Algorithmes d’apprentissage profonds supervisés et non-supervisés: applications et résultats théoriques

Master's thesis
University of Montreal
Neural networks, matchmaking, recommendation, deep learning

The list of areas affected by machine learning is growing rapidly. As the amount of available training data increases, the development of more powerful learning algorithms is crucial. This thesis consists of three parts: first an overview of the basic concepts of machine learning and the details necessary for training neural networks, models that lend themselves well to deep architectures. The second part presents an application of machine learning to online video games, and a performance measurement method when using these models as decision policies. Finally, the third section presents theoretical results for unsupervised training of deep architectures.

Video games are a particularly fertile area for machine learning: it is easy to accumulate large amounts of data, and many tasks are possible. Assembling teams of equal skill is a common machine learning application for online games. The first paper compares different learning algorithms against deep neural networks applied to the prediction of match balance in online games. We then present a simulation based method to evaluate the resulting models used as decision policies for online matchmaking.

Following this we present a new method to train generative models. Theoretical results indicate that it is possible to train by backpropagation unsupervised models that can generate samples following the data’s true distribution. This is a relevant result in the context of the recent literature investigating the properties of autoencoders as generative models. These results are supported with preliminary quantitative results and some qualitative experiments.