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Abstract

Meta-learning was initially developed for supervised learning to enable models to
generalize across tasks by leveraging prior experience. However, its potential in the
unsupervised learning domain remains underexplored. To demonstrate the feasi-
bility of meta-learning in unsupervised settings, we apply it to Non-negative Matrix
Factorization (NMF), a widely used technique for decomposing non-negative data
matrices into interpretable, lower-dimensional representations. While NMF has
found applications in topic modeling, image processing, bioinformatics, and recom-
mendation systems, it faces persistent challenges such as rank selection, optimiza-
tion stability, uniqueness, and computational efficiency. Traditional approaches
primarily focus on improving initialization strategies to enhance convergence and
generalization. However, these methods often fail to exploit structural similari-
ties across tasks. This paper introduces a meta-learning paradigm for NMF that
systematically learns optimal factorization parameters from small-scale tasks and
transfers this knowledge to improve learning on larger tasks. By discovering fine
structures in small tasks and leveraging them to guide factorization on more com-
plex datasets, our approach directs the search process toward a more optimal and
structured search space, reducing the risk of suboptimal solutions and improving
model robustness. This meta-unsupervised learning framework enhances NMF’s
ability to uncover meaningful patterns while maintaining adaptability across dif-
ferent domains. Additionally, we evaluate the model under noisy conditions and
demonstrate its robustness by filtering noise over learning epochs, further enhanc-
ing its interpretability and stability. By integrating meta-learning principles, our
method improves optimization stability and enhances interpretability and general-
izability, bridging the gap between NMF-based models and advanced autonomous
(unsupervised) learning strategies. The source code of this work is available at
https://github.com/akhan232/meta-nmf.
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Chapter 1

Introduction

1.1 Context and Problem Statement

Over the last few years, the availability of large volumes of high-dimensional data
has emerged as a significant problem in data analysis and different machine-
learning techniques. This led to the importance of dimensionality reduction in
the broad context of various areas ranging from image processing to bioinformat-
ics. Non-negative Matrix Factorization (NMF) has become an outstanding tool
for dimensionality reduction with significant advantages stemming from inherent
constraints and interpretability of results [64]. In contrast to other methods like
the well-developed PCA, NMF consists of piece-by-piece decompositions that can
be easily related to the features in data sets, which is why it is essential for many
applications demanding the results to be explained. However, NMF has shown
significant results in various fields, including text mining and image analysis [23,
39, 2, 65].

NMF stands out from other dimensionality reduction techniques due to its
unique ability to generate interpretable, non-negative representations [64]. Un-
like PCA, which captures variance through linear projections and often results in
difficult-to-interpret negative values, NMF produces additive combinations corre-
sponding to meaningful data parts [70]. This is particularly valuable in domains
like image processing, where parts-based decompositions align with human per-
ception. Deep learning techniques include NMF as a newer version of DR than au-
toencoders since it functions independently of extensive training and large datasets
[29]. Storing data in a latent space by autoencoders through neural networks creates
complicated yet difficult-to-interpret characteristics in such spaces. NMF delivers
transparent interpretations of its results, establishing it as the ideal method when
diagnostic or biological models need transparent output. Furthermore, NMF of-
fers advantages over traditional clustering techniques, such as k-means. NMF data
points can belong to multiple clusters simultaneously through its feature, allow-
ing for overlapping cluster memberships rather than k-means assignment to single

1



CHAPTER 1. INTRODUCTION 2

clusters [47]. The ability of NMF to assign the same data points to multiple clusters
enables enhanced application success in document clustering and music analysis
tasks.

The application of NMF brings efficient results to various domains of use. NMF
has gained acceptance in image processing because it can identify critical visual
components. The method shows remarkable success in face recognition problems
through the identification of localized facial features, according to a study published
by Lee and Seung [43]. NMF-based frameworks successfully boosted degraded doc-
ument text extraction, according to research from Salehani et al. [65]. Similarly,
Aonishi et al. [2] utilized NMF to analyse brain imaging data in neuroscience
for neural pattern identification. NMF is an efficient approach to detecting topics
within big text databases through text mining and topic modelling applications.
Research conducted by Latif et al. [39] proves that NMF works effectively in Twitter
data analytics to generate easy-to-understand subject groupings. The team of Gal-
lego et al. [23] implemented NMF to perform consumer review classification and
document clustering analysis for marketing research applications. Bioinformatics
researchers have adopted NMF extensively to analyse extensive biological datasets.
Gene expression analysis with NMF effectively identifies gene clusters and reveals
biological processes, as Jung et al. [33]established through their research. Sweeney
et al. [67], alongside other researchers, use NMF-based frameworks to identify cell
types through single-cell RNA sequencing by examining expression patterns.

Recent developments have also seen NMF incorporated into recommender sys-
tems to enhance personalization. Khan et al. [36] demonstrated how NMF-based
models improve recommendations by decomposing user-item interaction matrices
in collaborative filtering applications. Researchers like ur Rehman et al. [63] have
also explored hybrid approaches integrating NMF with meta-learning to address
recommendation systems’ cold-start problem and sparsity issues. These diverse ap-
plications highlight NMF’s versatility in solving real-world problems across various
fields, reinforcing its importance as a dimensionality reduction and representation
learning tool.

Meta-learning for the dimensionality reduction in NMF is an under-researched
fragment with potential effectiveness and efficacy. Meta-learning has emerged as
a promising approach to improving machine learning algorithms in parallel with
the developments in dimensionality reduction. Significantly, meta-learning, also
known as “learning how to learn,” is typically described as learning to exploit pre-
vious experience across many closely related tasks better to perform a new task [30,
12]. With exceptional success in several domains, recent meta-learning advances
demonstrate the potential of applying dimensionality reduction methods [4, 21, 24].
Meta-learning and matrix factorization meet at an intersection that we can use to
address these longstanding challenges and continue pushing the field of automated
machine learning forward. Recent work has shown how meta-learning principles
can improve optimization algorithm performance across different tasks, suggesting
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similar benefits to NMF applications [30, 12]. Despite this, the integration of meta-
learning with NMF has not been primarily explored, especially in enhancing the
clustering performance according to Normalized Mutual Information (NMI).

Standard NMF methods encounter multiple serious challenges that constrain
their performance quality. These negative aspects include sensitivity problems to
starting positions, non-smooth optimisation challenges, and difficulties transferring
understanding between different tasks. The NMF algorithms demonstrate a strong
sensitivity to their initialisation conditions, leading to unique results when run
multiple times. Different starting inputs generate highly dissimilar results, thus
creating challenges to obtaining dependable and repeatable models [4, 21]. For
applications demanding consistent results repeatability, this undesirable sensitivity
becomes problematic.

The optimisation problem for NMF frequently produces non-convex solutions
because it leads to local optima instead of global ones. The algorithm cannot
discover this constraint’s top possible data representation. Standard optimisation
methods produce inferior results, mainly in situations involving high-dimensional
data and intricate underlying structures, according to Gan et al. [24]. The challenge
intensifies because dataset complexity and size continue growing progressively.

The existing strategies for resolving these problems concentrate on separate
NMF tasks without recognising the possibility of knowledge exchange between
functions. Graph-regularized NMF (GNMF) operates as an independent factorisa-
tion approach which avoids utilising former factorisation solutions during process-
ing [53, 17]. Due to the lack of mutual information sharing between treatment units,
they struggle to generate efficient adaptations in new tasks. A fresh implementa-
tion leveraging meta-learning concepts must develop NMF’s clustering ability and
boost its stability and domain adaptability.

1.2 Objectives

The main objective of the thesis is to develop a meta-learning enhanced NMF frame-
work that improves its convergence towards a more optimal solution, as well as its
sensitivity to initialization and clustering performance. Specifically, the proposed
methodology aims to:

• Design and implement a meta-learning model for NMF that learns and shares
knowledge across multiple sub-tasks

• Apply the Meta Enhancement to different NMF variants to showcase its effec-
tiveness

• Evaluate the framework’s performance across multiple benchmark datasets

• Create a comprehensive comparative analysis framework to assess the advan-
tages of meta-learning enhanced NMF over traditional approaches
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1.3 Hypothesis

The proposed method will be supported by the following hypotheses, which we
will validate by experiment.

• Integrating NMF with the Meta-learning paradigm will demonstrate statisti-
cally significant improvements in clustering performance compared to tradi-
tional NMF approaches across multiple datasets.

• The proposed meta-learning framework will significantly reduce initializa-
tion sensitivity and provide more consistent and reproducible results across
different experimental conditions.

• The proposed meta-learning enhancement to NMF will make it more immune
to noise.

• The proposed approach will improve the capability to concentrate on impor-
tant facial features.

1.4 Thesis Structure

The thesis presents a thorough study of the enhanced Non-negative Matrix Factor-
ization (NMF), which distributes content throughout five targeted chapters dedi-
cated to exploring the research issue.

• Chapter 1 establishes a solid base by presenting vital information about the
high-dimensional data challenges. This segment identifies the research fo-
cus by explaining how traditional NMF methods lack effectiveness and then
presents the benefits of utilizing meta-learning approaches. The first chapter
establishes the research aims and main hypotheses before providing concep-
tual ground for the following sections.

• Chapter 2 contains a thorough literature examination that studies standard di-
mensionality reduction methods and NMF applications across various fields
and their current methodological difficulties. The theoretical foundation
builds through this chapter by performing a critical exploration of preced-
ing investigations, followed by the explicit definition of gaps for which the
thesis intends remediation.

• Chapter 3 outlines the proposed meta-learning enhanced NMF framework
through its methodological core. The description details all aspects of the
new approach by presenting distinctive methods to share knowledge and
optimize processes and experimental procedures.
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• Chapter 4 demonstrates an empirical study through experimental results with
comparative analysis and statistical performance evaluation of the proposed
method.

• The thesis ends in Chapter 5 through the integration of primary results and
the assessment of research achievements alongside proposed investigation
directions.



Chapter 2

Literature Review

This chapter comprehensively reviews the existing literature on dimensionality
reduction techniques, focusing on Principal Component Analysis (PCA) and Non-
Negative Matrix Factorization (NMF). It explores these methods’ theoretical foun-
dations, advantages, and limitations, particularly in the context of interpretability
and performance. The chapter further discusses advancements in NMF, including
regularized approaches such as Graph-Regularized NMF and Orthogonal NMF.
Additionally, the role of meta-learning in both supervised and unsupervised set-
tings is examined, emphasizing its relevance to enhancing NMF-based models. The
chapter concludes with a critical review of previous research, identifying key gaps
and potential directions for future studies in meta-learning and NMF.

2.1 Background on Dimensionality Reduction Techniques

Dimensionality reduction techniques are essential in machine learning and data
analysis as they help simplify complex data while preserving its essential struc-
tures [31, 69]. These methods are widely used in various applications, including
image processing, text mining, and bioinformatics, as they generate escalating high-
dimensional data and require dimensionality reduction techniques. The category
of dimensionality reduction consists of methods that fall into linear and non-linear
classifications. Principal Component Analysis (PCA) and Independent Component
Analysis (ICA) function as traditional methods for data dimension reduction until
lower dimensions retain maximum data variance[3, 55]. The techniques display
specific restrictions during their application to detect natural non-linear structures
in complicated data. Unsupervised learning requires dimensionality reduction to
improve data’s computational efficiency and interpretability [55]. The training of
unsupervised models depends on automatic pattern detection within unlabeled
datasets because supervision through labelled data is not feasible. The domain
implements clustering algorithms like K-Means, DBSCAN, and hierarchical clus-
tering, while Non-Negative Matrix Factorization (NMF) is a matrix factorization

6
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technique [24]. NMF is an effective unsupervised method for cluster discovery
through data decomposition because it generates interpretable parts from input
data [21, 12]. Non-negativity constraints in NMF create results that better suit prac-
tical needs such as topic modeling, image processing, and genomic data analysis be-
cause NMF does not apply orthogonal transformations, which sometimes produce
negative values like PCA. NMF’s advantages have been accompanied by significant
operational problems, which include its sensitivity to initial conditions, non-convex
optimization approach, and inability to generalize between datasets. Recent work
in NMF improvement has concentrated on implementing meta-learning techniques
to let models leverage experience from similar tasks to enhance their performance
during data analysis of previously unseen information [30, 12]. The joining of stan-
dard unsupervised learning frameworks with this integration represents a critical
development that allows such systems to become more robust and adaptive.

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique that transforms high-
dimensional data into a lower-dimensional subspace while preserving as much
variance as possible [32]. The method achieves its goal by identifying new prin-
cipal component axes that produce maximum data variance. PCA implements its
mathematical procedures using either the eigendecomposition of covariance ma-
trices or Singular Value Decomposition principal [9]. The PCA methodology starts
by computing data means for subtraction, followed by covariance matrix calcula-
tion. The computational process determines both eigenvectors and eigenvalues of
the matrix, which indicates the principal components while showing the amount
of explained variance through each element. When using principal components
corresponding to the largest eigenvalues in PCA you can reduce data dimensions
without losing essential data patterns [28].

Although the method successfully reduces the data dimensions, there are spe-
cific limitations. The main disadvantage of PCA is its output of negative values that
create challenges during non-negative representation applications such as image
processing and bioinformatics fields [43]. The linear nature of PCA transforms
limit its capability to detect complex nonlinear patterns found in actual data sets.
Thus the method proves insufficient for many practical applications. When using
PCA it is assumed that data variance functions as the primary element for pattern
distinction yet this assumption fails to hold true in various situations where class
separation matters more than variance preservation [69]. The main weakness of
PCA emerges from its weak performance when dealing with abnormal data points.
Extreme values affect PCA calculation since it works by maximization of variance
and this effect results in invalid data interpretations [26]. Interpreting PCA compo-
nents becomes difficult especially when clear feature representation is necessary in
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particular domains. Alternative dimension reduction techniques led to the grow-
ing popularity of NMF because of its limitations. NMF resolves PCA limitations
through its non-negativity constraint that produces more easily interpretable de-
compositions while optimizing applications for parts-based representations.

Formulation of PCA

PCA optimizes the projection of data 𝑋 ∈ R𝑛×𝑝 onto a lower-dimensional subspace
by maximizing the variance of the projected data. Formally, it solves:

max
𝑊

Var(𝑋𝑊) subject to 𝑊𝑇𝑊 = 𝐼 ,

where𝑊 ∈ R𝑝×𝑘 is the matrix of orthogonal projection directions (principal com-
ponents), and 𝐼 is the identity matrix. This is equivalent to finding the eigenvectors
of the covariance matrix 𝐶 = 1

𝑛−1𝑋
𝑇𝑋 corresponding to the largest eigenvalues. The

projected data is 𝑍 = 𝑋𝑊 , capturing the most significant variance in 𝑘 dimensions.
Fig. 2.1 provides a visual presentation of this concept,

Figure 2.1: Principal Component Analysis.

2.1.2 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) [43] operates as an effective dimensional-
ity reduction framework which finds wide application throughout machine learn-
ing together with bioinformatics and image processing. NMF differs from con-
ventional matrix decomposition methods PCA and SVD because it requires both
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matrices to contain non-negative values during decomposition [11, 64]. The charac-
terization of the decomposition matrices as non-negative improves feature extrac-
tion because users can obtain meaningful interpretable features from the process
[22]. Non-negativity constraints lead to effective performance and interpretability
in the NMF algorithm. Natural datasets, including images, documents and gene
expression profiles, contain values that can only be positive or zero. NMF maintains
non-negativity as an enforcement rule to keep components and their coefficient val-
ues inside meaningful, realistic boundaries. The non-negative characteristic makes
it suitable for datasets with uninterpretable negative values, including image pixel
intensity or text word frequency data. Through its non-negative requirement, NMF
generates decomposition representations that use parts rather than whole-pattern
transformations, which are typical in factorization algorithms such as PCA. More-
over, NMF-based decomposition enables the interpretation of data through the
subdivision of components into meaningful parts, which makes it an ideal solution
for feature extraction operations [13].

Formulation of NMF

Formally, let X ∈ R𝑚×𝑛 be a matrix of 𝑛 columns representing the non-negative
samples and 𝑚 rows representing their features, and 𝑟 (lower rank) is a positive
integer < min(𝑚, 𝑛). NMF aims to find non-negative matrices W ∈ R𝑚×𝑟 and
H ∈ R𝑟×𝑛 that minimize the following cost function:

W,H =
1
2∥X −WH∥2𝐹 , (2.1)

where ∥ · ∥2
𝐹

represents the Frobenius norm. The model in Eq. 2.1 can also be
formulated as an optimization problem of the form:

min
W,H>0

∥X −WH∥2𝐹 = min
W,H>0

∑
𝑖 , 𝑗

(X −WH)2𝑖 𝑗 . (2.2)

Using multiplicative updates for the non-negative optimization system pro-
posed by [42], H and W are updated by:

H(𝑡+1) ← H(𝑡) ⊙ W(𝑡)⊤X
W(𝑡)⊤W(𝑡)H(𝑡)

, (2.3)

W(𝑡+1) ←W(𝑡) ⊙ XH(𝑡+1)⊤

W(𝑡)H(𝑡+1)H(𝑡+1)⊤ , (2.4)

where ⊙ stands for the element-wise matrix product, and 𝐴
𝐵 stands for the

element-wise matrix division. H(0) and W(0) are set to random values, and the
updates are repeated until W and H become stable.
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Optimization process for Updating W and H

In the context of Non-Negative Matrix Factorization (NMF), we have Θ = (W,H).
Instead of simultaneously updating both matrices, the algorithm can be simplified
by following block-coordinate descent scheme in which algorithm takes turns in
updating both matrices, where one matrix is updated in one iteration keeping the
other matrix constant and updating the second matrix in next iteration keeping the
first one constant. The optimization process presented here is taken from [8]:

H← H − 𝜂H ◦ ∇H𝐷(X,WH) (2.5)

W←W − 𝜂W ◦ ∇W𝐷(X,WH) (2.6)

The standard Euclidean distance between two vectors x and y of 𝑁 elements can
be expressed as

𝑑EUC(x, y) =

√√√
𝑁∑
𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (2.7)

Alternatively, we can characterize the Euclidean norm as:

∥x∥ =
√
𝑥2

1 + 𝑥2
2 + · · · + 𝑥2

𝑁
=

√√√
𝑁∑
𝑖=1

𝑥2
𝑖

(2.8)

which allows us to reinterpret eq. 2.8 as the norm of the difference vector:

𝑑EUC(x, y) = ∥x − y∥ (2.9)

For matrices, the equivalent is the Frobenius norm, defined by

∥X∥𝐹 =

√√√ 𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑥2
𝑖 𝑗

(2.10)

Using the Frobenius norm of their difference, we can express the Euclidean-like
distance of matrices as:

𝐷EUC(X,Y) = ∥X − Y∥𝐹 =

√√√ 𝑀∑
𝑖=1

𝑁∑
𝑗=1
(𝑥𝑖 𝑗 − 𝑦𝑖 𝑗)2 (2.11)

For NMF, we can make gradient computations simple by using the square of
the Frobenius norm. By doing that we get following cost function:
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𝐷EUC(X,WH) = ∥X −WH∥2𝐹 =

∑
𝑚

∑
𝑛

(𝑥𝑚𝑛 −WH|𝑚𝑛)2 (2.12)

where WH|𝑚𝑛 represents the 𝑚𝑛-th element of WH. we have two options for
calculating the gradient of this equation: one is the compact matrix notation which
leverages the matrix operations to express the gradients, while the other option
is element-by-element derivatives which includes the calculation of derivative of
equation with respect to every element. Both of these will provide us with the same
result; however, we will be discussing it using matrix calculus to keep it simple and
elegant.

To begin, let’s focus on a key property of the matrix trace. As a reminder, the
trace is simply the sum of the elements along the main diagonal of a square matrix.
The specific property we’ll be utilizing is:

tr(X⊤Y) =
𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑥𝑖 𝑗𝑦𝑖 𝑗 (2.13)

Importantly, the trace of a matrix product equals the sum of their element-wise
(Hadamard) products, provided that both matrices have the same size. Conse-
quently, the Frobenius norm (eq. 2.10) can be rewritten as

∥X∥𝐹 =

√√√ 𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝑥2
𝑖 𝑗
=
√

tr(X⊤X), (2.14)

The Euclidean NMF cost function can then be expressed as:

𝐷EUC(X,WH) = ∥X −WH∥2𝐹 = tr[(X −WH)⊤(X −WH)]. (2.15)

Using the addition and multiplication property of the transpose, we get

𝐷EUC(X,WH) = tr[(X⊤−H⊤W⊤)(X−WH)] = tr(X⊤X−X⊤WH−H⊤W⊤X+H⊤W⊤WH)
(2.16)

We leverage several matrix algebraic properties, including:

• Addition property: tr(A + B) = tr(A) + tr(B)

• Cyclic permutation: tr(ABC) = tr(CAB) = tr(BCA)

Key gradient computation properties include:
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∇Xtr(AX) = A⊤

∇Xtr(X⊤A) = A
∇Xtr(X⊤AX) = (A +A⊤)X
∇Xtr(XAX⊤) = X(A +A⊤)

(2.17)

These properties form the foundation for systematically computing gradients
in matrix factorization problems. For ∇H𝐷EUC(X,WH), we proceed term by term:

First term: ∇Htr(X⊤X) = 0, since it does not depend on H

Second term:
∇Htr(X⊤WH) = (X⊤W)⊤ = W⊤X (2.18)

Third term:
∇Htr(H⊤W⊤X) = W⊤X (2.19)

Last term:

∇Htr(H⊤W⊤WH) = [W⊤W + (W⊤W)⊤] = 2W⊤WH (2.20)

Combining these terms with the appropriate signs from Eq. 2.16, we obtain:

∇H𝐷EUC(X,WH) = −2W⊤X + 2W⊤WH (2.21)

For ∇W𝐷EUC(X,WH), we follow a similar approach:

First term: ∇Wtr(X⊤X) = 0

Second term:

∇Wtr(X⊤WH) = ∇Wtr(HX⊤W) = (HX⊤)⊤ = XH⊤ (2.22)

Third term:
∇Wtr(H⊤W⊤X) = ∇Wtr(XH⊤W⊤) = XH⊤ (2.23)

Last term:

∇Wtr(H⊤W⊤WH) = ∇Wtr(WHH⊤W⊤) = W[(HH⊤)⊤ +HH⊤] = 2WHH⊤ (2.24)

Finally, we get:

∇W𝐷EUC(X,WH) = −2XH⊤ + 2WHH⊤ (2.25)
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Now we have ∇H𝐷EUC(X,WH) (eq. 2.21) and ∇W𝐷EUC(X,WH) (eq. 2.25); by
substituting these results back into Equations 2.5 and 2.6, we derive the block-
coordinate gradient descent algorithm for Euclidean NMF.

H← H + 𝜂H ◦ (W⊤X −W⊤WH) (2.26)

W←W + 𝜂W ◦ (XH⊤ −WHH⊤) (2.27)

We can disregard the scalar 2, as it can be incorporated into the learning rates.

In traditional gradient descent, the learning rates (𝜂H and 𝜂W) are positive,
which can lead to negative elements in the update rules due to subtraction. This
violates the non-negativity constraint crucial for NMF. To address this, Lee and
Seung [42] introduced a clever technique in 2001: using data-adaptive learning
rates that eliminate subtraction from the update process, thus preventing negative
elements. This is achieved by strategically defining the learning rates. For instance,
for H, we can set:

𝜂H =
H

W⊤WH
(2.28)

(where the fraction line represents element-wise division), the first update rule
transforms into:

H← H+ H
W⊤WH

◦(W⊤X−W⊤WH) = H+H◦ W⊤X
W⊤WH

−H◦W⊤WH
W⊤WH

= H◦ W⊤X
W⊤WH

(2.29)
Similarly for W we can set:

𝜂W =
W

WHH⊤
(2.30)

update rule of W becomes:

W←W+ W
WHH⊤

◦(XH⊤−WHH⊤) = W+W◦ XH⊤

WHH⊤
−W◦WHH⊤

WHH⊤
= W◦ XH⊤

WHH⊤
(2.31)

Through this transformation, the additive update rules become multiplicative
update rules. This eliminates the possibility of generating negative elements, as
all values involved are positive and the updates only involve multiplications and
divisions.

H← H ◦ W⊤X
W⊤WH

(2.32)
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W←W ◦ XH⊤

WHH⊤
(2.33)

2.1.3 Comparison of NMF and PCA

NMF excels at capturing inherent data structure, a potential weakness of PCA. While
PCA ensures feature orthogonality—a mathematically guaranteed property due to
its reliance on eigenvectors of a symmetric covariance matrix—this orthogonality
can sometimes obscure the data’s true underlying relationships. Unlike PCA, NMF
prioritizes data representation over strict orthogonality, leading to potentially more
meaningful feature decompositions. Figure 2.2 illustrates this difference.

Figure 2.2: Geometrical interpretation of PCA and NMF (credit to [77]).

Both NMF and PCA reduce complex data, but they do so differently. NMF
decomposes data, like gene expression or images, into interpretable, parts-based
features (e.g., facial features like "eyes" or "nose"). These can be combined to
reconstruct the original. PCA, on the other hand, provides a series of progressively
refined, holistic approximations of the data, like increasingly accurate "generic"
faces as shown in Fig. 2.3. The choice between them depends on whether you need
interpretable parts or a hierarchical representation of the whole.

2.1.4 Regularized NMF (NMF with Regularization Terms)

Non-Negative Matrix Factorization (NMF) has emerged as a fundamental tool in
machine learning, data analysis, and pattern recognition due to its ability to extract
interpretable and meaningful components from high-dimensional data [58]. How-
ever, despite its advantages in feature extraction and dimensionality reduction,
standard NMF suffers from inherent limitations, such as sensitivity to initializa-
tion, susceptibility to noise, and a lack of constraints to guide the factorization
process [16]. To address these challenges, researchers have introduced regularized
NMF, which incorporates additional constraints into the factorization objective [46,
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Figure 2.3: Capability of PCA and NMF to extract local important features from
faces [43]

61, 49]. These regularization terms help improve generalization, stability, and
interpretability by introducing prior knowledge or desirable properties into the
factorization process.

Regularization in NMF is essential to mitigate some of the common drawbacks
associated with traditional NMF approaches. One primary issue is the non-convex
nature of the NMF optimization problem, which often leads to convergence to sub-
optimal solutions. Since NMF relies on iterative updates, different initializations
can result in significantly different factorizations, making it difficult to obtain consis-
tent results. Regularization constraints help steer the optimization process toward
meaningful solutions by incorporating structural information or penalizing unde-
sired properties. Additionally, regularized NMF can enhance sparsity, smoothness,
orthogonality, or local structure preservation, depending on the application domain
[43].
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Graph-Regularized NMF (G-NMF)

One of the most widely studied forms of regularized NMF is graph-regularized
NMF (G-NMF), which seeks to preserve the local geometric structure of data dur-
ing factorization. In many real-world datasets, such as images, text corpora, and
biological data, the underlying data distribution follows a manifold structure. Tra-
ditional NMF does not account for this geometric relationship, often leading to
loss of critical structural information. Graph-regularized NMF introduces a graph
Laplacian term into the NMF objective function, which enforces that similar data
points in the high-dimensional space remain close in the lower-dimensional repre-
sentation [11, 4, 73]. The mathematical formulation of G-NMF is given by:

min
W,H≥0

||X −WH||2𝐹 + 𝜆Tr(HLH⊤) (2.34)

where L is the graph Laplacian matrix and 𝜆 controls the influence of the graph
regularization term.

Despite its advantages, G-NMF faces some challenges. Constructing an optimal
similarity graph is non-trivial and requires careful selection of parameters such as
the number of neighbors and weight functions. Additionally, the computational
complexity of computing the graph Laplacian increases with dataset size, making
large-scale applications difficult. Researchers have attempted to address these is-
sues by integrating adaptive graph learning strategies and optimizing the efficiency
of graph construction algorithms [74].

Orthogonal NMF (O-NMF)

Another critical variant of regularized NMF is orthogonal NMF (O-NMF), which
introduces orthogonality constraints on either the basis matrix 𝑊 or the coefficient
matrix 𝐻 [15, 48]. The motivation behind this constraint is to ensure that differ-
ent components in the factorized matrices capture distinct and non-overlapping
features. Unlike traditional NMF, where basis vectors can have redundant or cor-
related structures, O-NMF enforces decorrelation, making it particularly useful for
clustering and classification tasks [60, 47].

The mathematical formulation of O-NMF is given by:

min
W,H≥0

||X −WH||2𝐹 , s.t. W⊤W = I or H⊤H = I (2.35)

where 𝐼 is the identity matrix, enforcing orthogonality on 𝑊 or 𝐻.
While O-NMF improves feature separation and enhances interpretability, it

presents significant computational challenges. The non-convexity of the orthogo-
nality constraint makes optimization difficult, often leading to slow convergence
and increased sensitivity to noise. Moreover, enforcing strict orthogonality can
sometimes reduce flexibility in capturing the underlying data distribution, partic-
ularly when dealing with highly overlapping clusters [35].
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Sparse NMF

Another important category of regularized NMF is sparse NMF, which introduces
sparsity-inducing constraints on the factorized matrices. Sparsity is a desirable
property in many applications, as it enhances interpretability by ensuring that
only a small subset of features contributes to each factorized component [59, 41,
61]. In text mining, for example, sparse NMF helps extract distinct topics where
each topic is represented by a limited number of words, leading to better topic
coherence. Similarly, in bioinformatics, sparsity enables the identification of key
genes associated with specific biological processes while filtering out irrelevant
noise [38].

Sparse NMF is typically implemented by incorporating an 𝐿1 norm or an 𝐿0
norm constraint into the NMF objective function:

min
W,H≥0

||X −WH||2𝐹 + 𝜆(|W|1 + |H|1) (2.36)

where 𝜆 controls the level of sparsity.
Although 𝐿1 -based regularization is computationally efficient, it may not always

produce truly sparse representations, as it only encourages sparsity rather than
strictly enforcing it [25].

Smooth NMF

Another direction in regularized NMF research involves smooth NMF, which in-
corporates smoothness constraints to regularize the factorized matrices [45, 54].
In many applications, abrupt changes in factorized components are undesirable, as
they may introduce artifacts or instability. Smooth NMF addresses this by enforcing
gradual variations in the matrix elements, making it particularly useful in signal
processing, image analysis, and time-series modeling. Smoothness constraints
are often implemented using 𝐿2 norm penalties or total variation minimization
techniques, which suppress rapid fluctuations and enhance continuity in learned
representations [66].

The mathematical formulation of smooth NMF is given by:

min
W,H≥0

||X −WH||2𝐹 + 𝜆
∑
𝑖 , 𝑗

(H𝑖 , 𝑗 −H𝑖 , 𝑗+1)2 , (2.37)

where 𝜆 controls the degree of smoothness applied to H. While smooth NMF
provides improved stability and noise resistance, it may reduce the ability to cap-
ture fine-grained details in certain applications. Furthermore, defining an appro-
priate smoothness level requires domain expertise, as excessive smoothing can blur
important structures in the data. Recent advances have explored adaptive smooth-
ness constraints, where the degree of smoothness is learned dynamically based on
dataset characteristics, thereby offering a more flexible approach [76].
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2.2 Some Applications of NMF

NMF functions as a strong analytical approach for reducing dimensions and cluster
analysis and extracting features across numerous fields of study. Because of its
power to create understandable positive expressions, NMF finds broad application
in bioinformatics, image processing, text mining, material science, recommendation
systems, and spectroscopy.

Bioinformatics research extensively uses NMF techniques to analyse large bi-
ological datasets. The method finds its main application in disease-related gene
expression analysis by revealing groups of genes that co-activate together. BioNMF
represents a tool [57] created to demonstrate how NMF effectively extracts important
patterns from genetic expression information. According to [18], NMF functions
as a tool for cancer subtype detection through matrix decomposition, generating
biologically significant components. [1] applied NMF within a multi-label classifi-
cation platform to discover human disease-related gene modules, thus expanding
its value in precision medicine. NMF has proven its usefulness in reducing thou-
sands of genes data to a few meta genes and the ability to deduce meaningful
information from microarray data related to cancer [7], which is also presented in
Fig. 2.4

Figure 2.4: Meta genes and molecular pattern discovery [7].

NMF serves image processing applications, performing tasks including face
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recognition, object detection, and image denoising. The additive decomposition of
images through NMF identifies important features like facial elements, including
eyes, mouth, and nose. NMF produces localised sparse representations that are an
attractive substitute for the standard Principal Component Analysis (PCA). The re-
search team of [20] showed NMF, together with other machine learning techniques,
could extract microscopic image structural patterns through their materials science
heterogeneity analysis (Fig. 2.5).

Figure 2.5: NMF factors and loading maps show different material phases present
in the natural igneous sample [20].

Mass spectrometry and chemical imaging heavily depend on NMF for their
operations. [56] published a paper comparing different NMF-related methods for
practical applications in mass spectrometry imaging data analysis. Fig. 2.6 shows
the deduction of three regions from human lymph sample, by NMF. [19] devel-
oped weighted NMF to improve high-resolution mass spectrometry analysis, and
[40] investigated its usage in MR spectroscopy studies. Researchers demonstrate
with their work that NMF enhances the identification of compounds present in
heterogeneous mixtures and develops better methods to study materials.

Text mining represents a key domain for NMF applications, which uses the
method primarily for topic modeling tasks. NMF constructs interpretive topic-word
distributions through its non-negative factor matrix, while LDA fails to generate
such results. The technique proves helpful across three significant applications, in-
cluding document grouping, analysis of sentiment and retrieval tasks. Individuals
evaluating short-text topic mining schemes tested both NMF and LDA-based ap-
proaches through experiments, according to [14] and proposed Knowledge guided
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Figure 2.6: Detailed analysis of human lymph sample. NMF deduced three regions
from the nodules: 1. mantle zone, 2. core zone and 3. outer part. [56]

NMF for short text topic mining. NMF achieved high effectiveness in topic ex-
traction from textual data according to [52], which employed both NMF and the
existing model.

The non-negative matrix factorisation technique uses spectroscopic and micro-
scopical data analysis to identify complex material spectra. [34] developed phys-
ically constrained linear unmixing, which introduced NMF as part of a universal
analysis method for heterogeneous materials. Fig. 2.7 shows the results of Non-
negative Matrix Factorization (NMF) applied to ToF-SIMS data, with the optimal
decomposition found using four components. Research findings show that NMF
improves spectral data understanding, which produces a better understanding of
material properties.

NMF is an analytical tool in neuroscience and behavioral research to process
locomotion pattern data. [27] utilised NMF as one of their dimensionality reduc-
tion techniques to extract shape-based features in C. elegans locomotion studies.
The application is helpful for neurological disorder research by detecting different
behavioral patterns. The framework of NMF delivers successful performance in rec-
ommendation systems aimed at collaborative filtering. NMF generates customised
recommendation outputs through its ability to extract user-specific preferences by
breaking down user-item interaction data. Collaborative filtering systems received
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Figure 2.7: Results of NMF with four components: (a) the extracted spectral sig-
natures (endmembers) and (b-e) the spatial distribution of their corresponding
abundances [34].

improved recommendations through an efficient NMF-based approach developed
by [51] and Bayesian NMF clustering techniques examined by [5]. [44] presented
a detailed study of matrix factorisation methods, specifically discussing NMF’s
contribution to recommendation precision. NMF is vital for enhancing recommen-
dation accuracy since it generates meaningful connections between users and items
in consumer platforms.

NMF has wide applications across domains because it maintains its core po-
sition as an essential method for pattern analysis, clustering, and dimensionality
reduction. It remains a fundamental tool for analysing high-dimensional data while
providing robust and interpretable solutions in bioinformatics, image processing,
text mining, material science, recommendation systems, and spectroscopy. Inte-
grating NMF capabilities with meta-learning and deep learning methods continues
to develop new possibilities for diverse field applications.

2.3 Advantages and challenges of NMF

In recent years, NMF has become increasingly popular due to its valuable properties
and applications [43, 64]. Below, we summarize its key advantages and challenges.
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Advantages

1. Interpretable part-based representations: NMF produces more naturally in-
terpretable features than traditional methods like PCA, which involve holistic
data transformations [70].

2. Topic modeling applications: NMF excels in text mining and information
retrieval, where columns correspond to word sets defining topics and rows
represent documents [39, 23].

3. Image decomposition: Successfully used in facial recognition to separate
images into components like textures, edges, and facial features, improving
classification and clustering tasks [2, 65].

4. Bioinformatics utility: Valuable for analyzing gene expression data to iden-
tify patterns representing biological processes or disease states, aiding medi-
cal diagnostics and research [33].

5. Sparse data compatibility: The non-negative constraint makes NMF well-
suited for preserving sparsity in real-world datasets like document term ma-
trices, increasing computational efficiency and avoiding overfitting [22].

6. Model transparency: NMF’s interpretable results provide a basis for appli-
cations requiring transparent and explainable machine learning models [67].

Challenges

1. Initialization sensitivity: NMF’s iterative optimization approach makes it
highly sensitive to initialization, generating different solutions based on start-
ing matrices and preventing consistent results across runs [21, 53].

2. Non-convex optimization: The optimization function often converges to
local minima rather than absolute minima, especially problematic in high-
dimensional datasets [24].

3. Limited scalability: Computational complexity increases dramatically with
dataset size, making NMF impractical for large-scale real-time applications
[67].

4. Transfer learning limitations: NMF lacks built-in mechanisms to transfer
knowledge between tasks, limiting its generalizability and requiring advanced
techniques like meta-learning for improvement [63, 30].

5. Optimization challenges: Despite research into regularization techniques
and constraint-based approaches, a universally optimal strategy for overcom-
ing local minima has not been found [17].
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6. Computational trade-offs: Optimized algorithms exploring parallel comput-
ing and stochastic updates often compromise between accuracy and efficiency
[16].

Meta-learning approaches offer promising solutions to these challenges by im-
proving initialization strategies, enabling adaptive optimization, and facilitating
cross-task knowledge transfer [31, 72, 50, 63]. However, integrating meta-learning
with NMF introduces additional computational complexity and requires further
research to develop efficient algorithms that can effectively capture task similarities
across datasets.

2.4 Supervised Meta-Learning

We are inspired by the MAML model, a framework designed to enable rapid adap-
tation of deep learning models to new tasks with minimal data. The key idea behind
MAML is to learn a set of model parameters that are well-suited for fine-tuning a
variety of tasks. Rather than training separate models for each task, MAML seeks
to optimize a shared set of parameters that can be quickly adapted with a small
number of gradient updates. This approach is model-agnostic, meaning it can be
applied to any model that uses gradient-based learning, including neural networks.
MAML has been demonstrated to outperform traditional learning methods in tasks
such as few-shot classification and reinforcement learning, showing the potential
of meta-learning for improving the efficiency of model adaptation to new tasks.
Therefore, given a task distribution 𝑝(𝑇), MAML aims to find a model initialization
𝜃∗ such that after a few gradient steps on a task, the model performs well on that
task. The objective is to optimize the model parameters 𝜃 to minimize the loss on
a set of tasks with minimal updates. The Meta-objective function to optimize is as
follows:

𝜃∗ = arg min
𝜃

E𝑇∼𝑝(𝑇) [ℒval (𝜃 − 𝛼∇𝜃ℒtrain(𝜃))] , (2.38)

where 𝑇 is a task sampled from the task distribution 𝑝(𝑇), ℒtrain(𝜃) is the training
loss on the task, ℒval(𝜃) is the validation loss on the task after updating the model
parameters𝜃 and 𝛼 is the learning rate used for the task-specific updates, andE𝑇∼𝑝(𝑇)
represents the expectation over tasks 𝑇 that are sampled from a task distribution
𝑝(𝑇). This means that the optimization objective is averaged over multiple tasks
rather than a single task. The task-specific model parameters are updated as follows:

𝜃′ = 𝜃 − 𝛼∇𝜃ℒtrain(𝜃), (2.39)

where 𝜃′ are the parameters after one step of gradient descent on the task’s training
data.
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2.5 Meta-Learning for Unsupervised Learning

While meta-learning has been extensively studied in supervised settings, its ap-
plication in other machine learning paradigms remains a developing area [68].
Unlike supervised approaches, where labeled data guide model training, unsu-
pervised meta-learning must infer patterns and structures directly from unlabeled
data. One of the most promising applications is in clustering and dimensionality
reduction, particularly in the context of Non-Negative Matrix Factorization (NMF).

Meta-learning for unsupervised learning aims to address the limitations of con-
ventional unsupervised algorithms by enabling models to generalize factorization
patterns across tasks. One of the main challenges in unsupervised meta-learning
is the absence of explicit feedback signals, making it difficult to optimize model
performance. To address this, researchers have explored self-supervised learning
approaches, where proxy tasks such as contrastive learning or pseudo-labeling
guide the meta-learning process [37]. Additionally, adversarial learning has been
used to enhance unsupervised meta-learning, improving model robustness and
generalization [71].

Recent studies have demonstrated the effectiveness of meta-learning-enhanced
NMF in clustering applications [30]. By leveraging meta-learning principles, mod-
els can optimize initialization, dynamically adjust regularization parameters, and
enhance generalization across diverse data distributions. Furthermore, meta-
learning has been applied in anomaly detection, where models learn to detect
outliers in new datasets based on prior knowledge from related tasks [62, 75].

Future directions in unsupervised meta-learning include the development of
more scalable algorithms capable of handling large-scale datasets and the integra-
tion of meta-learning with generative models, such as Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs), to improve representation
learning. Additionally, researchers aim to enhance interpretability in unsupervised
meta-learning models, making them more transparent and explainable in critical
applications such as healthcare and finance.
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Method: Meta-Unsupervised
Learning

3.1 Problem formulation

In the proposed framework, we define three distinct types of tasks, each associ-
ated with datasets of increasing size to facilitate progressive knowledge transfer
and generalisation. First, Meta-Tasks operate on small-scale meta-datasets, which
serve as auxiliary learning problems designed to capture local structures and ex-
tract transferable representations. These meta-datasets are intentionally small to
ensure computational efficiency and prevent overfitting to any single sub-problem.
Second, the Learning Target Task is conducted on a target dataset, which is typically
larger than the meta-datasets, allowing the model to refine the learned represen-
tations and adapt to a broader data distribution. The learning target dataset acts
as an intermediate stage, balancing specificity and generalizability by leveraging
knowledge acquired from the meta-tasks. Finally, the Final Generalization Task is
performed on the ultimate evaluation dataset, which is the largest and entirely
unseen during the learning phase. The increased size of this dataset ensures a
robust evaluation of the model’s generalisation ability, as it encompasses a more
comprehensive and diverse data distribution. The hierarchical structuring of these
tasks, where the meta-datasets are smaller than the learning target dataset and the
ultimate dataset is the largest, ensures a gradual, scalable learning process, pre-
venting overfitting at early stages while maximising the model’s adaptability and
generalisation performance.

We first define the relevant notations and concepts to lay the foundation for our
approach. Let 𝒯𝑠 = {𝒯𝑠𝑖 ;∀𝑖 = 1..𝑁} a set of 𝑁 meta-tasks. Each meta-task repre-
sents an individual task within the larger problem. Each meta-task corresponds to
a dataset X𝑠𝑖 ∈ R𝑚×𝑛𝑠 , where 𝑚 represents the number of features, and 𝑛𝑠 refers to
the number of samples in the meta-task. The learning target task, denoted as 𝒯𝑡 , is the
primary task that the model aims to improve upon using the knowledge learned

25
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from multiple meta-tasks. The dataset for the learning target task is represented as
X𝑡 ∈ R𝑚×𝑛𝑡 , where 𝑛𝑡 is the number of samples in the learning target task. The final
generalisation, denoted as 𝒯𝑒 , is the ultimate task on which the model is evaluated.
This evaluation leverages the knowledge acquired from previous tasks (meta-tasks
and learning target task) during the meta-learning phase. The dataset for 𝒯𝑒 is
represented as X𝑒 ∈ R𝑚×𝑛𝑒 , where 𝑛𝑒 denotes the number of samples in the dataset.
We assume that 𝒯𝑠 , 𝒯𝑡 and 𝒯𝑒 are i.i.d. This implies that, theoretically, each task is
statistically independent of the others and drawn from the same underlying prob-
ability distribution. In meta-learning, this assumption is critical because it ensures
that the model’s performance on𝑇𝑒 generalises well, as it reflects the same statistical
properties as 𝑇𝑠 and 𝑇𝑡 . By assuming tasks are i.i.d., meta-learning frameworks can
reliably evaluate the model’s ability to adapt to new, unseen tasks from the same
distribution, which is a meta-learning objective.

To achieve effective learning (Meta-learning phase), our method leverages the
concept of NMF to decompose the data matrices X𝑠𝑖 and X𝑡 into non-negative factors
that reveal latent structures in the data. On the other hand, the meta-learning
framework allows the model to adapt and transfer knowledge across meta-tasks to
enhance the performance on the learning target task. This approach ensures that
the model can effectively generalize to the ultimate generalization task 𝒯𝑒 , as the
decomposition and meta-learning processes jointly optimize the model’s ability to
handle unseen data from the same distribution (Evaluation phase). By leveraging
the latent structures in X𝑒 and the knowledge transferred from meta-tasks, our
method ensures robust evaluation and generalization on the ultimate generalization
dataset, aligning with the core objectives of meta-learning. In the next subsections,
we will describe the key components of the methodology, including the process
of task-specific NMF decomposition, the meta-learning algorithm for transferring
knowledge, and how these components are integrated for improved unsupervised
learning performance.

In the context of meta-learning, particularly applied to tasks like NMF, the model
parameters (𝑖.𝑒.,W and H ) is trained on small datasets to learn initial parameters,
which are then transferred and updated based on a learning target dataset. The
update process is as follows:

3.2 Meta-Unsupervised Learning on Small Datasets:

The model uses small datasets (meta-tasks), to learn, in an unsupervised way, the
factorized matrices W𝑠𝑖 and H𝑠𝑖 at each epoch 𝑘. The objective is to minimize the
following loss function:

ℒmeta
(
(W𝑠𝑖 ,H𝑠𝑖 )(𝑘+1)) = 1

2∥X𝑠𝑖 − (W
(𝑘)
𝑡 +W(𝑘)𝑠𝑖 )H

(𝑘)
𝑠𝑖 ∥2𝐹;∀𝑖 , (3.1)
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Minimizing the loss function in Eq. (3.1) can be approximated by reducing
the Frobenius norm between the original dataset X𝑠𝑖 and the product of the recon-
structed factorized matrices W𝑠𝑖 and H𝑠𝑖 , where W𝑠𝑖 is augmented with W𝑡 , for
each meta-task. Therefore, the learning of the factorized matrices for each meta-task
is carried out as follows:

(W𝑠𝑖 ,H𝑠𝑖 ) = min 1
2∥X𝑠𝑖 − (W𝑡 +W𝑠𝑖 )H𝑠𝑖∥2𝐹;∀𝑖. (3.2)

As mentioned in Eq. (3.2), the previously learned W𝑡 contributes to the initializa-
tion of each W𝑠𝑖 , facilitating a better localization of W𝑠𝑖 in the parameter search
space across epochs. This process can be interpreted as a form of knowledge trans-
fer between the learning target task and the meta-tasks, enhancing convergence and
improving factorization stability. Numerically solving Eq. (3.2) is performed using
the NMF algorithm, following the same procedure as outlined in Eq. (2.1).

3.3 Meta-Unsupervised Learning on Larger (Target) Dataset:

After learning the parameters on the small datasets, the model is fine-tuned (initial-
ized) on the larger target dataset X𝑡 . The learned parameters (W𝑡 ,H𝑡) are updated
by minimizing the following loss function:

ℒ
(
(W𝑡 ,H𝑡)(𝑘+1)) = E𝒯𝑠𝑖∼𝑝(𝒯 )

[
ℒ𝒯𝑠𝑖

(
(W𝑠𝑖 ,H𝑠𝑖 ,W𝑡)(𝑘)

) ]
, (3.3)

where ℒ𝒯𝑠𝑖 (.) is the loss for the 𝑖𝑡ℎ meta-task, and 𝑝(𝒯 ) is the distribution over the
small datasets. The minimization of Eq. (3.3) can be carried out as follows:

(W𝑡 ,H𝑡) = min 1
2∥X𝑡 − (W𝑡 +

1
𝑁

∑
𝑖

𝛼𝑖W𝑠𝑖 )H𝑡∥2𝐹 . (3.4)

As indicated in Eq. (3.4), the parameters W𝑠𝑖 of the meta-tasks contribute to the
initialization of the parameter W𝑡 for subsequent learning stages on the learning
target-task. Theoretically, the hyperparameter 𝛼 is introduced to weight the pa-
rameter of each meta-task based on the accuracy of each W𝑠𝑖 with respect to the
reconstruction loss computed in Eq. (3.1). In practice, we set 𝛼𝑖 = 1 for all meta-
tasks. Similarly to the Meta-unsupervised learning approach on small datasets,
W𝑡 is augmented by the average of W𝑠𝑖 , enabling knowledge sharing between the
target NMF and the meta-NMFs applied to the meta-tasks. Numerically solving
Eq. (3.4) is performed using the NMF algorithm, following the same procedure
as outlined in Eq. (2.1). Ultimately, the learned matrices Ŵ𝑡 and Ĥ𝑡 are used to
initialize the NMF model, which then factorizes the evaluation data, X𝑒 , to solve
the generalization task 𝒯𝑒 .
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Finally, the steps of the proposed Meta-unsupervised learning using NMF are
presented in Algorithm (1). Figure 3.1 illustrates one epoch of the algorithm re-
quired to update the parameters for each meta-task as well as those of the target-task.
This process is repeated for many epochs to progressively converge towards the
optimal parameters (Ŵ𝑡 , Ĥ𝑡). The latter will be used as initial parameters for the
final evaluation task.

Algorithm 1 Meta-Unsupervised Learning with NMF
Require: X𝑠𝑖 ∈ R𝑚×𝑛𝑠 ; 𝑖 = 1..𝑁 ⊲ Data matrix for each meta-task
Require: X𝑡 ∈ R𝑚×𝑛𝑡 ⊲ Data matrix for the learning target task
Require: 𝑟 ⊲ Rank of factorization
Require: 𝛼 ⊲ Weighting factor for knowledge transfer
Require: max_epochs ⊲ Maximum number of epochs
Ensure: Ŵ𝑡 , Ĥ𝑡 ⊲ Optimal factorized matrices for the learning target task

META LEARNING PHASE
# Meta-Learning on Meta-Tasks:

1: Initialize: W𝑠𝑖 ,H𝑠𝑖 ,W𝑡 ,H𝑡 ∼ 𝒰(0, 1)
2: for 𝑖 = 1..𝑁 do
3: Update W𝑠𝑖 ,H𝑠𝑖 defined Eq. (3.2) ⊲ Une NMF update rule
4: end for

# Meta-Transfer to Learning Target Task:
5: Update W𝑡 ,H𝑡 defined in Eq. (3.4) ⊲ Une NMF update rule
6: W𝑠𝑖 ←W𝑠𝑖 +W𝑡

7: H𝑠𝑖 = W′
𝑠𝑖

X𝑠𝑖

8: W𝑡 ←W𝑡 + 1
𝑁

∑
𝑖 𝛼𝑖W𝑠𝑖

9: H𝑡 = W′
𝑡X𝑡

10: for 𝑒𝑝𝑜𝑐ℎ = 1 to max_epochs do
11: Repeat steps (2)-(7)
12: end for
13: Ŵ𝑡 ← H𝑡 ; Ĥ𝑡 ←W𝑡

EVALUATION PHASE
Require: X𝑒 ∈ R𝑚×𝑛𝑒 ⊲ Evaluation set (ultimate target)
Ensure: (W𝑒 ,H𝑒) ⊲ Factorized matrices for the evaluation set
14: (W𝑒 ,H𝑒) ← nmf_model(X𝑒 , Ŵ𝑡 , Ĥ𝑡)
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Figure 3.1: Flowchart illustrating a single update epoch (𝑘 → 𝑘+1) for the factorized
matrices in both the small datasets (2 for example) and the target dataset. The arrows
pointing to W indicate that only W is explicitly computed, while the matrix H is
implicitly computed from W⊤X. The spring arrows indicate the NMF optimization
process used to learn the factorized matrices. The bullet marks indicate the positions
of the learned factorized matrices within the parameter search space.



Chapter 4

Experiments, Analysis and
Discussion

To evaluate the impact of the meta-learning paradigm on solving problems in un-
supervised contexts, we apply this concept to multiple NMF variants, including the
original NMF [43] and G-NMF [10]. Additionally, to benchmark the effectiveness
of meta-learning against traditional parameter initialization methods, we include
NMF-NNDSVD and GNMF-NNDSVD (Non-Negative Double Singular Value De-
composition) [6] as a comparative baseline. We conduct various experiments on
different benchmark datasets described in Sec. 4.1 using different parameter set-
tings as indicated in Sec. 4.2. The analysis and discussion of the achieved results
based on the Normalized Mutual Information (NMI) metric of the models are pro-
vided in Sec. 4.3. Finally, Subjective and Interpretability Analysis is provided in
Sec. 4.3.1.

4.1 Dataset description

Five benchmark datasets are used, namely, Blobs (synthetic), Digits, Fashion-MNIST
(FMNIST), Olivetti Faces, and COIL-20 briefly described in Tab. 4.1.

Table 4.1: Key characteristics of benchmark datasets.
Dataset # of samples # of features # of clusters

Blobs 10000 500 5
Digits 1797 64 10
FMNIST 6000 784 10
Olivetti Faces 400 1024 40
COIL20 1440 1024 20

30
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4.2 Task preparation protocol and Parameter Setting

As outlined above, each task corresponds to a dataset. In our experiment, assuming
the i.i.d. assumption, each dataset is randomly divided into two sets: a learning
set (50%) and an evaluation set (50%). The learning set is further divided into two
parts: five meta-sets, each containing 50 samples and a target learning set (rest of
the data). Task split protocol can be seen in Fig. 4.1.

Figure 4.1: Task Split Protocol.

The evaluation set is used as the ultimate set considered for evaluation by all
models. These include the baseline NMF-based models (NMF, GNMF, GNMF-
NNDSVD, and NMF-NNDSVD), as well as their Meta models (Meta-NMF, Meta-
GNMF, Meta-GNMF-NNDSVD, and Meta-NMF-NNDSVD). The key difference be-
tween Meta models and the baseline models lies in their initialization methods. This
says that Meta-models use initial parameters learned by the meta-unsupervised
method from the learning and Metas sets; the NMF and GNMF utilize random
initialization, while the NMF-NNDSVD and GNMF-NNDSVD use Singular Value
Decomposition (SVD) for initialization. To optimize the learning phase, we con-
figure the following parameters: the factorization rank 𝑟 varies from 2 to 18, the
number of epochs is set to 50, and the maximum number of iterations for the NMF
factorization is set to 100. For the base NMF models, all of them are limited to 100
iterations (default configuration of the original implementation). These settings are
summarized in Table 4.2.

Table 4.2: Parameter Settings.
Parameter Value

rank (𝑟) [2, 3, 5, 10, 14, 18]
outer epochs 50
inner epochs 100
number of meta-tasks 5
size of meta-tasks 50
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4.3 Objective Analysis

Tables [4.3, 4.4, 4.5, 4.6] present the mean NMI scores over ranks for different mod-
els under noise-free conditions, whereas tables [4.7, 4.8, 4.10, 4.9] present the mean
NMI scores across ranks for different models under noisy conditions. The analy-
sis highlights key patterns in model performance, meta-learning effectiveness, and
noise’s impact on clustering results. Meta-learning generally enhances the per-
formance of standard NMF models by improving initialization and generalization
across tasks. However, the effectiveness of the meta-learning framework varies
depending on the dataset and the initialization method used.

Dataset NMF Meta-NMF
Blobs 0.086 0.869
Coil20 0.718 0.720
Digits 0.570 0.595
Faces 0.665 0.668

FMNIST 0.503 0.499

Table 4.3: Clustering performance of NMF and Meta-NMF on data without noise,
using mean NMI over ranks

Dataset GNMF Meta-GNMF
Blobs 0.073 0.273
Coil20 0.694 0.719
Digits 0.541 0.601
Faces 0.665 0.675

FMNIST 0.490 0.479

Table 4.4: Clustering performance of GNMF and Meta-GNMF on data without
noise, using mean NMI over ranks

Dataset GNMF NNDSVD Meta-GNMF NNDSVD
Blobs 0.804 0.849
Coil20 0.691 0.717
Digits 0.523 0.585
Faces 0.646 0.675

FMNIST 0.488 0.493

Table 4.5: Clustering performance of GNMF NNDSVD and Meta-GNMF NNDSVD
on data without noise, using mean NMI over ranks
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Dataset NMF NNDSVD Meta-NMF NNDSVD
Blobs 0.759 0.759
Coil20 0.702 0.701
Digits 0.520 0.519
Faces 0.643 0.646

FMNIST 0.491 0.490

Table 4.6: Clustering performance of NMF NNDSVD and Meta-NMF NNDSVD on
data without noise, using mean NMI over ranks

Dataset NMF Meta-NMF
Blobs 0.061 0.798
Coil20 0.615 0.664
Digits 0.117 0.181
Faces 0.557 0.591

FMNIST 0.270 0.483

Table 4.7: Clustering performance of NMF and Meta-NMF on data with added
noise, using mean NMI over ranks

- In most cases, Meta-NMF outperforms NMF where it significantly improves per-
formance on the Blobs dataset, achieving the highest NMI scores both with and
without noise (0.869 vs. 0.086 in noise-free, 0.798 vs. 0.061 in noisy). The substan-
tial improvement indicates that meta-learning successfully refines initialization,
helping the model find a better factorization. However, on Fashion MNIST, Meta-
NMF provides little to no improvement over standard NMF in the noise-free case
(0.499 vs. 0.503).

- Meta-GNMF generally outperforms GNMF in both conditions with or without
noise. Meta-GNMF performs best on the Digits dataset without noise, slightly
outperforming all other models (0.601). This suggests that meta-learning helps
refine graph-based NMF representations, leading to improved clustering accu-
racy. However, it struggles in some cases, as its advantage over GNMF diminishes
on Fashion MNIST without noise (0.479 vs. 0.490) and Digits with noise (0.116
vs. 0.066).

- Meta-GNMF NNDSVD is the most robust meta-learning model in both con-
ditions with or without noise where it outperforms its baseline model GNMF
NNDSVD on all datasets. It achieves the highest performance on the Faces dataset
without noise and on most datasets with noise. This indicates that meta-learning
enhances generalization when dealing with complex or corrupted data.

- Meta-NMF NNDSVD performs similarly to its baseline NMF NNDSVD and fails
to provide significant improvement unlike the other Meta-learning NMF-based



CHAPTER 4. EXPERIMENTS, ANALYSIS AND DISCUSSION 34

Dataset GNMF Meta-GNMF
Blobs 0.057 0.093
Coil20 0.608 0.635
Digits 0.116 0.066
Faces 0.555 0.598

FMNIST 0.274 0.335

Table 4.8: Clustering performance of GNMF and Meta-GNMF on data with added
noise, using mean NMI over ranks

Dataset NMF NNDSVD Meta-NMF NNDSVD
Blobs 0.745 0.745
Coil20 0.611 0.611
Digits 0.186 0.185
Faces 0.571 0.570

FMNIST 0.452 0.450

Table 4.9: Clustering performance of NMF NNDSVD and Meta-NMF NNDSVD on
data with added noise, using mean NMI over ranks

models, which consistently outperform their baselines. This performance can be
explained that the NNDSVD initialization in the case of NMF seems to lead to
poor local minima, making meta-learning have little room to explore alternative
solutions.

Dataset GNMF NNDSVD Meta-GNMF NNDSVD
Blobs 0.712 0.772
Coil20 0.599 0.674
Digits 0.199 0.200
Faces 0.566 0.599

FMNIST 0.453 0.491

Table 4.10: Clustering performance of GNMF NNDSVD and Meta-GNMF
NNDSVD on data with added noise, using mean NMI over ranks

Figures [4.2, 4.3, 4.4, 4.5, 4.6] present the NMI scores obtained across different
rank settings on all datasets under noise-free conditions. The results indicate that,
on average, the meta-learning-enhanced variants outperform their baseline counter-
parts by approximately 5− 15%. Under noisy conditions, Figures [4.7, 4.8, 4.9, 4.10,
4.11] show that the performance gap becomes even more pronounced, with meta-
learning variants achieving up to 20% higher NMI scores. Notably, Meta-NMF and
Meta-GNMF-NNDSVD demonstrate superior performance, emphasizing the effec-
tiveness of unsupervised meta-learning in capturing more nuanced data structures.
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This improvement enhances the models’ ability to learn meaningful representations
while increasing robustness against noise. This may occur because meta-learning
and meta-transfer of parameters help filter out noise from the components across
learning epochs.

Figure 4.2: Comparison of NMF-based models with their Meta variants with no
noise added to Blobs dataset.

The effectiveness of meta-learning models varies depending on the selected
rank and noise conditions. The higher ranks (𝑟 = 14, 18) generally lead to better
clustering performance across all datasets, with Meta-NMF and its variants show-
ing the most substantial gains. The meta-learning framework also demonstrates
improved noise sensitivity, as evidenced by the smaller performance degradation
in noisy conditions compared to standard NMF and GNMF models. Among all
methods, Meta-NMF and Meta-GNMF NNDSVD consistently achieve the highest
NMI scores. The improvements achieved by the meta-learning framework can be
attributed to its generalization and adaptability. By learning from smaller datasets,
the meta-learning approach provides better parameter initialization, reducing sen-
sitivity to initialization and guiding the optimization process toward more stable
solutions. This adaptability allows them to maintain high performance under
various conditions and datasets, making the framework particularly effective for
clustering and dimensionality reduction tasks. However, there are some cases pre-
venting meta-learning from making meaningful refinements like in the case of NMF
NNDSVD. This further supports the idea that if a model already tends to fall in
poor local minima limiting the flexibility of meta-learning to improve results.
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Figure 4.3: Comparison of NMF-based models with their Meta variants with no
noise added to COIL20 dataset.

Figure 4.4: Comparison of NMF-based models with their Meta variants with no
noise added to Digits dataset.
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Figure 4.5: Comparison of NMF-based models with their Meta variants with no
noise added to Faces dataset.

Figure 4.6: Comparison of NMF-based models with their Meta variants with no
noise added to FMNIST dataset.
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Figure 4.7: Comparison of NMF-based models with their Meta variants with noise
added to Blobs dataset.

Figure 4.8: Comparison of NMF-based models with their Meta variants with noise
added to COIL20 dataset.
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Figure 4.9: Comparison of NMF-based models with their Meta variants with noise
added to Digits dataset.

Figure 4.10: Comparison of NMF-based models with their Meta variants with noise
added to Faces dataset.
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Figure 4.11: Comparison of NMF-based models with their Meta variants with noise
added to FMNIST dataset.

Figure 4.12: Comparison of Meta-based NMF models based on real-world bench-
mark datasets without noise (left to right), COIL20, Digits, Faces, FMNIST.



CHAPTER 4. EXPERIMENTS, ANALYSIS AND DISCUSSION 41

Figure 4.13: Comparison of Meta-based NMF models based on real-world bench-
mark datasets with noise (left to right), COIL20, Digits, Faces, FMNIST.

To investigate how each unsupervised learning model (NMF baseline) lever-
ages the power of meta-learning, we present the performance of the meta-models
in the same plots. Figures 4.12 and 4.13 compare the performance of various Meta-
based NMF models across the real-life benchmark datasets under two conditions:
noise-free (Fig. 4.12) and noisy (Fig. 4.13), using the NMI evaluation metric. In
the noise-free setting, all meta-based models except Meta-NMF NNDSVD, which
exhibits a slight deficiency yield similarly high-quality and interpretable latent rep-
resentations. However, when noise is introduced, clear differences emerge. Meta-
GNMF NNDSVD demonstrates the highest robustness, producing the clearest and
most distinct components, followed by Meta-NMF. In contrast, Meta-GNMF and
Meta-NMF NNDSVD consistently lag behind the others in noisy conditions. These
results suggest that while the meta-learning models perform comparably under
ideal conditions, Meta-GNMF NNDSVD and Meta-NMF show their superiority in
noisy environments, highlighting their enhanced resilience to noise and ability to
preserve feature clarity.

4.3.1 Subjective and Interpretability Analysis

To comprehensively evaluate the effectiveness of meta-learning in enhancing unsu-
pervised learning for discovering meaningful facial components, we conducted
a visual assessment using the Olivetti face dataset. This dataset enables em-
pirical evaluation of how well different models extract interpretable facial parts.
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We performed comparisons between standard NMF-based approaches and their
meta-learning-enhanced counterparts under both noise-free and noisy conditions
to quantify the impact of meta-learning on representation quality and robustness.

Our analysis of the extracted components reveals that meta-learning signifi-
cantly improves the quality of facial part representation. As shown in Fig. 4.14,
standard NMF (top) tends to extract more holistic facial representations with less
distinct separation between facial features. In contrast, Meta-NMF (bottom) demon-
strates superior capability in isolating specific facial components such as eyes,
mouth, and nose regions with greater clarity. When noise is introduced to the
dataset (Fig. 4.15), standard NMF (top) exhibits considerable degradation in ex-
traction quality, while Meta-NMF (bottom) maintains relatively consistent feature
extraction, suggesting enhanced robustness against data corruption.

Figure 4.14: Face parts extracted by NMF (top) and Meta-NMF (bottom), without
added noise.

Figure 4.15: Face parts extracted by NMF (top) and Meta-NMF (bottom), with
added noise.

The integration of graph regularization into NMF further highlights the benefits
of meta-learning. In Fig. 4.16, standard GNMF (top) extracts facial components with
reasonable quality but contains visible artifacts and less distinct feature separation.
Meta-GNMF (bottom) demonstrates more refined extraction capability, producing
cleaner representations of facial features like eyes, glasses, and mouth regions with
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improved visual interpretability. The robustness advantage becomes even more
apparent when noise is introduced (Fig. 4.17), where GNMF (top) shows significant
degradation while Meta-GNMF (bottom) maintains the integrity of extracted facial
components despite the presence of noise.

Figure 4.16: Face parts extracted by GNMF (top) and Meta-GNMF (bottom), without
added noise.

Figure 4.17: Face parts extracted by GNMF (top) and Meta-GNMF (bottom), with
added noise.

The incorporation of Non-Negative Double Singular Value Decomposition (NNDSVD)
initialization provides additional improvements in component extraction. As illus-
trated in Fig. 4.18, NMF NNDSVD (top) extracts facial components with improved
definition compared to standard NMF, but Meta-NMF NNDSVD (bottom) achieves
even greater distinction in isolating specific facial elements. When subjected to
noise (Fig. 4.19), NMF NNDSVD (top) shows noticeable degradation with in-
creased artifacts, while Meta-NMF NNDSVD (bottom) preserves the integrity of
facial component extraction remarkably well.

The combination of graph regularization with NNDSVD initialization repre-
sents the most sophisticated approach examined in our study. In Fig. 4.20, GNMF
NNDSVD (top) extracts facial components with good quality but still exhibits some
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artifacts and less precise feature isolation. Meta-GNMF NNDSVD (bottom) demon-
strates superior performance in extracting clean, distinct facial features with min-
imal artifacts and greater interpretability. Fig. 4.21 provides compelling evidence
for the robustness of meta-learning approaches in the presence of noise, where
Meta-GNMF NNDSVD (bottom) maintains remarkably consistent quality in pre-
serving distinctive facial components such as eyes with glasses, mouth, and face
contours with minimal corruption from noise, while GNMF NNDSVD (top) shows
considerable degradation.

Figure 4.18: Face parts extracted by NMF NNDSVD (top) and Meta-NMF NNDSVD
(bottom), without added noise.

Figure 4.19: Face parts extracted by NMF NNDSVD (top) and Meta-NMF NNDSVD
(bottom), with added noise.

These findings strongly support our hypothesis that meta-learning facilitates
more effective noise filtering over successive training epochs, resulting in more
stable and interpretable part-based representations. The meta-learning framework
demonstrates particularly strong robustness in noisy conditions, where standard
approaches often fail to maintain extraction quality. By enabling knowledge transfer
across tasks, meta-learning significantly enhances the capability of NMF-based
models to extract meaningful facial components, even in challenging environments
with data corruption. The consistent improvement observed across different model
configurations suggests that meta-learning offers a generalizable enhancement to
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unsupervised learning for part-based representation discovery.

Figure 4.20: Face parts extracted by GNMF NNDSVD (top) and Meta-GNMF
NNDSVD (bottom), without added noise.

Figure 4.21: Face parts extracted by GNMF NNDSVD (top) and Meta-GNMF
NNDSVD (bottom), with added noise.
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Conclusion and Future Directions

In this study, we have explored the integration of meta-learning with unsupervised
learning, using NMF as a case study to address key challenges inherent in unsu-
pervised tasks. By applying meta-unsupervised learning, we demonstrated that
NMF could leverage prior knowledge from smaller factorization tasks to enhance
its performance on larger, more complex datasets. The proposed Meta-NMF ap-
proach offers several key benefits: it reduces sensitivity to initialization, improves
convergence stability, and enhances the generalizability of the model, enabling it
to adapt more effectively to diverse datasets without requiring extensive parameter
tuning. Additionally, the meta-learning approach allows for the filtering of noise
over the course of learning epochs through meta-learning and meta-transfer of pa-
rameters, leading to the identification of more interpretable and meaningful object
parts. This capability makes the model more robust to noise, ensuring that even in
noisy conditions, the factorization remains clear and distinct. The results suggest
that meta-learning has a significant impact on unsupervised learning tasks, such
as clustering and dimensionality reduction, by improving optimization efficiency
and reducing computational demands. Overall, our work underscores the potential
of meta-learning to address critical limitations in unsupervised learning, offering
a path toward more adaptive, resilient, and autonomous models that can extract
meaningful representations from unlabeled data across a variety of domains.
Future will extend the meta-unsupervised learning framework to other unsuper-
vised techniques like clustering and dimensionality reduction, improving noise
robustness and stability, and enhancing scalability for large-scale datasets. Fur-
ther research could focus on integrating domain-specific knowledge for more tar-
geted learning, enhancing interpretability through explainable AI methods, and
incorporating multi-task or dynamic learning capabilities. These directions would
strengthen the framework’s generalization across diverse applications, improve its
adaptability, and make it more efficient in real-world settings.

Although this study has demonstrated the effectiveness of NMF across different
domains, some limitations should be addressed while proceeding to future work.

46
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Sensitivity to initialization is one major limitation of NMF, where incorrect initial-
ization can result in inconsistent factorization results. Future research needs to
explore improved initialization techniques or adaptive learning mechanisms that
change parameters dynamically during factorization. Moreover, the computational
complexity of NMF is still considered a problem, especially for high-scale datasets.
Future studies could use other more efficient optimization algorithms, such as paral-
lel computing approaches or a hybrid model of NMF and deep learning frameworks
to scale it further.

Furthermore, the usage of NMF in dynamic or real-world environments has
not been extensively explored. Future research could apply NMF for streaming
applications with evolving data structures, real-time signal processing, and finan-
cial modeling. NMF can be further applied in interdisciplinary fields like quantum
computing and materials science to open new doors and show the NMF’s versatility
in solving complex scientific and engineering problems.
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