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Abstract

Text summarization aims to generate a short summary for an input text and has

extensive real-world applications such as headline generation. State-of-the-art summa-

rization models are mainly supervised; they require large labeled training corpora and

thus cannot be applied to less popular areas, e.g., less spoken languages, where paired

data are rare.

In this thesis, I present a non-autoregressive unsupervised summarization model,

which does not require parallel data for training. Our approach first performs edit-

based search towards a heuristically defined score and generates a summary as pseudo-

groundtruth. Then, we train an encoder-only non-autoregressive Transformer based

on the search results. Further, we design two length-control algorithms for the

model, which perform dynamic programming on the model output and are able to

explicitly control the number of words and characters in the generated summary,

respectively. Such length control is important for the summarization task, because the

main evaluation metric for summarization systems, i.e., ROUGE score, is sensitive

to the summary length, and because real-word applications generally involve length

constraints.

Experiments on two benchmark datasets show that our approach achieves state-of-

the-art performance for unsupervised summarization, yet largely improves inference

efficiency. Further, our length-control algorithms are able to perform length-transfer

generation, i.e., generating summaries of different lengths than the training target.
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“Half of the people who have embarked on a one hundred mile journey may fall by the

way side”

—Strategies of the Warring States

iii



Acknowledgements

I am deeply grateful to my supervisor Dr. Lili Mou, who provided crucial guidance

and constant support to my research over the past two years. This short but fruitful

journey not only helped me establish scientific thinking but largely broadened my

horizon in Machine Learning research.

Most content of this thesis is drawn from papers completed during my stay in

the NLP research group of Dr. Mou, and they would never be done without his

incredibly patient supervision. Moreover, I really appreciate the co-authors of my

papers: Chenyang Huang and Xiang Zhang, who brought ideas of non-autoregressive

generation and assisted me to complete character-level length-control experiments.

I would also like to thank other group members for their valuable suggestions to

my research work and excellent weekly presentations: Anup Deshmukh, Mauajama

Firdaus, Yongchang Hao, Dongheng Li, Yuxin Liu, Steven Lu, Guoqing Luo, Pourya

Vakilipourtakalou, Yuqiao Wen, Zijun Wu, Qianqiu Zhang, and Zixuan Zhang.

Last but not least, I want to express special thanks to my families, who support me

either emotionally or financially during my studies, including my admirable parents,

gorgeous fiancée, and two cute black cats. Especially, my fiancée can always point

me in the right direction and encourages me against trouble; no matter what I am

confronted with, tranquility nestles in my heart with her accompany.

The research is supported in part by the Natural Sciences and Engineering Research

Council of Canada (NSERC) under grant No. RGPIN2020-04465, the Amii Fellow

Program, the Canada CIFAR AI Chair Program, a UAHJIC project, a donation from

DeepMind, and Compute Canada (www.computecanada.ca).

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background & Related Work 7

2.1 Summarization Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Extractive Summarization . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Abstractive Summarization . . . . . . . . . . . . . . . . . . . 9

2.1.3 Unsupervised Summarization . . . . . . . . . . . . . . . . . . 10

2.1.4 Summarization with Length Control . . . . . . . . . . . . . . 11

2.1.5 Non-Autoregressive Summarization . . . . . . . . . . . . . . . 12

2.2 Text Generation Approaches . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Autoregressive Generation . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Non-Autoregressive Generation . . . . . . . . . . . . . . . . . 14

2.2.3 Search-Based Generation . . . . . . . . . . . . . . . . . . . . . 15

3 A Non-Autoregressive Approach to Unsupervised Summarization 17

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Search-Based Summarization . . . . . . . . . . . . . . . . . . 18

3.2.2 Non-Autoregressive Model for Summarization . . . . . . . . . 19

v



3.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Summarization with Word-Level Length Control 29

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Results and Analyses . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.3 Comparison with Autoregressive and Encoder–Decoder Models 36

4.3.4 Analysis of Beam Search . . . . . . . . . . . . . . . . . . . . . 38

4.3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.6 Length-Transfer Generation . . . . . . . . . . . . . . . . . . . 40

5 Summarization with Character-Level Length Control 43

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.3 Comparison with Autoregressive Models . . . . . . . . . . . . 53

5.3.4 Analysis of the Length Bucket . . . . . . . . . . . . . . . . . . 54

vi



5.3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.6 Length-Transfer Generation . . . . . . . . . . . . . . . . . . . 55

6 Conclusion & Future Work 56

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Limitation & Future Work . . . . . . . . . . . . . . . . . . . . . . . . 56

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



List of Tables

3.1 Performance on the Gigaword headline generation test set without

length constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Results on the DUC2004 dataset without length constraints . . . . . 28

4.1 An example showing that our word-level length-control algorithm may

be inexact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Performance on the Gigaword headline generation test set with word-

level length constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Results on the DUC2004 dataset with word-level length constraints . 35

4.4 Analysis of our approach with the word-level length control on headline

generation test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Example summaries for Gigaword dataset with word-level length control 40

4.6 Analysis of word-level length-transfer summary generation . . . . . . 41

5.1 An example showing that our character-level length-control algorithm

may be inexact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Performance on the Gigaword headline generation test set with character-

level length constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Results on the DUC2004 dataset with character-level length constraints 52

5.4 Comparing autoregressive and non-autoregressive models on the Giga-

word headline generation test set . . . . . . . . . . . . . . . . . . . . 53

5.5 Example summaries for Gigaword dataset with character-level length

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



List of Figures

1.1 Roudmap of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 The overview of our non-autoregressive approach to unsupervised sum-

marization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Performance versus the number of training samples when learning from

10-word search results . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Illustration of our word-level length-control algorithm . . . . . . . . . 31

4.2 Comparing our word-level length-control method and the truncated

CTC beam search on the Gigaward headline generation test set . . . 39

5.1 Illustration of our character-level length-control algorithm . . . . . . 44

5.2 Performance of our character-level length-control algorithm with differ-

ent bucket sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Character-level length-transfer performance of our model and Su et

al. [80] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



Chapter 1

Introduction

1.1 Motivation

Over the past few decades, the volume of textual data on the Internet has been growing

rapidly. According to [87], there are over 4 billion web pages online as of 2016, many

of which are based on text. Such amount of available text has led to the rise of many

new fields, such as public opinion analysis [19, 31, 99], social spam detection [53, 105,

70], and sentiment analysis [16, 54, 16].

However, it is infeasible to tackle such tasks by manually analyzing the data,

and automated tools are thus needed. Automatic text analysis is the research goal

of Natural Language Processing (NLP), which is an interdisciplinary subject that

involves linguistics, computer science, and artificial intelligence. Example tasks of

NLP include question answering [8, 100, 75], information extraction [50, 52, 79], and

text summarization [104, 1, 2].

In the early stage of NLP research, the typical method is based on hand-coded rules,

such as grammars [92]. These rule-based approaches lack robustness against erroneous

input (e.g., misspelled words), and become more difficult to manage when the number

of rules grows. In the past decades, researchers have labeled a large number of corpora,

and with the growth of computational resources, modern NLP methods are mainly

data-driven and utilize machine learning techniques to automatically learn the desired

tasks. These methods do not require human-specified rules and are thus less prone to
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the above drawbacks.

In this thesis, we focus on text summarization, an important NLP task that aims

at generating concise summaries for given texts while preserving the key information.

Summarization has extensive real-world applications such as generating headlines for

online documents, which can assist users to efficiently browse a large volume of textual

data and alleviate the information overload problem [17].

Most of the early summarization systems [51, 13, 26, 21] output a summary by

extracting salient content from the source text based on heuristically defined rules,

e.g., extracting sentences with descriptive words [51]. On the contrary, modern

summarization models are mainly based on deep learning [1, 2, 89] because of the

effectiveness of neural networks on text generation [82, 46, 29]. These models are

able to learn the task by training with human-written summaries, so that they

yield outputs better than the previous rule-based approaches on various benchmark

datasets. For example, Aghajanyan et al. [1] finetune a Bidirectional AutoRegressive

Transformer (BART) [40], which gives state-of-the-art performance on Gigaword [22]

and CNN/DailyMail [27] datasets.

However, these state-of-the-art summarization systems require massive parallel

corpora (comprising long texts and their summaries) [104, 1, 2]. They are, unfor-

tunately, expensive to obtain, preventing the applications of these systems to less

popular domains and less spoken languages.

Therefore, unsupervised summarization is attracting increasing interest, as it does

not require parallel data for training. One widely used approach is to compress a

long text into a short one, and reconstruct it to the long text by a cycle-consistency

loss [57, 90, 4]. However, the compressed sentence space is not differentiable, and such

a method demands reinforcement learning or its alternatives for training, which is

usually difficult [36].

Schumann et al. [76] present a word-extraction method for unsupervised summariza-

tion, which extracts a certain number of words from the source text as the summary.
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Their approach defines a scoring function that evaluates the output summary based

on heuristics and utilizes hill-climbing search to find certrain extracted words that

can maximize the scorer. Although this method outperforms the cycle-consistency

ones, it suffers from slow inference since it demands hundreds of search steps for each

data sample. Moreover, the order of the extracted words is preserved, and thus the

generated summary may be restricted and noisy.

1.2 Thesis Contributions

In this thesis, we propose a non-autoregressive approach to unsupervised summariza-

tion, which does not require parallel data for training and is able to predict all target

tokens simultaneously. Moreover, we design two different length-control algorithms,

which are able to explicitly constrain the number of words and characters, respectively,

in a predicted summary.

Specifically, our approach utilizes the learning-from-search framework [41]; we adopt

the search-based method [76] to generate pseudo-groundtruth summaries and then

train a non-autoregressive model with the summaries. We propose an encoder-only

Transformer [88] as the non-autoregressive architecture, composed of deep Transformer

layers with residual connections, which are able to capture the strong correspondence

between the input and output in the text summarization task. But then the output

of such an architecture has the same length as its input and cannot be a summary.

To address this issue, we further propose to train the model with the Connectionist

Temporal Classification [CTC, 23] algorithm, which learns to insert blank tokens into

the model output. These blank tokens will be removed later, yielding a shorter text

than the model input and making summarization possible. Experiments show that

our model outperforms not only its search-based teacher [76] but also all previous

methods in terms of the ROUGE scores. Regarding inference efficiency, our method is

over a thousand times faster than its search-based teacher [76] and roughly 10 times

faster than an autoregressive Transformer [88].
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Further, we propose two length-control algorithms, which perform dynamic pro-

gramming (DP) on the outputs of our non-autoregressive model and are able to

explicitly control the number of words and characters in a summary. Our DP divides

the length-control problem into shared sub-problems. This is feasible because the

non-autoregressive model predicts the probabilities independently at different steps.

Specifically, our word-level length-control algorithm iteratively fills up a DP table that

keeps the (approximately) most probable summaries of different lengths given the first

several model outputs. Experimental results show that, when the number of words

in a summary is constrained, our length-control algorithm not only achieves better

performance than all other methods but also yields more complete summaries than

naïvely truncating the over-lengthed outputs. Our length-control algorithm further

enables length-transfer generation, i.e., generating summaries of different lengths from

the training targets.

Our character-level algorithm, on the other hand, formulates length control as a

knapsack-like problem, where the weight is the number of characters in a token and the

value is the predicted probability of the token. Similar to the word-level length control,

our character-level algorithm outperforms all other approaches when the number of

characters in summaries is constrained, while retaining high inference efficiency. Also,

the algorithm is capable of character-level length-transfer generation.

To sum up, the main contributions of this thesis include:

• We propose an effective and efficient non-autoregressive approach to unsupervised

summarization.

• We design word-level and character-level length-control algorithms, which can

explicitly control the number of words and characters, respectively, in the

predicted summaries. To better understand the algorithms, we further conduct

theoretical analysis of their exactness.

• We evaluated our approach on the Gigaword headline generation [72] and
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Figure 1.1: Roudmap of this thesis.

DUC2004 [22] datasets. Our approach achieves state-of-the-art unsupervised

performance and is at least several times more efficient than the autoregressive

Transformer [88].

1.3 Thesis Outline

This chapter introduces the background of natural language processing for the text

summarization task, and gives an overview of our approach.1

Chapter 2 presents the related work, including summarization systems and text

generation approaches.

Chapter 3 describes our non-autoregressive approach to unsupervised summarization,

including the search-based method [76] that our model learns from, the architecture of

our non-autoregressive summarization model, and our training strategy. Further, I will

show the performance of our model in comparison with previous work on benchmark

datasets when the summary length is not controlled.
1Part of the contents in Chapters 3 and 4 were published in Liu et al. [44]. Copyright©2022,

Association for Computational Linguistics. Reused with permission.
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Chapters 4 and 5 present the length-control algorithms and our theoretical analysis

of the algorithms’ exactness. Moreover, I will show their empirical performance on

benchmark datasets and additional analyses of our approach.

Chapter 6 concludes the thesis, and discusses the limitation of our approach and

future work.
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Chapter 2

Background & Related Work

This chapter presents background and related work. Specifically, I will introduce the

summarization task in §2.1 and text generation models in §2.2.

2.1 Summarization Task

Text summarization is an important task in Natural Language Processing (NLP),

aiming at compressing a long text into a short one that keeps the main gist of the

input. Since the 1950s, numerous methods have been proposed to solve the task [10,

58, 63, 67].

Summarization models can be generally categorized into two types: extractive

and abstractive. Extractive methods output a summary by extracting important

sentences or clauses from the source text [10, 58, 33], while abstractive methods are

able to generate summaries with new expressions [63, 67, 20]. I will discuss these two

approaches in §2.1.1 and §2.1.2, respectively.

Moreover, I will introduce unsupervised summarization (§2.1.3), which does not

require any labeled training data and is applicable to less popular domains where

paired data are rare. Besides, I will present recent work on summarization with length

control in §2.1.4, due to the importance of controlling output length for real-world

applications and fair comparison between different models [76, 74]. Last but not

least, I will discuss non-autoregressive summarization (§2.1.5), which predicts output
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tokens in parallel and is much more efficient than traditional autoregressive models at

inference time.

2.1.1 Extractive Summarization

The extractive approach is widely adopted in early summarization systems [51, 13, 26,

21], which generate a summary by extracting source content (e.g., sentences) based on

a heuristically defined scorer.

For example, Luhn [51] establishes a set of important words and then produces

a summary by extracting source sentences with high coverage of the selected words.

Fattah and Ren [15] weight source sentences based on more complicated features

such as sentence relative length, sentence position, and whether numerical values

are included. Erkan and Radev [14], by contrast, adopt a graph-based approach to

measure the salience of sentences in the source text. Specifically, they model the

source sentences as a graph, where edges are weighted by cosine similarity scores. A

sentence is then scored by eigenvector centrality derived from the graph adjacency

matrix.

Recent summarization methods are mainly data-driven and utilize machine learning

approaches to evaluate sentences in the source text [62, 48, 106, 64]. Nallapati et al. [62],

for instance, adopt a Recurrent Neural Network (RNN) as the backbone and treat

the extractive summarization as a sequential classification problem. Specifically, each

sentence in the source text is fed into the model sequentially, and a binary predictor

is applied to determine whether the sentence should be included in the summary.

Liu [48] finetunes a Bidirectional Encoder Representation Transformer [BERT, 34]

such that the model can predict the binary extraction label in parallel for all sentences

in the input text. Zhong et al. [106] formulate summarization as a text-matching

problem in the semantic space, i.e., extracting source sentences with similar meaning

to the reference summaries. Compared with the early approaches, these new methods

are able to generate much better summaries.
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However, the output summary of extractive methods is essentially a combination of

extracted textual segments from the source text, lacking expression flexibility.

2.1.2 Abstractive Summarization

Abstractive methods can produce summaries with new expressions. They are mostly

data-driven and vastly used in the neural era. Compared with the extractive ones,

abstractive models possess much higher generation flexibility.

Modern abstractive summarization systems are mainly built with the encoder–

decoder architecture, which employs two deep learning models as the encoder and

decoder, respectively; the encoder converts the source text into continuous vector

representations, from which the decoder generates the summary. The encoder–decoder

model is also known as Seq2Seq, since it accepts a sequence as the input and produces

another as the output. Commonly used networks for the Seq2Seq model include the

Convolutional Neural Network [CNN, 96, 49, 60], Long-Short-Term-Memory [LSTM,

78, 77, 102], and the Transformer [1, 2, 84].

State-of-the-art Seq2Seq summarization systems are developed mainly by finetuning

pretrained language models. For example, Aghajanyan et al. [1] refine a Bidirectional

AutoRegressive Transformer (BART) [40] based on the trust-region theory. Specifically,

they constrain movements in the representational density space for each optimization

step to avoid the representational collapse, i.e., a massive decrease in the generalization

ability of pretrained language models’ internal representation. Experiments show

that their approach yields a more generalizable representation than naïve finetuning,

achieving better performance on various downstream tasks including summarization.

Later, Aghajanyan et al. [2] introduce an additional step before tweaking the pretrained

language models, named pre-finetuning. This intermediate step is essentially a massive

multi-task finetuning, which is able to further improve the generalization ability of

the representations and boost the summarization performance. Zhang et al. [104], by

contrast, design a task-specific pre-training strategy for text summarization; they first

9



mask out salient sentences in the input text and then predict the masked content.

Since the pretraining target is similar to the downstream summarization task, i.e., the

essential contents in the source text, their approach can also boost the summarization

performance.

2.1.3 Unsupervised Summarization

Current state-of-the-art summarization systems, whether extractive or abstractive, are

typically trained in a supervised way with large training corpora, which contain source

texts and their summaries [104, 1, 2]. However, such parallel data are expensive to

obtain, preventing the applications to less popular domains and less spoken languages.

Therefore, unsupervised text generation has been attracting increasing interest, as it

does not require parallel data for training.

Previous work on unsupervised summarization can be roughly categorized into

three groups.

The first group utilizes the structural information of the source text. For example,

Yang et al. [101] propose to use the lead baseline, i.e., the first several sentences in

the source text, as the pseudo-groundtruth. However, such approaches only work with

well-structured texts such as news articles, where topic sentences exist and can be

found in fixed locations.

The second group takes advantage of the information bottleneck: Wang and

Lee [90] and Baziotis et al. [4] use cycle consistency for unsupervised summarization.

Specifically, they compress the source text into a summary and then reconstruct the

source from it, minimizing the difference between the source text and the reconstructed

one. However, these methods usually require reinforcement learning or its variants

for the model training because the compressed sentence space is indifferentiable; this

makes the training difficult.

The third group adopts heuristically defined scoring functions to generate summaries.

For instance, Schumann et al. [76] propose an edit-based local search approach, which

10



outperforms the cycle-consistency models. Specifically, they randomly extract several

words from the source sentence as the summary. Then they iteratively change

the selection and non-selection of two words to maximize a heuristic function that

evaluates the summary fluency and information preservation. One major drawback of

this method is the slow inference, since it requires hundreds of local search to produce

the summary for each sample.

Conversely, our approach possesses a much higher inference efficiency because we

employ a machine learning model as the backbone and do not need to perform any

search during inference.

2.1.4 Summarization with Length Control

Recently, Liu et al. [49] show that length control is the key to summarization, since it

is typically a requirement by real-world applications, such as fitting the screen width.

Moreover, the main evaluation metric for summarization systems, i.e., the ROUGE

score [43], is found to be sensitive to the summary length [76, 74]; summarization

systems may achieve higher scores by simply generating longer output.

In early extractive summarization research, truncating is adopted for fair com-

parison [58, 61, 33], but the resulting summary may not be complete sentences. As

pointed out by [74, 76], the length-control problem is not adequately addressed for

summarization models in the neural era, probably because researchers do not want to

hurt the completeness.

Most of the previous summarization approaches control the output length by feeding

length information together with the source text into a machine learning model, which

is expected to automatically learn the length control from the input length. For

example, Liu et al. [49] inject the length information by rescaling the input embedding

based on the desired output length. Takase et al. [85] encode the remaining length

budget into the positional embeddings of the decoder input (token) in each decoding

step. Saito et al. [74] first build a summary prototype by extracting a set of key
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sentences based on the desired summary length. Then they feed the prototype to

a Transformer model [88] to finalize the summary. However, empirical results show

that these approaches cannot explicitly control the summary length and may generate

summaries longer than the given length budget.

There are also methods that can perform explicit length control but have their own

limitations. Kikuchi et al. [35], for instance, propose two ad hoc modules to control the

output length at inference time. The first module inhibits the decoder from generating

the EOS tag before reaching the desired summary length and stops decoding after

finishing up the length budget. By contrast, the second one only keeps sequences

whose lengths are less than or equal to the desired length during the beam search.

Despite the simplicity, these heuristic methods cannot guarantee the completeness and

quality of the produced summaries. Schumann et al. [76] perform constrained discrete

optimization by selecting a certain number of words from the source text as the output.

However, their approach suffers from extremely slow inference because hundreds of

local search steps are needed for each data sample. Moreover, their method can only

control the number of words in the summary and is not able to constrain the summary

length by characters.

2.1.5 Non-Autoregressive Summarization

Non-autoregressive summarization models predict all summary tokens in parallel. They

have a much higher inference efficiency than the traditional autoregressive ones, which

generate one token at a time. However, non-autoregressive summarization generally

has a worse output than autoregressive methods, due to the lack of dependencies

between the simultaneously predicted summary tokens.

Recently, researchers are attempting to alleviate this drawback: Yang et al. [98] em-

ploy an additional autoregressive model to predict the Part-of-Speech (POS) tags for the

summary and feed the source text together with the POS tags into a non-autoregressive

Transformer [25] to generate summaries. Su et al. [80] utilize a pretrained Bidirectional
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Encoder Representation Transformer [BERT, 34] as the non-autoregressive backbone

and develop an extra Conditional Random Field (CRF) to perform structure decoding

based on the non-autoregressive outputs. Jia et al. [32] generate a summary by

simultaneously extracting sentences from the source text based on their encoding

given by the ALBERT model (an enhanced version of BERT) [38]. Qi et al. [68] first

pretrain an encoder–decoder non-autoregressive model on a large text corpus and then

finetune the pretrained model for the summarization task.

However, none of the current non-autoregressive summarization models can match

the performance of even a standard autoregressive Transformer [88]. Our approach,

by contrast, shrinks this performance gap and can even outperform the autoregressive

Transformer in the unsupervised setting.

2.2 Text Generation Approaches

Text generation is the process of producing human readable texts such as dialogues [94,

42, 45] and summaries [1, 49, 10]; it is an important research area in natural language

processing.

In this section, I will introduce three text generation approaches related to this

thesis: autoregressive, non-autoregressive, and search-based.

2.2.1 Autoregressive Generation

Autoregressive (AR) models are widely adopted for modeling time-varying processes

such as economics [59] and climate [5]; such models make predictions for each time

step based on the previous predictions.

Most of the state-of-the-art text generation models are AR, and predict target

tokens sequentially. The probability of a model output y is given by:

P (y | x) =
T∏︂
i=1

P (yi | y<i,x) (2.1)
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where x is the model input, T is the generation length, yi is the prediction at ith time

steps, and y<i refers to the predictions prior to the ith step.

Common AR architectures for text generation include the recurrent neural net-

work [RNN, 71] and Transformer [88]. These architectures have been adopted as the

backbone for state-of-the-art models of various text generation tasks, such as dialogue

generation [45, 86, 93], translation [95, 97, 83], and summarization [104, 1, 2].

However, AR models can only predict one target token at a time and are not able

to fully utilize the parallel processing of modern hardware (e.g., GPU), which largely

limits their inference efficiency.

2.2.2 Non-Autoregressive Generation

Non-autoregressive (NAR) models predict all target tokens in parallel, i.e.,

P (y | x) =
T∏︂
i=1

P (yi | x) (2.2)

Thus, they can fully utilize the parallel processing of GPU/CPU and enjoy a much

higher inference efficiency than the AR approaches.

On the other hand, NAR generation is more difficult than AR due to the lack

of dependencies among the simultaneously generated output tokens. Previous work

addresses the dependency issue by iterative refinement [39, 56, 7] or structured

decoding with the conditional random field (CRF) [81, 80, 9]. Another approach is

training non-autoregressive models with the Connectionist Temporal Classification

(CTC) algorithm [23], which is able to address a common problem in NAR generation,

namely, token repetition, by merging consecutive identical tokens (unless separated by

an empty token).

Recently, text generation approaches with high inference efficiency, such as NAR

models, are drawing increasing attention. This is because inference efficiency has

become an important evaluation metric for text generation models as a result of the

deployment to low-resource devices (e.g., mobile phones).
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2.2.3 Search-Based Generation

Search-based generation produces texts by iterative edits, and can be generally divided

into three steps:

• Construct a scoring function for the output, such as cosine similarity between

the embeddings of the source text and model output.

• Define the action space of search, such as deleting a word from the intermediate

output; and

• Employ a search algorithm (e.g., hill-climbing search) to iteratively edit the

output to maximize the pre-defined scoring function.

Previous search-based text generation methods are mainly applied to the unsuper-

vised setting, where groundtruth labels are unknown and the training target needs

to be heuristically defined. For example, Liu et al. [47] develop an unsupervised

paraphrase model by simulated annealing. Specifically, they design a heuristic function

that involves the semantic similarity between the output paraphrases and the source

text, as well as the output expression diversity and fluency. In each iteration, an

edit action for the paraphrase is chosen from insertion, deletion, and replacement;

the search agent then determines whether the action should be accepted. Kumar et

al. [37] propose an unsupervised approach to sentence simplification; they adopt a

similar action space to Liu et al. [47] but change the “replacement” action to “keep”.

Moreover, their scoring function is defined to be a mixture of semantic preservation,

keyword coverage, and output length. Schumann et al. [76] present an unsupervised

summarization method based on hill-climbing search, extracting a specific number

of words from the source text as the summary. Similar to Liu et al. [47] and Kumar

et al. [37], Schumann et al. [76] evaluate the output summary based on semantic

preservation and language fluency.

However, these methods all suffer from slow inference since enormous search steps
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are needed to perform inference for each data sample. Moreover, the generalization

ability of the search-based method is generally limited since the scoring functions of

the model output are heuristically defined.

In summary, this chapter reviews the related work of the summarization task and

text generation models. Based on the review, we would propose a learning-from-search

approach to unsupervised summarization with additional length-control algorithms to

address the drawbacks of previous work.
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Chapter 3

A Non-Autoregressive Approach to
Unsupervised Summarization

3.1 Overview

Unsupervised summarization, in contrast to supervised summarization that requires

large training corpora, demands no labeled training data and is thus suitable for less

popular domains, where paired data are difficult to collect. Previous unsupervised

models are mostly trained with cycle consistency [57, 90, 4], compressing the source

text into a short one and then reconstructing the source from the compressed text.

Due to the indifferentiability of the compressed sentence space, such an approach

requires reinforcement learning (or its variants), which makes the training difficult [36].

Recently, Schumann et al. [76] propose an edit-based approach to unsupervised

summarization. Their model maximizes a heuristically defined scoring function that

evaluates the quality (e.g., fluency and semantics) of the generated summary with

length constraints, achieving higher performance than cycle-consistency methods.

However, the search approach is slow in inference because hundreds of search steps are

needed for each data sample. Moreover, their approach can only select words from the

input sentence with the word order preserved. Thus, it is restricted and may generate

noisy summaries due to the local optimality of search algorithms.

In this chapter, we propose a non-autoregressive approach to unsupervised summa-

rization, shown in Figure 3.1. The idea is to perform search as in Schumann et al. [76]
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and, inspired by Li et al. [41], to train a machine learning model to smooth out search

noise and to speed up the inference process. Different from Li et al. [41], we propose

to utilize non-autoregressive decoders, which generate all output tokens in parallel

due to our following observations:

• Non-autoregressive models are several times faster than autoregressive generation,

which is important when the system is deployed.

• The input and output of the summarization task have a strong correspondence.

Non-autoregressive generation supports encoder-only architectures, which can

better utilize such input–output correspondence and even outperform autore-

gressive models for summarization.

In this chapter, we first introduce the search-based summarization teacher [76] and

our proposed non-autoregressive model and training strategy in §3.2. Then, we show

the empirical performance of our approach in comparison with previous methods on

benchmark datasets in §3.3.

3.2 Methodology

3.2.1 Search-Based Summarization

Consider a given source text x = (x1, x2, . . . , xn). The goal of summarization is to find

a shorter text y = (y1, y2, . . . , ym) as the summary.

Previously, Schumann et al. [76] formulate summarization as word-level extraction

(with order preserved), and apply edit-based discrete local search to maximize a

heuristically designed objective.

Specifically, the objective function considers two aspects:

• A language fluency score fLM(y), given by the reciprocal of language models’

18



perplexity:

fLM(y) =
1

2|y|

√︄
|y|∏︁
i

1

p−→
LM

(yi | y < i)

|y|∏︁
i

1

p←−
LM

(yi | y > i)

(3.1)

where
−→
LM and

←−
LM are forward and backward LSTM [28] language models; and

• A semantic similarity score fSIM(y;x), given by the cosine embeddings:

cos(e(x), e(y)) (3.2)

where e(·) calculates the sentence embedding by averaging the word embeddings

learned by a sent2vec model [66].

The overall objective combines the two aspects as

f(y;x) = fLM(y) · fSIM(y;x)γ (3.3)

where γ is a weighting hyperparameter.

Further, the desired summary length can be specified as a hard constraint, achieved

by searching only among sentences of the correct length. Suppose the desired summary

length is T , the approach selects T random words from the input, and maximizes the

scoring function (3.3) by changing the selection and non-selection of two words.

A greedy hill-climbing algorithm determines whether the change is accepted or not.

In other words, a change is accepted if the score improves, or rejected otherwise. Such

a process continues until a (possibly local) optimum is found.

A pilot analysis in [74, 76] shows that words largely overlap between a source

text and its reference summary. This explains the high performance of such a word-

extraction approach, being a state-of-the-art unsupervised summarization system and

outperforming strong competitors, e.g., cycle consistency [90, 4].

3.2.2 Non-Autoregressive Model for Summarization

Despite the high performance, such edit-based search has several drawbacks. First,

the search process is slow because hundreds of local search steps are needed to obtain
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Figure 3.1: The overview of our approach. In each search step, input words corre-
sponding to grey cells are selected.

a high-quality summary. Second, their approach only extracts the original words with

order preserved. Therefore, the generated summary is restricted and may be noisy.

To this end, we train the non-autoregressive model with generated summaries of

the search-based method [76]. In this way, the machine learning model can smooth

out the search noise and is much faster, largely alleviating the drawbacks of search-

based summarization. Compared with training an autoregressive model from search

results [41], non-autoregressive generation predicts all the words in parallel, further

improving inference efficiency by several times.

Moreover, a non-autoregressive model enables us to design an encoder-only archi-

tecture. It is more suited to the summarization task due to the strong correspondence

between input and output, which cannot be fully utilized by encoder–decoder models,

especially autoregressive ones.

Specifically, we propose to use the multi-layer Transformer [88] as the non-autoregressive

architecture for summarization. Each Transformer layer is composed of a multi-head

attention sublayer and a feed-forward sublayer. Additionally, there is a residual

connection in each sublayer, followed by layer normalization.

Let X(n) ∈ RT×d be the representation at the nth layer, where T is the number of

words and d is the dimension. Specially, the input layer X(0) is the embeddings of

words. Suppose we have h attention heads. The output of the ith head in the nth

attention sublayer is A
(n)
i = softmax

(︂
QiK

⊤
i√

dk

)︂
Vi, where Qi, Ki, and Vi are matrices
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calculated by three distinct multi-layer perceptrons (MLPs) from X(n−1); dk is the

attention dimension.

Multiple attention heads are then concatenated:

A(n) = Concat
(︁
A

(n)
1 , . . . , A

(n)
h

)︁
WO

where WO ∈ Rd×d is a weight matrix.

Then, we have a residual connection and layer normalization by

Ā
(n)

= LayerNorm
(︁
X(n−1) + A(n)

)︁
(3.4)

Further, an MLP sublayer processes Ā
(n), followed by residual connection and layer

normalization, yielding the nth layer’s representation

X(n) = LayerNorm
(︁
Ā

(n)
+MLP(Ā

(n)
)
)︁

(3.5)

The last Transformer layer X(N) is fed to softmax to predict the words of the

summary in a non-autoregressive manner, that is, the probability at the tth step is

given by softmax(Wx
(N)
t ), where x

(N)
t is the tth row of the matrix X(N) and W is the

weight matrix.

It is emphasized that, in the vocabulary, we include a special blank token ϵ, which

is handled by dynamic programming during both training and inference. This enables

us to generate a shorter summary than the input with such a multi-layer Transformer.

Our model can be thought of as an encoder-only architecture, differing from a

typical encoder–decoder model with cross attention [88, 4, 107]. Previously, Su et

al. [80] propose a seemingly similar model to us, but put multiple end-of-sequence

(EOS) tokens at the end of the generation; thus, they are unable to maintain the

correspondence between input and output. Instead, we allow blank tokens scattering

over the entire sentence; the residual connections in Eqns (3.4) and (3.5) can better

utilize such input–output correspondence for summarization.
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3.2.3 Model Training

Our model is trained with the Connectionist Temporal Classification [CTC, 23]

algorithm. CTC allows a special blank token ϵ in the vocabulary, and uses dynamic

programming to marginalize out such blank tokens, known as latent alignment [73].

In addition, non-autoregressive generation suffers from a common problem that words

may be repeated in consecutive steps [25, 39]; thus, CTC merges repeated words

unless separated by ϵ. For example, the sequence of tokens aϵϵaabbϵ is reduced to the

text aab, denoted by Γ(aϵϵaabbϵ) = aab.

Concretely, the predicted likelihood is marginalized over all possible fillings of ϵ,

i.e., all possible token sequences that are reduced to the groundtruth text:

P (y|x) =
∑︂

w:Γ(w)=y
P (w|x) (3.6)

where P (w|x) is the probability of generating a sequence of tokens w. Although

enumerating every candidate in {w : Γ(w) = y} is intractable, such marginalization

fortunately can be computed by dynamic programming in an efficient way.

Let αs,t =
∑︁

w1:s:Γ(w1:s)=y1:t
P (w1:s|x) be the marginal probability of generating y1:t

up to the sth decoding slot. Moreover, αs,0 is defined to be the probability that w1:s

is all ϵ, not match any word in y. The αs,t variable can be further decomposed into

two terms αs,t = αϵ
s,t + α¬ϵs,t, where the first term is such probability with ws = ϵ, and

the second term ws ̸= ϵ. Apparently, the initialization of α variables is

αϵ
1,0 = P (w1 = ϵ|x) (3.7)

α¬ϵ1,1 = P (w1 = y1|x) (3.8)

αϵ
1,t = 0,∀t ≥ 1 (3.9)

α¬ϵ1,t = 0,∀t > 1 or t = 0 (3.10)

Eqn. (3.9) is because, at the first prediction slot, the empty token ϵ does not match

any target words; Eqn. (3.10) is because the predicted non-ϵ first token must match

exactly the first target word.
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The recursion formula for αϵ
s,t is

αϵ
s,t = αs−1,tP (wt = ϵ|x)

since the newly predicted token ϵ with probability P (wt = ϵ|x) does not match any

target word, inheriting αs−1,t.

The recursion formula for α¬ϵs,t is

α¬ϵs,t =

{︄(︁
αϵ
s−1,t−1 + α¬ϵs−1,t

)︁
P (ws = yt|x), if yt = yt−1(︁

αs−1,t−1 + α¬ϵs−1,t
)︁
P (ws = yt|x), otherwise

Here, ws is not ϵ, so we must have ws = yt, having the predicted probability P (ws =

yt|x).

If yt = yt−1, then we have two sub-cases: first, w1:s−1 is reduced to y1:t−1 with

ws−1 = ϵ separating two repeating words in y, having probability αϵ
s−1,t−1; or second,

w1:s−1 is reduced to y1:t with ws−1 = yt ̸= ϵ, having probability α¬ϵs−1, which implies

we are merging ws−1 and ws.

If yt ̸= yt−1, w1:s−1 is reduced to either y1:t−1 or y1:t. In the first case, ws−1 can be

either ϵ or non-ϵ, given by αs−1,t−1 = αϵ
s−1,t−1 + α¬ϵs−1,t−1. In the second case, we must

have ws−1 ̸= ϵ, which has a probability of α¬ϵs−1,t.

Finally, α|w|,|y| is the marginal probability in Eqn. (3.6), as it is the probability that

the entire generated sequence matches the entire target text.

The CTC maximum likelihood estimation is to maximize the marginal probability,

which is equivalent to minimizing the loss −α|w|,|y|. Since the dynamic programming

formulas are differentiable, the entire model can be trained by backpropagation

in an end-to-end manner with auto-differentiation tools. We use PyTorch1 in our

implementation.
1https://www.pytorch.org/
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3.3 Experiments

3.3.1 Setup

Datasets. We evaluated our non-autoregressive model on Gigaword headline genera-

tion and DUC2004, which are benchmark datasets for summarization.

The headline generation dataset [72] is constructed from the Gigaword news cor-

pus [22], where the first sentence of a news article is considered as input text and the

news title is considered as the summary. The dataset contains 3.8M, 198K, and 1951

samples for training, validation, and test, respectively. Based on the analysis of the

training size in §3.3.2, we used 3M samples for model training.

It should be emphasized that, when our model learns from search, we only use the

input of the training corpus: we perform search [76] for each input, and train our

model from the search results. Therefore, we do not utilize any labeled parallel data,

and our approach is unsupervised.

Moreover, we trained two variants of our model with search results of 8 and 10

words, respectively, which are the lengths that Schumann et al. [76] consider for the

Gigaword test set.

The DUC2004 dataset [65] is designed for testing only and contains 500 samples,

where we also took the first sentence of an article as the input text. Our model was

transferred from the above headline generation corpus. Since Schumann et al. [76]

evaluate 13-word summaries on DUC2004, we followed their setting and trained an

additional model from search results of the same length.

Evaluation Metrics. We evaluated the quality of predicted summaries by ROUGE

scores2 [43], which are the most widely used metrics in previous work [90, 4, 107].

Specifically, ROUGE-n evaluates n-gram overlap between a predicted summary and

its reference summary; ROUGE-L, instead, measures the longest common sequence

between the predicted and reference summaries.
2https://github.com/tagucci/pythonrouge
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Figure 3.2: Performance versus the number of training samples when learning from
10-word search results. Notice that our model is trained by pseudo-groundtruth given
by unsupervised edit-based search [76]. Thus, our approach is indeed unsupervised.

Different ROUGE variants are adopted in previous work, depending on the dataset.

We followed the standard evaluation scripts and evaluated headline generation by

ROUGE F1 [90, 4, 76] and DUC2004 by Truncate ROUGE Recall [11, 91].

In addition to summary quality, we also evaluated the inference efficiency of different

methods, as it is important for the deployment of deep learning models in real-time

applications. We report the average inference time in seconds for each data sample,

and compare the speedup with Schumann et al. [76]’s search approach, which achieves

(previous) state-of-the-art ROUGE scores in the unsupervised setting.

3.3.2 Implementation Details

Our non-autoregresive model has a Transformer encoder as the basic structure, gen-

erally following the settings in [88]: 6 encoder layers, each having 8 attention heads.

The dimension was 512 for attention and 2048 for feed-forward modules.

Our training used a batch size of 4K tokens, with a maximum of 200K updates.

We used Adam with β = (0.9, 0.98). In general, the learning rate warmed up to 5e-4

in the first 10K steps, and then decayed to 1e-9 with the inverse square-root schedule,

except that we find the maximum learning rate of 1e-4 worked better for headline

generation with the summary length of 8. We set the ℓ2 weight decay to 0.01.

The training of our model is based on Schumann et al. [76]’s prediction on the input
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# Approach
ROUGE F1

Inf.Time Speedup
R-1 R-2 R-L ∆R

1

Baseline

Baziotis et al. [4]† 25.39 8.21 22.68 -6.19 – –

2 Wang and Lee [90]† 27.29 10.01 24.59 -0.58 – –

3 Zhou and Rush [107]† 26.48 10.05 24.41 -1.53 – –

4

8 words

Search
Schumann et al. [76]† 26.32 9.63 24.19 -2.26 – –

5 Our replication 26.17 9.69 24.10 -2.42 6.846 1.346x

6 Learn from
search

Su et al. [80] 26.95 9.56 24.85 -1.11 0.017 542x

7 Ours 28.72 10.02 25.80 2.07 0.005 1843x

8

10 words

Search
Schumann et al. [76]† 27.52 10.27 24.91 0.23 – –

9 Our replication 27.35 10.25 24.87 0 9.217 1x

10 Learn from
search

Su et al. [80] 28.01 9.92 25.57 1.03 0.020 461x

11 Ours 29.14 10.23 25.84 2.75 0.005 1843x

Table 3.1: Results on the Gigaword headline generation test set. R-1, R-2, R-L:
ROUGE-1, ROUGE-2, ROUGE-L. ∆R: The difference of total ROUGE (sum of
R-1, R-2, and R-L) in comparison with the (previous) state-of-the-art search method
under replication. Inf.Time: Average inference time in seconds for one sample on an
i9-9940X CPU and a RTX6000 GPU. Speedup: Relative to [76]. †Results quoted
from previous papers; others are given by our experiments.3

of the Gigaword headline generation training set. We show performance against the

number of training samples in Figure 3.2. As seen, our model outperforms its search

teacher even with a small set of 0.1 million samples, and the performance saturates as

the number of samples increases. Based on this analysis, we used 3 million samples

from the 3.8 million Gigaword training set to train our models.

3.3.3 Results

Main Results. Table 3.1 presents the performance of our model and baselines on

the Gigaword headline test set.

Both Wang and Lee [90] and Baziotis et al. [4] utilize cycle consistency [57] for

unsupervised summarization; the performance is relatively low, because the cycle

consistency loss cannot ensure the generated text is a valid summary. Zhou and
3Su et al. [80] involve a parameter to control the penalty on summary length, we set it to 1 for

results in Table 3.1, i.e., no length penalty.
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Rush [107] perform beam search towards a step-by-step decomposable score of fluency

and contextual matching, achieving higher scores than the cycle-consistency methods.

All of these methods have worse performance than the 10-word summaries generated

by [76]4, which performs edit-based local search and yields the (previous) state-of-the-

art performance.

Our approach follows [76], but trains a non-autoregressive model from search results.

We consider training summaries of two different lengths, i.e., 8 and 10 words. In both

settings, our approach outperforms its search-based teacher [76] by 2.07–2.75 points in

terms of the total ROUGE score (Rows 7 & 11, Table 3.1). As mentioned, Schumann

et al. [76] only extract original words with order preserved, yielding noisy sentences.

Our model, as a student, learns from the search-based teacher model and is able to

smooth out its noise. This is a compelling result, as our student model outperforms

its teacher.

Regarding inference efficiency, our method does not need iterative search and is

thus more than 1800 times faster than the 10-word search-based method [76]. This

shows our approach is extremely efficient in inference, which is important for real-time

applications.

Although the efficiency of [4], [90] and [107] is not available, we still expect our

approach to be a few times faster (in addition to our higher ROUGE scores) because

their models are autoregressive. By contrast, our approach is non-autoregressive,

meaning that it predicts all words simultaneously. We will provide a controlled

comparison between autoregressive and non-autoregressive models in §4.3.

Table 3.2 shows the results on the DUC2004 dataset. The cycle-consistency ap-

proach [4, 91] does not perform well on this dataset, outperformed by an early

rule-based syntax tree trimming approach [103] and the state-of-the-art edit-based

search [76].
4Schumann et al. [76] present a few variants that use additional datasets for training language

models (in an unsupervised way). In our study, we focus on the setting without data augmentation,
i.e., the language model is trained on non-parallel the Gigawords corpus.
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Model
ROUGE Recall

Time Speedup
R-1 R-2 R-L ∆R

Zajic et al. [103]† 25.12 6.46 20.12 -5.35 – –

Baziotis et al. [4]† 22.13 6.18 19.30 -9.44 – –

West et al. [91]† 22.85 5.71 19.87 -8.62 – –

Schumann et al. [76]† 26.04 8.06 22.90 -0.05 – –

Our replication 26.14 8.03 22.88 0 12.314 1x

Su et al. [80] 26.34 7.71 22.85 -0.10 0.022 559x

Ours 26.68 7.75 23.04 0.47 0.005 2463x

Table 3.2: Results on the DUC2004 dataset. †Quoted from previous papers.

The performance of our model is consistent with Table 4.2, outperforming all

previous methods in terms of the total ROUGE score, and being over 2000 times

faster than the search approach [76].

In general, the proposed model not only achieves state-of-the-art ROUGE scores

for unsupervised summarization, but also is more efficient when deployed. Results are

consistent on both datasets, demonstrating the generality of our approach.
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Chapter 4

Summarization with Word-Level
Length Control

4.1 Overview

Controlling output length is the nature of the summarization task, for example,

displaying a short news headline on a mobile device. Moreover, Schumann et al. [76]

show that the main evaluation metric ROUGE [43] is sensitive to the summary length,

and longer summaries tend to achieve higher ROUGE scores. Thus, it is crucial to

control the summary length for fair comparison.

In this chapter, we present a word-level length-control algorithm, which is able to

generate a summary of the desired number of words based on output probabilities of

the non-autoregressive model. Moreover, we show the experimental performance of

our approach when there is a length budget. We further conduct ablation studies and

examine the effectiveness of different model components.

4.2 Methodology

4.2.1 The Proposed Algorithm

Our word-level length-control algorithm follows the nature of CTC training and is

based on dynamic programming (DP), dividing the length control into shared sub-

problems; this is feasible because our non-autoregressive model predicts probabilities
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independently.

However, our DP is an approximate algorithm because of the dependencies intro-

duced by removing consecutive repeated tokens (§3.2.3). Thus, we equip our DP with

a beam search mechanism.

We define B to be a DP table, where Bs,t is a set of top-B sequences with s

predicted tokens that are reduced to t words.

The initialization of Bs,t fills in the DP table for t = 0 and s = 1.

• For t = 0, we must have Bs,0 = {ϵ · · · ϵ⏞ ⏟⏟ ⏞
s-many

}, because t = 0 means no non-ϵ word has

been generated.

• For s = 1, we have

B1,t =

{︄
{ϵ}, if t = 0

topB{w : w1 ̸= ϵ}, if t = 1
(4.1)

where topB selects the best B elements by the probability P (ws|x). Here, t = 0

is the same as the previous bullet item. If t = 1, the summary has a length of 1

and thus the only token in the summary, i.e., the selected token at the first slot,

must be non-ϵ. In this case, we select the top-B probable words according to the

value P (w1), i.e., the predicted probability of the first generation slot.

Then, the recursion of Bs,t can be categorized into three scenarios.

• First, the blank token ϵ is predicted for the sth generation slot, and thus the

summary length t remains the same, shown by the blue arrow in Figure 4.1.

This yields a set of candidates

B(1)
s,t =

{︁
b⊕ ϵ : b ∈ Bs−1,t

}︁
(4.2)

where ⊕ refers to string/token concatenation.

• Second, a repeated word is predicted for the sth generation slot, i.e., bs−1 for a

subsequence b of length s− 1. In this case, the summary length t also remains

the same, also shown by the blue arrow in Figure 4.1. This gives a candidate set

B(2)
s,t =

{︁
b⊕ bs−1 : b ∈ Bs−1,t

}︁
(4.3)
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Figure 4.1: Illustration of our length-control algorithm.

• Third, a non-ϵ, non-repeating word ws is generated, increasing the summary

length from t− 1 to t, shown by the red arrow in Figure 4.1. This gives

B(3)
s,t = topB

{︁
b⊕ w :b ∈ Bs−1,t−1,ws ̸= ϵ,ws ̸= bs−1

}︁
(4.4)

Based on the three candidates sets, we select top-B sequences to keep the beam

size fixed:

Bs,t = topB(B
(1)
s,t ∪B(2)

s,t ∪B(3)
s,t ) (4.5)

where the sequences are ranked by their predicted joint probabilities.

4.2.2 Theoretical Analysis

We perform a theoretical analysis on the exactness of our DP algorithm.

Theorem 1. (1) If repeating tokens are not merged, then the proposed length-control

algorithm with beam size B = 1 finds the exact optimum BS,T being the most probable

length-T sentence given by S prediction slots. (2) If we merge repeating tokens predicted

by CTC-trained models, the above algorithm may not be exact.

Proof. [Part (1)] This part concerns a variant of our decoding algorithm, which

only removes the blank token ϵ but does not merge consecutive repeated tokens

to a single word, i.e., Eqn. (5.5) is removed. We denote this by Γ′, for example,

Γ′(aϵϵaabbϵ) = aaabb, as opposed to Γ(aϵϵaabbϵ) = aab in our algorithm. We now

show that, based on Γ′, our dynamic programming algorithm in §4.2 with beam size

B = 1 is an exact inference algorithm.
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We define βs,t = maxb:|b|=s,|Γ′(b)|=t P (b|x), where |·| denotes the length of a sequence.

In other words, βs,t is the maximum probability of s tokens that are reduced to t

words.

According to the definition, we have

β1,0 = P (w1 = ϵ|x) (4.6)

β1,1 = maxw1 ̸=ϵ P (w1|x) (4.7)

βs,t = 0 for s > t (4.8)

In Eqn. (4.6), β1,0 refers to the probability of one token that is reduced to zero words.

In this case, the first predicted token can only be the blank token ϵ, which corresponds

to Eqn. (4.2) with s = 1 and t = 0. Likewise, β1,1 is the maximum probability of one

token that is reduced to one word. Thus, it is the probability of the most probable

non-ϵ token, corresponding to Eqn. (4.4) with s = 1 and t = 0. Eqn. (4.8) asserts that

fewer tokens cannot be reduced to more words; it is used for mathematical derivations,

but need not to be explicitly implemented in our algorithm in §4.2.

The recursion variable βs,t is computed by

βs,t = max
{︂
βs−1,t · P (ws = ϵ|x), βs−1,t−1 ·maxws ̸=ϵ P (ws|x)

}︂
(4.9)

In other words, the variable βs,t can inherit βs−1,t with a predicted blank token ϵ,

corresponding to Eqn. (4.2); or it can inherit βs−1,t−1 with a predicted non-ϵ token,

corresponding to Eqn. (4.4). Specially, if t = 0, then the second term has βs−1,−1

undefined, and thus is ignored in the max operation.

We need the max operator to take the higher probability in the two cases, since βs,t

is the maximum probability of s tokens being reduced to t words. This corresponds to

Eqn. (4.5) with beam size B = 1.

To sum up, our inductive calculation guarantees that βS,T is the exact maximum

probability of maxb:|b|=S,|Γ′(b)|=T P (b|x) for the desired length T with S generation

slots; our algorithm (if not merging repeating tokens) gives the corresponding BS,T as

argmaxP (b|x) under the same constraints, concluding the proof of Part (1).
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Word P (w1|x) P (w2|x)

I 0.39 0.1

like 0.4 0.9

coding 0.1 0

ϵ 0.11 0

Table 4.1: An example of predicted probabilities of two generation slots, where we
have a vocabulary of three words and a blank token ϵ.

[Part (2)] CTC training [23] merges consecutive repeated tokens to a single word,

unless separated by the blank token ϵ. Since our model is trained by CTC, we should

adopt this rule in inference as well. We show in this part that our algorithm, with

beam size B = 1, may not yield the exact optimum with an example in Table 4.1.

We consider generating a sentence of two words from the two prediction slots,

i.e., S = T = 2. Apparently, the optimal sequence is “I like” with probability

0.39 · 0.9 = 0.351. However, the algorithm would predict B1,1 = {“like”} because

“like” is the most probably token in the first slot. Then, our algorithm will give

B2,2 = {“like I”}, because it has to select a non-repeating token based on Γ, yielding

a non-optimal solution.

It is noted that, if we do not merge repeating tokens as in Γ′, our algorithm will

give the exact optimum “like like” in the above example. This shows that merging

consecutive repeated tokens requires the decoding algorithm to correct early predictions,

and thus, our dynamic programming becomes an approximate inference. Nevertheless,

our algorithm is able to generate a sequence of the desired length properly; its

approximation happens only when the algorithm compares more repetitions with fewer

ϵs versus more ϵs with fewer repetitions. Such approximation is further alleviated by

beam search in our dynamic programming. Therefore, the proposed length-control

algorithm is better than truncating a longer sentence; especially, our approach generates

more fluent and complete sentences.
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4.3 Experiments

4.3.1 Setup

Following §3.3, we adopted ROUGE scores as the evaluation metric and evaluated

our word-level length-control algorithm on the Gigaword headline generation and

DUC2004 datasets.

Moreover, our training parameters were the same as §3.3.2, and we additionally set

the beam size to be 6 based on the analysis in §4.3.4.

4.3.2 Results and Analyses

Main Results. Table 4.2 presents the performance of our model and baselines on

the Gigaword headline test set. For a fair comparison, we categorize all approaches

by average summary lengths of ∼8 and ∼10 into Groups A and B, respectively,

following [76].

The Lead baseline extracts the first several words of the input sentence and is

thus a suitable baseline for our settings where the number of words in summaries

is controlled. Despite its simplicity, the Lead approach is a strong summarization

baseline adopted in most previous work [18, 4].

Both Wang and Lee [90] and Zhou and Rush [107] are unable to explicitly control

the summary length: in a fair comparison of length 10 (Group B, Table 4.2), their

performance is worse than the search-based approach [76].

We control the summary length of our model with two different methods: truncating

longer summaries and decoding with our proposed length-control algorithm. Notice

that this setting is different from §3.3, where the summary length is not constrained.

Both of the two variants outperform [76] by 1.21–2.73 points in terms of the total

ROUGE score (Rows 5–6 & 13–14, Table 4.2). This is consistent with the result in

§3.3, confirming the effectiveness of our learning-from-search approach.

Moreover, our approach, even with dynamic programming and beam search for
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Group # Approach Len
ROUGE F1

Inf.Time Speedup
R-1 R-2 R-L ∆R

A

(desired

length 8)

1 Baseline Lead (8 words)† 7.9 21.39 7.42 20.03 -11.12 – –

2
Search

Schumann et al. [76]† 7.9 26.32 9.63 24.19 0.18 – –

3 Our replication 7.9 26.17 9.69 24.10 0 6.846 1x

4
Learn from

search

Su et al. [80] 7.7 26.88 9.37 24.54 0.83 0.017 403x

5 Ours (truncate) 7.8 27.27 9.49 24.96 1.76 0.005 1369x

6 Ours (length control) 7.8 27.94 9.24 25.51 2.73 0.041 167x

B

(desired

length 10)

7

Baseline

Lead (10 words)† 9.8 23.03 7.95 21.29 -10.2 – –

8 Wang and Lee [90]† 10.8 27.29 10.01 24.59 -0.58 – –

9 Zhou and Rush [107]† 9.3 26.48 10.05 24.41 -1.53 – –

10
Search

Schumann et al. [76]† 9.8 27.52 10.27 24.91 0.23 – –

11 Our replication 9.8 27.35 10.25 24.87 0 9.217 1x

12
Learn from

search

Su et al. [80] 9.4 27.86 9.88 25.51 0.78 0.020 461x

13 Ours (truncate) 9.8 28.24 10.04 25.40 1.21 0.005 1843x

14 Ours (length control) 9.8 28.55 9.97 25.78 1.83 0.044 210x

Table 4.2: Results on the Gigaword headline generation test set. Len: Average length
of predicted summaries. R-1, R-2, R-L: ROUGE-1, ROUGE-2, ROUGE-L. ∆R:
The difference of total ROUGE (sum of R-1, R-2, and R-L) in comparison with
the (previous) state-of-the-art search method under replication. Inf.Time: Average
inference time in seconds for one sample on an i9-9940X CPU and a RTX6000 GPU.
Speedup: Relative to [76]. †Results quoted from previous papers; others are given by
our experiments.

Model
ROUGE Recall

Time Speedup
R-1 R-2 R-L ∆R

Lead (75 characters)† 22.50 6.49 19.72 -8.34 – –

Zajic et al. [103]† 25.12 6.46 20.12 -5.35 – –

Baziotis et al. [4]† 22.13 6.18 19.30 -9.44 – –

West et al. [91]† 22.85 5.71 19.87 -8.62 – –

Schumann et al. [76]† 26.04 8.06 22.90 -0.05 – –

Our replication 26.14 8.03 22.88 0 12.314 1x

Su et al. [80] 26.25 7.66 22.83 -0.31 0.022 559x

Ours (truncate) 26.52 7.88 22.91 0.26 0.005 2463x

Ours (length control) 26.71 7.68 23.06 0.40 0.048 257x

Table 4.3: Results on the DUC2004 dataset. †Quoted from previous papers.

length control, is still over 100 times faster than its search-based teacher. This high

efficiency of our approach is crucial for the deployment to real-world applications.

We show the results on the DUC2004 dataset in Table 4.3. As seen, our model
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outperforms all previous methods in terms of the total ROUGE score, which is again

consistent with previous results. Besides, our method is 100–2000 times faster than

the search approach [76].

4.3.3 Comparison with Autoregressive and Encoder–Decoder
Models

We conduct in-depth analyses on the proposed model in Table 4.4. Due to the limit

of time and computational resources, we chose the Gigaword headline generation as

our testbed. All the autoregressive (AR) and non-autoregressive (NAR) variants learn

from the search output of our replication (Rows 2 & 11), where we achieve very close

results to those reported in [76].

We first tried vanilla encoder–decoder NAR Transformer (Rows 4 & 13) [25], where

we set the number of decoding slots to be the desired summary length; thus, the

blank token and the length-control algorithm are not needed. As seen, a vanilla NAR

model does not perform well, and CTC largely outperforms vanilla NAR in both

groups (Rows 5–6 & 14–15). Such results are highly consistent with the translation

literature [73, 6, 24, 69, 29].

Our proposed encoder-only model outperforms encoder–decoder ones in both groups

in terms of the total ROUGE score, when the summary length is controlled by either

truncating or length-control decoding (Rows 8–9 & 17–18). Profoundly, our non-

autoregressive model is even better than the autoregressive Transformer (Rows 3 & 12).

We also experimented with the previous supervised non-autoregressive summarization

model [80] in our unsupervised learning-from-search setting. Although such an ap-

proach appears to be encoder-only, it adds end-of-sequence (EOS) tokens at the end of

the generation, and thus is unable to utilize the input–output correspondence. Their

performance is higher than vanilla NAR models, but lower than ours. By contrast,

our model is able to capture such correspondence with the residual connections, i.e.,

Eqns. (3.4) and (3.5), in its encoder-only architecture.
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# Approach
ROUGE Recall

Speedup
R-1 R-2 R-L ∆R

Group A (desired length 8)

1
Search

Schumann et al. [76] 26.32 9.63 24.19 0.18 –

2 Our replication 26.17 9.69 24.10 0 1x

3 AR Transformer (truncate) 26.65 9.51 24.67 0.87 58x

4
NAR

encoder–decoder

Vanilla 24.87 8.33 22.74 -4.02 571x

5 CTC (truncate) 27.30 9.20 24.96 1.5 571x

6 CTC (length control) 27.76 9.13 25.33 2.26 149x

7
NAR

encoder–only

Su et al. [80] 26.88 9.37 24.54 0.83 403x

8 Ours (truncate) 27.27 9.49 24.96 1.76 1396x

9 Ours (length control) 27.94 9.24 25.51 2.73 167x

Group B (desired length 10)

10
Search

Schumann et al. [76] 27.52 10.27 24.91 0.23 –

11 Our replication 27.35 10.25 24.87 0 1x

12 AR Transformer (truncate) 27.06 9.63 24.55 -1.23 66x

13
NAR

encoder–decoder

Vanilla 25.77 8.69 23.52 -4.49 709x

14 CTC (truncate) 28.14 10.07 25.37 1.11 709x

15 CTC (length control) 28.45 9.81 25.63 1.42 192x

16
NAR

encoder–only

Su et al. [80] 27.86 9.88 25.51 0.78 461x

17 Ours (truncate) 28.24 10.04 25.40 1.21 1843x

18 Ours (length control) 28.55 9.97 25.78 1.83 210x

Table 4.4: Model analysis on the headline generation test set. All autoregressive (AR)
and non-autoregressive (NAR) models use the Transformer architecture.

Generally, the efficiency of encoder-only NAR1 (without length-control decoding)

is ∼2 times faster than encoder–decoder NAR and ∼20 times faster than the AR

Transformer.

Further, our length-control decoding improves the total ROUGE score, compared

with truncating, for both encoder–decoder CTC and encoder-only models (Rows 6,

9, 15, & 18), although its dynamic programming is slower. Nevertheless, our non-

autoregressive model with length control is ∼200 times faster than search and ∼3

times faster than the AR Transformer.
1The standard minimal encoder–decoder NAR model has 6 layers for the encoder and another

6 layers the decoder [88]. Our model only has a 6-layer encoder. Our pilot study shows that more
layers do not further improve performance in our encoder-only architecture.
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4.3.4 Analysis of Beam Search

As mentioned, our length-control decoding algorithm involves beam search within its

dynamic programming, because the algorithm does not find the exact optimum when

it merges repeating words. We analyze the effect of the beam size in our length-control

algorithm.

In addition, we compare our approach with CTC beam search [23].2 Typically, a

CTC-trained non-autoregressive model can be decoded either greedily or by beam

search. The greedy decoding finds the most probable token at each step, i.e., w∗i =

argmaxwi
P (wi|x), and reduces the tokens to a sentence by Γ(w1, · · · ,wT ), where T

is the number of decoding steps. The CTC beam search algorithm searches for the

most likely sentence by marginalizing all token sequences that are reduced to y, i.e.,

argmaxy
∑︁

w:Γ(w)=y P (w|x).

We show results in Figure 4.2, where we chose 10-word Gigaword headline generation

as the testbed with our model (Group B, Table 4.2). Notice that CTC beam search

does not control the output length, and for fair comparison, we truncated its generated

summaries. This also shows that our novel decoding approach and CTC beam search

are distinct algorithms.

As seen in Figure 4.2a, the beam search does play a role in our length-control

algorithm. When the beam enlarges from 1 to 6, the performance (orange solid line)

increases by 1.2 points in ∆R, the difference of total ROUGE in comparison with

[76] under our replication (Row 10, Table 4.2). However, further increasing the beam

size does not yield an additional performance gain. This is consistent with previous

literature in autoregressive generation [55], which also suggests a beam size of 5–7 is

the best in their applications. In terms of the efficiency (Figure 4.2b), a larger beam

size monotonically increases the inference time. However, the overhead of beam search

is relatively small in our dynamic programming, and thus we chose a beam size of 6
2Our implementation of CTC beam search is based on https://github.com/parlance/ctcdecode
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Figure 4.2: Comparing our length-control method and the truncated CTC beam search
on the Gigaward headline generation test set.

in our experiments.

Our length-control algorithm significantly outperforms CTC beam search (dashed

blue lines) in terms of both ∆R and efficiency. Especially, CTC beam search is three

times slower, and degrades more significantly than our length-control decoding when

the beam size increases.

4.3.5 Case Study

We show in Table 4.5 example summaries generated by our approach with truncating

and length-control decoding, as well as the previous state-of-the-art method [76]. We

observe that our method without length control generates slightly longer summaries,

and if truncated, the output may be incomplete; by contrast, our length-control

algorithm generates a fluent and complete sentence of the desired length by dynamic

programming. Compared with [76], our method (length control) generates a more

informative summary that includes the main clause (united nations condemned), which

also appears in the reference summary.

39



Input: the united nations condemned saturday an attack on russian embassy employees in baghdad that

claimed the life of one russian and resulted in the kidnapping of four others

Reference: un condemns murder of russians in iraq with annan comment

Schumann et al. [76]: attack on russian embassy in baghdad claimed one in four

ours (truncate): an attack on russian embassy employees in baghdad claimed in kidnapping of four others

Ours (length control): united nations condemned attack on russian embassy employees in baghdad

Table 4.5: Example summaries for Gigaword headline generation. The gray words are
truncated for fair comparison.

4.3.6 Length-Transfer Generation

In previous sections, we present results where our model is trained on search outputs [76]

that have the same length as the inference target. This follows the common assumption

in machine learning that training and test samples are independently identically

distributed.

In this section, we show the performance of length-transfer summary generation,

where the prediction has a different length from that of training. We denote such a

model by Oursi→j, referring to training with i words and testing for j words.

As seen in Groups A & B in Table 4.6, our approach with length transfer is

slightly worse than our model trained on the correct length, which is understandable.

Nevertheless, length-transfer decoding still outperforms the search teacher and other

baselines.

Moreover, we consider the third setting in [76], where the target length is 50% of

the input. Since it takes time to obtain pseudo-groundtruths given by the edit-based

search, we would directly transfer already trained models to this setting by our length-

control decoding. Results are shown in Group C, Table 4.6. We observe Ours10→50%

is better than Ours8→50%, which makes much sense because the latter has a larger

gap during transfer. Remarkably, both Ours8→50% and Ours10→50% outperform [76]

and other baselines, achieving new state-of-the-art unsupervised performance on this

setting as well.
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Group # Approach Len
ROUGE F1

Inf.Time Speedup
R-1 R-2 R-L ∆R

Group A

(desired length 8)

1 Baseline Lead (8 words)† 7.9 21.39 7.42 20.03 -11.12 – –

2
Search

Schumann et al. [76]† 7.9 26.32 9.63 24.19 0.18 – –

3 Our replication 7.9 26.17 9.69 24.10 0 6.846 1x

4

Learn from

search

Su et al. [80]8→8 7.7 26.88 9.37 24.54 0.83 0.017 403x

5 Su et al. [80]10→8 8.4 25.71 8.94 23.65 -1.84 0.018 380x

6 Ours (truncate) 7.8 27.27 9.49 24.96 1.76 0.005 1369x

7 Ours8→8 7.8 27.94 9.24 25.50 2.73
0.041 167x

8 Ours10→8 7.9 27.12 9.08 24.86 1.10

Group B

(desired length 10)

9

Baseline

Lead (10 words)† 9.8 23.03 7.95 21.29 -10.2 – –

10 Wang and Lee [90]† 10.8 27.29 10.01 24.59 -0.58 – –

11 Zhou and Rush [107]† 9.3 26.48 10.05 24.41 -1.53 – –

12
Search

Schumann et al. [76]† 9.8 27.52 10.27 24.91 0.23 – –

13 Our replication 9.8 27.35 10.25 24.87 0 9.217 1x

14

Learn from

search

Su et al. [80]8→10 – – – – – – –

15 Su et al. [80]10→10 9.4 27.86 9.88 25.51 0.78 0.020 461x

16 Ours (truncate) 9.8 28.24 10.04 25.40 1.21 0.005 1843x

17 Ours8→10 9.9 28.32 9.58 25.46 0.89
0.044 210x

18 Ours10→10 9.8 28.55 9.97 25.78 1.83

Group C

(desired length

50% of the input)

19

Baseline

Lead (50% words)† 14.6 24.97 8.65 22.43 -4.58 – –

20 Fevry and Phang [18]† 14.8 23.16 5.93 20.11 -11.43 – –

21 Baziotis et al. [4]† 15.1 24.70 7.97 22.41 -5.55 – –

22
Search

Schumann et al. [76]† 14.9 27.05 9.75 23.89 0.06 – –

23 Our replication 14.9 27.03 9.81 23.79 0 17.462 1x

24

Learn from

search

Su et al. [80]8→50% – – – – – – –

25 Su et al. [80]10→50% – – – – – – –

26 Ours8→50% 14.9 28.39 9.78 24.94 2.48
0.052 336x

27 Ours10→50% 14.9 28.53 9.88 25.10 2.88

Table 4.6: Analysis of length-transfer summary generation. A subscript i→ j (or j%)
refers to a model trained with i words and tested for j (or j%) words. Len: Average
length of predicted summaries. R-1, R-2, R-L: ROUGE-1, ROUGE-2, ROUGE-L.
∆R: The difference of total ROUGE (sum of R-1, R-2, and R-L) in comparison
with the (previous) state-of-the-art model [76] under replication. Inf.Time: Average
inference time in seconds for one sample on an i9-9940X CPU and a RTX6000 GPU.
Speedup: Relative to [76]. †Results quoted from previous papers; others are given by
our experiments. Se et al. [80]’s approach has a soft length penalty to encourage short
output, but cannot generate longer summaries than trained.

We further compare with Su et al. [80], who use a soft length penalty to encourage

short summaries. However, their length control works in the statistical sense but may

fail for individual samples. Moreover, such a length penalty cannot generate longer
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summaries than trained. Even in the setting of 10→ 8, their generates summaries are

slightly longer than required, while the performance degrades much more considerably

than our approach.

These results show that our novel length-control decoding algorithm is not only

effective when generating summaries of similar length to the training targets, but also

generalizes well to different desired summary lengths without re-training. In general,

our method is an effective and efficient unsupervised summarization system with the

ability to explicitly control the number of words.
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Chapter 5

Summarization with Character-Level
Length Control

5.1 Overview

Despite the effectiveness of the word-level length-control algorithm, constraining

the summary length by the number of characters is a more realistic setting in real-

world applications. For example, the headline shown in a mobile app or web page is

constrained by the screen width (roughly speaking, the number of characters), rather

than the number of words.

In this chapter, we introduce a character-level length-control algorithm, which can

explicitly control the number of characters in a summary. Similar to previous chapters,

we also show its experimental performance on benchmark datasets, i.e., Gigaword and

DUC2004. Besides, we analyze the effect of different parameters of our algorithm.

5.2 Methodology

5.2.1 The Proposed Algorithm

Our character-level length-control algorithm, similar to the word-level one proposed

in Chapter 4, is based on dynamic programming (DP). Specifically, we formulate

character-level length control as a knapsack-like problem; we treat the number of
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Figure 5.1: Illustration of our character-level length-control algorithm. Dashed yellow
arrows refer to transitions that do not increase the summary length, while solid blue
arrows refer to the increase of length. Thick arrows and blocks refer to the selected
path by CTC. Due to the space limit, ϵ is omitted in the predicted sentence, and we
use ϵ(S) to denote a sequence of S-many ϵs. The number demonstrates the value (i.e.,
log-probability) of a word.

characters in a word (plus one) as the weight,1 denoted by u(w) for the word w, and

the predicted log-probability as the value vs(w) = logPs(w|x) for the prediction slot

s. Our goal of character-level length-control summarization can be formulated as

maximize
w1,··· ,wS

S∑︂
s=1

vs(ws) (5.1)

subject to
∑︂
y∈y

y=Γ(w1,··· ,wS)

u(y) < U (5.2)

where U is the total length budget. Here, the value is the sum of the log-probability

of every generation slot including ϵ, whereas the length is said in terms of the words

of the CTC-reduced sequence y = Γ(w1, · · · ,wS).

We observe that handling every possible integer weight (i.e., length) as in a standard

knapsack algorithm may slow down the inference. Thus, we divide the lengths into

buckets for efficient inference. Formally, let the lth bucket cover the length ranging
1For the purposes of research, we assume every word is appended with another character, namely,

a white space. In real applications, our algorithm can be applied with any measure of length, such as
the display width of a word in some font.
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from α · (l − 1) + 1 to α · l characters, where α is a hyperparameter controlling the

bucket size. We denote by ds,l = ds,l1 · · · ds,ls the most probable2 s-token sequence that

is reduced to a summary in the lth length bucket. Specially, we let ds,0 mean that the

reduced summary has zero words.

The initialization of ds,l fills in the DP table for l = 0 and s = 1.

• For l = 0, we must have ds,0 = ϵ · · · ϵ⏞ ⏟⏟ ⏞
s-many

, because l = 0 means no non-ϵ word has

been generated. (First row of Figure 5.1)

• For s = 1, we have

d1,l =

⎧⎨⎩ϵ, if l = 0

argmax
w:u(w)∈[α·(l−1)+1,α·l]

v1(w), if l > 0 (5.3)

Here, l = 0 is the same as the previous bullet item. For l > 0, we select the

most probable word for each length bucket according to the value v1(·), i.e., the

predicted log-probability of the first generation slot. (First column of Figure 5.1.)

The DP recursion is to compute ds,l based on a newly predicted token ws, assuming

its top-left sub-table is filled. This involves three scenarios:

• Case 1: ws = ϵ. In this case, the new word is ϵ. Thus, the index for generation

slots increases from s − 1 to s, but the summary length does not change. We

denote Ds,l
1 as the set containing the candidate sequence, given by

Ds,l
1 =

{︁
ds−1,l ⊕ ϵ

}︁
(5.4)

where ⊕ denotes string concatenation. (See yellow dash arrows in Figure 5.1.)

• Case 2: ws ≠ ϵ, but ws = ds−1,l
s−1 . In other words, the candidate non-ϵ word ws

for the sth slot is identical to the last token of ds−1,l. Since repeated tokens

are merged during CTC decoding, the output length index l is unchanged. We

include this sequence in a set:

Ds,l
2 =

{︁
ds−1,l ⊕ ds−1,l

s−1
}︁

(5.5)

2In theory, beam search may also be adopted here as in §4.2. However, our pilot study shows
unnoticeable improvement and thus we do not equip this algorithm with beam search.
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(Also see yellow dash arrows in Figure 5.1.)

• Case 3: ws ̸= ϵ and ws ̸= ds−1,l′
s−1 for some l′ ≤ l. That is, ws is neither ϵ nor

repetition, and thus the summary length will be increased from bucket l′ to l. We

denote this candidate set by

Ds,l
3 =

{︃
ds−1,l′ ⊕ ws :

(︂
u(ws) +

∑︂
d∈ds−1,l′

u(d)
)︂
∈ [α · (l − 1) + 1, α · l], (5.6)

ws ̸= ϵ,ws ̸= ds−1,l′
s−1 , and l′ ≤ l

}︃
(See blue arrows in Figure 5.1.)

Then, our DP finds the most probable sequence at each recursion step:

ds,l = argmax
d∈Ds,l

1 ∪Ds,l
2 ∪Ds,l

3

S∑︂
s=1

vs(ds) (5.7)

where ds is the sth token of a sequence d from the three candidate sets above.

5.2.2 Theoretical Analysis

Similar to §4.2.2, we present a theorem regarding the exactness of our character-level

length-control algorithm.

Theorem 2. (1) If the bucket size α = 1 and consecutive repetitions are not merged,

then dS,T is the most probable sentence of T characters given by the S prediction slots.

(2) If α ̸= 1 or repeating tokens are merged, our algorithm may not be exact.

Proof. [Part (1)] Our model is trained by the Connectionist Temporal Classification

(CTC) algorithm [23], which merges repeated consecutive tokens and removes ϵs in

the output sequence. Since the merging operation establishes dependencies between

tokens in the output sequence, our length-control algorithm is inexact.

In this part, we consider the non-merging reduction operation Γ′ defined in The-

orem 1, for example, Γ′(aaϵabbϵ) = aaabb. Our thus revised algorithm works as

follows.
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We denote ˜︁ds,l = ˜︁ds,l
1 · · ·˜︁ds,l

s as the recursion variable, being the most probable

s-token sequence that is reduced to a summary of length l.

The initialization of ˜︁ds,l is the same as the original length-control algorithm (§5.2.1),

since the merging operation is not involved here. However, the recursion involves only

two cases:

• Case 1: ws = ϵ. The recursion of this case is also the same (see Eqn. 5.4):

˜︁Ds,l
1 =

{︁˜︁ds−1,l ⊕ ϵ
}︁

(5.8)

• Case 2: ws ̸= ϵ. We have a set of candidate sequences:

˜︁Ds,l
2 =

{︃˜︁ds−1,l′ ⊕ ws :
(︂
u(ws) +

∑︂
d∈˜︁ds−1,l′

u(d)
)︂
= l,ws ̸= ϵ, and l′ < l

}︃
(5.9)

This is analogous to Eqn. (5.6), where α = 1 (due to our theorem assumption).

Also, the condition ws ̸= ˜︁ds−1,l′
s−1 in Eqn. (5.6) is dropped here because this

algorithm variant does not merge repeated tokens.

Then, the algorithm chooses the most probable candidate sequence as ˜︁ds,l, given by

˜︁ds,l = argmax
d∈ ˜︁Ds,l

1 ∪ ˜︁Ds,l
2

S∑︂
s=1

vs(ds) (5.10)

Now we will prove that the algorithm is exact: suppose Ps,l :=
∑︁s

i=1 vi(
˜︁ds,l
i ) is the

log probability of ˜︁ds,l, we have

Ps,l = max
d1···ds:|Γ′(d1···ds)|=l

s∑︂
i=1

vi(di) (5.11)

In other words, ˜︁ds,l is the most probable s-token sequence that is reduced to length l.

This is proved by mathematical induction as follows.

Base Cases. For l = 0, the variable ˜︁ds,0 can only be s-many ϵs. The optimality in

Eqn. (5.11) holds trivially.
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For s = 1 but l > 0, the algorithm chooses ˜︁d1,l = argmax
d1:u(d1)=l

v1(d1). Therefore,

P1,l = max
d1:|Γ′(d1)|=l

v1(d1), showing that Eqn. (5.11) is also satisfied with only one term

in the summation.

Induction Step. The induction hypothesis assumes

Ps−1,l′ = max
d1···ds−1:|Γ′(d1···ds−1)|=l′

s−1∑︂
i=1

vi(di)

for every l′ < l. We will show that the algorithm finds the sequence ˜︁ds,l with

Ps,l = max
d1···ds:|Γ′(d1···ds)|=l

s∑︂
i=1

vi(di)

.

According to Eqn. (5.10), the variable ˜︁ds,l is the most probable sequence in ˜︁Ds,l
1 ∪ ˜︁Ds,l

2 .

Thus, we have

Ps,l = max
l′,ds:l′+u(ds)=l

{Ps−1,l′ + vs(ds)} (5.12)

= max
l′

{︃
Ps−1,l′ + max

ds:l′+u(ds)=l
vs(ds)

}︃
(5.13)

= max
l′

{︄
max

d1···ds−1:|Γ′(d1···ds−1)|=l′

s−1∑︂
i=1

vi(di) + max
ds:l′+u(ds)=l

vs(ds)

}︄
(5.14)

= max
l′

⎧⎪⎪⎪⎨⎪⎪⎪⎩ max
d1···ds:

|Γ′(d1···ds−1)|=l′

|Γ′(d1···ds)|=l

s∑︂
i=1

vi(di)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.15)

= max
d1···ds:|Γ′(d1···ds)|=l

s∑︂
i=1

vi(di) (5.16)

Here, (5.13) separates the max operation over l′ and ds; (5.14) is due to the induction

hypothesis; (5.15) holds because the two max terms in (5.14) are independent given

l′, and thus the summations can be grouped; and (5.16) further groups the two max

operations with l′ eliminated. The last two lines are originally proved in [30] and also

used in [12].

[Part (2)] We now prove our algorithm may be inexact if α ̸= 1 or repeated tokens

are merged. We show these by counterexamples.3

3To make our counterexample intuitive, we work with probabilities, rather than log probabilities.
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Word P1(·|x) P2(·|x)

I 0.3 0.1

am 0.4 0.6

a 0.2 0.05

ϵ 0.1 0.25

Table 5.1: A counterexample showing that our algorithm may be inexact if α ̸= 1 or
repeated tokens are merged. Here, we set the vocabulary to be three words plus a
blank token ϵ.

Suppose α ̸= 1 and in particular we assume α = 2. We further assume repeated

tokens are not merged. Consider the example shown in Table 5.1. The length-control

algorithm finds ˜︁d1,1 = {“am”}, and then ˜︁d2,2 = {“am I”} with the probability of

0.4 · 0.1 = 0.04, as the first bucket covers the length range [1, 2] and second [3, 4].

Here, we notice that two words are separated by a white space, which also counts as

a character. However, the optimum should be {“I am”}, which has a probability of

0.3 · 0.6 = 0.18.

Now suppose repeated tokens are merged, and we further assume the length bucket

α = 1 in this counterexample. Again, this can be shown by Table 5.1: the algorithm

finds d1,1 = {“I”} and d1,2 = {“am”}, based on which we have d2,3 = {“I a”} with

probability 0.3·0.05 = 0.015. However, the optimum should be {“a I”} with probability

0.2 · 0.1 = 0.02.

The above theoretical analysis helps us understand when our algorithm is exact (or

inexact). Empirically, our approach works well as an approximate inference algorithm.

Discussion. Our DP algorithm is inspired by the standard 0-1 knapsack problem [3],

but also differs in several significant ways. First, we merge consecutive tokens during

CTC decoding; this establishes some dependencies among different generation slots,

and thus exact inference with DP is not possible. Second, our value function is

non-stationary, as it changes over time. We require that every slot should select a

49



token, either ϵ or a word. In both cases, the token’s value is added to the total value.

Therefore, our algorithm is compatible with negative values, namely, log probabilities

in our application, because only the relative difference matters for the value function.

5.3 Experiments

5.3.1 Setup

Similarly to §4.3, we use ROUGE scores to evaluate the performance; we experimented

with our character-level length-control algorithm on the Gigaword headline generation

and DUC2004 datasets.

Our training parameters, still, were the same as §3.3.2. For the character-level

length-control algorithm, we adopted a bucket size of 4 and only considered the most

probable 20 words for every generation slot (cf. ws in Eqn. 5.6) due to efficiency

concerns.

5.3.2 Results

In this section, we compare our method with previous non-autoregressive summariza-

tion models in the character-level length-control setting.

Results on Gigaword Headline Generation. Table 5.2 presents the performance

on the Gigaword test set under two different length settings, i.e., 50 and 60 characters,

where machine learning models are trained by 8 and 10-word pseudo-summaries [76],

respectively; this is because 8-word summaries have an average length of 48.75 ≈ 50

characters, while 10-word ones have 60.17 ≈ 60. Additionally, we observe that our

proposed algorithm is the only machine learning-based approach that can perform

explicit character-level length control. For fair comparison, we truncate the output of

other methods to satisfy the length constraints.

As seen, our model even with truncating outperforms all other non-autoregressive

(NAR) models [80, 68, 98] in both settings. Specifically, Su et al. [80] emit multiple end-

of-sequence tokens at the end of the output sequence to generate a shorter summary
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Group # Approach Len
ROUGE F1

Time
R-1 R-2 R-L ∆R

A

(desired

length 50)

1 Baseline Lead-50 chars 49.03 20.66 7.08 19.30 -9.23 –

2
Search

Schumann et al. [76] (truncate) 45.45 24.98 9.08 23.18 0.97 9.573

3 Char constrained search 44.05 25.30 9.25 23.43 1.71 17.324

4

NAR

Su et al. [80] (truncate) 45.24 24.65 8.64 22.98 0 0.017

5 Qi et al. [68] (truncate) 44.54 24.31 7.66 22.48 -1.82 0.019

6 Yang et al. [98] (truncate) 49.37 21.70 4.60 20.13 -9.84 –

7 Ours (truncate) 47.77 25.79 8.94 23.75 2,21 0.012

8 Ours (length control) 47.03 27.45 8.87 25.14 5.19 0.025

B

(desired

length 60)

9 Baseline Lead-60 chars 49.03 22.06 7.56 20.40 -6.23 –

10
Search

Schumann et al. [76] (truncate) 55.47 26.00 9.57 23.83 3.15 21.951

11 Char constrained search 56.09 26.15 9.58 23.84 3.32 42.459

12

NAR

Su et al. [80] (truncate) 55.58 24.92 8.54 22.79 0 0.018

13 Qi et al. [68] (truncate) 54.14 25.17 8.44 23.02 0.38 0.020

14 Yang et al. [98] (truncate) 58.74 23.21 5.21 21.79 -6.04 –

15 Ours (truncate) 57.23 26.80 9.73 24.44 4.72 0.012

16 Ours (length control) 57.13 28.00 9.63 25.35 6.73 0.032

Table 5.2: Performance on the Gigaword headline generation test set, where NAR
stands for non-autoregressive. Len: Average number of characters in the predicted
summaries. R-1, R-2, R-L: ROUGE-1, ROUGE-2, ROUGE-L. ∆R: The difference
of total ROUGE (sum of R-1, R-2, and R-L) in comparison with the (previous)
state-of-the-art NAR summarization system [80]. Time: Average inference time in
seconds for one sample on an i9-9940X CPU and an RTX6000 GPU.5

than the source text (Rows 4 & 12); Qi et al. [68] propose to pretrain a summarization

system in an autoregressive manner, and gradually adapt it to the NAR setting

(Rows 5 & 13); Yang et al. [98]4 propose a two-step strategy of autoregressive part-of-

speech (POS) prediction and non-autoregressive summary generation (Rows 6 & 14).

Our model trained by CTC, even with character-level truncating, is able to surpass

all these methods and the search-based teacher [76], which again demonstrates the

effectiveness of our approach.
4Yang et al. [98] only provided execution commands in their GitHub repo, but no training code.

We emailed the authors, but have not obtained the code either. The reported results are based on
our best replication.

5Some performance is not consistent with Table 4.2 due to different implementations.
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# Approach
ROUGE Recall

Time
R-1 R-2 R-L ∆R

1 Baseline Lead-75 chars 22.52 6.50 19.74 -4.97 –

2
Search

Schumann et al. [76] (truncate) 26.09 8.03 22.86 3.25 30.362

3 Char-constrained search 26.30 7.95 22.78 3.30 31.540

4

NAR

Su et al. [80] (truncate) 24.67 7.25 21.81 0 0.017

5 Qi et al. [68] (truncate) 22.79 5.91 20.05 -4.98 0.018

6 Ours (truncate) 26.43 7.86 22.66 3.22 0.012

7 Ours (length control) 28.37 7.74 24.30 6.68 0.030

Table 5.3: Results on DUC2004 dataset.

Equipped with the length-control algorithm, our model has a significant boost in

terms of ROUGE scores. In a fair comparison with the same base architecture, the

length-control algorithm alone improves truncating by 2–3 points. Our full model

achieves an improvement of more than 5 total ROUGE points compared with previous

state-of-the-art NAR methods.

Regarding the inference efficiency, our method with truncating is faster than previous

NAR models. Even with the length-control algorithm, our model is still in the same

ballpark, being ∼500x faster than the search-based method.

Additionally, we design a variant of the unsupervised summarization method based

on [76], where we directly impose the character-level length constraint during each

search step (Rows 3 & 11). We find this approach outperforms truncating word-

constrained search (Rows 2 & 10), but is much worse than our machine learning-based

model with the length-control algorithm.

Results on DUC2004. Table 5.3 shows the performance of our model on DUC2004,

where we constrain the summary length to be at most 75 characters, following previous

work [91, 4, 76]. Following §3.3 and §4.3, we adopted 13-word summaries (∼80

characters) from [76] as our training targets.

Experiments show that our method with length control again largely outperforms

previous NAR models, while retaining high inference efficiency. Results are consistent
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# Approach Len
ROUGE F1

Time
R-1 R-2 R-L

1
AR

Transformer (truncate) 46.62 26.31 9.33 24.29 0.092

2 Transformer (length control) 45.23 25.33 9.03 23.44 0.095

3
NAR

Ours (truncate) 47.77 25.79 8.94 23.75 0.012

4 Ours (length control) 47.03 27.45 8.87 25.14 0.025

Table 5.4: Comparing autoregressive (AR) and non-autoregressive (NAR) models on
the Gigaword headline generation test set. Our length-control algorithm requires the
predicted probabilities to be independent, and thus is not compatible with AR models.

with the Gigaword experiment.

5.3.3 Comparison with Autoregressive Models

We are curious about how our non-autoregressive model with character-level length

control is compared with autoregressive (AR) methods. Thus, we consider the 50-

character setting in Table 5.2, and train a standard AR Transformer with truncating

and length-control decodings, and show results in Table 5.4.

As seen, our length-control algorithm is not compatible with the AR Transformer

and hurts the ROUGE scores (Row 2). This is because our algorithm is based on

dynamic programming and requires model outputs to be local, so that the length-

control problem can be divided into shared sub-problems; however, the predicted

probabilities of the AR Transformer depend on the partial generation at previous time

steps. Note that this is not a disadvantage of our approach, but shows that NAR

generation provides unique opportunities for length control.

Moreover, our approach achieves higher performance than the AR Transformer,

which is a very strong result. This is because we learn from a search-based method that

extracts source words as the summary [76], and our CTC training—with blank tokens

scattering over the whole output sentence as appropriate—can capture such strong

correspondence between input and output. Moreover, the proposed length-control

algorithm is able to maintain the summary completeness given the length constraint,
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Figure 5.2: Performance of our method
with different bucket sizes.
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Figure 5.3: Length-transfer perfor-
mance of our model and Su et al. [80].

achieving better ROUGE scores than our model with truncating.

5.3.4 Analysis of the Length Bucket

Our dynamic programming is an approximate algorithm with an α-sized length bucket

(see Figure 5.1 and §5.2.1). Here, we investigate the effect of the bucket size in terms

of ROUGE scores (the arithmetic mean of R-1, R-2, and R-L) and inference efficiency

when training targets are 8-word summaries from [76], following Table 5.2.

As seen in Figure 5.2, the ROUGE score continuously decreases with a larger bucket

size (thick orange curve). This not only confirms the inexactness of our algorithm,

but also shows that a small bucket size does not hurt the performance much. On the

other hand, the inference time decreases drastically at the beginning (thin blue curve)

because we have fewer dynamic programming steps; as the bucket size increases, the

inference time convergences to our approach without length control. Based on this

analysis, we set the bucket size to be 4 in our experiments.

5.3.5 Case Study

Table 5.5 shows example summaries generated by our method and the AR Transformer

on the Gigaword test set.

As seen, a model without length control may generate a summary that happens to

have the desired length (AR Transformer), or a longer summary (both AR Transformer
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Input: singapore airline and delta air lines announced two differing strategies to upgrade their long-haul in-flight

service for business travelers .

Reference: business travel : competing strategies ; crowded skies

50-character Setting:

AR Transformer (no control): delta air lines differing strategies to upgrade their in-flight service for business travelers

Ours (no control): delta air lines differing strategies to upgrade long-haul in-flight service for business travelers

Ours (length control): delta air lines upgrade service business travelers

Table 5.5: Example summaries for Gigaword headline generation, where gray words
are truncated for fair comparison.

and our method). A longer summary requires truncating for explicit length control,

which is undesired.

By contrast, our proposed algorithm is able to generate a summary whose length is

close to but less than the length budget. The resulting summary is more complete

than truncating, and better keeps the key information.

5.3.6 Length-Transfer Generation

Our model is capable of length-transfer generation, that is, generating summaries of

different lengths from the training targets. Such generation is important to real-world

applications where summaries of various lengths are needed for the same input, e.g.,

fitting different screen widths. Although generating a short enough summary may

satisfy all possible length constraints, a longer summary that better utilizes the length

budget can preserve more information; this is also reflected by ROUGE scores, which

prefer longer summaries, as shown in [76].

Figure 5.3 compares the performance of our method with Su et al. [80] when learning

from 8-word summaries. When the inference length budget is less than training (x-axis

< 50), the ROUGE score of our approach decreases almost linearly with a decreasing

length budget, but Su et al. [80]’s approach degrades faster than ours. For x-axis

> 50, we find the soft penalty in [80] is unable to generate longer summaries than

trained (shown by the dashed orange line), whereas our approach is able to utilize the

increased length budget and achieve higher ROUGE scores.
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Chapter 6

Conclusion & Future Work

6.1 Conclusion

In this thesis, we propose a non-autoregressive unsupervised summarization model,

which does not require any labeled training data and thus is applicable to domains

where paired samples are difficult to collect. Further, we develop two length-control

algorithms, which are able to explicitly control the summary length at the word and

character levels, respectively.

Experiments show that our approach not only achieves unsupervised state-of-the-art

performance on Gigaword and DUC2004 datasets under length constraints, but also

is at least several times faster than an autoregressive Transformer [88] at inference

time. Moreover, our approach is able to perform length-transfer generation, that is,

generating summaries of different lengths from the training target.

6.2 Limitation & Future Work

This thesis focuses on unsupervised summarization due to the importance of low-data

applications. One limitation is that we have not obtained rigorous empirical results

for supervised summarization, where our length-control algorithms may also work.

This is because previous supervised summarization studies lack explicit categorization

of summary lengths [101, 68], making comparisons unfair and problematic [76]. Such

an observation is also evidenced by Su et al. [80], where the same model may differ by
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a few ROUGE points when generating summaries of different lengths. Nevertheless,

we have compared with Su et al. [80] in our setting and show the superiority of our

approach under fair comparison. We plan to explore supervised summarization in

future work after we establish a rigorous experimental setup.
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