

Brokering Services for Cooperative Distributed Systems: An
Agent Privacy-Based Architecture

(Spine Title: Brokering Services for Cooperative Distributed Systems)

(Thesis Format: Monograph)

By

AbdulMutalib M. Masaud Wahaishi

Graduate Program
In

Engineering Science
Department of Electrical and Computer Engineering

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

 Doctor of Philosophy

Faculty of Graduate Studies

The University of Western Ontario

London, Ontario

October, 2007

© AbdulMutalib M. Masaud Wahaishi – 2007

ii

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Hamada Ghenniwa

Supervisory Committee

Examiners

Dr. Sabah Mohammed

Dr. Roberto Solis-Oba

Dr. Abdulla Shami

Dr. Weiming Shen

The thesis by

AbdulMutalib M. Masaud Wahaishi

entitled:

Brokering Services for Cooperative Distributed Systems:
An Agent Privacy-Based Architecture

is accepted in partial fulfilment of the

requirements for the degree of
 Doctor of Philosophy

Date__________________________ _______________________________

Dr. Richard Puddephatt

Chair of the Thesis Examination Board

iii

ABSTRACT

Cooperative distributed systems (CDS) approach is a promising design paradigm

that is suitable for many applications such as healthcare, virtual enterprises, e-

business and tele-learning in which entities have some degree of authority to

sharing their capabilities. Brokering is a capability-based coordination approach

for CDS. A major challenge of brokering in open environments is to support

privacy. Within the context of brokering, we model privacy in terms of the

entities’ ability to hide or reveal information related to its identities, requests,

and/or capabilities. In this work we present in-depth analysis of the capability-

based coordination and propose a privacy-based brokering framework and

interaction protocols that support different privacy degrees. Unlike traditional

approaches, the brokering is viewed as a set of services in which the brokering

role is further classified into several sub-roles each with a specific architecture

and interaction protocol that is appropriate to support a required privacy degree. A

formal specification of the privacy-based brokering protocols is represented using

an Input/Output Automata model. To put the formulation in practice, a prototype

of the proposed architecture has been implemented to support information-

gathering capabilities in healthcare environments.

Keywords:
Cooperative Distributed Systems, Capability, Brokering, Interdependency, Coordination,
Privacy, Agent Technology, Input-Output Automata.

iv

 قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

In the name of God, Most Gracious, Most merciful

“They said: Be glorified! We have no knowledge saving that which Thou

hast taught us. Lo! Thou, only Thou, art the Knower, the Wise”

(The Noble Quran 2:32)

ولو زيد آذا, لو غُيّر هذا لكان أحسن ”اني رأيت أنه لايكتب إنسان آتابآ في يومه إلا قال في غده :

 وهو دليل, العبر أعظموهذا من. ولو تُرك هذا لكان أجمل, ولو قُدِّم هذا لكان أفضل. لكان يُستحسن

“ لى جملة البشر على استيلاء النقص ع

)العمادالاصفهاني(

“I have found that, whenever one commits his thoughts on a paper or a book,

doubt invariably sets in. One thinks: If I were to make an addition, it would become

clearer; if I were to remove such-and-such a part, it would become more elegant; if I

were to rearrange these sections, it would become prettier. Therein lies a profound

lesson; for it is an indication of the imperfection that permeates the actions of all human

beings”.

 (Al-Emad Al-Asfahani, Islamic philosopher)

v

DEDICATION

To the memory of my late father, the prominent Sheikh “Alhaj Mohamed
Masaud-Wahaishi”, may Allah the almighty be pleased with him.

vi

ACKNOWLEDGMENT

First and foremost, all praise is due to Allah, the Beneficent, the Merciful. He has

guided me; given me the potential, and without his blessings I would not be able

to make this degree possible.

In the course of my PhD, I had the great fortune of being supervised by a very

supportive and helpful supervisor. His integrity, dedication, insightful advice and

encouragement have greatly contributed in fulfilling this degree, my heartfelt

gratitude to Dr. Hamada Ghenniwa.

I would also like to thank my examiners, Dr. Sabah Mohammed, Dr. Roberto

Solis-Oba, Dr. Abdulla Shami and Dr. Weiming Shen for all their constructive

comments and suggestions which surely helped in improving the thesis; members

of the CDS-Eng group (especially Raafat and Toufik) at the Department of

Computer and Electrical Engineering for their constant efforts and willingness to

help.

I remain indebted and grateful to my parents for their prayers, both of whom have

always believed in me; my brothers and sisters and my friends back home in

Libya for their continuous support.

Finally, but certainly not least, I would like to express my sincere gratitude to my

beloved wife Fadwa for all the sacrifices, the patience, and most importantly, for

just being with me. It could not be possible without you, for which I will be

always indebted. My thanks also to my children Mohamed, Fatma, Shaden,

Shayma and Zuhair, who are my pride and joy, for their unconditional love and

for understanding that sometimes “dad is extremely busy”.

vii

TABLE OF CONTENTS

List of Preliminary Pages

Certificate of Examination.. ii

Abstract……………. .. iii

Acknowledgment ...vi

List of Tables…. ... xi

List of Figures…... xi

CHAPTER 1 INTRODUCTION ... 1

1.1. Cooperative Distributed Systems - CDS.. 1

1.2. Capability-Based Coordination: A Motivation ..2

1.3. Privacy in Cooperative Distributed Systems ...4

1.4. Contribution...5

1.5. Organization of the Thesis ..5

CHAPTER 2 LITERATURE REVIEW...7

2.1. Capability-Based Coordination Techniques and Approaches........................7

2.1.1. Broker-based Approaches..8
2.1.2. Matchmaker-based Approaches..9
2.1.3. Facilitator-based Approaches ..9
2.1.4. Distributed Databases ..9
2.1.5. Standards, Platforms and Specifications ..10
2.1.6. The Service-Oriented Semantic Driven Architecture (SOSDA)........................11

2.2. Privacy.. 12

2.3. Summary ..20

CHAPTER 3 PRIVACY-BASED BROKERING FRAMEWORK.. 21

3.1. Brokering for Cooperative Distributed Systems.. 21

3.2. The Privacy-Based Brokering Model - The Brokering Layer22

viii

3.3. The Input Output Automata (IOA)...24

3.4. Brokering Interaction Protocols .. 31

3.4.1. The Requester-Brokering Interaction Patterns...31
3.4.1.1. The Negotiator ..32

3.4.1.2. The Mediator ..41

3.4.1.3. The Advertiser ..48

3.4.1.4. The Bulletinboard..54

3.4.2. The Provider-Brokering Interaction Patterns ...60
3.4.2.1. The Arbitrator ..61

3.4.2.2. The Broadcaster...68

3.4.2.3. The Recommender..73

3.4.2.4. The Anonymizer ...78

3.5. Analysis of the Protocols..84

3.5.1. The Privacy-Based Brokering Protocols ..87
3.6. Discussion.. 91

3.7. Summary ..92

CHAPTER 4 DESIGN AND IMPLEMENTATION..94

4.1. Modelling Cooperative Distributed Systems...94

4.2. Agent-Based Brokering Services for SOSDA ..95

4.3. Example: Brokering for SOSDA Healthcare CDS95

4.4. The Coordinated Intelligent Rational Agent (CIR-Agent) Model................97

4.5. The Domain Agent: Service Providers and Requesters 100

4.6. The Brokering Agents: ReqBrokers and ProvBrokers101

4.6.1. The ReqBroker Agent.. 102
4.6.1.1. The ReqBroker Interaction Device: Assignment .. 102

4.6.1.2. The Negotiator Design.. 104

ix

4.6.1.3. The Mediator Design.. 104

4.6.1.4. The Advertiser Design .. 105

4.6.1.5. The Bulletinboard Design ... 105

4.6.2. The ProvBroker Agent .. 106
4.6.2.1. The ProvBroker Interaction Device: Assignment.. 106

4.6.2.2. The Arbitrator Design.. 107

4.6.2.3. The Broadcaster Design .. 108

4.6.2.4. The Recommender Design ... 108

4.6.2.5. The Anonymizer Design... 109

4.7. Supporting Services...110

4.8. Implementation Example: Agent-Oriented Privacy Brokering for SOSDA
Healthcare CDS..111

4.8.1. Implementation .. 115
4.9. Summary ...119

CHAPTER 5 SUMMARY AND CONCLUSION ... 120

5.1. Summary of Contributions... 120

5.1.1. Brokering Model and Architecture .. 121
5.1.2. Interaction Protocols ... 122
5.1.3. Privacy.. 122
5.1.4. Formulation and Description ... 122
5.1.5. The Use of the Architecture in Application Domains...................................... 123

5.2. Limitations... 124

5.3. Directions for Future Research ... 124

 Vita…………….…. .. 135

x

List of Tables

Table 1: Brokering Roles and Interaction Protocols with Requesters 23

Table 2: Brokering Roles and Interaction Protocols with Providers 24

Table 3: Mapping IOA Parameters to UML Sequence Diagrams 28

List of Figures

Figure 1: SOSDA as a Layered Architecture.. 11

Figure 2: Logical View of the Brokering Layer .. 23

Figure 3: Interaction Pattern for the Negotiator... 34

Figure 4: State Transition Diagram representing Negotiator Behavior 38

Figure 5: Sequence Diagram for the Interaction Protocol of the Negotiator 40

Figure 6: The Interaction Pattern for the Mediator.. 42

Figure 7: State Transition Diagram representing the Mediator Behavior........................ 44

Figure 8: Sequence Diagram for the Interaction Protocol of the Mediator 47

Figure 9: The Interaction Pattern for the Advertiser.. 49

Figure 10: State Transition Diagram representing the Advertiser Behavior 50

Figure 11: Sequence Diagram for the Interaction Protocol of the Advertiser 53

Figure 12: Interaction Pattern for the Bulletinboard.. 54

Figure 13: State Transition Diagram representing the Bulletinboard Behavior 56

Figure 14: Sequence Diagram for the interaction Protocol of the Bulletinboard 58

Figure 15: The Interaction Pattern for the Arbitrator... 62

Figure 16: State Transition Diagram representing the Arbitrator Behavior 64

Figure 17: Sequence Diagram for the Interaction Protocol of the Arbitrator 67

Figure 18: The Interaction Pattern for the Broadcaster ... 69

xi

Figure 19: State Transition Diagram representing the Broadcaster Behavior 70

Figure 20: Sequence Diagram for the Interaction Protocol of the Broadcaster............... 72

Figure 21: Interaction Pattern for the Recommender .. 74

Figure 22: State Transition Diagram representing the Recommender Behavior.............. 75

Figure 23: Sequence Diagram for the Interaction Protocol of the Recommender........... 78

Figure 24: The Interaction Pattern for the Anonymizer... 79

Figure 25: State Transition Diagram representing the Anonymizer Behavior 81

Figure 26: Sequence Diagram for the Interaction Protocol of the Anonymizer 83

Figure 27: The CIR Agent's Architecture .. 98

Figure 28: The Overall System Model... 100

Figure 29: The Domain Agent Architecture .. 101

Figure 30: The Brokering Agent Architecture... 102

Figure 31: Architecture of the Negotiator’s Reasoning Component 104

Figure 32: Architecture of the Mediator’s Reasoning Component................................ 105

Figure 33: Architecture of the Advertiser’s Reasoning Component 105

Figure 34: Architecture of the Bulletinboard’s Reasoning Component 106

Figure 35: Architecture of the Arbitrator’s reasoning Component................................ 107

Figure 36: Architecture of the Broadcaster’s Reasoning Component 108

Figure 37: Architecture of the Recommender’s Reasoning Component 109

Figure 38: Architecture of the Anonymizer Reasoning Component 109

Figure 39: The Brokering Layer Architecture ... 113

Figure 40: Information Brokering for Healthcare CDS... 115

Figure 41: The Interaction Component (Assignment Device)....................................... 118

1

Chapter 1

INTRODUCTION

An important class of distributed systems is Cooperative Distributed Systems (CDS), in

which entities are able to exercise some degree of authority in sharing their capabilities.

This characteristic is very desirable in designing systems for many applications, such as

electronic business, enterprise integration, manufacturing engineering and virtual

environments. In such environments, an application is usually constituted of

geographically distributed and decentralized entities. Entities in this paradigm are

expected to collaborate and work together to achieve their goals. To enable successful

collaboration, the need of coordination and cooperation approaches is an essential

necessity. However, a major challenge of coordination in open environments is to enable

cooperation under a desired level of privacy protection. This chapter provides an

overview of cooperative distributed systems and introduces issues addressed in this

dissertation with emphasis on capability-based coordination as brokering services.

1.1. Cooperative Distributed Systems - CDS

A distributed system consists of a collection of different entities (such as processes,

components, databases, knowledge-base, and so on.) that can perform some functions

independently. An important class of these systems is Cooperative Distributed Systems

(CDS), in which the entities are able to exercise some degree of authority in sharing their

capabilities.

Due to the distributed nature of applications based on the CDS approach, an entity may

not be available or known when needed. Although these systems are independently

created and administered, they usually need to work together to accomplish individual or

social tasks. Nevertheless, in open environments, this becomes a challenge where it is no

2

longer feasible to expect designers or users to hardcode, to determine or to keep track of

the entities and their capabilities.

In order to provide agile coordination solutions for the growing complexity of

contemporary CDS to share information and capabilities, new coordination approaches

and architectures need to be explored and developed.

1.2. Capability-Based Coordination: A Motivation

In developing CDS in open environments, coordination is a major challenge. Entities

need to locate and interact with others who posses the capabilities to achieve a particular

goal. For distributed systems, fulfilling a request may go beyond the capability of the

individual entities, this is known as the capability-interdependency problem [32].

In the conventional point-to-point interaction configuration, entities interact directly with

each other to provide controlled and directed coordination. However, this configuration is

both inflexible and computationally expensive. For instance, there is no separation of

concerns between computation and coordination. The absence of a separate medium that

deals exclusively with the coordination aspects in the system means that the entities, in

addition to other computational activities, have to carry out the “interaction work”

themselves to satisfy common or local tasks.

As an alternative, the capability-based coordination approach can be a very effective

medium for interaction and coordination. In this approach, the entities need not to be

concerned with how the interaction is performed or done. The essential objectives of

capability-based coordination solutions are to facilitate the interaction of various entities

who continue to operate in open distributed environment and compete to deliver value-

rich services.

Brokering is a capability-based coordination which is viewed as an abstraction level at

which a distributed system environment can be viewed collectively as a coherent

universe. Furthermore, such coordination gives a new dimension of communicating

where the involved entities are not required to be known to each other, nor exist in the

same place at the same time in order to communicate which relieve the them of the

burden of having to handle the coordination concerns, thus providing them with more

3

space and time for other computational activities to improve their profitability and gain a

competitive advantages.

Within this context we define brokering for CDS as: “A capability-based coordination

service that provides coordination solutions to a variety of participants in open

distributed environments”.

In capability-based coordination, participants can be distinguished by the role they play

(for example, a service requester or a provider). Providers specify services they provide

in capabilities. For example, a service that provides weather forecasting is an example of

a capability. Capabilities are often accompanied by services parameters, which specify

the conditions under which services are offered such as cost and quality. Requesters

specify services they need in requests. Requests can be accompanied by preferences,

which are counterparts of service parameters.

The capacity to coordinate the entities’ behavior coupled with the possibility to control

different levels of privacy upon the operations they perform is vital. The privacy concerns

over the inappropriate use of the CDS resources such as information and services make it

hard to successfully take advantage of the gains from sharing, utilizing or accessing the

capabilities of these systems. Entities prefer to have authority on controlling the

collection, retention and the distribution of information about themselves in such

environments. This restricts the willingness of CDS entities to share their capabilities and

consequently, distributed systems architects, developers and administrators are faced with

the challenge of securing the desired privacy levels.

Thus motivated, the scope of this research focuses on incorporating capability-based

coordination solutions, emphasizing on developing a framework that defines an

appropriate coordination structure and mechanisms that imply various requirements and

protocols for interoperability and interaction to suit desired levels of privacy.

In order to develop a privacy-based brokering framework, we provide thorough analysis

and define the structure that represents the patterns of communication amongst involved

participants. Then we propose the interaction protocols and the mechanisms of the

coordinated control to support various levels of privacy.

4

To provide deep understanding and formal treatment of the coordination activities, we

propose a formal model to describe and represent each privacy-based interaction

protocol. Furthermore, these protocols are analyzed and consequently we provide a

detailed design and implementation guidelines for a privacy-based brokering model.

Different approaches have been proposed to facilitate capability-based coordination in

CDS to deal with relevant privacy issues. However; to our knowledge, none of these

approaches have treated privacy as an architectural property of the CDS.

1.3. Privacy in Cooperative Distributed Systems

With the rapidly growing development of applications, user’s privacy is becoming a

critical issue. As a result, distributed systems architects, developers and administrators

are faced with the challenge of securing the user’s privacy as well as the services he or

she might access. In general, users and service providers are concerned about their

personal privacy from different perspectives. For example, they may wish to protect their

identities from being used, or decide by whom they will be revealed, and for what

purposes, or retain the choice about whether or not to reveal their personal interests or

capabilities.

There are numerous privacy risks that create many threats to personal privacy and raise

unique privacy concerns in developing CDS, for example identity theft is now becoming

an industry in its own right, with massive acquisition of personal data sufficient to do

serious damage on a large scale. The dissemination of sensitive information is

particularly offensive as a violation of privacy, and dealing with it can be enormously

time consuming. Target marketing can turn into spamming, service customization can

turn into unfair price discrimination, hackers and insiders can cause systemic denial of

access to targeted individuals, and so on. For these and other reasons, many people

provide false identity. On the other hand, providers desire to share capabilities and

provide services in a manner that does not violate their privacy. In many settings, service

providers need to be guarded and prevented from damages resulted form malicious

entities and accordingly need to effectively manage and prevent any abuse of the services

they provide.

5

With growing concern about privacy in distributed environments, considerable research

has been conducted focusing on various aspects. Solutions and models put forth by this

research address specific challenges of the problem. However, within the context of

brokering for CDS we view Privacy as “the ability of CDS entities to decide upon

revealing or hiding information related to their identities, requests and capabilities in

open distributed environments”.

1.4. Contribution

A major contribution of this work is to define a generic architecture of the brokering

interaction protocols that are appropriate to different privacy degrees. It demonstrates

how brokering can be used to provide capability-based coordination solutions,

particularly to different levels of privacy protection. The work introduces several new

original ideas that contribute to the overall thesis. They are:

 Brokering Architecture, that enables cooperation under a desired level of privacy

protection in CDS.

 Defining Brokering, as a capability-based coordination solution for the

interdependency problem.

 Defining Privacy, within the context of brokering and is viewed as an architectural

element of the coordination.

 Interaction Protocols, that provides the structure and the suitable mechanisms for

capability-based coordination.

 Formal Structure, for capturing, describing and representing the privacy-based

interaction protocols.

 Design and Implementation, guidelines that provide a prominent tool for developers,

architects and system designers to develop privacy based CDS applications.

Chapters 3, 4, and 5 will further elaborate on these concepts.

1.5. Organization of the Thesis

This chapter has provided an overview of the entire thesis, which is structured as follows:

6

Chapter 1: Literature Review. This chapter provides a fundamental literature

review to the most relevant works; the review is based on exploring the different

approaches that have been proposed in the field to deal with brokering and

privacy. This chapter reviews the literature relevant to the thesis. It begins with a

general overview of coordination in distributed systems, and then focuses more

closely on the two areas directly related to the thesis: capability-based

coordination approaches and privacy.

Chapter 3: Privacy-Based Brokering Framework. This chapter represents our

view of modeling the cooperative distributed systems and represents the privacy-

based brokering framework. The chapter also defines formal specifications and

representation for the proposed privacy-based protocols.

Chapter 4: Design and Implementation. Introduces an agent privacy-based

brokering architecture and illustrates the detailed design and implementation

guidelines of the proposed model.

Chapter 5: Summary and Conclusion. The final chapter of the thesis discusses

the conclusions about the research described throughout the dissertation, and

recapitulates the contributions, limitation and presents proposals and directions

for future work.

7

Chapter 2

LITERATURE REVIEW

This chapter provides a literature review of integration solutions in cooperative

distributed systems with special focus on capability-based coordination approaches that

deal with privacy concerns in open environments. In this chapter we survey some of the

existing approaches that deal with the coordination solutions and the protection of the

privacy attributes of CDS entities.

2.1. Capability-Based Coordination Techniques and Approaches

The coordination activities within and across distributed systems can be performed by a

different coordination structures and mechanisms that imply various requirements and

protocols for interoperability and interaction. The structure refers to the patterns of

communication amongst involved participants (for example, brokering, matchmaking or

facilitation). The mechanisms define the coordinated control and the interaction

protocols. The mediator-based approaches [96] provide dynamic solutions for

coordination in which the focus is on developing software modules that perform value-

added activities but keep the information model hidden. Examples include MOMIS [7]

and OBSERVER [59]. The information entity (mediator) provides integrated access to

various types of heterogeneous information sources and controls the coordination

according to the following pattern: (i) the mediator receives, collects and forwards user

requests; (ii) locate and direct user’s request to the appropriate information provides

results to the receiver’s request, and (iii) collects query results and delivers an integrated

response to the user [33].

8

2.1.1. Broker-based Approaches

In the broker-based approaches, all the communication between paired participants has to

go through an intermediary entity (usually called, a broker) [26][43]. The broker controls

all the coordination activities between requesters and providers. The broker interaction

pattern involves contacting providers who might have the capability to serve a particular

request. The interaction might involve indifferent mechanisms to facilitate the

coordination such as negotiation, contract nets and auction protocols. The Broker

insulates requesters and provider and thus protects the provider from hostile or unruly

requesters. Examples of broker-based systems include MACRON [44] and NZDIS [76].

In MACRON, the architecture does not preclude providers’ privacy attributes from being

exposed to other agents in the environment. On the other hand, requesters are required to

reveal their privacy attributes to their relevant agent (called query manger, QM) when

submitting their queries.

The NZDIS (New Zealand distributed information system), introduces a capability-based

coordination approach for integrating distributed information systems. The architecture

comprises the same pattern of the broker-based approach. Recent approaches distinguish

a resource brokering architecture that manages the scheduling of different tasks on a

large-scale grid [21][11][47]. The proposed architectures utilize the broker-based

approach in which a brokering entity allocates requesters’ tasks to different distributed

resources. The Grid Service Broker [93] focuses on developing matchmaking solutions

for computational and data-grid applications to provide interoperability and accessibility

means to distributed resources from different grids. Other approach emphasizes on

locating capabilities by obtaining some form of quality-of-service (QoS) offers from

different resources, so that offers from providers may be distinguished based on the level

of the provided quality [104].

Other frameworks utilize the broker-based architecture [30][60] [39][45][64] to deal with

capability-based coordination for Web services [95]. These approaches provide protocols

that coordinate the actions of distributed applications and enable existing transaction

processing, workflow, and other systems for coordination to hide their proprietary

9

protocols and to operate in a heterogeneous environment. Examples of these approaches

are, IRS-II [63], IRS-III [51] and Agent-based semantic Web Services [65][67] [72].

2.1.2. Matchmaker-based Approaches

In the matchmaker-based approaches, an intermediary entity coordinates the activities by

identifying the relevant provider(s) for the requester. The interaction pattern involves

matching given requests with appropriate capabilities offered by available providers. The

matchmaker identifies and proposes a set of potential providers to the requester. The

requester contacts the proposed providers and accordingly carries out any further

interaction. [89][55]. In contrast with the broker-based approaches, all interactions are

undertaken between the requester and the provider directly. Examples of matchmaker-

based systems include InfoSleuth [97], RETSINA [88], DECAF [36], IMPACT [5] and

COINS [49].

2.1.3. Facilitator-based Approaches

The facilitator-based [15] approaches extend the functionality of the mediator

architecture with automatic resource identification and data conversion. This level of

automation requires all attribute information to be presented and revealed to the

facilitator. The Infomaster [29] is an information integration system that utilizes this

approach.

2.1.4. Distributed Databases

Approaches for interoperability across information systems were proposed in the context

of database management systems. Global and federated approaches have been proposed

for achieving coordination between distributed databases based on the overall system at

the architecture level. In the former, all the local schemata may be integrated into a single

global schema that represents all the databases in the entire distributed system [84]. Some

of the information integration approaches include TSIMMIS [13] and TAMBIS [73].

Both of these systems are domain-specific (static data bioinformatics) and query-centric

federated systems based on three layers of mediators and wrappers. Both systems assume

that information about the sources is available a priori.

10

2.1.5. Standards, Platforms and Specifications

The FIPA agent software integration specification defines how software resources can be

described, shared and dynamically controlled in an agent community [25]. It includes

agent wrappers for software services and an agent resource broker (ARB) service.

Wrappers are agents that interface non agent-based software with agent-based systems.

An Agent Resource Broker (ARB) allows advertisement in the agent domain and

management of their use by other agents, such as the negotiation of parameters (e.g. cost

and priority), authentication and permission.

Within the industry arena, there are a number of standards and platforms, which have

gained a wide acceptance. Their main purpose is to provide infrastructure tools, platforms

and frameworks, to facilitate capability-based coordination at the technology level by

allowing different entities to easily communicate with each other to exploit different

capabilities.

Some of the well-known standards and platforms include the Object Management

Group’s CORBA (Common Object Requester Broker Architecture) [69] and JINI [87].

CORBA allows distributed objects to communicate with each other. The interface of the

distributed objects is described in a special language, the Interface Definition Language

(IDL). Each object that needs a service must access the service using the object request

broker (ORB). Locating services (objects) is accomplished through two CORBA

services: naming service, in which objects are discovered based on their names and trader

services, in which objects are discovered based on their capabilities. Objects need to

register their presence (object references and capabilities) with ORB.

JINI is a Java-based platform for service discovery. The main components of a JINI

system are Services, Clients and Lookup Services. A service registers a “service proxy”

with the Lookup Service and clients requesting services get a handle to the “service

proxy” from the Lookup Service.

Several available commercial products enable coordination at the at the technology level.

The concern is to provide tools to provide a uniform means for distributed application to

interact and use the technological capabilities to produce a desired functionality, some of

11

these products include: Mercator Enterprise Broker [91], NEON eBusiness Integration

Servers [66], SeeBeyond EBusiness Integration Suite [82], Actional Control Broker [1]

and CrossWorlds [19]. These industrial approaches are built primarily on messaging

middleware technology that provides capability-based coordination based on pre-built

application adapters, and bi-directional connectivity to multiple applications. The

middleware receives requests and identifies the target sources.

2.1.6. The Service-Oriented Semantic Driven Architecture (SOSDA)

The Service-Oriented Semantic Driven Architecture (SOSDA) has proposed integration

architecture for CDS [31]. The SOSDA specifications provide the abstraction to support

the domain entities and applications independent of any specific technology.

Within this architecture CDS is viewed as a service-oriented environment in which the

overall connectivity of the system supports a “virtual” point-to-point integration

mechanism as shown in Figure 1. SOSDA defines various services and the primary ways

in which they interact to support integration.

Figure 1: SOSDA as a Layered Architecture

Basically, services in SOSDA are classified into three family-of-services (FOS): (1)

Coordination & Cooperation, (2) Ontology & Semantic Integration and (3) Wrapping

services. The work presented in this dissertation deals with the brokering as part of the

coordination and cooperation FOS which provides ad hoc or automated support for

capability-based coordination.

12

In summary, the objective of the approaches described above was based on extending the

capability of a specific class of distributed systems by developing auxiliary tools that

facilitate coordination as an aspect of cooperation.

This work addresses the capability-dependency problem and proposes a capability-based

coordination framework that provides coordinated access to a collection of different

domain entities in open environments. Form the coordination point of view the work

focuses on the following issues:

1. Interaction Protocols (IPs)

◙ It is assumed that the environment has the dynamic nature where entities

have to accomplish their tasks utilizing an appropriate interaction

mechanism.

2. Formulation and Representation

◙ The description of the privacy-based protocols should adhere to a formal

representation. A set of specifications for realizing that model need to be

presented. The specifications provide prominent foundation for

developers, architects and system designers to develop applications that

provide capability-based coordination.

2.2. Privacy

Privacy appears as a major challenge is providing coordination solutions in open

distributed environments. Recognition and understanding of the privacy problems in CDS

and the risks that result from inadequate action are absolutely essential. Tremendous

effort has been devoted to deal with privacy and security issues in distributed systems for

the last few decades to find technological means of guaranteeing privacy by employing

state-of-the art encryption and anonymization technologies [50]. Although, these

technologies can provide tools to secure a great deal of protection, personal privacy

entails more than just a secret communication and masked identity.

Using privacy as an organizing paradigm, one approach [20] suggested nine roles that can

be played by middle agents. These roles are categorized by the preferences and

capabilities information that can be kept initially with the requester and provider agents,

13

respectively, and can be later revealed to the middle agent. Other agent-based

architectures involving three parties have been suggested, introducing a layer between

users and providers, constituted by brokers, mediators or middle agents, an overview is

given in [99]. An agent-based management of user profiles, including access control

mechanisms, has also been suggested [98], the approach proposes a combination of

(XML-based) access control and privacy technologies such as Platform for Privacy

Preferences (P3P) to control access to distributed managed user profiles.

P3P [70] is an industry standard that aims to enable web sites to express their privacy

policies in a standardized format that they can be automatically retrieved and interpreted.

It provides entities with the ability to communicate about privacy preferences in a

standard machine-readable format. The specification describe includes a protocol for

requesting and transmitting P3P policies which is built on the same HTTP protocol that

web browsers use to communicate with web servers. Requesters use standard HTTP

requests to fetch a P3P policy reference file from a well-known location on the web site

to which a user is making a request. The policy reference file indicates the location of the

P3P policy file that applies to each part of the web site. There might be one policy for the

entire site, or several policies that each covers a different part of the site. The requesters

can then fetch the appropriate policy, parse it, and take action according to the user’s

preferences. However P3P addresses only a narrow set of privacy issues related to the

automation of creating, requesting and reading privacy policies.

In the context of Web services, the Privacy Service [75] defines the requirements that

enable privacy protection for the consumer of a Web service across multiple domains and

services. However, these requirements focus on the details of data encryption at the data

level.

The work in [46] introduced the concept of privacy engineering and accordingly

proposed architecture to manage personal data held in Digital Rights Management

(DRM) systems [22]. The architecture defines a language to represent and describe DRM

rights in terms of permissions, constraints and obligations between users and contents. A

repository (Rights metadata) defines the control over data contents. A data controller

entity deals with access requests to determine and interprets access rights. The approach

14

emphasizes privacy as a data protection aspect and combines encryption techniques with

access mechanisms with implicit trust on the controller entity which manages the

coordination activity.

Different approaches to protect the location privacy in open distributed systems [8].

Location privacy is a particular type of information privacy that can be defined as “the

ability to prevent other parties from learning one’s current or past location”. These

approaches range form anonymity, pseudonymity and cryptographic techniques. Some

approaches focus on using anonymity by unlinking user personal information from their

identity. One available tool is called Anonymizer [4]. The service protects the Internet

protocol (IP) address or the identity of the user who views WebPages or submits

information (including personal preferences) to a remote site. The solution uses

anonymous proxies (gateways to the Internet) to route user’s Internet traffic through the

tool. However, this technique requires a trusted third party, because the Anonymizer

servers (or the user’s Internet service provider, ISP) can certainly identify the user. Other

tools try not to rely on a trusted third-party to achieve complete anonymity of the user’s

identity on the Internet, such as Crowds [77], Onion Routing [35] and MIX networks

[14].

The Crowd approach is based on the idea of ‘blending into a crowd”, i.e., hiding one's

actions within the actions of many others. The interaction pattern starts when a user joins

a “crowd” of other users. Before sending a user’s request to a web server, it has to be first

passed to a random member of the crowd who can choose either to submit the request

directly to the end server or forward it to another randomly chosen member within the

crowd. When the request is eventually submitted, it is submitted by a random member,

thus preventing the end server from identifying its true initiator. Although, the user’s

identity can be prevented, the coordination model does not address any privacy concerns

that might be needed by the end server (service provider).

The goal of Onion Routing (OR) is to protect the privacy of the sender and recipient of a

message, while also providing protection for message content as it traverses a network.

Similar to the crowd approach, the onion routing encompass the following: messages

travel from source to destination via a sequence of proxies ("onion routers"), which re-

15

route messages in an unpredictable path. To prevent an adversary from eavesdropping on

message content, messages are encrypted between routers. It is not necessary to trust each

cooperating router; if one or more routers are compromised, anonymous communication

can still be achieved. This is because each router in an OR network accepts messages, re-

encrypts them, and transmits them to another onion router. However, it is possible for a

local eavesdropper to observe that an individual has sent or received a message and

therefore, onion routing does not provide absolute guarantee of privacy; rather, it

provides a continuum in which the degree of privacy is affected by the number of

participating routers versus the number of compromised or malicious routers.

A mix network provides anonymous communication facilities. A mix-network can be

viewed as a public key cryptographic approach that takes as input a number of

ciphertexts, decrypts and shuffles them and finally outputs a random permutation of

plaintexts. Each message is encrypted to each proxy using public key cryptography; the

resulting encryption is layered with the message as the innermost layer. Each proxy

server strips off its own layer of encryption to reveal where to send the message next. If

all but one of the proxy servers is compromised by the tracer, privacy protection can still

be achieved. However, its weakness lies in its vulnerability of communication between

the user device and the service provider and it is possible for an eavesdropper to observe

that a proxy has sent or received a message.

Other approaches [100] focus on preserving the user’s anonymity by applying

cryptographic techniques that focus on encrypting the user’s personal information using

Private Information Retrieval (PIR) schemas [16]. The emphasis is to allow users to

retrieve information from database sources while keeping their queries private from

providers. Many of the PIR schemes were proposed under the assumption of accessing a

single database source. Some applications or users require services without providing or

using any user identifiable information.

Information Space organizes information, resources, and services around privacy-relevant

contextual factors [102]. The model defines different boundaries and permissions for

information, resources, services, and authorizations management in context--aware

systems. For privacy control, an information space boundary acts as a trusted entity to

16

enforce permissions defined by owners of that space. This model protects sensitive

information through control of the information through trusted owners under the

assumption of trustworthiness of the metadata as well as the software component that

processes the metadata.

Other schemas support multiple database sources but assume that these multiple sources

would not communicate with each other, which is not realistic in practical applications.

Protocols in these schemas are based on the RSA decryption algorithms [78] that are

geared only towards the protection of the user’s identity. Nevertheless, these schemas

focus on a single service environment which makes them impractical for a dynamic

distributed environment where requesters (and service providers) need to maintain

several keys (private and public) for identification purposes when requesting services

from many providers which might lead to practical implementation complexities

[94][6][58][54].

Other initiatives proposed the use of privacy policies along with physical access means

(such as smartcards) in which the access to private information is granted through the

presence of another trusted entity [18], the X.509 [101] and pretty good privacy (PGP)

[3]. The X.509 standard defines and specifies the structure and format of digital

certificates and credentials. In the X.509 system, an intermediary which is a single trusted

network entity with whom other entities are registered, issues digital identity and attribute

certificates. The standard accommodates adaptable levels of privacy for users’

anonymity, however the need of a trusted third party to protect one’s privacy is a

necessity. Another approach [9] makes use of a policy language to check the compliance

to the required level of privacy. However required privacy attributes (defined as a

required level of privacy) need to be revealed to the compliance checker in order to verify

credential holders.

Another approach [53] provides access control mechanisms and tools for protecting

requesters’ personal privacy. Service requesters joining an environment are prompted for

the required privacy policies of each service in the environment. A dedicated requester’s

proxy checks these policies against the user’s predefined privacy preferences and

accordingly decides upon using or declining the services.

17

Privacy Enhancing Technologies (PET) [34] are based on eliminating or reducing

personal data by preventing unnecessary and/or undesired processing (and storage) of

personal and individual data, all without losing the functionality of the system. The term

PET is used to describe all types of technologies that provide privacy to a user.

The Privacy Incorporate Software Agent (PISA) targets the creation of privacy enhancing

technologies for electronic business applications [74]. The project utilizes PET as a

technical solution to protecting the privacy of users when using intelligent agents in E-

commerce applications, according to EC-Directives on Privacy. The PISA adopts agent

technology for intelligent brokering and matching. However the focus of the project is to

develop coordination architecture to achieve information privacy using cryptographic

mechanisms.

Several solutions [48] were proposed to deal with different privacy challenges

encountered in various application domains such as e-Auctions [68], data mining [56], e-

commerce [94] and healthcare [83]. In the e-Auction approach, a privacy-based auction

protocol assumes the existence of a trusted auctioneer which evaluates received bids non-

interactively. The protocol ensures that no information beyond the result is disclosed,

provided that the auctioneer does not collude with any participant. In the e-commerce

approach, the privacy model adopts agent-based approach, in which a mobile agent

authenticates electronic transactions on behalf of a customer on a remote host. The model

does not address any privacy concerns related to remote hosts. These solutions assume

the existence of a central trusted entity that has all the information about participants, or

assume that each participant of the computation shares all relevant information with

others.

In healthcare domain, one approach as described in [62], the focus was on providing

management assistance to different teams across several hospitals by coordinating their

access to distributed information. The brokering architecture is centralized around a

mediator agent, which allocates the appropriate medical team to an available operating

theatre in which the transplant operation may be performed. Other approaches attempts to

provide agent-based medical appointments scheduling [2][61]. In these approaches the

architecture provides matchmaking mechanisms for the selection of appropriate recipient

18

candidates whenever organs become available through a matchmaking agent that

accesses a domain specific ontology. Others proposed the use of privacy policies along

with physical access means (such as smartcards), in which the access of private

information is granted through the presence of another trusted authority that mediates

between information requesters and information providers [103]. Web-service based tools

were developed to enable patients to remotely schedule appointments, doctor visits and to

access medical data [85][12]. With the advent of Information Technology and its obvious

surveillance potential, various programs and initiatives have proposed a set of guidelines

for secure and private collection, transmission and storage of patients’ data. Some of

these programs include: the Initiative for Privacy Standardization in Europe (IPSE) [40]

and the Health Insurance Portability and Accountability Act (HIPAA) [38]. Yet, these

guidelines need the adoption of new technology for healthcare requester /provider

interaction.

Privacy Sensitive Information Diluting Mechanism (PSIUM) [14] is a model that tries to

eliminate the misuse of requester information by service providers. The model proposes

an interaction protocol that enables requesters to send multiple location-based service

requests to the service provider in which only one of these requests contains the true

location. On return of service’s result, the requester links the available result without

revealing the correct location and thus preventing the identity form being exposed to the

service providers. However, the model increases the cost of linking results from the

service provider as the number of queries is increased.

Many approaches identify various patterns to address many information security

problems, including privacy. In [80] , the approach proposed criteria for privacy patterns

and identified protection solutions for cookies and pseudonymous emails. The criteria

describes how a user can configure their web client to control how and when cookies are

set and used and provides guidelines for internet users to send and exchange emails

without revealing their online identity.

Another approach [17] describes a privacy proxy that informs users of a website’s

privacy practices and introduces two types of patterns: patterns that shields and preclude

personal information from being transmitted to other entities in the environment, and

patterns that filter information sent from others to the user.

19

Building on existing privacy based pattern, another initiative [79] have proposed three

privacy patterns for web-based activities that address system architecture issues related to

informed consent for web-based transactions and the support for personal privacy

protection. These patterns describe how users can protect their privacy by both revealing

less about themselves, and acquiring more information from the party with whom they

are communicating. In one approach, a privacy patterns that deals with information

filtering in collaborative systems was presented [81]. In [37], the work presented four

design patterns for building anonymity systems for online interactions. However, the

aforementioned privacy patterns do not provide detailed specification of the

corresponding protocols, the structure of the coordinated control and the type of

messages exchanged in any interaction. Additionally, the patterns do not address the

architectural requirements for building systems that enable capability-based coordination

under various privacy degrees.

Furthermore, the patterns typically describe the rules for controlling the performance of

the entities’ actions. For example, patterns associated with privacy policies assume that

after an entity accepts the policy, it agrees to enforce these rules when it performs actions

and therefore the task of accepting privacy policies and interpreting the definitions rests

on the shoulders of the involved entity.

Many of these solutions have the assumption that the computations take place with the

existence of a completely trusted third party.

Additionally, none of the above-mentioned approaches have treated privacy as an

architectural element within the coordination services. The objective of the work

presented here is to develop a brokering architecture that deals with various degrees of

privacy as related to the identity, requests and capabilities of the participant entities

(requesters and providers) within a cooperative distributed system.

In summary, developing the brokering services comprise the automation of privacy to

enhance the overall security of the system and accordingly entities should be able define

the desired degree of privacy. The challenge in this context is how to architect the

brokering with the appropriate set of services that enable cooperation across the different

degrees of privacy. The focus is to provide a mechanism to reduce the costs and risks that

20

might be a result of violating privacy requirements. This work addresses issues and

challenges in providing privacy-based brokering that will include:

 Develop a privacy-based model

◙ The model will allow building systems that work in an open environment

with different roles and behaviors. This model has to take into

consideration any degree of privacy that might be needed by entities

within a CDS. Within the context of brokering, the degree of privacy is

defined towards three privacy attributes; entities’ identities, requests, and

capabilities.

2.3. Summary

In open environments, where entities may appear and disappear unpredictably, the need

of an effective coordination service is essential. Furthermore, in developing cooperative

distributed systems, privacy is a desired aspect of providing capability-based

coordination in these systems. This chapter highlighted different approaches to develop

capability based coordination solutions for distributed systems with special focus on

privacy.

21

Chapter 3

 PRIVACY-BASED BROKERING FRAMEWORK

This chapter introduces a privacy-based brokering model for CDS. Here privacy is geared

towards preserving the identity, requests and capabilities of the CDS entities. The model

represents different brokering scenarios and introduces the interaction protocols

associated with various privacy degrees that might be required by the CDS participants.

For each privacy degree, an associated interaction protocol defines the basic components,

the structure and the pattern representing both message communication and the

corresponding constraints on the content of such messages. The chapter provides a formal

description and a representation of the interaction protocol which expresses many

fundamental and essential characteristics of the proposed privacy-based model.

3.1. Brokering for Cooperative Distributed Systems

In CDS, domain entities are usually required to collaborate and work together to satisfy a

request. Moreover, these entities should be able to select an appropriate privacy level and

play different roles to achieve their goals and get results to their requests regardless of

whether the request can be satisfied at a local or remote location.

A domain entity’s role can be categorized as either a service-requester or a service-

provider. A service-provider is the role of a domain entity with the capability to meet the

needs of another domain entity. A service-requester is the role of a domain entity that

attempts to achieve a goal beyond its own capability.

Brokering entities need to interact (on behalf of requesters) with various providers to

fulfill a request. The interaction protocols specify the set of allowed message types,

message contents and the correct order of messages during any brokering scenario. To

facilitate the interaction, entities in CDS need to depend heavily on communication with

each other not only to perform requests, but also to advertise their capabilities.

22

3.2. The Privacy-Based Brokering Model - The Brokering Layer

Architecturally, the brokering model is viewed as a layer of services, each with a specific

architecture and interaction protocols. The brokering layer enables entities to solicit help

and delegate requests and get results according to interaction protocols that deal with

different privacy degrees. The interaction protocols represent the communication

sequences, the set of allowed message types, and the message contents during the

capability-based coordination activities between various participants in CDS.

The concern of this thesis is to view privacy in terms of three attributes: the entity's

identities (Id), capabilities (Cap) and requests (Req). The brokering enables the entities to

participate in the environment with different roles and hence be capable of automating

their privacy concerns and select a particular privacy degree. An entity is able to choose

whether to reveal or hide a particular privacy attribute. Each role is represented as a

special brokering entity (each has a distinguished name) with a specific architecture and

interaction protocol that is appropriate to a required privacy degree.

Responsibilities are separated and defined according to the roles played and the required

privacy degree. Within the layer, two sets of brokering entities are available to service

requesters and providers. The first set handles interactions with requesters according to

the desired privacy degree that is appropriate to their preferences. The other set supports

privacy degrees required by service providers. Figure 2 shows a logical view of the

brokering layer. Each brokering scenario is accomplished by the combination of the

requester role, brokering entity role and the provider role. Note that in the figure, a

specific privacy attribute variable { }, , ,x x Id Req Cap∈ represents that the corresponding

privacy attribute is not revealed.

23

Figure 2: Logical View of the Brokering Layer

The following tables summarize the different scenarios that can be played by the

brokering layer categorized by the required privacy degrees of both the requester and the

provider entities.

Table 1: Brokering Roles and Interaction Protocols with Requesters

Privacy Attributes Brokering

Role Req Id
Brokering Interaction

Negotiator Revealed Revealed • Receive service request
• Forwards request to broker-provider side
• Deliver result to requester

Mediator Hidden Revealed • Retrieve service request posted by a requester
• Forwards request to broker-provider side
• Store result to be retrieved by requester

Advertiser Revealed Hidden

• Post service request to service repository
• Requester to search repository and request service
• Retrieve a service request that was stored by a requester
• Forwards request to broker-provider side
• Store result to be retrieved by requester

Bulletinboard Hidden Hidden
• Requester to store service request
• Retrieve service request that was stored by a requester
• Forwards request to broker-provider side
• Store result to be retrieved by requester

24

Table 2: Brokering Roles and Interaction Protocols with Providers

Privacy Attributes Brokering

Role Id Cap
Brokering Interaction

Arbitrator Revealed Revealed
• Assign capable provider
• Forwards request
• Get service’s result
• Deliver result to requester-broker side

Broadcaster Hidden Revealed

• Post service request to service repository
• Providers to access service repository
• Providers to evaluate service parameters
• Providers to store result
• Provider-broker to retrieve stored result

Recommender Revealed Hidden
• Forward service request
• Provider to evaluate request
• Providers to store result
• Provider-broker to retrieve stored result

Anonymizer Hidden Hidden
• Providers to access repository
• Provider to evaluate request
• Provider to store service result
• Brokering layer to retrieve stored result

Each interaction protocol is described in terms of a combination of the interaction within

the brokering layer and the interaction with the domain entities.

To provide a deep understanding and formal treatments of these protocols, we propose

that each protocol is modeled using the Input/Output Automata (IOA) model [28][57].

This is further described in a precondition-action-postcondition mode. Each IOA depicts

the entities’ behavior and is then mapped and represented using Unified Modeling

Language (UML) sequence diagrams.

3.3. The Input Output Automata (IOA)

Formally, an IO automaton is presented in terms of the action signature, the set of states

and the set of transitions. The set of transitions are presented in a precondition/effect

model. That is, the state during which an action is enabled is given as a precondition, and

the resulting state is given by the effects of the action.

Each system component is modeled as an I/O automaton with an action labeling each

transition. An automaton’s actions are classified as either “input”, “output” or “internal”.

An automaton generates output and internal actions autonomously, and transmits output

instantaneously to its environment. In contrast, the automaton’s input is generated by the

25

environment and transmitted instantaneously to the automaton. An automaton

()A consists of the following components:

1. a set ()states A of states

2. a nonempty set of start states () ()start A states A⊆

3. a set ()acts A of actions, and

4. a transition relation which is a set () () () ()steps A states A acts A states A⊆ × × of steps.

The set of ()acts A is portioned into three disjoint sets, (), (), ()in A out A and int A which denote

input actions, output actions and internal actions respectively. An action signature

() ((), (), ())sig A in A out A int A= is a partition of actions into input actions, output actions and

internal actions respectively. A state is to be said reachable if it is the final state in a finite

execution of A .

The union of the input actions and the output actions represent the external actions which

are visible to the environment. It is to be noted that an IO automaton (A) is a labeled

state transition system which consists of a set of actions π (classified as input, output and

internal), a set of states S (including a nonempty subset of start states), and a set of

transitions in the form of ',(),s sπ that specify the effects of the automaton’s actions.

The following illustrates a simple popular example of candy machines using the IOA

model:

Three candy machines CM-1, CM-2 and CM-3 differ only in their transition relations.

The CM-1 candy machine has the following action signature:

Input actions: PUSH1, PUSH2

Output actions: SKYBAR, HEATHBAR, ALMONDJOY

Internal actions: none

The state of CM-1 consists of one variable “button-pushed”, which takes on values: 0, 1

and 2. In the initial state, “button-pushed”, is set to 0. We describe the transition relation

for CM-1 by giving a precondition and an effect for every action π the triple ,(), ' s sπ

is a step of CM-1 exactly if the precondition of π is satisfied by 'S and S is the result of

26

transforming 'S as determined by the effects of π . We omit the precondition for an action

when this precondition is true. The transition relation for CM-1 is as follows:

PUSH1

 Effect: button-pushed = 1

PUSH2

 Effect: button-pushed = 2

SKYBAR

 Precondition: button-pushed = 1

Effect: button-pushed = 0

HEATHBAR

 Precondition: button-pushed = 2

Effect: button-pushed = 0

ALMONDJOY

 Precondition: button-pushed = 2

Effect: button-pushed = 0

When the customer pushes button, CM-1 can dispense a SKYBAR. When the customer

pushes button, CM-2 can dispense either a HEATHBAR or an ALMONDJOY, but not

both. The choice between H and A is made nondeterministically by CM-1. Candy

machine CM-2 is identical to CM-1 except that its HEATHBAR action has “false”, as its

precondition. This candy machine never dispenses HEATHBARs, but is able to dispense

SKYBARs and ALMONDJOYs. Candy machine CM-3 is identical to CM-1 except that

all three candy dispensation actions have “false” as their precondition. It never dispenses

candy, which must disappoint a number of its customers.

Three customers CUST-1, CUST-2 and CUST-3 are also quite similar. CUST-1

continues to request candy bars repeatedly, non-deterministically choosing which button

to push. Its action signature is the “complement” of the candy machines:

Input actions: SKYBAR, HEATHBAR, ALMONDJOY

Output actions: PUSH1, PUSH2

Internal actions: none

27

The state of CUST-1 consists of one variable “waiting” which takes on values “yes” and

“no”. In the initial state, waiting” is set to “no”, CUST-1s actions are as follows:

SKYBAR

Effect: waiting = no

HEATHBAR

Effect: waiting = no

ALMONDJOY

Effect: waiting = no

PUSH1

 Precondition: waiting = no

 Effect: waiting = yes

PUSH2

 Precondition: waiting = no

 Effect: waiting = yes

This customer is very patient, after pushing a button; it waits for a candy bar before

pushing a button a second time. The partition part(CUST-1) of this customer’s locally-

controlled actions puts PUSH1 and PUSH2 together in one equivalence class. Customer

CUST-2 is somewhat more selective than CUST-1. It pushes button 2 repeatedly just

until the machine dispenses a HEATHBAR, and then pushes button 1 forever. Formally,

CUST-2 has another variable “heathbar-received” in its state in addition to “waiting”.

This variable takes on values “yes” and “no”, initially “no”. The actions of CUST-2 that

differ from those of CUST-1 are as follows:

HEATHBAR

Effect: waiting = no, heathbar-received = yes

PUSH1

 Precondition: waiting = no, heathbar-received = yes

 Effect: waiting = yes

PUSH2

 Precondition: waiting = no, heathbar-received = no

 Effect: waiting = yes

28

Customer CUST-3 is similar to CUST-1 except that it may make a transition to a

“satiated” state from which it no longer requests any candy bars. Formally, CUST-3s

state has an additional “satiated”, variable besides the “waiting” variable of CUST-1. It

takes on values “yes” or “no”, initially “no”. CUST-3 has an additional internal action

BECOME-SATIATED, denoted as follows:

BECOME-SATIATED

 Precondition: satiated = no; waiting = no,

 Effect: satiated = yes

Also, each of PUSH1 and PUSH2 has the additional precondition “satiated = no”. Again,

part(CUST-3) puts all three locally-controlled actions PUSH1, PUSH2 and BECOME

SATIATED in the same equivalence class.

UML (Unified Modeling Language) Sequence diagrams enable defining the actions and

states of any IOA abstractly. Message exchanges between the entities provide concrete

representation for actions’ abstractions. Table 3 represents a mapping for the IOA to the

UML sequence diagram elements. The states of the object are represented by the lifeline.

IOA transitions can be modeled as precondition-effect messages.

Table 3: Mapping IOA Parameters to UML Sequence Diagrams

IOA Parameters Sequence Diagram Comments

Entity Object

Input Actions Input Messages Messages received by the entity.

Output Actions Return Messages

Internal Actions Self Messages An internal invocation or execution
of a particular operation.

States
 Start (special state)
 Final (special state)

Lifeline
 Object creation
 object Deletion

Object creation and deletion are
special states of the object

Transition Activation Activation represents the change of
state of an object when performing
an operation.

Pre-condition Guard Condition

Post (Effect) Condition State of the object

29

A precondition is a predicate on the object state and the parameters of a transition that

must hold whenever that transition executes. An effect on the object specifies the result

of a transition. One or many transitions may be enabled at any time. However, only one is

executed at a time. The selection of which enabled action to execute is a source of

implicit non-determinism.

We can model an automaton ()A using object-oriented approach such as UML to include

the tuple that consists of the following elements:

() , ,SD A lifeLine M Act≡ , where

1. lifeLine represents the different states that an entity can be in, this includes the
instantiation of an entity (creation instance), a state ()s and the final state ()fs of
a particular object (might be an idle or a deletion of the instance), in such a way
instance lifeLine⊆ and fs lifeLine⊆ .

2. A set of messages M denotes the input messages inMessage , return message
returnMessage and a self message selMessage . The entire set of messages is
denoted as: inMessage returnMessage selMessage∪ ∪ .

3. An activation relation Act which represents the time during which an entity is
performing an operation, where Act lifeLine M LifeLine⊆ × × ; this means that for
every state in the lifeLine and message m M∈ , the object transit from state ()s to
state ()s′ such as ,(),s m s' lifeLine∈ .

To formally describe the interaction protocols using the IOA, we model the brokering

entity in a given brokering role as a unique automaton that generates output and internal

actions autonomously, and transmits output instantaneously to its environment.

For example, a brokering entity that supports a requester hiding privacy attribute

transmits the output action to the other elements of the environment such as domain

entities (requesters and Providers) and other brokering entities. In contrast, the

automaton’s input is generated by the environment and transmitted instantaneously to the

automaton.

The brokering entities perform actions triggered by its input which transition ()A into a

valid state and produce some output. The input and output actions are defined in terms of

message types the brokering and domain can receive and send, respectively.

30

In the specifications, we use the following variables and parameters:

• reqID , provID , reqBrokID and provBrokID are drawn respectively from the identity of a

requester, provider, ReqBroker and ProvBroker.

• request , is a tuple , ,reqID serName reqPerf .

• serviceRequest , is a tuple , ,reqBrokID serName reqPerf .

• serviceProposal , is a , ,provID serName serPar , representing service(s) offered by the

provider, where serPar is a tuple consisting of the following

input, output, cost, quality, time

o serName , is the service name.

o input , represents the type of input needed for the service execution.

o output , represents the type of output that result after the service execution

• serviceOffer , is a tuple provBrokeID, serviceProposal .

• requestStorage , has a value True when a service request is available, and False otherwise.

• service , has a value True indicates an available service offer.

• delegated , is a Boolean variable with values in{ },True False . True indicates that a

service request has been delegated, initially is set to False.

• resStatus , has a value True when a service’s request result is available.

• serResult , represents the result of a specific service request.

• advertised , has a value True when a service’s offering is sent to a requester.

• accepted , is set to True when a service proposal is accepted.

• requestStorageLocation , is an indexed storage that holds service requests.

• serviceOfferingStorage , is an indexed storage that holds service offers.

• delegatedRequests , is an indexed storage that holds delegated requests to ProvBrokers.

• acceptedServiceOffers , is an indexed storage that holds accepted service proposals (from

providers).

• resultLocation , is an indexed storage that holds results of services’ requests (stored by

service providers or by the ProvBrokers)

31

3.4. Brokering Interaction Protocols

Each brokering scenario encapsulates a set of conversation and message exchanges

amongst the requester-related brokering entities (called ReqBroker henceforth) and the

provider-related brokering entities (called ProvBrokers henceforth) as well as the

corresponding domain entity which plays a specific role in an interaction protocol. An

interaction protocol can be viewed as a set of messages’ content and the constraints

imposed on the individual roles in different privacy degrees. A role focuses on how the

entity in a given state receives a message of a specified type, performs local actions,

sends out messages, and switches to another state.

3.4.1. The Requester-Brokering Interaction Patterns

A requester interacts with the environment through sending and receiving messages. In

some scenarios (for example, requesters hiding privacy attributes), the ReqBrokers and

the domain entities exhibit a proactive behavior to respond to changes in the

environment. The following represent the various roles and the associated interaction

patterns that can be played by the brokering in supporting requesters with different

privacy degrees.

The interaction requires a set of agreed messages, rules for actions based upon reception

of various messages and assumptions of the communication channels. These constraints,

rules and patterns can be abstracted and formalized as interaction patterns, which are

basis for successful capability-based coordination. The interaction protocols range from

negotiation schemas to a simple request for a task.

The interaction protocols are viewed as patterns representing both message

communication and the corresponding constraints on the content of such messages. They

describe an allowed sequence of messages and message content among participant

entities. In the proposed model, a protocol is modeled as a set of communicating

processes executing concurrently. They express the constraints on the relationship

between sending and receiving messages which represent the protocol mechanism. This

model emphasizes the entities’ collaborative behaviors.

32

In order to define the messages that are needed to support a specific privacy degree, we

first identify the required “message-types” that can satisfy the supporting protocol and

next, decide on the possible messages that can be assigned to particular role in a given

interaction protocols. Note that messages can be accompanied by guard conditions to

describe the constraints on the exchanged messages. To summarize the process, the

process will be as follows:

1. Define the possible roles that entities can play is a specific protocol

2. Identify how many types of messages exist in an interaction protocol. Message

types are specified as constructors of the actions initiated by the entities.

3. Decide what messages a role can send, check, receive or store

4. Next, we have to figure out the rules and constraints on these messages.

A message consists of a sender, a set of receivers, “type” of message and message

“content”. In all the following interaction protocols, we focus only on message semantics,

without caring about its implementation details. For readability purposes, we list the

interaction protocols using the message type only.

3.4.1.1. The Negotiator

Consider the following scenarios:

 A doctor wants to have information about the number of patients who have Hepatitis B

in a specific city. The doctor needs to be assessed without exposing its identity and the

pertinent request to others.

 A customer who wants to prevent marketers and service providers from generating user

profiles of his/her shopping trends, financial and travel interests while requesting

particular services.

The above scenarios exemplifies privacy degrees in which revealing sensitive

information can lead to catastrophic discrimination outcomes, knowing the scientist’s

identity might lead to a biased and unfair decision; marketing trends can turn into

spamming. Therefore, it might be desirable to not be identified when accessing on-line

33

services. Requester should be able to interact with the corresponding brokering entity to

request services, receive service’s results, and acknowledge the receipt of service’s result.

The proposed protocol protects the requester’s identity and requests despite revealing

them to the Negotiator. The assumption is that the Negotiator is a trusted entity. Figure 3

depicts the protocol that involves the Negotiator’s interaction pattern includes interaction

with various ProvBrokers. The Negotiator forwards the request to all the ProvBrokers.

The Negotiator issues a Call-For-Proposals (CFP) to ProvBrokers (act as potential

contractors) with the request specifications which include:

 Request abstraction: a brief description of the request represented by the service

name that abstract the required capability.

 Request specification: a description and the expected format of the request.

 Expiration time: a statement of the time interval during which the announcement is

valid.

For example, within the healthcare domain, a doctor might request health information

related to the mortality rate amongst the newborns in specific region. Accordingly, a

request for service is defined as follows:

informationGethering,NewBorn - Mortality,Region - Name,PDF,30 .The request states that

an electronic PDF file is required for newborn mortality data in a defined region within a

defined time unit.

34

Figure 3: Interaction Pattern for the Negotiator

Each ProvBroker submits an offer on behalf of its providers. The interaction protocol

represents the message communication and the corresponding content of such messages.

1. Receive (“Request”) – A service request is received by the Negotiator.

8. Send (“Inform”) – The Negotiator delivers service’s result to the requester.

9. Receive (“Inform-Done”) – A message is received from the requester indicating

the receipt of the service’s result.

The interaction within the brokering layer is represented as follows:

2. Send (“CFP”) – Sending a call for proposal message to ProvBrokers.

4. Receive (“Propose”) – The Negotiator receives service proposal(s).

4. Receive (“Refuse”) – A ProvBroker declines to participate in fulfilling a service

request.

5. Send (“Accept-Proposal”) – A message is sent to the wining ProvBroker

indicating the acceptance of the proposal.

35

5. Send (“Reject-Proposal”) – A rejection message is sent to those ProvBrokers who

do not win.

6. Receive (“Inform”) – The Negotiator receives the service’s result1.

7. Send ("Inform-Done”) – The Negotiator informs the ProvBroker of the receipt of

the service’s result.

The Negotiator Automaton

The action signatures of the Negotiator include the following subsets of actions.

Input Actions: All input actions are referred by the “receive” action to represent that the

environment is the source of the action.

• receive(Request(request)) -- A request for service received from a requester.
• receive(Inform(provBrokID, resStatus)) -- Result of a service request is received from the

ProvBroker.
• receive(Infom - Done(reqID, resStatus)) -- A message received from the requester indicating

the receipt of a service’s result.
• receive(Propose(serviceOffer)) -- A service offering is received from the ProvBroker.
• receive(Refuse(serviceOffer)) -- A decline message from the ProvBroker pertinent to a

particular service request.

Output Actions: All output actions are referred by the “send” action to represent that the

Negotiator is the source of the action.

• send(CFP(serviceRequest)) -- A CFP message is sent to the ProvBrokers.
• send(Accept - Proposal(serviceOffer)) -- An acceptance message is sent to the ProvBroker.
• send(Reject - Proposal(serviceOffer)) -- A rejection message is sent to the ProvBroker.
• send(Inform(reqID, serResult))-- sending a service’s result to the requester
• send(Infom - Done(provBrokID, resStatus)) -- A message is sent to the ProvBroker

indicating the receipt of a service’s result

Internal Actions

The internal actions of the Negotiator are mainly generated to perform operations related

to accessing different storage repositories (store and delete). The Negotiator has an

1 A result is the required format depicted in the service’s request, (for example, the patient’s diagnosis information in PDF
as per the patient’s service request specification).

36

additional internal action pertinent to the evaluation of service offerings received from

various ProvBrokers.

• store(Request, RequestStorage) .
• store(serResult, resultLocation, resStatus)
• store(serOffer, serviceOfferStorage)
• remove(Request, RequestStorage)
• remove(serResult, resultLocation, resStatus)
• remove(serOffer, serviceOfferStorage)
• evaluateOffer(serOffer, serviceRequest)

States: We capture the set of states as variable labels with instantiation values.

• Wait : is the initial state of the ReqBroker which represent two possible values,
:Wait True= and :Wait False= .

• RequestAccessed : represents the state in which service the ReqBroker has received a
service request that need to be served. It represents two possible values

:RequestAccessed True= and :RequestAccessed False= .
• Delegation : denotes a delegation of specific service request to a particular

ProvBroker. It can have two possible values, :Delegation True= and
:Delegation False=

• ResultAccessed : represent results acknowledgments of service requests that need to
be sent to the requester or to be stored in the service. It represents two possible values

:ResultAccessed True= and :ResultAccessed False= .
• cfpInitiation : represents the state where the ReqBroker has issued CFP message to

various ProvBrokers. It represents two possible values :cfpInitiation True=
and :cfpInitiation False= .

• Evalution : represents the state where the ReqBroker has received service offers from
ProvBrokers. It represents two possible values :Evalution True=
and :Evalution False= .

The set of Transitions for are represented as action/precondition/postcondition model

: Wait False

receive(Request(request))
 precondition :
 Wait := True
 Effect :
 RequestAccess := True
 requestStorage := True

 =

 send(CFP(serviceRequest))
 precondition :
 RequestAccess := True

 Effect :
 cfpInitiation := True

37

recieve(Inform(provBrokID, serResult))
 precondition :
 Delegation := True
 resStatus := False
 Effect :
 ReSult := True
 resStatus := True
 Delegation := False

send(Accept - Proposal(serviceOffer))
 precondition :
 Evaluation := True
 delegated := False
 Effect :
 Delegation := True
 Evaluation := False

recieve(Infom - Done(reqID, resStatus))
 precondition :
 Result := True
 resStatus := False
 Effect :
 ReSult := True
 resStatus := True
 Result := False
 requestStorage := False
 Wait := True

send(Infom - Done(reqID, resStatus))
 precondition :
 Result := True
 delegated := True
 Effect :
 ReSult := True
 delegated := False

recieve(Propose(servcieOffer))
 precondition :
 cfpInitiation := True
 delegated := False
 Effect :
 Evaluation := True
 cfpInitiation := False

send(Reject - Proposal(serviceOffer))
 Precondition :

Evaluation := True
 delegated := False
 Effect :
 Evaluation := True
 delegated := False

recieve(Refuse(serviceRequest))
 precondition :
 cfpInitiation := True
 Effect :
 cfpInitaition := True

send(Inform(reqID, serResult))
 precondition :
 Result := True
 resStatus := Truse

 Effect :
 ReSult := True
 resStatus := True

store(Request, RequestStorage)

 Effect :
 requestStorage := True

store(serResult, resultLocation, resStatus)

 Effect :
 resStatus := True

store(serOffer, serviceOfferStorage)

 Effect :
 servcie := True

remove(Request, RequestStorage)

 Effect :
 requestStorage := False

remove(serResult, resultLocation, resStatus)

 Effect :
 resStatus := False

remove(serOffer, serviceOfferStorage)

 Effect :
 servcie := False

38

if serOffer is accepted , then accepted := 1

evaluateOffer(serOffer, serviceRequest)
 precondition :
 Evaluation := True

 accepted := false
 Effect :

− True

 2 if serOffer is rejected , then accepted := False−

Figure 4 shows the state-machine representation2 of the IOA for the Negotiator.

Figure 4: State Transition Diagram representing Negotiator Behavior

The Requester Automaton

In addition to its behaviour, the requester automaton has the following additional

variables and is described as follows:

• waiting , is a Boolean variable with values in{ },True False . True indicates that the
requester is waiting for the service’s result.

• resultRecieved , is a Boolean variable with values in{ },True False .True indicates the
receipt of the result.

The input and output actions and the associated transitions are as follows:

2 Note that, for readability reasons, the diagram shows only the transitions when the states are True.

39

recieve(Infom(reqID, resStatus))
 precondition :
 waiting := True

resultRecieved := True
 Eff :
 resultRecieved := False
 waiting := True

send(Request(request))
 precondition :
 waiting := False
 Eff :
 resultReceived := False

 waiting := True

send(Infom - Done(reqID, resStatus))
 precondition :
 resultRecieved := True

 Eff :

waiting := False

Figure 5 depicts the interaction as exchange of messages to accomplish the desired

behavior. A requester interacts with the ReqBroker regarding a service request. The

request is stored in a repository through invoking the add method.

In brief, available contractors (represented by the various ProvBrokers) evaluate

announcements sent by the ReqBroker and submit service offers. The Negotiator stores

received offers into the serviceOfferStorage repository by invoking the add method. The

ReqBroker internally evaluates the bids (invoking the evaluate method) and awards

contracts to the ProvBroker it determines to be the most appropriate and accordingly

invokes the add method to store the delegated service requests into the

delagtedServiceRequests repository.

40

Figure 5: Sequence Diagram for the Interaction Protocol of the Negotiator

41

In the meantime, the Negotiator sends an output message to those who do not satisfy the

desired service request and accordingly delete relevant service offers that have been

previously stored (invoking delete method on the serviceOfferStorage). Upon fulfilling

the service request, the Negotiator receives the result and stores it in a resultLocation

repository. Note that the behavior of the Negotiator has to ensure and confirm the receipt

of the service’s result by the requester prior to the deletion of the stored result or the

service’s request. In other words, the confirmation signals the fulfillment of the Requester

service’s request and consequently exemplifies the end of the interaction protocol

The sequence diagram illustrates a distributed control since processing and

communication are not focused on a particular entity, but rather every entity is capable of

accepting and assigning service requests.

Entities involved in exchanging such messages are assumed to have a prior knowledge of

the available operations and methods that fulfill the required functionality. The behavior

is controlled wholly by the actions initiated by the external entities. Therefore, objects

involved in supporting this privacy degree exhibit a predefined flow of control and could

not autonomously have explicit control over initiating messages. In an open environment,

more complex forms of message exchanges need to be introduced to facilitate the

transferring of information among these objects for which a high-level of abstraction is

required to model such interaction.

3.4.1.2. The Mediator

In some cases, such as in healthcare environments, patients with fatal diseases may wish

to request services and seek further health related information without the need to reveal

their identities.

The requester should have appropriate means that permit requesting services without

exposing its identity. Clearly a direct communication link with the Mediator violates this

requirement. Therefore, a requester must convey requests and get results exclusive of

related identity information. This can be achieved by providing an access to common

storage facilities that are publicly available to post requests and retrieve results. The

storage facility can be a dedicated repository, or a database. The Mediator is responsible

42

for granting requesters the right to access these facilities either for a limited number of

times or only for a limited-time period (for example during the active involvement of the

requester in the interaction protocol).

The requester should have a prior explicit consent to access these storage facilities either

to post service’s request or to retrieve a result (for example, protection guidelines for

Sexual Transmission Disease, STD). Retrieving results implies the ability of requesters to

link a particular request to its corresponding result. This can be accomplished by

assigning a unique identification key for every posted request. Both the Mediator and the

requester use this key during the interaction protocol to identify and link the service

request to its relevant result.

Figure 6: The Interaction Pattern for the Mediator

It is to be noted that, in order to be authorized for online access to such repositories, the

requester might be at the risk of exposing its IP (internet protocol) address and hence the

privacy requirement will be violated. To overcome such an issue, requesters will be able

to hide their IP through the use of a proxy server utilizing cryptographic techniques in

43

which a dynamic IP address is issued from a pool of IP addresses and therefore making

the identity anonymous.

The Mediator checks for available requests that have been posted and accordingly

forwards the service request to the ProvBrokers. Figure 6 shows the proposed interaction

pattern associated with this privacy degree3 . The corresponding protocol will be as

follows:

2. The Mediator checks for (“Request”) message for any available service requests

that were stored by Requesters and need to be served.

3. Send (“CFP”) – Sending a call for proposal message to ProvBrokers.

5. Receive (“Propose”) – The Mediator receives service proposal(s).

5. Receive (“Refuse”) – A ProvBroker declines to participate in fulfilling a service

request.

6. Send (“Accept-Proposal”) – A message is sent to the wining ProvBroker

indicating the acceptance of the proposal.

6. Send (“Reject-Proposal”) – A rejection message is sent to those ProvBrokers who

do not win.

7. Receive (“Inform”) – The Mediator receives the service’s result.

8. Send ("Inform-Done”) – the Mediator informs the ProvBroker of the receipt of

the service’s result.

9. The Mediator to store (“Inform”) indicating the availability of a service’s result.

12. The Mediator checks for (“Inform-Done”) that has been stored by the Requester

(indicating the receipt of the result).

The requester interaction with the relevant Mediator is solely restricted to the following:

1. The requester to store (“Request”) into a request repository.

10. The Requester checks for (“Inform”), indicating the availability of the result and

hence retrieves it.

3 Note that in all the interaction diagrams, the Query-If action permits the brokering entity to access the storage repositories
and to check stored messages for message types.

44

12. Upon retrieving the service result, the requester stores (“Inform-Done”) into the

result repository.

The Mediator Automaton

The input and output actions for the Mediator are similar to the actions generated during

the interaction with the ProvBrokers. Note that a requester hides its identity by setting the

value of reqID in , ,reqID serName reqPerf of the stored request to null. As shown in

Figure 7, the Mediator exhibits a behavior represented by the internal actions and the

transitions described as follows:

Figure 7: State Transition Diagram representing the Mediator Behavior

store(Inform(serResult))
 precondition :
 resStatus := True

ResultAccessed := True
 Eff :
 ResultAccessed := True

 store(Request, RequestStorage)

 Effect :
 requestStorage := True

queryIf(Request(request))
 precondition :
 Wait := True
 Eff :
 requestStorage := True

RequestAccessed := True
Wait := False

 store(serOffer, serviceOfferStorage)

 Effect :
 servcie := True

45

 :

queryIf(Inform Done())
 precondition :
 ResultAccessed := True
 Eff :
 cfpInitiation := True

requestStorage := False
Wait True

−

=

remove(serResult, resultLocation, resStatus)

 Effect :
 resStatus := False

store(serResult, resultLocation, resStatus)

 Effect :
 resStatus := True

remove(Request, RequestStorage)

 Effect :
 requestStorage := False

remove(serOffer, serviceOfferStorage)

 Effect :
 servcie := False

if serOffer is accepted , then accepted := 1

evaluateOffer(serOffer, serviceRequest)
 precondition :
 Evaluation := True

 accepted := false
 Effect :

− True

 2 if serOffer is rejected , then accepted := False−

The Requester Automaton

A requester does not exhibit any observable behaviour (i.e. no external actions are

generated). The behaviour is only restricted to the internal actions that enable the

requester to access the storage repositories. These actions and the associated transitions

are described as follows:

store(Inform Done(resStatus))
 precondition :
 resultReceived := True
 Effect :
 waiting := False

−

queryIf(Inform(serResult))
 precondition :
 waiting := True
 resultReceived := True
 Effect :
 resultReceived := False

store(Request(request))
 precondition :
 waiting := False
 Effect :
 resultReceived := False

waiting := True

46

The pattern of the exchanged messages shown in Figure 8 indicates a similar sequence as

described in the previous case. The only difference lies in the interaction among the

requester and the Mediator. The requester stores a request along with desired preferences

into a requestStorage repository by invoking the store method. The Mediator checks the

desired request, retrieves it and thus initiates the same sequence of the mentioned contract

net protocol [86]. In contrast to the protocol described in the previous case, the Mediator

stores the service’s result which will be retrieved by the requester. Upon retrieving the

result, the requester confirms the receipt by invoking the store method on the

requestStorage. The protocol comes to an end once the Mediator verifies such

confirmation. The confirmation allows the Mediator to remove any relevant information

related to this request.

47

Figure 8: Sequence Diagram for the Interaction Protocol of the Mediator

48

Requesters hiding their identities need not to worry about or observe this behavior in

fulfilling their requests. The sequence diagram represents a predefined flow of control

that is completely determined by the current state and the actions executed by the objects

(deterministic environment). Requesters need not to react on specific method invocations

only, but rather on observable events within the environment as well. Requesters need to

poll the environment for events and other messages (available service offerings) to

determine what action they should take.

3.4.1.3. The Advertiser

There might be certain situations where requesters prefer to hide their requests. For

example, clinicians might benefit form variety of service offerings regarding new

medications, tools, medical equipments and health related notifications. The clinicians

will be able to check a service’s repository for service offerings that have been previously

posted and thus decide on choosing an offering that might be of interest.

In order for those clinicians to browse such a repository, an access control should be

granted prior to any interaction. The access to this repository provides an appropriate

indirect communication channel that allows service requesters to post requests and get

results without having to reveal their request to the relevant ReqBroker supporting this

privacy degree.

The Advertiser permits requesters to check a service’s repository for further information

or to search for other service offerings that have been previously posted and accordingly

determines services that might be of interest.

49

Figure 9: The Interaction Pattern for the Advertiser

Upon selecting a particular offering, the requester informs the Advertiser with the desired

a service request as shown in Figure 9. Similarly, the interaction pattern is as follows:

1. The requester to check for (“Propose”) for service offerings.

2. The requester to store (“Request”) into a request repository.

3. The Advertiser to check for (“Request”) which indicates the availability of service

requests.

4. Send (“CFP”) – Sending a call for proposal message to ProvBrokers.

6. Receive (“Propose”) – The Advertiser receives service proposal(s).

6. Receive (“Refuse”) – A ProvBroker declines to participate in fulfilling a service

request.

7. Send (“Accept-Proposal”) – A message is sent to the wining ProvBroker

indicating the acceptance of the proposal.

50

7. Send (“Reject-Proposal”) – A rejection message is sent to those ProvBrokers who

do not win.

8. Receive (“Inform”) – The Advertiser receives the service’s result.

9. Send ("Inform-Done”) – The Advertiser informs the ProvBroker of the receipt of

the service’s result.

10. The Advertiser to store (“Inform”) indicating the availability of a service’s result.

11. The requester checks for (“Inform”) for the availability of the result and hence

retrieves it.

12. Upon retrieving the service result, the requester stores (“Inform-Done”) into the

result repository.

13. The Advertiser checks for (“Inform-Done”) that has been stored by the requester

(indicating the receipt of the result).

The Advertiser Automaton

As shown in Figure 10 and in addition to the input and output actions generated during

the interaction with the ProvBrokers, the Advertiser has an additional output action that is

related to proposing service offerings to the requester. The Advertiser actions and the

transitions are described as follows:

Figure 10: State Transition Diagram representing the Advertiser Behavior

51

,

send(Propose(reqID serviceOffer))
 precondition :
 Wait := True
 Effect :
 ProposedService := True

advertised := True

store(Inform(serResult))
 precondition :
 ResultAccessed := True

resStatus := True
 Effect :
 ResultAccessed := True

queryIf(Request(request))
 precondition :
 ProposedService := True
 Effect :
 ProposedService := False

RequestAccess := True
 requestStorage := True

:
 :
 :

queryIf(Inform Done())
 precondition :
 RequestAccessed := True
 Effect :
 RequestAccessed False

requestStorage False
Wait Tru

−

=
=

= e

The Requester Automaton

Although the requester in this scenario is revealing its identity, it is required to set the

value of reqID in , ,reqID serName reqPerf of the stored request to null to prevent further

linking of the identity to the request. The requester actions and the associated transitions

are described as follows:

store(Inform Done(resStatus))
 precondition :
 resultReceived := True
 Effect :
 waiting := False

−

52

queryIf(Inform(serResult))
 precondition :
 waiting := True
 resultReceived := True
 Effect :
 resultReceived := False

store(Request(request))
 precondition :
 waiting := False
 Effect :
 resultReceived := False

waiting := True

queryIf(Propose(servieOffer))
 precondition :

 Effect :
 resultReceived := False

The requester encapsulates a behavior associated with the evaluation of every received

message proposal. Upon deciding on a certain service proposal, the requester responds

and engages in an interaction with the Advertiser. The Intra-Brokering interaction follows

the same patterns explained in the previous cases. The protocol comes to an end

whenever the result of the service is delivered to the requester who has to acknowledge

the receipt.

There are situations where requesters might inquire for more information relevant to the

proposed service, such as delivery status, change or cancel requests and acknowledge

receipt of service’s result. The protocol has to automatically respond to such events and

even pro-actively provide means to dynamically alert requesters about new events and

conditions and therefore unpredictably perform some action at the time a given

precondition becomes true. By giving requesters the ability to self-configure and request

services autonomously, we allow for the possibility of self-configurable systems; thereby

potentially increasing the degree of automation in the construction of software systems.

Unfortunately, those requirements cannot be achieved when utilizing the object-oriented

approach as the modeling paradigm. The pattern shown in Figure 11 represents a

sequence of messages exchanged among the Advertiser and the requester. By abstracting

away the internal, low-level behavior of the interactions and concentrating solely on the

53

static and dynamic nature exhibited by the respective entity behaviors, one can establish a

means by which these entities can interact and communicate effectively.

Figure 11: Sequence Diagram for the Interaction Protocol of the Advertiser

54

3.4.1.4. The Bulletinboard

In some cases, requesters desire to hide their identities and requests from the entire

environment For example, patients with narcotic-related problems (such as drug or

alcohol addiction) can seek services that provide information about rehabilitation centers,

specialized psychiatrists, or programs that will help overcoming a particular critical

situation without revealing either their identities nor the desired information.

As shown in Figure 12, requesters will have the ability to either post their requests into

physical storage facility (requests repository) or check the service offerings repository for

services that might be of interest. In both cases, the requester stores the request in a

special storage location (request repository). The Bulletinboard checks and identifies

requests that need to be served and accordingly forwards them to the ProvBrokers.

Figure 12: Interaction Pattern for the Bulletinboard

55

Note that, for this degree of privacy, the requester is responsible to check for the

availability of the service’s result and hence retrieve it. This implies that the requester

should be aware of linking the result to its own request. The protocol is detailed as

follows:

3. The Bulletinboard checks for (“Request”) which indicates the availability of

service requests.

4. Send (“CFP”) – Sending a call for proposal message to ProvBrokers.

6. Receive (“Propose”) – A Bulletinboard receives service proposal(s).

6. Receive (“Refuse”) – A ProvBroker declines to participate in fulfilling a service

request.

7. Send (“Accept-Proposal”) – A message is sent to the wining provider indicating

the acceptance of the proposal.

7. Send (“Reject-Proposal”) – A rejection message is sent to those ProvBrokers who

do not win.

8. Receive (“Inform”) – The Bulletinboard receives the service’s result.

9. Send (“Inform-Done”) – the Bulletinboard informs the ProvBroker of the receipt

of the service’s result.

10. The Bulletinboard to store (“Inform”) indicating the availability of a service’s

result.

13. The Bulletinboard checks for (“Inform-Done”) that has been stored by the

Requester (indicating the receipt of the result).

The requester interaction with the relevant Bulletinboard is restricted to the following:

1. Requester to check for (“Propose”), for service offerings that might be of interest.

2. The requester to store (“Request”) into a request repository.

11. The Requester checks for (“Inform”) which indicates the availability of the result

and hence retrieves it.

13. Upon retrieving the service result, the requester stores (“Inform-Done”) into the

result repository.

56

The Bulletinboard Automaton

The input and output actions are similar to the actions generated during the interaction

with the ProvBrokers. Figure 13 shows the state-machine representation for the

Bulletinboard.

Figure 13: State Transition Diagram representing the Bulletinboard Behavior

store(Inform(serResult))
 precondition :
 ResultAccessed := True

resStatus := True
 Effect :
 ResultAccessed := True

queryIf(Request(request))
 precondition :
 ProposedService := True
 Effect :
 ProposedService := False

RequestAccess := True
 requestStorage := True

:
 :
 :

queryIf(Inform Done())
 precondition :
 RequestAccessed := True
 Effect :
 RequestAccessed False

requestStorage False
Wait Tru

−

=
=

= e

57

The Requester Automaton

The requester hides the privacy attributes by setting the value of reqID in

, ,reqID serName reqPerf of the stored request to null. The Bulletinboard will not be able

to deduce any further information from the stored request and thus the required privacy

degree will not violated. The requester’s actions and the associated transitions are

described as follows:

store(Inform Done(resStatus))
 precondition :
 resultReceived := True
 Effect :
 waiting := False

−

queryIf(Inform(serResult))
 precondition :
 waiting := True
 resultReceived := True
 Effect :
 resultReceived := False

store(Request(request))
 precondition :
 waiting := False
 Effect :
 resultReceived := False

waiting := True

queryIf(Propose(servieOffer))
 precondition :

 Effect :
 resultReceived := False

As shown in Figure 14 the requester’s interactions employ some degree of

nondeterministic (or unpredictable) behavior.

58

Figure 14: Sequence Diagram for the interaction Protocol of the Bulletinboard

59

When observed from the environment, the requester’s behavior can range from being

totally predictable to completely unpredictable. For example, a requester searching a

repository for service offerings and looking for a service can appear to be exhibiting

random behavior (might include identifying, choosing services, evaluating parameters

and decide on the applicability or completely discard any offerings). However, once a

service offering of interest is detected, its behavior becomes reasonably predictable. In

contrast, the behavior of a Brokering layer might be highly unpredictable, the

Bulletinboard needs to interact, choose, negotiate, and select potential service providers

who are capable of fulfilling the service request, or it might return empty-handed.

The protocol can be only accomplished by interactive and autonomous entities that must

be sensitive to their own set of internal responsibilities and be capable of using rich forms

of messages. These messages can support method invocation—as well as informing other

entities (brokering entities within the layer) of particular events, asking something, or

receiving a response to an earlier query. Clearly objects lack the ability to initiate

interaction, respond to a message in any way they choose, or decide not to participate.

Additionally, the typical usage and direct support of object-oriented approaches leans

toward a more predictable approach.

For instance, when a message is sent to an object, the method is predictably invoked.

Yes, a requester modeled as an object may determine whether or not to choose and

process messages related to posted service offerings and how to respond if it does (for

example, storing a service request in a special repository). However, in common practice,

if an object says no, it is considered an error situation.

It is noteworthy, that the underlying message exchange is usually a predefined flow of

control from one object to another that has to be known a priori. Asynchronous

messaging and event notification is not explicitly tied to the object’s behavior. Within

this context, systems that require such functionality have to layer these features on top of

the object model and the Object-Oriented environment.

60

3.4.2. The Provider-Brokering Interaction Patterns

The interaction patterns allow providers to securely automate their privacy and advertise

capabilities; define conditions and constraints that govern the provision of these

capabilities.

Providers’ capabilities are often described in terms of two main aspects, Functional and

non-functional properties. The Functional properties capture the intended behavior of the

service and define the input and output parameters. The input parameters specify the

required information that is needed prior to any service provision, while the output

parameters specify the result of the service execution (for example, a service provider

with information gathering capabilities generate outputs in electronic PDF file). The non-

functional properties exhibit the constraints over the functionality of a service and specify

additional information about the service capabilities, such as availability, service quality,

cost, payment, security, trust and ownership.

However, describing the providers’ capabilities is beyond the scope of the work

presented here. It is assumed that there are appropriate services and tools (for example,

capability description languages) by which providers are able to describe the inherent

capabilities.

The following interaction patterns depict the different brokering scenarios categorized by

the privacy concerns of service providers. In all the interaction patterns, it is assumed

that the ProvBrokers are able to interpret services’ capabilities, match and locate

providers who are capable of fulfilling a particular service request.

Note that in representing the different automat for the provider-brokering interaction

action signatures of the ProvBrokers include the subsets of the input actions that are

referred by the “receive” action to represent that the environment (being ReqBroker or a

provider) is the source of the action. Whereas the output actions are referred by the

“send” action to represent that the ProvBroker is the source of the action and can be

consumed by any element of the environments. The sates are captures as variable labels

with instantiation values

61

3.4.2.1. The Arbitrator

In many E-government4 applications, the primary concern is to simplify the interaction

with citizens and institutions. Many countries have established an on-line presence. In

most cases, governments need to make decisions related to national security-threatening

issues that might involve citizens, institutions and organizations.

However, making such decisions might require the collaboration of other parties (for

example, intelligence-related services) who need to be protected anonymously from

perspectives associated to their identities and capabilities. The Arbitrator provides

coordination activities to those providers who can contribute collaboratively to provide

services while shielding their identities and capabilities.

To exploit the gain of this collaboration, providers do not have to worry about their

privacy from being known by other counterparties. Direct communication with the

Arbitrator requires the revealing of the privacy attributes. The protocol must shield and

suppress any other entity form coming to know these attributes. In order to satisfy this

requirement, it is assumed that the Arbitrator supporting this privacy degree is a trusted

entity.

Moreover, the Arbitrator (on behalf of the provider), engages in subsequent interactions

with various ReqBrokers without revealing the privacy attributes of the provider. In other

words, the identity of the Arbitrator is the only revealed attribute to other entities

(ReqBrokers) when sending and receiving messages. Figure 15 depicts the interaction

pattern for such a privacy case.

4 E-government refers to the electronic delivery of government services to citizens.

62

Figure 15: The Interaction Pattern for the Arbitrator

For every received service request (i.e. CFP messages received form various

ReqBrokers), the Arbitrator matches the most appropriate providers to fulfill a particular

request and accordingly sends the received CFP message to the matched ones.

Providers might contribute to fulfill received service requests by submitting proposals to

the ProvBroker. On behalf of all potential providers, the Arbitrator sends the received

proposals to the relevant pertinent ReqBroker which in turn determines and selects the

appropriate service proposal.

Once the ReqBroker notifies the Arbitrator about the outcomes of the selection process,

the Arbitrator will be able to issue an acceptance message to the corresponding winning

provider and a dismiss message for each unselected provider. The proposed interaction

pattern that supports this privacy degree will be as follows:

63

3. Send (“CFP”), the Arbitrator sends a call for proposals to all providers with

known capabilities (this implies that the Arbitrator will be aware of providers who

might satisfy a particular service request).

4. Receive (“Propose”), the Arbitrator receives service proposals from potential

providers.

4. Receive (“Reject”), the Arbitrator receives a decline message from the provider.

5. Send (“Accept-Proposal”) – Upon receiving an acceptance message from the

ReqBroker, the Arbitrator in turn notifies the provider (winner) accordingly.

5. Send (“Reject-Proposal”), a rejection message is sent to non-wining provider.

6. Receive (“Inform”), the Arbitrator receives the service’s result.

7. Send (“Inform-Done), the Arbitrator notifies the relevant provider of the receipt of

the result.

The interaction pattern assumes that the protocol is initiated upon receipt of CFP message

form the ReqBrokers within the brokering layer. The IOA representation is shown in

Figure 16 and the IOA includes the following states:

• RequestAccess : represents the state in which the ProvBroker has received CFP
messages from the ReqBrokers. It has two possible values :RequestAccess True=
and RequestAccess := False .

• Delegation : represents a delegation of specific service request to a particular
provider. It represents two possible values :Delegation True=
and :Delegation False= .

• ResultAccesse : represent results acknowledgments of service requests that need to be
sent to the ReqBroker with two possible values :ResultAccesse True=
and :ResultAccesse False= .

• cfpInitiation : represents the state where the ProvBroker has issued CFP message to
various providers with two possible values :cfpInitiation True=
and :cfpInitiation False= .

• Evaluation : denotes the state where the ProvBroker has received service offers from
ProvBrokers with two possible values :Evaluation True= and :Evaluation False= .

Similarly, the set of transitions are represented as action/precondition/postcondition

model

64

Figure 16: State Transition Diagram representing the Arbitrator Behavior

The Arbitrator Automaton

In addition to the input and output actions exchanged during the interaction with the

ReqBrokers, the Arbitrator has another variable matched , which is of a Boolean type and

with values in{ },True False . The variable is set to True when there is (are) provider(s)

which fulfill a specific service’s request. The Arbitrator behavior includes the following:

recieve(Propose(serviceProposal))
 precondition :
 cfpInitiation := True
 Effect :
 servcie := True

,send(CFP(provID serviceRequest))
 precondition :
 RequestAccess := True

 Effect :
 cfpInitiation := True

recieve(Inform(provID, resStatus))
 precondition :
 Delegation := True
 resStatus := False
 Effect :
 ReSult := True
 resStatus := True
 Delegation := False

send(Accept - Proposal(serviceProposal))
 precondition :
 Evaluation := True
 delegated := False
 Effect :
 Delegation := True
 Evaluation := False

65

recieve(Refuse(serviceRequest))
 precondition :
 cfpInitiation := True
 Effect :
 cfpInitaition := True

send(Reject - Proposal(serviceProposal))
 Evaluation := True
 delegated := False
 Effect :
 Evaluation := True
 delegated := False

store(serResult, resultLocation, resStatus)

 Effect :
 resStatus := True

send(Inform Done(provID, serResult))
 precondition :
 Result := True
 resStatus := Truse
 Effect :
 ReSult := True
 resStatus := True

−

store(serOffer, serviceOfferStorage)

 Effect :
 servcie := True

delete(Request, RequestStorage)

 Effect :
 requestStorage := False

delete(serResult, resultLocation, resStatus)

 Effect :
 resStatus := False

delete(serOffer, serviceOfferStorage)

 Effect :
 servcie := False

The Provider Automaton

In additional to its own behaviour, the provider has the following additional variables:

• waiting , is a Boolean variable with values in{ },True False . True indicates that waiting
for an acknowledgment of the result’s receipt

• resultRecieved , is a Boolean variable with values in{ },True False .True indicates the
receipt of the result.

The actions generated by the provider and the associated transitions which are consumed

by the Arbitrator are as follows:

send(Infom(provBrokID, resStatus))
 precondition :
 resStatus := True

 Effect :

waiting := True

send(Propose(serviceProposal))
 precondition :
 waiting := False
 Effect :
 waiting := True

As shown in Figure 17, for every received service request, the Arbitrator matches the

provider that is appropriate to fulfill a specific request. The Arbitrator initiates protocol

by sending call-for-proposals (CFP) to those relevant providers (focusing mechanism)

with known capabilities informing them of the service request’s parameters and

66

specifications. Upon receiving a CFP message, each potential provider evaluates the

request parameters through invoking the evaluate method and thus decide on whether to

participate in submitting service proposals or not.

In a dynamic environment in which providers are in continual increase and may

unpredictably enter and leave, the Arbitrator’s interaction is neither restricted to specific

service providers nor committed to a fixed number of them. However, the Arbitrator may

request only one operation, and that operation may only be requested via a message

formatted in a very specific way.

67

Figure 17: Sequence Diagram for the Interaction Protocol of the Arbitrator

In other words, the Arbitrator has the job of matching each message to exactly one

method invocation for exactly one object. Consequently, when the Arbitrator needs to

send multiple requests to a single provider, those requests cannot be collected and

delivered to the service as a single request with no major increase in the complexity of

the ProvBroker or the provider--for example, the reduction in the number of roundtrip

request-response activities. Since we may wish to send a message to any (and every)

68

object, we need the expressive power to cover all desired situations, including method

invocation. Therefore, a communication language is necessary for expressing

communications among these objects.

The sequences of message exchanges can be more than just method invocation. Objects

can be involved in long-term conversations and associations. It should be mentioned that

the Arbitrator and the provider might engage in multiple transactions concurrently

through the use of multiple threads or similar mechanisms. Each conversation has to be

assigned a separate identity. Conventional object-oriented environments have difficulty

supporting such a requirement.

More importantly, particularly for service providers with just a single method, the

underlying services would not be part of the published interface. Advertising and

publishing of a service’s capabilities cannot be explicitly accomplished.

3.4.2.2. The Broadcaster

A number of small businesses want to use their recent point-of-sales data to cooperatively

forecast future demand and thus make more informed decisions about inventory,

capacity, employment, etc. Providing such capabilities and hiding the corresponding

identities, would benefit all participants as well as the public at large. Providers avail

themselves of more precise and reliable data collected from many sources, to assess their

own local performance in comparison to global trends, and to avoid many of the

inefficiencies that currently arise because of having less information available for their

decision-making.

However, in a competitive environment, these small businesses might be influenced and

monopolized by big dominant players if they reveal their identity and expose their

relevant data. Therefore, those who are contributing and sharing reports require an

access to a common pool to indirectly communicate their findings. A community of

providers needs to share each other’s resources (point-of-sale data) to create cooperative

environment and securely prevent undesirable outcomes from revealing their identities.

The protocol permits various to hide their identities and reveal their service offerings to

the relevant ProvBroker. The Broadcaster grants providers an access to various

69

repositories (such as request repository, service repository and a result repository) either

for a limited number of times or only for a limited-time period (for example during the

active involvement of the provider in the corresponding interaction protocol). Service

requests are posted to a dedicated repository which can be accessed by providers as

shown in Figure 18.

Figure 18: The Interaction Pattern for the Broadcaster

A provider may respond to call-for-proposal request by an offer posted onto a repository.

Upon delegating a service request to a provider, the provider post service results to be

retrieved by the Broadcaster and delivered to the proper destination. This sequence of

events is shown below:

3. The Broadcaster to store (“CFP”) in request repository.

4. Provider to check for posted services’ requests, (“CFP”).

5. Provider to store (“Propose”), indicating a proposed service for a particular

request.

70

5. Provider to store (“Refuse”), indicating the refusal for serving a particular request.

6. The Broadcaster to store (“Accept-Proposal”) – Indicating an acceptance

message;

6. The Broadcaster to store (“Reject-Proposal”) – Indicating a rejection message for

a proposed service.

7. Provider to check for services proposal acceptance (“Propose”).

8. Provider to store (Inform) indicating the availability of a service’s result.

9. The Broadcaster to store (Inform-Done) upon retrieving the service’s result.

10. Provider to check for the receipt of the service’s result (“Inform-Done”).

The Broadcaster Automaton

The input and output actions for the Broadcaster are similar to the actions generated

during the interaction with the ReqBrokers. The internal actions and the transitions are

shown in Figure 19 and are described as follows:

Figure 19: State Transition Diagram representing the Broadcaster Behavior

71

store(CFP(serviceRequest))
 precondition :
 RequestAccess := True
 Effect :
 cfpInitiation := True

 queryIf(Propose(serviceProposal))
 precondition :
 RequestAccess := True

 Effect :
 cfpInitiation := True

store(Accept - Proposal(serviceProposal))
 precondition :
 Wait := True
 Effect :
 RequestAccess := True
 RequestStorage := True

 queryIf(Inform(serResult))
 precondition :
 RequestAccess := True

 Effect :
 cfpInitiation := True

store(Reject - Proposal(serviceProposal))
 precondition :
 Wait := True
 Effect :
 RequestAccess := True
 RequestStorage := True

 store(Inform Done(serResult))
 precondition :
 RequestAccess := True

 Effect :
 cfpInitiation := True

−

The Provider Automaton

The provider hides its identity by setting the value of provID in , ,provID serName serPar

of the stored serviceProposal to null. The Broadcaster will not be able to deduce any further

information from the stored service proposal and therefore the privacy attributes will be

protected. The provider’s actions and the associated transitions are described as follows:

store(Infom(provBrokID, resStatus))
 precondition :
 resStatus := True

 Effect :

waiting := True

stor(Propose(serviceProposal))
 precondition :
 waiting := False
 Effect :
 waiting := True

As shown in Figure 20, the protocol permits providers to browse a special repository for

service requests through invoking the query-if method on the serviceRequestStorage.

72

Figure 20: Sequence Diagram for the Interaction Protocol of the Broadcaster

The provider checks needs to include mechanisms that facilitate polling the environment

for service offerings, store service proposals and deliver results. Considering the dynamic

nature of the environment, it is very common for the provider with this privacy degree to

73

engage in multiple parallel interactions with other entities. Providers need to poll the

environment for events and other messages to determine what action they should take.

Additionally, providers need not to react on specific method invocations only, but rather

on observable events within the environment as well. The behavior of d the provider

should be then based on individual goals and states, as well as the states of ongoing

conversations with each other.

3.4.2.3. The Recommender

Another setting where hiding provider’s capability is a useful situation. Consider a new

product that has been introduced to the market such that no single (even very large)

retailer can accurately predict consumer demand for it. This happens when different

retailers target different groups of customers, for which shopping patterns and

adaptability to new products vary. Then it is beneficial to all such stores to engage into

joint forecasting, while still preserving the privacy of the encapsulated capability.

After receiving a service request, the Recommender sends it to every provider with

unknown capabilities. Figure 21 shows the associated interaction pattern.

74

Figure 21: Interaction Pattern for the Recommender

Once a provider selects a particular service request, it sends a service proposal to the

Recommender who controls the remaining transaction according to the appropriate

negotiation mechanisms that are similar to what has been described in former patterns.

3. Send (“CFP”), the Recommender sends a call for proposal message to providers.

4. Provider to store (“Propose”), indicating a proposed service for a particular

request.

4. Provider to store (“Refuse”), indicating the refusal for serving a particular request.

5. The Recommender to check for services proposals (“Propose”).

6. The Recommender to store (“Accept-Proposal”) – Indicating an acceptance

message;

6. The Recommender to store (“Reject-Proposal”) – Indicating a rejection message

for a proposed service.

7. Provider to check for proposal acceptance (“Accept-Proposal”).

75

8. Provider to store (Inform) indicating the availability of a service’s result.

9. The Recommender to store (Inform-Done) upon retrieving the service’s result.

10. Provider to check for the receipt of the service’s result (“Inform-Done”).

The Recommender Automaton

As shown in Figure 22, the Recommender has an additional output action related to

sending CFP message to the provider. The Recommender’s actions and the transitions are

described as follows:

Figure 22: State Transition Diagram representing the Recommender Behavior

send(CFP(serviceRequest))
 precondition :
 RequestAccess := True
 Effect :
 cfpInitiation := True

queryIf(Propose(serviceProposal))
 precondition :
 RequestAccess := True
 Effect :
 cfpInitiation := True

76

store(Inform Done())
 precondition :
 RequestAccess := True
 Effect :
 cfpInitiation := True

−

store(Accept - Proposal(serviceProposal))
 precondition :
 Wait := True
 Effect :
 RequestAccess := True
 RequestStorage := True

store(Reject - Proposal(serviceProposal))
 precondition :
 Wait := True
 Effect :
 RequestAccess := True
 RequestStorage := True

queryIf(Inform(serResult))
 precondition :
 RequestAccess := True
 Effect :
 cfpInitiation := True

The Provider Automaton

Although, the provider is revealing its identity, it is required to set the value of provID in

, ,provID serName serPar of the stored serviceProposal to null when proposing services to a

particular request. In this case, the stored proposal will be of an anonymous originator,

and therefore, the Recommender will not be able to deduce any further information that

might link the capability to the identity of the participating provider. The provider’s

actions and the associated transitions are described as follows:

store(Infom(provBrokID, resStatus))
 precondition :
 resStatus := True

 Effect :

waiting := True

stor(Propose(serviceProposal))
 precondition :
 waiting := False
 Effect :
 waiting := True

The sequence diagram depicted in Figure 23 illustrates the situation where a particular

CFP message received from ReqBrokers is sent out to every registered provider with

unknown capabilities. Depending on the state, conditions and rules of the involved

objects, alternative courses of action are to be followed in different circumstances. Output

77

messages are guarded by predefined conditions for which the activation methods of these

messages vary.

For example, for every received service request, the provider has to determine whether

the requested service is within its capabilities and/or of interest and accordingly decide on

either to participate, reject or simply ignore such requests. Once a provider selects a

particular service request, it responds with a service proposal. The Recommender

controls the remaining message exchange according to the sequence defined in the

diagram.

Providers hiding their capabilities will be flooded by a variety of service requests, for

which a behavior that is associated with the evaluation of every received request needs to

be included. Upon deciding on a certain function to be satisfied, the provider responds

and engages in an interaction with the ReqBroker. The protocol comes to an end

whenever the result of the service is delivered to the Recommender who has to

acknowledge the receipt. However, in cases where providers inquire for more

information relevant to the service request, cancel a service offer or negotiate terms, the

protocol has to automatically and dynamically allow such conversations rather than

statically invoke predefined methods. Unfortunately, those requirements cannot be

accomplished when utilizing the object-oriented approach as the modeling paradigm.

78

Figure 23: Sequence Diagram for the Interaction Protocol of the Recommender

3.4.2.4. The Anonymizer

Investigators and private detectives can provide a valuable aid in background checks,

investigations concerning law suits and liability, crimes, fraudulent insurance claims

investigations, and a variety of other situations. In many cases, investigation procedures

might extend to span various distributed geographical locations and might involve the

79

collaboration of several entities. However, the willingness of private investigators and

detectives to assist in critical and personal-related issues is highly impacted by the level

of guarantees and assurance exhibited towards the protection of their identities as well as

the nature of the conducted work.

In such situations, providers would prefer to have secure and safe means that enable them

to engage in sharing their capabilities while protecting their privacy attributes. Each

provider with this privacy degree will be able to view information relevant to desired

requests. A provider contributes to the fulfillment of these requests by proposing services

to the designated Anonymizer whose functionality includes the ability to view and send

any stored proposals to ReqBrokers. Moreover, it is assumed that the Anonymizer has the

ability to match and determine capable providers with the most insight towards fulfilling

the service request. Different storage repositories are available to the provider to access

as shown Figure 24.

Figure 24: The Interaction Pattern for the Anonymizer

80

The interaction pattern will be as follows:

3. The Anonymizer to store (“CFP”) message.

4. The provider to check for services requests, (“CFP”).

5. Provider to store (“Propose”) message indicating a proposed service for a

particular request.

5. Provider to store (“Refuse”), indicating the refusal for serving a particular request.

6. The Anonymizer to for services proposals, (“Propose”).

7. The Anonymizer to store (“Accept-Proposal”) – Indicating an acceptance

message;

7. The Anonymizer to store (“Reject-Proposal”) – Indicating a rejection message for

a proposed service.

8. Provider to check for (“Accept-Proposal”) which indicates an acceptance of

service’s proposal.

9. Provider to store (Inform) indicating the availability of a service’s result.

10. The Anonymizer to store (Inform-Done) upon retrieving the service’s result.

11. Provider to check for the receipt of the service’s result, (Inform-Done).

The Anonymizer Automaton

The input and output actions for the Anonymizer are similar to the actions generated

during the interaction with the ReqBrokers as shown in Figure 25. The internal actions

and the transitions described as follows:

81

Figure 25: State Transition Diagram representing the Anonymizer Behavior

store(CFP(serviceRequest))
 precondition :
 RequestAccess := True
 Eff :
 cfpInitiation := True

 queryIf(Propose(serviceProposal))
 precondition :
 RequestAccess := True

 Eff :
 cfpInitiation := True

store(Accept - Proposal(serviceProposal))
 precondition :
 Wait := True
 Eff :
 RequestAccess := True
 RequestStorage := True

 queryIf(Inform(serResult))
 precondition :
 RequestAccess := True

 Eff :
 cfpInitiation := True

store(Reject - Proposal(serviceProposal))
 precondition :
 Wait := True
 Eff :
 RequestAccess := True
 RequestStorage := True

 store(Inform Done(serResult))
 precondition :
 RequestAccess := True

 Eff :
 cfpInitiation := True

−

The Provider Automaton

The provider hides the identity by setting the value of provID in , ,provID serName serPar

of the stored serviceProposal to null. The Anonymizer will not be able to deduce any

further information from the stored service proposal and therefore both privacy attributes

(identity and capability) will be protected. The provider’s actions and the associated

transitions are described as follows:

82

store(Infom(provBrokID, resStatus))
 precondition :
 resStatus := True

 Effect :

waiting := True

store(Propose(serviceProposal))
 precondition :
 waiting := False
 Effect :
 waiting := True

The protocol permits providers to search a special repository for service requests by

invoking the query-if method on the serviceRequestStorage. Upon deciding on a

particular request, the ReqBrokoker4 invokes the “store” method on the

serviceOfferStorage object to store a service proposal as shown in Figure 26.

83

Figure 26: Sequence Diagram for the Interaction Protocol of the Anonymizer

Similar to the case of requestors hiding privacy attributes, the interactions employ some

degree of nondeterministic (or unpredictable) behavior. The provider’s behavior when

browsing a repository for service offerings and looking for service requests appear to be

84

randomly executed (might include identifying, choosing CFP messages, evaluating

parameters and deciding on the applicability or completely discarding any service

requests). The behavior of Anonymizer will be highly unpredictable in the sense that it

needs to interact, choose, negotiate, and select potential service providers who are

capable of fulfilling the service request, or might return with nothing at all.

Modeling the provider and the relevant Anonymizer as objects with the nature of being

non-interactive and semi-autonomous would not be an appropriate choice to satisfy the

required functionality. Clearly the lack of ability to initiate interaction, respond to a

message in any way they choose, or decide not to participate imposes considerable

limitations to capturing unpredictable and nondeterministic behavior.

3.5. Analysis of the Protocols

In the preceding sections, we have outlined a framework for identifying and

characterizing privacy-based coordination solutions in cooperative distributed systems.

In this section, we propose a generic architecture which puts forth a vision of how

cooperation and coordination can be supported, while addressing the possible privacy

concerns of the various CDS entities. The architecture identifies the major architectural

aspects and entities types, what kinds of functions they perform, what information they

maintain, and what kinds of interdependencies they manage in order to deal with various

privacy requirements.

This approach of providing a layered architecture for cooperation support is

complementary to approaches which attempt to build cooperation and privacy solutions

as value-added services. In addition to dealing with coordination, we believe that this

architecture is also useful in providing a framework for delivering privacy-base brokering

services within an organization, in support of business processes, and in aligning them

with organizational objectives. The brokering layer manages different interaction

protocols that support various level of privacy; each is providing an inherent control for

the dissemination and the distribution of critical information.

The interaction protocol specification provides guidelines for building privacy-based

brokering applications, which has to include the following elements:

85

 Types and roles of participants.

 Interaction states.

 Events which trigger states changes.

 Valid actions, constraints and message types.

The different parts of the previous protocols exhibit the dynamic behavior of the entities

(requesters, brokers and providers) involved in desired privacy degrees. Similarities

between the different behaviors in the protocols can be observed, in which the same

pattern of message exchanges is repeated in many parts of the protocol.

UML provides a means of expressing such an aggregation both structurally and

behaviorally: components provide physical aggregations that compose classes for

implementation purposes and packages aggregate modeling elements into a high

conceptual level. From the previous sequence diagrams, the protocols depict three main

interaction protocols:

(1) Requester-Broker Interaction

(2) Broker-to-Broker Interaction

(3) Broker-Provider Interaction

Each Interaction represents a sequence of messages which collectively achieve the

respective goals of the participants. The sequence diagrams detail which actions are

appropriately performed at each point of the interaction, what are the applicable

conditions and constraints that need to be met prior to any action execution, and how the

selected actions can change and affect the state of the world by producing a potential

interaction.

For every service request, the brokering entity communicates, collaborates and negotiates

on behalf of the requesters to fulfill that particular request. Despite the fact that the

brokering protocols can be complex and non-deterministic, requesters and service

providers need not to be concerned with such complexities. From the brokering

perspective, these protocols can be represented at high abstraction levels that capture only

the essential and relevant characteristics of the protocol and ignore other interaction

details.

86

The previous sequence diagrams describe an allowed sequence of messages and message

content among entities. They depict a set of agreed upon messages, rules for actions

based upon the reception of various messages, and the assumptions made based on these

messages. These constraints, rules and patterns can be abstracted and formalized at a high

level of abstraction (knowledge level) that provides a concrete basis for coordinated

autonomous behavior.

However, in order to implement the brokering protocols (under the assumption of open

environments) there are certain points to be considered:

(1) Entities involved in any brokering scenario must be capable of initiating action

independent of any other entity. Such autonomy is best characterized in degrees,

rather than simply being present or not. To some extent, entities need to cooperate

without direct external invocation or intervention.

(2) Entities can react not only to specific method invocations but also to observable

events within the environment (for example, in some of the previous protocols,

entities need to poll the environment for requests, events or messages to

determine what actions they should take).

(3) The IOA depicting the brokering protocols employ some degree of unpredictable

(or nondeterministic) behavior. The entity’s behavior can range from being totally

predictable to completely unpredictable. For example, a requester entity hiding its

requests from the environment might roam around looking for services that might

be of interest appears to be exhibiting random behavior (searching service

repositories, posting service’s requests or service providers’ capabilities).

However, once a service of an interest is detected, its behavior becomes

reasonably predictable. In contrast, the behavior of a brokering entity might be

highly unpredictable. It is difficult to predict which service provider the brokering

entity will interact with, negotiate and possibly select. In fact, a brokering entity

can participate in a brokering scenario and might return empty-handed when it

fails to find a service that matches the service’s request criteria.

(4) In open dynamic environments, a more complex degree of interaction would

include entities that can react to observable events. The IOA representing the

87

behaviors of the brokering entities do not illustrate method invocations on other

entities and present the possibility of engaging in multiple, parallel interactions

with another entity. Entities might be involved in multiple long-term

conversations and associations concurrently. Messages in particular interaction

patterns can be assigned a separate identity (for example, requesting service, call

for proposals, or evaluating proposals).

(5) The protocols represent the possibility for entities to dynamically change their

configurations to play multiple roles at the same time or at different times in

different domains.

3.5.1. The Privacy-Based Brokering Protocols

Because of the fact that the brokering protocols can be described as recognizable patterns

of a specific interaction, they can be treated as reusable aggregates of computation

processes and modeled into conceptual wholes. These patterns can be combined and

expressed at different levels of abstraction in which the behavior and the functionalities

of the entities should be characterized by a succinct and precise description through an

interface (Thus, capturing the essence of the behavior of the entity). Therefore, the

repeated patterns of the brokering entities can be packaged into various sets of high level

protocols. These patterns are arranged into the following protocols:

1. Service Soliciting Protocol: this protocol allows domain agents playing the role

of requesters to solicit help from the brokering layer. The protocol consists of two

sub-protocols that support the following modes:

a. Direct Soliciting Mode: in which the brokering agent receives service

requests directly from the requester agent. This mode allows the requester

to directly solicit help by sending its service request through the message

performative REQUEST. The pattern is as follows:

 Receive (“Request”) – The ReqBroker receives a request for

service from the requester.

 Send (“Inform”) – The ReqBroker delivers back the service’s

result

88

 Receive (“Inform-Done”) – A confirmation message is received

from the requester.

b. Indirect Soliciting Mode: This mode supports the interaction with

requesters hiding one of their privacy attributes. The ReqBroker will be

able to retrieve a stored service request, store service’s result and query

about the receipt of a service’s result. The protocol has the following

message pattern:

 The ReqBroker checks for (“Request”) message for any available

service requests that were stored by requesters and need to be

served.

 The ReqBroker to store (“Inform”) indicating the availability of a

service’s result.

 The ReqBroker checks for (“Inform-Done”) that has been stored

by the Requester (indicating the receipt of the result).

2. Contracting Protocol: this protocol abstracts all messages exchanged between

the brokering agents (ReqBrokers and ProvBrokers) and contains all the behavior

relevant to call for proposals, bidding, evaluating proposals and awarding/

rejecting service proposal as follows:

 Send (“CFP”) – Sending a call for proposal message to

ProvBrokers.

 Receive (“Propose”) – A ReqBroker receives service proposal(s).

 Receive (“Refuse”) – A ProvBroker declines to participate in

fulfilling a service request.

 Send (“Accept-Proposal”) – A message is sent to the wining

ProvBroker indicating the acceptance of the proposal.

 Send (“Reject-Proposal”) – A rejection message is sent to those

ProvBrokers who do not win.

 Receive (“Inform”) – The ReqBroker receives the service’s result.

89

 Send ("Inform-Done”) – the ReqBroker informs the ProvBroker

of the receipt of the service’s result.

3. Service Delivery Protocol: this protocol abstracts all the messages and the

behaviors relevant to provide specific services. The package includes two main

sub-protocols, namely:

a. Direct Delivery Mode: This mode allows a provider revealing its privacy

attributes to respond directly to a CFP message by proposing a specific

service offering to the corresponding ProvBroker. The protocol supports

the following pattern:

 Send (“CFP”) – Sending a call for proposal message to the

provider.

 Receive (“Propose”) – A ProvBroker receives service proposal.

 Receive (“Refuse”) – A provider declines to participate in

fulfilling a service request.

 Send (“Accept-Proposal”) – A message is sent to the provider

indicating the acceptance of the proposal.

 Send (“Reject-Proposal”) – A rejection message is sent to those

providers who do not win.

 Receive (“Inform”) – The ProvBroker receives the service’s

result.

 Send ("Inform-Done”) – the ProvBroker informs the provider of

the receipt of the service’s result.

b. Indirect Delivery Mode: in which the service is stored into a repository

and to be retrieved by the corresponding entity. This mode entitles the

ProvBroker to store responses and to query about replies associated with a

specific CFP message. The protocol includes the following:

 The ProvBroker to store (“CFP”) into the request repository.

 The ProvBroker to store (“Accept-Proposal”) – Indicating an

acceptance message;

90

 The ProvBroker to store (“Reject-Proposal”) – Indicating a

rejection message for a proposed service.

 The ProvBroker to check for service’s result (“Inform”).

 The ProvBroker to store (Inform-Done) upon retrieving the

service’s result.

Any coordinated interaction between various entities relies on the use of a common

communication language; the communication capability allows the entities to exchange

messages with the other elements of the environment, including users, agents and objects.

In order to perform their tasks these entities need to depend heavily on expressive

communication with others not only to perform requests, but also to propagate their

capabilities, advertise their own services, and explicitly delegate tasks or requests for

assistance. The previous messages depict the possible actions that can take place in any

given scenario. As discussed in Section 3.4.1, the messages exchanged in every protocol

need to be complete in the sense that they fulfill the possible actions generated by the

involved entities. Form the proceeding proposed protocols, the messages and their

contents provide means for the various participants to coordinate their behavior and

collaborate with each other to fulfill a specific task.

The coordinated interaction between the brokering entities and the domain entities relies

on the agreed use of semantic and the intention of the transmitted messages. The previous

classification of the supported messages defines the required messages to support the

proposed privacy-based protocols. However, one of the proposed directions for future

work is to use formal methodologies to validate the integrity of the proposed messages

such as, a stepwise methodology developed in LOTOS [23][10]. Following this

methodology, the overall complexities are broken into serial sub-steps. Each step

evaluates and takes a small amount of decisions in isolation.

91

3.6. Discussion

The main goal presented in this chapter was to develop a framework that can address the

coordination and cooperation challenges encountered in designing cooperative distributed

systems with special attention to capability-based coordination as brokering service.

The framework provides a building block that can be used in conjunction with other

specifications and application-specific protocols to accommodate a wide variety of

protocols related to the operation of CDS applications.

In many of the reviewed work, such as in [63], [65] [67] [72] [64], the approaches have

viewed coordination as a problem in different application domains. In contrast, our view

clearly distinguishes the coordination as a solution for the capability interdependency

problem.

The broker and the matchmaker based approaches have proposed two interaction

patterns, one for the broker entity and for the matchmaker. Only one broker entity

governs and directs the communication between the requester in any proposed

interaction. The matchmaker suggests set of possible capable providers to accomplish

required functionality (functional assignment problem which is encountered in two-

layered client/server architecture of information systems, in which all functions had to be

assigned either to the server or to the client).

In our proposed model, an appropriate interaction pattern is proposed or each privacy

degree. Two sets of agents; one set is geared towards entities that play the role of

requesters; the second to serve entities that play the role of providers. The intra-brokering

interaction comprises sixteen possible combinations that can take place in supporting

specific service requests. The model does not require an explicit initial privacy attributes

that need to be known in priori in order to support complete privacy selection (hiding

privacy attributes) that might be needed by service requesters and providers. In other

words, requesters and providers will have the possibility to hide their privacy attributes

from the whole environment including the relevant brokering entity and still be able to

solicit help, collaborate and provide services to fulfill a particular request.

92

The proposed approach treats privacy as a design issue for brokering services. The work

presented in [20] assumes that the degree of privacy is protected only at the initial state of

the system, and considers whenever the entities come into direct contact; it is possible for

one entity to learn the identity or the capabilities of the other. In another approaches

[36][44][88][51], it is presumed that capabilities and preferences come to be known by all

participants in the society, which leads to a chaotic environment where agents might

violate any privacy requirements. By contrast, our proposed model define appropriate

interaction protocols that allow requesters and providers to participate and solicit help

without having to reveal their identities or requests to any entity within the community,

including brokering entities assigned to provide such help.

Some approaches have proposed privacy patterns for supporting users’ personal

protection [37][79] [81] in terms of revealing less information about themselves, and in

acquiring more information from the party with whom they are communicating before

committing to any service access or delivery. However, the patterns do not provide

structured mechanisms for the coordination and focus only on preserving the user

anonymity based on cryptographic and anonymity techniques. The patterns focus on a

single service environment and provide solutions for requesters to hide their identities

and requests from providers but require the revealing of the identity-related information

to a third trusted party. Furthermore, the patterns do not address any privacy concern that

might be needed by service providers.

The brokering specifications are modeled formally as an IO automaton which describes

the essential behavior of the different interaction protocols that are needed to support any

privacy requirements in CDS. Using the IOA model provides a suitable structure for

formalizing the proposed interaction protocols and which is important for building

privacy-based coordination solutions in CDS environments.

3.7. Summary

The chapter described a privacy–based interaction protocols that allow different domain

entities in an open environment to transparently and securely request and/or provide

services. The proposed patterns permit requesters and providers to automate their privacy

and accordingly select the appropriate privacy degrees that suit their desire. Each

93

protocol is described using a mathematical state-machine model (Input/Output Automata-

IOA). Each IOA is represented by both formal semantics and graphical notations using

UML Sequence diagrams to exhibit the behavior of the entities (requesters, brokers and

providers). In open dynamic environments, entities need to ubiquitously interact with

each other, be able to self-manage at run-time as well as increase their degree of

autonomy and responsibility. The chapter defined the patterns that can be represented at a

higher level of abstraction and hence compose the privacy-based brokering protocols.

94

Chapter 4

DESIGN AND IMPLEMENTATION

This chapter provides a detailed design of an agent-oriented privacy-based brokering for

CDS, based on Coordinated Intelligent Rational Agent (CIR). The chapter also presents

as a proof-of-concept prototype for information-gathering capabilities in healthcare

environments.

4.1. Modelling Cooperative Distributed Systems

It is clear that the development of coordination solutions in distributed open

environments requires a new design paradigm, improved integration architectures, and

services. The architecture must describe the organization and the interconnection among

the software entities. In this architecture, the environment can be envisioned as a

cooperative distributed system (CDS) comprised of a collection of economically

motivated software agents that interact competitively or cooperatively, find and process

information, and disseminate it to humans and other agents. It also enables common

services that facilitate the coordination and the cooperation activities amongst various

domain entities and support ad hoc and automated configurations.

Our proposed SOSDA framework provides the abstraction to support domain entities and

applications independent of any specific technology. In this framework, a CDS is

conceptualized as a dynamic community of agent and non-agent entities that contribute

with different services. Based on the above view, an agent might play different roles and

be able to coordinate cooperatively or competitively with other agents, including humans.

Therefore, within the SOSDA architecture, the CDS entities are mapped as follows:

• Service Requester: is a domain specific entity that can interact with the environment

and request services.

95

• Service Provider: a domain entity that provide application-specific services.

• Brokering entity: is an agent that provides common SOSDA coordination services

and facilities for the generic cooperative distributed systems environment.

4.2. Agent-Based Brokering Services for SOSDA

The dynamic nature of the entities participating in different brokering scenarios requires

that they be able to change their configuration according to their roles. The challenge

here is how to adopt a technology that provides means and mechanisms by which these

entities would be able to interact with each other and determine an appropriate privacy

degree. Clearly and as previously analyzed, such interaction is characterized by the non-

determinism aspect and the dynamic nature of the environment where these entities exist

and operate. These requirements could not be met using traditional ways of manually

configuring software.

We strongly believe that agent-orientation is an appropriate design paradigm for

providing coordination services and mechanisms in such settings. Indeed, such a

paradigm is essential to modeling open, distributed, and heterogeneous environments in

which an agent should be able to operate as part of a community of cooperative

distributed systems environments including human users.

A key aspect of agent-orientation is the ability to design artifacts that are able to perceive,

reason, interact and act in a coordinated fashion. We define an agent as an individual

collection of primitive components that provide a focused and cohesive set of

capabilities. We focus on the notion of Agenthood as a metaphorical conceptualization

tool at a high level of abstraction (knowledge level) that captures, supports and

implements features that are useful for distributed computation in open environments.

These features include cooperation, coordination, interaction, as well as intelligence,

adaptability as well as economic and logical rationality.

4.3. Example: Brokering for SOSDA Healthcare CDS

Many initiatives and programs have been established to promote the development of less

costly and more effective healthcare networks and systems at national and international

scale. The objectives of these healthcare networks is to improve diagnosis through on-

96

line access to medical specialists, on-line reservation of analysis and hospital services by

practitioners extended on wide global scale, transplant matching, etc. A complete

electronic medical patient case file, which might be shared between specialists and can be

interchanged between hospitals and with GPs, will be crucial in diagnosing diseases

correctly, avoiding duplicative risky and expensive tests, and developing effective

treatment plans.

However, medical patient case files may contain some sensitive information about critical

and vital topics such as abortions, emotional and psychiatric care, sexual behaviors,

sexually transmitted diseases, HIV status, and genetic predisposition to diseases. Privacy

and the confidentiality of medical records have to be especially safeguarded. Without

broad trust in medical privacy, patients may avoid crucial health care provision.

Healthcare professionals and care-providers prefer to have the ability of controlling the

collection, retention and distribution of information about themselves. On the other hand,

healthcare service providers need to effectively manage and prevent any abuse of the

information or service they provide in addition to the ability of protecting their identities.

An important feature of the various healthcare sectors is that they share similar problems

and are faced with challenges that can be characterized as follows:

• In open distributed healthcare environments, it is no longer practical to expect

healthcare clinicians, staff, care providers and patients to determine and keep track of

the information and services relevant to his/her requests and demands. For example a

patient shall be ubiquitously able to access his/her medical record from anywhere at

any time or may request medical services offered by available healthcare centers in a

particular city without being aware of the distributed sources and irrespective of their

locations. In addition, an application should be able to manage distributed data in a

unified fashion. This involves several tasks, such as maintaining consistency and data

integrity among distributed data sources, and auditing access.

• The distributed nature of the knowledge among multiple healthcare locations may

require collaboration for in formation gathering. For example, each unit in a hospital

keeps its own information about patients’ records.

• The solution of specific medical problem includes complex activities and requires

collaborative effort of different individuals who posses distinct roles and skills. For

97

example, the provision of care to hospitalized patients involves various procedures

and requires the coordinated interaction amongst various staff and medical members.

It is essential that all the involved medical staff and professionals must coordinate

their activities in a manner that will guarantee the best appropriate treatment that can

be offered to the patient.

Healthcare professionals and care-providers prefer to have the ability of controlling the

collection, retention and distribution of information about themselves. A recent survey

shows that 67% of the American national respondents are concerned about the privacy of

their personal medical records, 52% fear that their health insurance information might be

used by employers to limit job opportunities while only 30% are willing to share their

personal health information with health professionals not directly involved in their case.

As few as 27% respondents are willing to share their medical records with drug

companies [90].

To explore such issues, distributed healthcare systems need to have an access to a service

that can enable collaboration between different healthcare service requesters and

providers. The proposed brokering model controls coordination activities among various

healthcare service requesters and providers. Healthcare personnel get access to different

services managed by various providers without having to be aware of the location,

identities, access mechanisms, or the contents of these services. The model provides

seamlessly integrated healthcare environment and presents additional privacy

opportunities to patients, visitors, medical staff and vendors.

4.4. The Coordinated Intelligent Rational Agent (CIR-Agent) Model

The representative agents of domain and brokering entities within the context of SOSDA-

based CDS are built on the foundation of CIR-agent architecture with focuses on utilizing

the model to capture the participants’ individual behavior towards achieving a desirable

goal while maintaining a required privacy degree.

The CIR-Agent is an individual collection of primitive components that provide a

focused and cohesive set of capabilities. The basic components include problem-solving,

interaction, and communication components, as shown in Figure 27(b). A particular

98

arrangement (or interconnection) of components is required to constitute an agent. This

arrangement reflects the pattern of the agent's mental state as related to its reasoning

about achieving a goal. However, no specific assumptions need to be made on the

detailed design of the agent components. Therefore, the internal structure of the

components can be designed and implemented using object oriented or another

technology, provided that the developer conceptualizes the specified architecture of the

agent as described in Figure 27.

Figure 27: The CIR Agent's Architecture

Basically, each agent consists of knowledge and capability components. Each of which is

tailored according to the agent’s specific role.

The agent's knowledge contains the information about the environment and the expected

world. The knowledge includes the agent self-model, other agents' model, goals that need

to be satisfied, possible solutions generated to satisfy each goal, and the local history of

the world that consists of all possible local views for an agent at any given time. The

agent’s knowledge also includes the agent's desires, commitments and intentions toward

achieving each goal.

99

The capability package includes the reasoning component, the domain actions component

which contains the possible set of domain actions that when executed, the state of the

world will be changed and the communication component where the agent sends and

receives messages to and from other agents and the outside world.

The problem solver component represents the particular role of the agent and provides

the agent with the capability of reasoning about its knowledge to generate appropriate

solutions directed to satisfy its goal.

During the interaction processes, the agents engage with each other while resolving

problems that are related to different types of interdependencies. The coordination

mechanisms are meant to reduce and resolve the problems associated with

interdependencies. Interdependencies are goal-relevant interrelationships between actions

performed by various agents.

As argued in [32], the agent’s interaction module identifies the type of interdependencies

that may exist in a particular domain. Consequently, agents select an appropriate

interaction device5 that is suitable to resolve a particular interdependency. These devices

are categorized as follows:

• Contract-based, includes the assignment device;

• Negotiation-based, includes resource scheduling, conflict resolution, synchronization,

and redundancy avoidance devices.

Within the context of brokering, the interdependency problem is classified as capability

interdependency and the interaction device is the “assignment”. The basic characteristics

of the assignment device are problem specifications, evaluation parameters, and the sub-

processes. The problem specifications might include, for example, the request, the

desired-satisfying time, and the expiration time.

A collection of basic components comprises the structure of the agent model and

represents its capabilities. The agents’ architectures are based on the CIR-Agent model as

5 Interaction device is an agent’s component by which it interacts with the other elements of the environment through a
communication device. A device is a piece or a component with software characteristics that is designed to service a special
purpose or perform a special function.

100

shown in Figure 28. A brokering session mainly recognizes two types of agents, namely,

domain agent (Requester or Provider) and brokering agent (ReqBroker or ProvBroker).

The architecture of each agent type is described in details below.

Figure 28: The Overall System Model

4.5. The Domain Agent: Service Providers and Requesters

Service providers and requesters are modeled as domain agents as shown in Figure 29.

The requester agent can participate with various privacy degrees and request services

from the brokering layer. A requester delegates the service’s request(s) to the relevant

brokering agent according to the interaction protocol the selected privacy degree. The

domain agent possesses knowledge and capability. The knowledge includes the model of

the brokering agents in terms of the supported privacy degree, self model and the local

history. The capability is categorized into three components: reasoning that includes

problem-solving and coordination, communication and a set of domain actions.

A domain agent playing the role of a service provider can select the appropriate privacy

degree and thus participate on providing the capability that meets the needs of another

domain entity. The problem solver the domain agent hiding any of the privacy attributes

encompasses the accessing of different storage repositories. For example, the problem

solver of a requester includes functionalities related to formulating service requests,

check for available service offerings and access various storage repositories to store

101

requests or to retrieve service results. On the other hand, the problem solver of a provider

hiding its identity and capability attributes consists of modules related to accessing

storage repositories to check for stored service requests that might be fulfilled and hence

participating in storing service proposals and service’s results.

The coordination component of a requester comprises the interaction device which entails

soliciting service from the relevant ReqBroker agent. The interaction device of the

provider agent manages the coordination activities which involve proposing services to

specific CFP messages and engage in bidding processes.

Figure 29: The Domain Agent Architecture

4.6. The Brokering Agents: ReqBrokers and ProvBrokers

A brokering agent is composed of two components namely, the knowledge and

capability. The knowledge component contains the information in the agent’s memory

about the environment and the expected world. As shown in Figure 30, this includes the

agent self-model, models of the domain agents in terms of their roles (requester/provider)

and/or capabilities and the local history of the world. The knowledge includes all possible

local views for an agent at any given time (such as the knowledge of physical repositories

available services requests, services offerings and service results).

102

Figure 30: The Brokering Agent Architecture

4.6.1. The ReqBroker Agent

The problem solver component varies form one brokering agent to another. The

ReqBroker’s problem solver component includes: accessing various storage repositories,

locate and identify services’ requests, deliver and store services’ results. The interaction

component comprises the following activities: (1) Preparing the “CFP” message that

formulates the “announcement” to be sent out to the ProvBrokers, (2) Collecting service

proposals and (3) evaluating these proposals against certain criteria (for example

parameters identified in the service’s request).

4.6.1.1. The ReqBroker Interaction Device: Assignment

The main function of the assignment device is to resolve problems associated with

capability and decomposition interdependencies. The basic characteristics of the

assignment device are problem specifications and evaluation parameters. With reducing

complexity in achieving a goal as the agent’s main objective, a solution can be selected

based for example on the goal quality.

The implementation technique of the assignment device is based on the soliciting

approach as in the case of the contract-net approach which depends on (1) the modeling

approach for other agent’s capabilities, and (2) the solicitation approach for the local

103

schedule and workload of other agents. To achieve a high degree of parallelism in the

assignment device, the implementation consists of the following processes:

1. Call for Proposals: The initiating ReqBroker agent (or the manager) informs all the

other potential ProvBrokers agents (or contractors) of the problem specification by an

announcement. The problem specification might include the goal, and the desired

satisfying time for example. The ProvBrokers initialize generates a CFP message to

the relevant service providers. A focusing strategy might be used by the ProvBrokers

to identify the set of potential contractors (service providers) based on their

capabilities (in scenarios related to providers revealing their capabilities). At a certain

time, ProvBrokers representing their interested relevant providers send “Propose”

message to the ReqBroker agent indicating the start of the bidding process. A

focusing strategy might be used by the ProvBrokers to identify the set of potential

contractors (service providers) based on their capabilities (in scenarios related to

providers revealing their capabilities).

2. Evaluate: At a certain time, ProvBrokers representing their interested relevant

providers send “Propose” messages to the ReqBroker agent indicating the start of the

bidding process. When the service satisfying deadline reaches, the ReqBroker ceases

to accept any new messages related to either request’s inquiries or new service offers.

Based on the evaluation parameters, the ReqBroker evaluates submitted proposals

and accordingly selects the best bid.

3. Award/Reject: the process allows the ReqBroker to issue an award/reject message to

the potential ProvBrokers. For the selected (winning) ProvBrokers, a contract form is

created, an award (Accept-Proposal) message is sent to the corresponding

ProvBrokers and a reject (Reject-Proposal) messages is sent to the non-wining.

The reasoning components of the ReqBrokers vary according to the privacy degree they

support. As previously shown, the interaction protocols for the various brokering

scenarios have illustrated repeated patterns and a behavior that can be represented at a

higher level of abstraction. Utilizing the privacy-based protocols defined in Section 3.5.1

the reasoning components of the various ReqBrokers will be represented as follows:

104

4.6.1.2. The Negotiator Design

Requesters are required to reveal their privacy attributes to the related Negotiator. As

shown in Figure 31, the interaction component includes the following protocols: (1) the

contracting protocol that exhibits all the interaction with the ProvBrokers and (2) the

direct mode of the service soliciting protocol which abstracts all the interaction activities

with the service provider.

Figure 31: Architecture of the Negotiator’s Reasoning Component

4.6.1.3. The Mediator Design

Requestors are permitted to have an access to special repositories by which they would be

able to post their required service requests without having to reveal their identity to any

other entity in the environment. The Mediator’s problem solver functionality is solely to

access these repositories to: query about available service requests, store service’s result

into the result location repository and to check for result’s receipt acknowledgments. The

interaction component utilizes the contracting protocol as shown in Figure 32.

105

Figure 32: Architecture of the Mediator’s Reasoning Component

4.6.1.4. The Advertiser Design

The protocol preserves the privacy attribute of the requester (hidden request.). Upon

deciding on particular offerings, the Advertiser’s interaction component incorporates the

contracting protocol. As shown in Figure 33, the problem solver component includes the

service soliciting protocol (indirect mode) while the interaction component includes the

contracting protocol.

Figure 33: Architecture of the Advertiser’s Reasoning Component

4.6.1.5. The Bulletinboard Design

The Bulletinboard’s problem solver functionalities are limited to accessing the various

repositories (either to check for service requests, store service results or to check for

106

receipts acknowledgment). These functionalities are performed by utilizing the indirect

mode of the service soliciting protocol as shown in Figure 34.

Similarly, the interactions with the ProvBrokers are governed by the contracting protocol

which composes the coordination component.

Figure 34: Architecture of the Bulletinboard’s Reasoning Component

4.6.2. The ProvBroker Agent

The ReqBroker agent sends (or store) a “CFP” message to service providers. The

ProvBroker carries out the interaction with the ReqBrokers and accordingly reports the

outcome of the interaction to the participating service provider. The ProvBroker’s

architecture varies according to the supported privacy degrees.

4.6.2.1. The ProvBroker Interaction Device: Assignment

Similarly, the implementation technique of the assignment device of the ProvBroker is

based on the soliciting approach as in the case of the contract-net approach. The

implementation consists of the following processes:

1. Call for Proposals: The ProvBrokers initialize a CFP message to the relevant

service providers. A focusing strategy might be used by the ProvBrokers to identify

the set of potential contractors (service providers) based on their capabilities (in

scenarios related to providers revealing their capabilities).

2. Propose: At a certain time, ProvBrokers representing their interested relevant

providers send “Propose” messages to the ReqBroker agent indicating the start of the

107

bidding process. A focusing strategy might be used by the ProvBrokers to identify the

set of potential contractors (service providers) based on their capabilities (in scenarios

related to providers revealing their capabilities).

3. Winning/Rejection: By receiving the award message, the ProvBroker creates the

winning process and accordingly informs the winning provider (either by sending an

acceptance message to the providers or by storing the Accept-Proposal message into a

repository). Note that process initiates a commitment state which indicates the

engagement of the ProvBroker into a contract. Alternatively, upon the receipt of a

rejection message (Reject-Proposal), the process allows the ProvBrokers to notify the

non-winning service provider and consequently destroys all the information relevant

to the rejected service proposals. The reasoning components for the ProvBrokers as

described in the following sections.

4.6.2.2. The Arbitrator Design

The Arbitrator acts on behalf of the service provider to participate in proposing services

for a particular request. All interactions with ReqBrokers entail the exposure of only the

identity of the engaged Arbitrator. As shown in Figure 35, the interaction component of

the Arbitrator includes the contracting protocol and the service delivery protocol (direct

mode).

Figure 35: Architecture of the Arbitrator’s reasoning Component

108

4.6.2.3. The Broadcaster Design

Providers are allowed to access repositories to check for requests that might be of an

interest without having to reveal their identity to any other entity in the environment. All

the interaction with provider with this privacy degree is accomplished by the problem

solver component which includes the indirect mode of the service delivery protocol.

Additionally, the problem solver includes functionalities related to link a specific CFP

message to a potential service proposal and to map the service’s result to that particular

request. As shown in Figure 36, the Broadcaster’s interaction component uses the

contracting protocol.

Figure 36: Architecture of the Broadcaster’s Reasoning Component

4.6.2.4. The Recommender Design

The Recommender’s interaction enables sending every received CFP service request

(from ReqBrokers) to the provider with unknown capabilities. As shown in Figure 37, the

interaction component includes the contracting protocol while the problem solver

comprises the indirect mode of the service delivery protocol

109

Figure 37: Architecture of the Recommender’s Reasoning Component

4.6.2.5. The Anonymizer Design

The Anonymizer informs (indirectly) those providers wishing to hide their privacy

attributes of any service request that might be fulfilled by their capabilities. All service

requests and service offerings and services results are stored into special storage

repositories (service request and result locations that are accessed consecutively by both

the Anonymizer and the provider). In order to achieve such functionalities, the problem

solver component utilizes the indirect mode of the service delivery protocol as shown in

Figure 37.

Figure 38: Architecture of the Anonymizer Reasoning Component

110

4.7. Supporting Services

In open environments, entities can join/disjoin unpredictably, and thus the system should

have means to handle joining/removal of entities both (brokering and others) at the run-

time without losing the system’s integrity. The proposed system assumes the availability

of some supporting service such as:

♦ Capability and Service Description Service: In general, the brokering entities

should be able (in real time) to parse, validate, understand and respectively

process capability and service descriptions it receives. To enable the dynamic

discovery of services, a mechanism is required to describe the capability aspects

of services, such as the functional description of a service, the conditions and the

constraints of the service and the nature of the results. A matching mechanism

allows brokering entities to understand, automatically process requests and

accordingly determine the capabilities of service providers that are most

appropriate for a given request.

♦ Management of data and knowledge: In many proposed protocols, domain and

brokering entities need to have access to various physical repositories for efficient

storage of service requests, service offerings and service results. The

corresponding databases, repositories and know ledge base of a the brokering

layer need to be inspected by other agents and users for different purposes such

as, the specification of appropriate requests or searching for applicable services

according to given valid access restrictions and security policies. However, the

systems shall provide interface services to the domain entities to let them access

such repositories. These interface services have to be restricted according to given

security policies and requirements. One of the possible solution is to use public

key encryption techniques

♦ Provision of registration and naming services: The registration and naming

service allows building up a knowledge base of the environment that can be

utilized to facilitate locating and identifying the relevant existing service’s sources

and their contents for serving a specific request. It is crucial to be able to identify

the subset of relevant information at a source and to combine partially relevant

111

information across different sources; this requires the process of identification and

retrieval of a subset of required service at any source. It is clear that in such

environment, different sources would provide relevant information to a different

extent. It is assumed that each entity (brokering or domain) has to register with

this service. In the design of these entities (agent-based), the knowledge

component shall be able to have mechanisms of dynamic updates. It is assumed

that the registration service shall have means of notifications and will be able to

regularly monitor the availability of brokering and domain entities as assurance of

presence. Requesters and providers will have handles (interfaces) to interact with

the brokering entity. There might be situations where a brokering entity fails after

registering itself for a particular role or a provider disjoin after issuing service

advertisement. The brokering service maintains and stores associations between

the services provided by providers and the descriptions of such services

(metadata). These associations enable brokers to increase the likelihood of an

accurate service discovery with greater precision. This implies the ability to allow

adding or removal services at runtime and hence updating service repositories

accordingly.

4.8. Implementation Example: Agent-Oriented Privacy Brokering
for SOSDA Healthcare CDS

In this section we show an example of our proposed model applied to healthcare

environments to support information-gathering capabilities utilizing the specifications

defined in [71].

Healthcare services can be modeled and implemented as CDS. The healthcare is viewed

as a collection of autonomous units that can act independently and cooperate in providing

services and synergize medical data according to mutual interests. The infrastructure of

the participants of healthcare can handle only the internal administrative and clinical

processes. The model provides querying ability and coordination activities that enhance

the overall connectivity of distributed, autonomous, and possibly heterogeneous

information sources (databases) of different healthcare providers and hospitals.

112

The following describes a scenario for a requester hiding its identity and three service

providers; one is revealing privacy attributes, the second is hiding its identity while third

is hiding its own privacy attributes (identities and capabilities). Consider three online

information providers, E-VirtualMedInfo Inc., E-VirtualDiagnosis Inc., and

FutureDocAssistant Inc 6 . , each of them provide medical information, healthcare

guidelines and clinical diagnosis in various formats (online delivery, hard copies or

access to online medical repositories). E-VirtualMedInfo Inc, is revealing its privacy

attributes and supported by the Arbitrator agent, E-VirtualDiagnosis comprise diagnosis

capabilities jointly derived by retired medical doctors and had selected hiding its identity

for which the Broadcaster agent will be the dedicated ProvBroker, whereas

FutureDocAssistant, a company that provide various online samples of medical exams

and virtual evaluation assessments decided to hide both the identity and capabilities and

will be supported by the Anonymizer agent.

Alice, a fourth year medical student, is conducting a research on the most fatal diseases in

Canada, the mortality death rates of each disease and the possible diagnosis and

prevention procedures that would help a trainee-student in examining and diagnosing

patients with such diseases. Deciding to hide her identity, Alice anonymously can request

this information by posting the service request in special repository dedicated to such

privacy degree. Note that, the Mediator will be the assigned brokering agent which acts

on behalf of Alice to fulfill her requests. As shown in Figure 39, the protocol will be as

follow:

6 Names are fictitious

113

Figure 39: The Brokering Layer Architecture

1. Alice anonymously requests information by posting the request in a special

repository dedicated to such privacy degree.

2. Alice’s assigned Mediator retrieves the posted request, abstracts the required

capabilities and constructs a service request.

114

3. The Mediator interacts with various ProvBrokers (including the Arbitrator, the

Broadcaster and the Anonymizer) and consequently (acts as a manager) issues a

call-for-proposals (CFP) to those ProvBrokers (act as potential contractors)

informing them of the Alice’s request specifications (note that Alice’s identity is

anonymous to each participant including its own supporting Mediator).

4. Note that for the E-VirtualDiagnosis and FutureDocAssistant Companies, the

request is dispatched into a dedicated storage repository by their relevant

ProvBroker (the Broadcaster and the Anonymizer). Every company (through its

representing agent) determines the evaluation parameters (such as information

quality, expiration time, and cost) and accordingly submits a bid along with the

offer parameters to the relevant brokering agent. The Virtue-Info-Medic agent

sends bids directly to the Arbitrator, while the E-VirtualDiagnosis and

FutureDocAssistant corresponding agents store their bids into a special repository.

It is to be noted that the Arbitrator might locate the applicable provider that

fulfills the service request and hence focusing the request.

5. The Mediator receives those bids the Arbitrator, the Broadcaster and the

Anonymizer, carries on the evaluation process and accordingly determines the

most bid (or bids) that fulfill Alice’s request. Assume that the winning provider is

the FutureDocAssistant, therefore the Mediator sends an acceptance message to

the Anonymizer, and in the mean time sends a rejection message to both the

Arbitrator, the Broadcaster agents.

6. The Anonymizer informs the FutureDocAssistant agent about the acceptance of

its offer by storing an acceptance message into the service repository.

7. Once the request is fulfilled, the FutureDocAssistant agent stores the result

(required medical information) into service’s result repository to be retrieved by

the Anonymizer.

8. Upon retrieving the service’s result, the Anonymizer stores a receipt

acknowledgment informing the FutureDocAssistant agent about the receipt of the

result and consequently delivers it back to the Mediator.

9. The Mediator stores the result into the result repository for which Alice will be

able to retrieve it without having to reveal its own identity.

115

4.8.1. Implementation

A prototype of the proposed system has been implemented to support and provide

information-gathering capabilities to different participants in healthcare environments

where the accessibility of private information is a desirable feature to various categories

of the healthcare personnel, patients, and clinicians.

Figure 40: Information Brokering for Healthcare CDS

As shown in Figure 40, three databases represent various medical data for three

distributed locations, each being managed by a dedicated agent that can play both roles of

an information requester as well as a provider. A web interface is available for healthcare

participants to select their desired privacy degree along with any capability they might

posses (medical data, patient’s diagnosis and treatment reports, Pharmaceutical data

reports, etc.). Based on the privacy degree required by both the requester an information

provider, dedicated brokering agents handle the interaction according to the relevant

interaction protocols associated to the selected privacy degrees.

The implementation utilizes Java Web Services Development Pack (JWSDP) [42]and the

JADE platform [41], which is a software framework to develop agent applications in

compliance with the FIPA specifications for multi-agent systems. JADE supports a

116

distributed environment of agent containers. They provide a run-time environment that is

optimized to allow several agents to execute concurrently.

As described above, the architecture of agents is based on the CIR-Agent model as

described in the following subsections. The role of the ReqBroker agents is to formulate

the service request, sends it out to all ProvBroker agents and collects the service

proposals (bids). At the end of the bidding-time, it evaluates the bids, determines the

winner bidder-agent and notifies both the ProvBrokers of the outcome. As described

before, the ReqBroker is a collection of knowledge and capabilities components. The

knowledge component includes the agent’s self-model, model of other agents, and the

local history. The main capabilities of the CIR-ReqBroker agent include communication,

reasoning and domain actions components.

The ReqBroker’s problem-solver component contains a set of Jade behavior classes

(simpleBehaviors and cyclicBehaviors) that represent the ReqBroker’s specific tasks,

agent’s platform tasks such as registration with the directory facilitator (DF) service and

to handle the incoming messages from both the requester and the ProvBrokers. The cyclic

behavior class equips the ReqBroker agent with ability to check for service requests that

have been stored by requesters hiding their privacy attributes.

The communication component is implemented as a set of classes that inherit the

jade.Core.Agent and jade.lang.acl.ACLMessage existing classes of the jade platform.

These classes provide means to construct, send and receive messages via several FIPA

performatives such as REQUEST, INFORM, INFORM-DONE, QUERY-IF, etc. The

communication component is equipped with an incoming message inbox, and message

polling that can be both blocking and non-blocking, with an optional timeout.

The messages exchanged in the interaction protocols are implemented as per the structure

defined as FIPA ACL Messages specifications [24]. Each message contains a set of one

or more message elements. The elements vary according to the brokering scenario; the

only element that is mandatory in all ACL messages is the performative, although most

of the ACL messages will also contain a sender, receiver and content elements. For

example in case of an entity of a hidden identity, the sender or a receiver element is not

defined. The communication component utilizes the Jade class ACLMessage which

117

implements an ACL message compliant to the FIPA ACL Message Structure

Specification. Agents are able to get contents and set the content of a particular message

by overriding the methods setContent and getContent.

As shown in Figure 41, the coordination component contains the Interaction-Assignment

class that extends a JADE behavior class namely the FipaContractNetBehaviour. The

Initiator class allows the ReqBroker/ProvBroker to play the role of the initiator of the

protocol (Note that from the provider viewpoint, a ProvBroker is considered the initiator

of the protocol) and implements the three methods that are called by

FipaContractNetInitiatorBehaviour:

 createCfpContent, this method is called upon receiving or retrieving a service request.

The method formulates the announcement of the required service and return the

(“CFP”) message content (contains conditions or constraints) to be sent to all the

receivers (ProvBrokers).

 handleProposeMessages, to evaluate all the received proposals (“Propose”) from the

ProvBrokers and to return a vector of ACLMessage objects to be sent to the

ProvBrokers in response to the proposals. By overriding this method, the ReqBroker

will be able to evaluate received proposals and accordingly accept or reject service

proposals. This method sends an acceptance message {“Accept-Proposal”) to the

wining bidder and a rejection message {“Reject-Proposal”) to the non-winning bidders.

 handleAllResponses, to handle all received service results (“Inform”) that are sent by

the ProvBroker or by the service providers. A return message (“Inform-Done”) is sent

back to the sender acknowledging the receipt of the service’s result.

 handleRefuse, this method allows the initiator to handle messages related to a decline

message (“Refuse”) for a specific service request.

118

Intitiator
CFPMessage
Timeout

handleProposeMessage()
handleOtherMessage()
createCFPContent()
handleProposeMessages()
handleAllResponses()
handleRefuse()

Responder

prepareResponses()
handleRejectProposalMessage()
handleAcceptProposalMessage()
handleOtherMessages()

FFipaContractNetInitiatorBehaviour FipaContractNetResponderBehaviour

FipaContractNetProtcocol

Jade classes

Figure 41: The Interaction Component (Assignment Device)

The coordination component of the ProvBroker (acting as a responder) contains the

Responder class that extends the FIPA-compliant class

FipaContarctNetResponderBehavior. This abstract behavior implements the interaction

protocol from the point of view of a responder to a call for proposal (CFP) message. The

class Implements the following methods:

 prepareResponses, the method returns an ACL message to be sent to the initiator in

response to the CFP message which might have the content of Propose or Refuse. If

null is returned, then the CFP is ignored and the behavior is reset and starts again

waiting for CFP messages form ReqBrokers.

 handleAcceptProposalMessage, to evaluate the received (“Accept-Proposal”) to be

returned to the responder. Upon the invocation of this method, the responder is able to

return the service’s result (“Inform”).

 handleRejectProposalMessage, allows the responder to handle messages related to a

rejection of a particular service proposal (“Reject-Proposal”). After this method, the

protocol is reset and it restarts again.

119

Additionally, in the contracting protocol, error messages (received messages that have

other performatives) are handled through handleOtherMessages method.

4.9. Summary

Brokering services provide transparent access to a collection of distributed entities in a

given domain. Transparency means that these entities need not to be concerned with any

details regarding requesting or providing services in an open dynamic environment.

Following the limitations inherent in using existing technologies such as object-oriented

to model the interaction, the use of agent technology is the foundation of the proposed

architecture. The chapter described a detailed design of an agent privacy-based brokering

architecture that allows different domain entities to solicit help and select an appropriate

privacy degree suitable to their concern. Each privacy degree is modeled and designed as

an agent with specific architecture and a relevant interaction pattern. As proof of concept,

the chapter illustrated a prototype of the proposed architecture to support information

gathering in distributed cooperative healthcare systems.

120

Chapter 5

SUMMARY AND CONCLUSION

The aim of the research presented in this dissertation is to define a generic brokering

architecture that enables cooperation under a desired level of privacy protection in CDS.

The work presents in depth analysis of the capability-based brokering with the ability to

support different degrees of privacy and accordingly proposes various interaction

protocols and the suitable mechanisms of the coordinated control. In this thesis we

introduced a suitable structure for formalizing and representing the privacy-based

interaction protocols. Furthermore, these protocols are analyzed and consequently we

provide a detailed design and implementation guidelines for a privacy-based brokering

model in CDS environments. This chapter reviews the main contribution of this work,

outlines some of its limitations, and suggests future research directions.

5.1. Summary of Contributions

The main objective of the research presented in this dissertation has been directed to

provide a fundamental understanding of the capability-based coordination in CDS with a

special focus on privacy. In this thesis, we have proposed an agent-based brokering

framework that provides seamlessly coordination solutions and presents additional

privacy opportunities to various participants within cooperative distributed systems. The

proposed multi-layer architecture minimizes the complexity encountered in direct-

interaction architectures (where interactions between agents often utilize more complex

processes for encompassing a series of message exchanges and forming a single point of

failure) and makes it less vulnerable to failure. The following summarizes the main

contributions:

121

5.1.1. Brokering Model and Architecture

The brokering is viewed as a capability-based coordination solution in cooperative

distributed systems. Architecturally, the proposed model is viewed as a layer of services

where different roles can be played by the various entities (requestors, brokers and

providers). The brokering role into several sub-roles based on the attributes designated to

describe the desired privacy degree of both the service provider and the service requestor.

Each role is modeled as an agent with a specific architecture and an interaction protocol

that is appropriate to support a required privacy degree.

Within the layer two sets of brokering entities are available to service requesters and

providers. The first set handles interactions with requestors according to the desired

privacy degree that is appropriate to their preferences, while the other set supports

privacy degrees required by service providers. A brokering pattern is realized by the

different roles played by the domain entities and their corresponding brokering agent. A

complete brokering scenario is accomplished by performing different levels of interaction

namely: (1) Requester-to-Broker Interaction, (2) Broker-to-Broker Interaction and (3)

Broker-to-Provider Interaction. Different combinations within the layer can take place to

support the Inter-Brokering interactions. The proposed layered-architecture provides an

appropriate separation of responsibilities, allowing developers and programmers to focus

on modeling solutions and solving their particular application’s problems in a manner and

semantics most suitable to the local perspective.

Another important innovative aspect of the model is that it treats the privacy as a design

issue that has to be taken into consideration in developing brokering services for

cooperative distributed systems.

By utilizing the Agent-Oriented paradigm, the privacy-based brokering is modelled at a

high level of abstraction, in which the distributed environment is viewed collectively as a

coherent universe of interacting and collaborative agents and consequently provides high

degree of decentralization of capabilities, which is the key to system scalability and

extensibility.

122

5.1.2. Interaction Protocols

In this work, we have defined the generic architecture of the privacy-based interaction

protocols in CDS environments, i.e. the basic components and the associated set of

communication between involved entities. The various proposed interaction protocols

allow requesters and providers to select the privacy degree that is appropriate to their

concerns and desires. The interaction protocols can be viewed as reusable software

components to design privacy-based interactions in open distributed environments. The

developed interaction protocols define generic privacy architecture of the agents’

interaction, express many fundamental and essential characteristics of an agent’s

interaction components, and provide a suitable structure for formalizing agents’

interaction, which is an important characteristic in building correct privacy-based

brokering specifications.

5.1.3. Privacy

Within the context of brokering, we model privacy in terms of the ability of CDS entities

to reveal or hide its information related to the identities, requests and and/or capabilities.

Each privacy degree is supported by a dedicated brokering entity (agent) with a specific

architecture and interaction protocol. Requesters and providers are able to conceal their

privacy concerns from the whole environment including the brokering layer itself.

The brokering layer incorporates a means of virtual pseudonymity (protecting identities)

and anonymity techniques (hiding the goals and capabilities) since the brokering agents

within the layer act as proxies to both service requestors and providers. Clearly, in every

protocol, the interactions within the layer are constrained to sending service requests and

receiving service offerings and results without having to reveal who is actually requesting

or providing the service.

5.1.4. Formulation and Description

The work presented a suitable structure for formalizing the agent interactions, which is an

important characteristic for building correct privacy based interaction protocols. This

architecture, which expresses many fundamental and essential characteristics of agent

interaction, can be reused to develop different protocols.

123

The interaction protocols are described in terms of a combination of the different

interactions within the brokering layer and the possible interactions with the domain

entities. Each protocol is captured and modeled using the Input/Output Automata (IOA)

which depicts the entities’ behavior in any privacy-based brokering scenario. To provide

a deep understanding and formal treatments of these protocols, we have also applied the

object oriented paradigm to model and represent the various protocols using UML

interaction diagrams (sequence diagrams). With in depth analysis, we have shown that

the privacy-based protocols depicted by the sequence diagrams represent a set of patterns

that can be abstracted and formalized at a high level of abstraction.

5.1.5. The Use of the Architecture in Application Domains

The feasibility of the proposed agent-based model has been demonstrated by applying it

to a vital application domain. For example, in the healthcare domain, the increasing

demand and dependency on information in healthcare organizations has brought the

issues of privacy to every aspect of the healthcare environment. It is expected that

medical data such as genome information, medical records, and other critical personal

information must be respected and treated with caution. However, users still prefer to

have the ability to control the distribution of personal information in such a way that

guarantees the accessibility of the right information from the appropriate source

whenever required. The high degree of collaborative work needed in healthcare

environments implies that developers and researchers should think of other venues that

can manage and automate this complex collaboration efficiently.

Nevertheless, privacy concerns over the inappropriate use of the information make it hard

to successfully exploit the advantages of sharing such information. This restricts the

willingness of healthcare individuals and personnel to disseminate or publicize

information that might lead to adverse outcomes. Within this context, a healthcare

environment is modeled as a cooperative distributed system, in which entities are able to

exercise some degree of authority in sharing information about their identities,

preferences and capabilities. The privacy model is very desirable in different healthcare

sectors where it can efficiently govern different types of health data such as genetic, HIV,

mental health and pharmacy records from being distributed or abused.

124

5.2. Limitations

The work presented in this dissertation attempts to investigate, analyze and address issues

related to enable cooperation under a desired level of privacy protection in open

distributed cooperative systems. Consequently, a few assumptions and restrictions have

been introduced during the course of this analysis as useful simplifications. This section

discusses the limitations of the research effort.

Some of the proposed protocols assume that the involved brokering entity behaves in a

trustworthy manner in terms of guaranteeing the desired privacy degree and has no

incentive or intention in violating any revealed privacy attribute during a given brokering

scenario. However, there is an obvious need for the different participants to use an

appropriate trust model to analyze and asses the risks of revealing their privacy attributes

to the relevant brokering entity.

Regardless of how many service requests are already received by a brokering entity, a

new request can be accepted. However, the model assumes that a brokering

entity responds and fulfills a single request at a time. In some protocols, the brokering

entities are a communication bottleneck (since all request and replies need to go through

the brokering entity).

In every interaction, agents are assumed to not violate their commitments. The main

reason behind this assumption is to avoid “commitments revision” that has no direct

relation or bearing on the interdependency problem. However; this issue will inevitably

arise in environments that are unreliable i.e. where the violation of commitments goes

beyond the agents’ capabilities.

5.3. Directions for Future Research

A crucial element in addressing privacy concerns is the level of trust between domain

entities and the brokering layer. In security, trust relates much to the degree of confidence

that an entity has in the ability of other entity to conform to any selected privacy

requirements. Entities should be able to generate a quantified trust measure about the

brokering layer. Therefore, mapping privacy to trust would provide a mechanism for

different participants to determine the relevant privacy degrees. In other words,

125

requesters and service providers would be able to generate trust relationships with the

brokering layer prior to any interaction.

To deal with the heterogeneity characteristic of the CDS, the brokering shall have the

ability to process requests and description of capabilities by utilizing a formal, adequate

and expressiveness representation. In general, the brokering entities have to dynamically

understand, respectively interpret service requests and accordingly determine which of

the services capabilities are most appropriate to fulfill a given request. The representation

shall be rich enough to formulate and describe the privacy concerns, the permissions,

rules, and allowed data flows in legislative manner.

Locating relevant services presumes that its capabilities can be named at any instant; this

implies the utilization of registration and naming services. However, one direction is to

consider the scalability of the proposed brokering model in which brokering entities are

to be able to cross register services’ capabilities from one society to another.

The choice of matching mechanism depends on the structure and semantics of the

descriptions to be matched as well as the desired privacy level. One of the important

directions for future work is to expand the proposed model to include the capability of

semantic brokering, by introducing new functionality in the layer to resolve common

types of structural and semantic heterogeneity. We believe that it will be necessary to

support multiple, independently created and managed ontologies that capture the

terminologies of different and sometimes overlapping domains. This requires some

ontological services when dealing with processing request/services that provide

functionalities such as: managing domain ontologies that capture standardized

terminologies, defining the ontological relationships between terms across different

ontologies and the mapping of one request expressed in a particular ontology into another

request using terms from another related ontology.

Besides the proof that the system implementation corresponds to the privacy model, we

would like to focus on the formal analysis of the soundness and correctness of the

proposed interaction protocols and show that the model enforces the stated privacy

degrees. One step in the formal system verification is to prove that the specification

conforms to functions, invariants and constraints of the model. One of the proposed

126

directions is to use is the TLC tool [92], which is a model checker for specifications

written in Temporal Logic of Actions (TLA) [52].

127

BIBLIOGRAPHY

[1] Actional Control Broker , Available online : http://www.actional.com/

[2] Aldea A. , López B, Moreno A., Riaño V. and Valls A., “A Multi-Agent Systems for

Organ Transplant Coordination”, Artificial Intelligence in Medicine, Lecture Notes in

Computer Science, Springer Verlag, 413-416, 2001.

[3] An Introduction to Cryptography, in PGP 6.5.1 User’s Guide, New York Associates Inc.

p.11-36, online : http://www.fi.pgpi.org/doc/pgpintro/.

[4] Anonymizer Tool, Available online: www.anonymizer.com

[5] Arisha K., Eiter T., Kraus S., Ozcan F., Ross R. and Subrahmanian V., “IMPACT: The

Interactive Maryland Platform for Agents Collaborating Together”, IEEE Intelligent

Systems magazine, Vol. 14, Nr. 2, pps 64 -72, 2001.

[6] Bao F. and Deng R., “Privacy protection for transactions of digital goods,” Pro. of

international conference on information and communications security, LNCS 2229, pp.

202-213, 2001.

[7] Beneventano D., and Bergamasch, S., “The MOMIS Methodology for Integrating

Heterogeneous Data Sources”, IFIP World Computer Congress. Toulouse France, 22-27

August 2004.

[8] Beresford A. and Stajano R., “Location Privacy in Pervasive Computing”, Pervasive

Computing, IEEE, Volume 2, Issue 1, pps. 46-55, 2003.

[9] Blaze M., Feigenbaum J. and Strauss M., “Compliance Checking in the PolicyMaker

Trust Management System,” Financial Cryptography: 2nd Int’l. Conf, British West

Indies.: Springer-Verlag. LNCS 1465: 254--274, 1998.

[10] Bolognesi T., van de Lagemaat J., and Vissers, C. editors. “The LotoSphere Project”,

Kluwer Academic Publishers, London, UK, 1995.

[11] Brooke J. and Fellows D., "An Architecture for Distributed Grid Brokering", 11th

International Euro-Par Conference, Lisbon, Portugal, 2005.

[12] Camarinha-Matos L. and Afsarmanesh H., “Virtual Communities and Elderly Support”,

Advances in Automation, Multimedia and Video Systems, and Modern Computer

Science, WSES, pp. 279-284, 2001.

128

[13] Chawathe S. et al, “The TSIMMIS project: integration of heterogeneous information

sources”, In Proceedings of the 10th Meeting of the Information Processing Society of

Japan. pp. 7-18, 1994.

[14] Cheng H., Zhang D. and Tan J., “Protection of Privacy in Pervasive Computing

Environments”, International Conference on Information Technology: Coding and

Computing, 4-6 April 2005, pp. 242-247.

[15] Cheyer A., and Martin D., “The Open Agent Architecture”. Journal of Autonomous

Agents and Multi-Agent Systems, vol. 4 , no. 1, pp. 143-148, March 2001.

[16] Chor B., Goldreich O., Kushilevitz E. and Sudan M., “Private Information Retrieval”, In

36th Annual Symposium on Foundations of Computer Science, pages 41–50, 1995.

[17] Chung E. et al., “Development and Evaluation of Emerging Design Patterns for

Ubiquitous Computing,” Patterns C1-C15, DIS2004, 2004..

[18] Clarke R., “Identification, Anonymity and Pseudonymity in Consumer Transactions : A

Vital System Design and Public Policy Issue”: Available online as of July, 2007

http://www.anu.edu.au/people/Roger.Clarke/DV/AnonPsPol.html

[19] CrossWorlds (WebSphere Business Integration Toolset), Available online : http://www-

306.ibm.com/software/integration/wbitools/

[20] Decker K., Sycara K., and Williamson M.,” Middle-agents for the internet” In IJCAI97

International Joint Conference on Artificial Intelligence, Nagoya, Japan, pps. 578-584.

1997.

[21] Dumitrescu C., “Problems for Resource Brokering in Large and Dynamic Grid

Environments”, The 12th International Euro-Par Conference, Germany, pps. 448-458

2006.

[22] Feigenbaum J., Freedman J., Sander T. and Shaostack. A., “Privacy Engineering for

digital Rights Management Systems”. ACM Workshop on Security and Privacy in Digital

Rights Management, pps.76-105, 2001.

[23] Ferreira L. and Lopes de Souza W., “Step-wise refinement design example using

LOTOS”, In FORTE, pages 255–262, 1990.

[24] FIPA Agent Communication Language (FIPA- ACL), Available online :

http://www.fipa.org/repository/aclspecs.html

[25] FIPA Agent Software Integration Specification. [Online]. Available:

http://ww.fipa.org/specs/fipa00079/XC00079B.htm.

[26] Foss J., “Brokering Automated Enterprises”, Internet Society, Available online:

http://www.isoc.org/inet99/proceedings/1d/1d_3.htm

129

[27] Garcia-Molina Y. et al, “The TSlMMlS approach to mediation”, Data models and

Languages. Journal of Intelligent Information Systems, 1996.

[28] Garland S. and. Lynch N., "Using I/O automata for developing distributed systems,"

Foundations of Component-Based Systems, Cambridge University Press, 2000.

[29] Genersereth M. et al. “Infomaster: Information Integration System”, in proceedings of

1997 ACM SIGMOD Conference, 1997.

[30] Gerigoris, A. et al., “A Deductive Semantic Brokering System”, R. Khosla et al. (Eds.):

KES 2005, LNAI 3682, pp. 746.752, 2005.

[31] Ghenniwa H. and Huhns M., “Intelligent Enterprise Integration: eMarketplace Model”, in

Creating Knowledge Based Organizations, J. Gupta and S. Sharma (Eds.), Idea Group

Publishing, Hershey, Pennsylvania, USA, pp. 46-79, 2004.

[32] Ghenniwa H. and Kamel M., ``Interaction Devices for Coordinating Cooperative

Distributed Systems", Journal of Intelligent Automation and Soft Computing, 2000.

[33] Global InfoTech, Inc. “A Report on the Applicability of Mediation in ALP” A Technical

Report, 1998.

[34] Goldberg I., Wagner D. and Brewer E., “Privacy-enhancing technologies for the Internet”

In Proceedings of IEEE COMPCON 97, pages 103-109, 1998.

[35] Goldschlag D., Reed M, Syverson P., “Onion Routing”, Communications of the ACM,

Volume 42, Number 2, 1999.

[36] Graham J. and Decker K., “Towards a Distributed, Environment-Centered Agent

Framework –The DECAF Agent Framework”, Lecture Notes in Computer Science, pps.

290 – 304, 2000.

[37] Hafiz M., “A Collection of Privacy Patterns”, Plop 2006 Conference, Portland, Oregon,

October 21-23, 2006.

[38] Health Insurance Portability and Accountability Act (HIPAA). Available

:http://www.intellimark-it.com/privacysecurity/hipaa.asp

[39] Howard R. and Kerschberg L., “Semantic Brokering via Intelligent Middleware Agents

within a Knowledge-Based Framework”, The IEEE/WIC/ACM International Conference

on Intelligent Agent Technology”, China, 513-516, 2004.

[40] Initiative for Privacy Standardization in Europe (IPSE). Available: http://www.hi-

europe.info/files/2002/9963.htm

[41] Java Agent Development Framework: Jade, Home Page: http://www.jade.cselt.it/

[42] Java Web Services Developer (JWSDP); [Online]:

URL:/http://java.sun.com/webservices/jwsdp/index.jspS.

130

[43] Jennings N., Turner P., Garcha K., Foss J., “Brokerage in an Information Economy” ,

Available online : http://www.isoc.org/inet2000/cdproceedings/7a/7a_1.htm#r5

[44] K. Decker et al. “MACRON: An Architecture for Multi-agent Cooperation Information

Gathering”, Proceedings of the CIKM 95 Workshop on Intelligent Information Agents,

pps. 319–346, 1995.

[45] Kashyap V. and Sheth A.., “Semantics Based Information Brokering”, Proceedings of the

3rd International Conference on Information and Knowledge Systems: 363-370, 1994.

[46] Kenny S. and Borking J., “The Value of Privacy Engineering”. [Online]. Available :

http://elj.warwick.ac.uk/jilt/02-1/kenny.html

[47] Kertész A. and Kacsuk, P., “Grid Meta-Broker Architecture: Towards an Interoperable

Grid Resource Brokering Service”, W. Lehner et al. (Eds.): Euro-Par 2006 Workshops,

LNCS 4375, pp. 112–115, 2007.

[48] Korba L. and Song R., “Investigating of Network-Based Approaches for Privacy”. NRC

Report: ERB-1091, NRC No.: 44900, Nov. 2001.

[49] Kuokka D. and Harrada L., “On using KQML for matchmaking”. In Proceedings of the

First International Conference on Multi-Agent Systems, pps. 239–245, 1995.

[50] Kurose J. and Ross k., “Computer Networking: A top down approach featuring the

Internet”, 2nd e, Addison Wesley, 2005.

[51] L. Cabral, Domingue, J., Galizia S., Gugliotta A., Tanasescu V., Pedrinaci C. and Norton

B.,“IRS-III: A Broker for Semantic Web Services Based Applications”, pps.: 201-214,

2006.

[52] Lamport L., “A Temporal Logic of Actions” available online:

“http://research.microsoft.com/users/lamport/pubs/old-tla-src.pdf.

[53] Langheinrich M., “A Privacy Awareness System for Ubiquitous Computing

Environments”, Ubicomp, Lecture Notes in Computer Science, Volume 2498, pps. 237-

245, Springer, 2002.

[54] Lee W. and Chang C., “User Identification and Key Distribution Maintaining Anonymity

for Distributed Computer Network,” Computer System Science Engineering, vol. 15, no.

4, pp. 113-116, 2000.

[55] Li L. and Horrocks I., “A Software Framework for Matchmaking Based on Semantic

Web Technology”. In Proceedings of the 12th International Conference on WWW.

Budapest Hungary 2003.

[56] Lindell Y., and Pinkas B., “Privacy preserving data mining”, In Advances in Cryptology -

CRYPTO’00, pages 36–54, 2000.

131

[57] Lynch N. and Tuttle M., “An Introduction to Input / Output Automata”, CWI Quarterly,

2(3):219-246, 1998.

[58] Mangipudi K. and Katti R., “A Secure Identification and Key Agreement Protocol with

User Anonymity (SIKA),” Computers & Security, vol. 25, pp. 420-425, 2006.

[59] Mena E., llarramendi A., Kashyap V. and Sheth A., “OBSERVER: An approach for

query processing in global information systems based on interoperation across pre-

existing Ontologies”, Distributed and Parallel Databases, 8(2):223–271, 2000.

[60] Minano B., Lera I., Sancho1 P., Juiz1 C. and Puigjaner R., “Context-Broker Service

Architecture for AmI Systems through Mobile-Agents and Ontologies as Middleware”,

ISPA 2006, pps. 907-916 Italy, Dec. 2006.

[61] Moreno A. and Isern D., “Accessing distributed health-care services through smart

agents”, the 4th IEEE Int. Workshop on Enterprise Networking and Computing in the

Health Care Industry - HealthCom 2002 -France, 2002.

[62] Moreno A., Valls A. and Bocio J., “Management of Hospital Teams for Organ

Transplants Using Multi-Agent Systems”, Artificial Intelligence in Medicine, Lecture

Notes in Computer Science, Springer Verlag, 413-416, 2001.

[63] Motta E., Domingue J., Cabral L. and Gaspari M., “IRS-II: A Framework and

Infrastructure for Semantic Web Services” In Proc. of the International Semantic Web

Conference (ISWC'03), USA-Oct 2003.

[64] Myeong-Wuk W., Abdel Momen A. and Agha G.., “A Flexible Coordination Framework

for Application-Oriented Matchmaking and Brokering Services” Proceedings of

IEEE/WIC/ACM IAT (Intelligent Agent Technology)-2004, pp. 393-396, China, 2004.

[65] Navarro F., Jones K., Gordhan S. and Garnham N., “An Agent-Based Service Brokering

Architecture for Multi service Next-Generation Networks”, FUJITSU Sci. Tech. J.,

pp.97-108, 2001.

[66] NEON eBusiness Integration Servers, Available online : http://www.neonsys.com/

[67] Nicholas G., Harris S. and Shadbolt N., “Agent–Based Semantic Web Services” Journal

of Web Semantics: Science, Services and Agents on the World Wide Web 1(2), Hungary,

pps. 141-154, 2003.

[68] O. Baudron and J. Stern, “Non-interactive private auctions” In Financial Crypto’01.

Springer–Verlag, pps. 364 - 378 , 2002.

[69] Object Management Group, OMG Inc.: “CORBA: The Common Object Request Broker

Architecture and Specification”; Revision 2.0. Framingham, MA, July 1995.

132

[70] P3P - The platform for privacy preferences 1.0 (P3P1.0) specification”. W3C

Recommendations. [Online]. Available: www.w3.org/TR/P3P/, April 2007.

[71] Paolucci M. et al. “A Broker for OWL-S Web Services”, In Proceedings of AAAI 2004,

USA, March, 2004.

[72] Paolucci M., Soudry J., Srinivasan N. and Sycara K., “"Untangling the Broker Paradox in

OWL-S", In Proceedings of AAAI 2004 , 17(3), pp. 84-86, March, 2004.

[73] Paton N., Stevens R., Baker P. and Goble C., “Transparent Access to Multiple

Bioinformatics Information”. The 11th Int. Conf. on Scientific and Statistical Databases

(SSDBM), IEEE Press, 118-147, 1999.

[74] PISA – The Privacy Incorporated Software Agent. [Online]. Available:

http://www.cbpweb.nl/bis/top-1-1-9.html.

[75] Privacy protection for web Services - AC020, Available online:

http://www.w3.org/TR/wsa-reqs/#AC020.

[76] Purvis M. et al. “The NZDIS Project: multi-agent system for the integration of distributed

environmental information”, Environmental Modeling and Software, Vol. 18 No. 6, pp.

565-72, 2003.

[77] Reiter M. and Rubin A., “Crowds: Anonymity for Web Transactions”, ACM

Transactions on Information and Systems Security (TISSEC), Volume 1, Issue 1, 1999.

[78] Rivest R., Shamir A. and Adleman L., “A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems”, Communications of the ACM, 21 (2), pp. 120-126, February

1978.

[79] Romanosky S. et. al, “Privacy Patterns for Online Interactions”. Plop 2005, Monticello,

Illinois, Sept. 7-10, 2005.

[80] Schumacher M., “Security Patterns and Security Standards - With Selected Security

Patterns for Anonymity and Privacy,” European Conference on Pattern Languages of

Programs, (EuroPLoP), 2002

[81] Schümmer T., “The Public Privacy - Patterns for Filtering Personal Information in

Collaborative Systems”, Technical Report, FernUnivesität in Hagen, 2004.

[82] SeeBeyond EBusiness Integration Suite, Available online:

http://www.sun.com/software/seebeyond/

[83] Shankarama V., Amorosiadou V. and Robinson B., “Agents in Medical Informatics”, in

Proc. Of IASTED International Conference on Applied Informatics, Austria, 2000.

133

[84] Sheth A. and Larson J., ``Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Database", ACM Computing Surveys, vol.22, no.3, pp.

183-235, 1990.

[85] Silver B., Andonyadis C. and Morales A., “Web-based healthcare agents; the case of

reminders and to-dos”, Artificial Intelligence in Medicine, 14(3), 295-316, 1998.

[86] Smith R., “The Contract Net Protocol: High-level Communication and Control in a

Distributed Problem Solver”. IEEE Trans. On Computers C-29 (12): 1104- 1113, 1980.

[87] Sun Microsystems, “JINI Architecture Specification, Version 1.2,” Sun Microsystems,

December 2001, http://www.sun.com/jini/.

[88] Sycara K., et al. “The RESTINA MAS Infrastructure”, Tech. report CMU-RI-TR-01-05,

Robotics Institute, CMU, http://www.ri.cmu.edu/pubs/prub_3509.html. March 2001.

[89] Sycara K., Lu J., Klusch M. and Widoff S., “Dynamic Service Matchmaking among

agents in Open Information Environments”, Journal ACM SIGMOD Record, Special

Issue on Semantic Interoperability in Global Information Systems, 1999.

[90] The Association of American Physicians and Surgeons , “Doctors Lie to Protect Patient

Privacy” – Poll Survey , Available online :

http://www.aapsonline.org/press/nrnewpoll.htm

[91] The Mercator Enterprise Broker Available online :

http://h71028.www7.hp.com/enterprise/html/4270-0-0-0-121.html

[92] The TLA+ tool, available online:

http://research.microsoft.com/users/lamport/tla/tools.html.

[93] Venugopal S., Buyya R. and Winton L., “A Grid Service Broker for Scheduling e-

Science Applications on Global Data Grids”, Journal of Concurrency and Computation:

Practice and Experience, Wiley Press, USA, 2005.

[94] Wang C., and Leung H., “Mobile Agents for Secure e-Commerce Transaction with

Privacy Protection of the Customers”, the 2005 IEEE International Conference on e-

Technology, e-Commerce and e-Service – China, 2005.

[95] Web Services, Executive and Technical Papers available at http://www.webservices.org/

[96] Wiederhold G., “Mediation in the Architecture of Future Information Systems”, The

IEEE Computer Society Press, 23(3), 1992.

[97] Woelk D. et al, “Infosleuth project”, Available online:

http://www.mcc.com/projects/infosleuth.

[98] Woerndl W., Koch M., “Privacy in Distributed User Profile Management”,

(WWW2003), Poster, Budapest, Hungary, May 2003.

134

[99] Woods S. and Barbacci M., “Architectural Evaluation of Collaborative Agent-Based

Systems”, Technical Report, CMU/SEI-99-TR-025, Software Engineering Institute,

Carnegie Mellon University, PA, USA, 1999.

[100] Wu T. and Hsu C., “Efficient user identification protocol with key distribution preserving

anonymity for distributed computer networks,” Computers & Security, vol. 23, pp. 120-

125, 2004.

[101] X.509 Certificates and Certificate Revocation Lists (CRLs), Sun Microsystems Inc.

http://java.sun.com/products/jdk/1.2/docs/guide/security/cert3.html

[102] Xiaodong J. and Landay J., “Modeling privacy control in context-aware systems”,

Pervasive Computing, IEEE, Volume 1, Issue 3, pps. 59-63, 2002.

[103] Yee G., Korba L. and Song R., “Ensuring Privacy for E-Health Service”, Proceedings of

the First International Conference on Availability, Reliability and Security (ARES 2006).

Vienna, Austria. April, 2006.

[104] Yu T. and Lin K., “A Broker-Based Framework for QoS-Aware Web Service

Composition”, IEEE International Conference on e-Technology, e-Commerce and e-

Service, Hong Kong, 2005.

135

VITA

Name: AbdulMutalib Mohamed Masaud-Wahaishi

Post-secondary
Education and
Degrees:

The University of Western Ontario
London, Ontario, Canada
2001-2003 M. Sc. Eng.

The University of Western Ontario
London, Ontario, Canada
2003-2007 Ph.D.

Honors and
Awards:

 International Graduate Student Scholarships (IGSS), University
of Western Ontario.

 Special University Scholarships (SUS), University of Western
Ontario.

 Best Teaching Assistant Award nomination 2005
 Best Teaching Assistant Award 2006, Department of Electrical

and Computer Engineering, UWO

Related Work
and Experience:

Teaching Assistant
The University of Western Ontario
2001-2007

Project manager, department manager
The Great Man-Made River Project
Libya
1988-2000

Publications: 1. A. Masaud-Wahaishi, H. Ghenniwa and W. Shen, “Integration
in Cooperative Distributed Systems: Privacy-Based Brokering
Architecture for Virtual Enterprises”, accepted for publication
in Virtual Enterprise Integration: Technological and
Organizational Perspectives, G. Putnik and M. Cunha (Eds.),
published by IDEA Group, Inc, imprints 2005.

2. A. Masaud-Wahaishi and Hamada Ghenniwa, “Information
Brokering Architecture for Healthcare SmartHomes: Privacy
Based Model”. The First International Workshop on Smart
Homes for Tele-Health, Niagara Falls , Canada, 2007

3. A. Masaud-Wahaishi and Hamada Ghenniwa, “Agent Privacy-
Based Brokering Architecture for Enterprise Cooperative
Systems”, the 9th International Conference on Enterprise
Information Systems, Portugal, 2007.

4. A. Masaud-Wahaishi, Hamada Ghenniwa and Weiming Shen,
“Agent-Based Brokering Architecture for Collaborative
Distributed Virtual Environments”, The 8th IFIP Working

136

Conference on Virtual Enterprises, Portugal, September, 2007.

5. A. Masaud-Wahaishi and Hamada Ghenniwa, “Formal
Specification for Privacy-Based Brokering Services for
Cooperative Distributed Systems”. The Fourth International
Conference on Cooperative Internet Computing (CIC 2006) -
Hong Kong, China, 2006

6. A. Masaud-Wahaishi, H. Ghenniwa, and W. Shen, “Brokering
Services in Cooperative Distributed Systems: Privacy-Based
Model”, 4th International Conference on Electronic Commerce
and Web Technologies- EC-Web 2003.

7. A. Masaud-Wahaishi and M. Bennett “Metrics for Agents”, 7th
IASTED International Conference on Software Engineering and
Applications-CA, USA-2003.

8. A. Masaud-Wahaishi, H. Ghenniwa, and W. Shen, “Healthcare
Information Brokering: The value of Privacy” The 16th
International Conference on Advanced Information Systems
Engineering CAiSE04, Latvia June 2004.

9. A. Masaud-Wahaishi, H. Ghenniwa, W. Shen “Agent-Based
Information Brokering for Healthcare Environments” World
Automation Congress, WAC 2004, Spain, 2004.

10. A. Masaud-Wahaishi, H. Ghenniwa, and W. Shen, “Protecting
Privacy in Healthcare Environment: An Agent-Based
Information Brokering Architecture” IEEE Canadian
Conference on Electrical and Computer Engineering,
CCECE2004, Niagara Falls, May 2004

11. Abdul Masaud-Wahaishi and Ghenniwa, H. “Integration in
Cooperative Distributed Systems”. Proceedings of the Graduate
Research Symposium, UWO (2001).

12. Abdul Masaud-Wahaishi and Ghenniwa, H. “Brokering
Services in Cooperative Distributed Systems”. Proceedings of
the Graduate Research Symposium, UWO (2002).

