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ABSTRACT

Reinforcement learning covers a broad category of control problems in which

the learning agent interacts with the environment in order to learn to maximize

the collected utility. Such exploratory interaction is often costly, encouraging

sample-efficient algorithms to be used in the process. This thesis explores two

avenues that can help improve the sample complexity of such algorithms, one

through prior domain knowledge on the dynamics or utilities, and the other by

leveraging sparsity structures in the collected observations.

We take advantage of domain knowledge in the form of a prior distribution

to develop PAC-Bayesian regularized model-selection algorithms for the batch

reinforcement learning problem, providing performance guarantees that hold

regardless of the correctness of the prior distribution. We show how PAC-Bayesian

policy evaluation can leverage prior distributions when they are informative and,

unlike standard Bayesian approaches, ignore them when they are misleading.

In the absence of prior knowledge, we explore regularization of model-selection

through random compressed sensing when generating features for the policy

evaluation problem. In commonly occurring sparse observation spaces, such

compression can help control the estimation error by substantially reducing the

dimensionality of the regression space, at the cost of a small induced bias.

Our proposed methods can provably outperform the alternatives in sample or

time complexity, showcasing how informed or agnostic regularization can further

impact the effectiveness of reinforcement learning algorithms.
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ABRÉGÉ

L’apprentissage par renforcement couvre un grand nombre de problèmes

de contrôle pour lesquels l’agent apprenant interagit avec l’environment afin

d’apprendre à maximiser l’utilité collectée. La phase d’interaction exploratoire est

souvent coûteuse, encourageant l’utilisation d’algorithmes faisant un usage efficace

des échantillons. Cette thèse explore deux avenues de recherche qui peuvent aider

à améliorer l’efficacité d’échantillonnage de ces algorithmes: d’une part en utilisant

une connaissance apriori des dynamiques ou utilités, et d’une autre en exploitant

les structures creuses (“sparse structures”) dans les observations collectées.

Nous tirons profit de la connaissance du domaine sous forme de distribution

apriori afin de développer des algorithmes régularisés de sélection de modèle de

type PAC-Bayésien pour le problème d’apprentissage par renforcement par lots.

Nous obtenons ainsi des garanties de performance applicables indépendamment du

choix de distribution apriori. Nous démontrons comment les politiques d’évaluation

PAC-Bayésiennes peuvent faire usage des distributions apriori lorsque celles-ci sont

informatives, et dans le cas contraire, arrivent à les ignorer.

En l’absence de connaissance apriori, nous explorons la régularisation de

la sélection de modèle par l’entremise de l’acquisition comprimée lorsque des

caractéristiques doivent être générées pour le problème d’évaluation de politique.

Pour les espaces d’observations creux les plus fréquents, une telle compression peut

aider à contrôler l’erreur d’estimation en réduisant significativement la dimension

de l’espace de régression sans induire un biais trop important.
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Les méthodes que nous proposons peuvent surpasser de manière prouvable

les alternatives quant à leur efficacité d’échantillonnage et complexité en temps,

démontrant du même coup comment la régularisation informée ou agnostique peut

avoir un impact sur l’efficacité des algorithmes d’apprentissage par renforcement.
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CHAPTER 1
Introduction, Motivation and Rationale

Planning and decision making have been well studied in the Artificial Intelli-

gence (AI) community. Reinforcement Learning (RL) is a branch of AI that tries

to develop a computational approach to solving the problem of learning through

interaction. RL is the process of learning what to do—how to map situations to

actions—so as to maximize a numerical reward signal (Sutton and Barto, 1998).

The agent has to interact with the environment (often times intelligently) to

gather information and draw conclusions regarding which action is the optimal one

in each situation.

Many methods have been developed to solve the RL problem with different

types of environment and different types of agents. These methods are usually

based on probabilistic models of the environment along with a Markovian property

on the system state. It is relatively easy to find an optimal policy for a given RL

problem when the dynamics of the environment are known, using methods such as

value iteration or policy iteration (Sutton and Barto, 1998).

1.1 Planning with Uncertainty

When the dynamics are not known, one has to interact with the environment

and collect data to build approximate models of the problem. We will thus

be working with noisy models, based on a finite number of interactions with

the environment. This leads to a type of uncertainty that is usually referred
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to as extrinsic uncertainty (Mannor et al., 2007), referring to the variance in

our estimates of the model parameters. This is particularly problematic, as

the performance of an optimal action based on an imperfect model might be

significantly worse than best one, causing the agent to end up with a sub-optimal

behaviour.

To reduce the extrinsic variance and solve the problem of over-fitting, similar

to many other fields in machine learning, we can apply model regularization

before any decision making. This is often achieved by introducing a bias into the

model-selection mechanism, hence the bias–variance tradeoff (Hastie et al., 2009).

These are heuristics that bias us towards particular models when we do not have

enough data to arrive at a clear conclusion. They can be based on specific domain

knowledge, or based on structural assumption such as sparsity or smoothness.

Domain-specific bias can be provided in form of a Bayesian prior distribution.

Bayesian inference is then applied either in the model-based setting (Strens, 2000)

or model-free setting (Engel et al., 2003, 2005). Bayesian methods, unlike the

uninformed Probably Approximately Correct (PAC) methods, are greedy with

respect to the policy inferred by the prior. As a result of this greediness, Bayesian

methods can converge to suboptimal solutions (Kolter and Ng, 2009b).

General domain-independent assumptions have also been used for model reg-

ularization in machine learning. Sparsity and smoothness are the most commonly

used assumptions in many machine learning areas and have been applied to the

RL setting in different forms. One can use specific domain-independent Bayesian

priors that impose smoothness on the model parameters or utility of actions. This

2



requires similar states and actions to have similar dynamics or utilities. Such

analysis translates into an �2 regularization on the parameter space of a function

approximator, and is shown to provide performance guarantees even in continuous

state-spaces (Farahmand et al., 2009b,a). Sparsity in RL model-selection, on the

other hand, is either imposed by �1 regularization (Kolter and Ng, 2009a) or ex-

plicit feature selection or feature extraction methods (Menache et al., 2005; Keller

et al., 2006; Parr et al., 2007; Geramifard et al., 2011).

1.2 Research Focus

Our research focuses on the RL regularization problem in two ends of the

spectrum: domain-specific guided regularization using Bayesian prior distributions,

and agnostic feature selection based on domain-independent sparsity assumption

in the feature space. In both cases, we investigate methods for which we can get

probabilistic performance guarantees with only mild assumptions on the problem

domain.

We incorporate domain-specific information through prior distributions.

Our use of prior is, however, fundamentally different from that of the traditional

Bayesian analysis, in that we do not assume the prior to be capturing the true

probabilistic nature of the problem. Instead, we treat the prior as a heuristic

that guides our search for models that better match the observed data. This

is done through a PAC-Bayesian methodology, first introduced for supervised

learning (McAllester, 1999a). We apply our methods to both model-free and

model-based RL, and propose algorithms based on the PAC-Bayesian analysis

3



in discrete and continuous state-spaces. Our empirical results in transfer learn-

ing scenarios confirm that the PAC-Bayesian methodology is able to leverage

prior distributions when they are informative and, unlike standard Bayesian RL

approaches, ignore them when they are misleading.

For the cases where domain-specific information is not available, we develop

methods that exploit general sparsity assumption on the state-space. We tap

into the methodology of compressed sensing (Donoho, 2006) and apply it for

feature extraction in the RL problem. Ghavamzadeh et al. (2010) have recently

applied random projections to derive RL algorithms for feature selection in high-

dimensional state-spaces. This is, however, only a first step of such applications

and is the subject of active research. In that regard, we investigate the combina-

tion of compressed sensing methods such as random projections with conventional

RL feature extraction methods based on Bellman residuals (Parr et al., 2007). We

aim to provide performance guarantees on such methods with minimal assump-

tions on the problem domain. Our results could be further used to derive online

feature generation algorithms that adaptively increase the complexity of the model

as more data becomes available.

1.3 Thesis Statement

This work extends and analyses regularization methods in reinforcement

learning, when either domain-specific information is available through Bayesian

priors, or where minimal domain-independent sparsity assumptions are used. We

apply PAC-Bayesian analysis for the case of informed regularization, and use ideas

from compressed sensing for agnostic regularization.

4



Impact and applications: We expect the result of our research to have consid-

erable impact in sample efficacy both in batch and online reinforcement learning,

specially in cases where general reinforcement learning models are not restrictive

enough to converge to good solutions with limited training data. Regularization

can be used in these cases to control for the complexity of the model accordingly.

1.4 Statement of Contributions

The following is a detailed list of novel theoretical and empirical contributions

included in this thesis:

• A PAC-Bayesian bound for model-based RL is provided in Theorems 6.2. An

empirical analysis of this bound is provided in Section 6.6.1.

• A PAC-Bayesian bounds for model-free RL in finite-state problems is

provided in Theorem 6.3, with corresponding empirical analysis included in

Section 6.6.2.

• A PAC-Bayesian bound for continuous-state RL problem with value function

approximation is provided in Theorem 6.5. An empirical analysis is included

in Section 6.6.3.

• A worst-case analysis of compressed least-squares regression in sparse spaces

is provided in Theorem 8.2. The corresponding empirical evaluations are

presented in Section 8.5.

• An analysis of compressed least-squares regression with non-i.i.d. data

in sparse spaces is presented in Theorem 8.3, with application to feature

generation in RL presented in Theorem 9.1 and Lemma 9.3. The empirical

analysis is provided in Section 9.5.
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1.5 Statement of Authorship

This thesis is based on several results published in peer reviewed conferences.

The author of this thesis is the main author in charge of most of the theoretical

and empirical analysis included in all the following publications. Co-authors

provided supervision on the research, contributed to the idea and helped with

small parts of the theoretical analysis.

• Theorems 6.2 and 6.3 with corresponding empirical analysis, extend the work

of Fard and Pineau (2010).

• Theorem 6.5 and its corresponding empirical analysis, extend the work of

Fard, Pineau, and Szepesvári (2011)

• Theorem 8.2 and the corresponding empirical evaluations, extend the work of

Fard, Grinberg, Pineau, and Precup (2012).

• Theorems 8.3 and 9.1, Lemma 9.3, and their empirical analysis extend the

work of Fard, Grinberg, Farahmand, Pineau, and Precup (2013).

1.6 Overview

This thesis is organized in 3 parts. Part I, goes over the notation and back-

ground of RL. In Part II, we cover the technical background pertaining to PAC

and PAC-Bayesian analysis, and then present our PAC-Bayesian methods for RL.

Part III contains a review of the compressed sensing literature and the application

of compressed regression to feature generation for the RL problem. We finish by

an overall conclusion and discussion in Chapter 10. All basic notations used in the

thesis are defined in Appendix A.
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Part I

Reinforcement Learning Background

and Notation
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CHAPTER 2
Markov Decision Process and Sequential Decision Making

This chapter is a review of background material on decision theory in re-

inforcement learning (RL). We look into the main concepts behind sequential

decision making and the mathematical formulations used in RL. We also go

through some of the key algorithmic methods for learning and decision making in

RL.

2.1 Sequential Decision Making

Decision theory was originally introduced in the context of game theory with

early applications in economics (Neumann and Morgenstern, 1944). In its modern

form, it can be thought of as the study of probabilistic processes along with

utility theory. The assumption is that there is an agent acting in an environment,

performing actions, and receiving signals. Utility theory assumes that part of

this signal from the environment is a numerical value that specifies how good the

outcome was. This could be the health measure of a patient, or the profit of a

trading agent.

The system is assumed to evolve in a probabilistic manner. In the most

general case, the future of the system is a probabilistic function of the entire

history of the agent’s interactions with its environment. However, often times we

deal with systems that are known to have the Markovian property. This property

assumes that the system has a state-space. At each point in time, the system is
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in one particular state (which might or might not be known to the agent) and the

future of the system solely depends on the current state and the future actions.

The sequential decision process deals with the problem of finding strategies for

the acting agent that will maximize the long-term future utility. This could be the

average or sum of future utilities at each time step.

Depending on the type of signal received by the agent and the probabilistic

nature of the process, we can divide sequential decision-making problems into

several classes. Among these, we look at the Markov Decision Process, which

assumes the agent knows the state of the system.

2.2 Markov Decision Processes

A Markov Decision Process (MDP) is a model of system dynamics in sequen-

tial decision problems that involves probabilistic uncertainty about future states

of the system (Bellman, 1957). The system is assumed to be in a state at any

given time. The agent observes the state and performs an action accordingly. The

system will then make a transition to the next state and the agent will receive

some reward.

The MDP model allows us to find the optimal action at each state such as to

maximize the long-term future reward.

Formally, an MDP is defined by the 5-tuple (S,A, T0, T, R, γ):

• States: S is the set of states. The state usually captures the complete

configuration of the system. Once the state of the system is known, the

future of the system is independent from all the history. This means that

the state of the system is a sufficient statistic of the history of the system.
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In a robotic application, for instance, the state could be the position of the

robot. Thus once we know where the robot is, it is not important which path

it took to get there.

• Actions: A : S is the set of actions allowed by the RL agent. For example, a

robot can move in several directions, each of which constitutes an action.

• Starting distribution: T0 ∈ M(S) defines the distribution of the state at

the beginning of the agent’s interaction with the environment.

• Transition Probabilities: T : S × A → M(S) defines the transition

probabilities of the system. This function specifies how likely it is to end

up at any state, given the current state and a specific action performed by

the agent. As stated before, transition probabilities are specified based on

the Markovian assumption. That is, if the state of the system at time t is

denoted by St and the action at that time is At, then we have:

P(St+1|St, At, St−1, At−1, . . . , S0, A0) = P(St+1|St, At). (2.1)

We focus on homogeneous processes in which the system dynamics are

independent of the time. Thus the transition function is stationary with

respect to time:

T (s, a)
def
= P(·|St = s, At = a). (2.2)

• Rewards: R : S × A → M([0, Rmax]) is the probabilistic reward model.

Depending on the current state of the system and the action taken, the agent

will receive a reward drawn from this model. We focus on homogeneous
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processes in which, again, the reward distribution does not change over time.

If the reward at time t is denoted by Rt then we have:

Rt ∼ R(St, At). (2.3)

Sometimes the reward is taken to be deterministic. We will be using the gen-

eral probabilistic model throughout this thesis. The mean of this distribution

will be denoted by R̄(., .).

• Discount Factor: γ ∈ [0, 1) is the discount rate used to calculate the

long-term return. It is a way of trading off between short-term and long-term

rewards. It can also be thought of as the probability that the process dies at

each step.

The agent starts in an initial state S0 ∼ T0. At each time step t, an action

At ∈ A is taken by the agent. The environment then makes a transition to

St+1 ∼ T (St, At) and the agent receives an immediate reward Rt ∼ R(St, At).

The goal of the agent is to maximize the discounted sum or rewards, which is

usually referred to as the return (denoted by D):

D =
∑
t

γtRt. (2.4)

In the finite horizon case, this sum is taken up to the horizon limit and the

discount factor can be set to 1. However, in the infinite horizon case the discount

factor should be less than 1 so that the return has finite value. The return on the

process depends on both the stochastic transitions and rewards, as well as the

actions taken by the agent.
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2.3 Policy and Value Function

Policy is a way of defining the agent’s behaviour with respect to the changes

in the environment. A (probabilistic) policy on an MDP is a mapping from the

state-space to a distribution over the action space:

π : S →M(A). (2.5)

A deterministic policy is a policy that defines a single action per state. We

overload the notation π(S) ∈ A for deterministic policies.

The agent interacts with the environment and takes actions according to the

policy. The value function of the policy is defined to be the expectation of the

return given that the agent acts according to that policy:

V π(s)
def
= E

At∼π(St)
St+1∼T (St,At)
Rt∼R(St,At)

[ ∞∑
t=0

γtRt

∣∣∣S0 = s

]
. (2.6)

Note that since Rt ∈ [0, Rmax], we must have V π(s) ≤ Vmax
def
= Rmax/(1 − γ). Using

the linearity of the expectation, we can write the above expression in a recursive

form, known as the Bellman equation (Bellman, 1957):

∀s ∈ S : V π(s) = E
A∼π(s)

[
R̄(s, A) + γ E

S′∼T (s,A)
[V π(S ′)]

]
. (2.7)

One can use sums (if states and/or actions are finite) or integrals (for infinite

set of states and actions) to write the Bellman equation.
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The right hand side of 2.6 can be written down in terms of the Bellman

operator. The operator Tπ applied to a function V (·) is defined as:

(TπV )(s)
def
= E

A∼π(s)

[
R̄(s, A) + γ E

S′∼T (s,A)
[V (S ′)]

]
. (2.8)

The Bellman equation can then be written in terms of the Bellman operator as:

∀s ∈ S : V π(s) = (TπV π)(s). (2.9)

Given an estimate of the value function V̂ π one can calculate the amount of

deviation from the Bellman equation. This is often referred to as the Bellman

error:

eV̂ π(s)
def
= (TπV̂ π)(s)− V̂ π(s). (2.10)

The value function has been used as the primary measure of performance in

much of the RL literature. There are, however, some ideas that take the risk or the

variance of the return into account as a measure of optimality (Heger, 1994; Sato

and Kobayashi, 2000). But the more common criteria is to assume that the agent

is trying find a policy that maximizes the value function. Such a policy is often

referred to as an optimal policy.

We can also define the value function over the state–action pairs. This is

usually referred to as the action-value function, Q-function, or Q-value, of that

pair. By definition:

Qπ(s, a)
def
= E

t≥1:At∼π(St)
St+1∼T (St,At)
Rt∼R(St,At)

[ ∞∑
t=0

γtRt

∣∣∣S0 = s, A0 = a

]
. (2.11)
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That is, the Q-value is the expectation of the return, given that the agent

takes action a first and then follows policy π. It is often used to compare the

optimality of actions given a fixed policy. The Q-function also satisfies the Bellman

equation:

∀s ∈ S, a ∈ A : Qπ(s, a) = R̄(s, a) + γ E
S′∼T (s,a)

[
E

A′∼π(S′)
[Qπ(S ′, A′)]

]
. (2.12)

Similar to the value function, we can define a Bellman operator for the action-

value function. Overloading the notation, the action-value Bellman operator Tπ

applied on a function Q(., .) is defined as:

(TπQ)(s, a)
def
= R̄(s, a) + γ E

S′∼T (s,a)

[
E

A′∼π(S′)
[Q(S ′, A′)]

]
, (2.13)

and the action-value Bellman equation will be:

∀s ∈ S, a ∈ A : Qπ(s, a) = (TπQπ)(s, a). (2.14)

The action value Bellman error is defined similarly:

eQ̂π(s, a)
def
= (TπQ̂π)(s, a)− Q̂π(s, a). (2.15)

2.4 Policy Optimality

An optimal policy, denoted by π∗, is defined to be a policy that maximizes the

value function at the initial state. If Π is the set of all policies, we have:

E
S0∼T0

[
V π∗

(S0)
]
= sup

π∈Π
E

S0∼T0

[V π(S0)] . (2.16)
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It has been shown (Bellman, 1957) that for any MDP, there exists an optimal

deterministic policy that is no worse than any other policy for that MDP. The

optimal value function V ∗ satisfies the Bellman optimality equation (Bellman,

1957):

V ∗(s) = sup
a∈A

[
R̄(s, a) + γ E

S′∼T (s,a)
[V ∗(S ′)]

]
. (2.17)

One can rewrite the above in terms of the Bellman optimality operator T∗ applied

to a function V (·) is defined as:

(T∗V )(s)
def
= sup

a∈A

[
R̄(s, a) + γ E

S′∼T (s,a)
[V (S ′)]

]
. (2.18)

Using this, the Bellman optimality equation can be written as:

∀s ∈ S : V ∗(s) = (T∗V ∗)(s). (2.19)

We can similarly define the Bellman optimality operator and the correspond-

ing Bellman equations for the action-value function. Overloading the notation, the

Bellman operator T∗ applied to an action-value function Q is defined as:

(T∗Q)(s, a) = R̄(s, a) + γ E
S′∼T (s,a)

[
sup
a′∈A

Q(S ′, a′)

]
, (2.20)

and the Bellman optimality equation for optimal action-value function Q∗ be-

comes:

∀s ∈ S, a ∈ a : Q∗(s, a) = (T∗Q∗)(s, a). (2.21)
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We define the regret of a policy π on state s to be the difference of its value

and the optimal value function at that state: V ∗(s) − V π(s). Similarly, for a

state–action pair, the regret is defined to be the difference of the action value of a

policy and the optimal action value function: Q∗(s, a) − Qπ(s, a). Note that the

regret might be defined differently in other related works (Szepesvari, 2010).

2.5 Representation of the Value Function

With small and finite state-spaces, one can use a tabular representation of

the value function (i.e. representing each state-value by a number). With large or

infinite state-spaces, one has to use function approximation to represent the value

function. In this work we only work with parametric function approximations. The

value function is thus defined in terms of a parameter vector θ.

The state of the MDP is also often represented in terms of features when

working with a continues-state-space. We thus represent the state features by a

vector of values: xt represents the vector of features associated with state of state

at time t. For continues MDPs, we use xt to directly represent the state of the

MDP. We use St and xt interchangeably.

Linear value function approximation is among the most commonly used meth-

ods in RL. With parameter vector θ, the value of state at time t is approximated

by:

Vθ(xt) = θTxt. (2.22)

By designing a good feature vector and tuning the value of θ, one can create a

good estimator of the value function. In the next chapter, we discuss some of the

algorithms developed to find a good set of features and parameters.
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2.6 Dynamic Programming with Exact Models

There are many methods developed to find the value of a policy. These

methods are referred to as policy evaluation algorithms. If the state-space is small

and the model of the MDP is fully known, the simplest way to find the value

function is by solving the Bellman equation using matrix inversion (Sutton and

Barto, 1998). This method, however, becomes impractical with larger state-spaces

due to computational cost and numerical instability of direct matrix inversion.

2.6.1 Value Iteration

There are dynamic programming methods (Bellman, 1957) to find the value

function by iteratively applying the Bellman operator to the current estimate of

the value function. We start with some initial estimate V π
0 of the value function

and then keep updating it until convergence is observed:

V π
t+1 ← T

πV π
t , (2.23)

where V π
t is our estimate of the value function at time t. The series of value esti-

mates converge to the correct value, since the Bellman operator is a γ-contraction

with respect to the infinity norm (Williams and Baird, 1993):

‖TπV − T
πV ′‖∞ ≤ γ ‖V − V ′‖∞ , (2.24)

which entails:

‖V π
k − V π‖∞ ≤ γk ‖V π

0 − V π‖∞ , (2.25)
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Similar contraction properties also hold for the action-value function:

‖TπQ− T
πQ′‖∞ ≤ γ ‖Q−Q′‖∞ , (2.26)

With value function approximation, direct Bellman backups are not always

possible since the function might not be representable in the function space

spanned by the approximation. We thus need to apply a projection operator after

applying the Bellman operator:

V π
t+1 ← ΠF

ν(π)T
πV π

t , (2.27)

where F is the function approximation space and ν(π) is the stationary distribu-

tion of states under policy π.

When aiming to find the optimal value function, one can use the optimal

Bellman operator in the above equations and obtain a fixed-point using dynamic

programming. This algorithm is referred to as Value Iteration:

V ∗
t+1 ← T

∗V ∗
t . (2.28)

The above sequence can be shown to converge to V ∗ with a similar γ-contraction

in the error (Sutton and Barto, 1998). When using function approximation, one

has to use a projection into the approximation hypothesis space at each iteration.

2.6.2 Policy Iteration

Instead of directly working with the value function, one can try to find an

optimal policy for the MDP. Policy Iteration (PI) is an RL algorithm that aims

to gradually improve the behaviour policy with each iteration (Sutton and Barto,
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1998). The algorithm starts with an initial policy π0 and updates the policy to be

greedy with respect to the estimated value of the previous iteration:

πk+1 ← Greedy with respect to Qπk (2.29)

It can be shown that with exact backups, the policy is improved at every step and

that its value converges to the optimal value function (Sutton and Barto, 1998).
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CHAPTER 3
Reinforcement Learning Algorithms

In the general RL problem, unlike the cases discussed in the previous chapter,

we do not have exact knowledge of the system dynamics or the reward model.

Therefore, the agent learns to act optimally by interacting with the environment

and correcting the estimates and the policy, based on the observed trajectories.

There is a large literature on computing of the optimal value and an optimal

policy for an unknown MDP. This chapter covers some of these algorithms most

relevant to the topics of this thesis.

3.1 Categories of RL Problems and Algorithms

When interacting with an unknown MDP, there are two approaches to solving

for an optimal policy. One can interact with the MDP and use the observations

to estimate the transition and reward model (often referred to model-based RL)

or otherwise directly estimate the value of a given policy or the optimal value

function (model-free RL).

RL problems can be broadly categorized into two types. In the batch RL

problem, we are given a fixed set of trajectories sampled on an unknown MDP

under some predefined behaviour policy. In the online RL problem, we get to

choose the behaviour policy as trajectories are collected, hence acting “online”. The

online RL problem has to deal with exploration (choosing the correct policy that

allows us to better know the underlying model). The batch problem, on the other
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hand, has to deal with off-policy evaluation, where one would need to evaluate

a policy given trajectories collected on another policy (Szepesvari, 2010). In this

thesis, we focus mostly on the batch learning problem.

There are two broad categories of RL algorithm and methods. Online RL

algorithms gradually change the estimates of the model parameters or values, using

constant time update rules at each iteration. Batch RL algorithms, on the other

hand, apply batch updates to the estimates, using many collected trajectories at

once (Szepesvari, 2010).

Note that batch algorithms can be applied in online problems (using mini-

batch techniques), and online algorithms can be applied in batch problems (for

smaller computational or memory complexity).

Most of the contributions of this thesis are on batch algorithms, but we briefly

discuss the online adaptations when possible.

3.2 Value Prediction

When the MDP transition and reward models are fully known, one can

directly calculate and the value function using dynamic programming. Though

when the model of MDP is not known, we have to interact with the MDP to

gather trajectories and estimate the value function based on finite amount of

observations.

3.2.1 Temporal Differences with Fixed Point Solutions

With unknown models, the simplest way to approximate the value of a state

under a given policy, is to sample several trajectories starting with that state and

averaging the returns (an instance of the Monte-Carlo method). However, such
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estimator has a large variance, is not data-efficient and requires a reset operator,

often not available for the problem at hand.

An alternative is to use Temporal Difference (TD) errors as a proxy to the

Bellman error. The TD-error of an estimated value function V̂t after observing the

t-th transition and reward is defined as:

δt = Rt + γV̂t(St+1)− V̂t(St). (3.1)

It is easy to show that the expectation of the temporal difference at St equals the

Bellman error at that point (Sutton and Barto, 1998):

E
At∼π(St)

St+1∼T (St,At)
Rt∼R(St,At)

[δt] = eV̂t
(St). (3.2)

TD-errors are thus proxies to estimating the Bellman error.

One can thus try to minimize the overall TD-errors across observed trajec-

tories. TD-learning algorithms are methods that gradually change the estimated

value function to reduce the observed TD-error.

In a small and finite state-space, one can represent the value function with a

tabular representation. The tabular TD(0) algorithm is then a simple update to

one of the elements of the table at each time point:

V̂t+1(s) = V̂t(s) + αtδtI{St=s}, (3.3)

were αt is the step-size for the update at time t. The above is shown to converge

to the fixed point of the Bellman operator and hence the correct value function.
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With value function approximation, one can similarly update the parameter of

the value function with an increment:

δt = Rt + γVθt(xt+1)− Vθt(xt), (3.4)

θt+1 = θt + αtδt∇θVθt(xt). (3.5)

TD(λ) (Sutton and Barto, 1998) is a generalization of TD(0) that uses

eligibility traces to make increments to the value function. The choice of λ ∈ [0, 1]

provides an interpolation between TD(0) and the Monte-Carlo update. One has to

be careful using TD(λ) with function approximations when off-policy samples are

used. Unlike the tabular case, convergence is no longer guaranteed (Bertsekas and

Tsitsiklis, 1996).

3.2.2 Gradient Temporal Difference Methods

One can avoid the divergence issues of TD(λ) by directly minimizing the

projected Bellman loss function:

Jπ
PB(θ) =

∥∥Vθ −ΠF
ν T

πVθ
∥∥2
ν
, (3.6)

were ν can be different from the stationary distribution of π.

For linear value function approximation, algorithms GTD2 (Gradient Tem-

poral Difference learning, version 2) and TDC (Temporal Difference learning

with Corrections) use stochastic gradient descent to optimize the above loss

function (Sutton et al., 2009). They both iteratively update two sequences of

parameters to obtain an unbiased estimate of the gradient of the objective 3.6.
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GTD2 uses the Least-Mean Square (LMS) rule to update one of the sequences

and TDC uses the technique of two-timescale stochastic approximation (Borkar,

1997). These methods have been extended to non-linear function approxima-

tion(Maei et al., 2009) and have also been modified to use eligibility traces (Maei

and Sutton, 2010).

3.2.3 Batch Methods

One can get better sample efficiency and stronger convergence guarantees with

batch offline methods. These methods aim to minimize a loss function over the

entire set of sampled trajectories instead of using gradual updates to the estimated

values.

Bellman Residual Minimization (BRM) aims to minimize the overall Bellman

error (often weighted by the stationary distribution) (Sutton and Barto, 1998):

Jπ
BR(θ) = ‖Qθ − T

πQθ‖2ν(π) , (3.7)

were ν(π) is the stationary distribution imposed by the policy over state–action

pairs. The problem with this loss function is that its direct empirical estimate is

biased:

E
S′∼T (s,a)
R∼R(s,a)
A′∼π(St)

[
{Q̂(s, a)− (R + γQ̂(S ′, A′))}2

]

= {Q̂(s, a)− (TπQ̂)(s, a)}2 + Var
S′∼T (s,a)
R∼R(s,a)
A′∼π(St)

[
R + γQ̂(S ′, A′)

]
. (3.8)
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To get an unbiased estimator, one might need to use the double-sampling

method (Sutton and Barto, 1998), or use an auxiliary function to cancel the

variance term (Antos et al., 2008).

An alternative is to minimize the empirical estimate to the projected Bellman

loss defined in Equation 3.6. With linear function approximation, the minimiza-

tion turns into a least-squares problem, referred to as Least-Squares Temporal

Difference (LSTD) algorithm (Boyan, 2002; Lagoudakis and Parr, 2003).

Define the empirical operators:

SnV
def
= [V (S1), V (S2), . . . , V (Sn)]

T , (3.9)

TnV
def
= [R1 + γV (S2), R2 + γV (S3), . . . , Rn + γV (Sn+1)]

T . (3.10)

Let ΠF be the projection onto the space of parametrized value functions with

respect to the �2 norm ‖.‖. LSTD minimizes the empirical version of the projected

Bellman loss:

ĴPB(θ) =
∥∥SnVθ −ΠF

TnVθ
∥∥2 . (3.11)

This is an empirical approximation to the projected Bellman loss defined in

Equation 3.6. For linear function approximation, the solution can be obtained by

solving a set of linear equations:

n∑
t=1

xtδt = 0, (3.12)

were xt is the feature vector of the state at time t.
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The sample complexity of the LSTD has been analysed with respect to the

empirical and stationary norms (with fast-mixing MDPs). The bounds show that

LSTD is sample-efficient with a typical bias–variance trade-off with respect to the

complexity of the function approximator (Lazaric et al., 2010). The computational

cost, on the other hand, can become prohibitive with large numbers of samples and

features.

3.2.4 Regularized Least-Squares Methods

Direct regularization has been used for general complexity reduction in RL

without domain-specific knowledge. One can add regularization terms to the

Bellman loss functions in Equations 3.7 and 3.6 to control for the complexity of

the value function fit. �2 regularization can been used to enforce smoothness on the

value function. Sample complexity bounds show how to achieve optimal rates of

convergence (Farahmand et al., 2009b,a).

�1 regularization have also been studied in use with the LSTD algorithm. The

problem with �1 regularization is that the resulting objective function is not convex

and thus non-trivial to optimize. Kolter and Ng (2009a) applied an adaption of

Least Angle Regression (LARS) method to find the solution to the regularized

LSTD. The solution is sparse and one can thus build the LSTD solution only

on the active features. Therefore their method can achieve a potentially large

computation gain by inverting a much smaller matrix. The sample complexity is

also reduced as one only needs to estimate the weights for the active features.
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3.3 Control

In the online RL scenario, one needs to control the behaviour policy and

gradually improve it to form an optimal policy. Having observed a history of tran-

sitions, one can either act greedily according to an estimated model (often referred

to as exploitation) or otherwise try actions with more uncertainty about them to

gain information and later improve the estimates (referred to as exploration). The

exploration–exploitation trade-off is among the main problems in online RL and

have been studies in various scenarios (Szepesvari, 2010).

This section covers the main categories of control algorithms used in online

RL scenario. We include the algorithms mostly discussed in the literature and

more relevant to the topics covered in this thesis.

3.3.1 Q-Learning

The Value Iteration algorithm described in Section 2.6.1, requires full knowl-

edge of the underlying MDP. When faced with an unknown MDP, one can approx-

imate the application of the Bellman operator with a TD error update rule. This

algorithm is referred to as Q-learning (Watkins, 1989) and can be implemented in

various ways.

Q-learning in finite MDPs is an online constant time update rule. After

observing the tuple (St, At, Rt, St+1), we update the estimate of the action value

function as follows:

δ∗t = Rt + γmax
a′∈A

Qt(St+1, a
′)−Qt(St, At), (3.13)

Qt+1(s, a) = Qt(s, a) + αtδ
∗
t I{St=s,At=a}. (3.14)
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One can show that the expectation of the TD-error δt defined above is the optimal

Bellman error on the observed state–action pair:

E
St+1∼T (s,a)
Rt∼R(s,a)

[δ∗t |St = s, At = a] = (T∗Qt)(s, a)−Qt(s, a). (3.15)

The policy that is followed by the Q-learning algorithm is often an ε-greedy

or a Boltzmann action-selection method to allow for some exploration and achieve

consistency (Szepesvari, 2010). More systematic action selection methods are

discussed in the following sections.

With large or continuous state-spaces, one has to use function approximation

to represent the value function. With parametrized value function approximation,

the update rule for Q-learning will be as follows (Szepesvari, 2010):

δ∗t = Rt + γmax
a′∈A

Qθt(St+1, a
′)−Qθt(St, At), (3.16)

θt+1 = θt + αtδ
∗
t∇θQθt(St, At). (3.17)

Melo et al. (2008) have shown that the above update rules converge under

certain conditions for the sampling distribution. There are also gradient type

algorithms similar to the stochastic gradient TD algorithms that have recently

been introduced for Q-learning (Maei et al., 2010).

Fitted Q-iteration is another algorithm that approximates (fitted) value

iteration. It follows by generating a batch of trajectories on a policy and then

approximating the optimal Bellman operation by using generic function ap-

proximation methods. Tree-based approximation (Ernst et al., 2005) and kernel
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averaging (Ormoneit and Sen, 2002) are among the methods used for fitted

Q-iteration.

3.3.2 Actor Critic Methods

With a known MDP model, the Policy Iteration algorithm can be used to

gradually update a policy until an optimal policy is found. When the transition

and reward models are not known, one has to use approximate policy evaluation

methods when evaluating intermediate policies. Such algorithms are referred to as

Generalized Policy Iteration (GPI) (Szepesvari, 2010).

A more general framework, referred to as actor–critic methods, separate the

notion of an actor (the behaviour policy) and the critic (the policy evaluation

routines). The actor of these models are often stochastic policies and the critics

can be based on any of the policy evaluation methods discussed in the previous

sections.

Critic Algorithms

With finite states and actions one can use TD-type methods as critics.

SARSA is a critic method based on the TD-learning algorithms. It is essentially

TD(0) applied to state–action value functions:

δt = Rt + γQt(St+1, At+1)−Qt(St, At), (3.18)

Qt+1(s, a) = Qt(s, a) + αtδtI{St=s,At=a}. (3.19)

The convergence guarantees of SARSA are similar to that of TD-algorithms. There

have been extensions to use eligibility traces with SARSA(λ) (Rummery and
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Niranjan, 1994) and also extensions using stochastic gradient techniques (Maei and

Sutton, 2010).

Batch method have also been used as critics. LSTD-Q and LSTD-Q(λ) are

generalizations of LSTD for state–action value functions. These methods can use

features of the states and are thus useful with large or continuous state and action

spaces.

Actor Algorithms

The actor part of an actor–critic method can be designed in many different

ways. The choice of the behaviour policy can affect the convergence properties of

the algorithm.

The actor can be defined to be greedy with respect to the evaluation by the

critic. This can be done either in (mini-)batch mode or in online mode. In batch

mode, the actor fixes the behaviour policy at each iteration and collects a number

of samples. The critic then uses a batch policy evaluation method to evaluate

the policy. Least-Squares Policy Iteration (LSPI), is one such algorithm that uses

LSTD-Q(0) as critic (Lagoudakis and Parr, 2003).

Greedy online methods interleave the update on the actor and critic parts

instead of using mini-batches. SARSA(0) is among such algorithm with asymptotic

consistency guarantees under infinite exploration (Singh et al., 2000).

ε-greedy and Boltzmann-type stochastic greedy policies are more commonly

used as critics as they provide better convergence. They effectively result in a

smoother update to the behaviour policy and are thus less likely to get stuck in a

local optima (Szepesvari, 2010).

30



Policy gradient methods is another class of critics that use stochastic gradient

ascent on the value of policies in a parametrized policy class. Common choices for

the policy class are Gibbs policies for finite action spaces and Gaussian policies for

continuous action spaces in Rn (Szepesvari, 2010).

The performance of a policy is often measured by the expected return

of the policy starting from some initial distribution on the state. There are

many methods to estimating the gradient of performance with respect to policy

parameters. One can use finite differences, for instance, to approximate the

gradient of the expected return. A more common approach is to use likelihood ratio

policy gradient (in methods such as REINFORCE (Glynn, 1987)) or importance

sampling techniques (Jie and Abbeel, 2010). These methods use importance

weighing techniques to estimate the gradient of the expected return using the

gradient of the log action probabilities.

3.3.3 Systematic Exploration with Regret Bounds

While approximations of Value Iteration and Policy Iteration have been used

successfully in RL control problem, optimal exploration is still an open problem.

Most of the results with Q-learning and actor–critic type algorithms can only

provide convergence guarantees in the limit of infinite samples and under strict

sampling conditions.

Systematic exploration methods focus on fining solutions with finite sample

guarantees on a measure of optimality on the resulting policy. A more thorough

specification of the target and the analysis of such algorithms are provided in

Chapter 4.
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3.4 Feature Section and Extraction in RL

When dealing with an unknown state-space with a large number of features,

even linear function approximation might result in high variance in the value

function estimation. This is specially the case, when the number of possible

features is larger than the number of trajectories provided to the RL algorithm (in

the online case this also happens in the earlier learning stages). General forms of

regularization in function approximation can be used to remedy the problem. In

particular, we can build the value function based on a subset of features. One thus

needs to choose the correct feature set such that the model based on that would be

as close to the true value function as possible.

Feature extraction methods have specially been used in the RL literature

to achieve concise value models that match the observed transitions. Menache

et al. (2005) introduced two algorithms to adapt basis functions as features for

linear function approximation in RL. Keller et al. (2006) applied neighbourhood

component analysis as a dimensionality reduction technique to construct a low

dimensional state-space based on the temporal difference error. In their work,

they iteratively add feature that would help predict the Bellman error. Parr et al.

(2007) later showed that any feature extraction method based on a Bellman-error-

based approach with certain conditions will provably tighten approximation error

bounds.

Online feature extraction methods have also been studied in the RL litera-

ture. Geramifard et al. (2011) have recently introduced the incremental Feature

Dependency Discovery (iFDD) as a fast online algorithm to extract non-linear
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binary feature for linear function approximation. In their work, one keeps a list

of candidate features (non-linear combination of two active features), and among

these adds the features that correlates the most with the temporal-difference error.

Agnostic feature selection methods have only recently been studied in the

RL domain with almost no empirical analysis. Ghavamzadeh et al. (2010) used

random projections to reduce the dimensionality of the state-space in cases

where the trajectory batch is smaller than the number of features. They provide

performance bounds for both LSTD and LSPI with random projections. An

important contribution of this thesis (see Chapter 9) connects agnostic feature

selection methods from the compressed sensing literature to Bellman-error-based

methods from the RL domain.

3.5 Bayesian RL

Compared to pure frequentist methods, Bayesian analysis provides better

sample efficiency and faster convergence rates when we have access to an infor-

mative prior distribution over the parameters of the solution. Bayesian methods

have been applied to both model-based and model-free RL. For the model-based

approaches, one is given a prior distribution over the transition and reward models.

This is mostly studied in finite state-spaces, where the transition model is defined

by a set of multinomial distributions. Starting from state s, for any action a, the

probability of arriving at any next state is defined by a multinomial distribution.

One can then use Dirichlet distributions as the conjugate prior over the parameters

of these multinomial distributions (Strens, 2000; Duff, 2002; Wang et al., 2005). In
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the batch RL setting, one can marginalize the prior over the data to get a poste-

rior. This is a relatively easy task, as the update can be done by incrementing the

counts of the Dirichlet distributions associated with the observed transitions.

In the online setting, unlike batch RL, the learning method has some control

over how the observed trajectories are collected, and hence has to deal with the

exploration–exploitation trade-off. Bayesian RL aims to solve this problem by

planing in the state-space extended with the Dirichlet counts. Assuming that the

prior distribution incorporates the true probabilistic nature of the RL domain,

the optimal policy suggested by the partially observable RL problem on the

extended state-space is the optimal plan that correctly balances exploration and

exploitation (Duff, 2002).

Bayesian analysis has also been applied to model-free RL, where one is given

a prior over the value function. This is often achieved by means of Gaussian

processes. GPTD (Engel et al., 2003) and GPSARSA (Engel et al., 2005) are

examples of such methods, extending the TD and SARSA methods discussed in

previous sections. The use of Gaussian processes often results in computationally

intractable planning problems due to the large kernel matrices that grow with the

sample size. Therefore approximations have been used to achieve more practical

inference algorithms by pruning points from the sample (Engel et al., 2003).

Bayesian methods, although elegant and concrete, have often been criticized

not only for their computational cost, but also for their strong assumptions on the

correctness of the prior distribution. There are usually no theoretical guarantees

when performing Bayesian inference with priors that do not admit the correct
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posterior, meaning that they can converge to suboptimal solutions (Kolter and

Ng, 2009b). In Chapter 6, we argue here that a more adaptive method can provide

stronger guarantees on the performance and at the same time be more data

efficient if an informative prior is taken into account.
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Part II

PAC-Bayesian Reinforcement

Learning

36



CHAPTER 4
PAC Learning

Learning can be thought of as the process of acquiring the skill to perform a

task in the absence of explicit programming (Valiant, 1984). Since the invention

of computing machines, the idea of machine learning has been receiving attention

from different scientific communities. Just as the computational phenomenon had

to be described in precise models for its theory to be developed, machine learning

also needs concrete mathematical models to be crafted as a theory. Such theory

can help explain the human’s learning experience and let us build algorithms and

machines that can learn. The theory should also shed light on the limits of what

can be learned, just as computability does on what can be computed (Valiant,

1984).

Concrete notions of learnability in computational learning theory dates back

to the well known work of Valiant on the theory of the learnable (Valiant, 1984).

His work led to a well studied branch of machine learning, known as Probably

Approximately Correct (PAC) learning. Under the theory of PAC learnability,

different classes of learning problems are studied to find out whether or not they

can be learned (efficiently) with arbitrary accuracy with high probability. Blumer

et al. (1989) extended Viliant’s definitions to a more general class of learning

problems, and showed that a necessary and sufficient condition of PAC learnability

is the finiteness of Vapnik–Chervonenkis (VC) dimension. They provided upper
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and lower bounds on the sample complexity of learning problems as functions of

the VC dimension of the hypothesis class.

4.1 Theory of the PAC Learnable for Finite Hypothesis Spaces

A theory of learning is a starting point to understand human’s learning

behavior and is essential to building devices that can learn automatically from

data. Valiant was the first to address this by introducing a theory of the learn-

able (Valiant, 1984). He defines a learning machine to consist of a learning protocol

along with a deduction procedure. The learning protocol specifies how the informa-

tion is collected form outside, and the deduction mechanism is the means by which

a recognition algorithm of the target concept is deduced.

Valiant was the first to introduce PAC learning as a formal model of machine

learning. His work was on the special case of Boolean input spaces. We will

start by the original definitions of PAC on Boolean functions and then study

the natural extensions to real-valued state-spaces. The basic PAC model is the

learning task aiming to find a specific Boolean function, called a target concept

c : {0, 1}m → {0, 1} within a concept class C. We have access to a training

set D that includes instances in the form (X, c(X)), with X drawn from an

unknown arbitrary fixed distribution D over {0, 1}m. The algorithm then chooses

a hypothesis h : {0, 1}m → {0, 1} from a hypothesis space H as the output of the

learning process. The true error rate of a hypothesis h under the distribution D is

the probability that an example X drawn from D results in different output from

h and c:

JD(h)
def
= Pr

X∼D
{h(X) �= c(X)} . (4.1)
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We can now define PAC learnable concept classes (Valiant, 1984):

Definition 1. A concept class C of m Boolean variables is PAC learnable by

learning algorithm A using a hypothesis space H, if for all target concepts

c ∈ C, all probability distributions D over {0, 1}m, and all 0 < ε < 1/2 and

0 < δ < 1/2, the learning algorithm A will produce with probability no less than

1− δ, a hypothesis h ∈ H such that JD(h) < ε, requiring a running time polynomial

in m, 1/ε and 1/δ.

Definition 2. A concept class C of m Boolean variables is PAC learnable if

there exists a learning algorithm A and a hypothesis space H such that C is PAC

learnable with A using H.

Such learning algorithm is often referred to as a uniform learning algorithm,

as the guarantee is independent from D. The requirement of polynomial running

time is sometimes referred to as efficient PAC learnability. However, we assume

the efficiency to be part of the definition of PAC learning throughout this thesis.

Valiant proved PAC learnability for certain classes of Boolean expressions

including k-CNFs and monotone DNFs (Valiant, 1984). Haussler (1988) extended

these results to any finite hypothesis space. The results show that with enough

number of samples, any hypothesis that is consistent with the observations is going

to be ε-optimal with high probability:

Theorem 4.1 (Haussler, 1988). For given ε and δ of the PAC model, the

minimum number of samples needed for learning an ε-optimal solution with

probability no less than 1− δ is upper bounded by:

1

ε
(ln |H|+ ln(

1

δ
)). (4.2)
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The learning algorithm can be any algorithm that finds a hypothesis consis-

tent with all the observations (referred to as a consistent learner). Therefore, if a

polynomial consistent learner exists, and if ln |H| is polynomial in the number of

variables m, then this class is (efficiently) PAC learnable.

There is a simple proof based on the fact that with enough number of

samples, one would get a counter example to all the hypotheses with error rates

more than ε with probability no less than 1− δ.

4.2 PAC Learnability and the VC-Dimension

The bounds based on the size of the hypothesis class are often loose and can

only be used for finite concept classes. Blumer et al. (1989) extended the notion

of learnability to general concept classes by connecting the sample complexity

with Vapnik–Chervonenkis (VC) dimension. They showed that the necessary and

sufficient condition of uniform learnability is the finiteness of the VC dimension.

The VC dimension, first introduced by Vapnik and Chervonenkis (1971), is a

measure of complexity of a hypothesis class. It is also referred to as the capacity of

a class of functions (Vapnik, 1982).

Definition 3. A set S of examples is said to be shattered by a hypothesis class H,

if for any subset S ′ ⊆ S, there exists a hypothesis h ∈ H, such that: h(X) = 1 ⇔

X ∈ S ′.

The above definition indicates that for any labelling of S, there exists a

hypothesis in H consistent with such labelling. Using this, we can define the

Vapnik–Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971):
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Definition 4. Let X be an instance (input) space and H a hypothesis space

(h : X → {0, 1} for h ∈ H). The Vapnik–Chervonenkis dimension of H, denoted

by dHVC, is the size of the largest finite subset of X that can be shattered by H, or

equals ∞ if the largest subset does not exist.

The VC dimension is known for many of the commonly used hypothesis

spaces, including linear and polynomial classifiers. For instance, the class of linear

classifiers in d dimensions has a VC dimension of d+ 1.

Blumer et al. (1989) give upper and lower bounds on the sample complexity

of learning problems with finite V C dimension: Any consistent learner with

polynomially bounded sample size (linear in the VC dimension) will have an error

rate less than ε with probability no less than 1− δ.

Theorem 4.2 (Blumer et al., 1989). A concept class C is uniformly PAC

learnable on the same hypothesis class H = C, if and only if dHVC <∞:

(a) For sample sizes greater than

max

(
4

ε
log

2

δ
,
8dHVC

ε
log

13

ε

)
, (4.3)

any consistent hypothesis in H has error rate less than ε with probability no less

than 1− δ.

(b) for 0 < ε < 1/2 and sample size less than

max

(
1− ε
ε

ln
1

δ
, dHVC(1− 2(ε(1− δ) + δ))

)
, (4.4)

no learning algorithm A : Xm → H can guarantee an error rate less than ε with

probability no less than 1− δ.
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This theorem shows that depending on whether or not the VC dimension of

a concept class C is finite, either C is uniformly learnable with sample size around

O(d/ε log(1/δ)) or C is not uniformly learnable at all. If C is learnable, then the

necessary and sufficient sample sizes for PAC learnability are linear in the VC

dimension.

VC bounds are often tighter than the bounds based on the size of the hypoth-

esis space in the case of finite spaces. Intuitively, the VC dimension is a measure

of complexity of the hypothesis space, often times correlated with the number of

free parameters of the hypothesis. The above theorem has been applied to many

classes of learning algorithms to bound their sample complexity and error rate.

Other bounds have also been introduced that do not need the consistent learn-

ers (Angluin and Laird, 1988). This is specifically useful when H is different from

C and does not include any consistent classifier (e.g. when samples are drawn from

a hypothesis in H with some noise).

4.3 PAC Bounds for Reinforcement Learning

Efficient learnability can also be considered in control problems when the

learning algorithm has to interact with the environment in an RL setting. Efficient

(PAC) learnability in reinforcement learning was first addressed by Fiechter (1994).

Before his work, all other learning methods on observable Markovian environments

only provided asymptotic convergence guarantees with no bound on the sample

complexity of the learning problem. Guarantees on the error (regret) rates are

important if one wants to achieve efficiency in solving the RL problem.
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Fiechter’s model of reinforcement learning is slightly different from the

MDP model we defined in the previous chapters. He assumes the existence of a

“reset” operation that would interrupt the current sequence of transitions and

take the agent to a fixed initial state s0. He defines PAC learnability in such

environments to be the task of finding a policy (in time polynomial in |S|, |A|, 1/ε,

1/δ, 1/(1−γ) and Rmax) whose value on the initial state s0 is no more than ε away

from the optimal value, with probability no less than 1 − δ. If π is the output of

the algorithm, we must have with respect to randomness of the sample:

Pr {V ∗(s0)− V π(s0) ≤ ε} ≥ 1− δ. (4.5)

Fiechter (1994) loosely bounds the sampling complexity of the RL problem by

a polynomial (pointing out that this is only a proof of the existence of a PAC

learner). Kearns and Singh (2002) introduce the first practical PAC learner for

the RL problem on general finite MDPs with the Explicit Explore or Exploid (E3)

algorithm. Their model does not require a reset operation. Here, the PAC learning

task is to explore the MDP for polynomial time and then halt in state s, having

found a policy π for which the value function is close enough to the optimal value

with high probability:

Pr {V ∗(s)− V π(s) ≤ ε} ≥ 1− δ. (4.6)

The learnability guarantee for E3 are based on the fact that when we keep

empirical estimates of the transition probabilities and the reward values, if

these estimates are close enough to the true models, our estimate of the value
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function based on empirical models is also close to the true value function. Thus

acting according to the optimal policy on the estimated model gives us near

optimal performance on the true model. E3 manages to use this by keeping

track of “known” and “unknown” states. For the known states, we have observed

enough samples so that the empirical transition and reward models are close

approximations of the true ones, giving us near optimal policies on the known part

of the state-space. The algorithm decides to either exploit (stay in the known part

of the space and act near optimally) or explore (try to reach unknown states and

improve the accuracy of the empirical estimates). By balancing this process, E3

manages to PAC learn the RL problem in this setting.

The R-MAX algorithm, introduced by Brafman and Tennenholtz (2003),

approaches the same problem by making the choice between exploration and

exploitation implicit. R-MAX aims to solve the more general problem of learning

in stochastic games, rather than MDPs. The main idea of R-MAX is that it assigns

the maximum possible value to the states that are “unknown”, which in turn

encourages the algorithm to visit those states if possible. Once the algorithm visits

an unknown state enough times, then it becomes known and the empirical value

(which is guaranteed to be close to the true value) is assigned to the state. This

trick, sometimes referred to as being optimistic in the face of uncertainty, has

been used in later works (Wiering and Schmidhuber, 1998; Strehl and Littman,

2004) as a means to encourage implicit exploration of unknown states. As the

number of samples needed to mark a state as known is polynomial, there could be
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at most a polynomial number of exploration rounds, making the sample complexity

polynomial 1 .

Instead of having known/unknown states, one can keep track of confidence

bounds over the estimates of the transition and reward models. Wiering and

Schmidhuber (1998) introduced the Model-Based Interval Estimation (MBIE) al-

gorithm that uses the same idea of acting optimistically in the face of uncertainty.

However, instead of assigning the maximum possible value to the unknown states,

it keeps track of confidence intervals over the transitions and rewards, and then

uses the most optimistic values within the confidence bounds (i.e. the one resulting

in the highest return) as the estimate. This result in the following optimistic,

optimal Bellman equation:

Ṽ ∗(s) = sup
a∈A

(
sup

R̃∈CIR(s,a)

R̃(s, a) + γ sup
T̃∈CIT (s,a)

E
s′∼T̃ (s,a)

[
Ṽ ∗(s′)

])
, (4.7)

where CIT and CIR are the transition and reward models consistent with the

frequentist confidence intervals. For finite states and actions, the solution to the

above equation can be found efficiently by solving a set of linear equations.

Strehl and Littman (2004) showed that MBIE empirically outperforms R-

MAX (shows faster convergence to higher returns). They later provided theoretical

proof (Strehl and Littman, 2005) that MBIE has polynomial sample complexity as

is a PAC learning algorithm for the RL domain. They assume the PAC learning

1 R-MAX uses a slightly different notion of PAC learnability, which make it
depend on the ε-return mixing time of the stochastic process.
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to be the bounding of the number of suboptimal actions, rather than the time it

takes to learn a near optimal solution. The following theorem shows the sample

complexity for MBIE algorithm:

Theorem 4.3 (Strehl and Littman, 2005). Let πt be the MBIE’s policy at time

t. With probability no less than 1− δ, the condition V πt(st) ≥ V ∗(st)− ε is true for

all except for at most O
(

|S|2|A|R5
max ln3 |S|.|A|.Rmax

(1−γ)εδ

(1−γ)6ε3

)
timesteps.

The proof of MBIE’s efficiency parallels the proof of R-MAX (there are

notions of known/unknown states in the proof, but they do not appear in the

algorithm itself).

The much simpler algorithm, Model Based Interval Estimation with Ex-

ploration Bonus (MBIE-EB), adds a simple bonus term to the value function to

encourage exploration (Strehl and Littman, 2008). It still uses the idea of acting

optimistically under uncertainly, but uses a bonus term rather that searching for

the most optimistic models in the confidence intervals. The optimistic Bellman

equation for MBIE-EB is as follows:

Ṽ ∗(s) = sup
a∈A

(
R̂(s, a) + γ E

s′∼T̂ (s,a)

[
Ṽ ∗(s′)

]
+

β

1 + n(s, a)

)
, (4.8)

where β is a parameter of the algorithm, R̂ and T̂ are frequentist estimates, and

n(s, a) is the number of times action a has been taken in state s. It can be shown

that with a particular choice of β, the sample complexity of the MBIE-EB is

asymptotically similar to MBIE (Strehl and Littman, 2008).

There are more recent PAC learners for the RL problems in different settings.

Extensions to factored MDPs (Kearns and Koller, 1999), metric MDPs (Kakade
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et al., 2003) and continuous MDPs (Brunskill et al., 2008) have been developed.

The study of these methods requires formalisms and discussions that are beyond

the scope of this thesis.

4.4 Concentration Bounds for Fast-Mixing Markov Chains

In this section, we study the mixing condition on the Markov chain induced

by a given fixed policy in an MDP. Specifically we assume that the Markov chain

uniformly quickly forgets its past. For such chains, we present here an extension of

Bernstein’s inequality based on Samson (2000).

A time-homogeneous Markov chain is a sequence, X1:n
def
= X1, X2, . . . , Xn,

Xi ∈ X , for some measurable space X , with transition kernel P (X) ∈M(X ):

Xi+1 ∼ P (Xi). (4.9)

Consider the concentration of the average of the Markov process:

(X1, f(X1)), . . . , (Xn, f(Xn)), (4.10)

where f : X → [0, b] is a fixed measurable function. To arrive at a concentration

inequality, we need a characterization of how fast Xi forgets its past. Let P i(X) ∈

M(X ) be the i-step transition kernel:

Xi+k ∼ P i(Xk). (4.11)
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P i(X) can of course be defined in terms of P (X). Define upper-triangular matrix

Γn = (γij) ∈ Rn×n as:

γ2ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup(X,X′)∈X 2 ‖P j−i(X)− P j−i(X ′)‖TV if i < j

1 if i = j

0 if i > j

(4.12)

The operator norm of this matrix ‖Γn‖ w.r.t. the Euclidean distance, is a measure

of dependence for the random sequence X1, X2, . . . , Xn. For example with indepen-

dent Xi’s, we have Γn = I and ‖Γn‖ = 1. In general ‖Γn‖, which appears in our

concentration inequalities for dependent sequences, can grow with n.

We say that a time-homogeneous Markov chain uniformly quickly forgets its

past if:

τ = sup
n≥1
‖Γn‖2 < +∞. (4.13)

We refer to τ as the forgetting time of the chain. Conditions under which a

Markov chain uniformly quickly forgets its past are of major interest (Farahmand

and Szepesvári, 2011). Samson (2000) gives examples of such chains having

majorization condition, referred to as uniformly ergodic (Meyn and Tweedie, 2009).

Note that there are other cases when ‖Γn‖ is known to be independent of n. Most

notable, this holds when the Markov chain is contracting.

The following result from Farahmand and Szepesvári (2011) is a trivial

corollary of Theorem 2 of Samson (2000). Samson’s result is stated for empirical
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processes and can be considered as a generalization of Talagrand’s inequality to

dependent random variables.

Theorem 4.4 (Farahmand and Szepesvári, 2011). Let f be a measurable

function on X whose values lie in [0, b], X1:n ∼ Cn ∈ M(X n) be a homogeneous

Markov chain, taking values in X with forgetting time τ . Let Z = 1
n

∑n
i=1 f(Xi).

For all ε ≥ 0:

Pr
X1:n∼Cn

{
Z − E

X1:n∼Cn

[Z] ≥ ε

}
≤ exp

⎛
⎝− ε2 n

2bτ( E
X1:n∼Cn

[Z] + ε)

⎞
⎠ ,

Pr
X1:n∼Cn

{
E

X1:n∼Cn

[Z]− Z ≥ ε

}
≤ exp

⎛
⎝− ε2 n

2bτ E
X1:n∼Cn

[Z]

⎞
⎠ .

These bounds are similar to the concentration bounds with i.i.d. data, but the

“effective” sample size here is n/τ . We use these bounds when analysing Markov

chains in later chapters.
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CHAPTER 5
PAC-Bayesian Analysis

Since the introduction of PAC learning theorems, many commonly known

classes of learning problems have been studied for sample complexity and effi-

cient learning algorithms. This ranges form special classes of Boolean expres-

sions (Valiant, 1984) to linear classifiers and neural networks (Bartlett and Maass,

1995). There is also extensive literature on PAC learning in control problems in

Markovian Decision Processes (Fiechter, 1994; Kearns and Singh, 2002; Brafman

and Tennenholtz, 2003; Wiering and Schmidhuber, 1998; Strehl and Littman,

2005). The main drawback with most of these studies is that the bounds suggested

by PAC theorems are often loose and impractical, leading to highly conservative

learning algorithms.

The Bayesian approach to statistical learning, on the other hand, often times

provides tighter bounds and faster convergence for learning algorithms. This is

because one can incorporate domain knowledge into the learning algorithm (using

a prior distribution) to constrain and direct the learning process. This, of course,

comes at the expense of imposing the assumption of the correctness of the prior.

A general argument by the frequentist is that the loose bounds of PAC

learning is the direct result of the inherent complexity of the learning problem

when the assumption of the correctness of a prior is not enforced. Specifically,

PAC learning does not impose any assumptions on the distribution of the data
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other than the i.i.d. assumption 1 , whereas the Bayesian viewpoint assumes the

data is drawn from a distribution consistent with the prior. Therefore, bounds

and correctness results of the Bayesian viewpoint will not hold if the prior is not

correct.

The PAC-Bayesian approach, first introduced by McAllester (1999a) (extend-

ing the work of Shawe-Taylor and Williamson (1997)), combines the distribution-

free correctness of PAC theorems with faster convergence results of informed

Bayesian learning. This is achieved by removing the assumption of the correct-

ness of the prior and, instead, measuring the consistency of the prior with the

data. This is particularly useful as we can achieve uniform learning while having

the speedup and efficiency of the Bayesian approach. Empirical analysis shows

that model selection algorithms using these bounds are competitive with some

of the most popular learning algorithms such as AdaBoost and Support Vector

Machines (Germain et al., 2009).

The first attempt to provide uniform (distribution-independent) guarantees

under prior injection, was the introduction of the Bayesian Luckiness framework by

Shawe-Taylor and Williamson (1997). They place a prior on the hypothesis space

and then estimate the volume of this space that is consistent with the data 2 . To

do so, for each possible hypothesis h, defined on a geometric parameter space by

1 Independent and identically distributed (i.i.d.) training dataset, sampled ac-
cording to an unknown distribution.

2 They only consider uniform priors in their original work.
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the parameters w, they calculate the size of the ball around w that is consistent

with h on all possible labellings of a given set of samples. Now given the target

labellings on that sample set, they choose a w as the output that is consistent with

the labels and has the largest consistent ball around it. The size of the consistent

ball around a parameter value is connected to the margin of the classifiers.

Therefore, the mentioned algorithm would be an extension to the VC dimension

framework in which large margins are equivalent to lower VC classes. This can

also be explained in the structural risk minimization (SRM) framework that try

to balance the correctness with the complexity of the classifier. In essence, the

injection of the prior into the hypothesis space makes the large margin classifiers

more appealing, leading to bounds on the generalization error that are tighter

when the margins are large.

This chapter surveys recent PAC-Bayesian results and compares them to

previous bounds and methods in the original PAC learning theory. We then

study how PAC-Bayesian analysis extends to margin classifiers and general loss

functions.

5.1 PAC-Bayes Bounds for Stochastic Classifiers

The first PAC-Bayesian results started with a preliminary model selection

theorem, often times referred to as the “folk theorem” or the “Occam’s razor”. Here

we use the form introduced by McAllester (1999a). Let l(c, x) → [0, 1] be a loss

function that measures the correctness of the classifier c with respect the target
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concept c∗ on a data point x. For instance for 0-1 loss we have:

l(c, x) =

⎧⎪⎪⎨
⎪⎪⎩
0 c(x) = c∗(x)

1 c(x) �= c∗(x)

(5.1)

Let lD(c) (true loss) be the expected loss of c when the samples are drawn from

i.i.d. form D: lD(c) = E
X∼D

l(c,X). The empirical loss can be defined as lUD(c),

where UD is the uniform distribution on the sample set D. The empirical loss is

thus the empirical average of l(c, .) on the sample set D: lUD(c) =
∑

x∈D l(c, x)/|D|.

McAllester’s version of the folk theorem is as follows:

Theorem 5.1 (McAllester, 1999a). For any (prior) probability distribution ρ0

assigning non-zero probability to each concept in a countable concept class C, any

choice of distribution D on the sample space, any loss function l mapping to [0, 1],

and for any 0 < δ < 1, while sampling n instances from D:

Pr
D∼Dn

⎧⎨
⎩∀c ∈ C : lD(c) ≤ lUD(c) +

√
ln 1

ρ0(c)
+ ln 1

δ

2n

⎫⎬
⎭ ≥ 1− δ. (5.2)

The above theorem suggests an algorithm that would select a concept c that

minimizes the bound. This is a form of Structural Risk Minimization (SRM) when

the prior ρ0 encodes the complexity of the classifier.

Notice that this bound holds simultaneously for all concepts. One can use this

observation to extend this result to bound the loss function of a stochastic (Gibbs)

classifier. A Gibbs classifier is defined by a probability distribution ρ over the set

of concepts. Denoted by cρGibbs, the Gibbs classifier stochastically chooses a base

classifier c according to ρ and uses that to classify the query. The loss functions
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can therefore be defined as the expectation of the loss over ρ: lD(ρ) = E
c∼ρ

lD(c).

The PAC-Bayesian generalization of Theorem 5.1 for all posterior distributions ρ

can bound the loss of the Gibbs classifier:

Theorem 5.2 (McAllester, 1999b). For any (prior) probability distribution ρ0

over the concept class C, any choice of distribution D on the sample space, any loss

function l mapping to [0, 1], and for any 0 < δ < 1, while sampling n instances

from D:

Pr
D∼Dn

⎧⎨
⎩∀ρ ∈M(C) : lD(ρ) ≤ lUD(ρ) +

√
KL(ρ‖ρ0) + ln 1

δ
+ lnn+ 2

2n− 1

⎫⎬
⎭≥1 − δ, (5.3)

Here KL(ρ‖ρ0) is the Kullback-Leibler (KL) divergence, which measures the

difference between two distributions:

KL(ρ‖ρ0) def
= E

c∼ρ

[
ln

dρ(c)

dρ0(c)

]
, (5.4)

where dρ(c)
dρ0(c)

is the Radon–Nikodym derivative of ρ with respect to ρ0. The Radon–

Nikodym derivative can be substituted with the ratio of Probability Density

Functions (PDF) if they exist.

Theorem 5.2 bounds the true loss of any Gibbs classifier around its empirical

loss. The bound suggests an algorithm that, given a prior ρ0, would select a

distribution ρ over the concept class that minimizes the bound. This can be

thought of as the PAC-Bayesian posterior distribution (as opposed to the Bayesian

posterior). McAllester (1999b) finds the value of the bound for such (optimal)

posterior, for a given prior, and suggests a tractable posterior with a near optimal

bound.
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5.2 PAC-Bayes Bounds for Averaging Classifiers and Margins

The original PAC-Bayes bounds by McAllester are useful for Gibbs classifiers.

Most of the commonly used classifiers, however, are not stochastic. Averaging

classifiers, on the other hand, are more popular in learning algorithms (Germain

et al., 2009). An averaging classifier (or a voting classifier) is defined as:

cρAvg(x)
def
= sign(c̄ρ(x))

def
= sign( E

c∼ρ
c(x)), (5.5)

where c̄ρ is the weighted average vote. The voting classifier takes the popular vote

by taking the sign of c̄ρ.

Langford and Seeger (2001) used the PAC-Bayes bounds for Gibbs classifiers

to bound the error rate of averaging classifiers (later improved in Langford et al.

(2001)):

Theorem 5.3 (Langford et al., 2001). For any (prior) probability distribution

ρ0 over the concept class C, any choice of distribution D on the sample space, and

for any 0 < δ < 1, while sampling n instances from D:

Pr
D∼Dn

{
∀ρ ∈M(C), θ > 0 : (5.6)

l0D(c
ρ
Avg) ≤ lθUD(c

ρ
Avg) +O

(√
θ−2KL(ρ‖ρ0) lnn + lnn+ ln δ−1

n

)}
≥ 1− δ,

where we define the margin loss:

lγD(c
ρ
Avg) = Pr

X∼D
{c∗(X)c̄ρ(X) ≤ γ} . (5.7)

Here l0D(c
ρ
Avg) is the true error rate (the expected rate that the average vote c̄ρ

does not have the same sign as the target concept) and lθUD(c
ρ
Avg) is the empirical

55



percentage of cases that violate the θ margin. The more classifiers agree on the

correct class for x, the larger c∗(x)c̄ρ(x) will get. Intuitively, it means that if most

of the classifiers agree on the sample set (the margin is large and samples are far

from the decision boundary), we are expected to get tighter bounds for the true

error rate.

For any given ρ, the above bound could be minimized by some choice of θ.

So for any given prior ρ0, one can think of the optimal ρ and θ that minimize this

bound. However, finding such optimal selections could be intractable in general.

Even when classifiers are not averagers, one can often construct an averaging

classifier that is equivalent to the simple deterministic one. That is, for any

classifier c in a concept class C, one might be able to find a posterior ρ for which

cρAvg(·) = c(·). Having such posterior ρ, one can use the bounds on the averaging

classifier to get bounds on the original classifier c.

Herbrich and Graepel (2002) were the first to use the above observation to

bound the true error rate of linear classifiers with margins, using appropriate

choices for the ρ0 and ρ. Their bound was used on linear Support Vector Machines

(SVM). They show that an SVM is equivalent to an averaging classifier for which

they can get PAC-Bayesian bounds on the true error rate. Their bound, however,

did not scale well to high dimensions.

Going in the same direction, Langford and Shawe-Taylor (2002) provided

tighter and more practical bounds on the error rate based on the empirical margin

loss for any type of classifier with margin. These results are much tighter than the

original margin bounds in the SRM literature and scale to high dimensions. They
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show that for any linear classifier c with the weight vector w in the feature space

having margin γ, one can construct a posterior ρ so that an averaging classifier

with respect to ρ is equivalent to c (i.e. c(·) = cρAvg(·)). With careful choice of ρ0

and ρ for the PAC-Bayesian theorem, they bound the true error rate of cρAvg (same

as the true error rate for c) around the empirical margin loss. The resulting bound

is given by the following theorem:

Theorem 5.4 (Langford and Shawe-Taylor, 2002). For all averaging

classifiers cw with normalized weights w, any choice of distribution D on the

sample space, while sampling n instances from D:

Pr
D∼Dm

⎧⎨
⎩∀ε, w, γ : KL

(
lγUD(cw) + ε

∥∥∥l0D(cw)− ε) ≤− ln F̄
(

2F̄−1(ε)
γ

)
+ 2 ln m+1

δ

m

⎫⎬
⎭ ≥ 1−δ,

(5.8)

where KL(q‖p) = q ln q
p
+ (1 − q) ln 1−q

1−p
for scalars p and q, and we define

F̄ (x) = 1−
∫ x

−∞
1√
2π
e−x2/2dx.

One can optimize the above bound by choosing an appropriate value for γ.

Langford (2005) introduced a similar bound and suggested techniques to optimize

it with respect to the choice of margin and posterior parameters.

5.3 Tighter Bounds for General Loss Functions

The connection between the error rate of stochastic classifiers and the

averaging ones usually come in the form of the following upper bound (Langford

and Shawe-Taylor, 2002):

l0D(c
ρ
Avg) ≤ 2l0D(c

ρ
Gibbs) (5.9)
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For instance for a uniform ρ, for the averaging classifier to err, at least half of the

base classifiers should err, resulting in the error rate of no less than 1/2 for the

Gibbs classifier.

This bound is not tight for classifiers with smaller margins and small variance

in the margin size across the Gibbs samples (Germain et al., 2006). In the extreme

case, if all the base classifiers have the same error rate, then the averaging classifier

should have the same error rate as the Gibbs classifier. This bound is thus loose

for classifiers produced by bagging (Breiman, 1996) or boosting (Freund and

Schapire, 1995).

One can get tighter bounds for such classifiers by taking into account higher

moments of the error rates. For example, if the variance on the error rate is small,

then the bound on the error rate of the averaging classifier should be tighter.

Germain et al. (2006) suggested a method to use the Taylor expansion of loss

functions to get tighter bounds on the error rate of any convex combination of

classifiers. Let Wρ(x) be the fraction of binary classifiers under ρ that err for x:

Wρ(x) = Pr
c∼ρ
{c(x) �= c∗(x)} (5.10)

Loss functions for averaging classifiers can usually be expressed in terms of Wρ.

For instance for 0-1 loss, one can use the indicator that Wρ is bigger than 1/2. The
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0-1 loss can be thought of as the limit for sigmoid or tanh loss:

l0D(c
ρ
Avg) = Pr

X∼D
{Wρ(X) > 1/2} (5.11)

= E
X∼D

I{Wρ(X)>1/2} (5.12)

= E
X∼D

lim
β→∞

1

2
(1 + tanh(β[2Wρ(X)− 1])). (5.13)

For many loss fucntions ζ (including tanh, sigmoid and exponential) we can

expand the function using the Taylor series around Wρ(x) = 1/2:

ζD(c
ρ
Avg) = E

X∼D
ζρ(X) (5.14)

= E
X∼D

1

2
(1 + f(2Wρ(X)− 1)) (5.15)

= E
X∼D

1

2
+

1

2

∞∑
k=1

g(k)(2Wρ(X)− 1)k. (5.16)

Germain et al. (2006) connect the above expansion to the moments of the

margin for the Gibbs classifier. They construct a binary classifier based on the

Taylor expansion and then use the PAC-Bayesian bound of Theorem 5.2 to get a

tighter bound on the loss of the averaging classifier. Defining K and K̄ to be:

K =

∞∑
k=1

|g(k)|, (5.17)

K̄ =
1

K

∞∑
k=1

|g(k)| k. (5.18)

We have the following bound:

Theorem 5.5 (Germain et al., 2006). For any choice of (prior) distribution ρ0

over the hypothesis space C, any loss function ζ defined by Equation 5.14, K and

K̄ defined by Equation 5.17 and Equation 5.18, and any choice of δ ∈ (0, 1], while
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sampling n instances from sampling distribution D:

Pr
D∼Dn

{
∀Q ∈ M(C) : KL

(
1

K

[
ζUD(c

ρ
Avg)−

1

2

]
+

1

2

∥∥∥∥∥ 1

K

[
ζD(c

ρ
Avg)−

1

2

]
+

1

2

)

≤ 1

n

[
K̄ . KL(ρ‖ρ0) + ln

n+ 1

δ

]}
≥ 1− δ.

(5.19)

The value for K is small (single digit) for most of the loss functions used in

machine learning algorithms. Therefore, the above bound is tight on averaging

classifiers that are based on low-margin “weak learners”, such as Adaboost, whereas

the bounds based only on the first moment of the margin are impractical and

loose (Germain et al., 2006).

The distributions ρ0 and ρ can be chosen based on the problem at hand.

Germain et al. (2006) used a uniform prior ρ0 on a discretized hypothesis space of

linear classifiers, and used it for boosting with sigmoid and exponential loss. The

posterior is then the one specified by the boosting algorithm. They show that their

bound closely follow the test set error rates.

5.4 PAC-Bayes and Informed Priors

The bound on the error rate of margin classifiers provided by Langford and

Shawe-Taylor (2002) use an isotropic Gaussian N (0, I) around the origin as the

prior over the normalized hypothesis parameters. Intuitively this prior enforces

a complexity penalty for the set of hypothesis with large parameter values,

encouraging classification models that are “smoother”. The posterior would be the
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same as the prior with the mean moved towards the parameter of the hypothesis in

question.

This Gaussian prior, however, is not generally informative. Ambroladze et al.

(2006) proposed an algorithm that would learn an informative prior based on a

small portion of the training set and then compute the bound on the reminder

of the examples relative to that prior. They first move the mean of the Gaussian

towards an empirical estimate of the target parameters based on a small portion of

the training data. They use this estimate instead of the isotropic Gaussian to get

tighter bounds on the error rate.

5.5 Applications of PAC-Bayesian Analysis

PAC-Bayesian analysis has been mostly applied to supervised learning prob-

lems. The early analysis started with Gibbs classifiers (McAllester, 1999b). Later

work have focused on deterministic margin bounds (Langford and Shawe-Taylor,

2002) and extensions to structured-prediction problems (London et al., 2013).

More recently PAC-Bayesian framework have been used to analyse regularization

techniques such as dropouts in neural networks (McAllester, 2013).

The application of PAC-Bayesian framework with sequential data in control

problems have been limited to the analysis with martingales and bounds in

finite action bandits (Seldin et al., 2011b,a, 2012). Chapter 6 includes our novel

contributions in the application of PAC-Bayesian analysis to more general RL

frameworks.
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CHAPTER 6
PAC-Bayesian Reinforcement Learning

In this chapter, we derive PAC-Bayesian bounds on the approximation error

in the value function of stochastic policies for reinforcement learning on MDPs.

We start by a bound on model-based RL where a prior distribution is given on

the space of possible models in a finite state-space. We then introduce bounds

with model-free RL, where a prior is given on the space of value functions. In both

cases, the bound depends both on an empirical estimate and a measure of distance

between the stochastic policy and the one imposed by the prior distribution.

We present empirical results where model-selection is performed based on these

bounds, and show that PAC-Bayesian bounds follow Bayesian policies when the

prior is informative and mimic the PAC policies when the prior is not consistent

with the data. This allows us to adaptively balance between the distribution-free

correctness of PAC and the data-efficiency of Bayesian inference.

6.1 Model-Based PAC-Bayesian RL in Finite MDPs

In model-based RL, one aims to estimate the transition and reward functions

and then act optimally according to the estimated models. In finite MDPs,

there are a finite number of parameters to estimate: The transition probabilities

(parameters of multinomial distribution) and the average rewards. PAC methods

use the empirical average for their estimated model along with frequentist bounds.

Bayesian methods use the Bayesian posterior to estimate the model. This section

62



provides a bound that suggests an adaptive method to choose a stochastic estimate

between these two extremes, which is both data-efficient and has guaranteed

performance.

In this section, we assume that the reward model is known and we only

need to estimate the transition parameters. In practice, estimates of the reward

model converge much faster to the correct values, resulting in small errors in the

value prediction. Nevertheless, once can extend the same analysis using bounds

and prior distributions over the reward parameters. We avoid the analysis of the

reward estimation to simplify the derivations.

Assuming that the reward model is known, one can build empirical models of

the transition dynamics by gathering sample transitions, denoted by D, and taking

the empirical average. For finite MDPs, we assume state s is an integer between 1

and |S|, and action a is an integer between 1 and |A|. Let this empirical average

model be a multinomial T̂ (s, a) approximation T (s, a). We use the tensor notation

T̂s,a,s′ and Ts,a,s′ to represent the parameters of these multinomial:

Ts,a,s′
def
= Pr

S′∼T (s,a)
{S ′ = s′} , (6.1)

T̂s,a,s′
def
= ns,a,s′/ns,a, (6.2)

where ns,a,s′ and ns,a are the number of corresponding transitions and samples.

Note that T̂s,a and Ts,a are vectors of parameters for the corresponding multino-

mial distributions.

Trivially, E T̂ = T. The empirical value function, denoted by Q̂, is defined

to be the value function on an MDP with the empirical transition model. As one
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observes more and more sample trajectories on the MDP, the empirical model

gets increasingly more accurate, and so will the empirical value function. Different

forms of the following lemma, connecting the error rates on T̂ and Q̂, are used in

many of the PAC-MDP results:

Lemma 6.1 (Strehl and Littman, 2005). There is a constant k ≥ (1 − γ)2/γ,

such that if:

∀s, a : ‖T̂s,a −Ts,a‖1 ≤ kε, (6.3)

then the worst case error on the state–action value function is bounded by ε for all

policies:

∀π : ‖Q̂π −Qπ‖∞ ≤ ε. (6.4)

As a consequence of the above lemma, one can act near-optimally in the

part of the MDP for which we have gathered enough samples to have a good

empirical estimate of the transition model. PAC-MDP methods explicitly (Kearns

and Singh, 2002) or implicitly (Brafman and Tennenholtz, 2003) use that fact to

exploit the knowledge on the model as long as they are in the “known” part of the

state-space. The downside of these methods is that without further assumptions

on the model, it will take a large number of sample transitions to get a good

empirical estimate of the transition model.

The Bayesian approach to modeling the transition dynamics, on the other

hand, starts with a prior distribution over the transition probability and then

marginalizes this prior over the data to get a posterior distribution. This is

usually done by assuming independent Dirichlet distributions over the transition

probabilities, with some initial count vector α, and then adding up the observed
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counts to this initial vector to get the conjugate posterior (Duff, 2002). The initial

α-vector encodes the prior knowledge on the transition probabilities, and larger

initial values further bias the empirical observation towards the initial belief.

If a strong prior is close to the true values, the Bayesian posterior will be more

accurate than the empirical point estimate. However, a strong prior peaked on

the wrong values will bias the Bayesian model away from the correct probabilities.

Therefore, the Bayesian posterior might not provide the optimal estimate of the

model parameters. A “good posterior” distribution might be somewhere between

the empirical point estimate and the Bayesian posterior.

To develop a PAC-Bayesian bound we need to develop a notion of stochastic

policy similar to the Gibbs classifier. In this section, we define a Gibbs policy to

follow this process: a deterministic policy is sampled from a given distribution, and

then that policy is used to interact with the environment. This is different form of

stochastic policy than is usually seen in the RL literature. When a complete policy

is sampled, the actions on different states might be correlated, and the action

selection is the same when observing repeated states in a trajectory.

The following theorem is our first PAC-Bayesian bound on the prediction error

of the value function when using a Gibbs policy based on an arbitrary posterior

distribution ρ over the transition parameters. We assume that we are given prior

knowledge in form of a prior distribution ρ0 on the transition parameters. The

theorem provides a simultaneous bound over all posterior distributions and thus

can be used for model-selection based on the posterior distribution.
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Theorem 6.2. Let π∗
T̃

be a deterministic optimal policy with respect to the MDP

with transition tensor T̃, and define ΔD
T̃

def
= ‖Q̂π∗

T̃ − Qπ∗
T̃‖2∞. Let k be the constant

in Lemma 6.1. For any prior distribution ρ0 on the transition tensor space T , any

i.i.d. sampling distribution over transitions D ∼ Dn, for any 0 < δ < 1:

Pr
D∼Dn

{
∀ρ ∈M(T ) : E

T̃∼ρ
ΔD

T̃
≤

KL(ρ‖ρ0)− ln δ + |S| ln 2 + ln |S|+ lnnmin

(nmin − 1)k2/2

}
≥ 1− δ, (6.5)

where nmin = mins,a ns,a.

The above theorem (proved in Section 6.5) provides a high-probability lower

bound on the expectation of the true value function when the policy is taken to be

optimal according to the sampled model from the posterior. Simplifying the bound

by taking the square root of the sides, we have that for all state-action pairs (s, a):

E
T̃∼ρ

Qπ∗
T′ (s, a) ≥ E

T̃∼ρ
Q̂π∗

T′ (s, a)− Õ

⎛
⎝
√

KL(ρ‖ρ0) + |S|
nmin

⎞
⎠ . (6.6)

This lower bound suggests a stochastic model-selection method in which one

searches in the space of posteriors to maximize the bound. Notice that there are

two elements to the above bound. One is the PAC part of the bound that suggests

the selection of models with high empirical value functions for their optimal policy.

There is also a penalty term (or a regularization term) that penalizes distributions

that are far from the prior (the Bayesian side of the bound).
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6.2 Margin for Deterministic Policies in Finite MDPs

One could apply Theorem 6.2 with any choice ρ. Generally, this will result in

a bound on the value of a stochastic policy. However, if the optimal policy is the

same for all of the possible samples from the posterior, then we will get a bound

for that particular deterministic policy.

We define the support of deterministic policy π, denoted by Tπ, to be the set

of transition models for which π is an optimal policy. Putting all the posterior

probability on Tπ will result in a tighter bound for the value of the policy π. The

tightest bound occurs when ρ is a scaled version of ρ0 summing to 1 over Tπ, that

is when we have:

ρ(T̃) =

⎧⎪⎪⎨
⎪⎪⎩

ρ0(T̃)
ρ0(Tπ) T̃ ∈ Tπ

0 T̃ /∈ Tπ
(6.7)

In that case, the KL divergence is KL(ρ‖ρ0) = − ln ρ0(Tπ), and the high-

probability bound will be:

Qπ ≥ Q̂π − Õ

⎛
⎝
√
|S| − ln ρ0(Tπ)

nmin

⎞
⎠ . (6.8)

Intuitively, we get tighter bounds for policies that have larger empirical values and

higher prior probabilities supporting them.

Finding ρ0(Tπ) might not be computationally tractable. Therefore, we define

a notion of margin for transition functions and policies and use it to get tractable

bounds. The margin of a transition tensor T̃, denoted by θT′, is the maximum

distance we can move away from T̃ such that the optimal policy does not change
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(assuming the deterministic optimal policy is unique):

∀T̃′ :
{
∀s ∈ S, a ∈ A : ‖T̃(s, a, .)− T̃′(s, a, .)‖1 ≤ θT̃

}
⇒ π∗

T̃′ = π∗
T̃
. (6.9)

The margin defines a hypercube around T̃ for which the optimal policy does not

change. In cases where the support set of a policy is difficult to find, one can

use this hypercube to get a reasonable bound for the true value function of the

corresponding policy. In that case, we would define the posterior to be the scaled

prior defined only on the margin hypercube. The idea behind this method is

similar to that of the Luckiness framework (Shawe-Taylor and Williamson, 1997)

and large-margin classifiers (Herbrich and Graepel, 2002; Langford and Shawe-

Taylor, 2002). This shows that the idea of maximizing margins can be applied to

control problems as well as classification and regression tasks.

To find the margin of any given T̃, if we know the value of the second best

policy, we can calculate its regret according to T̃. This will be the smallest regret

ηmin (regret gap). Using Lemma 6.1, we can conclude that if for all s and a,

‖T̃(s, a, .) − T̃′(s, a, .)‖1 ≤ kηmin/2, then the value of the best and second best

policies can change by at most ηmin/2, and thus the optimal policy will not change.

Therefore, θT̃ ≥ kηmin/2. One can then define the posterior on the transitions

inside the margin to get a bound for the value function.

6.3 Model-Free PAC-Bayesian RL in Finite MDPs

In this section we introduce a PAC-Bayesian bound for model-free reinforce-

ment learning on discrete state-spaces. This time we assume that we are given a

prior distribution on the space of value functions, rather than on transition models.
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This prior encodes an initial belief about the optimal value function for a given

RL domain. Such method could be useful, for example, in the context of transfer

learning, where one has learned a value function in one environment and then uses

that as the prior belief on a similar domain.

Recall the optimal Bellman operator T∗ applied to the action-value Q func-

tions. In most cases, we do not have access to the Bellman optimality operator.

When we only have access to a sample set D collected on the RL domain, we can

define the empirical Bellman optimality operator T̂∗ to be:

(T̂∗Q)(s, a) =
1

ns,a

∑
(s,a,s′,r)∈D

(
r + γmax

a′
Q(s′, a′)

)
, (6.10)

Note that E
D∼Dn

[
T̂
∗Q
]

= T
∗Q (since T̂∗ implicitly applies a projection by

averaging). We consider only Q functions that are bounded by the maximum

possible value Vmax. Therefore all the T∗Q and T̂∗Q values we could observe are

bounded by Vmax. If the sampling of transitions (or equivalently sampling of state–

action pairs) are i.i.d., one can use Hoeffding’s inequality to bound the difference

between the empirical and true Bellman operators for any fixed state–action pair:

Pr
D∼D

{∣∣∣T̂Q(s, a)− TQ(s, a)
∣∣∣ > ε

}
≤ 2e−2ns,aε2/V 2

max . (6.11)

Q-learning (Sutton and Barto, 1998) and its derivations with function ap-

proximation (Sutton et al., 2000), and also batch methods such as LSTD (Boyan,

2002), often aim to minimize the empirical (projected) TD error. We argue that it

might be better to choose a loss function that is not only capturing the empirical

Bellman error, but also penalizes the structural risk of the model. We aim to

69



minimize a PAC-Bayesian upper bound on the prediction error of the action-value

function, which in turns controls the decision-theoretic “complexity” of the chosen

posterior model.

The following theorem (proved in Section 6.5) is our first PAC-Bayesian

bound for model-free batch RL on finite state-spaces:

Theorem 6.3. Let ΔD
Q =

(
‖Q−Q∗‖∞ −

‖Q−T̂∗Q‖∞
1−γ

)2

+

. For any prior distribu-

tions ρ0 over a measurable space of value functions Q with range in [0, Vmax], any

i.i.d. sampling distribution over transitions D ∼ Dn:

Pr
D∼Dn

{
∀ρ : E

Q∼ρ
ΔD

Q ≤
KL(ρ‖ρ0)− ln δ + ln |S|+ ln |A|+ ln(2nmin)

2(nmin − 1)(1− γ)2/V 2
max

}
> 1− δ. (6.12)

We can simplify the bound of Theorem 6.3 by taking the square root of the

sides and rearranging the terms, and get a high-probability upper bound on the

expected worst-case value prediction error:

E
Q∼ρ
‖Q−Q∗‖∞ ≤

E
Q∼ρ

∥∥∥Q− T̂
∗Q
∥∥∥
∞

1− γ + Õ

⎛
⎝
√

KL(ρ‖ρ0)
nmin

⎞
⎠ . (6.13)

This suggests a model-selection method in which one would search for a posterior

ρ to minimize the above bound. The PAC side of the bound guides this model-

selection method to look for posteriors with smaller empirical TD error. The

Bayesian part, on the other hand, penalizes the selection of posteriors that are far

from the prior distribution.

One can use general forms of priors that would impose smoothness or sparsity

for this model-selection technique. In that sense, this method would act as a

regularization technique that penalizes complex and irregular value functions.
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The idea of regularization in RL with function approximation is not new to this

work (Kolter and Ng, 2009b; Farahmand et al., 2009b,a). This bound, however,

is more general, as it could incorporate not only smoothness constraints, but also

other forms of prior knowledge into the learning process.

6.4 Model-Free PAC-Bayesian RL in Continuous Space MDPs

The PAC-Bayesian bounds presented the previous sections are on finite state-

spaces and require an i.i.d. sampling strategy that visits all states and applies all

actions similarly often (the bounds depend on the minimum of the number of visits

nmin). These bounds, however, are worst-case simultaneous bounds on all states

and actions, and can be used in off-policy setting. Specifically, the bounds are on

the optimal value function or the value of near-optimal policies, using a dataset

collected from any i.i.d. distribution.

In this section we introduce a PAC-Bayesian bound in continuous state

and action MDPs, using trajectories with dependent states and actions. This

generalization, of course, comes with some assumptions and limitations. In this

section, we only seek to evaluate a fixed policy (value prediction), rather than

finding optimal values or policies. We also require the MDP to mix fast under the

given policy and have a stationary distribution. Unlike the worst-case bounds of

previous sections, the bound we obtain here is with respect to the �2 norm under

stationary distribution of the policy.

Consider an MDP with (possibly infinite) state-space S, and a fixed policy

π whose stationary distribution ν(π) over the states exists. Fixing the policy, we

collect a trajectory of states, actions and rewards on the MDP: S1:n+1, A1:n, R1:n.
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We define the following:

Ĵπ
TD(V )

def
=

1

n

n∑
i=1

(Ri + γV (Si+1)− V (Si))
2, (6.14)

Jπ
TD(V )

def
= E

S∼ν(π)
A∼π(S)

R∼R(S,A)
S′∼T (S,A)

[
(R + γV (S ′)− V (S))2

]
, (6.15)

Λπ
TD(V )

def
= E

S∼ν(π)
Var

A∼π(S)
R∼R(S,A)
S′∼T (S,A)

[R + γV (S ′)] . (6.16)

Ĵπ
TD(V ) is the average squared TD-error. Jπ

TD(V ) and Λπ
TD(V ) are the second norm

and the variance of the TD-error under the stationary distribution.

To arrive at a bound linking Ĵπ
TD(V ) and Jπ

TD(V ), we need to use the theory

of fast-mixing Markov chains, discussed in Section 4.4. Consider the Markov chain

X1:n consisting of collected transitions:

Xi
def
= (Si, Ai, Ri, Si+1). (6.17)

We consider the chains that uniformly quickly forget their past (with a finite

forgetting time τ). For such chains, we can link the empirical squared TD-error to

its expectation under the stationary distribution:

Lemma 6.4. Let D = Xi:1 be the Markov chain of transitions under a fixed

policy π, defined in Equation 6.17, with distribution Cπ
n and forgetting time τ ,

and assume π has a stationary distribution ν(π). For any measurable function V

bounded by Vmax, and any 0 < δ < 1:

Pr
D∼Cπ

n

{
Jπ
TD(V )− Ĵπ

TD(V ) ≤ V 2
max

√
2τ

n
ln

1

δ

}
≥ 1− δ. (6.18)
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Proof of Lemma 6.4. From the definition of stationary distribution and factorizing

the expectations, we have that:

E
D∼Cπ

n

[
Ĵπ
TD(V )

]
= Jπ

TD(V ). (6.19)

Each term in Jπ
TD is bounded by V 2

max. combining the above with the concentration

inequality of Theorem 4.4, we obtain the bound of the Lemma.

One can use the bound of Lemma 6.4 along with the change of measure

inequality and variance decomposition techniques to obtain the following PAC-

Bayesian theorem on the prediction error a Gibbs value estimator. The proof is

provided in Section 6.5.

Theorem 6.5. Fix a measurable set V of real-valued, measurable functions with

domain X , which are bounded by 0 and Vmax. Assume the conditions and notations

of Lemma 6.4. Fix any prior measure ρ0 over V. Then, for all 0 < δ < 1:

Pr
X1:n∼Cπ

n

{
∀ρ ∈M(V) : E

V∼ρ

[
‖V − V π‖2ν(π)

]
≤

1

(1− γ)2

(
E

V∼ρ
[Jπ

TD(V )] +

√
KL(ρ‖ρ0) + ln n

δ

(n− 1)/2τV 4
max

− E
V∼ρ

[Λπ
TD(V )]

)}
> 1− δ.

(6.20)

Theorem 6.5 bounds the expected error of approximating V π with a value

function drawn randomly from some distribution ρ. Note that in this theorem, ρ0

must be a fixed distribution, chosen a priori (i.e. prior distribution), but ρ can be

chosen in a data dependent manner (i.e., it can be a “posterior” distribution).
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Notice that there are three elements to the above bound (right hand side).

The first term is the empirical component of the bound, which enforces the

selection of solutions with smaller empirical Bellman residuals. The second term is

the Bayesian component of the bound, which penalizes distributions that are far

from the prior. The third term corrects for the variance in the return at each state.

If we can empirically estimate the right hand side of the above inequality,

then we can use the bound in an algorithm. For example, we can derive a PAC-

Bayesian model-selection algorithm that searches in the space of posteriors μ so as

to minimize the upper bound.

6.4.1 Linearly parametrized classes of functions

In this section, we study the application of Theorem 6.5 to the class of linearly

parametrized functions with bounded parameters,

VLin =
{
Vθ(s)

def
= θTϕ(s) : θ ∈ R

D, ‖θ‖ ≤ Vmax/Fmax

}
, (6.21)

where ϕ(·) : S → RD is the feature vector of a state, and Fmax is the finite bound

over the feature norm:

Fmax
def
= sup

s∈S
‖ϕ(s)‖ <∞. (6.22)

In this case, the prior and posterior measures ρ0 and ρ can be put on the ball

{θ : ‖θ‖ ≤ Vmax/Fmax}. A natural choice for the prior would be one that puts

higher probability for smaller �2 norms , thus encouraging smoothness in the

value function, or one that penalizes the �1 or �0 norms to enforce sparsity in the

parameters as a means of feature selection.
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Let us now turn to the estimation of the variance term. Assume that the

policy is deterministic. With that assumption, the reward for each transition will

be independent of the next state. We thus get:

Var
R∼R(S,π(S))
S′∼T (S,π(S))

[R + γV (S ′)] = Var
R∼R(S,π(S))

[R] + γ2 Var
S′∼T (S,π(S))

[V (S ′)] . (6.23)

Now with linear value functions V (s) = Vθ(s) = θ
ϕ(s), we have:

Var
S′∼T (S,π(S))

[V (S ′)] = θT Cov
S′∼T (S,π(S))

[ϕ(S ′)] θ. (6.24)

Defining:

σ2
R = E

S∼ν(π)

[
Var

R∼R(S,π(S))
[R]

]
(6.25)

Σϕ = E
S∼ν(π)

[
Cov

S′∼T (S,π(S))
[ϕ(S ′)]

]
, (6.26)

we get the expected variance term:

Λπ
TD(V ) = σ2

R + γ2θ
Σϕθ . (6.27)

6.4.2 Estimating the constants

In some cases the terms σ2
R and Σϕ are known (e.g., σ2

R = 0 when the rewards

are a deterministic function of the start state and action, and Σϕ = 0 when the

dynamics are deterministic). An alternative is to estimate these terms empirically.

This can be done by, e.g., double sampling of next states (assuming one has
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access to a generative model, or if one can reset the state1 ). If such estimates are

generated based on finite sample sets, then we will need to add extra deviation

terms to the bound of Theorem 6.5.

For simplicity, we assume that these terms are either known or can be

estimated on a separate dataset of many transitions. Examples of such cases are

studied in the empirical results.

The estimation of the forgetting constant τ is the subject of active re-

search (Farahmand and Szepesvári, 2011). There are explicit upper bounds for

special cases. For example, τ = 1 for i.i.d. samples. The forgetting constant can

also be estimated from data if we have access to a generative model.

6.5 Proofs of PAC-Bayesian Bounds

The proof of the stated PAC-Bayesian bounds all rely on the following lemma,

the change of measure inequality, originated by McAllester (1999b), and extended

to general measures by Banerjee (2006):

Lemma 6.6 (Banerjee, 2006). For any measurable function f(h) on H, and for

any distributions ρ0, and ρ1 over H:

E
h∼ρ1

f(h) ≤ KL(ρ1‖ρ0) + ln E
h∼ρ0

ef(h). (6.28)

1 Alternately, one can co-estimate the mean and variance terms (Sutton et al.,
2009), keeping a current guess of them and updating both estimates as new transi-
tions are observed.
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6.5.1 Proof of Theorem 6.2

We use the following intermediate lemma for the proof:

Lemma 6.7. Using the notation of Theorem 6.2:

Pr
D∼Dn

{
E

T̃∼ρ0

[
e

1
2
(nmin−1)k2ΔD

T̃

]
≥ |S|2

|S|nmin

δ

}
≤ δ. (6.29)

Proof of Lemma 6.7. For a fix T̃, let as = π∗
T̃
(s). We have:

Pr
D∼Dn

{
ΔD

T̃
≥ ε
}
≤

S∑
s=1

Pr
D∼Dn

{
‖T̃(s, as, .)−T(s, as, .)‖1 > k

√
ε
}

(6.30)

≤
S∑

s=1

(
2|S|e−

1
2
ns,ask

2ε
)

(6.31)

≤ |S|2|S|e− 1
2
nmink

2ε. (6.32)

Line 6.30 is by Lemma 6.1. Line 6.31 is a concentration inequality for multinomi-

als (Weissman et al., 2003). Using the above, we have thus for all T̃:

E
D∼Dn

[
e

1
2
(nmin−1)k2ΔD

T̃

]
= 1 +

∫ ∞

1

Pr
D∼Dn

{
e

1
2
(nmin−1)k2ΔD

T̃ ≥ t
}
dt (6.33)

= 1 +

∫ ∞

0

Pr
D∼Dn

{
1

2
(nmin − 1)k2ΔD

T̃
≥ t

}
etdt (6.34)

= 1 +

∫ ∞

0

Pr
D∼Dn

{
ΔD

T̃
≥ 2t

(nmin − 1)k2

}
etdt (6.35)

≤ 1 +

∫ ∞

0

|S|2|S|e−
1
2
nmink

2 2t
(nmin−1)k2 etdt (6.36)

= 1 + |S|2|S|(nmin − 1) (6.37)

≤ |S|2|S|nmin. (6.38)

Line 6.34 changes the variable of integration, and in Line 6.36 we use the inequal-

ity of Equation 6.32.
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To prove Lemma 6.7 we apply Markov’s inequality, and then swap the

expectations (since ρ0 is a fixed “prior” and hence independent from D):

Pr
D∼Dn

{
E

T̃∼ρ0

[
e

1
2
(nmin−1)k2ΔD

T̃

]
≥ |S|2

|S|nmin

δ

}
≤

E
D∼Dn

[
E

T̃∼ρ0

[
e

1
2
(nmin−1)k2ΔD

T̃

]]
|S|2|S|nmin/δ

(6.39)

≤
E

T̃∼ρ0

[
E

D∼Dn

[
e

1
2
(nmin−1)k2ΔD

T̃

]]
|S|2|S|nmin/δ

(6.40)

≤ δ. (6.41)

This concludes the proof of the lemma.

Proof of Theorem 6.2. Lemma 6.7 and Lemma 6.6 together imply Therorem 6.2 by

using:

fD(T̃) =
1

2
(nmin − 1)k2ΔD

T̃
, (6.42)

on the hypothesis space T :

Pr
D∼Dn

{
∃ρ ∈M(T ) : E

T̃∼ρ
ΔD

T̃
≥ KL(ρ‖ρ0)− ln δ + |S| ln 2 + ln |S|+ lnnmin

(nmin − 1)k2/2

}

= Pr
D∼Dn

{
∃ρ ∈M(T ) : E

T̃∼ρ

(nmin − 1)k2ΔD
T̃

2
≥ KL(ρ‖ρ0) + ln

|S|2|S|nmin

δ

}
(6.43)

= Pr
D∼Dn

{
∃ρ ∈M(T ) : E

T̃∼ρ
fD(T̃)−KL(ρ‖ρ0) ≥ ln

|S|2|S|nmin

δ

}
(6.44)

≤ Pr
D∼Dn

{
ln E

T̃∼ρ0

efD(T̃) ≥ ln
|S|2|S|nmin

δ

}
≤ δ (6.45)
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6.5.2 Proof of Theorem 6.3

We first visit the following simple lemma linking the Bellman error and error

in the value function:

Lemma 6.8 (Williams and Baird, 1993). For any Q, and the optimal action

value function Q∗:

‖Q−Q∗‖∞ ≤
1

1− γ ‖Q− T
∗Q‖∞ (6.46)

Proof of Lemma 6.8. Since T∗ is a contraction with respect to the infinity norm

and Q∗ is its fixed point, we have:

‖Q−Q∗‖∞ = ‖Q− T
∗Q + T

∗Q− T
∗Q∗‖∞ (6.47)

≤ ‖Q− T
∗Q‖∞ + ‖T∗Q− T

∗Q∗‖∞ (6.48)

≤ ‖Q− T
∗Q‖∞ + γ‖Q−Q∗‖∞, (6.49)

which proves the lemma by rearrangement.

Lemma 6.9. Using the notation of Theorem 6.3, for any fixed prior ρ0 over the

space of value functions:

Pr
D∼Dn

{
E

Q∼ρ0

[
e2(nmin−1)(1−γ)2ΔD

Q/V 2
max

]
≤ 2|S||A|nmin

δ

}
≤ 1− δ. (6.50)
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Proof of Lemma 6.9. Fix an action value function Q. We have for any ε > 0:

Pr
D∼Dn

{
ΔD

Q ≥ ε
}
= Pr

D∼Dn

{
‖Q−Q∗‖∞ ≥

√
ε+
∥∥∥Q− T̂

∗Q
∥∥∥
∞
/(1− γ)

}
(6.51)

≤ Pr
D∼Dn

{
‖Q− T

∗Q‖∞ ≥ (1− γ)
(√

ε+
∥∥∥Q− T̂

∗Q
∥∥∥
∞
/(1− γ)

)}
(6.52)

≤
∑
s,a

Pr
D∼Dn

{
|Q(s, a)− T

∗Q(s, a)| ≥ (1− γ)
√
ε+
∥∥∥Q− T̂

∗Q
∥∥∥
∞

}
(6.53)

≤
∑
s,a

Pr
D∼Dn

{ ∣∣∣Q(s, a)− T̂
∗Q(s, a)

∣∣∣ + ∣∣∣T̂∗Q(s, a)− T
∗Q(s, a)

∣∣∣
≥ (1− γ)

√
ε+
∥∥∥Q− T̂

∗Q
∥∥∥
∞

}
(6.54)

≤
∑
s,a

Pr
D∼Dn

{∣∣∣T̂∗Q(s, a)− T
∗Q(s, a)

∣∣∣ ≥ (1− γ)
√
ε
}

(6.55)

≤
∑
s,a

2e−2ns,a(1−γ)2ε/V 2
max (6.56)

≤ 2|S||A|e−2nmin(1−γ)2ε/V 2
max. (6.57)

Line 6.52 follows from Lemma 6.8. Line 6.53 is by the union bound. Line 6.55 is

by the definition of infinity norm. Last derivation is by Hoeffding inequality of

Line 6.11. The above derivation bounds the CDF of ΔD
Q. Thus for any Q:

E
D∼Dn

[
e2(nmin−1)(1−γ)2ΔD

Q/V 2
max

]
= 1 +

∫ ∞

1

Pr
D∼Dn

{
e2(nmin−1)(1−γ)2ΔD

Q/V 2
max ≥ t

}
dt

= 1 +

∫ ∞

0

Pr
D∼Dn

{
2(nmin − 1)(1− γ)2ΔD

Q/V
2
max ≥ t

}
etdt

= 1 +

∫ ∞

0

Pr
D∼Dn

{
ΔD

Q ≥
V 2
maxt

2(nmin − 1)(1− γ)2

}
etdt

≤ 1 +

∫ ∞

0

2|S||A|e−nmint/(nmin−1)etdt (6.58)

= 1 + 2|S||A|(nmin − 1) (6.59)

≤ 2|S||A|nmin. (6.60)
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Using Markov’s inequality, swapping the order of expectations (since ρ0 is a “prior”

independent of D), and using the above derivation we get:

Pr
D∼Dn

{
E

Q∼ρ0

[
e2(nmin−1)(1−γ)2ΔD

Q/V 2
max

]
≥ 2|S||A|nmin

δ

}
(6.61)

≤
E

D∼Dn

[
E

Q∼ρ0

[
e2(nmin−1)(1−γ)2ΔD

Q/V 2
max

]]
2|S||A|nmin/δ

(6.62)

≤
E

Q∼ρ0

[
E

D∼Dn

[
e2(nmin−1)(1−γ)2ΔD

Q/V 2
max

]]
2|S||A|nmin/δ

≤ δ (6.63)

This concludes the proof of Lemma 6.9.

Proof of Theorem 6.3. Lemma 6.9 and Lemma 6.6 together imply Therorem 6.2 by

using:

Pr
D∼Dn

{
∀ρ : E

Q∼ρ
ΔD

Q ≤
KL(ρ‖ρ0)− ln δ + ln |S|+ ln |A|+ ln(2nmin)

2(nmin − 1)(1− γ)2/V 2
max

}
> 1− δ.(6.64)

fD(Q) = 2(nmin − 1)(1− γ)2ΔD
Q/V

2
max, (6.65)

on the hypothesis space T :

Pr
D∼Dn

{
∃ρ ∈M(Q) : E

Q∼ρ
ΔD

Q ≥
KL(ρ‖ρ0)− ln δ + ln |S| + ln |A|+ ln(2nmin)

2(nmin − 1)(1− γ)2/V 2
max

}

= Pr
D∼Dn

{
∃ρ ∈ M(Q) : E

Q∼ρ
fD(Q)−KL(ρ‖ρ0) ≥ ln

2|S||A|nmin

δ

}
(6.66)

≤ Pr
D∼Dn

{
ln E

Q∼ρ0
efD(Q) ≥ ln

2|S||A|nmin

δ

}
≤ δ, (6.67)

witch concludes the proof of Theorem 6.3.
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6.5.3 Proof of Theorem 6.5

The proof follows a similar path as the proofs for the other PAC-Bayesian

bounds, but uses concentration inequalities for fast-mixing chains instead of using

i.i.d. sample sets. We start by the following lemma:

Lemma 6.10. Let ΔD
V

def
= (Jπ

TD(V )− Ĵπ
TD(V ))2+. Using the notation of Theorem 6.5,

for any fixed prior ρ0 over the space of value functions:

Pr
D∼Cπ

n

{
E

V∼ρ0

[
e(n−1)ΔD

Q/2τV 4
max

]
≤ n

δ

}
> 1− δ. (6.68)

Proof of Lemma 6.10. For any fixed V :

E
D∼Cπ

n

[
e(n−1)ΔD

V /2τV 4
max

]
= 1 +

∫ ∞

1

Pr
D∼Cπ

n

{
e(n−1)ΔD

V /2τV 4
max ≥ t

}
dt

= 1 +

∫ ∞

0

Pr
D∼Cπ

n

{
(n− 1)ΔD

V /2τV
4
max ≥ t

}
etdt

= 1 +

∫ ∞

0

Pr
D∼Cπ

n

{
ΔD

V ≥
2τV 4

maxt

n− 1

}
etdt

≤ 1 +

∫ ∞

0

e−nt/(n−1)etdt (6.69)

= n. (6.70)

Line 6.69 is due to Lemma 6.4. Using Markov’s inequality, swapping the expecta-

tion and using the above derivation, we have:

Pr
D∼Cπ

n

{
E

V∼ρ0

[
e(n−1)ΔD

V /2τV 4
max

]
≥ n

δ

}
≤ δ

n
E

D∼Cπ
n

[
E

V∼ρ0

[
e(n−1)ΔD

V /2τV 4
max

]]
(6.71)

≤ δ

n
E

V∼ρ0

[
E

D∼Cπ
n

[
e(n−1)ΔD

V /2τV 4
max

]]
(6.72)

≤ δ, (6.73)

which concludes the proof of the lemma.
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The following intermediate lemma uses the change of measure technique to

provide a uniform bound over all distributions.

Lemma 6.11. Using the notation of Theorem 6.5, for any fixed prior ρ0 over the

space of value functions:

Pr
D∼Cπ

n

{
∀ρ ∈M(V) : E

V∼ρ
[Jπ

TD(V )] ≤ E
V∼ρ

[
Ĵπ
TD(V )

]
+

√
KL(ρ‖ρ0) + ln n

δ

(n− 1)/2τV 4
max

}
> 1− δ.

(6.74)

Proof of Lemma 6.11. Using the definition of ΔD
V from Lemma 6.10, we define:

fD(V ) = e(n−1)ΔD
V /2τV 4

max . (6.75)

It follows immediately from an application of Lemma 6.6 (change of measure

inequality) and using Lemma 6.10:

Pr
D∼Cπ

n

{
∀ρ ∈M(V) : E

V∼ρ

[
ΔD

V

]
≤

KL(ρ‖ρ0) + ln n
δ

(n− 1)/2τV 4
max

}
> 1− δ, (6.76)

which concludes the proof.

Proof of Theorem 6.5. For any fixed V we have:

‖V − V π‖2ν(π) ≤
‖V − TπV ‖2ν(π)

(1− γ)2 (6.77)

≤ Jπ
TD(V )− Λπ

TD(V )

(1− γ)2 . (6.78)

First line is by γ-contraction of the Bellman operator on �2 norm under the

sampling distribution (Bertsekas and Tsitsiklis, 1996), and the second line is by

variance decomposition (Antos et al., 2008). Taking expectation on the sampling of

V ∼ ρ, and applying Lemma 6.11 completes the proof.
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6.6 Empirical Evaluations

To illustrate the model-selection techniques based on the bounds in the work,

we consider model-based and model-free experiments in finite and continuous

state-spaces, comparing the results of a frequentist model-section to the results of

Bayesian and PAC-Bayesian model-selection.

6.6.1 Results on Model-Based PAC-Bayesian RL

The model-based domain is a chain model in which states are ordered by their

index. The last state has a reward of 1 and all other states have reward 0. There

are two types of actions. One is a stochastic “forward” operation which moves us

to the next state in the chain with probability 0.5 and otherwise makes a random

transition. The second type is a stochastic “reset” which moves the system to

the first state in the chain with probability 0.5 and makes a random transition

otherwise. In this domain, we have at each state two actions that do stochastic

reset and one action that is a stochastic forward. There are 10 states and γ = 0.9.

When there are only a few number of sample transitions for each state–action

pair, there is a high chance that the frequentist estimate confuses a reset action

with a forward. Therefore, we expect a good model-based prior to be useful in

this case. We use independent Dirichlets as our prior. We experiment with priors

for which the Dirichlet α-vector sums up to 10. We define our good prior to have

α-vectors proportional to the true transition probabilities. A misleading prior is

one for which the vector is proportional to a transition model when the actions are

switched between forward and reset. A weighted sum between the good and bad
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priors creates a range of priors that gradually change from being informative to

misleading.

We compare the expected regret of three different methods. The empiri-

cal method uses the optimal policy with respect to the empirical models. The

Bayesian method samples a transition model from the Bayesian Dirichlet posteriors

(when the observed counts are added to the prior α-vectors) and then uses the

optimal policy with respect to the sampled model. The PAC-Bayesian method uses

ns,a,s′ + λαprior
s,a,s′ as the α-vector of the posterior, and finds the value of λ ∈ [0, 1], us-

ing linear search within values with distance 0.1, that maximizes the lower bound

of Theorem 6.2 using δ = 0.05. It then samples from that distribution and uses the

optimal policy with respect to the sampled model. The running time for a single

run of this method is a few seconds.
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Figure 6–1: Average regrets of different model-based methods with informative
prior. Error bars are 1 standard deviation of the mean.
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Figure 6–1 shows the comparison between the maximum regret in these

methods for different sample sizes when the prior is informative. This is averaged

over 50 runs for the Bayesian and PAC-Bayesian methods and 10000 runs for the

empirical method (to get a tight estimate of the average). The number of sampled

transitions is the same for all state–action pairs. As expected, the Bayesian

method outperforms the empirical one for small sample sizes. We can see that the

PAC-Bayesian method is closely following the Bayesian one in this case.
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Figure 6–2: Average regrets of different model-based methods with a misleading
prior. Error bars are 1 standard deviation of the mean.

With a misleading prior, however, as we can see in Figure 6–2, the empirical

method outperforms the Bayesian one. This time, the regret rate of the PAC-

Bayesian method follows that of the empirical method.

Figure 6–3 shows how the PAC-Bayesian method switches between following

the empirical estimate and the Bayesian posterior as the prior gradually changes
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Figure 6–3: Average regrets of different model-based methods by ranging prior
from misleading to informative. Error bars are 1 standard deviation of the mean.

from being misleading to informative (four sample transitions per state action

pair). This shows that the bound of Theorem 6.2 is helpful as a model selection

technique when the prior cannot be necessarily trusted.

6.6.2 Results on Finite-State Model-Free PAC-Bayesian RL

The next experiment is to test the model-free bound of Theorem 6.3. The

domain of the experiment is a “puddle world” (Boyan and Moore, 1995). An agent

moves around in a grid world of size 5 × 9 containing puddles with reward −1, an

absorbing goal state with reward +1, and reward 0 for the remaining states. There

are stochastic actions along each of the four cardinal directions that move in the

correct direction with probability 0.7 and move in a random direction otherwise. If

the agent moves towards the boundary then it stays in its current position.
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(a) Initially leaned domain.

(b) Target domain with similar map. (c) Target domain with unrelated map.

Figure 6–4: Maps of puddle world RL domains. Shaded boxes represent puddles.

We first learn the true value function of a known prior map of the world

(Figure 6–4a). We then use that value function as the prior for our model-selection

technique on two other environments. One of them is a similar environment where

the shape of the puddle is slightly changed (Figure 6–4b). We expect the prior

to be informative and useful in this case. The other environment is, however,

largely different from the first map (Figure 6–4c). We thus expect the prior to be

misleading.

We use independent Gaussians (one over the value of each state–action pair)

as the prior, with the initial map’s Q-values for the mean μ0, and σ2
0 = 0.01 for the
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variance. The posterior is chosen to be the product of Gaussians with mean(
λμ0

σ2
0

+
nQ̂(., .)

σ̂2

)/(
λ

σ2
0

+
n

σ̂2

)
, (6.79)

and variance (
λ

σ2
0

+
n

σ̂2

)−1

, (6.80)

where σ̂2 is the empirical variance over the TD errors. We sample from this

posterior and act according to its corresponding greedy policy.

For λ = 1, this is an approximate Bayesian posterior for the mean of a

Gaussian with known variance. For λ = 0, the prior is completely ignored (hence

we sample from a frequentist confidence interval). We will, however, find the

λ ∈ [0, 1] that minimizes the PAC-Bayesian bound of Theorem 6.3 with δ = 0.05.

For each method, we report the maximum regret of the chosen policy π over all

state–action pairs: ‖Qπ −Q∗‖∞.

Table 6–1: Maximum regret ‖Qπ −Q∗‖∞ of different model-selection methods in
the puddle world transfer learning problem.

Similar Map Unrelated Map

Purely Empirical 0.21± 0.03 0.19± 0.03

Bayesian 0.10± 0.01 1.16± 0.09

PAC-Bayesian 0.12± 0.01 0.22± 0.04

PAC-Bayesian λ 0.58± 0.01 0.03± 0.03

Table 6–1 shows the average over 100 runs of the maximum regret for these

methods and the average of the selected λ, with equal sample size of 20 per state–

action pair. Again, it can be seen that the PAC-Bayesian method makes use of the
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prior (with higher values of λ) when the prior is informative, and otherwise follows

the empirical estimate (smaller values of λ). It adaptively balances the usage of

the prior based on its consistency over the observed data.

6.6.3 Results on Continuous-Domain PAC-Bayesian RL

In this section, we investigate how the bound of Theorem 6.5 can be used

in model selection for transfer learning in the RL setting with continuous state-

spaces. One experiment is presented on the well-known Mountain–Car problem,

and the other focuses on a generative model of epileptic seizures built from real-

world data.

Case Study: Mountain–Car

We design a transfer learning experiment on the Mountain–Car domain (Sut-

ton and Barto, 1998), where the goal is to drive an underpowered car beyond a

certain altitude up a mountain. We refer the reader to the reference for details of

the domain. We learn the optimal policy (name it π∗
0) on the original Mountain–

Car problem (γ = 0.9, R = 1 passed the goal threshold and 0 otherwise). Note

that the reward and the dynamics are deterministic, therefore Λπ
TD(V ) = 0 for all

V . The task is to learn the value function on the original domain, and use that

knowledge in similar (though not identical) environments, as a means to accelerate

the learning process in those new environments.

We estimate the value of π∗
0 on the original domain with tile coding (4 tiles of

size 8 × 8). Let θ0 be the LSTD solution on a very large sample set in the original

domain. To transfer the domain knowledge from this problem, we construct a

prior distribution to be a multivariate Gaussians with mean θ0 and covariance σ2
0I,
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having σ2
0 = 0.01. Note that we are violating the boundedness of ‖θ‖ discussed

before, but this can be avoided by truncating and scaling the distributions over an

�2-bounded space. The difference is negligible in practice since the variances are

small.

In a new environment, we collect a set of trajectories (100 trajectories of

length 5), and search in the space of λ-parametrized posterior measures, defined as

follows: measure ρλ is a multivariate Gaussians with mean(
λθ0
σ2
0

+
θ̂

σ̂2

)/(
λ

σ2
0

+
1

σ̂2

)
, (6.81)

and variance (
λ

σ2
0

+
1

σ̂2

)−1

I, (6.82)

where θ̂ is the LSTD solution based on the sample set on the new environment,

and σ̂2 (variance of the empirical estimate) is set to 0.01 based on the number

of sampled transitions. The search for the best λ-parameterized posterior is

driven by our proposed PAC-Bayesian upper bound on the approximation error

in Theorem 6.5. When λ = 0, ρλ will be a purely empirical estimate, whereas

when λ = 1, we get the Bayesian posterior for the mean of a Gaussian with known

variance (standard Bayesian inference with empirical priors).

Note that because the Mountain–Car is a deterministic domain, the variance

term of Theorem 6.5 is 0. As we use trajectories with known length, we can also

upper bound the forgetting constants in the theorem and evaluate the bound

completely empirically based on the observed sample set.
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We test this model-selection method on two new environments. The first is a

mountain domain very similar to the original problem, where we double the effect

of the acceleration of the car. The true value function of this domain is close the

original domain, and so we expect the prior to be informative (and thus λ to be

close to 1). In the second domain, we change the reward function such that it

decreases, inversely proportional to the car’s altitude: R̄(S) = 1 − h(S), where

h(S) ∈ [0, 1] is the normalized altitude at state S. The value function of π under

this reward function is largely different from that of the original one, which means

that the prior distribution is misleading, and the empirical estimate should be

more reliable (and λ close to 0).

Table 6–2: Error in the estimated value function
∥∥V − V π∗

0

∥∥2
ρπ

∗
0

on the Mountain–
Car domain. The last row shows the value of the λ parameter selected by the
PAC-Bayesian method.

Similar Environment Different Environment

Purely Empirical 2.35± 0.12 0.03± 0.01

Bayesian 1.03± 0.09 2.38± 0.05

PAC-Bayesian 1.03± 0.09 0.07± 0.01

PAC-Bayesian λ 1 0.06± 0.01

Table 6–2 reports the average true error of approximating V π∗
0 using different

methods over 100 runs (purely empirical method is when λ = 0, Bayesian is when

λ = 1). For the similar environment, the PAC-Bayesian bound of Theorem 6.5

is minimized consistently with λ = 1, indicating that the method is fully using

the Bayesian prior. The error is thus decreased to less than a half of that of the
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empirical estimate. For the environment with largely different reward function,

standard Bayesian inference results in poor value prediction, whereas the PAC-

Bayesian method is selecting small values of λ and is mostly ignoring the prior.

To further investigate how the value function estimate changes with these

different methods, we consider an estimate of the value for the state when the car

is at the bottom of the hill. This point estimate is constructed from the PAC-

Bayesian estimate using the value function obtained by using only the mean of ρλ.

To get a sense of the dependence of this estimate on the randomness of the sample

the estimate is constructed over 100 runs. We also predict these values using a

Bayesian estimate and a purely empirical estimate.
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(a) Similar Target Environment.
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(b) Unrelated Target Environment.

Figure 6–5: Distribution of the estimated value function.

Figure 6–5a shows a normal fit to the histogram of the resulting estimates for

the similar environment, for the purely empirical and the PAC-Bayesian estimates.

As it can be seen, the distribution of PAC-Bayesian estimates (which coincides

with the Bayesian posterior as the best λ is consistently 1 in this case) is centered

93



around the correct value, but is more peaked than the empirical distribution. This

shows that the method is using the prior to converge faster to the correct value.

Figure 6–5b compares the distribution of the estimated values for the highly

different environment. We can see that, as expected, the Bayesian estimate is

heavily biased due to the use of a misleading prior. The PAC-Bayes estimate is

only slightly biased away from the empirical one with the same variance on the

value. Again, this confirms that PAC-Bayes model-selection is largely ignoring the

prior when the prior is misleading.

Case Study: Epilepsy Domain

We also evaluate our method on a more complex domain. The goal of

the RL agent here is to apply direct electrical neuro-stimulation such as to

suppress epileptiform behaviour. We use a generative model constructed from

real-world data collected on slices of rat brain tissues (Bush et al., 2009); the

model is available in the RL-Glue framework. Observations are generated over a

4-dimensional real-valued state-space. The action choice corresponds to selecting

the frequency at which neurostimulation is applied. The reward is −1 for steps

when a seizure is occurring, −1/40 for each stimulation pulse, and 0 otherwise. We

use γ = 0.8. The specifics of this reward model is due to the medical side-effects of

over-stimulation (Bush et al., 2009).

We first apply the best clinical fixed rate policy (stimulation is applied at

a consistent 1Hz) to collect a large sample set (Bush et al., 2009). We then use

LSTD to learn a linear value function over the original feature space. Similar to

the Mountain–Car experiment, we construct a prior (with a similar mean and
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variance structure), and use it for knowledge transfer in two new cases. This time,

we keep the dynamics and reward function intact and instead change the policy.

The first modified policy we consider applies stimulation at a fixed rate of 2Hz;

this is expected to have a similar (but slightly worse) value function as the original

(1Hz) policy. The other policy we consider applies no stimulation; this is expected

to have a very different value function as the seizures are not suppressed.

Table 6–3: The error of value-function estimates ‖V − V π‖2ρπ on the Epilepsy
domain.

2 Hz Stimulation No Stimulation

Empirical 0.0044± 0.0007 0.54± 0.06

Bayesian 0.0013± 0.0001 0.86± 0.07

PAC-Bayesian 0.0022± 0.0004 0.69± 0.08

PAC-Bayesian λ 0.62± 0.05 0.30± 0.05

We wish to estimate the parameters θ of a quadratic value function ap-

proximator based on the continuous state features. We sample 10,000 on-policy

trajectories of length 1 and use them with the PAC-Bayesian model-selection

mechanism described previously (with similar λ-parametrized posterior family on

the θ parameters) to get estimates of the value function. Table 6–3 summarizes the

performance of different methods on the evaluation of the new policies (averaged

over 50 runs).

The results are not as polarized as those of the Mountain–Car experiment,

partly because the domain is noisier, and because the prior is neither exclusively

informative or misleading. Nonetheless, we observe that the PAC-Bayesian method

is using the prior more (λ averaging around 0.62) in the case of the 2Hz policy,
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which is consistent with clinical evidence showing that 1Hz and 2Hz stimulations

have a similar suppression effects (Bush et al., 2009). The prior is considered less

(λ averaging around 0.30) for the no-stimulation policy which has substantially

(though not entirely) different effects.

6.7 Related Work

Model-selection based on error bounds has been studied previously with

regularization techniques (Farahmand et al., 2009b,a; Farahmand and Szepesvári,

2011). These bounds are generally tighter for point estimates, as compared to the

distributions used in this work. However, our method is more general as it could

incorporate arbitrary domain knowledge into the learning algorithm with any type

of prior distribution. It can of course use sparsity or smoothness priors, which

correspond to well-known regularization methods.

Online PAC RL with Bayesian priors has been addressed with the BOSS

algorithm (Asmuth et al., 2009). Unlike our analysis, the correctness of their regret

bound is based on the assumption that the true model of the system is sampled

from the prior distribution. The correctness of these bounds are thus contingent on

the correctness of the prior.

Recently, there has been applications of PAC-Bayesian method to the more

restrictive bandit problems, using the policy reweighing technique and Azuma-

Hoeffding inequalities (Seldin et al., 2011b,a, 2012). The key difference between

their work and our analysis is that their method can be used in online settings to

solve the exploration–exploitation problem, while our bounds hold for the more

general RL problem with state transitions.
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Seldin et al. (2011a) propose a PAC RL algorithm based on a PAC-Bayesian

bound with an “oracle prior” placed over the correct action values. However, they

point out that their analysis is a first step in the application of PAC-Bayesian

techniques in online RL. In fact, there are PAC methods that provide tighter

regret bounds than the one proposed by their PAC-Bayesian analysis (Auer and

Ortner, 2010). Following the methods discussed in this work, tightening the

bounds and extensions to contextual bandits and more general RL settings remain

interesting open problems.

6.8 Discussion and Future Work

In this chapter, we introduced the first set of PAC-Bayesian bounds for

the general batch RL setting. We demonstrate how such bounds can be used

to estimate the optimal value function and find a near-optimal policy in finite-

state-spaces, given prior distributions over the model parameters or the optimal

value function. We also introduced a PAC-Bayesian bound for value function

approximation of a fixed policy with continuous states and actions.

Our empirical results show that PAC-Bayesian model-selection uses prior dis-

tributions when they are informative, and ignores them when they are misleading.

This approach can be used in a number of applications, including transfer learning,

as explored in the empirical results.

In using the model-based bound of Theorem 6.2, we expect the running time

of searching in the space of parametrized posteriors to increase rapidly with the

size of the state-space. A more scalable version would sample models around the

posteriors, solve each model, and then use importance sampling to estimate the
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value of the bound for each possible posterior. This problem does not exist with

the finite-state model-free approach of Theorem 6.3, as we do not need to solve the

MDP for each sampled model.

Theorem 6.5 gives an upper bound for the estimation error of distributions as

opposed to point estimates. While stochastic value functions might be useful in

some domains (especially when the use of stochastic policies is not problematic),

one might also be interested in bounding the error of some fixed value function.

We can derive such bounds by using Jensen’s inequality and Fubini’s theorem,

bounding the error of the point estimate at the mean of the posterior (using

‖EV∼μ V − V π‖2ν(π) ≤ EV∼ρ ‖V − V π‖2ν(π)). PAC-Bayesian analysis for the

approximation of the optimal value function in continuous domains (i.e. bounding

EV∼ρ ‖V − V ∗‖2ν) is also an interesting avenue of future work.

Our PAC-Bayesian analysis presented in this chapter did not address the

exploration–exploitation problem in online RL, where the algorithm has to decide

on the exploration policy while the training trajectories are being collected. While

our worst case analysis in finite state spaces can technically be applied in online

RL, it is not going to be any faster than the pure frequentist exploration. Our

continuous bound cannot be used in online RL either, as we only analyze the error

in our estimate on fixed measures (the distribution of visited states change during

the exploration with non-stationary policies).

Extensions of our results to online RL, even with more restrictive models such

as contextual bandits instead of MDPs, would open the door to the systematic use

of prior information when dealing with the exploration–exploitation problem. With
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that in mind, we expect that a mix of our PAC-Bayesian analysis in continuous

state spaces with those of Seldin et al. (2011b,a) would provide us with extensions

for online RL in contextual bandits and more general RL settings. Specifically, the

weighted sampling strategy (Sutton and Barto, 1998), also used in the analysis of

non-stochastic bandits (Auer et al., 2003), can help derive off-policy bounds and

online RL algorithms.
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Reinforcement Learning and

Compressed Sensing
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CHAPTER 7
Compressed Sensing and Random Projections

Compressed Sensing (CS) is a topic of active research in the signal processing

community and has recently gained attention in machine learning in different

domains (Hegde et al., 2007; Wright et al., 2008; Mairal et al., 2008; Maillard and

Munos, 2009; Scheinberg and Rish, 2010). The original goal of CS was to compress

a signal to lower dimensions (sample input at lower rates), such that the original

can be almost perfectly reconstructed from the compressed version (Donoho, 2006;

Candès et al., 2006). This compression is usually done via a carefully chosen linear

projection from the original space to a lower dimensional space.

When working with large dimensional datasets, one can make use of the

regularities present in the data to derive a more compact representation. Such

regularities could be in the sparsity of the data (only a few non-zero elements in

the feature vector of each instance), or in the data coming from a smooth low-

dimensional manifold embedded in the high-dimensional observed feature space.

We could also be working with data coming from a finite subset of points in the

larger space of features.

Compressed Signal Processing (CSP) introduces a set of methods to deal with

high dimensional datasets with such regularities. In this chapter, we review differ-

ent problems that have been solved with a compressed version of the data. These

include signal recovery, detection, classification and estimation. In Chapters 8 and
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9, we extend some of these results to compressed regression and their use in RL

algorithms with high-dimensional feature spaces.

7.1 Concentration of Measure and Stable Embeddings

The analysis of CS starts with the notion of stable embeddings in vector

spaces. We call f an ε-stable embedding of (U ,V) if:

∀u ∈ U ,v ∈ V : 1− ε ≤ ‖f(u)− f(v)‖
2

‖u− v‖2
≤ 1 + ε. (7.1)

Such embeddings preserve the pairwise distances within an ε approximation.

Stable embedding in a sparse space, with few non-zero elements for each

instance, is closely related to the Restricted Isometry Property (RIP). Define RD
k

to be the set of all k-sparse vectors in RD:

R
D
k

def
= {x ∈ R

Ds.t. ‖x‖0 ≤ k}. (7.2)

We say that a projection matrix Φd×D satisfies RIP of order k, if there exists

ε ∈ (0, 1) such that:

∀x ∈ R
D
k : 1− ε ≤ ‖Φx‖2

‖x‖2
≤ 1 + ε. (7.3)

A projection satisfying RIP of order 2k is an ε-stable embedding of (RD
k ,R

D
k ), or of

(RD
2k, {0}).

The existence of stable embedding and their construction is at the center of

CSP. The famous Johnson–Lindenstrauss (JL) Lemma, states the existence of

compressive stable embeddings for finite sets:

Lemma 7.1 (Johnson and Lindenstrauss, 1984). Let X ⊂ RD be a finite set

of size p, and let ε ∈ (0, 1). There exists a Lipschitz mapping f : RD → Rd, with
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d = O(ε−2 ln p) such that:

∀x, x′ ∈ X : 1− ε ≤ ‖f(x)− f(x
′)‖2

‖x− x′‖2
≤ 1 + ε. (7.4)

The lemma states the existence of a stable embedding of (X ,X ), for a

finite set X . In particular, we can show that random projections are, with high

probability, stable embeddings of both finite and sparse spaces.

Several forms of randomly generated projections matrices have been studies

in the CS literature. The most common is to sample Φd×D using i.i.d. Gaussian

distributions:

Φi,j ∼ N (0, 1/d). (7.5)

Independent Bernoulli sampling is another option:

Φi,j =

⎧⎪⎪⎨
⎪⎪⎩
+1/
√
d with probability 1/2,

−1/
√
d with probability 1/2.

(7.6)

Sparser projections have also been used as compressive embeddings:

Φi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+3/
√
d with probability 1/6,

0 with probability 2/3,

−3/
√
d with probability 1/6.

(7.7)

All the above mentioned random projections follow a form of concentration of

measure inequality. Let μΦ be any of the above distributions on ΦD×d. We have

for any fixed x ∈ R
D:

E
Φ ∼μΦ

[
‖Φx‖2

]
= ‖x‖2 . (7.8)
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The random variable ‖Φx‖2 is also strongly concentrated about its expected value.

For any fixed x ∈ RD and any ε ∈ (0, 1):

Pr
Φ∼μΦ

{∣∣‖Φx‖2 − ‖x‖2
∣∣ ≥ ε ‖x‖2

}
≤ 2e−

d
2
(ε2/2−ε3/3). (7.9)

The concentration of measure inequality for the case of i.i.d. Gaussian sam-

pling of Φ can be proved using tail bounds of Gamma random variables, and

the other cases are proved by relations to the moments of Gaussian random

variables (Achlioptas, 2001).

Using the condition of Equation 7.9, one can prove that random projections

of size O((ln p − ln δ)/ε2) satisfy the JL Lemma with probability greater than

1 − δ (Johnson and Lindenstrauss, 1984; Davenport et al., 2010). One can also use

the same concentration bound to show that projections of size O((k ln n
k
− lnδ)/ε2)

satisfy RIP of order k (Baraniuk et al., 2008). We can see that projections of

sizes much smaller than the nominal dimensionality of the space are enough to

guarantee a stable embedding both in finite and sparse spaces.

7.2 Compressed Recovery

The use of random projections in signal processing was originally motivated

by the need to sample and store very efficiently large datasets such as images and

video (Candès et al., 2006; Candès and Wakin, 2008). The basic idea is that if

the signal is generated as a linear combination of a small set of functions (chosen

from a much larger set), then it can be reconstructed very well from a small,

fixed number of randomized measurements. A solid theoretical foundation has

been established for compressed sensing methods, showing that as the number of
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random measurements increases, the error in the reconstruction decreases at a

nearly-optimal rate (Donoho, 2006).

Given the compressed signal y def
= Φx, the typical reconstruction algorithm

returns the vector x̃ with the smallest �1 norm, whose embedding is y (Chen et al.,

1998):

argmin
x̃∈RD

‖x̃‖1 subject to Φx̃ = y. (7.10)

One can show that if the original signal x is (near) k-sparse, accurate recon-

struction is possible if the projection satisfies RIP or order 2k (Candes, 2008).

We can thus consider random projection as compression algorithms, with an �1

optimization method used for the decompression.

Signal recovery is also possible when the original data lies on a smooth

manifold. The use of random projections helps us avoid the typical non-linear

transformation for signal compression, though the recovery of the original signal

requires a search on the smooth manifold and might result in costly non-linear

optimization problems (Baraniuk and Wakin, 2009).

7.3 Compressed Detection and Classification

Compressed projections resulting in stable embeddings can also be used

for detection and classification tasks. Consider the signal detection problem of

choosing between the two hypothesises:

H0 : x = n, (7.11)

H1 : x = s+ n, (7.12)

105



where s ∈ R
D is a known signal, and n ∈ R

D is a vector of i.i.d. Gaussian noise:

n ∼ N (0, σ2
nI). One can create a test by thresholding the sufficient statistics

xT s to distinguish between the two hypothesis, controlling the false positive and

detection rates.

Now consider the case where one has to detect the signal when the observa-

tion is compressed:

H̃0 : y
def
= Φx = Φn, (7.13)

H̃1 : y
def
= Φx = Φ(s+ n). (7.14)

We can again construct a sufficient statistics yT (Φs), inner product of the projec-

tions, and create a detector by thresholding the statistic. Davenport et al. (2010)

show that if the projection satisfies the concentration inequality of Equation 7.9,

then the compressed detector has a detection rate similar to the detector in the

original space.

Compressed classification is a generalization of the above technique when the

signal can be any of a finite set of known values. Define the set of original and

compressed hypothesises:

Hi : x = si + n, (7.15)

H̃i : y
def
= Φx = Φ(si + n), (7.16)

for a set of p known signal {si}pi=1. Consider a classification algorithm in the orig-

inal observation space that returns the class i minimizing the statistic
∥∥xT − si

∥∥.
The corresponding compressed classifier will return i minimizing

∥∥yT −Φsi
∥∥.
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Since random projection are stable embeddings of ({x}, {si}pi=1), the statistics

and thus the detection rates are similar for the original and compressed classi-

fiers (Davenport et al., 2010).

7.4 Compressed Estimation

Estimation is another task that can be performed with a compressed ob-

servation. Specifically, a linear function in a sparse or finite space can be closely

approximated by a linear function of the compressed signal. If we observe y
def
= Φx

and want to estimate a linear function f(x) = xTw, we can use g(y) = yT (Φw) in

the compressed space (inner product in between the compressed weight vector and

the compressed signal). The difference between f and g can be controlled if the

projection provides a stable embedding.

The following theorem by Davenport et al. (2006) (later extended to general

stable embeddings in Davenport et al. (2010)) provides a bound on the error due

to the compression when working with finite sets of input signals.

Theorem 7.2 (Davenport et al., 2006). Let Φd×D ∼ μΦ be a random

projection that satisfies the concentration of measure inequality of Equation 7.9.

Let X ⊂ R
D be a finite set of points. Then for any fixed w ∈ R

D and ε > 0:

Pr
Φ∼μΦ

{
∀x ∈ X :

∣∣(Φx)T (Φw)− xTw
∣∣ ≤ ε ‖x‖ ‖w‖

}
≥ 1− (4|X |+2)e−dε2/48. (7.17)

This is a linear estimation version of the JL Lemma, as it states that the

inner product is preserved between any fixed weight vector and any set of fixed

signals. Davenport et al. (2010) provide a generalization of the above theorem

when working with stable embeddings with any pair of weight and signal spaces.
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In the next chapter we adapt their analysis to sparse vector spaces and use the

resulting bound to analyse the error of regression in the compressed space. We

further extend these results to the analysis of linear regression with non i.i.d. data

collected from a Markovian process.
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CHAPTER 8
Compressed Regression In Sparse Spaces

Modern machine learning methods have to deal with overwhelmingly large

datasets, e.g. for text, sound, image and video processing, as well as for time series

prediction and analysis. Much of this data contains very high numbers of features

or attributes, sometimes exceeding the number of labelled instances available

for training. Even though learning from such data may seem hopeless, in reality,

the data often contains structures that can facilitate the development of learning

algorithms. In this chapter, we focus on a very common type of structure, in which

the instances are sparse, in the sense that a very small percentage of the features

in each instance is non-zero (under a known or unknown basis). For example, a

text may be encoded as a very large feature vector (millions of dimensions) with

each feature being 1 if a corresponding dictionary word is present in the text, and

zero otherwise. Hence, in each document, a very small number of features will be

non-zero.

Several algorithms, discussed in detail later in the chapter, have been designed

to deal with this setting. Here, we focus on a class of methods for learning in large

and sparse feature sets using methods originated in compressed sensing and signal

processing. Compressed sampling has been studied in the context of supervised

regression from two points of view. One idea is to use random projections to

compress the dataset, by combining training instances using random projections
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(Zhou et al., 2007). Such methods are useful, for instance, when the training set is

too large or one has to handle privacy issues.

Another idea is to project each input vector into a lower dimensional space,

and then train a predictor in the new compressed space (compression on the

feature space). As is typical of dimensionality reduction techniques, this will

reduce the variance of most predictors at the expense of introducing some bias.

Random projections on the feature space, along with least-squares predictors are

studied by Maillard and Munos (2009), and their analysis shows a bias–variance

trade-off with respect to on-sample error bounds, which is further extended to

bounds on the sampling measure, assuming an i.i.d. sampling strategy.

We start this chapter by providing a bias–variance analysis of ordinary least-

squares (OLS) regression in compressed spaces, referred to as Compressed OLS

(COLS), when random projections are applied on sparse input feature vectors.

Section 8.2 provides an analysis of the worst-case prediction error when samples

are i.i.d. and a Gaussian noise model is assumed. In Section 8.3, we provide a

more generic on-measure bound for data coming from fast mixing chains with

dependent noise terms. We use this bound in the next chapter to introduce and

analyse a feature generation algorithm for the value estimation problem in RL.

The bounds introduced in this chapter can be used to select the optimal size

of the projection, such as to minimize the sum of expected approximation (bias)

and estimation (variance) errors. It also provides the means to compare the error

of linear predictors in the original and compressed spaces.

110



8.1 Inner Product in Compressed Spaces

Chapter 7 covered various methods and techniques developed for signal

processing given a compressed observation of the input signal. This section

introduces an extension of the finite-set bound of Theorem 7.2 to k-sparse signals.

A set XD
k is said to be a k-sparse space of dimension D, if all of its elements have

�0 norm of at most k under a fixed basis matrix ΨD×D:

∀x ∈ XD
k : ∃z ∈ R

D
k s.t. x = Ψz. (8.1)

The following theorem (proved in Section 8.4) provides the error rate of linear

estimation when feature signals are in k-sparse space:

Theorem 8.1. Let Φd×D ∼ μΦ be a random projection that satisfies the con-

centration of measure inequality of Equation 7.9. Let XD
k be the k-sparse space

of dimension D, as defined in Equation 8.1. Then for any fixed w ∈ RD and

0 < ξ < 1 we have:

Pr
Φ∼μΦ

{
∀x ∈ XD

k :
∣∣(Φx)T (Φw)− xTw

∣∣ ≤ εprj ‖x‖ ‖w‖
}
≥ 1− ξ, (8.2)

where:

εprj =

√
48k

d
ln

4D + 2

ξ
. (8.3)

Theorem 8.1 states that the inner product between a fixed weight vector and

points inside a sparse space is preserved after a stable random projection. It shows

that if a function is linear in a sparse space, it is almost linear in an exponentially

smaller projected space of size Õ(k lnD) with a controllable constant induced bias.
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The preservation of linear estimation suggests algorithms that avoid prediction

in the observation space and instead work in the compressed space to reduce the

variance of the predictor. We study these algorithms in the next sections.

8.2 Compressed Linear Regression

We start by analysing the worst case prediction error of the OLS solution. We

then proceed to the bias–variance analysis of OLS in the projected space.

In a linear prediction task, we seek to predict a target function f(·) that is

assumed to be a (near-) linear function of the input signal x ∈ X :

f(x)
def
= xTw + bf (x), where |bf(x)| ≤ εf ‖x‖ ‖w‖ , (8.4)

for some εf > 0 and some fixed weight vector w. The dependence of the bias

term on ‖x‖ and ‖w‖ allows for scaling of the input and output and retaining the

relative relationship with the bias.

Assume we are given a training set of n input–output pairs, consisting of a

full-rank input matrix Xn×D, along with noisy observations of f :

y = Xw + bf + η, (8.5)

where (bf)i = bf (xi), and we assume a homoscedastic noise term η to be a vector

of i.i.d. random variables distributed as N (0, σ2
η).

Given the above, we seek to find a predictor that for any query x ∈ X predicts

the target signal f(x). The OLS predictor can be defined using the Moore–Penrose

pseudoinverse as follows:

ŵ
def
= X†y, (8.6)
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and the OLS prediction is calculated as follows:

f̂(x)
def
= xT ŵ (8.7)

If the dimension of the input space is large and we do not have many sample

points, then the error of the OLS estimator can be large. One way to deal with

this problem is to use feature selection and feature compression to decrease the

dimension size and get more accurate estimates of the weights in the new feature

space.

Random projections, of course, can be used here for dimensionality reduction.

In compressed regression, one first projects the inputs into a lower dimensional

space using random projections, then uses the OLS estimator on the compressed

input signals as the predictor of the target function. For a random projection

Φd×D, we define the COLS solution to be:

ŵΦ
def
= (XΦT )†y, (8.8)

and the COLS prediction is calculated as follows:

f̂Φ(x)
def
= (Φx)T ŵΦ (8.9)

= xT (ΦT ŵΦ). (8.10)

Note that after calculating the COLS solution ŵΦ, one can calculate the term

ŵ = ΦT ŵΦ, discard the projection matrix, and use xT ŵ as the prediction. ŵ is

the corresponding weight vector in the original observation space.
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The following theorem (proved in Section 8.4) bounds the error of the

compressed predictor for an arbitrary query point.

Theorem 8.2. Let Φd×D ∼ μΦ be a random projection that satisfies the concen-

tration of measure inequality of Equation 7.9. Let the input space XD
k be a k-sparse

space of dimension D, as defined in Equation 8.1. Let f̂Φ(x) be the COLS estima-

tor as defined in Equation 8.9 on a training set following Equation 8.5 with bias

bounded by εf and noise variance σ2
η. For any 0 < ξprj < 1 and 0 < ξvar ≤

√
2/eπ:

Pr
Φ∼μΦ

{
∀x ∈ XD

k , ∀XT ∈ (XD
k )n :

Pr
η∼N (0,σ2

ηI)

{∣∣∣f(x)− f̂Φ(x)∣∣∣ ≤ εbias + εvar

}
≥ 1− ξvar

}
≥ 1− ξprj, (8.11)

where:

εbias = (εf + εprj)
(
‖w‖ ‖x‖+ ‖w‖ ‖X‖F

∥∥(Φx)T (XΦT )†
∥∥) , (8.12)

εvar =
∥∥(Φx)T (XΦT )†

∥∥ ση
√

ln
2

πξ2var
, (8.13)

εprj =

√
48k

d
ln

4D + 2

ξprj
. (8.14)

This theorem can be somewhat simplified by using the properties of random

projections. Note that because we use random projections satisfying Equation 7.9,

the projection preserves the norm of points in XD
k , thus ‖Φx‖ � ‖x‖. Further-

more, the norm of Φ can be bounded using the bound discussed by Candès et al.
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(2006); we have with probability 1− δΦ:

‖Φ‖ ≤
√
D/d+

√
(2 log(2/δΦ))/d+ 1, (8.15)∥∥Φ†∥∥ ≤ [√

D/d−
√

(2 log(2/δΦ))/d− 1
]−1

. (8.16)

Similarly, when n � d, and the observed features are not heavily correlated, we

expect
∥∥(XΦT )†

∥∥ to be of order Õ(
√
d/ ‖X‖F ). Assume εf = 0 and that ‖x‖ = 1

for all points in the input space. Ignoring the terms constant in d, we can rewrite

the bound on the error up to logarithmic terms as:

Õ

(√
k log(D/k)

1√
d

)
+ Õ

(
ση√
n

√
d

)
.

The first term is a part of the bias due to the projection (excess approximation

error). The second term is the variance term that shrinks with larger training sets

(estimation error). We clearly observe the trade-off with respect to the compressed

dimension d. With the assumptions discussed above, the optimal projection size is

thus of order Õ(
√
kn), which resembles the suggested size of Õ(

√
n) for on-measure

error minimization discussed in Maillard and Munos (2009).

Theorem 8.2 provides a simultaneous worst-case bound on the entire input

space with no distributional assumptions on the input. Not surprisingly, this type

of bound is often loose when x and X are sampled from similar distributions and

the training set is independently sampled. There is an unavoidable Õ(
√
k) additive

constant in the bound that results form a worst-case analysis.

In the fixed design case, where x is sampled uniformly from a fixed training

set X, one can get much tighter bounds. Such bounds however, fail to provide
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off-sample guarantees and might require very strong distributional assumptions.

Maillard and Munos (2009, 2012) provide discussions on how random projections

can be applied in a random-design settings using JL type bounding on elements.

Detailed analysis of the random design setting is provided by Hsu et al. (2012).

8.3 Compressed Regression with Correlated Training Data

The worst case bound of Theorem 8.2 is theoretically interesting, but loose

when the distribution of the data and the query point are the same. The i.i.d.

assumption on the data might be too strong when analysing time dependent

datasets, such as the ones encountered in RL problems. In this section, we look at

the case where the datapoints in X are coming from a fast-mixing Markov chain.

In the next chapter, we use this analysis to bound the error of a value function

approximator that uses compressed regression at its core.

This time, we assume a bias-free response model with target f(x) def
= xTw:

y = Xw + η. (8.17)

The sequence of (xi, ηi) is assumed to come from a Markov chain Cn with forget-

ting constant τ . We assume the noise term η is a bounded martingale difference

sequence:

∀i : |ηi| ≤ ηmax and E [ηi|x1:i, η1:i−1] = 0. (8.18)

A biased target with sub-Gaussian noise might also be analysed with the same

methodology presented here, though we assume a bounded noise and zero bias to

simplify the derivations and proofs.
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The following theorem (proved in Section 8.4) provides a bound on the error

of COLS when the training data is coming from a fast-mixing Markov chain:

Theorem 8.3. Let Φd×D ∼ μΦ with D > d ≥ 12 be a random projection that

satisfies the concentration of measure inequality of Equation 7.9. Let the input

space XD
k be a k-sparse space of dimension D, as defined in Equation 8.1. Let

f̂Φ(x) be the COLS estimator as defined in Equation 8.9 on a training set following

Equation 8.17. Assume {(xi, ηi)}ni=1 is generated from a Markov chain Cn with

forgetting time τ , stationary distribution ρ(x) and noise model of Equation 8.18.

For any 0 < ξ < 1/4, if n ≥ 4
sup

x∈XD
k
‖x‖2

inf
x∈XD

k
‖x‖2 ln 8

ξ
:

Pr
Φ∼μΦ

{(xi,ηi)}ni=1∼Cn

{∥∥∥f̂Φ(x)− f(x)∥∥∥
ρ
≤ εbias + εvar

}
≥ 1− ξprj, (8.19)

defining:

εbias = 10αεprj ‖w‖ ‖x‖ρ

√
1

dν
, (8.20)

εvar = 2αεprj ‖w‖

√
dτ

nν
log

9d

ξ
+
√
8αηmax

√
κd

nν
log

8d

ξ
(8.21)

εprj =

√
48k

d
ln

16D + 8

ξ
, (8.22)

α = max

(
1, max

x∈XD
k

‖Φx‖ / ‖x‖
)
, (8.23)

where κ and ν are the condition number and the smallest positive eigenvalue of the

normalized empirical gram matrix 1
‖X‖F

ΦXTXΦT .

Theorem 8.3 can be further simplified by using concentration bounds on

the operator norm of random projections. When n � d and the features are
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not heavily correlated, we expect the smallest and biggest singular values of

XΦT/ ‖X‖F to be of order Õ(
√

1/d), since Φ projects the norm approximately

uniformly on all dimensions. Thus we have κ = Õ(1) and ν = Õ(1/d). Projections

are also norm-preserving when applied to the sparse space, and thus α = O(1)

when d = Õ(k lnD). Assuming that n = Õ(d2), we can rewrite the bound on the

error up to logarithmic terms as:

Õ

(
‖w‖ ‖x‖ρ

√
k logD

d

)
+ Õ

(
d√
n

)
. (8.24)

The first term is a part of the bias due to the projection (excess approximation

error). The rest is the combined variance terms that shrink with larger training

sets (estimation error). We clearly observe the trade-off with respect to the

compressed dimension d. With the assumptions discussed above, we can see that

projection of size d = Õ(k logD) should be enough to guarantee arbitrarily small

bias, as long as ‖w‖ ‖x‖ρ is small.

Note that this bound matches that of Ghavamzadeh et al. (2010). The

variance term is of order
√
d/nν. Thus, the dependence on the smallest eigenvalue

of the gram matrix makes the variance term order d/
√
n rather than the expected√

d/n. We expect the use of ridge regression instead of OLS to remove this

dependency and help with the convergence rate. The analysis of ridge regression

within compressed spaces is an interesting topic of future work. One can make use

of the recent developments in the analysis of ridge regression in random design

settings (Hsu et al., 2012) and extend those results to the compressed regression

case with sparse input features.
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8.4 Proof of Compressed Regression Bounds

The proofs included in this section are based on the corresponding analysis in

Fard et al. (2012) and Fard et al. (2013).

8.4.1 Proof of Theorem 8.1

Proof of Theorem 8.1. Let Ψ be the basis matrix under which XD
k is sparse. Let

Ψ.,i be the i-th column of Ψ. Using Theorem 7.2 over the finite set of signals

{Ψ.,i}Di=1, and having ‖Ψ.,i‖ = 1, we get:

Pr
Φ∼μΦ

{
∀i :

∣∣(ΦΨ.,i)
T (Φw)−Ψ.,iw

∣∣ ≤ εprj√
k
‖w‖

}
≥ 1− (4D + 2)e−dε2prj/48k. (8.25)

By definition (see Equation 8.1), for any x ∈ XD
k , we must have x =

∑D
i=1 ziΨ

T
.,i

with z ∈ R
D
k . Thus with probability no less than (4D + 2)e−dε2prj/48k for all x ∈ XD

k :

∣∣(Φx)T (Φw)− xTw
∣∣ =

∣∣∣∣∣
D∑
i=1

zi((ΦΨ.,i)
T (Φw)−Ψ.,iw)

∣∣∣∣∣ (8.26)

≤
D∑
i=1

∣∣zi((ΦΨ.,i)
T (Φw)−Ψ.,iw)

∣∣ (8.27)

≤ εprj√
k
‖w‖

D∑
i=1

|zi| . (8.28)

There are at most k non-zero zi and
∑D

i=1 z
2
i = ‖x‖. Therefore we must have∑D

i=1 |zi| ≤
√
k ‖x‖. We thus get:

Pr
Φ∼μΦ

{
∀x ∈ XD

k :
∣∣(Φx)T (Φw)− xTw

∣∣ ≤ εprj ‖x‖ ‖w‖
}
≥ 1− (4D + 2)e−dε2prj/48k,

(8.29)

which proves the Theorem by solving for ξ.
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8.4.2 Proof of Theorem 8.2

Proof of Theorem 8.2. Recall that by definition f(x) def
= xTw + bf (x). Define the

bias due to projection as follows:

bprj(x)
def
= xTw − (Φx)T (Φw) (8.30)

Using Theorem 8.1 we get that:

Pr
Φ∼μΦ

{
∀x ∈ XD

k : |bprj(x)| ≤ εprj ‖x‖ ‖w‖
}
≥ 1− ξprj, (8.31)

Adding the bias into the training set in Equation 8.5, we have the projected

training set:

y = (XΦ)T (Φw) + bprj + bf + η, (8.32)

such that for all i: |(bprj)i| ≤ εprj ‖xi‖ ‖w‖ and |(bf )i| ≤ εf ‖xi‖ ‖w‖. Combining

the bias terms we have:

y = (XΦ)T (Φw) + b+ η, (8.33)

where we have ∀i : |bi| ≤ (εf + εprj) ‖xi‖ ‖w‖. Therefore for the COLS solution we

have:

ŵΦ = (XΦT )†y (8.34)

= (XΦT )†
(
(XΦ)T (Φw) + b+ η

)
(8.35)

= Φw + (XΦT )†b+ (XΦT )†η. (8.36)

120



Thus for all x ∈ X we have the error:

∣∣f̂(x)− fΦ(x)∣∣ = ∣∣(Φx)T ŵΦ − (xTw + bf (x))
∣∣ (8.37)

≤
∣∣(Φx)T

(
Φw + (XΦT )†b+ (XΦT )†η

)
− xTw

∣∣+ εf ‖x‖ ‖w‖ (8.38)

≤
∣∣(Φx)T (XΦT )†b

∣∣+ ∣∣(Φx)T (XΦT )†η
∣∣+ ∣∣(Φx)T (Φw)− xTw

∣∣+ εf ‖x‖ ‖w‖

(8.39)

≤
∣∣(Φx)T (XΦT )†b

∣∣+ ∣∣(Φx)T (XΦT )†η
∣∣+ (εprj + εf ) ‖x‖ ‖w‖ . (8.40)

Line 8.38 uses the bound on the original bias bf , and line 8.40 uses the bound on

bprj described in Equation 8.31. For the first term of line 8.40 (part of prediction

bias) on the right hand side, using ∀i : |bi| ≤ (εf + εprj) ‖xi‖ ‖w‖ we have:

∣∣(Φx)T (XΦT )†b
∣∣ ≤ ∥∥(Φx)T (XΦT )†

∥∥ ‖b‖ (8.41)

≤
∥∥(Φx)T (XΦT )†

∥∥ ‖X‖F ‖w‖ (εf + εprj). (8.42)

For the second term in line 8.40 (prediction variance), we have that the expec-

tation of E
η∼N (0,σ2

ηI)

[
(Φx)T (XΦT )†η

]
= 0, as η is independent of data and its

expectation is 0. We also know that it is a weighted sum of normally distributed

random variables, and thus is normal with the variance:

Var
η∼N (0,σ2

ηI)

[
(Φx)T (XΦT )†η

]
= E

η∼N (0,σ2
ηI)

[
(Φx)T (XΦT )†ηηT ((XΦT )†)TΦx

]
(8.43)

= σ2
η(Φx)T (XΦT )†((XΦT )†)TΦx (8.44)

= σ2
η

∥∥(Φx)T (XΦT )†
∥∥2 , (8.45)
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where in line 8.44 we used the i.i.d. assumption on the noise. Thereby we can

bound
∣∣(Φx)T (XΦT )†η

∣∣ by the tail probability of the normal distribution as

needed. Using a standard upper bound on the tail probability of normals, for any

0 < ξvar ≤
√
2/eπ:

Pr
η∼N (0,σ2

ηI)

{∣∣(Φx)T (XΦT )†η
∣∣ ≤ ∥∥(Φx)T (XΦT )†

∥∥ ση
√

ln
2

πξ2var

}
≥ 1− ξvar. (8.46)

Substituting regression to the bias and the variance in Equation 8.40 proves the

lemma.

8.4.3 Proof of Theorem 8.3

We start by developing the following intermediate concentration lemmas based

on Theorem 4.4 for fast mixing Markov chains:

Lemma 8.4. Let f be a measurable function on X whose values lie in [0, b],

Z1:n ∼ Cn ∈ M(X n) be a homogeneous Markov chain, taking values in X with

forgetting time τ . Let f̄ = 1
n

∑n
i=1 f(Zi). For all 0 < ξ < 1:

Pr
Z1:n∼Cn

{
f̄ < 2 E f̄ +

4bτ

n
log

1

ξ

}
≥ 1− ξ. (8.47)

Proof. Since E [z] ≥ 0, using Theorem 4.4 we have for any ε > 0:

Pr
{
f̄ − 2 E f̄ ≥ ε

}
= Pr

{
f̄ − E f̄ ≥ E f̄ + ε

}
(8.48)

≤ exp

(
− (E f̄ + ε)2 n

2bτ(2 E f̄ + ε)

)
(8.49)

≤ exp

(
−(E f̄ + ε)n

4bτ

)
(8.50)

≤ exp
(
− ε n
4bτ

)
. (8.51)
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The lemma follows by solving for ε.

Lemma 8.5. Under the same conditions as in Lemma 8.4, for any 0 < ξ < 1:

Pr
Z1:n∼Cn

{
E f̄ < 2f̄ +

8bτ

n
log

1

ξ

}
≥ 1− ξ. (8.52)

Proof. Since E [z] ≥ 0, using Theorem 4.4 we have for any ε > 0:

Pr
{
E f̄ − 2f̄ ≥ ε

}
= Pr

{
E f̄ − f̄ ≥ (E f̄ + ε)/2

}
(8.53)

≤ exp

(
−(E f̄ + ε)2 n

8bτ E f̄

)
(8.54)

≤ exp

(
−(E f̄ + ε)n

8bτ

)
(8.55)

≤ exp
(
− ε n
8bτ

)
. (8.56)

The lemma follows by solving for ε.

Error Decomposition

We use a similar decomposition of the error as in the proof of Theorem 8.2.

Using Theorem 8.1 on the space XD
k we have:

y = (XΦT )(Φw) + b+ η, (8.57)

such that for all i: |bi| ≤ εprj ‖xi‖ ‖w‖ with probability 1− ξ/4 (with the definition

of εprj in Theorem 8.3). b is the vector of bias due to the projection. The weighted
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�2 error in regression will thus be:

∥∥∥f̂Φ(x)− f(x)∥∥∥
ρ
=
∥∥(Φx)T (XΦT )†

(
(XΦT )(Φw) + b+ η

)
− xTw

∥∥
ρ

=
∥∥(Φx)T (Φw) + (Φx)T (XΦT )†b+ (Φx)T (XΦT )†η − xTw

∥∥
ρ

≤
∥∥(Φx)T (Φw)− xTw

∥∥
ρ
+
∥∥(Φx)T (XΦT )†b

∥∥
ρ
+
∥∥(Φx)T (XΦT )†η

∥∥
ρ

≤ εprj ‖x‖ρ ‖w‖+
∥∥(Φx)T (XΦT )†b

∥∥
ρ
+
∥∥(Φx)T (XΦT )†η

∥∥
ρ

(8.58)

The second term of Equation 8.58 is the regression to the bias, and the third term

is the regression to the noise. We next present lemmas that bound these terms.

Throughout this section we use the notation ‖·‖n
def
= ‖·‖U({xi}) to be the weighted �2

norm uniform on the sample set X.

Bounding the Regression to Bias Terms

Lemma 8.6 (Bounding regression to the bias). Assume the conditions of

Theorem 8.3 and assume ∀x ∈ XD
k :

∣∣(Φx)T (Φw)− xTw
∣∣ ≤ εprj ‖x‖ ‖w‖. Let b be

the bias vector in Equation 8.57. For any 0 < ξ < 1:

Pr
{(xi,ηi)}ni=1∼Cn

{∥∥(Φx)T (XΦT )†b
∥∥
ρ
≤αεprj ‖w‖

(
‖x‖ρ + 4.3 ‖x‖n

)√ 1

dν

+ αεprj ‖w‖

√
4dτ

nν
log

9d

ξ

}
≥ 1− ξ/4.

(8.59)

Proof. Define wb = (XΦ)†b. We start by bounding the empirical norm∥∥(Φx)Twb

∥∥
n
. Given that XΦTwb is the OLS regression to the bias on the ob-

served points, its sum of squared errors should not be greater than any other linear

regression, including the vector 0, and thus
∥∥(Φx)Twb − bprj(x)

∥∥
n
≤ ‖bprj(x)‖n.
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Therefore we get:

∥∥(Φx)Twb

∥∥
n
≤
∥∥(Φx)Twb − bprj(x)

∥∥
n
+ ‖bprj(x)‖n (8.60)

≤ 2 ‖bprj(x)‖n (8.61)

≤ 2εprj ‖w‖ ‖x‖n . (8.62)

Let W = {u ∈ R
d s.t. ‖u‖ ≤ 1}. Let Wε ⊂ W be an ε-grid cover of W:

∀v ∈ W : ∃u ∈ Wε s.t. ‖u− v‖ ≤ ε. (8.63)

It is easy to prove (see e.g. Chapter 13 of Lorentz et al. (1996)) that these

conditions can be satisfied by choosing a grid of size |Wε| ≤ (3/ε)d (Wε fills

up the space within ε distance). Applying union bound to Lemma 8.5 with

f(x) = ((Φw)Tu)2 for all elements in Wε, we get with probability no less than

1− ξ/4, for all u ∈ Wε:

∥∥(Φx)Tu
∥∥2
ρ
≤ 2

∥∥(Φx)Tu
∥∥2
n
+

8α2τ

n
log

4|Wε|
ξ

, (8.64)

which yields the following after simplification:

∥∥(Φx)Tu
∥∥
ρ
≤ 2

∥∥(Φx)Tu
∥∥
n
+ α

√
8τ

n
log

4|Wε|
ξ

. (8.65)

Let w′
b = wb/ ‖wb‖. For any X, since w′

b ∈ W, there exists w′′ ∈ Wε such that

‖w′
b −w′′‖ ≤ ε. Therefore, under event in Equation 8.65, with the definition of α
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in Theorem 8.3 we have:∥∥(Φx)Twb

∥∥
ρ

‖wb‖
=
∥∥(Φx)Tw′

b

∥∥
ρ

(8.66)

≤
∥∥(Φx)T (w′

b −w′′)
∥∥
ρ
+
∥∥(Φx)Tw′′∥∥

ρ
(8.67)

≤ ‖Φx‖ρ ‖w′
b −w′′‖+

√
2
∥∥(Φx)Tw′′∥∥

n

+α
√
(8τ/n) log(4 |Wε|/ξ) (8.68)

≤ α ‖x‖ρ ε+
√
2
∥∥(Φx)T (w′′ −w′

b)
∥∥
n
+
√
2
∥∥(Φx)Tw′

b

∥∥
n

+α
√
(8τ/n) log(4 |Wε|/ξ) (8.69)

≤ α ‖x‖ρ ε+
√
2α ‖x‖n ε+

√
2
∥∥(Φx)Tw′

b

∥∥
n

+α
√
(8τ/n) log(4 |Wε|/ξ) (8.70)

≤
√
2
∥∥(Φx)Twb

∥∥
n
/ ‖wb‖

+αε(‖x‖ρ +
√
2 ‖x‖n) + α

√
(8τ/n) log(4 |Wε|/ξ). (8.71)

Line 8.68 uses Equation 8.65, and we use Equation 8.63 in lines 8.69 and 8.70.

Using the definition of wb , we have that:

‖wb‖ ≤
∥∥(XΦT )†

∥∥ ‖b‖ (8.72)

≤
∥∥(XΦT )†

∥∥ εprj ‖w‖ ‖X‖F (8.73)

≤ εprj ‖w‖
√

1/ν. (8.74)
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Thus, using Equation 8.62 and substituting ‖wb‖ in Equation 8.71, and letting

ε = 1/
√
d, we get:

∥∥(Φx)Twb

∥∥
ρ
≤
√
8εprj ‖w‖ ‖x‖n

+αεprj ‖w‖
(
‖x‖ρ +

√
2 ‖x‖n

)√ 1

dν

+αεprj ‖w‖

√
8τ

nν
log

4 |Wε|
ξ

. (8.75)

Using the properties of eigenvalues we have that dν ≤ trace(ΦXTXΦT/ ‖X‖F ) and

thus dν ≤ α2. Using 1 ≤
√
α2/dν, |Wε| ≤ (3

√
d)d and d ≥ 12 we get:

∥∥(Φx)Twb

∥∥
ρ
≤
√
8εprj ‖w‖ ‖x‖n

√
α2

dν

+αεprj ‖w‖
(
‖x‖ρ +

√
2 ‖x‖n

)√ 1

dν

+αεprj ‖w‖

√
8τ

nν
log

4(3
√
d)d

ξ
(8.76)

≤ αεprj ‖w‖
(
‖x‖ρ + (

√
2 +
√
8) ‖x‖n

)√ 1

dν

+αεprj ‖w‖

√
4dτ

nν
log

9d

ξ
. (8.77)

Bounding the Regression to Noise Terms

To bound the regression to the noise, we need the following lemma on

martingales:
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Lemma 8.7. Under the conditions of Theorem 8.3, let y be a vector of size n× 1,

in which row t is a function of xt. Then with probability 1− ξ we have:

|yTη| ≤ ηmax ‖y‖
√
2 log

2

ξ
. (8.78)

Proof. This is a simple application of generalized Azuma-Hoeffding concentration

inequality on martingales.

Lemma 8.8 (Bounding regression to the noise). Under the conditions of

Theorem 8.3:

Pr
{(xi,ηi)}ni=1∼Cn

{∥∥(xTΦ)(XΦ)†η
∥∥
ρ
≤ αηmax

‖x‖ρ
‖x‖n

√
2κd

nν
log

8d

ξ

}
≥ 1− ξ/4. (8.79)

Proof. For all i ∈ {1, . . . , d}, define the vector ed×1
i to have 1 on the ith row and be

0 elsewhere. Using union bound on Lemma 8.7, we have with probability no less

than 1− ξ/4:

∀i :
∣∣(eTi ΦXT )η

∣∣ ≤ ηmax

∥∥XΦT
∥∥
√

2 log
8d

ξ
. (8.80)
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For a fixed x, define zT = (Φx)T ((XΦT )T (XΦT ))−1. We have:

∣∣(Φx)T (XΦT )†η
∣∣ =

∣∣zT (XΦT )Tη
∣∣ (8.81)

=

∣∣∣∣∣
d∑

i=1

(zTei)(e
T
i ΦXT )η

∣∣∣∣∣ (8.82)

≤
d∑

i=1

∣∣zTei∣∣ ∣∣(eTi ΦXT )η
∣∣ (8.83)

≤ ηmax

∥∥XΦT
∥∥
√
2 log

8d

ξ
‖z‖1 (8.84)

≤ ηmax

∥∥XΦT
∥∥
√
2d log

8d

ξ
‖z‖ , (8.85)

where we used the inequality of Equation 8.80 in Line 8.84. We thus get:

∥∥(Φx)T (XΦT )†η
∥∥
ρ
≤ ηmax

∥∥XΦT
∥∥ ∥∥(Φx)T (ΦXTXΦT )−1

∥∥
ρ

√
2d log

8d

ξ
(8.86)

≤ α ηmax ‖x‖ρ
∥∥XΦT

∥∥ ∥∥(ΦXTXΦT )−1
∥∥
√
2d log

8d

ξ
(8.87)

≤ αηmax

‖x‖ρ
‖x‖n

√
2κd

nν
log

8d

ξ
. (8.88)

In Line 8.88, we used the relations between operator norms and eigenvalues of the

normalized gram matrix.

Combining the Bounds

Proof of Theorem 8.3. To prove the theorem, we start by an application of

Lemma 8.4 to f(x) = ‖x‖2. Assume ∀x ∈ XD
k : ‖x‖2 ∈ [a, b]. We get:

Pr
{(xi,ηi)}ni=1∼Cn

{
‖x‖2n ≤ 2 ‖x‖2ρ +

4bτ

n
log

8

ξ

}
≥ 1− ξ/8. (8.89)
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Using the condition on n from Theorem 8.3, we have that 4bτ
n

log 1
ξ
≤ a ≤ ‖x‖2ρ.

We thus get:

Pr
{(xi,ηi)}ni=1∼Cn

{
‖x‖2n ≤ 3 ‖x‖2ρ

}
≥ 1− ξ/8. (8.90)

With a similar argument using Lemma 8.5, we have:

Pr
{(xi,ηi)}ni=1∼Cn

{
‖x‖2ρ ≤ 4 ‖x‖2n

}
≥ 1− ξ/8. (8.91)

We also apply Theorem 8.1 with failure probability ξ/4. With the definition of εprj

in Theorem 8.3, we have:

Pr
Φ∼μΦ

{
∀x ∈ XD

k :
∣∣(Φx)T (Φw)− xTw

∣∣ ≤ εprj ‖x‖ ‖w‖
}
≥ 1− ξ/4 (8.92)

We now union bound over Equations 8.90, 8.91, 8.92, regression to bias Lemma 8.6

and regression to noise Lemma 8.8. Substituting the bounds into the error

composition of Equation 8.58 we have with probability 1− ξ:

∥∥∥f̂Φ(x)− f(x)∥∥∥
ρ
≤ εprj ‖w‖ ‖x‖ρ +

∥∥(Φx)T (XΦT )†b
∥∥
ρ
+
∥∥(Φx)T (XΦT )†η

∥∥
ρ

≤ εprj ‖w‖ ‖x‖ρ

+ αεprj ‖w‖
(
‖x‖ρ + 4.3

√
3 ‖x‖ρ

)√ 1

dν
+ αεprj ‖w‖

√
4dτ

nν
log

9d

ξ

+ αηmax
2 ‖x‖n
‖x‖n

√
2κd

nν
log

8d

ξ
. (8.93)
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Since α ≥ 1, we can simplify the above as follows:

∥∥∥f̂Φ(x)− f(x)∥∥∥
ρ
≤10αεprj ‖w‖ ‖x‖ρ

√
1

dν

+ 2αεprj ‖w‖

√
dτ

nν
log

9d

ξ
+
√
8αηmax

√
κd

nν
log

8d

ξ
. (8.94)

8.5 Empirical Evaluations

In this section, we aim to elucidate the conditions under which random

projections are useful in sparse regression problems. This section only evaluates

the effectiveness of compressed regression in the i.i.d. data collection setting with

Gaussian noise. In the next chapter, we develop methods and empirical evaluations

for compressed regression in non-i.i.d. settings.

We start with synthetic regression datasets, in which the input vectors are

sampled from a 1000-dimensional feature space (D = 1000), and at most 5% of

the features are non-zero in any particular instance (k = 50). The target function

is linear in the input features. The weight vector w of the target function is

generated randomly from a normal distribution with diagonal covariance matrix.

The details of the number of samples and the choice of the weight vector are varied

in different test-cases.

8.5.1 Bias–Variance Trade-off

In order to be faithful to the worst-case theoretical analysis of Theorem 8.2,

we study the bias–variance trade-off using the maximum squared-error on the

training set (on-sample error) and testing set (off-sample error), as a function of
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the projection size, in different noise settings. To do so, we generate weight vectors

w for the target function, in which each component is drawn independently from a

normal distribution. Ten of the weights are generated using a larger variance, such

that 80% of the norm of w is on those elements. This relatively sparse choice of

w helps to illustrate the trade-off, as we discuss later. The features of the training

and testing instances are also independently normally distributed on k randomly

chosen elements and are 0 elsewhere. Both the input values and the weight vector

are of expected norm 1.

We consider two settings. In the first setting, the training set is smaller than

the number of original dimensions (n < D), while in the second, there are more

training examples than the number of dimensions (n > D). In each setting, we

generate different levels of noise, quantified by the ratio between the standard

deviation of the noise and that of the target function on the training set (similar to

the concept of signal-to-noise ratio from signal processing). We plot the maximum

squared error as a function of the dataset size.

Figure 8–1 summarizes the trade-off, averaged over 100 runs, when the

training and testing sets are of size n = 800. Even though OLS is not well defined

in the original space when n < D, we can still use the pseudo-inverse of the input

matrix to find the linear fit, among many possible solutions, that has the smallest

norm for the weight vector (for convenience, we call this the OLS solution here).

Because we are using a relatively sparse w, we might get a fit that is better than

the baseline constant predictor (i.e. projection of size 0). Figure 8–2 shows a

132



0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

Projection Size

M
ax

 S
qu

ar
ed
−E

rr
or

 

 
Off−Samp COLS
On−Samp COLS
Off−Samp OLS

(a) Noise ratio = 0.3.
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(b) Noise ratio = 1.1.
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(c) Noise ratio = 3.0. OLS error � 0.29.

Figure 8–1: Error vs. projection size when n = 800 is less than D = 1000.

similar analysis for training sets slightly larger than the number of dimensions

(n = 2000).

For small noise levels (Figures 8–1a and 8–2a), OLS in the original space

works well and the plot shows a constant decrease in the error of the COLS

predictor as we use larger random projections. In these cases, one should use as

many features as possible (depending on the computational cost) for regression.
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(a) Noise ratio = 1.1.
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(b) Noise ratio = 2.4.

0 100 200 300 400 500
0.01

0.02

0.03

0.04

0.05

0.06

Projection Size

M
ax

 S
qu

ar
ed
−E

rr
or

 

 

Off−Samp COLS
On−Samp COLS

(c) Noise ratio = 5.0. OLS error � 0.40.

Figure 8–2: Error vs. projection size when n = 2000 is more than D = 1000.

As we increase the noise level (Figures 8–1b and 8–2b), the bias–variance

trade-off becomes apparent. Here we see that it is better to use random projec-

tions of intermediate size to optimize the trade-off. Finding the optimal projection

size might be a challenge in practice. Error bounds such as the ones presented

in this work give clues on the existence and values of such optimal sizes; or, one

can use cross-validation to find the optimal projection size, as illustrated in these

experiments.
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Higher noise levels (Figures 8–1c and 8–2c) make the prediction problem

impossible to solve, in which case the best regression is the constant baseline

predictor. Note that the OLS solution in this case is significantly worse, so we do

not plot it in order to keep the panels on the same scale.

We can conclude from this experiment that when the problem is not too easy

(almost noiseless), or too difficult (with large noise), random projections of sizes

smaller than the number of dimensions provide the optimal worst-case error rates.

Even in the noiseless setting, if D is very large, we might still want to use random

projection as a form of feature selection/extraction, instead of �1 regularization

methods, which are significantly more computationally expensive (Efron et al.,

2004).

8.5.2 Sparsity of Linear Coefficients

Next, we analyze the effect of the sparsity of the linear weight vector (rather

than the sparsity of the inputs) on the worst-case prediction error. In this exper-

iment, we fix the noise ratio and observe the bias–variance trade-off as we change

the level of sparsity in the linear coefficients. We use a similar setting as described

in the previous experiment. We generate the weight vector w by sampling from

a Gaussian distribution with mean zero and unit diagonal covariance matrix, and

then scale 10 of its elements such that they account for 50%, 70% and 90% of the

norm of w. The trade-off on the worst-case testing error and the error of the OLS

predictor on the original and compressed space are shown in Figure 8–3.

The results indicate that the trade-off is present even when we use less

concentrated weight vectors. However, random projections seem to have higher
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Figure 8–3: Error vs. projection size for different concentration of w, when
n = 2000, D = 1000 and the noise ratio = 2.4.

effectiveness in the reduction of prediction error for highly concentrated weight

vectors. This could be due to the fact that in the current setup, the inner-product

between w and points in a sparse space is better preserved when w is sparse itself.

Nevertheless, for a problem having large enough number of samples and features,

the trade-off is expected to be apparent even for non-concentrated weight vectors,

as the theory suggests.

8.5.3 Music Similarity Prediction

To assess the effectiveness of random projections as means of feature extrac-

tion for regression in high-dimensional spaces, we experiment with a music dataset

for a similarity prediction task. The task is to predict the similarity between tracks

of classical music using audio analysis. The internet radio service Last.fm (2014),

provides a similarity measure between different tracks in its music database, which

is calculated using the listening patterns from the users and the co-presence of
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tracks in playlists. For newly added songs, however, this value is unknown, and

thus a predictor might be very useful for music recommendation or automatic

playlist generation.

The regression problem is constructed as follows. We analyze 30 second audio

samples of music tracks and apply frequency analysis on each 200ms segment.

Scanning the entire dataset, we extract the top 50 common chords1 . Using those

chords, we then extract the top 1000 common chord progressions2 of up to 8

segments. Having this set, we can check whether or not each of these progressions

is present in a music track.

Our training set consists of pairs of music tracks along with a similarity score

between 0 and 1 which is provided by Last.fm. For each pair of tracks in our train-

ing set, we construct a set of binary features corresponding to the simultaneous

presence of a certain progression in track one, and another progression in track

two. Therefore, there are 1000 × 1000 = one million features for each training

example. Using random projections, we reduce the dimension and apply OLS in

the compressed space. We compare this with a naive baseline which randomly

chooses features from the original one million dimensional space and applies OLS

on the chosen features.

Figure 8–4 compares the mean squared-error of the discussed methods for the

training and testing sets, using ten-fold cross-validation on 2000 training samples.

1 Combinations of notes present in each segment.

2 Patterns of chords happening in a sequence.
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Figure 8–4: Error vs. number of features used for random projection and naive
feature selection on the music dataset.

We use the average here instead of max, as we do not have access to the true

target value and the worst case error contains a noise term.

The compressed regression method significantly outperforms the naive feature

selection method, even with relatively small projection sizes. We expect the

error of the naive OLS predictor to get minimized with a much larger number

of selected features; however, solving the OLS for these larger problems would

become computationally intractable.

This experiment shows that random projections can be useful in real world

prediction tasks with very large feature spaces, while incurring relatively small

computational cost. However, a more thorough analysis is required to compare this

approach with other commonly used feature extraction methods (e.g. LASSO-type

regression (Efron et al., 2004)), both in terms of error rates and computation

feasibility. In the next chapter, we provide a comparison with one of the few
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computationally feasible alternatives, namely LSQR (Paige and Saunders, 1982),

when working with time-dependent datasets in the RL domain.

8.6 Related Work

The analysis of regression with random compression has been done in different

settings with different assumptions on the feature space and sampling distribution.

Maillard and Munos (2009) provide an analysis without the sparsity assumption on

the feature space (later corrected in Maillard and Munos (2012)), and show that

the bias due to the projection can be controlled by changing the projection size.

They conclude that an optimal projection size should be of order O(
√
n). Their

bound, however, has a curious log(n) term in the bias that essentially grows with

the number of samples.

Recently developed bounds in the fixed design settings (where the dataset is

fixed and the error is calculated on the training set) avoid the log(n) term at the

expense of having the bound scale with 1/ξ rather than log(1/ξ) (Kabán, 2013,

2014). Further development in this direction using the newly developed method of

ridge regression analysis (Hsu et al., 2012) might be able to provide even tighter

bounds in the fixed design setting.

The extension to the random design setting, similar to the analysis of The-

orem 8.3, requires bounding the approximation error of linear regression in the

compressed space. We use RIP type conditions with sparsity constraints to bound

the approximation error of COLS on the sampling distribution. It is not clear if a

random design analysis can be done without constraining the input space or the

sampling distribution.
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We have further extended the analysis of Theorem 8.3 to develop an er-

ror bound when using Predictive State Representation (PSR) in compressed

spaces (Hamilton et al., 2013). PSRs are prediction models that can be formal-

ized in terms of regression operators, and thus the COLS analysis presented here

can be adapted to be used when working with PSRs with sparse transition mod-

els. We have also analysed PSRs when their linear operators have near-sparse

spectral structures and shown how one can obtain even tighter bounds in such

cases (Hamilton et al., 2014).

8.7 Discussion and Future Work

Theorem 8.2 gives an analysis on the worst-case prediction error of the OLS

estimator built on the space induced by random projections from sparse spaces.

We prove that random projections preserve the inner-product between sparse

features and any fixed vector. This shows that near-linearity is preserved after

the projection into smaller spaces, even for points that are never observed in the

training set.

Leveraging the sparsity assumption in the input space, unlike previous

analysis of random projection for regression tasks (Maillard and Munos, 2009,

2012), we provide worst-case bounds that hold regardless of the distribution of

the training or testing sets. Most noticeably, we do not require i.i.d. sampling or

similarity between the training and testing sets. This is particularly useful when

the regressor is expected to perform well on data that is not sampled from the

same distribution as the one on which it is trained (e.g. time series analysis and
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domain adaptation settings). The bound of Theorem 8.2 is, however, tighter when

the data is well distributed and covers most of the problem space.

Theorem 8.3 provides a much tighter bound when the input is sampled from

the same distribution that generated the data. Unlike the analysis of Maillard and

Munos (2009, 2012), we do not require an i.i.d. sampling distribution. Instead, we

assume the data is generated by a fast mixing Markov chain. This helps us use the

bound when working with dependent time series data. We use Theorem 8.3 in the

next chapter to analyse the performance of an RL value function estimator.

Under mild assumptions on the distribution of the training data, the bounds

of both Theorem 8.2 and Theorem 8.3 reduce to a bias–variance trade-off on

the prediction error, as a function of the projection size. Increasing the number

of projected features reduces the approximation error of the OLS estimator on

the induced space, but at the same time introduces some estimation error as the

number of learning parameters increases.

The optimal choice for the error trade-off depends on the structure of the

target function (sparsity of w), and the noise level. Our analysis suggests an

optimal projection size of Õ(
√
nk) for worst-case error minimization, resembling

the suggested size of Õ(
√
n) for on-measure error minimization by Maillard and

Munos (2009) (though their analysis is on-sample and with much larger constants).

Depending on the noise level, the minimizer of expected error might be out of

the feasible range of 1 ≤ d ≤ D. This is manifested in our empirical evaluation

of the method. With small noise, it is sometimes better to apply OLS on the

original space (or if not possible, use projections as large as computationally
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feasible). For large noise levels and relatively small sample sizes, we are often in

a situation where the best predictor is a constant one. Nevertheless, there is an

important range of problems for which the COLS prediction vastly outperforms

the prediction in the original space.

Our theoretical and empirical analysis of compressed OLS estimators provides

some level of understanding of the usefulness of random projections in regression

problems with sparse input signals. This sparsity is commonly observed in many

fields of machine learning. There are many areas of future work in this domain.

While �1 regularized regression is not applicable in domains with large feature

spaces due to its computational complexity, other types of linear estimators (e.g.

�2 regularized regression) should be analysed in the settings we examine. Some

empirical comparison to ridge regression with LSQR solver (Paige and Saunders,

1982) is provided in the next chapter.

Since linear predictors are the building blocks of many learning algorithms,

we expect random projections to be effective means of feature extraction when

working with high dimensional data in many other fields of machine learning.

These include the use of random projections in audio, video and time-series

analysis, or with LSTD-type algorithms for high-dimensional reinforcement

learning (Lazaric et al., 2010). In the next chapter, we study one such use of

compressed OLS in the context of value function approximation in reinforcement

learning.
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CHAPTER 9
Compressed Reinforcement Learning

Policy evaluation, i.e. computing the expected return of a given policy, is at

the core of many RL algorithms. In large problems, it is necessary to use function

approximation in order to perform this task; a standard choice is to hand-craft

parametric function approximators, such as a tile coding, radial basis functions or

neural networks. The accuracy of parametrized policy evaluation depends crucially

on the quality of the features used in the function approximator, and thus a lot

of time and effort is spent on this step. The desire to make this process more

automatic has led to significant recent work on feature generation and feature

selection in RL (e.g. Di Castro and Mannor (2010); Kolter and Ng (2009a); Keller

et al. (2006); Manoonpong et al. (2010); Geramifard et al. (2011))

An approach that offers good theoretical guarantees is to generate features

in the direction of the Bellman error of the current value estimates (Bellman

Error Based features, or BEBF). Successively adding exact BEBFs has been

shown to reduce the error of a linear value function estimator at a rate similar to

value iteration, which is the best one could hope to achieve (Parr et al., 2007).

Unlike fitted value iteration (Boyan and Moore, 1995), which works with a fixed

feature set, iterative BEBF generation gradually increases the complexity of the

hypothesis space by adding new features and thus does not diverge, as long as the

error in the generation does not cancel out the contraction effect of the Bellman
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operator (Parr et al., 2007). Several successful methods have been proposed

for generating features related to the Bellman error (Geramifard et al., 2011;

Di Castro and Mannor, 2010; Manoonpong et al., 2010; Parr et al., 2007; Keller

et al., 2006). In practice however, these methods can be computationally expensive

when applied in high dimensional input spaces.

With the emergence of more high-dimensional RL problems, it has become

necessary to design and adapt BEBF-based methods to be more scalable and

computationally efficient. In this chapter, we present an algorithm that uses the

idea of applying random projections specifically in very large and sparse feature

spaces. The idea is to iteratively project the original features into exponentially

lower-dimensional spaces. We then apply linear regression in the smaller spaces,

using temporal difference errors as targets, in order to approximate BEBFs.

We use the analysis of compressed linear regression from the previous chapter

and apply it to the BEBF linear approximation scenario to provide error bounds

for the resulting value function estimator. We also validate our proposed algorithm

by a set of empirical evaluations in a high dimensional RL problem.

9.1 Bellman-Error-Based Features Generation

Recall that for a given estimate of the value function V̂ π the Bellman error is

defined as:

eV̂ π(s)
def
= (TπV̂ π)(s)− V̂ π(s). (9.1)

Calculating the exact Bellman error requires full knowledge of the Bellman

operator Tπ. As discussed before, one way to estimate the value of eV̂ π(s) is

144



through the observed TD-errors. Recall that the TD-error of an estimated value

function V̂t at after observing the t-th transition and reward is defined as:

δt = Rt + γV̂t(St+1)− V̂t(St). (9.2)

It is easy to show that the expectation of the temporal difference at xt equals the

Bellman error at that point (Sutton and Barto, 1998). TD-errors are thus proxies

to estimating the Bellman error.

Several methods have been developed to estimate the Bellman error and

use it as a basis for value function approximation. Using temporal differences,

Menache et al. (2005) introduced two algorithms to construct basis functions

for linear function approximation. Keller et al. (2006) applied neighbourhood

component analysis as a dimensionality reduction technique to construct a low

dimensional state space based on TD-errors. In their work, they iteratively add

features that would help predict the Bellman error. Parr et al. (2007) later showed

that any BEBF extraction method with small angular error will provably tighten

the approximation error of the value function estimate.

Online BEBF extraction methods have also been studied in the RL literature.

The incremental Feature Dependency Discovery (iFDD) is a fast online algorithm

to extract non-linear binary features for linear function approximation (Geramifard

et al., 2011). In their work, one keeps a list of candidate features (non-linear

combination of two active features); the features most correlated with the TD-error

are then added to the approximator.
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We note that these algorithms, although theoretically interesting, are difficult

to apply to very large state spaces or need specific domain knowledge to generate

good features. The problem lies in the large estimation error when predicting

BEBFs in high-dimensional state spaces. Our proposed solution leverages the use

of simple random projections to alleviate this problem.

9.2 Compressed Bellman-Error-Based Features Generation

In this section, we propose a new method to generate BEBFs using linear

regression in a small space induced by random projections. We first project the

state features into a much smaller space and then regress a hyperplane to the

TD-errors. For simplicity, we assume that regardless of the current estimate of the

value function, the Bellman error is always linearly representable in the original

feature space. This seems like a strong assumption, but is true, for example, in

many discretized state-spaces, and is also likely to hold in very high dimensional

feature spaces1 .

Linear function approximators can be used to estimate the value of a given

state. Let Vm be an estimated value function described in a linear space defined

by a feature set {ψi}mi=1. Parr et al. (2007) show that if we add a new BEBF

ψm+1 = eVm to the feature set, (with mild assumptions) the approximation error

on the new linear space spanned by {ψi}m+1
i=1 shrinks by a factor of γ. They also

1 For the more general case, the analysis of BEBF generation can be done with
respect to the projected Bellman error (Parr et al., 2007). We assume linearity of
the Bellman error to simplify the derivations.
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show that if we can estimate the Bellman error within a constant angular error,

cos−1(γ), the error will still shrink.

Estimating the Bellman error by regressing to temporal differences in high-

dimensional sparse spaces can result in large prediction error. This is due to

the large estimation error of regression in high dimensional spaces. However, as

discussed in Theorem 8.1, random projections were shown to exponentially reduce

the dimension of a sparse feature space, only at the cost of a controlled constant

bias. A variance analysis along with proper mixing conditions can also bound

the estimation error due to the variance in MDP returns. The computational

cost of the estimation is also much smaller when the regression is applied in the

compressed space.

9.2.1 General CBEBF Algorithm

Theorem 8.3 provided an analysis for linear regression performed in a space

induced by random projections. We see that with sparse input features, we expect

random projections of sizes much smaller than the nominal dimensionality of the

problem to be sufficient for the sake of compressed linear regression.

In light of these results, we propose the Compressed Bellman Error Based

Feature Generation algorithm (CBEBF). The algorithm iteratively constructs

new features using compressed linear regression to the TD-errors, and uses these

features with a policy evaluation algorithm to update the estimate of the value

function. We assume our input space is featurized using a function ϕ. Therefore

ϕ(S) is the base feature vector of the state S. Instead of using ϕ(S) as the basis

147



for value function approximation, we construct the value function using generated

BEBFs in a compressed space.

Algorithm 1 CBEBF algorithm
Input: Sample of transitions Dn = {(St, At, Rt, S

′
t)}nt=1

Input: Base feature function ϕ : S → RD

Input: Number of BEBFs: m
Input: Projection size schedule: d1, d2, . . . , dm
Output: V : estimate of the value function

procedure CBEBF(Dn, ϕ,m, d1:m)
Initialize V1(S) to be 0 for all S ∈ S.
Initialize the set of CBEBF features Ψ← {}.
for i← 1 to m do

Calculate TD-errors: δt = rt + γVi(S
′
t)− Vi(St).

Generate random projection Φdi×D satisfying Equation 7.9.
Apply compressed regression (COLS) using projection Φ:

Let ŵdi×1
Φ be the OLS parameter in the compressed space,

using Φϕ(St) as inputs and δt as outputs.
Add êm(S)

def
= ŵT

ΦΦϕ(S) to Ψ.
Apply policy evaluation on feature sets Ψ to obtain Vi+1.

end for
return Vm

end procedure

In theory, the optimal number of BEBFs and the schedule of projection

sizes can be determined in advance. But we show in the next section that, under

certain conditions, logarithmic size projections should be enough to guarantee

the reduction of error in value function prediction at each step. This makes the

algorithm very attractive when it comes to computational and memory complexity,
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as the regression at each step is only on a small projected feature space. As we

discuss in our empirical analysis, the algorithm is fast and robust with respect to

the selection of parameters.

One can view the above algorithm as a model selection procedure that

gradually increases the complexity of the hypothesis space by adding more BEBFs

to the feature set. This means that the procedure has to be stopped at some point

to avoid over-fitting. This is relatively easy to do, as one can use a validation set

and compare the estimated values against the empirical returns. The generation of

BEBFs should stop when the validation error starts to rise.

9.2.2 Simplified CBEBF as Regularized Value Iteration

Note that in CBEBF, we can use any type of value function approximation

to estimate the value function in each iteration. To simplify the bias–variance

analysis and avoid multiple levels of regression, we present here a simplified version

of the CBEBF algorithm (SCBEBF). In the simplified version, instead of storing

generated features in each iteration, new features are added to the value function

approximator with constant weight 1. Therefore, the value estimate is simply the

sum of all generated BEBFs (i.e. Vi+1(S) =
∑

f∈Ψ f(S)).

As compared to the general CBEBF, the simplified version trivially has lower

computational complexity per iteration, as it avoids an extra level of regression

based on the features. It can also avoid storing all the generated features by

simply keeping the sum of all previously generated coefficients ΦT ŵΦ’s (since sum

of linear functions is a linear function).
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Algorithm 2 SCBEBF algorithm
Input: Sample of transitions Dn = {(St, At, Rt, S

′
t)}nt=1

Input: Base feature function ϕ : S → RD

Input: Number of BEBFs: m
Input: Projection size schedule: d1, d2, . . . , dm
Output: V : estimate of the value function

procedure SCBEBF(Dn, ϕ,m, d1:m)
Initialize value estimator coefficients wD×1 ← 0.
for i← 1 to m do

Calculate TD-errors: δt = rt + γwTϕ(S ′
t)−wTϕ(St).

Generate random projection Φdi×D satisfying Equation 7.9.
Apply compressed regression (COLS) using projection Φ:

Let ŵdi×1
Φ be the OLS parameter in the compressed space,

using Φϕ(St) as inputs and δt as outputs.
Update w← w +ΦT ŵΦ

end for
return V (S) = wTϕ(S)

end procedure
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It is important to note that once we use linear value function approximation,

the entire BEBF generation process can be viewed as a regularized value iteration

algorithm. Each iteration of the algorithm is a regularized Bellman backup which

is linear in the features. The coefficients of this linear backup are confined to a

lower-dimensional random subspace implicitly induced by the random projection

used in each iteration. Regularized value iteration with �1 and �2 regularization

employ a similar idea (Farahmand et al., 2009b,a). However, the regularization in

those methods can be characterized as bounding a norm of the regressed weight

vector, as opposed to optimizing in an unbounded lower-dimensional subspace.

9.3 Finite Sample Analysis of Simplified CBEBF

This section provides a finite sample analysis of the simplified CBEBF

algorithm. We first look at the error of the BEBF generated at each iteration

compared to the true Bellman error at that iteration. Using assumptions on

the Bellman error, we then extend the analysis to contraction of the error after

multiple iterations.

In order to provide such analysis, we need to have an assumption on the

range of observed TD-errors. This is usually possible by assuming that the current

estimate of the value function is bounded, which is easy to enforce by truncating

any estimate of the value function between 0 and Vmax = Rmax/(1− γ).

The following theorem, based on the fast-mixing framework of Theorem 8.3,

shows how well we can estimate the Bellman error by regression to the TD-errors

in a compressed space. It highlights the bias–variance trade-off with respect to

151



the choice of the projection size. As stated before, to simplify the derivations, we

assume that the true Bellman error e(S) is linear in the features ϕ(S).

Theorem 9.1. Let Φd×D ∼ μΦ with D > d ≥ 12 be a random projection

that satisfies the concentration of measure inequality of Equation 7.9. Assume

for all s ∈ S: ϕ(s) ∈ XD
k and V̂ (s) ∈ [0, Vmax]. Let êΦ(s)

def
= ŵT

ΦΦϕ(s)

be the CBEBF estimator of the Bellman error e(s) def
= wTϕ(s) of V̂ . Assume

Dn = {(St, At, Rt, S
′
t)}nt=1 is generated from a Markov chain Cn, resulting from a

sampling policy π, with forgetting time τ and stationary distribution ρ(S) on the

states. For any 0 < ξ < 1/4, if n ≥ 4
supS∈S‖ϕ(S)‖2

infS∈S‖ϕ(S)‖2
ln 8

ξ
:

Pr
Φ∼μΦ
Dn∼Cn

{
‖êΦ(S)− e(S)‖ρ ≤ εbias + εvar

}
≥ 1− ξprj, (9.3)

defining:

εbias = 10αεprj ‖w‖ ‖ϕ(S)‖ρ

√
1

dν
, (9.4)

εvar = 2αεprj ‖w‖

√
dτ

nν
log

9d

ξ
+ 4
√
2αVmax

√
κd

nν
log

8d

ξ
(9.5)

εprj =

√
48k

d
ln

16D + 8

ξ
, (9.6)

α = max

(
1,max

s∈S
‖Φϕ(s)‖ / ‖ϕ(s)‖

)
, (9.7)

where κ and ν are the condition number and the smallest positive eigenvalue of

1
‖X‖F

ΦXTXΦT , and Xn×D is the ϕ-feature matrix of Dn.
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Proof. Define ηt
def
= δt − e(St). Since V̂ (s) ∈ [0, Vmax], we have |ηt| ≤ 2Vmax. The

noise terms have also conditional mean 0 and form a martingale difference series.

Forming a chain {(ϕ(St), ηt)}nt=1, we apply Theorem 8.3 to get the bound.

Similar to the analysis of Theorem 8.3, we can simplify the bound of Theo-

rem 9.1 with similar assumptions on the distribution of the features. The bound

reduces to:

Õ

(
‖w‖ ‖ϕ(S)‖ρ

√
k logD

d

)
+ Õ

(
d√
n

)
. (9.8)

Similarly, the first term is a part of the excess approximation error and the second

is the estimation error. We observe a trade-off with respect to the compressed

dimension d. With the assumptions discussed before, we can see that projection of

size d = Õ(k logD) should be enough to guarantee arbitrarily small bias, as long

as ‖w‖ ‖ϕ(S)‖ρ is small. Thus, the bound is tight enough to prove reduction in the

error as new BEBFs are added to the feature set.

The dependence on the norm of w is conjectured to be tight by the com-

pressed sensing literature (Davenport et al., 2010), making this bound asymptot-

ically the best one can hope for. This dependence also points out an interesting

link between our method and �2-regularized LSTD. We expect ridge regression to

be favourable in cases where the norm of the weight vector is small. The upper

bound on the error of compressed regression is also smaller when the norm of w is

small. Kabán (2013, 2014) provides some discussion on the connections between

ridge regression and compressed regression in the fixed design setting.
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As mentioned before, our simplified version of the algorithm does not store the

generated BEBFs (such that it could later apply value function approximation over

them). It adds up all the features with weight 1 to approximate the value function.

Therefore our analysis is different from that of Parr et al. (2007). The following

lemma (adaptation of results in Parr et al. (2007)) provides a sufficient condition

for the shrinkage of the error in the value function prediction:

Lemma 9.2. Let V π be the value function of a policy π imposing stationary

measure ρ in states, and let eV be the Bellman error under policy π for an estimate

V . Given a BEBF êV satisfying:

‖êV (S)− eV (S)‖ρ ≤ ε ‖eV (S)‖ρ , (9.9)

we have that:

‖V π(S)− (V (S) + êV (S))‖ρ ≤ (γ + ε+ εγ) ‖V π(S)− V (S)‖ρ . (9.10)

The proof is included in Section 9.4. Note that the above shows a sufficient

condition for a (γ + ε + εγ)-contraction in the error after each iteration of the

SCBEBF algorithm. Theorem 9.1 (simplified in Equation 9.8) does not state the

error in terms of ‖eV (S)‖ρ =
∥∥wTϕ(S)

∥∥
ρ
, as needed by this lemma, but rather

does it in terms of ‖w‖ ‖ϕ(S)‖ρ. Therefore, if there is a large gap between these

terms, we cannot expect to see shrinkage in the error (we can only show that the

error can be shrunk to a bounded uncontrolled constant). Ghavamzadeh et al.

(2010) and Maillard and Munos (2012, 2009) provide some discussion on the cases

were
∥∥wTϕ(S)

∥∥
ρ

and ‖w‖ ‖ϕ(S)‖ρ are expected to be close. These cases include
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when the features are rescaled orthonormal basis functions and also with specific

classes of wavelet functions.

The following lemma (proved in Section 9.4) finishes the analysis of error

shrinkage in SCBEBF algorithm, using assumptions on the behaviour of the

‖w‖ ‖ϕ(S)‖ρ term.

Lemma 9.3. Assume the conditions of Theorem 9.1. Further assume for some

constants c1, c2, c3 ≥ 1:

‖w‖ ≤ c1
∥∥wTϕ(S)

∥∥
ρ

and ‖ϕ(S)‖ρ ≤ c2
∥∥wTϕ(S)

∥∥
ρ

and 1/ν ≤ c3d,

There exist universal constants c4 and c5, such that for any γ0 ∈ (γ, 1) and

ξ ∈ (0, 1/4), if:

d ≥ α2c21c
2
2c3c4

(
1 + γ

γ0 − γ

)2

k log
D

ξ
and n ≥ (τ + α2c22c3δ

2
maxκ)c5

(
1 + γ

γ0 − γ

)2

d2 log
d

ξ
,

then with the addition of the estimated compressed BEBF êΦ, we have:

Pr
Φ∼μΦ
Dn∼Cn

{
‖V π(S)− (V (S) + êΦ(S))‖ρ ≤ γ0 ‖V π(S)− V (S)‖ρ

}
≥ 1− ξ. (9.11)

Lemma 9.3 shows that with enough sampled transitions, using random

projections of size d = Õ
(
( 1+γ
γ0−γ

)2k log D
ξ

)
guarantees contraction in the error by

a factor of γ0. Using union bound over m iterations of the algorithm, we prove

that projections of size d = Õ
(
( 1+γ
γ0−γ

)2 log mD
ξ

)
and a sample of transitions of size

n = Õ
(
( 1+γ
γ0−γ

)2d2 log md
ξ

)
are enough to shrink the error by a factor of γm0 after m

iterations.
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9.4 Proof of SCBEBF Error Lemmas

Proof of Lemma 9.2. We have that V π is the fixed point to the Bellman operator

(i.e. TπV π = V π), and that the operator is a contraction with respect to the

weighted �2 norm on the stationary distribution ρ (Van Roy, 1998):

‖TπV (S)− T
πV ′(S)‖ρ ≤ γ ‖V (S)− V ′(S)‖ρ . (9.12)

We thus have:

‖V π(S)− (V (S) + êV (S))‖ρ (9.13)

≤ ‖V π(S)− T
πV (S)‖ρ + ‖(TπV (s)− V (s))− êV (S)‖ρ (9.14)

≤ ‖TπV π(S)− T
πV (S)‖ρ + ε ‖TπV (S)− V (S)‖ρ (9.15)

≤ γ ‖V π(S)− V (S)‖ρ + ε ‖TπV (S)− T
πV π(S)‖ρ + ε ‖V π(S)− V (S)‖ρ (9.16)

≤ (γ + εγ + ε) ‖V π(S)− V (S)‖ρ . (9.17)

In Line 9.15 we used the error assumption of the lemma and the fix point property

of the Bellman operator.

Proof of Lemma 9.3. Let ε = (γ0−γ)/(1+γ), c4 = 25600 and c5 = 64. Substituting

d, and n into Theorem 9.1, with probability 1 − ξ we get after simplification:

‖êΦ(S)− eV (S)‖ρ ≤ ε ‖eV (S)‖ρ. Proof follows immediately by an application of

Lemma 9.2.

9.5 Empirical Evaluations

We conduct a series of experiments to evaluate the performance of our

algorithm and compare it against viable alternatives. Experiments are performed
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using a simulator that models an autonomous helicopter in the flight regime close

to hover (Ng et al., 2006). Our goal is to evaluate the value function associated

with the manually tuned policy provided with the simulator. We let the helicopter

free fall for 5 time-steps before the policy takes control. We then collect 100

transitions while the helicopter hovers. We run this process multiple times to

collect more trajectories on the policy.

The original state space of the helicopter domain consists of 12 continuous

features. 6 of these features corresponding to the velocities and position, capture

most of the data needed for policy evaluation. We use tile-coding on these 6

features as follows: 8 randomly positioned grids of size 16× 16× 16 are placed over

forward, sideways and downward velocity. 8 grids of similar structure are placed

on features corresponding to the hovering coordinates. The constructed feature

space is thus of size 65536. Note that our choice of tile-coding for this domain is

for demonstration purposes.

Since the true value function is not known in our case, we evaluate the

performance of the algorithm by measuring the normalized return prediction error

(NRPE) on a large test set. Let U(Si) be the empirical return observed for Si

in a testing trajectory, and Ū be its average over the testing measure μ(S). We

define NRPE(V ) = ‖U(S)− V (S)‖μ /
∥∥U(S)− Ū∥∥

μ
. Note that the best constant

predictor has NRPE = 1.

We start by an experiment to observe the behaviour of the prediction error

in SCBEBF as we run more iterations of the algorithm. We collect 3000 sample

transitions for training. We experiment with 3 schedules for the projection size:
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(1) Fix d = 300 for 300 steps. (2) Fix d = 30 for 300 steps. (3) Let d decrease with

each iteration i: di
def
= �300e−i/30�.

Figure 9–1 shows the error averaged over 5 runs. When d is fixed to a large

number, the prediction error drops rapidly, but then rises due to over-fitting. This

problem can be mitigated by using a smaller fixed projection size at the cost of

slower convergence. In our experiments, we find a gradual decreasing schedule to

provide fast and robust convergence with minimal over-fitting effects.
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Figure 9–1: NRPE of SCBEBF for n = 3000 and different number of projections,
under different choices of d, averaged over 5 runs. 95% confidence intervals of the
averages are tight (less than 0.005 in width) and are not shown.

We next compare SCBEBF against other alternatives. There are only a few

methods that can be compared against our algorithm due to the high dimensional

feature space. We compare against Compressed LSTD (CLSTD) (Ghavamzadeh

et al., 2010), �2-Regularized LSTD using a Biconjugate gradient solver (L2-

LSTD), and �1-Regularized LSTD using LARS-TD (Kolter and Ng, 2009a) with a
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Biconjugate gradient solver in the inner loop (L1-LSTD). These conjugate gradient

solvers exploit the sparsity of the feature space to converge faster to the solution of

linear equations (Barrett et al., 1987). We avoided online and stochastic gradient

type methods as they are not very efficient in sample complexity.

We compare the described methods while increasing the size of the training

set. The projection schedule for SCBEBF is set to d = �500e−i/300� for all sample

sizes 2 . The regularization parameter of L2-LSTD was chosen among a small set

of values using 1/5 of the training data as validation set. Due to memory and time

constraints, the optimal choice of parameters could not be set for CLSTD and

L1-LSTD. The maximum size of projection for CLSTD and the maximum number

of non-zero coefficients for L1-LSTD was set to 3000. CLSTD would run out of

memory and L1-LSTD would take multiple hours to run if we increase these limits.

The results, averaged over 5 runs, are shown in Figure 9–2. We see that L2-

LSTD outperforms other methods, closely followed by SCBEBF. Not surprisingly,

L1-LSTD and CLSTD are not competitive here as they are suboptimal with the

mentioned constraints. This is a consequence of the fact that these algorithms

scale worse with respect to memory and time complexity.

We conjecture that L2-LSTD is benefiting from the sparsity of the features

space, not only in running time (due to the use of conjugate gradient solvers), but

also in sample complexity. This makes L2-LSTD an attractive choice when the

2 The schedule of the projection sizes is different from the first experiment since
the training sets can be larger
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Figure 9–2: Right: Comparison of the prediction error of different methods for
varying sample sizes. 95% confidence intervals of averages are tight (less than
0.005 in width) and are not shown.

features are observed in the sparse basis. However, if the features are sparse in

some unknown basis (observation is not sparse), then the time complexity of any

linear solver in the observation basis can be prohibitive. SCBEBF, however, scales

much better in such cases as the main computation is done in the compressed

space.

To highlight this effect, we construct an experiment in which we gradually

increase the number of non-zero features using a change of basis. This is done

by partitioning the features into random blocks and multiplying each block by

a randomly generated basis. The size of these blocks will influence the observed

sparsity of the features. Note that since we only apply a change of basis to

the features, the error of both L2-LSTD and SCBEBF remain unchanged as
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Figure 9–3: Runtime of L2-LSTD and SCBEBF with varying observation sparsity.

predicted by the theory. We thus only compare the running times as we change the

observation sparsity.

Figure 9–3 shows the CPU time used by each methods with sample size of

3000, averaged over 5 runs (using Matlab on a 3.2GHz Quad-Core Intel Xeon

processor). We run 100 iterations of SCBEBF with d = �300e−i/30� (as in the

first experiment), and set the regularization parameter of L2-LSTD to the optimal

value. We can see that the running time L2-LSTD quickly becomes prohibitive

with the decreased observation sparsity, whereas the running time of SCBEBF

grows very slowly (and provably linearly) with the number of non-zero features.

9.6 Related Work

Random projections have been studied extensively in signal processing (Can-

dès et al., 2006; Candès and Wakin, 2008) as well as machine learning (Mail-

lard and Munos, 2012, 2009; Zhou et al., 2007). In reinforcement learning,

Ghavamzadeh et al. (2010) have used random projections in conjunction with
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LSTD and have shown that this can reduce the estimation error, at the cost of a

controlled bias.

Instead of compressing the feature space for LSTD, we focus on the BEBF

generation setting, which offers better scalability and more flexibility in practice.

Our algorithm is well suited for sparse feature spaces, naturally occurring in

domains with audio and video inputs (Olshausen et al., 2001), and also in tile-

coded and discretized spaces.

Compared to other regularization approaches to RL (Kolter and Ng, 2009a;

Farahmand et al., 2009b; Johns et al., 2010), our random projection method does

not require complex optimization, and thus is faster and more scalable. If features

are observed in the sparse basis, then conjugate gradient solvers can be used for

regularized value function approximation. However, CBEBF seems to have better

performance with smaller sample sizes and provably works under any observation

basis.

We have also applied compressive regression to the PSR learning problem,

along with the commonly used spectral learning methods used for learning the

PSR parameters (Hamilton et al., 2013). An extended analysis shows that with

the typical sparse structure in PSR dynamical models, we can gain both in

computational and sample complexity by applying regression in a compressed

space (Hamilton et al., 2014).

9.7 Discussion and Future Work

This chapter introduced a simple, fast and robust feature extraction algorithm

for policy evaluation in sparse and high dimensional state spaces. Using recent
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results on the properties of random projections, we prove that in sparse spaces,

random projections of sizes logarithmic in the original dimension are sufficient to

preserve linearity. Therefore, BEBFs can be generated on compressed spaces in-

duced by small random projections. Our finite sample analysis provides guarantees

on the reduction in prediction error after the addition of such BEBFs.

Our assumption of the linearity of the Bellman error in the original feature

space might be too strong for some problems. This assumption is used to simplify

the analysis. However, most of the discussion can be rephrased in terms of the

projected Bellman error, and we expect this approach to carry through and provide

more general results (e.g. see Parr et al. (2007)).

Our empirical analysis on a high dimensional space with unknown true value

function shows that CBEBF vastly outperforms LSTD with random projections

and easily scales to large problems. It is also more consistent (i.e., has lower vari-

ance) and has a much smaller memory complexity. Both methods are significantly

more sample-efficient than gradient-based TD methods. We expect this behaviour

to be common for many RL problems. However, more empirical analysis should

be done to confirm this hypothesis. Since the focus of this work is on feature

extraction with minimal domain knowledge, using agnostic random projections,

we avoided the commonly used toy problem domains with known structure in the

value function (e.g. mountain car (Sutton and Barto, 1998)), where algorithms can

exploit what is known about the problem.

Finding the optimal choice of the projection size schedule and the number

of iterations is an interesting subject of future research. We expect the use
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of cross-validation to suffice for the selection of the optimal parameters, due

to the robustness that we observed in the results of the algorithm. A tighter

theoretical bound might also help provide an analytical, closed-form answer to

how parameters should be selected. One would expect a slow reduction in the

projection size to be favourable.
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CHAPTER 10
Conclusion and Discussion

Reinforcement learning has seen substantial improvements in the past few

years, with many researchers working on both the theory and the application sides

of the problem. Many algorithms have been developed to more efficiently handle

larger and more complex problems, and have shown relatively good performance

on traditional RL benchmarks. But as of writing of this thesis, RL is not yet

the go-to method when it comes to real-world sequential planing and decision

making problems. This is partly because the general RL problem is very difficult

or too costly to solve in practice. Principled methods fail to scale to realistic large

domains, and those with partial practical success depend on heuristics with no real

theoretical guarantees.

To make RL algorithms practical, we need ways to control and help with the

inherent complexity of the learning problem. This can be done in two general

manners: using domain-dependent knowledge of the problem to kick start the

learning process, and using domain-independent assumptions that are observed or

are likely to hold in most problems. Domain dependent knowledge can come from

human experts or from previous experience in similar RL domains. In the absence

of such knowledge, we can resort to methods that exploit common structures or

assumptions in real-world learning problems.
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With the goal of making RL more practical in costly real-world problems, this

thesis presents two new classes of model-selection and regularization techniques

suited for handling unknown dynamics and utilities in the reinforcement learning

problem. The PAC-Bayesian methods make use of domain knowledge in form of

a prior distribution. We provide model-section methods and frequentist analysis

on PAC-Bayesian RL when a prior is provided either on the model dynamics or

the utility of actions. We also use agnostic random projection to extract features

in domains where we have little domain knowledge and can only assume a sparse

feature space.

PAC-Bayesian analysis of RL is often favourable to Bayesian RL methodology,

since it can provide frequentist guarantees regardless of the correctness of the given

prior distribution. It is also favourable to pure frequentist methods, since it can

leverage the prior knowledge incorporated in the prior when it matches with the

observed data. It has the superior sample efficiency of a Bayesian method and the

strong theoretical guarantees of a frequentist one.

PAC-Bayesian analysis is particularly interesting for value function prediction,

as it provides simultaneous bounds over all posterior measures. As we discussed

in Chapter 6, this can be used to derive margin bounds for the model-selection

problem in RL. The PAC-Bayesian analysis can also be used in parametric policy

search methods, where a prior is provided on the parameter space, to produce a

simultaneous error bound for all parametric policies. Combined with importance

weighting methods, one can can hope to derive PAC RL policy search algorithms
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with global performance guarantees. Design and analysis of such learning method

are interesting avenues of future work.

When little is known about the dynamics of the underlying Markovian

process or the utility of actions, one can only leverage the knowledge about the

observed features or rewards to help with the model selection and regularization.

A discussed in Chapters 8 and 9, many problem domains have a sparse input

structure under a known or unknown basis. Such sparse input structures allow us

to use techniques from the compressed sensing literature to project the data into a

lower-dimensional space and still retain enough information to construct a linear

function approximator with controllable induced bias.

Using compressed regression techniques developed in Chapter 8, we construct

a feature extractor for the RL problem that avoids working with the original high

dimensional state features. By applying regression in the compressed space, the

generated features are closer to the target of the regression by the reduction in

the estimation error, at the expense of a small and controllable approximation

error. Our empirical results on a domain with non-linear dynamics and a large

discretized state-space show-cased the use of such methods to improve value

function approximation under minimal domain knowledge. A thorough empirical

analysis and comparison of the proposed method with non-linear value function

approximations techniques could help in better assessing the effectiveness of

compression in the overall prediction error.

Since linear regression is at the heart of many machine learning algorithms,

other methods can also benefit from the analysis of compressed regression under
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input sparsity assumptions. We have thus far applied and analysed the method in

the RL setting with value function approximation and with PSR parameter learn-

ing problem (Hamilton et al., 2013, 2014). In both cases, we observe substantial

gains in computational and sample complexity of the learning method.

With the ever-increasing size of input data, both in the number of observed

features and the sample count, we need methods that can scale better with the

input dimension size and can run in linear time with respect to the sample size.

Random projections, in particular, can provide fast and robust dimensionality

reduction and still retain enough data to avoid degradation in the overall output.

Under sparsity assumptions of the data and with batch learning methods,

we showed that the projection size can be significantly smaller than the original

dimensionality of the system and still provide similar or better results. The

analysis of random compression with online learning methods can extend these

results to linear time algorithms. Gradient-descent methods with linear value

function approximation have shown to be very effective with many instances of the

RL problems, but they tend to be highly sample inefficient. One can hope to get

better sample complexity with these methods when they are adapted to work in a

compressed feature space.

This work helps bring a new set of methods to the regularization arsenal

available for solving the RL problem under unknown dynamics. We studied both

domain-dependent methods based on prior distributions, and agnostic compression

techniques using minimal assumptions on the domain and the structure of the

features. The wide gap in between these extremes needs to be filled in with
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regularization that benefit from the domain knowledge in forms other than a prior

distribution or use assumptions other than the sparsity conditions on the observed

features. These remain to be interesting areas for future work.
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APPENDIX A
Notation Guide

Below is a list of notation throughout the thesis. Other notations used later in

this work will be explained as needed.

A.1 Basic Notation

• Random variables (if not vectors) are represented by capital letters (e.g. St).

• Observed values are represented by lower case letter (e.g. st).

• Sets are represented by curly capital letters (e.g. A).

• The set of all measures over a set A is represented byM(A).

• Matrices and vectors are represented by bold letter (e.g. U, v).

• Si:j represent the series Si, Si+1, . . . , Sj.

• Ui and U.,j are the ith row and the jth column of U respectively.

• I is the identity matrix of appropriate size.

• 0 is the zero vector of appropriate size.

A.2 Probability and Expectation

• P(X) denotes the probability distribution over X implied by the context.

• Pr
X∼μ
{e(X)} denotes the probability of event e(X) when X is sampled from

the distribution μ.

• E
X∼μ

[f(X)] denotes the expected value of f(X) when X is sampled from the

distribution μ.
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• Var
X∼μ

[f(X)] denotes the variance of f(X) when X is sampled from the

distribution μ.

• μ(A) is the mass of the measure μ on the set A. μ(X) is the density function

of measure μ (if defined).

• ‖ρ− μ‖TV = sup
A
|ρ(A)− μ(A)| is the total variation distance between two

probability measures ρ and μ.

To simplify the notation, the distribution can be dropped if it is implied by the

context.

A.3 Norms and Projections

• ‖f(X)‖ν , ‖v‖ and ‖U‖ denote the �2 norm over measurable functions,

vectors and matrices respectively:

‖f(X)‖2ν
def
= E

X∼ν

[
(f(X))2

]
, (A.1)

‖v‖2 def
=

∑
i

v2
i , (A.2)

‖U‖ def
= sup

v,‖v‖=1

‖Uv‖ . (A.3)

• ‖f(X)‖∞, ‖v‖∞ is the infinity norm:

‖f(X)‖∞
def
= sup

X
f(X), (A.4)

‖v‖∞
def
= sup

i
vi. (A.5)

• ‖v‖1 denotes the �1 norm:

‖v‖1
def
=

∑
i

|vi|. (A.6)
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• ‖v‖0 denotes the is Donoho’s zero “norm”, indicating the number of non-zero

elements in a vector:

‖v‖0
def
=

∑
i

I{vi �=0}. (A.7)

• ‖U‖F denotes Frobenius norm:

‖U‖2F
def
=

∑
i,j

U2
i,j. (A.8)

• ΠF
ν and ΠF denotes projections with respect to the �2 norm:

ΠF
ν f

def
= inf

f ′∈F
‖f ′ − f‖ν , (A.9)

ΠFv
def
= inf

v′∈F
‖v′ − v‖ . (A.10)

A.4 Other Miscellaneous Notation

• ∇θfθ denotes the gradient of f with respect to parameter vector θ.

• U† is the Moore–Penrose pseudoinverse of U.

• (f)+ = max(f, 0) is the positive part of f .

• Õ(·) is the asymptotic O(·) notation with term logarithmic in relevant

variables removed.
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KEY TO ABBREVIATIONS

AI: Artificial Intelligence

BEBF: Bellman Error Based feature

BR: Bellman Residual loss

BRM: Bellman Residual Minimization

CBEBF: Compressed Bellman Error Based Feature Generation

CDF: Cumulative Density Function

CS: Compressed Sensing

CSP: Compressed Signal Processing

GPI: Generalized Policy Iteration

GTD: Gradient Temporal Difference learning

i.i.d.: Independent and Identically Distributed

iFDD: Incremental Feature Dependency Discovery

JL (Lemma): Johnson–Lindenstrauss (Lemma)

LARS: Least Angle Regression

LMS: Least-Mean Squares

LSPI: Least-Squares Policy Iteration

LSTD: Least-Squares Temporal Difference

MBIE-EB: Model Based Interval Estimation with Exploration Bonus

MBIE: Model-Based Interval Estimation
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MDP: Markov Decision Process

PAC: Probably Approximately Correct

PB: Projected Bellman loss

PDF: Probability Density Function

PI: Policy Iteration

PSR: Predictive State Representation

RIP: Restricted Isometry Property

RL: Reinforcement Learning

SCBEBF: Simplified Compressed Bellman Error Based Feature Generation

SRM: Structural Risk Minimization

SVM: Support Vector Machines

TD: Temporal Difference

TDC: Temporal Difference learning with Corrections

VC Dimension: Vapnik–Chervonenkis Dimension
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