ĥ]h,Q − [H]h,Q we have that ∆x is at least k-sparse. A similar argument

applies to ∆y = [Ĥ]hao,Q − [H]hao,Q.

To simplify the analysis, in this section we define our Cao matrices to be slightly

different from the ones used in the described algorithm. By forcing the diagonal

entries to be 0, we avoid using the ith feature for the ith regression. This removes

any dependence between the projection and the target weights and simplifies the

discussion. Since we are working with random compressed features as input, all of

the features have similar correlation with the output, and thus removing one of them

changes the error of the regression by a factor of O(1/d). We can nevertheless change

the algorithm to use this modified version of the regression so that the analysis stays

sound.

The following theorem bounds the error of a one step update using the compressed

operators. We use i.i.d. normal random projection for simplicity. The error bounds

for other types of random projections should be similar.1

The main idea of the theorem is to use the dependence and sparsity of the fea-

tures to tighten the bound on the error of compressed regression. When most of

the variation in the PSR state can be explained using m linear observations, we can

substitute the Mao[Φi,∗]
> target weights having norm O(

√

|Q|), with a linear approx-

imation having much smaller norm O(
√

m), at the expense of a small bias b. The

theorem also describes the overall noise, combining the effects of ∆x and ∆y.

Let [A]−i,∗ be matrix A with the ith row removed (with an analogous definition

for columns). We have the following:

Theorem 1 Let H be a large collection of sampled histories according to ρ, and let

Φ ∈ R
d×|Q| be an i.i.d. normal random projection: Φij ∼ N (0, 1/d). We observe

noisy estimate [Ĥ]h,Q = [H]h,Q + ∆x of input and [Ĥ]hao,Q = [H]hao,Q + ∆y of the

1The core modifications necessary are analogous to those used made in [1] to adapt the Johnson-
Lindenstrauss lemma to more general random matrices.

CHAPTER 5. THEORETICAL ANALYSIS 55

output, where we assume that the elements of ∆x and ∆y are independent zero-mean

random variables with maximum variance σ2
x and σ2

y respectively. Let σ2
1 . . . σ2

|Q| be

the decreasing eigenvalues of Eρ(h)[[H]>hao,Q[H]hao,Q]. Choose 1 ≤ m ≤ |Q| such that

σ2
m ≤ 1 and define ν =

∑|Q|
i=m+1 σ2

i . For 1 ≤ i ≤ d, define:

ui = ([Ĥ]∗,Q[Φ>]∗,−i)
+[Ĥao]∗,Q[Φ>]∗,i.

Define Cao to be a d× d matrix such that:

[Cao]∗,i = [ui,1, ui,2, . . . , ui,i−1, 0, ui,i, ui,i+1, . . . , ui,d−1]
>.

Then with probability no less than 1− δ we have:
∥

∥

∥([H]h,QΦ>)Cao − [H]hao,QΦ>
∥

∥

∥

ρ(h)
≤
√

dε(|H|, |Q|, d, w2, x2, b2, σ2
η, δ/4d), (5.12)

where:

w2 = ‖Mao‖2(m + 4
√

m ln(4d/δ)), (5.13)

x2 = ‖[H]>h,Q‖2
ρ(h), (5.14)

b2 = ν + 4
√

ν ln(4d/δ), (5.15)

σ2
η =

4k ln(4|Q|/δ)

d
σ2

y + w2σ2
x. (5.16)

Proof With eigenvalue decomposition we have Eρ(h)[[H]hao,Q[H]>hao,Q] = VDV>,

where D is the diagonal matrix containing the eigenvalues and V is an orthonormal

basis. Let Im be a |Q| × |Q| matrix with the first m diagonal element set to 1 and

0 elsewhere. For all 1 ≤ i ≤ d, define: [Φ̃]i,∗ = [Φ]i,∗VImV> and [Φ′]i,∗ = [Φ]i,∗V.

Note that since V is an orthonormal basis and [Φ]i,∗ is i.i.d. normal, [Φ′]i,∗ will also

have an i.i.d. normal distribution with the same covariance.

We wish to substitute [Φ]i,∗ with [Φ̃]i,∗ which has a small norm and introduces

a small bias. We first bound the norm of [Φ̃]i,∗ as follows. With probability no less

than 1− δ/4 for all 1 ≤ i ≤ d:

‖[Φ̃]>i,∗‖2 = [Φ]i,∗VImV>VImV>[Φ]>i,∗ (5.17)

= [Φ]′i,∗Im[Φ′]>i,∗ =
m
∑

j=1

([Φ′]i,j)
2 (5.18)

≤ m + 4
√

m ln(4d/δ). (5.19)

CHAPTER 5. THEORETICAL ANALYSIS 56

The tail bound in last line is union bounding over a corollary of Lemma 1 in [42]. The

bias induced by using [Φ̃]i,∗ can be bounded as well. Define b(h) = [H]hao,Q[Φ]>i,∗ −
[H]hao,Q[Φ̃]>i,∗. With probability no less than 1− δ/4 for all 1 ≤ i ≤ d:

‖b(h)‖2
ρ(h) = Eρ(h)[([Φ]i,∗ − [Φ̃]i,∗)[H]hao,Q[H]>hao,Q(Φi − [Φ̃]i,∗)

>] (5.20)

= ([Φ]i,∗ − [Φ̃]i,∗)VDV>([Φ]i,∗ − [Φ̃]i,∗)
> (5.21)

= ([Φ]i,∗ − [Φ]i,∗VImV>)VDV>([Φ]i,∗ − [Φ]i,∗VImV>)> (5.22)

= [Φ]i,∗V(I− Im)D(I− Im)V>[Φ]>i,∗ (5.23)

= [Φ′]i,∗(I− Im)D(I− Im)[Φ′]>i,∗ (5.24)

=
|Q|
∑

j=m+1

([Φ′]ij)
2σ2

j (5.25)

≤ ν + 4
√

ν ln(4d/δ). (5.26)

The tail bound again is due to Lemma 1 in [42] using the assumption σ2
m ≤ 1. Using

the above bounds, we have for for all 1 ≤ i ≤ d:

∀h : [H]hao,Q[Φ]>i,∗ = [H]hao,Q[Φ̃]>i,∗ + b(h) = [H]h,Q(Mao[Φ̃]>i,∗) + b(h). (5.27)

Therefore, we have a target [H]hao,Q[Φ]>i,∗ that is near-linear in the sparse features

[H]h,Q, with expected bias bounded by b2 = ν +4
√

ν ln(4d/δ), and norm of the linear

weight vector Mao[Φ̃]>i,∗ bounded by w2 = ‖Mao‖2(m + 4
√

m ln(4d/δ)).

By definition, ui is the COLS estimate with input [Ĥ]∗,Q, target [Ĥao]∗,Q[Φ]>i,∗,

and projection [Φ]−i,∗. But in order to use the bound of Equation 5.11, we need

to find the corresponding noise parameters of the COLS algorithm. Since, unlike

the assumption of the general COLS bound, both the input and the output of the

regression are noisy, we need to derive the effective overall noise variance in the

sample output. We have:

[Ĥ]hao,Q[Φ]>i,∗ = [H]hao,Q[Φ]>i,∗ + ∆y[Φ]>i,∗ (5.28)

= [H]hao,Q[Φ̃]>i,∗ + b(h) + ∆y[Φ]>i,∗ (5.29)

= ([Ĥ]h,Q −∆x)(Mao[Φ̃]>i,∗) + b(h) + ∆y[Φ]>i,∗ (5.30)

= ([Ĥ]h,Q)(Mao[Φ̃]>i,∗) + b(h) + (∆y[Φ]>i,∗ −∆xMao[Φ̃]>i,∗).(5.31)

CHAPTER 5. THEORETICAL ANALYSIS 57

And thus the sample points are:

[Ĥ]h,Q → ([Ĥ]h,Q)(Mao[Φ̃]>i,∗) + b(h) + (∆y[Φ]>i,∗ −∆xMao[Φ̃]>i,∗). (5.32)

The effective noise ∆y[Φ]>i,∗ − ∆xMao[Φ̃]>i,∗ has mean 0. Since ∆y is k-sparse and

‖Mao[Φ̃]>i,∗‖2 ≤ w2, the variance of the effective noise term is bounded by maxj(Φij)
2kσ2

y+

w2σ2
x. Maximization over i and using a tail bound on the maximum of squared nor-

mals gives the σ2
η defined in the theorem.

We now apply the union bound to Equation 5.11. With probability no less than

1− δ/4, for all 1 ≤ i ≤ d:
∥

∥

∥([H]h,Q[Φ>]∗,−i)ui − [H]hao,Q[Φ]>i,∗
∥

∥

∥

ρ(h)
≤ ε(|H|, |Q|, d, w2, x2, b2, σ2

η, δ/4d). (5.33)

Note that by our definition of Cao, we have that ([H]h,Q[Φ>]∗,−i)ui = (Φ[H]h,Q)[Cao]∗,i,

which immediately gives the theorem by combining the error bounds on each row.

Theorem 1 has three main implications. One is that the complexity of the com-

pressed regression depends on how fast the eigenvalues drop for the minimal core set

covariance matrix. If the eigenvalues drop exponentially fast, as is observed empiri-

cally in our experiments, we can guarantee a smaller regression error. Second, if the

projection size is of order O(k ln |Q|) we can control the variance of the combined

noise term. Third, if we use the sparse COLS bound of [28], we can can show that

regression of size O(k ln |Q|) should be enough to decrease the overall estimation

error at the expense of a controlled bias.

The following corollary follows immediately from Theorem 1 by union bounding

over all action-observation pairs.

Corollary 2 Using the assumptions of Theorem 1, with probability no less than 1−δ

we have for all a ∈ A and o ∈ O:
∥

∥

∥([H]h,QΦ>)Cao − [H]hao,QΦ>
∥

∥

∥

ρ(h)
≤
√

dε(|H|, |Q|, d, w2, x2, b2, σ2
η, δ/(4d|A||O|)),

(5.34)

where w2 = maxao ‖Cao‖2(m + 4
√

m ln(4d/δ)), and other factors are as defined in

Theorem 1.

CHAPTER 5. THEORETICAL ANALYSIS 58

5.2.2.1 Error of the compressed normalizer

The c∞ operator is the normalization operator for the compressed space. Therefore,

for any history h, [H]h,QΦ>c∞ should equal [H]h,λ. The following theorem provides

a bound over the error of such a prediction:

Theorem 3 Let H be a large collection of sampled histories according to ρ. We

observe noisy estimate [Ĥ]∗,Q = [H]∗,Q + ∆x of input and ĥH,λ = hH,λ + ∆z of the

output, where elements of ∆x and ∆z are independent zero-mean random variables

with maximum variance σ2
x and σ2

z respectively. Define c∞ = ([Ĥ]∗,QΦ>)+hH,λ. Then

with probability no less than 1− δ we have:

∥

∥

∥([H]h,QΦ>)c∞ − [H]h,λ

∥

∥

∥

ρ(h)
≤ ε(|H|, |Q|, d, ‖m∞‖2, ‖[H]>h,Q‖2

ρ(h), 0, σ2
∞, δ),

where we define effective noise variance σ2
∞ = σ2

z + σ2
x‖m∞‖2.

Proof Similar to Theorem 1, we have [H]h,λ = [H]h,Qm∞ for all h. Therefore we

have a linear target and by definition c∞ is the COLS estimate with projection Φ.

We have:

[Ĥ]h,λ = [H]h,λ + ∆z = [H]h,Qm∞ + ∆z (5.35)

= [Ĥ]h,Qm∞ −∆xm∞ + ∆z. (5.36)

Thus the effective variance is bounded by the σ2
∞ defined in the theorem. We com-

plete the proof by an application of the bound in Equation 5.11.

5.2.3 Error Propagation

Once we have the one step errors of compressed operators, we can analyse the prop-

agation of errors as we concatenate the operators. Define o1:n = o1o2 . . . on (and

similarly for a1:n and [ao]1:n). We would like to bound the error between P(o1:n|a1:n)

and our prediction c0Ca1o1Ca2o2 . . . Canon
c∞.

CHAPTER 5. THEORETICAL ANALYSIS 59

Since the theorems in the previous sections were in terms of a fixed measure ρ,

we have to make distributional assumptions to simplify the derivations. Assume that

we fit our model using samples h ∼ ρ, imposing a distribution [H]h,Q ∼ µ. Note

that as we increase the size of a history h, the norm of [H]h,Q becomes smaller. We

make the assumption that for all 1 ≤ t ≤ n, for a history [ao]1:t ∼ ρt, the implied

[H][ao]1:t,Q is sampled from a scaled version of µ (i.e., 1
st

[H][ao]1:t,Q ∼ µ). Therefore

‖f([H]>h,Q)‖ρt(h) = ‖f(st[H]>h,Q)‖ρ(h).

Theorem 4 Let ε and ε∞ be the bounds of Corollary 2 and Theorem 3 respectively,

for a sample H according to ρ and failure probability δ/2. Let ρn and its marginals

ρn−1 . . . ρ1, be distributions over histories of size n, n− 1, . . . 1 respectively, such that

‖f([H]h,Q)‖ρt(h) = ‖f(st[H]h,Q)‖ρ(h) for all measurable f . With probability 1− δ:

∥

∥

∥c>
0 Ca1o1Ca2o2 . . . Canon

c∞ − P(o1:n|a1:n)
∥

∥

∥

ρn

≤ ε∞sn + ‖c∞‖ε
n−1
∑

t=1

stc
n−t−1, (5.37)

where c = maxa,o ‖Cao‖.

Proof For all t, define et = (c0Ca1o1Ca2o2 . . . Canon
− [H][ao]1:t,Q)>. After applying

the nth compressed operator we have:

‖en‖ρn
= ‖(c0Ca1o1Ca2o2 . . . Canon

− [H][ao]1:n,Q)>‖ρn
(5.38)

= ‖C>
anon

([H][ao]1:n−1,Q + e>
n−1)

> − [H]>[ao]1:n,Q‖ρn
(5.39)

≤ ‖C>
anon

en−1‖ρn
+ ‖C>

anon
[H]>[ao]1:n−1,Q − [H]>[ao]1:n,Q‖ρn

(5.40)

≤ ‖C>
anon

en−1‖ρn
+ max

on,an

‖C>
anon

[H]>[ao]1:n−1,Q − [H]>[ao]1:n,Q‖ρn−1 (5.41)

≤ c‖en−1‖ρn
+ max

on,an

‖sn−1C
>
anon

[H]>[ao]1:n−1,Q − sn−1[H]>[ao]1:n,Q‖ρ (5.42)

≤ c‖en−1‖ρn−1 + sn−1ε (5.43)

≤ ε
n−1
∑

t=1

stc
n−t−1. (5.44)

Line 5.42 uses the distribution assumption on ρn−1 and having [H][ao]1:n,Q linear in

CHAPTER 5. THEORETICAL ANALYSIS 60

[H][ao]1:n−1,Q. Line 5.44 follows by induction. We now apply the normalizer operator:

‖c>
0 Ca1o1Ca2o2 . . . Canon

c∞ − P(o1:n|a1:n)‖ρn
(5.45)

= ‖([H][ao]1:n,Q + en)>c∞ − P(o1:n|a1:n)‖ρn
(5.46)

≤ ‖c∞e>
n ‖ρn

+ ‖[H]>[ao]1:n,Qc∞ − P(o1:n|a1:n)‖ρn
(5.47)

≤ ‖c∞‖‖en‖ρn
+ ‖sn[H]>[ao]1:n,Qc∞ − snP(o1:n|a1:n)‖ρ (5.48)

≤ ‖c∞‖ε
n−1
∑

t=1

stc
n−t−1 + ε∞sn. (5.49)

Line 5.48 uses the distribution assumption on ρn and Line 5.49 uses the bound of

Theorem 3.

Note that st is exponentially decreasing in t (because longer tests are less proba-

ble). The norm of the update operators are expected to be less than 1 (as they shrink

the vector of test probabilities). Combining these two, we expect the summation in

the bound of Theorem 4 to be over a small exponential function of n.

5.3 Effects of Compressing Histories

The above analysis assumes that ΦH has orthonormal columns. However, in order

to obtain maximal computational benefits, it is beneficial to use a compressive ΦH,

i.e. a ΦH that acts as a feature selector on histories.

As with the previous section on the effects of compressing tests, we view the

compression of histories from the perspective of linear regression. In this context, the

compression of histories is equivalent to compressing the samples used for regression;

that is, it is equivalent to linearly mixing the samples. More formally, we use the

transformation

y = X>w + η → ΦHy = ΦHX>w + ΦHη. (5.50)

Intuitively, we can view this projection by ΦH as roughly averaging over training

samples. The number of samples for the regression will then be reduced, but the

averaged samples will have reduced (maximum) variance in their noise terms.

CHAPTER 5. THEORETICAL ANALYSIS 61

Of course, in this work, we use random ΦH matrices, which do not correspond

directly to taking averages over samples. The most important implication of this is

that the noise terms of the new combined samples are not independent. This more

complex setting has been analysed in detail by [77] (for random Gaussian matrices).

In that work, they focus on the more specific setting of l1 regularized regression, and

they prove a number of important results. Of particular relevance is Claim 4.3, which

shows (under certain conditions) that the entry-wise discrepancy between Q>Q and

Q>Φ>ΦQ decreases asymptotically to zero almost surely, where Q ∈ R
n×m and

Φ ∈ R
d×n is a random Gaussian matrix defined as in Theorem 1 . This key result

facilitates bounding the discrepancy between the compressed training error and the

true error of the regressor and does not rely on l1 regularization assumptions. We

refer the interested reader to that work for detailed proofs.

For completeness, however, we provide a brief sketch of main idea underlying this

claim, using CPSR specific notation for clarity. We first recall that ΦH has no effect

on the regression in the case where Φ>
HΦH = I, i.e when it has orthonormal columns.

Though a compressive ΦH ∈ R
dH×|H| with dH < n may never have orthonormal

columns, we outline how existing results demonstrate that a random compressive

ΦH acts as if it where orthonormal with high probability. In particular, we use the

following:

Theorem 5 (Adapted from [59]) Let x, y ∈ R
H with ||x||, ||y|| ≤ 1. Assume

that ΦH ∈ R
dH × |H| is a random matrix with either (1) independent N (0, 1/dH)

entries, or (2) independent normalized Rademacher entries (i.e., ±1/
√

dH). Then

for all γ > 0, there exists constants 1 ≤ C1, C2 ≤ 7.8 such that

P(|〈ΦHx, ΦHy〉 − 〈x, y〉| ≥ γ) ≤ 2 exp

(

−dH
γ2

C1 + C2γ

)

. (5.51)

This theorem says that with high probability (that grows with the compressed di-

mension size)

〈ΦHx, ΦHy〉 ≈ 〈x, y〉, (5.52)

which immediately implies that (under similar conditions)

H>Φ>
HΦHH ≈ H>H, (5.53)

CHAPTER 5. THEORETICAL ANALYSIS 62

since [H>H]i,j = 〈[H]∗,i, [H]∗,j〉 and [H>Φ>
HΦHH]i,j = 〈ΦH[H]∗,i, ΦH[H]∗,j〉. Equa-

tion (5.53) more formally captures the notion of ΦH acting as if it has orthonormal

columns. And this sketches the proof of the pertinent aspects of Claim 4.3 in [77]. In

particular, the proof proceeds by conditioning upon a well behaved ΦH (in the sense

of Theorem 5). The formal integration of the results in [77] with our results on com-

pressing tests/features (i.e., replacing the l1 regularization with feature compression)

is the subject of future work

Finally, we note that in this work the compression of histories is a computational

necessity, as it allows us to scale the learning algorithm to domains that would be

intractable otherwise. Empirical investigations show that the compression of histories

to dH = dT introduces only a small amount of error during model learning.

Figure 5.1 shows an example of such an empirical investigation, demonstrating

that the compression of histories has only a small empirical impact on the predictive

quality of the learned models. These results show log(L(θ))− log(L(θHC)), the dif-

ference between the model-likelihood for a model where histories are not compressed

(θ) and where histories are compressed (θHC). Both the predictive models are con-

structed using random Gaussian projection matrices and using (identical) samples

generated from a grid-world domain.2 As is evidenced in the plot, there is only a

small difference in likelihood between the two models (c.f. the likelihood difference

seen in section 7.3), and in fact, the model with compressed histories does slightly

better for the first few time steps.

5.4 Discussion

This chapter presented theoretical results bounding (under some assumptions) the

excess-risk of learning a PSR model within a compressed space. The focus of this

analysis was on the compression of tests during learning, where we showed bounds

on the error of learning a compressed model and also bounds on how this error prop-

agates as an agent updates a compressed model during interactions with a system.

2See section 7.3 for details of the experimental set-up, as the settings used in this comparison
are identical to those used in that section.

CHAPTER 5. THEORETICAL ANALYSIS 63

−0.25

0.00

0.25

0.50

2.5 5.0 7.5 10.0

Prediction Horizon

L
ik

e
li
h

o
o

d
 D

if
fe

re
n

c
e

Figure 5.1: Difference in log-likelihood between model where histories are not com-
pressed and where histories are compressed.

As a by-product of this analysis, we also provide insights into the general problem of

compressed regression where both noisy features and noisy targets are compressed; in

existing works [e.g. 46, 47, 28] it is assumed that only noisy features are compressed.

A discussion of the effects of compressing histories was included as well.

The results of this chapter build upon existing works on compressed regression,

which either analyse compression of features [46, 47, 28] or samples [77] indepen-

dently. Following these works, we analyse the effects of compression on tests (which

correspond to features) and histories (which correspond to samples) independently.

The integration of these two frameworks is the subject of future work, and we expect

that the regularization induced by the compression of tests will aid in bounding the

error introduced by compressing histories.

6
Planning with CPSRs

The learning algorithm presented in chapter 4 facilitates the construction of accurate

predictive models in large complex partially observable domains. In this section, we

outline how to plan (near)-optimal sequences of actions using such a learned model.

The planning approach we employ was first proposed by [52] and learns a PSR variant

of the Q-function. In essence, the approach substitutes a predictive state in place of

an observable state in the standard fitted-Q learning algorithm of [27].

Unlike point-based value-iteration PSR (PBVI-PSR) planning algorithms, the

theoretical convergence of the fitted-Q algorithm does not require that the PSR

correspond to a finite-dimensional POMDP. That is, existing error-bounds for PBVI-

PSR require that the PSRs used in planning correspond to some finite-dimensional

POMDP [36], whereas in general PSRs may have no corresponding finite-dimensional

POMDP [21].1 In contrast, the fitted-Q approach only requires that the input state-

space be sufficient to describe the system, and PSRs satisfy this requirement, meaning

that the convergence results for fitted-Q carry over to the PSR setting (when an exact

PSR model is used) [27].2 Moreover, the fitted-Q approach does not explicitly require

learning a model of rewards prior to the application of the planning algorithm (i.e.,

the reward model is captured only through the Q-function). This is preferable to

1It is worth noting, however, that the PSR-PBVI error bounds could possibly be modified to
alleviate this issue and that PBVI-PSR algorithms have been employed with considerable empirical
success [16, 36].

2The error bounds for PSR-PBVI also require that an exact model is known. In general, current
theoretical results on PSR planning ignore the impact of estimation and/or approximation errors
incurred during model-learning, though empirical analyses (e.g., the work of [16] and chapter 7 of
this thesis) suggest that the impact of such errors is small.

64

CHAPTER 6. PLANNING WITH CPSRS 65

explicitly modelling the immediate rewards as a function of the CPSR states prior

to planning, as such an explicit model introduces an extra (and unnecessary) level of

approximation. In what follows, we briefly review the fitted-Q approach and provide

a high-level description of our planning algorithm.

6.1 Fitted-Q with CPSRs

The goal of the fitted-Q algorithm is to learn an approximation of the Q-function from

which optimal decisions can be inferred. Formally, we seek to learn an approximation

of the Q-function such that a policy, or mapping π from CPSR states to actions, can

be defined (via an argmax over actions in Q-function).

Recall from section 3.1.2 that a Q-function specifies the quality of a belief-state

and action pair. In the context of PSRs, we define the Q-function as (recalling that

d′ is the dimension of the learned CPSR model):

Q : A× R
d′ → R. (6.1)

The difference between this Q-function and the one defined in section 3.1.2 is that

CPSR states are used in place of belief states. We reiterate that these CPSR states

do not necessarily lie on the probability simplex, and thus, the majority of POMDP-

based approaches for approximating the Q-function are not applicable, as they exploit

the fact that the belief states are proper probability vectors [49, 56].

Fortunately, the fitted-Q algorithm, which we employ, does not require that the

input states lie on a probability simplex; it only requires that the states represent

a sufficient statistic for the system [27]. PSRs satisfy this requirement, meaning

that the convergence results for fitted-Q carry over to this setting [27]. The basic

idea behind the method, which is formalized in Algorithm 1, is to use function-

approximation to iteratively build more and more accurate approximations of the

Q-function. Intuitively, during these iterations, the Q-function incorporates longer

and longer planning horizons (i.e., more and more information about future rewards)

and approaches the recursive definition in (3.2).

CHAPTER 6. PLANNING WITH CPSRS 66

In this work, the Extra-Trees algorithm is used as the base regression algorithm

[29], as it is a non-linear function approximator for which the fitted-Q convergence

results hold [27]. For T , the termination condition, we use an iteration limit (in-

stead of an ε convergence condition), as this allows for more accurate predictions of

runtimes.

Letting Ψ(T) be the expected number of iterations under stopping condition T

and assuming that the splitting procedure for nodes in the Extra-Trees algorithm

takes constant time, the computational complexity of this fitted-Q approach is (re-

calling the definitions of chapter 4):

O (Ψ(T)× L|Z| log (L|Z|)) , (6.2)

which is a factor Ψ(T)×log(L|Z|) greater than the complexity for the model learning

algorithm of chapter 4. In practice, we found Algorithm 1 to be several orders of

magnitude slower than the CPSR learning algorithm.

Algorithm 1: Fitted-Q with CPSR

Inputs: A set D of tuples of the form (ct, at, rt, ct+1) constructed using a CPSR
model, where rt is a numerical reward; R, a regression algorithm; γ, a discount
factor; and T , a stopping condition
Outputs: A policy π

1: k ← 0
2: Set Q̂k(ct, a) = 0 ∀a ∈ A and all possible ct

3: repeat

4: k ← k + 1
5: Build training set, T = {(yl, il), l = 1, ..., |D|} where: il = (cl

t, al
t) and yl =

rl
t + γ maxa Q̂k−1(c

l
t+1, a)

6: Apply R to approximate Q̂k from T

7: until T is met
output π, where π(ct) = argmaxa{Q̂k(ct, a)}

CHAPTER 6. PLANNING WITH CPSRS 67

6.2 Combined Learning and Planning

Algorithm 2 specifies how CPSR model learning and the fitted-Q planning algorithm

are combined at a high level. This general specification permits a variety of sampling

and Q-function approximation strategies. For example, it naturally accommodates

incrementally exploring a domain using a ε-greedy type strategy. In this setting πs,

the sampling policy, would be a policy which takes actions from πi with probability

1− ε and random actions otherwise (a similar ε-greedy strategy could also be defined

via the soft-max function). The hope with this sort of strategy is that at each

iteration the policies improve, allowing for exploration to focus more on important

regions of the domain; the model learning would then be focused on these important

regions, since the samples used for learning would come from these regions. The

general specification also permits permits pure unbiased random sampling or even the

drawing of samples from some arbitrary (e.g., expert) policy. Of course, if non-blind

(i.e., non-random) policies are used then the sample distribution becomes biased (i.e.,

the samples are no longer i.i.d.), and the analysis of chapter 5 no longer holds.

Also note that the number of iterations used by the learner and planner need not

be identical. More specifically, more samples may be used to learn the CPSR model

than are used in planning. This is a pragmatic specification, as the CPSR learning

algorithm can efficiently accommodate orders of magnitude larger sample sets than

the fitted-Q planner (by (4.14) and (6.2)).

6.3 Discussion

This chapter introduced a principled approach to sequential decision-making under

uncertainty. Though the focus of this work is how this planning algorithm can

be used with CPSR models, it is applicable to general PSR models as well. By

adapting the fitted-Q approach of [27], which was developed for the fully observable

setting, the planning algorithm exploits the full expressive capabilities of PSRs. This

is in contrast to approaches that simply modify POMDP planning algorithms for

the PSR setting, as those type of approaches generally assume that PSR states

CHAPTER 6. PLANNING WITH CPSRS 68

Algorithm 2: Combined learning and planning

Inputs: πs, a sampling policy; N , the number of sampling iterations; Im, the
number of trajectories to use in learning; and Ip, the number of trajectories to use
in planning (Im ≥ Ip)
Outputs: A CPSR model, C and policy π

1: D0 ← ∅
2: Initialize the CPSR model, C

3: for i=1 to N do

4: Sample Im trajectories, Zi, using πs

5: Update C using Zi

6: Sub-sample Ip trajectories from Zi and use C to construct a tuple-set Di

7: Di ← Di ∪ Di−1

8: Apply Algorithm 1 with Di to learn a policy, πi

9: [Optional] Update πs (e.g., using πi)
10: end for

output C and πN

(i.e., prediction vectors) must represent valid probabilities, which is not the case in

general. Moreover, we situate this planning algorithm within a general framework

which permits a variety of sampling strategies.

Our approach builds upon, and is closely related to, the planning framework

proposed by [52]. The primary difference being that we explicitly motivate the

use of fitted-Q instead of a point-based approach and that we situate the fitted-Q

algorithm within a flexible framework that allows for diverse sampling strategies.

The primary limitation of this approach is its computational complexity, as the

planning algorithm is significantly more expensive than model learning. It is possible

that more specialized function approximation techniques (e.g., techniques which ex-

ploit CPSR-specific and/or domain-specific regularities) could provide performance

increases, and the examination of this possibility is an interesting open question for

future work. Another interesting direction for future work is exploring how incre-

mental/online CPSR learning can be combined with online planning algorithms.

7
Empirical Evaluation of CPSR

We examine empirical results pertaining to both the model quality of compressed

models and the proficiency of model-based planning. The goal of this analysis in

the model-quality setting is to elucidate (i) the empirical cost (in terms of predic-

tion accuracy) of performing compression (if any), (ii) the compute-time reduction

engendered by the use of compression, and (iii) the impact of the implicit regular-

ization induced by performing compression. In the planning setting, we again seek

to elucidate the empirical impact of performing compression. Specifically, we use

synthetic robot navigation domains to compare the planning performance of agents

trained with CPSR models, agents trained with uncompressed TPSR models, and

memoryless (model-free) agents, which serve as a baseline.1 We also use compression

to facilitate agnostic planning in a massive partially observable domain that is in-

tractable for classic POMDP-based approaches (even when the underlying model is

known), and we provide a qualitative comparison to the Monte-Carlo AIXI algorithm

[70], a related approach for sequential decision-making under uncertainty.

7.1 Projection Matrices

In this analysis, we examine three different classes of random projection matrices:

spherical, Rademacher, and hashed. The spherical projection matrices contain ran-
1Model-free approaches provide a fair baseline, as they learn without using a predictive model

of the domain. By contrast, standard POMDP baseline approaches [e.g., 40, 56] all assume that
probabilistic models of the domain are known a priori, meaning that they are not applicable to the
problems examined here (where both model learning and planning must be performed).

69

CHAPTER 7. EMPIRICAL EVALUATION 70

dom Gaussian distributed entries. The Rademacher are a related class of random

matrices where each entry is an independent Rademacher variable; these matrices

also satisfy the JL lemma [11] and can afford additional efficiencies with low level

implementations that exploit the fact that only additions and subtractions are used

in the matrix multiplications (this optimization is not used here) [1]. The hashed

random projection matrices induce a feature-mapping analogous to random hashing;

each column of the random projection matrix has a 1 in a random position and the

other entries are zero. These random hashing matrices do not directly satisfy the JL

lemma, but they have been shown to preserve certain kernel-functions and perform

extremely well in practice [72, 65].

7.2 Domains

The domains used are based upon previous work on planning with PSRs and on

sequential decision-making in large, complex partially observable domains.

7.2.1 ColoredGridWorld

Figure 7.1: Graphical depiction of ColoredGridWorld. The S denotes the start posi-
tion and the target denotes the goal.

The first domain, ColoredGridWorld, is conceptually similar to the simulated

robot navigation domains commonly used in the PSR literature and is a direct ex-

tension of the GridWorld domain used in [32] and [52]. The environment is a 47-state

CHAPTER 7. EMPIRICAL EVALUATION 71

maze with coloured walls. The agent must navigate from a fixed start state to a fixed

goal state using only aliased local observations. The action space consists of moves

anywhere in the four cardinal directions (moving into walls produces no effect). To

simulate noise in the agent’s actuators, actions fail with probability 0.2, and if this

occurs, the agent moves randomly in a direction orthogonal to that which was spec-

ified. The observation space consists of whether or not the agent can see coloured

walls in any of the 4 cardinal directions (one observation per wall). There are three

possible colors, so there are 3 possible observations per wall and thus 81 possible

observations in total. A reward of 1 is returned at the goal state (resetting the

environment), and no other states emit rewards.

Though simple, this domain is quintessentially partially observable in that it is

impossible to learn how to reach the goal without incorporating memory. Moreover,

the added complication of coloured walls exponentially increases the cardinality of

the observation space, leading to many possible tests and histories. In essence, the

agent cannot know a priori whether the colouring is pertinent to the problem, so it

vastly complicates the learning problem.

7.2.2 Partially Observable PacMan

The second domain used is based upon the partially observable PacMan domain,

denoted PocMan, first proposed by [66]. It is an extremely large partially observable

domain with on the order of 1056 states. The basic dynamics follow that of the video-

game PacMan: an agent must navigate a maze-like environment, collecting food and

avoiding coming in contact with any of four ghosts.

In this work, we examine two versions of the domain. The first version is a replica

of the PocMan domain used by [70] in their work on a Monte Carlo AIXI approxi-

mation. In the second version, which we call S-PocMan, we further complicate the

environment by dropping the parts of observation vector that allow the agent to

sense in what direction food lies, and we sparsify the amount of food in the environ-

ment. In the original domain food was placed in each position with probability 1
2
;

in S-PocMan there are only 7 pieces of food in total, each in a fixed position. The

CHAPTER 7. EMPIRICAL EVALUATION 72

Figure 7.2: Graphical depiction of S-PocMan. The white dots denote food and the
white annuli denote power-pills.

reason for examining this more difficult version of the domain is that, as summarized

in section 7.4, we found that a memoryless controller was able to perform extremely

well on the original PocMan, achieving results approaching that of the AIXI algo-

rithm. In other words, simply treating the original PocMan domain as if it were

fully observable led to very good results. This seems to be due to the fact that the

food rewards were plentiful and fully observable. In S-PocMan we make the problem

more partially observable in order to demonstrate the usefulness of a model-based

approach.

7.3 CPSR Model Learning Results

We examined the model quality of different CPSRs and an uncompressed TPSR on

the ColoredGridWorld domain. Sample trajectories were generated using a simple

ε-greedy exploration policy, where the non-random actions were determined by a

policy learned via a memoryless controller. All models were set with d′ = 5, where

d′ is final model dimension (from chapter 4) set after performing SVD; however,

singular values below an tolerance of 10−6 were also discarded. All tests, τi, with

CHAPTER 7. EMPIRICAL EVALUATION 73

Figure 7.3: Predictive model learning results on the ColoredGridWorld domain. Plot
shows the log-likelihood of the test data given the different models as the prediction
horizon is increased. The numbers adjacent to the CPSR projection types correspond
to the compressed dimension, d, used. 95% confidence interval error bars are too
small to be visible.

|τi| ≤ 7 were included in the estimation process2 (including longer length tests did

not improve performance). For the CPSR models, projection dimensions of 25, 50,

and 75 were examined and only the best performing size (determined via validation

trials) is reported. The same size projections were used for both tests and histories.

All models used 10000 train trajectories (of max length 13) and were evaluated with

100000 trajectories. The PacMan-style domains were not examined in this model-

quality context as naive TPSRs exhausted memory limits when tests of length longer

than 1 were used, making a rigorous comparison is infeasible3.

Figure 7.3 plots the log-likelihood of the models as the prediction horizon (i.e.,

number of steps ahead to predict) is increased. From this figure, we see that the

compressed models are not only competitive with the uncompressed TPSR, they

2If a particular test was never encountered in the training data, however, it was discarded, as
such tests lead to singularities in the observable matrices.

3Experiments were run on a machine with an 8-core 3.2 GHz Intel Xeon processor (x64 archi-
tecture) and 8Gb of RAM.

CHAPTER 7. EMPIRICAL EVALUATION 74

actually outperform the TPSR at longer prediction horizons. We conjecture that

this is due to the regularization induced by the use of random projections. Figure

7.4 plots the build times for the different models, showing that the compressed models

can be built in a fraction of the time required to build the uncompressed TPSR.

0

5

10

Hashed−50 Rademacher−50 Spherical−75 TPSR
Model

B
u
ild

 T
im

e
 [
lo

g
(m

s
)]

Figure 7.4: Model build times (on a log-scale) for the different model types on the
ColoredGridWorld domain. Compressed dimension sizes are listed next to the model
names. Times do not include time taken to build the training set. 95% confidence
interval error bars are too small to be visible.

7.4 CPSR Planning Results

Next, we apply the full learning and planning approach (Algorithm 2) to the domains

ColoredGridWorld, PocMan, and S-PocMan. For ColoredGridWorld, the models ex-

amined were identical to those described in the model quality experiments above.

For planning, we used Ip = 1000 with N = 1 and a random sampling strategy; this

represents the standard unbiased batch-learning setting (section 7.5.1.4 discusses the

possibility of using more complex sampling strategies). A discount factor of γ = 0.99

was used for this domain.

CHAPTER 7. EMPIRICAL EVALUATION 75

0.0

0.1

0.2

0.3

0.4

Hashed−50 Memoryless Rademacher−50 Random Spherical−75 TPSR
Model

A
ve

ra
g

e
 R

e
tu

rn
 p

e
r

E
p

is
o

d
e

Figure 7.5: Average return (i.e., sum of discounted rewards) per episode achieved in
the ColoredGridWorld domain using different models and the baselines. Compressed
dimension sizes are listed next to the model names. 95% confidence interval error
bars are shown.

For both PocMan and S-PocMan, we set d′ = 25 and examined compressed

dimensions in the range 250− 500 (selecting only the top performer via a validation

set); no TPSR models were used on these domains, as their construction exhausted

the memory capacity of the machine used. For these domains, we again used 10000

sample trajectories to build the model, and tests of up to length 20 were included.

For both domains, we set I = 1000, N = 1, and γ = 0.99999.

In all experiments, we used 100 fitted-Q iterations, one Extra-Tree ensemble of 25

trees per action, and the default settings for the Extra-Trees [29]. As a baseline, we

examined the performance of a memoryless controller on the domains. This controller

is analogous to treating the domains as fully observable and running the standard

fitted-Q algorithm of [27]. The use of this baseline is not arbitrary, as its success

provides an empirical measure of how partially observable a domain is with respect

CHAPTER 7. EMPIRICAL EVALUATION 76

to planning; if a domain is easily solved by the memoryless controller then it is

nearly fully observable in that immediate observations are sufficient for determining

near-optimal plans. We also used a simple random planner which selects actions

uniformly randomly as a second baseline.

Figure 7.5 details the performance of the different algorithms on the Colored-

GridWorld domain. For this domain, the hashed CPSR algorithm achieved the best

performance while the TPSR algorithm performed second-best. All the PSR-based

approaches vastly outperformed the memoryless-controller baseline. This is expected,

as the ColoredGridWorld problem is strongly partially observable.

Figure 7.6 details the performance of the CPSR algorithms on the PocMan and

S-PocMan domains. In these domains, we see a much smaller performance gap

between the CPSR approaches and the memoryless baseline. In fact, in the PocMan

domain, the memoryless controller is the top-performer. This demonstrates, first and

foremost, that the PocMan domain is not strongly partially observable. Though the

observations do not fully determine the agent’s state, the immediate rewards available

to an agent (with the exception of reward for eating the power pill and catching a

ghost) are discernible through the observation vector (e.g., the agent can see locally

where food is). Thus, the memoryless controller is able to formulate successful plans

despite the fact that is treating the domain as if it were fully observable. Moreover,

a qualitative comparison with the Monte-Carlo AIXI approximation [70] reveals that

the quality of the memoryless controller’s plans are actually quite good. In that work,

they use a slightly different optimization criteria of optimizing for average transition

reward, and with on the order of 50000 transitions they achieve an average transition

reward in the range [−1, 1] (depending on parameter settings). With on the order of

250000 transitions they achieve an average transition reward in the range [1, 1.5]. In

this work, the memoryless controller achieves an average transition reward of −0.2

(despite the fact that it is actually optimizing for average return per episode), and it

is thus, competitive given the same magnitude of samples, as approximately 50000

transitions were used in this work. It is also important to note that PSR-type models

may be combined with memoryless controllers as memory PSRs (described in section

8.1), and so it should be possible to boost the performance of the CPSR models to

CHAPTER 7. EMPIRICAL EVALUATION 77

match that of the memoryless controller in that way.

Importantly, in S-Pocman where part of the observation vector is dropped and

the rewards are sparsified, we see that the top-performer is again a CPSR based

model (which in this case uses spherical projections). This matches expectations

since the food-rewards are no longer fully discernible from the observation vector,

and thus the domain is significantly less observable. It is also worth noting that

building naive TPSRs (without compression or domain-specific feature selection) is

infeasible computationally in these PacMan-inspired domains, and thus the use of a

PSR-based sequential decision-making agent (via the compression techniques used)

in these domains is a considerable advancement.

A final observation is that the performance is quite sensitive to the choice of

projection matrices in these results. For example, in the S-PocMan domain, the

Rademacher projections perform no better than the memoryless baseline, whereas for

PocMan the Rademacher outperforms the other projection methods. The exact cause

of this performance change is unclear. Nevertheless, this highlights the importance of

evaluating different projection techniques when applying this algorithm in practice.

7.5 Discussion

The empirical results presented in this chapter demonstrate the efficacy of CPSR

compared to uncompressed PSR models in terms of predictive capacity and useful-

ness in a sequential decision-making framework. The model learning experiments

demonstrate that CPSR models achieve predictive accuracy competitive to that of

uncompressed models, while taking a fraction of the runtime, and the planning re-

sults demonstrate that these models can be exploited by efficient planners, providing

a novel and powerful framework for sequential decision-making under uncertainty.

The domains used are inspired by previous work on learning and planning with PSRs

in discrete domains [e.g. 75, 52]. The primary difference between these works and

the results presented here is that efficiency of CPSR allows for experimentation in

large domains that are infeasible for uncompressed PSR-based approaches.

CHAPTER 7. EMPIRICAL EVALUATION 78

−300

−200

−100

0

Hashed−250 Memoryless Rademacher−250 Random Spherical−250
Model

A
ve

ra
g

e
 R

e
tu

rn
 p

e
r

E
p

is
o

d
e

(a) PocMan

−300

−200

−100

0

Hashed−250 Memoryless Rademacher−250 Random Spherical−250
Model

(b) S-PocMan

Figure 7.6: Average return (i.e., sum of discounted rewards) per episode achieved in
the PocMan (a) and S-PocMan (b) domains using different models and the baselines.
Compressed dimension sizes are listed next to the model names. 95% confidence
interval error bars are shown.

This empirical analysis also bears similarity to the work of [16] and [13], where

feature-extraction is used to learn PSRs in domains with continuous observation

spaces. An interesting open question is how feature extraction can be combined with

compression in an optimal manner, such that efficient learning and planning can be

performed in domains with continuous observation spaces.

7.5.1 Practical Concerns

The implementation of complex sequential decision-making frameworks often reveals

practical issues that are not immediately apparent given formal descriptions. In

order to facilitate the use of the CPSR algorithm in applications, we outline some

pertinent practical issues that arise while implementing the CPSR algorithm and

describe our solutions.

CHAPTER 7. EMPIRICAL EVALUATION 79

7.5.1.1 Selecting the Projection Matrices

First, it is necessary to reiterate the sensitivity of the approach with respect to

both the projection dimension and type of projection used. Empirically, we found

that the results could be quite sensitive to these parameters. For example, selecting

a projection dimension that is too small may lead to suboptimal (near-random)

performance. This issue is further exacerbated by the fact that the true dimension

of the underlying system is unknown.

Our approach to this issue involved evaluating different projection dimensions

(and projection types) via model quality experiments (which are not as computa-

tionally expensive as planning experiments). For simplicity, we set dT = dH, as we

experimentation did not reveal any significant benefits of using different projections

for histories and tests. In general, techniques such as cross-validated grid-search

(starting with exponentially separated values) are recommended. Since compressed

models are computationally inexpensive to construct, this approach should suffice

for the majority of applications.

7.5.1.2 Improving Efficiency by Caching

In chapter 4 we defined the projection operators via the functions φT : T → R
dT

and φH : H → R
dH . This specification engenders a number of benefits. Specifically,

the full projection matrices do not need to be held in memory and the number of

tests and histories do not need to be specified in advance. There is a runtime penalty

associated with the technique, however, as the mappings must be recomputed each

time a particular test or history is encountered while iterating over the sample tra-

jectories. In order to ameliorate this issue, while retaining the benefits of specifying

the projections as functions, we implemented a least-recently-used (LRU) cache. By

caching the mappings for frequently encountered tests and histories, we improved

the empirical runtime of the algorithm considerably.

CHAPTER 7. EMPIRICAL EVALUATION 80

7.5.1.3 Numerical Stability Issues

At its core, the CPSR algorithm relies on standard linear algebra techniques, namely

SVD and matrix inversions, which are prone to numerical stability issues. If the ma-

trices upon which these operations are performed are ill-formed, suboptimal results

will be obtained (or the algorithm will simply fail). In this work, we found one

common situation where such stability issues arise.

Since we do not normalize the probability estimates in section 4.2, the singular

values of Θ̂ in (4.9) grow with the size of the training set. This leads to stability

issues when inverting the matrix of singular values in order to compute the implicit

pseudoinverse in (4.11) and (4.13). This stability issue can be alleviated by normal-

izing the probability estimates, or more generally, by scaling Θ̂ by a small constant.

Since this constant cancels out during learning, it can be picked arbitrarily, but it

should be chosen such that the magnitude of the values in Θ̂ are near unity. The most

straightforward approach is to simply normalize the probability estimates, though

this may not always suffice (e.g., if there are extremely unlikely events, the normal-

izer may make certain entries too small leading to further stability issues). We also

empirically observed that setting d′ < dT and/or removing singular values below a

certain threshold (a standard technique) helped with numerical stability.

7.5.1.4 Q-function Approximation and Sampling Strategies

Algorithm 2 in chapter 6 permits a wide-variety of sampling strategies, and the

sampling strategy used implicitly constrains the Q-function approximation obtained.

In this work, we used an unbiased random sampling strategy in the batch setting.

That is, we collected a large batch of random samples, which we used to both learn a

model and construct plans. We opted for this framework as (i) our simulators were

designed for the batch setting and (ii) the theoretical results of chapter 5 assume a

blind (random) sampling strategy is used.

We did, however, experiment with a goal-directed sampling approach [52]. In

the goal-directed paradigm, a number of mini-batch sampling iterations are used,

and the sampling policy (πs) is updated at each iteration to be ε-greedy over the

CHAPTER 7. EMPIRICAL EVALUATION 81

agent’s current policy (πi). [52] found that this approach led to better performance

in the small-sample setting. In our experiments, where we used larger numbers of

samples (on the order of 10000), we found that the goal-directed approach did not

improve over random sampling and, in fact, often led to worse results and numerical

instabilities. In particular, the bias in the sampling strategy led to an imbalance

in the Θ̂ matrix in that certain entries dominated in terms of magnitude. As a

result of this imbalance, the SVD in (4.9) became unstable, and poor results were

obtained. Such stability problems are likely to be an issue whenever biased sampling

strategies are used in the large-sample batch setting. However, in online or small

sample settings, such strategies will likely lead to performance increases due to the

fact that their exploration is myopic and focusses on areas of the state-space relevant

to planning [as shown by 52].

8
Conclusion

The CPSR approach provides a new avenue for efficient sequence prediction and se-

quential decision-making. By combing the method of moments with techniques from

compressed sensing, the compressed learning algorithm allows accurate PSR mod-

els to be constructed in a memory and time efficient manner while also providing

regularization. We elucidated theoretical guarantees bounding the induced approx-

imation error of this model-learning approach, showing that the low-dimensional

embeddings of the models retain predictive accuracy. In addition, we proposed a

planning approach which exploits these compressed method of moments models in

a principled manner, allowing for high-quality plans to be constructed without prior

domain knowledge. Finally, we outlined how model learning and planning can be

combined at a high-level. The empirical results we obtained demonstrate the efficacy

of this approach.

Moreover, in deriving this algorithm, we made explicit the subtle connections

between PSR models in sequential decision-making and the more general method of

moments framework for sequence prediction. The CPSR algorithm is thus not only

applicable to sequential decision-making; the algorithm is readily adaptable to more

generic sequence prediction tasks.

8.1 Related Work

This work is very related to, and builds upon, a wealth of literature on moment-

methods, PSR learning and PSR-based planning approaches. The TPSR approach

82

CHAPTER 8. CONCLUSION 83

[16, 61] to learning PSRs and the spectral Hankel factorization technique for learning

WAs serve as foundations for the CPSR learning algorithm. The primary difference

between CPSRs and these models, is that CPSR models are no longer linear trans-

forms of true WA/PSR models; they are, in fact, compressed projections. In other

words, CPSR models may be viewed as combining the spectral learning method with

an efficient, principled, and domain-independent feature selection strategy (where the

random projections are viewed as feature selectors). Of course, this view is somewhat

limited, as the CPSR paradigm, in fact, fundamentally alters the learning objective:

instead of finding a concise linear transform of a WA/PSR, the CPSR objective is to

find an accurate approximation of a PSR within some compressed space (such that

the compressed model cannot be linearly transformed back to the original).

In a similar vein, the goal-directed planning and learning approach of [52] serves

as a foundation for our planning algorithm. The primary difference between our

work and this goal-directed approach is that we present a more general combined

learning and planning framework, which accommodates the use of a wide variety of

sampling strategies.

Beyond these works, our approach bears similarities to the memory PSR (mPSR)

approach of [39], which uses a type of hybrid PSR-MDP model to reduce compu-

tational costs and increase predictive accuracy, and the hierarchical PSRs (HPSRs)

of [75], which uses the option framework [69] to increase the predictive capacity of

PSRs. Importantly, the improvements suggested by both these approaches are not

incompatible with our compressed learning algorithm.

Our approach also shares similarities with certain sequential decision-making al-

gorithms, which use adaptive history-based techniques. Examples of these algo-

rithms include U-Tree [48] and the Monte-Carlo AIXI approximation [70]. These

approaches share the motivation of developing agnostic agents that can learn and

plan without domain knowledge. They differ, however, in the instantiation of their

model-based approach, as they use an adaptive history-based approach, which uses

variable size windows over histories. A key aspect of these approaches is focussing

the model-learning on areas of the state-space relevant to achieving goals (similar

to the goal-directed sampling routine) [48]. Thus, a fundamental difference between

CHAPTER 8. CONCLUSION 84

AIXI-like approaches and the one proposed here is that they efficiently learn myopic

models, necessarily constrained by the planning aspect of the problem, whereas in

this work we retain the option of learning full unbiased models of domains (i.e., our

model learning may be decoupled from planning). One implication of this is that

the models learned via the CPSR learning approach may be reused in different plan-

ning contexts. For example, in a robot navigation problem, there may be a common

environment in which different navigation tasks must be carried out. CPSR would

benefit in this case since a single model of the domain could be learned and reused

for the different navigation tasks.

8.2 Future Directions

Given the above discussion, an interesting direction for future work would be an

analysis of the inductive bias associated with both the PSR and Monte-Carlo AIXI

paradigms. Though these methods bear similarities, their theoretical motivations are

quite distinct: PSRs being motivated by the theory of the latent variable modelling

and the method of moments while AIXI-like methods have information-theoretic

(and/or Bayesian) motivations [70]. Recently, there have been a number of theoreti-

cal advancements in the understanding of moment-based latent variable models, such

as the local loss formulation of [10]. These advancements could serve as tools in such

an analysis. Perhaps the most interesting question in this area is understanding the

regularization induced by these different paradigms (e.g., due to the restriction of

the model classes). For example, AIXI-like methods often explicitly penalize model

complexity, while this does not explicitly factor into the optimization of PSR-type

methods (besides through the hyper-parameter selection of the model-size).

Another interesting avenue for the continuation of this work is exploring the

use of compression via random projections in more diverse moment-methods. For

example, the method of moments is used in natural language processing applications

to learn probabilistic context free grammars (PCFGs) [18], and these more specialized

applications could benefit from the use of compressed learning approaches.

CHAPTER 8. CONCLUSION 85

Certain questions related to the theoretical analysis of compression also remain

open. For example, a formal integration of results on compressing histories and

features simultaneously is an important direction for future work. Moreover, an

interesting open question is whether or not it is possible to develop a statistical test

for the quality of compressive features within the PSR setting that does not rely on

building a complete model with these features and measuring prediction accuracy.

It is possible that certain spectral properties of a (compressed) Hankel matrix may

provide insight into the quality of compressive features, but the formal investigation

of this remains the subject of future work.

Lastly, the framework presented here provides the necessary ingredients for apply-

ing a CPSR-based learning and planning framework to difficult real-world application

problems, such as robot navigation problems. Of course, such applications would in-

troduce certain engineering issues not highlighted here. In particular, the sampling

strategy, projection size, and projection type would necessarily be constrained by the

problem domain and by hardware limitations; for example, it may be worthwhile to

use highly optimized Rademacher projections. Moreover, in domains with extremely

large action and observation dimensions, using a distributed implementation (e.g., of

equation (4.13) in the learning algorithm) would likely engender significant computa-

tional benefits. And, in domains with continuous observations it would be necessary

to combine discretization or kernel-based feature extraction with the CPSR compres-

sion techniques. However, these engineering issues should not necessitate altering the

core of the CPSR approach.

Bibliography

[1] D. Achlioptas. Database-friendly random projections. In Proceedings of the 20th Association

for Computing Machinery Symposium on Principles of Database Systems, 2001.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for
learning latent variable models. arXiv preprint arXiv:1210.7559, 2012.

[3] A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture models and
hidden Markov models. In 25th Annual Conference on Learning Theory, 2012.

[4] R. Bailly, X. Carreras, F. Luque, and A. Quattoni. Unsupervised spectral learning of WCFG
as low-rank matrix completion. In Proceedings of the 2012 Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning, 2013.

[5] R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal component analysis
problem. In Proceedings of the 26th International Conference on Machine Learning, 2009.

[6] R. Bailly, A. Habrard, and F. Denis. A spectral approach for probabilistic grammatical infer-
ence on trees. In Proceedings of the 21st Conference on Algorithmic Learning Theory, 2010.

[7] B. Balle, X. Carreras, F.M. Luque, and A. Quattoni. Spectral learning of weighted automata:
A forward-backward perspective. Machine Learning, pages 1–31, 2013.

[8] B. Balle, W. L. Hamilton, and J. Pineau. Methods of moments for stochastic languages: Unified
presentation and empirical comparison. In Proceedings of the 31st International Conference

on Machine Learning, 2014.

[9] B. Balle and M. Mohri. Spectral learning of general weighted automata via constrained matrix
completion. In Advances in Neural Information Processing Systems, 2012.

[10] B. Balle, A. Quattoni, and X. Carreras. Local loss optimization in operator models: A new
insight into spectral learning. In Proceedings of the 29th International Conference on Machine

Learning, 2012.

[11] R. Baraniuk and M. Wakin. Random projections of smooth manifolds. Foundations of Com-

putational Mathematics, 9:51–77, 2009.

86

BIBLIOGRAPHY 87

[12] R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order Markov models.
Journal of Artificial Intelligence, 22:385–421, 2004.

[13] B. Boots and G. Gordon. An online spectral learning algorithm for partially observable dy-
namical systems. In Association for the Advancement of Artificial Intelligence, 2011.

[14] B. Boots and G. Gordon. A spectral learning approach to range-only SLAM. In Proceedings

of the 30th International Conference on Machine Learning, 2013.

[15] B. Boots, G. Gordon, and A. Gretton. Hilbert space embeddings of predictive state repre-
sentations. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence,
2013.

[16] B. Boots, S. Siddiqi, and G. Gordon. Closing the learning-planning loop with predictive state
representations. In Proceedings of Robotics: Science and Systems VI, 2009.

[17] M. Brand. Incremental singular value decomposition of uncertain data with missing values. In
Computer Vision - European Conference on Computer Vision, pages 707–720. Springer, 2002.

[18] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Spectral learning of latent-
variable PCFGs. Assocation for Computational Linguistics, pages 223–231, 2012.

[19] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Experiments with spectral
learning of latent-variable PCFGs. In Proceedings of NAACL-HLT, 2013.

[20] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[21] F. Denis and Y. Esposito. On rational stochastic languages. Fundamenta Informaticae,
86(1):41–77, 2008.

[22] M. Deshpande and G. Karypis. Selective Markov models for predicting web page accesses.
ACM Transactions on Internet Technology, 4(2):163–184, 2004.

[23] P. S. Dhillon, J. Rodu, M. Collins, D. P. Foster, and L. H. Ungar. Spectral dependency parsing
with latent variables. In Proceedings of the 2012 Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning, 2012.

[24] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, 2006.

[25] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the L1-
ball for learning in high dimensions. In Proceedings of the 25th International Conference on

Machine Learning, 2008.

[26] P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic automata and hidden
Markov models: probability distributions, learning models and induction algorithms. Pattern

Recognition, 38(9):1349–1371, 2005.

BIBLIOGRAPHY 88

[27] D. Ernst, P. Geurts, L. Wehenkel, and L. Littman. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6:503–556, 2005.

[28] M.M. Fard, Y. Grinberg, J. Pineau, and D. Precup. Compressed least-squares regression on
sparse spaces. In Association for the Advancement of Artificial Intelligence, 2012.

[29] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3–42, 2006.

[30] G. Gordon. Approximate solutions to Markov decision processes. PhD thesis, Robotics Insti-
tute, Carnegie Mellon University, 1999.

[31] W. L. Hamilton, M. M. Fard, and J. Pineau. Efficient learning and planning with compressed
predictive states. arXiv preprint arXiv:1312.0286v1, 2013.

[32] W. L. Hamilton, M. M. Fard, and J. Pineau. Modelling sparse dynamical systems with com-
pressed predictive state representations. In Proceedings of the 30th International Conference

on Machine Learning, 2013.

[33] D. Hsu and S. M. Kakade. Learning mixtures of spherical Gaussians: moment methods and
spectral decompositions. In Proceedings of the 4th conference on Innovations in Theoretical

Computer Science, 2013.

[34] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models.
In 21st Annual Conference on Learning Theory, 2008.

[35] M. Hulden. Treba: Efficient numerically stable EM for PFA. In Proceedings of the 2012

International Conference on Grammatical Inference, 2012.

[36] M. T. Izadi and D. Precup. Point-based planning for predictive state representations. In
S. Bergler, editor, Advances in Artificial Intelligence, volume 5032 of Lecture Notes in Com-

puter Science, pages 126–137. 2008.

[37] H. Jaeger. Observable operator models for discrete stochastic time series. Neural Computation,
12(6):1371–1398, 2000.

[38] M. James and S. Singh. Learning and discovery of predictive state representations in dynamical
systems with reset. In Proceedings of the 21st International Conference on Machine learning,
2004.

[39] M. James, B. Wolfe, and S. Singh. Combining memory and landmarks with predictive state
representations. In Proceedings of the 19th International Joint Conference on Artificial Intel-

ligence, 2005.

[40] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[41] T. Koski. Hidden Markov models for bioinformatics, volume 2. Springer, 2001.

BIBLIOGRAPHY 89

[42] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of Statistics, pages 1302–1338, 2000.

[43] M. Littman. Algorithms for sequential decision making. PhD thesis, Brown University, 1996.

[44] M. Littman, Richard S., and Satinder S. Predictive representations of state. In Advances In

Neural Information Processing Systems, 2002.

[45] F.M. Luque, A. Quattoni, B. Balle, and X. Carreras. Spectral learning in non-deterministic
dependency parsing. European Association for Computational Linguistics, 2012.

[46] O.A. Maillard and R. Munos. Compressed least-squares regression. In Advances in Neural

Information Processing Systems, 2009.

[47] O.A. Maillard and R. Munos. Linear regression with random projections. Journal of Machine

Learning Research, 13:2735–2772, 2012.

[48] A McCallum. Reinforcement learning with selective perception and hidden state. PhD thesis,
The University of Rochester, 1996.

[49] K. Murphy. A survey of POMDP solution techniques. Technical report, Department of Elec-
trical Engineering and Computer Science, University of California, Berkeley, 2000.

[50] A. Ng and M. Jordan. Pegasus: A policy search method for large MDPs and POMDPs. In
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, 2000.

[51] S. Nicol, O. Buffet, T. Iwamura, and I. Chadès. Adaptive management of migratory birds
under sea level rise. In Proceedings of the 23rd International Joint Conference on Artificial

Intelligence. AAAI Press, 2013.

[52] S. C. W. Ong, Y. Grinberg, and J. Pineau. Goal-directed online learning of predictive models.
In S. Sanner and M. Hutter, editors, Recent Advances in Reinforcement Learning, volume 7188
of Lecture Notes in Computer Science, pages 18–29. 2012.

[53] S. C. W. Ong, Y. Grinberg, and J. Pineau. Mixed observability predictive state representations.
In Association for the Advancement of Artificial Intelligence, 2013.

[54] J. R. Partington. An introduction to Hankel operators, volume 13. Cambridge University
Press, 1988.

[55] K. Pearson. Contributions to the mathematical theory of evolution. Philosophical Transactions

of the Royal Society of London, pages 71–110, 1894.

[56] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In Proceedings of the 17th International Joint Conference on Artificial Intelligence,
2003.

[57] M. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.

BIBLIOGRAPHY 90

[58] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. In A. Waibel and K. Lee, editors, Readings in speech recognition, pages 267–296.
1990.

[59] H. Rauhut, K. Schnass, and P. Vandergheynst. Compressed sensing and redundant dictionaries.
IEEE Transactions on Information Theory, 54(5):2210–2219, 2008.

[60] A. Recasens and A. Quattoni. Spectral learning of sequence taggers over continuous sequences.
In Proceedings of the 2013 European Conference on Machine Learning and Principles of Knowl-

edge Discovery in Databases, 2013.

[61] M. Rosencrantz, G. Gordon, and S. Thrun. Learning low dimensional predictive representa-
tions. In Proceedings of the 21st International Conference on Machine learning, 2004.

[62] S. Ross, B. Chaib-draa, and J. Pineau. Bayes-adaptive POMDPs. In Advances in Neural

Information Processing Systems, 2007.

[63] N. Roy, G. Gordon, and S. Thrun. Planning under uncertainty for reliable health care robotics.
In Field and Service Robotics, 2006.

[64] S. Russell, P. Norvig, J. Canny, J. Malik, and D. Edwards. Artificial intelligence: a modern

approach, volume 2. Prentice Hall Englewood Cliffs, 1995.

[65] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. V. N. Vishwanathan. Hash kernels
for structured data. The Journal of Machine Learning Research, 10:2615–2637, 2009.

[66] D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural

Information Processing Systems, 2010.

[67] S. Singh, M. James, and M. Rudary. Predictive state representations: a new theory for
modeling dynamical systems. In Proceedings of the 20th Conference on Uncertainty in Artificial

Intelligence, 2004.

[68] R. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume 1. Cambridge
University Press, 1998.

[69] R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211, 1999.

[70] J. Veness, K.S. Ng, M. Hutter, W. Uther, and D. Silver. A Monte-Carlo AIXI approximation.
Journal of Artificial Intelligence Research, 40(1):95–142, 2011.

[71] S. Verwer, R. Eyraud, and C. Higuera. Results of the PAutomaC probabilistic automaton
learning competition. In Proceedings of the 10th International Conference on Grammatical

Inference, 2012.

[72] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In Proceedings of the 26th International Conference on Machine

Learning, 2009.

BIBLIOGRAPHY 91

[73] E. Wiewiora. Modeling probability distributions with predictive state representations. PhD
thesis, University of California at San Diego, 2007.

[74] B. Wolfe, M. James, and S. Singh. Learning predictive state representations in dynamical sys-
tems without reset. In Proceedings of the 22nd international conference on Machine learning.
ACM, 2005.

[75] B. Wolfe and S. Singh. Predictive state representations with options. In Proceedings of the

23rd International Conference on Machine learning, 2006.

[76] S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, and K. Yu. The
hidden information state model: A practical framework for POMDP-based spoken dialogue
management. Computer Speech & Language, 24(2):150–174, 2010.

[77] S. Zhou, J. Lafferty, and L. Wasserman. Compressed regression. In Advancements in Neural

Information Processing Systems, 2007.

	Contents
	List of Figures
	1 Introduction
	1.1 Problem Statement
	1.1.1 Learning a Predictive Model using Moments
	1.1.2 Sequential Decision-Making using a Predictive Model

	1.2 Thesis Statement
	1.3 Statement of Contributions

	2 Technical Foundations
	2.1 Notation
	2.1.1 Matrix Algebra Notation
	2.1.2 Sequence Notation
	2.1.3 Probability Notation

	2.2 Moment-Methods for Sequence Prediction
	2.2.1 A Concrete Framework: Latent Variable Models and Weighted Automata
	2.2.2 Learning Latent Variable Models with EM
	2.2.3 A Simple Moment-Based Algorithm: Factorizing a Hankel Matrix
	2.2.4 Overview of Existing Methods
	2.2.4.1 The Spectral Method
	2.2.4.2 Convex Optimization Method

	2.2.5 Symmetric Tensor Decomposition Method

	3 Sequential Decision-Making
	3.1 Sequential Decision-Making Framework
	3.1.1 Partial State Observability
	3.1.2 The POMDP Model

	3.2 Predictive State Representation
	3.2.1 The PSR Model: Independent Derivation
	3.2.2 The PSR Model: Method of Moments Interpretation
	3.2.3 Learning PSRs
	3.2.4 Transformed Representations
	3.2.5 Two Views: Factorization versus Least-Squares

	3.3 Discussion

	4 Compressed Predictive State Representation
	4.1 Intuition and Motivation
	4.2 A Compressed Learning Algorithm PSRs
	4.2.1 Batch Learning of CPSRs
	4.2.2 Incremental Updates to the Model

	4.3 Discussion

	5 Theoretical Analysis
	5.1 Consistency of the Learning Approach
	5.1.1 Consistency in the Non-Compressed Setting
	5.1.2 Extension to the Compressed Case

	5.2 Effects of Compressing Tests
	5.2.1 Preliminaries
	5.2.2 Error of One Step Regression
	5.2.2.1 Error of the compressed normalizer

	5.2.3 Error Propagation

	5.3 Effects of Compressing Histories
	5.4 Discussion

	6 Planning with CPSRs
	6.1 Fitted-Q with CPSRs
	6.2 Combined Learning and Planning
	6.3 Discussion

	7 Empirical Evaluation
	7.1 Projection Matrices
	7.2 Domains
	7.2.1 ColoredGridWorld
	7.2.2 Partially Observable PacMan

	7.3 CPSR Model Learning Results
	7.4 CPSR Planning Results
	7.5 Discussion
	7.5.1 Practical Concerns
	7.5.1.1 Selecting the Projection Matrices
	7.5.1.2 Improving Efficiency by Caching
	7.5.1.3 Numerical Stability Issues
	7.5.1.4 Q-function Approximation and Sampling Strategies

	8 Conclusion
	8.1 Related Work
	8.2 Future Directions

	Bibliography

